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Plût au ciel que le lecteur, enhardi et
devenu momentanément féroce comme ce
qu’il lit, trouve, sans se désorienter, son
chemin abrupt et sauvage, à travers les
marécages désolés de ces pages sombres et
pleines de poison ; car, à moins qu’il
n’apporte dans sa lecture une logique
rigoureuse et une tension d’esprit égale au
moins à sa défiance, les émanations
mortelles de ce livre imbiberont son âme
comme l’eau le sucre. Il n’est pas bon que
tout le monde lise les pages qui vont
suivre ; quelques-uns seuls savoureront ce
fruit amer sans danger. Par conséquent,
âme timide, avant de pénétrer plus loin
dans de pareilles landes inexplorées,
dirige tes talons en arrière et non en avant.
Écoute bien ce que je te dis : dirige tes
talons en arrière et non en avant, comme
les yeux d’un fils qui se détourne
respectueusement de la contemplation
auguste de la face maternelle ; ou, plutôt,
comme un angle à perte de vue de grues
frileuses méditant beaucoup, qui, pendant
l’hiver, vole puissamment à travers le
silence, toutes voiles tendues, vers un
point déterminé de l’horizon, d’où tout à
coup part un vent étrange et fort,
précurseur de la tempête.

Isidore Ducasse
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Many-body physics with strongly interacting fermions coupled to light

Abstract

This thesis reports on the realization of the first experiments conducted with superfluid, strongly interacting
Fermi gases of 6Li coupled to the light field of an optical cavity. In the scope of existing ultracold atomic
platforms, this is the first time that a system with strong ground state fermionic correlations is operated
in the framework of cavity quantum electrodynamics (cQED). From a condensed matter perspective,
the system features a fully controllable microscopic Hamiltonian with control over both the strength of
the ground state and light-matter interactions and the geometry of the latter. This contrasts with usual
solid-state systems, in which the properties of the ground states are hardly tunable. As such our experiment
is the perfect platform to simulate the physics of strongly correlated matter coupled to light fields. The
manuscript is divided in three parts.
The first part is dedicated to the presentation of technical details of the experiment and of measurement
techniques we routinely employ to create and probe our strongly interacting gases coupled to light. We
introduce the use of the cavity as a probing tool by presenting the achievement of strong light-matter
coupling between the atomic ensemble and the cavity field. Similarly, we present a robust thermometry
technique for the unitary Fermi gas, with which we measure temperature of the gases deep in the superfluid,
quantum degenerate regime.
In a second part we focus on the measurements of the strong atom-atom correlations which emerge from
the energy spectrum of the atoms-cavity system. We start by laying down the theoretical basis needed for
the understanding of the origin of the strong atom-atom interaction, and present its consequence on the
many-body wavefunction of the gas by introducing the two-body contact as a universal thermodynamic
quantity. We then report on the observation of strong light-matter coupling between pairs of atoms and the
cavity field via photoassociation transitions. We describe the resulting light-matter coupling strength in
terms of the two-body contact, imprinting many-body correlations onto cavity spectra for the first time.
In the following experiment we study the optomechanical response of the gas in the dispersive regime.
We observe distorted cavity transmission profiles, signatures of the nonlinear Kerr effect. The strength of
the nonlinearity is governed by the density response of the gas, which we express via an operator product
expansion in terms of the contact.
In the last part, we investigate the effects of engineering long-range, photon-mediated interactions in the
gas. We formally show how the system is expected, above a critical value for the strength of the long-range
interaction, to undergo a phase transition to a density ordered state. The onset of density-ordering is
observed by the superradiant properties of the ordered phase, and we show that it is also controlled by
the density response of the unperturbed gas. In addition, we measure the divergence of the density wave
susceptibility as the strength of the long-range interactions approaches the critical points: a striking feature
of phase transitions. By measuring its temperature after the experiment, we prove that the gas remains
superfluid.

Keywords: ultracold atoms, quantum gases, cavity qed, strongly interacting fermions, strongly correlated
matter, photoassociation, optomechanics, quantum phase transitions, charge density waves, tan’s
contact

Laboratory for Quantum Gases
– – – – –
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Résumé

Cette thèse présente les premières expériences effectuées avec des gaz de Fermi de 6Li en interaction forte
et couplés à la lumière par une cavité optique. Dans l’ensemble des expériences existantes d’atomes froids,
c’est la première fois qu’un système de fermions fortement corrélés fait l’objet d’une étude d’un point de
vue de l’électrodynamique quantique en cavité. D’autre part, d’un point de vue de la matière condensée
l’Hamiltonien microscopique de notre système est contrôlable à souhait, de la force des interactions entre
atomes dans l’état fondamental jusqu’à la force de celles induites par le couplage à la lumière. Ceci contraste
avec les systèmes de matière condensée habituels, pour lesquels les propriétés de l’état fondamental ne
sont pas modifiables à la volée. Notre expérience est donc la plateforme parfaite pour simuler la physique
des matériaux fortement corrélés et couplés à la lumière. Le présent manuscrit, qui en témoigne, est divisé
en trois parties.
La première partie est dédiée à la présentation des spécificités techniques de notre expérience ainsi qu’aux
méthodes employées pour produire et sonder des gaz de fermions fortement corrélés. Nous introduisons la
cavité optique comme outil pour sonder le système en présentant les résultats de nos premières expériences
visant à établir le régime de couplage fort entre le gaz et le champ de cavité. De la même manière, nous
présentons une méthode robuste de thermométrie du gaz de Fermi unitaire, que nous utilisons ensuite
pour montrer que les gaz produits par l’expérience sont des superfluides fortement dégénérés.
Dans la seconde partie, nous nous focalisons sur des mesures des corrélations atomiques à travers des
observations de spectres de cavité. Nous commençons par présenter la base théorique nécessaire à la
compréhension de l’origine des interactions entre atomes, pour ensuite présenter son influence sur la
physique à N corps du gaz. Ce faisant, nous introduisons une quantité thermodynamique universelle : le
contact à deux corps. Nous présentons ensuite une série de mesures effectuées dans le régime de couplage
fort entre paires d’atomes et la lumière, médié par des transitions de photoassociation. Les forces de
couplage associées peuvent directement être liées au contact, ce qui prouve que notre expérience permet de
mesurer les corrélations à N corps du gaz directement depuis les spectres d’énergie de la cavité. Dans le
même esprit, nous étudions la réponse optomécanique du gaz dans le régime dispersif et observons des
spectres de cavité distordus, signatures de l’effet Kerr non linéaire. La force de cette non linéarité optique
est gouvernée par la fonction de réponse en densité du gaz, elle-même dépendante du contact.
Dans la dernière partie, nous introduisons un terme d’interaction à longue portée au sein du gaz, médiée
par les photons de cavité. Ce système présente une transition de phase vers une onde de densité, pour une
valeur de la force des interactions à longue portée plus grande qu’une valeur critique. Cette valeur critique
est contrôlée par la fonction de réponse en densité du gaz, et la transition de phase est détectée grâce à la
nature superradiante de la phase ordonnée. De plus, nous vérifions que la susceptibilité du système diverge
lorsque la force des interactions approche le point critique. Nous mesurons la température du nuage après
l’expérience et vérifions qu’il demeure superfluide.

Mots clés : atomes ultrafroids, gaz quantiques, electrodynamique quantique en cavité, fermions en in-
teraction forte, matière fortement corrélée, photoassociation, optomécanique, transitions de phase
quantique, ondes de densité de charge, contact de tan
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Introduction

Et toute science, quand nous l’entendons
non comme un instrument de pouvoir et
de domination, mais comme aventure de
connaissance de notre espèce à travers les
âges, n’est autre chose que cette harmonie,
plus ou moins vaste et plus ou moins riche
d’une époque à l’autre, qui se déploie au
cours des générations et des siècles, par le
délicat contrepoint de tous les thèmes
apparus tour à tour, comme appelés du
néant.

Alexander Grothendieck

The understanding of many-body phenomena in quantum systems lies at the heart of the most
fascinating questions of contemporary physics. While the behavior of individual particles, be they
electrons, atoms or molecules, is generally well predicted by sets of physical rules and principles,
the description of ensembles of interacting particles is a formidable challenge. These many-body
interacting systems are ubiquitous in nature, from solid-state materials and quantum fluids to
biological and condensed matter systems. As such, understanding the phenomena resulting
from the collective behavior of their constituents is essential to advance the comprehension of
fundamental natural sciences.

In condensed matter systems, the role played by interparticle interactions has been identified
in a number of emergent phenomena which cannot only be explained with elementary laws
ruling the behavior of single electrons [1]. Conventional superconductivity for instance relies on
a pairing mechanism for electrons which interact via the phonons of the underlying crystalline
lattice [2]. In some materials however, Coulomb interaction itself leads to strong electronic
correlations, which usually originate from a constrained spatial confinement of the electronic
wavefunctions. The peculiar electronic behavior of these so-called strongly correlated materials
gives rise to unusual properties [3], the modelling of which has to account for the strong
correlations [4, 5]. High-temperature superconductors are paradigmatic examples of strongly
correlated materials for which, since their discovery in 1986 [6], the exact mechanism behind
their anomalously high critical temperatures remains an open question [7, 8]. Although there
exist no unified theoretical framework describing the interactions which rule the properties of
strongly correlated matter, these can still be employed in a number of applications ranging from
the use of quantum Hall effect and its descendants for quantum computation [9, 10] to quantum
magnets as memory devices [11].

One promising direction to further the understanding of strongly correlated matter is to
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2 Introduction

resort to quantum simulation. The idea behind the quantum simulation approach is elegant,
similarly to how aerodynamical properties of a plane can be inferred from models placed in
a wind tunnel – a classical analogue simulator, quantum properties of a complex many-body
system can be inferred from a simpler, controllable quantum model [12]. For such systems,
classical computers become insufficient to calculate many-body properties for as low as a few
tens of particles [13], due to the exponential growth of the underlying Hilbert spaces with
number of interacting particles. Their quantum counterparts, which are promised to simulate
the dynamics of arbitrary many-body Hamiltonians, are still in their infancy. Nevertheless, even
if these so-called noisy intermediate-scale quantum devices have recently been proven to provide a
quantum advantage in solving a very narrow class of problems [14, 15], bridging the technical
and theoretical gaps to turn them into universal, fault-tolerant digital quantum simulators might
take a few more years.1 In the meantime, analogue quantum simulators have already granted
insights into many classically untractable problems [16]. Instead of providing full control over
arbitrary many-body Hamiltonians, these devices rather specialize in specific classes of problems
by mimicking their dynamics in a controlled environment [17–21].

Ultracold atomic experiments probably represent the most versatile platforms for the ana-
logue quantum simulation of a wide range of systems [22–29]. Since the initial achievements of
Bose-Einstein condensation (BEC) [30, 31] and the production of superfluid Fermi gases [32] in
the past decades, the field of quantum simulation with cold atoms has progressed to the point
that several strongly correlated matter systems and phenomena can be accurately reproduced
and studied in the labs, with unmatched controllability on the microscopic Hamiltonians [33].
In particular, the tunability of trapping potentials was harnessed to observe Anderson localiza-
tion[34, 35], quantized conductance in neutral matter [36] or realize Josephson junctions [37,
38]. In addition and to the contrary of solid-state systems, interparticle interactions in atomic
gases can be tuned with the use of Feshbach resonances [39] or optical lattices [26]. Ultracold
atoms trapped in optical lattices have thus led to the realization of Mott insulators [40, 41],
Tonks-Girardeau gases [42] or even of the topological Haldane model [43]. The additional use
of quantum gas microscopes has yielded unprecedented insight into the physics of Hubbard
models [44].

In two-component Fermi gases, the control over interparticle interactions offered by Feshbach
resonances allows to push the simulation of strongly correlated matter even further. The
interaction strength between particles can be tuned to arbitrarily high values – as high as allowed
by quantum mechanics – where the system realizes the so-called unitary Fermi gas [45]. It is
therefore a convenient model for the study of the most strongly interacting systems in nature
such as neutron stars or nuclear matter [46]. As for BECs, strongly interacting Fermi gases are
now routinely produced in experiments [47] and the tunability of their interparticle interactions
has been employed to explore the physics of the BEC–BCS crossover [45, 48, 49], from the direct
observation of Cooper pairs [50] to the measurement of the peculiar excitation spectra emerging
from the strong interactions [51, 52].

On the other hand, the versatility offered by ultracold atomic experiments has allowed, via
the use of high-finesse resonators – or cavities, to investigate light-matter interactions in the
scope of cavity quantum electrodynamics (cQED) [53]. This framework made possible the
control of interactions between atoms and photons down to single quanta level [54] which led to
the realization of the strong coupling regime [55] between BECs and particular modes of the
electromagnetic field, singled-out by the cavity [56, 57]. In this regime, a number of experiments
have been carried out to explore the hazy border between cQED and condensed matter problems.
In particular, the flexible means of engineering non-local, all-to-all interactions between the
atoms provided by cQED [53, 58, 59] allowed to realize the self-organization of BECs during

1Or decades.
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the past decade [60, 61], a phenomenon which has since been heavily studied in a number
of configurations [62–68], simulating exotic phases of matter driven by strong light-matter
interactions.

In this work, we report on the realization of the first experiments conducted with superfluid,
strongly interacting Fermi gases of 6Li coupled to the light field of an optical cavity. The
experimental setup therefore bridges the gap between the concepts introduced in the previous
two paragraphs. From an ultracold atoms point of view, this is the first time that a system with
strong ground state fermionic correlations is operated in the scope of cQED, a situation which
is expected to give rise to exotic states of matter [69, 70] or even alter the intrinsic superfluid
properties of the ground state gas [71, 72]. From a condensed matter perspective, the system
features a fully controllable microscopic Hamiltonian with control over both the strength of the
ground state and light-matter interactions and the geometry of the latter. This contrasts with
usual solid-state systems, in which the properties of the ground states are hardly tunable yet for
which the interactions with light fields offers fascinating perspectives [73].

The manuscript is organized in three parts as follows.

The first part is dedicated to technical details about the experimental setup.

In Chapter 1 we present the experimental platform used to produce strongly interacting
gases of 6Li within a high-finesse resonator. We give an overview of the main vacuum
chamber, focusing on the design specificities compared to other cold atoms machines:
the presence of a high-finesse cavity and the use of a single chamber for all the
cooling trapping and probing procedures. We then detail the experimental sequence
to produce the gases, which makes use of the cavity for efficient evaporative cooling.

In Chapter 2 we detail the tools at our disposal to characterize strongly interacting Fermi
gases coupled to light. We start by highlighting the capabilities of the cavity as a prob-
ing tool by using it to measure the excitation spectrum of the atoms-cavity coupled
system and prove that we work in the strong coupling regime using transmission
spectroscopy. We then show how measurements of this excitation spectrum in the
dispersive regime can be employed to infer the atom number in a weakly destructive
way. Finally, we present an efficient thermometry method for the unitary Fermi gas,
which we use to demonstrate that the unitary gases we routinely produce operate in
the deeply quantum degenerate regime.

The second part focuses on the measurement of ground state correlations of strongly interacting
Fermi gases using the cavity field.

In Chapter 3 we develop the formal tools which allow for the description of the strong
ground state interactions in the so-called strongly interacting Fermi gases. Starting
from two-body scattering, we move on to introduce its consequence on the many-body
wavefunction of the gas and how it leads to the BEC–BCS crossover. In addition, we
introduce the two-body contact as the key universal quantity formally linking the
two- and many-body regimes.

In Chapter 4 we present the achievement of the strong coupling regime on photoassocia-
tion transitions. After introducing key molecular physics concepts necessary to the
understanding of photoassociation, we show how cavity transmission spectroscopy
can be employed to probe these transitions and measure the light-matter coupling
strength. The strong coupling to these transitions creates new dressed states which
hybridize pairs of atoms of opposite spins with photons: pair-polaritons. We then
formally relate the measured coupling strength to the two-body contact, proving the
influence of many-body physics in the optical spectra.



4 Introduction

In Chapter 5 we report on the observation of an optomechanical Kerr nonlinearity in
strongly interacting Fermi gases. We show that the strength of the nonlinearity,
contained in the optical spectrum of the coupled system relates to a ground state
property of the gas: its static density response function. With the use of an operator
product expansion technique we formally link the density response function to
universal quantities, including the two-body contact and internal energy of the gas.
This gives another direct connection between a purely quantum optical observable
and a ground-state property of strongly interacting Fermi gases.

The last part presents experiments involving the engineering of photon-mediated long-range
interactions in the gas.

In Chapter 6 we present the realization of tunable long-range photon-mediated interac-
tions by transversally pumping the system in the dispersive regime. We show how
these long-range interactions lead to a phase transition of the gas to a density wave
order state above a specific critical strength, the value of which is again controlled by
the density response. We present measurements of the critical strengths for varying
ground state interaction parameters. By introducing a variant of Bragg spectroscopy
at fixed momentum, we measure the excitation spectrum of the gas in the presence
of long range interactions and prove that the onset of the phase transition is accom-
panied by a divergence of the density response of the system. Finally, as an outlook
we introduce the principle and first observations of the introduction of long-range
interaction for pairs of atoms in the vicinity of a photoassociation transition, paving
the way to the simulation of pair-density waves.

The work presented here has been carried out with Kevin Roux, Hideki Konishi, Barbara
Cilenti, Timo Zwettler, Tabea Bühler, Giulia del Pace and Jean-Philippe Brantut over the course
of five years.
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Chapter1
An experimental platform to study
strongly interacting fermions coupled
to light

Machines are worshipped because they are
beautiful and valued because they confer
power; they are hated because they are
hideous and loathed because they impose
slavery.

Bertrand Russell
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In this first chapter we introduce the apparatus with which the experiments presented in this
manuscript were performed. The machine was designed and built to explore the physics of
strongly interacting Fermi gases coupled to light within a high-finesse optical cavity. To that
end, 6Li was picked as the atomic species of choice and for good reasons: it is a fermion, its
light mass allows for fast thermalization processes, the recipes to cool it down to quantum
degeneracy are well known [47, 74–77], and it features an extraordinarily large Feshbach

7
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resonance [zurnPreciseCharacterizationMathrmLi2013, 78] which allows for a relatively easy
control of two-body interactions – as described in details in chapter 3.

The chapter is organized as follows, in a first part we describe the experimental setup. It was
designed to only feature a single vacuum chamber, within which all the trapping and cooling
procedures would occur at the same point: the center of a high-finesse cavity sitting inside the
chamber. This configuration removes the need to transport the atomic cloud between multiple
chambers for different steps of the cooling and probing procedures, accelerating the experiment
cycle. We then introduce the cavity, from its optical properties to its stabilization scheme,
set up to control its resonance frequencies and tune them with respect to the 6Li transition
frequencies. Finally, we detail the general procedure employed to cool a hot atomic vapor of 6Li
down to the quantum degenerate regime, the starting point of all the subsequent experiments
presented in this thesis. In addition, we present the experimental control software and hardware
in appendix A.

As a thorough description of the experimental setup is contained in the PhD thesis of Kevin
Roux [79], we will here simply focus on the main aspects of it. In addition, we detailed the
design and production process of the electromagnets we use to address the Feshbach resonance
in [80] and presented parts of the experimental sequence in [81].

1.1 A high finesse cavity inside a single-chamber experiment

1.1.1 Overview of the ultra-high vacuum system

Figure 1.1: CAD view of the vacuum setup. I, oven chamber containing the lithium. II, Zeeman
slower and main vacuum chamber where the atoms are trapped, cooled down and probed. III,
pumping chamber. The length of the ensemble is approximately 2 m.
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The vacuum system consists of a single enclosure, a CAD view of which is shown in figure 1.1. It
is split in three chambers, connected by conical pipes which ensure differential pumping between
the different regions of the apparatus. A set of vacuum pumps ensure that ultra-high vacuum
(UHV) is reached within the whole enclosure, suppressing unwanted background collisions with
thermal atoms.

The oven chamber is where pure liquid 6Li is maintained at temperatures above its melting
point in a small steel cylindrical enclosure, visible on the far left side of the figure: the oven. For
the experiments presented here, it was operated at temperatures in the range of 320− 400◦C.
While most of the lithium vapor exiting the oven ends up coating the inner parts of the oven
chamber, a small fraction of atoms is allowed to travel to the next vacuum section through
an aperture at the entrance of the Zeeman slower. This atomic flux can be blocked inside the
chamber with the use of a metallic flag mounted on a remote-controlled stepper motor. Using
both an ion pump (Agilent VacIon 20) and getter pump (SAES CapaciTorr D400), the pressure in
this chamber is brought down to below 5× 10−10 mbar, a value which measurement is limited by
the reading of the pressure gauge (Pfeiffer PBR260). The chamber can be disconnected from the
rest of the experiment by a manual gate valve (VAT CF16 all-metal), a feature which has proven
to be convenient to refill the oven with lithium.

Figure 1.2: Pictures of the cavity sitting on top of its vibration dampening platform. Two vertical
titanium pieces shield the mirrors from the atomic flux. The ensemble also features a single-loop
antenna which can be used to address the radio-frequency transitions of 6Li.

The science chamber is connected to the oven one via the Zeeman slower and hosts the science
cavity, which rests on a stack of vibration-dampening stainless steel rings. A cut view of the
chamber is depicted in figure 1.2, showing all the available optical accesses in the horizontal
plane. It features re-entrant viewports on its top and bottom flanges to accommodate a set of
compact electromagnets located as close as possible to the atoms, limiting the amount of current
necessary to reach a given magnetic field. These electromagnets are presented in more details in
the next paragraph. The re-entrant viewports might also be used in the future to set up a high
numerical aperture imaging system, either to image the atomic density or to project potentials
both with high-resolution.

The ultra-high vacuum in the science chamber is ensured by the pumping chamber which
hosts an ion-getter pump (SAES NexTorr D1000-10). The pressure in this enclosure is read by a
cold cathode pressure gauge (Pfeiffer IKR270). It routinely measures a pressure of 5×10−10 mbar,
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compatible with pressures in the science chamber of the order of 10−11 mbar, reduced because of
the presence of a conical reduction and two angled elbows between the gauge and the science
chamber.

1.1.2 Compact, bulk-machined electromagnets

Figure 1.3: Picture of the electromagnet used in the experiment to address the broad Feshbach
resonance of 6Li. Left, picture of the assembled coil. It features the main copper body on top
of which is attached a hollow PEEK cap. Serto connectors are used to connect the coil to the
watercooling circuit. The cylindrical hole on the right side of the coil body hosts a ceramic tube
through which the electrical connections pass. The assembly is attached to a support aluminum
plate fixed atop the vacuum chamber as seen in figure 1.1, so that the coil body goes inside the
re-entrant viewport. Right, a closeup view of the surface of the coil which shows a few turns
separated by epoxy glue.

In order to reach the magnetic fields required to address the large Feshbach resonance of 6Li
located at 832G and with the limited space at our disposal, we designed and built a pair of
compacts, watercooled electromagnets. This section briefly summarizes their main features
and more details are given in reference [80]. The design approach was heavily constrained
by the limited space available within the re-entrant viewports, with a diameter of only 16cm.
Within such a limited volume, we optimized the watercooling efficiency in order to work with
the highest possible volume of copper, thus requiring less current to reach a given magnetic
field. Our watercooling strategy followed the reasoning presented in reference [82], where all
the coil turns are cooled in parallel using a water duct that runs directly on top of them.

One assembled coil is presented in figure 1.3. The coil body consists of a single piece of
copper machined into a spiral using an electroerosion procedure. The spiral is then vacuum-
impregnated with epoxy glue to solidify it. In the end, we obtain a single solid cylindrical coil
with inner and outer radii of 32 and 72 mm respectively, and a height of 22mm. It comprises 31
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turns which allows the pair of electromagnets to produce an offset field of 2.71G·A−1 oriented
along the vertical direction at the location of the atoms in the chamber. Addressing the Feshbach
resonance thus requires currents of the order of 300A, which are provided by two power
supplies (Delta Elektronika SM18-220) mounted in parallel. The coil configuration departs
from Helmholtz, thereby creating a magnetic saddle point with a negative curvature along the
horizontal direction, providing a confining potential for the high-field seeking atomic states we
employ in the experiments.

Water is run directly on top of the coil, cooling down the 31 turns in parallel. It circulates
in a duct created by a hollow PEEK cap placed on top of the coil body which presses against
an o-ring to make the ensemble leak tight, and was tested up to 3.5 bar of overpressure with a
water flow of 0.25l·s−1. During continuous operation the coil body never exceeds 30◦C for an
inlet water temperature of 17.5◦C and a current of 300A. As such its temperature is even lower
during experimental cycles, since the high current is on for about 30% of the time. All in all this
design proved to be extremely efficient in terms of water cooling. As a proof of its robustness,
we have been operating the coils daily for the past 4 years without any incident.

1.1.3 The high-finesse optical cavity

The high-finesse optical cavity, or science cavity, is the central piece of the experiment. It is not
only used to probe or drive the atomic ensemble but is also a core part of the gas preparation
stage: we harness its power-enhancing properties to create deep optical dipole traps with limited
input power [83]. We summarize here its properties and present the stabilization scheme with
which we control its length and tune its resonance frequencies with respect to atomic transitions.
A complete presentation of the theoretical basis required to understand the properties of optical
cavities can be found e.g. in reference [84].

Properties of the cavity

A picture of the cavity taken right before closing the vacuum chamber is shown in figure 1.2
alongside a CAD view of its position within the science chamber. It is 4.131(1)cm long and
formed by two 7.75mm diameter mirrors with radii of curvature of 25mm (from Advanced
Thin Films). The distance between the mirrors was constrained by the choice of operating the
MOT within the cavity: the large MOT beams required to capture a sizeable 6Li cloud need to be
accommodated in between the mirrors. Each mirror is glued on a shear piezoelectric actuator
(Noliac CSAP02-C03) with a UHV compatible epoxy glue (Masterbond EP21TCHT-1). The cavity
length is then controlled by applying a voltage bias across the electrodes of one of these piezos.
Both of them are glued on a titanium ring, itself resting on top of a stack of non-magnetic
stainless steel rings (of grade 1.4435 or 316LMo) with each stage separated by Viton rods. The
ensemble forms a dampening platform which isolates the cavity from high-frequency vibrations
and sits on the bottom flange of the science chamber.

On the optical side, the mirrors feature a trichroic coating, so that the cavity can be used with
three different wavelengths

• at 671nm, the wavelength which addresses the 2s→ 2p transitions of 6Li

• at 1064nm, to produce a deep, far off-resonant attractive dipole trap

• at 532nm, to stabilize its length using the Pound-Drever-Hall technique [85, 86].

We summarize its optical properties in table 1.1. Its length and the mode waists are inferred
from measurements of the transverse mode spacing and free spectral range, following definitions
from [84], and the linewidths are obtained with ring-down measurements.
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671nm 532nm 1064nm

Cavity length 4.131(1)cm
Free spectral range (νFSR) 3.6277(1)GHz
Transverse mode spacing (νTEM) 2.634(1)GHz
Mirror diameter 7.75mm
Coating transmission T ≃ 50 ppm T < 0.1 %
Finesse 4.7(1) · 104 2.4(1) · 103 3.6(1) · 103

Linewidth κ/2π 0.077(1)MHz 1.5(1)MHz 1.0(1)MHz
TEM00 mode waist 45.0(3)µm 40.1(3)µm 56.6(3)µm

Table 1.1: Summary of the cavity optical properties, reproduced from [79].

Active length stabilization

The length stabilization or lock of the science cavity is an essential step to perform the exper-
iments. Undesired fluctuations of the cavity length induce shifts of its resonance frequencies
and might cause the light fields used in the experiment to fall out of resonance. In addition to
relative stabilization, the ability to tune the cavity resonance frequencies with respect to the
atomic transitions is of tremendous importance as demonstrated in the rest of this manuscript.

The canonical method used to actively stabilize an optical cavity is called the Pound-Drever-
Hall (PDH) technique and relies on the continuous measurement of the phase of a near-resonant
light beam reflected off the cavity [85, 86]. The measurement of the frequency-dependent phase
yields an error signal which is then used to feedback a control voltage to one of the piezos
of the cavity to lock its length. Once locked, the light beam is resonant with the cavity and
therefore creates a standing wave inside it. In order to mitigate the effect of this additional
optical potential on the atomic dynamics we use a weak locking beam with a wavelength of
532nm, far from any atomic resonance. In addition, the beam addresses a TEM02 mode of the
cavity, spreading the intracavity power over a large volume to minimize the residual potential
depth. We estimate the associated peak dipole potential to be two orders of magnitude below the
natural recoil energy of 6Li, and never observed any unwanted consequences of the continuous
presence of the locking light inside the cavity.

The beam at 532nm is obtained from a frequency doubled 1064nm fiber laser (NKT Adjustik
amplified with an Azurlight ALS-IR), via second harmonic generation in a PPLN waveguide
(NTT electronics). The stabilization of the cavity length on the 532nm bean thus ensures the
1064nm light to also be resonant with the cavity, bar a small constant chromatic shift coming
from transmission through the mirrors substrates and compensated for by an acousto-optical
modulator (AOM). We employ a 1064nm beam to produce a deep dipole potential and capture
the atoms after the MOT phase. This beam is made resonant with a TEM01 mode of the cavity as
to increase its trapping volume, which allows capturing more atoms.

Last, we require 671nm light to be resonant with the cavity to probe the atomic transitions.
The probing light is generated by frequency doubling the output of a 1342nm narrow diode
laser (Toptica TA Pro) with a PPLN waveguide. The corresponding laser setup is described
in appendix B. In order to stabilize the probe frequency with respect to the cavity resonance
frequency we employ a second optical cavity, the transfer cavity described in [79]. The resulting
general stabilization scheme is depicted in figure 1.4, and it works the following way
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Figure 1.4: Schematic of the frequency stabilization chain for the various laser frequencies and
cavity lengths. We only display the beam lines directly involved in the PDH schemes.

• The length of the transfer cavity is stabilized with a PDH lock on a tunable sideband of the
1064nm laser. With the science cavity lock, this ensures that both cavities length follow
the variations of the 1064nm laser frequency.

• The probe laser frequency is stabilized with a PDH lock of the 671nm beam on the transfer
cavity, such that a change of the 1064nm laser frequency now also changes the probe
frequency.

• Last, and since we ultimately care about the absolute frequency of the 671nm beam, the
1064nm laser frequency is set so that the reading of the absolute probe frequency on the
wavemeter (HighFinesse WS8-2) has the wanted value. This is done by a digital PID loop
with the wavemeter control software, which feeds back on the 1064nm laser piezo.

• The wavemeter is calibrated by reading the frequency of the MOT laser, which is stabilized
onto the 6Li transitions via a saturated absorption spectroscopy cell.

All in all this robust lock scheme allows to tune the cavity length at will with respect to the
atomic transitions. The lock of the transfer cavity onto a sideband of the 1064nm laser adds a
degree of freedom in the lockchain, granting full control over the relative detuning between the
cavity resonance frequency and the probing beam frequencies. In addition, this scheme permits
the concurrent use of a far off-resonant cavity dipole trap. All the relevant optical setups are
presented in [79], except the recently modified probe laser path presented in appendix B.

1.2 From hot vapor to quantum degenerate gas: production of a
Fermi gas of 6Li

We now turn to the actual realization of a strongly interacting Fermi gas, starting from a hot
vapor of 6Li atoms inside the oven chamber. In this section, we sequentially describe the all-
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optical cooling procedure to reach quantum degeneracy, using standard laser and evaporative
cooling techniques.

Figure 1.5: Sketches of the main cooling and trapping steps of the experimental cycle. Left, MOT
stage. Center, cavity traps with a TEM01 mode structure. Right, crossed dipole trap. Each cycle
lasts for approximately 4s, mostly limited by the time spent loading atoms into the MOT.

As a guideline for the section, we summarize in figure 1.5 the main steps performed during an
experiment cycle to prepare the Fermi gas, starting from a hot vapor in the oven chamber.

1.2.1 Laser cooling

Hot atoms leaving the oven chamber are continuously decelerated by the use of a Zeeman
slower [87]. The Zeeman slower laser beam is produced by a dedicated 671nm laser diode
(Toptica TA Pro), which is offset locked to the MOT diode laser via the wavemeter. The beam
has a total power of 155mW and is focused down into the oven. As the atoms travel to the
science chamber, the decreasing magnetic field generated by a dedicated pair of coils allows
compensating for the velocity-dependent Doppler shift of their transition frequencies. They
reach the center of the chamber with velocities of the order of tens of m·s−1, below the typical
capture velocity of the MOT.

The MOT is obtained by a combination of a gradient of magnetic field, crossing zero at
the center of the science chamber, and a set of 3 orthogonal and retro-reflected near-resonant
beams [88]. Each of the circularly polarized beam has a total power of 50mW spread over a
2.5cm diameter, and is composed of two tones: the cooler and repumper respectively address-
ing the

∣∣∣2s1/2,F = 3/2
〉→

∣∣∣2p3/2,F = 5/2
〉

and
∣∣∣2s1/2,F = 1/2

〉→
∣∣∣2p3/2,F = 3/2

〉
transitions. The

repumper light ensures that atoms populating the
∣∣∣2s1/2,F = 1/2

〉
state are optically pumped

back in the
∣∣∣2s1/2,F = 3/2

〉
state in order to cycle the cooling transition. The atoms are loaded

into the MOT from the Zeeman slower for a typical duration of 3s and reach a temperature
of a few hundreds of µK, higher than the Doppler temperature of 140µK limited by the nat-
ural linewidth of the transitions Γ = 2π × 5.87MHz [74]. Before their transfer into an optical
dipole trap, the atoms are optically pumped into the

∣∣∣2s1/2,F = 1/2
〉

by a cooling beam pulse
and therefore end up populating the two lowest hyperfine states,

∣∣∣2s1/2,F = 1/2,mF = 1/2
〉

and∣∣∣2s1/2,F = 1/2,mF = −1/2
〉

which we respectively label |1⟩ and |2⟩.
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1.2.2 Evaporative cooling in cavity dipole traps

The atoms are loaded into a cavity dipole trap with a TEM01 mode structure as depicted in
figure 1.5. The use of a TEM01 mode compared with a TEM00 was motivated by two points.
First, its has a twice larger mode volume which increases its spatial overlap with the atomic
cloud in the MOT. Second, while working with TEM00 modes we observed a strong bistable
behavior of the cavity resonance frequency as a function of the cavity trap beam power [89],
suggesting a heating effect of the mirrors surface which hindered the efficiency of the cavity
lock and made the regulation of the intracavity power difficult. Using a higher-order mode
thus reduces the peak intensity on the mirrors surface, and we found that using a TEM01 was
sufficient to suppress the thermal bistable behavior, for a fixed incident power.

We inject 250mW of laser power at 1064nm in the cavity, which translates to a peak power
of about 680W at the center of the cavity mode with a beam waist of 56.6µm. It corresponds to a
peak trap depth of 8mK, far above the temperature of the atoms in the MOT and comparable to
the depths reached by experimental setups making use of high-power lasers. Once loaded in the
cavity trap the atoms are held for 50ms, the time it takes to ramp up the offset magnetic field
to the location of the Feshbach resonance using the electromagnets described in the previous
section. As we will discuss in chapter 3, near the resonance the s-wave scattering length for
atoms in states |1⟩ and |2⟩ diverges and leads to a maximized value of the scattering cross-section,
providing extremely beneficial conditions to perform forced evaporative cooling [90].

We perform forced evaporative cooling in three steps, in three different traps. Once the
magnetic field is settled at 832G, we linearly ramp down the power of the cavity trap to 10%
of its initial value in 150ms. We then transfer the atomic cloud in a second, lattice-free cavity
trap with the same transverse intensity profile as the initial one. The inherent lattice structure of
cavity modes makes evaporation processes inefficient since atomic ensembles cannot redistribute
between sites and accumulate in the deepest regions of the trap. We circumvent the issue by
using a lattice-free trap, created by injecting in the cavity a phase-modulated carrier beam
with sidebands spaced by multiples of the cavity free spectral range. The sidebands thus drive
neighboring longitudinal modes of the cavity so that the sum of their intensities is effectively
homogenous inside the cavity [91]. In practice, we generate the sidebands with a free space phase
modulator (Qubig PM9-NIR) driven at a frequency of 3.6277GHz and a modulation depth of
1.27rad. Both cavity traps, with and without lattice, are recombined on a polarized beamsplitter
before their injection into the cavity. We perform the second linear evaporation ramp in this
lattice-free trap, for a duration of 200ms and down to an intracavity power of 70mW.1

1.2.3 Evaporative cooling in a running wave dipole trap

At this stage, the gas typically comprises 1.5× 106 atoms equally populating states |1⟩ and |2⟩,
and the two arms of the TEM01 cavity trap. The last step of evaporation is performed in a crossed
dipole trap made of two independent arms, shown in figure 1.5. We use AOMs to induce a
frequency detuning between the two arms, suppressing interference effects. The transfer of the
atoms in the crossed trap maximizes the overlap between the atomic density and the TEM00
mode of the cavity, which we address in the experiments with the probe. Each arm is focused
on the cavity mode position with a waist of 33µm and they intersect at angle of 36◦. They both
have an initial power of 1W, ramped down to varying setpoints of the order of tens of mW in
450ms. In the end we routinely prepare 6× 105 atoms in states |1⟩ and |2⟩, strongly interacting
via the Feshbach resonance in the unitary limit.

1As presented in the next chapter, we now have evidence that the gas held in this cavity trap is already deep in the
degenerate regime, making the use of the next step of evaporative cooling redundant.
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By performing thermometry on the gases with a technique presented in section 2.2, we verify
that they are deeply degenerate with temperatures of the order of 10% of the Fermi temperature.
These unitary Fermi gases serve as the basic bricks for all the experiments described in this
manuscript. After the final evaporation ramp, we slightly increase the cross trap depth in order
to stop the evaporation process. During this 50ms recompression ramp, we have the possibility
to vary the offset magnetic field around the Feshbach resonance in order to tune the interparticle
interactions before probing the system.
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I have come to believe that the whole
world is an enigma, a harmless enigma
that is made terrible by our own mad
attempt to interpret it as though it had an
underlying truth.

Umberto Eco

Outline of the current chapter

2.1 Probing the strong light-matter coupling 18
2.1.1 Light-matter interaction and the strong coupling regime . . . . . . 18
2.1.2 Strong light-matter coupling from near-resonance transmission spec-

troscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Transmission spectroscopy in the dispersive limit . . . . . . . . . . 26

2.2 Absorption imaging for the thermometry of unitary Fermi gases 30
2.2.1 High-intensity absorption imaging . . . . . . . . . . . . . . . . . . . 31
2.2.2 Temperature measurement using the equation of state . . . . . . . 33

In this chapter, we present several measurement techniques used for all the experimental results
contained in this manuscript. It serves as a direct follow-up of the previous one, where we
introduced the experimental setup and the gas cooling and trapping procedures. In a fist section
we introduce a theoretical description of the atomic ensemble coupled to the cavity field. Under
this description, we present cavity transmission spectroscopy as a method to measure the energy
spectrum of the coupled system and apply it in two different regimes. We distinguish between
the resonant regime, where the system is probed in the vicinity of the atomic transitions, and
the dispersive regime, where the probe is far-detuned. Our measurements represent the first
realization of a strongly interacting fermionic system strongly coupled to light. In a second

17
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section we present a recently implemented thermometry technique, based on the usage of
high-intensity imaging. Analysis of density profiles via absorption imaging complements the
information granted by cavity signals and with it, we have the possibility to accurately measure
the degeneracy parameter T /TF of the unitary Fermi gases we routinely produce and study.

2.1 Probing the strong light-matter coupling

In this section we present the results leading to and following the realization of the strong
coupling regime between our unitary Fermi gas and the cavity field for the first time. Along with
presenting the achievement of the strong coupling regime, this section aims at introducing the
experimental and formal tools used throughout the manuscript to probe the atomic ensemble
with the cavity field.

We formally introduce a model for this coupled system, accounting for several ensembles
of two-level systems and multiple cavity modes to better describe our experiment. We then
introduce transmission spectroscopy as a measurement method of the energy spectrum of
the coupled atoms-cavity system. Finally, we present measurements of the energy spectrum
performed in two distinct regimes, with the probing light and cavity resonance either close to or
far-detuned from the atomic resonances.

The results contained here were presented in journal articles for the resonant [92] and
dispersive measurements [89], and discussed in more details in the PhD thesis of Kevin Roux [79].

2.1.1 Light-matter interaction and the strong coupling regime

The strong coupling regime

The coherent coupling of a two-level system to a single mode of the electromagnetic field
is described by the Jaynes-Cummings model [93] which predicts in particular the celebrated
splitting of the eigenenergies of the coupled system [94], provided that the strong coupling
regime is reached.

This strong coupling regime corresponds to the situation where the fraction of photons
coherently scattered by the two-level system in the considered mode of the electromagnetic
field exceeds that of photons lost due to incoherent, dissipative processes. This regime is at the
heart of emerging quantum technologies since it allows for the manipulation, observation and
control of the quantum systems down to the single-photon level [94]. The use of high-finesse
resonators allows for the drastic enhancement of coherent scattering of photons within a mode
of the electromagnetic field, compared with the free-space situation [55]. The enhancement
factor is directly proportional to the finesse F of the resonator and arises from the constructive
interference of scattered photons between successive round-trips within it. The quantity measur-
ing the ratio between coherent scattering of a single two-level system in a single resonator mode
and the dissipative processes is called the cooperativity C0 and is defined with

C0 =
4g2

0
κΓ

. (2.1)

The natural linewidth of the cavity κ and of the considered excited state Γ set the typical scales
against which the coherent rate of exchange of excitations g0 between the two-level system and
the cavity mode has to be compared. If C0 > 1, the system is said to be operating in the strong-
coupling regime following our definition. The cooperativity can equivalently be expressed
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purely in terms of bare properties of the resonator, with

C0 =
24F
πk2ω2

0

, (2.2)

where k is the magnitude of the wavevector of the cavity light field and ω0 its waist. For the
properties of our optical cavity described in section 1.1.3 we obtain C0 = 2.02, meaning that our
system already operates in the strong coupling regime for a single atom.

The generalization of the Jaynes-Cummings model for an ensemble of N two-level systems
equally coupled to a single mode of the cavity field is called the Tavis-Cummings model [95]
and is of particular interest for us since we deal with atomic ensembles. Its main prediction is
the increase of the excitation exchange rate between the cavity field and the atomic ensemble
by a factor

√
N , thus increasing the light-matter interaction strength. This is captured by the

collective cooperativity defined by

CN =NC0 =
4Ng2

0
κΓ

. (2.3)

For the typical atom numbers in the range of a few 105 presented in this thesis, CN is of the same
order of magnitude and therefore the incoherent dissipative processes are vastly suppressed
with respect to the coherent exchange between atomic excitations and cavity photons.

General expression for the Hamiltonian

In order to formally describe the system, we consider two distinct1 ensembles of two-level
systems which represent the ground state of our degenerate, two-components Fermi gas after the
preparation phase described in the previous chapter. The atoms thus populate the two lowest
Zeeman sublevels |1⟩ and |2⟩ of the F = 1/2 hyperfine state [74] which ground state energies are
shifted by ℏω12 = 76.3MHz when working at 832G.

In the framework of second quantization, we label the matter-field operators corresponding
to the ground state |σ⟩ with ψ̂σ (r), and to their corresponding excited state ψ̂σe(r). They verify
the fermionic anticommutation relation with

{
ψ̂σ (r), ψ̂†σ ′ (r

′)
}

= δσ,σ ′δ(r − r′). We let the cavity
be multimode and label its spatial mode functions with uν(r), which analytical expressions are
obtained by the resolution of the Helmholtz equation within the resonator [84]. The fundamental
transverse electromagnetic mode TEM00 discussed later corresponds to ν = 0 and has a Gaussian
structure, while other indices correspond to higher order transverse modes. The cavity field is
populated by the addition of an on-axis weak probe, with a frequency ωp, shown in figure 2.1.
Following the derivations presented in reference [96], we express the total Hamiltonian as

Ĥ = Ĥ0 + Ĥe + Ĥcav + Ĥlm + Ĥprobe. (2.4)

1In the entirety of the manuscript we neglect Raman processes between the two distinct ground states.
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Figure 2.1: Probing setup and relevant atomic levels to describe the transmission spectroscopy
experiment. Left, we probe the cavity on axis with a linearly polarized beam and record the
photons leaking out of the cavity. Right, relevant energy levels of 6Li at 832G, including the
probe laser frequency ωp and an example cavity resonance frequency ωc. In the experiment, as
described in the text, the detunings ∆a and ∆a are varied independently. The thick gray lines
depict the unresolved excited manifolds.

With

Ĥ0 =
∑

σ

∫
drψ̂†σ (r)

[
− ∇

2

2m
+Vt(r) +ωσ

]
ψ̂σ (r)

+
∫
drdr′ψ̂†2(r′)ψ̂†1(r)Vp(|r− r′ |)ψ̂1(r)ψ̂2(r′) (2.5)

Ĥe =
∑

σ

∑

e

∫
drψ̂†σe(r)

[
− ∇

2

2m
+Vt(r) +ωσe

]
ψ̂σe(r) (2.6)

Ĥcav =
∑

ν

ων â
†
ν âν (2.7)

Ĥlm =
∑

ν

∑

σ

∑

e

∫
drgν,σ ,e

(
uν(r)ψ̂†σe(r)ψ̂σ (r)âν + h.c.

)
(2.8)

Ĥprobe =i
∑

ν

βν(âνe
−iωpt − â†νeiωpt), (2.9)

where we have set ℏ = 1 and where the sums over indices σ and e represent the two considered
atomic ground states, with their respective excited states |σe⟩. The sums over ν on the other
hand relate to the cavity modes.

The first two terms Ĥ0 and Ĥe account for the ground and excited states energy contributions,
respectively. Vt is the trapping potential, given here by the crossed optical dipole trap introduced
in the previous chapter. The ground state contribution explicitly includes the effect of interatomic
contact interactions via the pseudopotential Vp and is discussed in greater details in chapter 3.
In addition, we disregard dipole-dipole interactions between atoms in the ground and excited
states in the absence of photons for the time being, and will reintroduce them later in chapters 3
and 4.
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The bare cavity energy is represented by Ĥcav, which sums contributions from all the popu-
lated cavity modes with âν the bosonic photon annihiliation operator for the mode ν at energyων .
The light-matter interaction term Ĥlm describes the coherent exchange of excitations between
the cavity field and the atomic ensemble. It explicitly includes the spatial dependency of the
interaction via the shape of the cavity mode functions uν , while its strength is given by the
maximal coupling strengths gν,σ ,e between a single atom in state σ and a single photon of the
νth cavity mode. The coupling strengths depend explicitly on both the details of the underlying
atomic transition and volume of the cavity mode Vν with [94]

gν,σ ,e = ⟨σe|d̂|σ⟩
√

ων
2ℏε0Vν

, (2.10)

where d̂ is the atomic dipole operator. This expression involving dipole transition matrix
elements leads to a strong dependence of the coupling strengths on the details of the polarization
of the light field. Last, the contribution of the external probe is accounted for by Ĥprobe, driving
the cavity ν with a strength βν at a frequency ωp.

This generic form of the total Hamiltonian Ĥ will serve a theoretical basis for the rest of the
manuscript. Its exact diagonalization is challenging given the strongly interacting nature of its
fermionic constituents which in particular makes it impossible to express the many-body wave
function in a workable way, as it is for example done for condensate wavefunctions in the case of
pure BECs. However, we shall see in the following sections how some approximations can lead
to more convenient forms of the previous Hamiltonian.

2.1.2 Strong light-matter coupling from near-resonance transmission spec-
troscopy

We now turn to experimental observation of the strong coupling regime. In the above model,
we tune the probe frequency ωp to the vicinity of the D2 σ− transition

∣∣∣2s1/2, mJ = −1/2
〉
→∣∣∣2p3/2, mJ = −3/2

〉
. The probing setup is depicted by figure 2.1. In the Paschen-Bach regime, this

allows us to only consider a single atomic excited state for each ground state, the other ones not
being populated.

Ab-initio model for the coherent cavity field

In order to provide a qualitative understanding of the situation, we developed an ab-initio model
describing the dynamics of the cavity field for the above Hamiltonian Ĥ . The details of the
calculations can be found in reference [79], and we simply sketch the main results here. The
general procedure is to calculate the steady-state solutions of the master equations [97]

d ⟨âν⟩
dt

= i
〈[
Ĥ, âν

]〉
− κ

2
⟨âν⟩ . (2.11)

We neglect quantum fluctuations and atom-field correlations, thus replacing the field operators
by coherent amplitudes. For the case of the cavity field we have

âν → αν . (2.12)

We work in the rotating wave approximation, in a frame moving at the probe frequency ωp.
In the low saturation approximation for the atomic transitions, eliminating the internal and
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external atomic degrees of freedom, we obtain a set of equations of the field amplitude in mode
ν

(i∆ν +
κ
2

)αν = −
∑

µ

∑

σ

gν,σgµ,σ
Γ
2 + i∆σ

∫
drnσ (r)uν(r)uµ(r)αµ − βν (2.13)

where the sum over µ account for all the cavity modes, including ν. Γ is the linewidth of
the excited atomic states and the considered detunings are defined with ∆ν = ων − ωp and

∆σ = ωσ −ωp. nσ is the local mean density of atoms in state |σ⟩ and verifies nσ =
〈
ψ̂†σ ψ̂σ

〉
and∫

drnσ (r) =Nσ , the total number of atoms in that state.
The resolution of such a system of equation can be performed numerically and yields the total

intensity in the cavity
∑
ν |α2

ν |, a quantity which can be experimentally measured as a function of
the various detunings by means of transmission spectroscopy.

Transmission spectroscopy
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Figure 2.2: Example of transmission spectroscopy for an empty cavity. The probe frequency is
swept across a resonance of the system, here corresponding to an empty cavity mode at frequency
ων. The right panel depicts the corresponding experimental observation, with the transmitted
countrate acquired on a single photon counter.

Transmission spectroscopy is performed by injecting a weak probe beam in the cavity and
recording the transmitted photons on the single-photon counting module. We typically perform
these measurements by dynamically sweeping the probe frequency while fixing the cavity length,
which amounts to scanning ∆ν with the previous notations. Figure 2.2 depicts the procedure
and shows an empty cavity spectrum acquired with it. The linear sweep of the probe frequency
is done with an acousto-optical modulator, and we map the measured photon arrival times to
the frequency of the probe beam at the time of arrival, calibrated from the control signal sent
to the AOM. If the frequency sweep rate is fast enough against the typical recoil frequencies
associated with atomic dynamics, we can safely consider the atomic density to be frozen within
the cavity mode and our method to effectively probe the energy spectrum of the coupled system.

We prepare a balanced gas at unitarity comprising 2× 105 atoms and perform transmission
spectroscopy by shining a probe beam mode matched to a TEM00 mode of the cavity of frequency
ων=0. This allows to set a frequency reference, where we define ∆c = ω0 −ωp as the quantity
we dynamically sweep during the experiment. Additionaly, we have βν = 0 except for ν = 0. In
the same spirit, we define a single atom-cavity detuning ∆a taken from the barycenter of the
two ground states energies, and which is varied from one repetition of the experiment to the
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next by tuning the cavity length. The magnetic field allowing us to reach the unitary regime
is oriented perpendicular to the cavity axis and the probe light is linearly polarized along the
y axis defined in figure 2.1 so that it couples to both σ+ and σ− transitions. The probe sweep
rate is set to 2π × 100MHz/ms and its power is set to keep the intracavity photon number below
Γ 2/8g2

0 = 38, the saturation threshold on resonance [79].
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Figure 2.3: Transmission spectrum of the atoms-cavity coupled system. Top, actual data follow-
ing the measurement procedure in the text. The color scale depicts the relative strength of the
transmitted signal displayed in log scale. The bare atomic transitions for |1⟩ and |2⟩ are shown
with blue and orange dashed lines, respectively. Bottom, transmission spectra obtained from the
calculation accounting for the coupling to multiple cavity modes.

During a single experimental run we vary ∆c by 2π×100MHz, and then move the cavity length to
increment ∆a by steps of 2π × 10MHz. We then repeat the measurements by adding a frequency
offset within ∆c using the locking scheme described in section 1.1.3, such that in total we explore
∆c ∈ 2π× [−250,250]MHz and ∆a ∈ 2π× [−550,550]MHz. The results are presented in figure 2.3
together with the predictions from the model.
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We observe two prominent avoided crossings as the bare cavity resonance approaches each
atomic one, leading to three dressed state branches located above, below and between the two
atomic resonances. The spectrum displays a richer structure for ∆c, due to the presence of
several families of high-order cavity modes, spaced by multiples of 25MHz on the red side of
the bare TEM00 mode. These were mapped out in details in reference [79]. Each of these mode
families couples to the atomic resonance, and are associated to dressed states mixing high-order
and TEM00 cavity modes with the atomic excitations. Even though the coupling efficiency of
the probe beam with these high-order modes is less than 10−3, the interaction with the finite
size atomic cloud allows for scattering of the incident power into these modes, yielding large
transmission for dressed states involving them as predicted by the overlap integral term in
equation (2.13).

As depicted by the figure, the model well reproduces both the location and shape of the
avoided crossings observed with the experiment. The structure of the dressed states also agree
qualitatively for the high-order modes, but the precise location and strength of the various
lines strongly depend on the exact position of the cloud, which is only known with limited
accuracy. The evolution of the relative transmission along the dressed state branches also agrees
qualitatively with the experimental spectrum.

The measured spectrum not only features strong coupling to the atomic resonances, but also
weaker coupling to a set of matter-like excitations on the red side of the

∣∣∣2s1/2, mJ = −1/2
〉
→∣∣∣2p3/2, mJ = −3/2

〉
transition. We attribute these excitations to photoassociation into weakly

bound states of an asymptotic molecular potential. The detailed study of the coupling to these
transitions is presented in chapter 4, where we show that the corresponding coupling strength is
controlled by the short-range two-body correlation function.

Atom number scaling

To further verify the coherent nature of the light-matter coupling and quantify the coupling
strength, we map our system to a generalization of the Tavis-Cummings model which accounts
for the two independent ground states and a single TEM00 cavity mode of frequency ωc. In
order to do so, we rewrite the Hamiltonian Ĥ , disregarding the motional degrees of freedom and
interactions in the ground state. For a single cavity mode and without the probe term, it reads

Ĥ =
∑

σ

ωσe

∫
dr

(
ψ̂†σe(r)ψ̂σe(r)− ψ̂†σ (r)ψ̂σ (r)

)
+ωcâ

†â+
∑

σ

g

∫
dr

(
ψ̂†σe(r)ψ̂σ (r)â+ h.c.

)
, (2.14)

where we have dropped the spatial dependency of the cavity mode structure and considered that
both dipole matrix elements coupling each ground state to their respective excited state were
equal. In this description, the atomic ensemble is now homogeneously coupled to the cavity
field, with only half of the density effectively contributing to the light-matter interaction.

This simplified form of the Hamiltonian allows for its expression as a collective spin 1/2
system and in this spirit we introduce the Dicke operators [98]

Ĵz,σ =
∫
dr

(
ψ̂†σe(r)ψ̂σe(r)− ψ̂†σ (r)ψ̂σ (r)

)
(2.15)

Ĵ±,σ =
∫
drψ̂†σe(r)ψ̂σ (r). (2.16)
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such that
Ĥ =

∑

σ

Ĵz,σ +ωcâ
†â+ g

∑

σ

(
Ĵ±,σ â+ h.c.

)
. (2.17)

In the low saturation regime, the Holstein-Primakoff transformation allows to rewrite the
Hamiltonian in terms of Bosonic operators b̂σ describing individual, noninteracting collective
optical excitations shared among atoms in state |σ⟩ such that [99]

Ĥ =
∑

σ

ωσeb̂
†
σ b̂σ +ωcâ

†â+ g

√
N
4

∑

σ

(
b̂†σ â+ h.c.

)
(2.18)

with N the total atom number. This generalized model can be diagonalized in order to find its
eigenenergies. For the cavity on resonance with the |2⟩ transition so that ∆a = ωc −ω2e = ω12/2,
we expect one of the normal modes of the model at a frequency

E =

√
g2N

2
+
ω12

4
, (2.19)

which features the expected square root scaling in terms of atom number.
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Figure 2.4: Position of the upper dressed state as a function of total atom number. Orange circles
show experimental data and green diamonds are obtained from the ab initio theory calculation
accounting for all the high-order cavity modes. The lines describe an analytical model with two
atomic states and the TEM00 cavity mode only. The dashed lines are fits of both experimental
data (orange) and theory calculation (green) with g as a free parameter. The blue solid line is the
expected scaling for g = g0/

√
2.

With the experiment, we tune the cavity frequency so that ∆a = ω12 and measure the location
of the upper polariton branch as a function of the prepared atom number. Using the upper
polariton allows us to first approximation to discard the effects of coupling to higher-order
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modes and thus apply the present model. We acquire spectra by transmission spectroscopy and
fit the location of the resonance with a Lorentzian profile. We present the results in figure 2.4,
along with a fit of the data to equation (2.19). In addition, we also extract and fit the location of
the upper dressed state predicted by the model of equation (2.13), computed for the same atom
numbers.

Leaving g as an adjustable parameter, both the data and theory are well-fitted, confirming the
coherent nature of light-matter coupling. We measure g = 2π×0.370MHz and g = 2π×0.398MHz,
respectively for the fit to the measurements and to the model. Both fitted values overestimate
the expected g = g0/

√
2 = 2π × 339MHz, where the factor

√
2 comes from the linear polarization

of the light which addresses the σ− transition. We attribute the discrepancy to the neglected
effect of the higher-order modes in the simpler model of this paragraph.

Nevertheless, the general agreement with a square-root dependency of the light-matter
coupling strength with atom number confirms the coherent collective coupling of the atomic
ensemble to the cavity light field, as described by the Tavis-Cummings model. The strong
coupling between strongly interacting fermionic matter and optical fields is of tremendous
interest for the creation, manipulation and interrogation of exotic quantum phases[69–72, 100]
and as such, we have proved our experiment to be the perfect playground to explore these
phenomena.

2.1.3 Transmission spectroscopy in the dispersive limit

In this section, we now move away from the resonant regime and describe the light-matter
interactions in the dispersive limit. This limit corresponds to addressing the system with far
detuned optical fields such that the atomic excited states are only virtually populated [55]. The
excited states still influence the physics via their contribution to the polarizability [101] and
the light-matter interactions can, to first order, simply be described in a two-photon picture
where a ground state atom virtually absorbs and re-emits a photon. This process corresponds
to an effective scattering event which, due to momentum conservation, can imprint a finite
momentum to the atom. In the scope of cavity QED, the dispersive interaction can be used to
mediate all-to-all, infinite range, interactions between an atomic ensemble and lead to interesting
collective phenomena. While we present in chapter 6 the study of the effects of such long-range
dispersive light-matter interactions, we focus in this section on the shift of the cavity resonance
frequency induced by the dispersive interaction.

In what follows, we present a formal description of the dispersive regime which we then
employ as a weakly-destructive measurement regime for the system. To do so, we use the same
formalism as introduced in the previous section and start from the Hamiltonian of equation (2.4).
We assume a single cavity mode, with a TEM00 structure, and consider the 2p1/2 and 2p3/2
excited manifolds, which correspond to D1 and D2 transitions respectively. We again work at
832G so that the ground state energies are shifted by ℏω12 and take the energy of state |1⟩ as a
reference.
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Adiabatic elimination and effective Hamiltonian

The total Hamiltonian reads, in second quantization formalism and in a frame rotating at the
probe frequency ωp

Ĥ =∆câ
†â

+
∫
drψ̂†1(r)

[
− ∇

2

2m
+Vt(r)

]
ψ̂1(r)

+
∫
drψ̂†2(r)

[
− ∇

2

2m
+Vt(r) +ω12

]
ψ̂2(r)

+
∫
drdr′ψ̂†2(r′)ψ̂†1(r)Vp(|r− r′ |)ψ̂1(r)ψ̂2(r′)

+
∑

σ

∑

e

∫
drψ̂†σe(r)

[
− ∇

2

2m
+Vt(r)−∆σe

]
ψ̂σe(r)

+
∑

σ

∑

e

∫
drgσ,e

(
u0(r)ψ̂†σe(r)ψ̂σ (r)â+ h.c.

)
,

(2.20)

with ∆σe = ωp −ωσe the detunings of the probe beam with respect to the frequencies of the
transitions |σ⟩ → |σe⟩. We remind that the sums over σ refer to the ground states while those
over indices e adress the excited ones.

Writing the Heisenberg equations for the excited fermionic fields, we obtain

dψ̂σ,e
dt

= −i
[
− ∇

2

2m
+Vt −∆σ,e

]
ψ̂σ,e − igσ,eu0(r)âψ̂σ (2.21)

which is a set of 4 independent equations – accounting for two excited states per ground state.
The adiabatic elimination of these excited states then consists in considering the detunings ∆σ,e to
be large against all the internal dynamics so that the kinetic and potential terms in the bracket
above can be neglected [101]. This approximation is valid in the far-detuned regime, where we
also have dψ̂σ,e/dt = 0 since the excited states are not populated. We obtain

ψ̂σ,e =
gσ,e
∆σ,e

u0(r)âψ̂σ (2.22)

which, after re-injection into equation (2.20) yields an effective Hamiltonian

Ĥeff =
∫
drψ̂†1(r)

[
− ∇

2

2m
+Vt(r)

]
ψ̂1(r) +

∫
drψ̂†2(r)

[
− ∇

2

2m
+Vt(r) +ω12

]
ψ̂2(r)

+
∫
drdr′ψ̂†2(r′)ψ̂†1(r)Vp(|r− r′ |)ψ̂1(r)ψ̂2(r′)

+ â†â

∆c +

∫
dr

∑

σ

∑

e

g2
σ,e

∆σ,e
u2

0(r)ψ̂†σ (r)ψ̂σ (r)


 .

(2.23)

In addition, we slightly simplify the last term by considering that both ground states feature the
same transition dipole matrix elements for the same transition [74]. For the D1 transition we for
example have g1D1

= g2D1
= gD1

. In the same spirit, we have ∆1e = ∆2e because of the relatively
low Zeeman shift between the two considered ground states. In the end, the light-matter
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interaction part of the Hamiltonian now reads

Ĥlm = â†â
∫
dr



g2
D1

∆D1

+
g2
D2

∆D2


u

2
0(r)n̂(r) (2.24)

with
n̂ =

∑

σ

n̂σ =
∑

σ

ψ̂†σ ψ̂σ (2.25)

the total density operator.
The light matter interaction term results in a displacement of the cavity resonance frequency

or dispersive shift, proportional to the spatial overlap between the atomic density and the
cavity mode function. For a TEM00 with a cosine profile the integral can be evaluated and,
equation (2.24) can equivalently be expressed with

Ĥlm = Ωâ†â
(N

2
+ M̂

)
(2.26)

with Ω =
g2
D1

∆D1
+
g2
D2

∆D2
and M̂ a collective displacement operator which originates from the lattice

structure of the cavity field, imposing a modulation of the atomic density. In the case of a fast
probe pulse, such as the ones we perform during transmission spectroscopy, the atomic density
is considered to be frozen in time, and we take

〈
M̂

〉
= 0. However, for slower pulses the atoms

may follow the imposed potential and thus lead to a displacement of the cavity resonance given
by M̂. This feedback mechanism between the atomic displacement and the shift of the cavity
resonance relates to the field of optomechanics, and we dedicate the entirety of chapter 5 to the
study of this effect.

For a frozen atomic density, we however get a simple expression of the dispersive shift with

δc = Ω
N
2
. (2.27)

Non-destructive dispersive shift measurement

The dispersive shift can be experimentally measured by transmission spectroscopy and compar-
ing the location of the cavity resonance with the one without atoms. The difference between the
two measurements is δc, relating the displaced cavity frequency to the total atom number. In the
dispersive regime, such a measurement is weakly destructive in the narrow cavity limit [102],
and we routinely use it to infer atom numbers before or after having performed other types
of measurements. This contrasts with the usual, completely destructive, absorption imaging
methods to measure atom numbers [103]. We present here some measurements performed on a
unitary Fermi gas to assess their weakly destructive nature.

We study the destructivity of the cavity probe by performing transmission spectroscopy mea-
surements multiple times on the same atomic cloud. We prepare atomic clouds comprising
N = 270× 103 atoms and set the cavity length such that ∆D2

= 2π × 20GHz. We then probe the
location of the dispersively shifted cavity resonance multiple times over 5s on a single trapped
cloud, and repeat the procedure for 10, 100, 250 and 500 probe pulses evenly spaced in time.
The measured spectrum is presented in figure 2.5, with a fit of the position of each acquired
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Figure 2.5: Measurement of the non destructivity of transmission spectroscopy in the dispersive
regime. Top, each of the panel depicts a spectrum acquired over a single realization of the
experiment. From top to bottom, left to right, we probed a single atomic cloud 10, 100, 250
and 500 times. The circles depict the extracted peak position of these spectra when fit with
Lorentzian profiles.

spectrum. The presence of a clear resonance is obvious for each scan, with noise originating from
the finite photon count. A weak ringing can be observed due to the sweep rate being comparable
with the cavity linewidth.

By normalizing the location of the resonances with respect to the frequency of the first
measurement of each series, to account for initial atom number variations between the different
series, we observe a decrease of the dispersive shift by 7% for 500 pulses compared to 10.
Translated into atom numbers, this amount to average losses of about 30 atoms per probing
pulse, a good indication of a weakly destructive measurement. We note that the overall decaying
trend is therefore due to the lifetime of the trapped unitary gas.

To further investigate the effects of transmission spectroscopy on the temperature of the cloud,
we repeat the same measurement as above for 500 pulses, stopping after a variable number of
probe pulses to evaluate the heating. We then transfer the cloud into a single-arm dipole trap
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Figure 2.6: Heating and lifetime of the atomic ensemble with repeated probe pulses. We measure
the heating of the atomic ensemble after 1, 10, 25, 50, 100, 200, 300 and 500 consecutive, evenly
spaced, probe pulses (orange diamonds). The horizontal dashed line marks the location of the
critical temperature for superfluidity at unitary for a trapped gas. The blue points depict the
evolution of the atom number for a single cloud, probed 500 times over 5 s. A simple exponential
decay fit to the data yields a time constant of 4.2s, as a measure of the lifetime of the gas.

and measure its temperature.2 The results are shown in figure 2.6 and even after 10 consecutive
pulses we observe no detectable atom losses and measure T /TF = 0.07(1), compatible with the
temperature measured in the absence of probe. Remarkably, after 100 pulses we still measure
a temperature of T /TF = 0.15(1), still well below the superfluid critical temperature. This
demonstrates that tens of repeated probes preserve the many-body physics of the Fermi gas for
as long as 1 s, proving that the method is well suited to measure both fast and slow dynamical
processes. In particular, it opens interesting applications to either probe non-equilibrium [104,
105] or transport [106] processes.

In the following chapters, we heavily employ these dispersive shift measurements to infer
atom numbers on the very cloud we are working with, without disturbance.

2.2 Absorption imaging for the thermometry of unitary Fermi
gases

While we have shown that the cavity grants a lot of information about the system, there still are
a few observables to which cavity signals are almost completely insensitive to. Temperature is
one of them.

In this section we now focus on the thermometry of the unitary Fermi to infer its degeneracy
parameter T /TF and prove that we work in the deeply degenerate regime T ≪ TF, well below
the critical temperature for superfluidity TC [107, 108]. The problem of accurate thermometry

2For this specific measurement, we used a thermometry technique explained in details in [79, 89].
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for strongly interacting systems is notoriously difficult since exact descriptions only hold for
ideal gases [47]. In the past several techniques have been employed, ranging from using another
atomic species [109, 110] or internal state [111] to act as a thermometer, to fast, isentropic ramps
of the interaction parameter to probe a non-interacting system [112]. Our first thermometry
measurements and experimental observation of superfluidity were performed on spin-imblanced
gases, fitting the wings of the majority component with a non-interacting profile [89, 92], and
the method was described in details in reference [79]. It had the major drawback of relying on
the usage of spin-imbalanced systems, thus requiring additional preparation steps and could
not simply be performed after probing the balanced gases of interest, but rather on completely
new atomic ensembles comprising fewer atoms.

Here we present a thermometry method which relies on fitting density profiles of in-situ,
balanced unitary Fermi gases. As such, it is particularly convenient since it can for example be
appended to any experimental sequence to measure the induced heating. Since the temperature
of deeply degenerate unitary gases mainly affects the wings of the density profiles [47], the
method relies on high signal-to-noise ratio of the measurements to infer the temperature.
To increase the signal-to-noise ratio, we work with high-intensity absorption imaging, and
we transfer the atomic cloud to a single arm of the crossed optical dipole trap prior to the
measurement, in order to increase its apparent size for our resolution-limited imaging setup.

The section is organized as follows, we first introduce the working principles and calibrations
for high-intensity imaging. In a second time we present the thermometry method, with which
we use the measured equation of state of a unitary Fermi gas in order to infer the temperature.
We apply the procedure to infer the temperature of the gas in the crossed optical dipole trap and
in the cavity trap, showing that the first evaporative cooling stages already bring the system to
the superfluid regime.

2.2.1 High-intensity absorption imaging

In-situ absorption imaging of dense clouds is often problematic due to low number of photons
transmitted through the cloud, limiting the signal-to-noise ratio. We circumvent the issue by
using high-intensity imaging pulses, with intensities comparable to the saturation intensity of
D2 transition of 6Li, Isat = 2.54mW.cm−2. This implies that the intensity dependent term of the
resonant cross-section σ cannot be neglected anymore and

σ =
3λ2

2π
1

1 + I/Isat
=

σ0

1 + I/Isat
, (2.28)

where I is the intensity of the imaging beam and lambda its wavelength. As a consequence,
one cannot simply measure the relative variations of the beam intensity to infer the atomic
optical density which follows from Beer-Lambert law dI/dz = −n(x,y,z)σI , with n the atomic
density and z the direction of propagation of the imaging pulse. Instead, the method relies on
the absolute knowledge of the beam intensity, which has to be calibrated [103, 113, 114]. For
high-intensity pulses, Beer-Lambert law yields [113]

σ
α

∫
dzn(x,y,z) = − ln

It(x,y)
Ii(x,y)

+
Ii(x,y)− It(x,y)

Isat
, (2.29)

with α > 1 a calibration factor accounting for a reduction of the cross-section due to imperfect
polarizations with respect to the quantization axis and the unresolved excited manifold. n(x,y) =∫
dzn(x,y,z) is the column density and Ii(x,y) and It(x,y) the incident and transmitted intensities

respectively and are recorded by usual absorption imaging techniques. The computation of the
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integrated density therefore requires the knowledge of both α and Ii,t(x,y)/Isat.
The approach we follow here is to calibrate Isat in terms of detected counts per pixel on the

imaging camera. Expressing the previous equation with counts per pixel on the sensor we have

σ
α
n(i, j) = − ln

Ct(i, j)
Ci(i, j)

+
Ci(i, j)−Ct(i, j)

Csat
, (2.30)

where the total counts measured by the pixel (i, j), C(i, j), linearly depend on the intensity.
To calibrate Csat, we require the previous expression to yield values of OD(i, j) = σn(i, j)/α
independent of the incident intensity, since the actual number of atoms should not depend on
the imaging intensity.
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Figure 2.7: Calibration of the photon counts on the camera which correspond to the saturation
intensity. Left, doubly integrated optical densities obtained by absorption imaging for three
different imaging beam intensities. The top panel depicts the optical densities as we would
compute them without the high-intensity correction in equation (2.30). The bottom one show
the same data but with the correction term and Csat extracted from the minimization of V , as
shown by the right panel. For this specific dataset, we obtain Csat = 1407, with an imaging pulse
duration of 4µs.

The idea is to acquire absorption images of the cloud for imaging beam intensities spanning a
significant range around Isat and impose all the measured optical densities, for a fixed arbitrary
value of α, to be equal. The problem thus amounts to minimizing the quantity [115]

V (Csat) =
∑

i,j

∑

n

(ODn(i, j,Csat)−
〈
OD(i, j,Csat)

〉
)2 (2.31)

where the average is taken over the entire dataset. We take care of performing the calibration on
data taken for the same atom number, within a 2% range, so that we should actually expect the
same OD. Having access to dispersive shift measurements prior to taking absorption images, we
can assign a known atom number for each of the measured densities. Figure 2.7 summarizes
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the measurement. We note that we measure exactly the same density profiles even though the
imaging beam intensity is varied from 0.5 to 2 Isat.

The calibration of α follows directly. We simply fix it so that the atom numbers computed
from N =

∫
dxdydzn(x,y,z) matches the ones measured from the dispersive shifts, including the

high-intensity correction to the optical density. For this dataset, we get α = 1.05. This value
is close to one, indicating that optical depumping is efficiently suppressed by using a closed
transition at high magnetic fields.

2.2.2 Temperature measurement using the equation of state

The temperature measurement technique we use follows from the method presented in ref-
erence [116] and further detailed in the supplementary materials of [117]. It relies on the
argument, that under the universal hypothesis, the density of the unitary gas n can be expressed
as a universal function of q = µβ with µ the chemical potential and β the inverse temperature,
uniquely determined by the degeneracy parameter T /TF. The homogeneous density is given by

n =
1

λ3
T

fn(q) (2.32)

where λT is the thermal de Broglie wavelength and fn(q) the universal phase-space density
which has been accurately determined from the measurement of the equation of state of unitary
Fermi gases with 6Li [110, 118–120]. Given the knowledge of the equation of state one can then
assign a temperature to a given homogeneous density. However, for a harmonically trapped
system such as ours the density is spatially varying, and we have to resort to the local density
approximation (LDA) and perform a spatial average of the atomic density over the trap. In the
LDA, the space-dependent chemical potential is expressed with

µ(x,y,z) = µ0 −Vt(x,y,z), (2.33)

µ0 being its value at the center of the trap. The double integration, along y and z, of the
space-dependent density in equation (2.32) then gives the line density

n(x) = A
(
T
TF

)5/2

fp

((√
ξ − x2/R2

x

) TF

T

)
(2.34)

with

A =
m

2πωyωzℏ3E
5/2
F (2.35)

fp(q) =
∫ q

−∞
dufn(u). (2.36)

ξ is the Bertsch parameter, EF the Fermi energy and ωi the trapping frequency of the harmonic
dipole trap along the integrated direction i = y,z. Rx characterizes the typical extent of the cloud
along the remaining direction. Equation (2.34) thus readily yields a fit function for measured
in-situ line densities of unitary Fermi gases, where A, Rx and the degeneracy parameter T /TF are
left as fit parameters.
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Figure 2.8: Evaluation of fn(q) in the three different regimes presented in the text and depicted
by the three different colors. The blue region corresponds to where we apply the virial theorem.
The orange one where use the measurements from [121] and the green one to where we use the
large-q expansion of fn.

Its evaluation however requires the knowledge of fp(q), which follows from fn(q) given equa-
tion (2.36). Reference [121] gives measurements of n/n0 as a function of q ∈ [−1.5,3.9], with n0
the density of a non-interacting Fermi gas. It is expressed with [47]

n0(q) = − 1

λ3
T

Li3/2(−eq) (2.37)

with Lim the polylogarithm of order m, such that

fn(q) = −Li3/2(−eq) n
n0

(q) (2.38)

can be directly evaluated for q ∈ [−1.5,3.9] using experimental data. Outside this range, we
resort to convenient approximations to evaluate the function. For q < −1.5 we can apply a virial
expansion of the equation of state which coefficients bk are known up to fourth order with [110,
122]

fn(q) =
∑

k

kbke
kq. (2.39)

For colder temperatures and q > 3.9 we have access to a large-q expansion of fn with [123]

fn(q) =
(4π)3/2

3π2



( q
ξ

)3/2
− π4

480

(
3
q

)5/2 , (2.40)

which includes contributions due to thermal excitations of phonons. All in all, we show the
general dependency of fn on q in figure 2.8. We now turn to the examination of the density
profiles acquired with high signal-to-noise ratio and yielding a correct atom number.

Temperature in the crossed dipole trap
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Figure 2.9: Temperature fitting from absorption imaging. Top, the measured optical density
of a gas transferred in one arm of the crossed dipole trap. Bottom, the line density obtained
by integrating the column density along the y direction (orange line), along with its fit to the
density profile derived in the text (dashed blue line). The agreement is excellent and we get
T /TF = 0.071.

We apply the technique on some example data, obtained for a gas at unitarity and after evapora-
tion in the crossed optical dipole trap presented in section 1.2.3. We then ramp down the power
of one of the arm to zero in 50ms while increasing the power of the second one in order to stop
the evaporation process. We then acquire absorption images of the cloud, taken after a time-of-
flight of 200µs, short against the typical trapping periods, and fit the measured line densities
using equation (2.34). Figure 2.9 displays the result of the fit on a single atomic ensemble. We
obtain excellent agreement with the model for all the data and measure T /TF = 0.067± 0.012.

This result confirms that we work in the deeply degenerate regime, well below the superfluid
phase transition temperature [45]. It also yields results very similar to what we obtained with
our previous fitting method [79]. Throughout the manuscript, we infer the temperatures of
strongly interacting gases prepared away from the unitary regime by relying on the measured
temperature at unitarity.

Temperature in the cavity trap

In addition, we recently measured the temperature of the cloud held in the cavity dipole trap with
a TEM01 mode structure. There, the cloud is actually split in two, with equal atomic population
in each lobe of the trap. The right panel of figure 2.10 shows an in-situ absorption image of
the cloud, which was off-centered on purpose on the imaging sensor in order to fully image
the wings of the density profile. We apply the previous temperature measurement procedure
after the second evaporation ramp in the cavity and before the usual transfer of the cloud into
the crossed dipole trap. We fit the temperature of the clouds in each independent arm of the
trap and average the results together for a single experimental run. The left panel of figure 2.10
shows the results, for varying setpoints of the final trap power and subsequent hold time in the
trap.
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Figure 2.10: Temperature fitting in the TEM01 mode of the cavity trap. Left, example of an
absorption image in the trap. The cloud is voluntarily off-centered on the camera sensor as to
fully image its wings, essential for the fitting procedure. To fit the temperature we assume the
cloud is symmetrical in the long direction. Right, temperature map of the gas in the cavity trap.
The color scale is centered on T /TF = 0.223, the critical temperature for a harmonically trapped
unitary gas. The star shows the experimental parameters used in the rest of the manuscript,
before transferring the cloud in the crossed trap. The final trap power is proportional to the
evaporation setpoint in mV.

We observe that for either a deep evaporation or with sufficiently long hold time the gas
becomes superfluid, with a temperature below the critical one. This feature is really promising
as it suggests that one could get rid of the crossed dipole trap for future experiments, while
still operating in the deeply degenerate regime. Using a TEM00 mode of the cavity instead
would yield a single arm trap, inside which the atomic density would by construction maximally
overlap with the cavity mode. This configuration would also free some optical accesses and
reduce the total duration of the experimental runs by removing one evaporation ramp.
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In this chapter, we introduce and discuss key concepts and consequences of scattering theory,
applied to the case of two colliding 6Li atoms. Our goal here is twofold, we first want to
develop a solid basis for the understanding of some phenomena ruling the collective behavior
of our ultracold gases, stemming from purely two-body interactions. On the other hand, we
also want to derive specific expressions which will prove to be useful for the intepretation
of experimental results in the following chapters. To these ends, in a first part we focus on
two-body scattering and introduce the concepts of scattering length and amplitude, Feshbach
resonances and pseudopotential, starting from the description of the origin of the van der Waals
interaction potential between two atoms. In a second part we show how these two-body concepts

39
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play a role in the many-body behavior of the strongly interacting gas, with the introduction
of a simple model to derive its ground state energy. We then discuss the BEC–BCS crossover
and unitary Fermi gas and their experimental realization, and conclude with the presentation
of the two-body s-wave contact as a key universal quantity which formally links the two- and
many-body regimes.

3.1 Theoretical description of cold collisions

3.1.1 Origin of the interaction

r
2s

2s

Figure 3.1: Two interacting 6Li atoms in their electronic ground state 2s, at a relative distance r.

As a starting point for the upcoming discussion on the consequences of ultracold scattering, we
begin with a brief presentation of the origin and physical description of interaction potentials
between cold atoms. In this paragraph, and for the rest of this manuscript, we only consider
two-body interactions between 6Li atoms occupying two different pseudospin states, as described
in section 1.2. Given the fermionic nature of 6Li atoms, three- – or few- – body interactions
are strongly suppressed by Pauli exclusion principle and therefore not taken into account here.
We thus consider two atoms in the situation depicted in figure 3.1. Seen as ensembles of point
charges, the Coulomb interaction energy between them reads

Vint =
∑

i

∑

j

qiqj
4πϵ0rij

(3.1)

where each sum is taken over the charged components of one atom, with electric charge qi,j .
To simplify the description and considering that the two charge ensembles do not overlap, one
can apply a multipole expansion of the previous expression and obtain a power series in r = |r|
instead. The atoms being neutral, the monopole – or charge-charge – term of the interaction is
simply zero and therefore one must consider the dipole-dipole interaction as the first non-trivial
term of the expansion. The associated operator reads

V̂d =
1

4πϵ0

d̂a · d̂b − 3(ez · d̂a)(ez · d̂b)
r3 (3.2)

where the a and b subscripts refer to the two atoms, with dipole moments d̂a =
∑
i∈a
qi(r̂i − r̂b) and

d̂b, where r̂a,b is the position of the nuclei of atom a,b and the sum is taken over the electrons.
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In a perturbative treatment of the problem, the first order contribution of the dipole-dipole
interaction potential to the total energy is zero due to the spherical symmetry of the electronic
wavefunctions of atoms in the ground 2s states. However, at second order in V̂d , where one
considers virtual excitations of the atoms, the contribution is in general nonzero and therefore
the unperturbed energy is displaced by a quantity ∝ V 2

d . The resulting long-range potential is
usually represented by a van der Waals potential of the form

Vd(r) = −C6

r6 , (3.3)

where the C6 coefficient can be computed from the estimation of matrix elements of V̂d taken
between the ground and excited electronic states. In the particular case of 6Li, this calculation
gives C6 ≈ 1393 atomic units [124]1. This description only holds in the long-range limit, where
the overlap of the two electronic clouds yields a negligible contribution. At shorter ranges, where
the overlap is sizeable, the clouds repel each other and this effect is modeled by the addition of a
soft core repulsive term ∝ 1/r12 to the interaction potential to yield the so-called Lennard-Jones
potential.

In addition, one can define a specific length scale of the two-body problem: the range of
the potential r0, above which the effect of the potential might be neglected. The existence of
a finite range for a potential is a consequence of the kinetic energy cost needed to localize a
particle within one of its bound states, following the uncertainty principle. For a pair of atoms
of reduced mass µ =m1m2/(m1 +m2) =m/2 interacting via the van der Waals potential described
above, the range r0 of the potential thus verifies

C6/r
6
0 ≤ ℏ2/2µr2

0 . (3.4)

This condition naturally leads to the definition of the range of the interaction potential, called in
this case the van der Waals range

RvdW =
1
2

(
2µC6

ℏ2

)1/4

(3.5)

where the prefactor 1/2 comes from a more careful derivation of the range of the potential, for
example done in paragraph 3.7.1 of reference [125]. For 6Li, RvdW ≈ 31a0 which is orders of
magnitude smaller than the mean interparticle distance associated with the typical values of the
ultracold gases densities n−1/3 ≈ 2000a0.

3.1.2 The two-body scattering problem

We now focus on the scattering properties of their collision under the effect of the potential.
The main goal of this section is to derive the concept of scattering length which we will in the
following part prove to be controllable via Feshbach resonances. We will also introduce a simpler
version of the interaction potential for cold collisions also known as the pseudopotential, which
faithfully reproduces the scattering properties of the two colliding atoms.

1For the reader unaccustomed with Hartree atomic units, this amounts to C6 ≈ 1.33 · 10−76 J·m6.
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Scattering amplitude from an operatorial approach

We start by considering two identical particles interacting via the previously defined long-range
potential Vd . In the center of mass frame, their relative motion is described by the Hamiltonian

Ĥ = K̂ + V̂d (3.6)

with K̂ = p̂2/2µ and p their relative momentum. In the case of an elastic collision with energy
E = ℏ2k2/2µ > Vd(∞) = 0, we seek to obtain an expression for the stationary scattering state ψ
solution of

Ĥψ = Eψ. (3.7)

In operator notation, this amounts to solving

(E − K̂)
∣∣∣ψ〉

= V̂d
∣∣∣ψ〉

(3.8)

which yields, for an incoming wavevector k, the following Lippmann-Schwinger equation
∣∣∣ψk

〉
= |k⟩+ Ĝ+

0 V̂d
∣∣∣ψk

〉
(3.9)

where the first term corresponds to the free particle solution with ⟨r|k⟩ = eikr in position
representation. The second term involves the Green operator Ĝ+

0 solution of equation (3.8) for
an impulse source term, such that

(E − K̂)Ĝ+
0 (E) = 1. (3.10)

The chosen Green operator corresponds to an outgoing wave denoted by the superscript +, with

Ĝ+
0 (E) =

1

E − K̂ + iε
, (3.11)

and
〈
r′
∣∣∣Ĝ+

0 (E)
∣∣∣r〉 = − µ

2πℏ2
eik|r′−r|

|r′ − r| . (3.12)

We can now turn to the implicit form of
∣∣∣ψk

〉
defined by equation (3.9) and show that it can be

explicitly developed with
∣∣∣ψk

〉
= |k⟩+ Ĝ+

0 V̂d
∣∣∣ψk

〉

= |k⟩+ Ĝ+
0 V̂d

(
|k⟩+ Ĝ+

0 V̂d
∣∣∣ψk

〉)

= |k⟩+ Ĝ+
0 V̂d

(
|k⟩+ Ĝ+

0 V̂d (|k⟩+ . . .)
)

= |k⟩+ Ĝ+
0 T̂ (E) |k⟩

(3.13)

where we have introduced the transition operator T̂ (E), which is from what precedes also a
solution of a Lippmann-Schwinger equation

T̂ = V̂d + V̂dĜ
+
0 T̂ . (3.14)
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The matrix elements ⟨k′ | T̂ |k⟩ therefore account for all the possible paths to couple states |k′⟩
and |k⟩ together under the effect of V̂d . In position space, with ψ(r) =

〈
r
∣∣∣ψk

〉
, we write

ψ(r) = eikr + ⟨r| Ĝ+
0 T̂ (E) |k⟩

= eikr +
∫
dr′
−µ

2πℏ2
eik|r′−r|

|r′ − r|
〈
r′
∣∣∣ T̂ (E) |k⟩

(3.15)

where we have used the closure relation
∫
dr′ |r′⟩⟨r′ | = 1. In the limit |r| → ∞ and looking at

the scattering center from the direction n, we can expand the spherical wave contribution
|r′ − r|−1eik|r′−r| ∼ r−1eikre−iknr′ so that

ψ(r) = eikr +
−µ

2πℏ2
eikr

r

∫
dr′e−iknr′ 〈r′

∣∣∣ T̂ (E) |k⟩

= eikr +
−µ

2πℏ2 ⟨kn| T̂ (E) |k⟩ e
ikr

r

= eikr + f (k,θ)
eikr

r

(3.16)

where we have introduced the scattering amplitude f (k,θ) with θ the angle between n and the
direction of the incoming wave along k, under the assumption that the interaction potential
is symmetrical. This last form of the scattering state ψ is quite powerful; a scattering state in
the limit |r| → ∞ can be seen as the superposition of an incoming plane wave and a scattered
spherical wave with an amplitude f (k,θ), a situation depicted by figure 3.2.

eikr eikr

f (k,θ)eikr /r

Figure 3.2: Modelization of two-body scattering. An incoming particle scatters off a scattering
center and the resulting outgoing wavefunction is taken to be the sum of the transmitted and
scattered ones.

Phase shifts from partial wave analysis

We will now focus on the calculation of the scattering amplitude in order to put it in a more
convenient form to represent the low energy collisions typically occurring in our gases. To this
end, we adopt an approach based on partial waves decomposition which closely follows the
derivations found e.g. in chapter XVII of reference [126].
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We consider a scattering state ψ solution of equation (3.7) which can be decomposed in the
basis of spherical harmonics

ψ(r) =
∑

l

AlXl(r)Yl,m(θ,φ) (3.17)

where the summation is taken over the possible scattering channels, or quantized values of the
angular momentum l with projection m on the quantification axis, chosen to be aligned with the
interatomic axis here. The radial functions Xl are solutions of

1
r2

d
dr

(
r2 dXl
dr

)
+
(
k2 − l(l + 1)

r2 − 2µ
ℏ2 Vd(r)

)
Xl = 0 (3.18)

which is obtained with the substitution p̂2 = −ℏ2∇2 with spherical coordinates in equations (3.6)
and (3.7), and for a given value of l. This spherical form of Schrödinger’s equation leads to the
definition of an effective interaction potential which now embeds the angular momentum of
the scattering pair; we can write Veff(r) = Vd(r) + ℏ2l(l + 1)/(2µr2). The additional term leads to
the existence of a repulsive "centrifugal" barrier going as 1/r2 for l > 0, which height has to be
overcome in order for the scattering pair of atoms to feel the effect of Vd . For 6Li and l = 1, this
amounts to a potential step V0 ≈ 8mK, a temperature much larger than the typical ones featured
in experiments. This is the reason why only l = 0 or s-wave scattering processes are considered
in practice.

It can be shown, by neglecting the potential and centrifugal energies, that the functions Xl
take the following asymptotic form

Xl ∼r→∞
1
r

[
(−1)l+1e−ikr + e2iδl eikr

]
(3.19)

with the phases δl(k) obtained from the resolution of equation (3.18). From this asymptotic
form one can already picture the motivation behind the current calculation; Xl represents the
superposition of an incoming plane wave and an outgoing one, dephased by a quantity δl . Taking
into account the contributions for each partial wave, we will in the end obtain an expression
for ψ which only depends on the phases δl . Thus, these contain all the information about the
scattering process under the potential Vd and therefore their calculation fully characterizes the
interaction.

To obtain the expression for the scattering amplitude as a function of the phases δl , we
compare the last line of equation (3.16) to equation (3.17) in which we inject the asymptotic
form of the Xl functions. Doing so, we also take into account the symmetry of the problem about
the interatomic axis and therefore drop the contribution of the azimuthal angle φ and impose
m = 0. On one hand, equation (3.17) yields

ψ(r) ∼
r→∞

e−ikr

r

∑

l

(−1)l+1Al

√
2l + 1

4π
Pl(cosθ)

+
eikr

r

∑

l

eiδlAl

√
2l + 1

4π
Pl(cosθ)

(3.20)

where we expressed the spherical harmonics Yl,0 as functions of the Legendre polynomials Pl of
order l. On the other hand, using the expansion of the plane wave eikr term of equation (3.16) in
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spherical harmonics, the equation now reads

ψ(r) ∼
r→∞

e−ikr

r
1

2ik

∑

l

(−1)l+1(2l + 1)Pl(cosθ)

+
eikr

r


f (k,θ) +

1
2ik

∑

l

(2l + 1)Pl(cosθ)




(3.21)

and leads, with the identification of the e−ikr and eikr terms, to

f (k,θ) =
∑

l

(2l + 1)Pl(cosθ)fl(k) (3.22)

where the scattering amplitude for the scattering channel l verifies

1
fl(k)

=
k

tanδl(k)
− ik. (3.23)

Scattering length and pseudo-potential

We now turn to scattering processes occurring in the l = 0 channel only, or s-wave scattering,
with k→ 0. The scattering amplitude then only depends on the s-wave phase shift δ0(k) which
verifies2

tanδ0(k) =
k→0

ak (3.24)

The proportionality coefficient a of the previous expression is called the s-wave scattering length
defined as

a = − lim
k→0

tanδ0(k)
k

(3.25)

and leads to an expansion of f (k) in powers of k, usually written as

1
f (k)

= −1
a
− ik +O(k2). (3.26)

From this last expression and the previous paragraph, we see the physical significance of the
scattering length; it is the phase shift experienced by a scattered wave for r→∞ and k→ 0 and
as such describes all the relevant aspects of the interaction. To convey a clearer picture of its
effect, let’s examine the asymptotic behavior of ψ. From what precedes, in the long-range region
where k2≫ Vd , the scattering wavefunction takes the form

ψ(r) ∝
r→∞

1
r

[
−e−ikr + e−2ikaeikr

]

∝ sin(kr − ka)
r

(3.27)

and thus features a node at r = a, for a > 0 and for all values of k in the limit k→ 0. This means
that the potential can effectively be replaced by a hard-core sphere of radius a, which also forces

2The following result comes from the comparison of the asymptotic – taking r → 0 and r → ∞ – solutions of
equation (3.18) for l = 0. The analytic connection of these solutions for small k yields the proportional scaling of tanδ0(k)
with k.
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ψ(a,k) = 0, and lead to the same physical behavior of the scattered wavefunctions for r > a.3

Since the scattering length fully describes the interaction process in the regime where we
work, it is quite natural to build on the idea of substituting the "real" interaction potential with a
simpler model, which yet still yields the same scattering properties. In fact, from what precedes,
a given interaction potential might be replaced by another one provided that the model potential
leads to the same scattering amplitude as defined by equation (3.26). We will take advantage of
this to introduce a potential which indeed leads to the same value of the scattering length as Vd
but also provides a very convenient short range form of the two-body scattering wavefunctions,
useful for the rest of this chapter; the pseudo-potential.

Following the developments presented in reference [127], the pseudo-potential Vp is defined
by its action on the two-body scattering state such that

Vp [ψ(r)] = gδ(r)
∂
∂r

[rψ(r)]
∣∣∣∣∣
r=0

(3.28)

with g a coupling constant which value is set to recover the same value of a as defined above.
Under the effect of this potential one needs to re-evaluate the matrix elements ⟨kn|T̂p|k⟩ of
equation (3.16) in order to obtain the scattering amplitude, with T̂p the modified transition
matrix accounting for the new pseudo-potential. It turns out – by construction – that the
calculation leads to an exact and convenient expression for the scattering amplitude in the
pseudo-potential

f (k) = − a
1 + ika

(3.29)

where g was chosen so that a = gµ/2πℏ2, so that the scattering amplitude corresponds exactly to
the development of equation (3.26) to the first order in k. Moreover, the short range part of the
two-body scattering state can be expressed as

ψ(r) =
r→0
− a

1 + ika

[1
r
− 1
a

+O(r)
]
, (3.30)

sometimes put in a more compact form

d
dr

[rψ(r)]
∣∣∣∣∣
r=0

= −1
a

[rψ(r)]
∣∣∣∣∣
r=0

(3.31)

where we have injected f (k) in equation (3.16) and used eikr /r ∼
r→0

1/r + ik +O(r). These expres-

sions of the two-body wavefunction realize the Bethe-Peierls boundary condition [128] and, as
we will see in the next sections, will be central to address the many-body problem.

Scattering length and bound states of the interaction potential

In this paragraph, we very briefly present one important consequence of the definition of
the scattering length in terms of the phase shift of the scattered wavefunction. According to
Levinson’s theorem [129] the s−wave, zero-energy, phase shift δ(0)0 features a direct dependence
on the number of bound states nb of the interaction potential with

δ(0)0 − δ(∞)0 = (nb +
1
2

)π. (3.32)

3For a < 0 the situation is slightly different, the wavefunctions now feature a "virtual" node at a non-physical r = a,
and the direct analogy with a different type of potential cannot be made anymore.
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While δ(k)0 − δ(∞)0 is in general complicated to explicitly evaluate, Levinson’s theorem imposes
that it must increase by a multiple of π when a new bound state "enters" the potential. Since
the scattering length depends on tan(δ(0)0), one therefore expects it to diverge for every bound
state entering the potential.4 This explains the anomalously large value of the s−wave scattering
length of 6Li: there exists an almost-bound virtual state of interaction potential.

Its sign on the other hand comes from the relative location of the bound state with respect
to the dissociation threshold. For a bound state of energy E = ℏ2k2

2µ , close to the dissociation
threshold, equation (3.26) states that the scattering amplitude f0(k) features a pole at k = i/a. If
the bound state is real, we obtain E = − ℏ2

2µa < 0 which links its energy with the scattering length.

The corresponding wavefunction ψ(r) ∼ e−r/a/r must be normalizable which imposes a > 0. On
the other hand if the bound state instead is virtual and lies on the other side of the dissociation
threshold, the scattering length becomes negative.

3.1.3 Feshbach resonances

We present here a key tool of the study and manipulation of quantum gases; the Feshbach
resonance. As a type of scattering resonance, Feshbach resonances correspond to a drastic
modification of the scattering length a via the introduction of an important collisional phase
shift δ during s-wave scattering events. In the case of Feshbach resonances, the mechanism
which modifies the collisional phase shift relies on the near-resonant coupling of the initial
scattering state with some other bound state. More so, they do not only modify the scattering
length but, for reasons we will detail in what follows, also allow for its continuous tuning even
to diverging values thus realizing different interaction regimes of the quantum gases.

We refer the reader interested to more in-depth derivations and discussions to one of the
many great overviews of Feshbach resonances [39].

Two channels model

As briefly mentioned above, Feshbach resonances involve two collisions channel; an energetically
accessible scattering open channel and a second, energetically forbidden, closed channel. In the
presence of an external magnetic field, the two collision channels are realized by considering the
different spin polarized configurations of the scattering pair, as depicted in figure 3.3. Ultracold
6Li atoms typically collide in a spin triplet configuration so that the open channel corresponds to
the associated interaction potential. The closed channel on the other hand corresponds to the van
der Walls interaction potential for a spin singlet configuration, which is shifted towards higher
energies compared to the open channel and therefore not accessible for the initial scattering pair.

Since pairs in different spin configurations feature different magnetic moments, a variation
of the magnetic field induces a relative change of the energy of the two channels and doing so,
bound states within the closed channel can be brought into resonance with scattering states
of the open channel5. With the addition of a coupling mechanism between the two channels
– which here takes the form of the hyperfine interaction, this description realizes a magnetic
Feshbach resonance.

4This result is intimately linked to the fact that the transition matrix shares its poles with the scattering amplitude
and that these poles correspond to bound states of the interaction potential – see e.g. chapter 12-d of reference [130] for
a complete derivation.

5As we will see, the actual resonance condition differs slightly from this statement. The correction comes from the
fact that the coupling between the two channels also displaces the bound state energies of the closed channel.
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Figure 3.3: Two channel model for the Feshbach resonance. A pair of atoms with kinetic
energy E scatters under the effect of a van der Waals interaction potential with a dissociation
threshold lower than E; the open channel (solid blue curve). The closed channel (solid orange
curve) features an inaccessible threshold and hosts a bound state of energy Eb, defined from the
threshold of the open channel. This bound state can be brought in an out of resonance with the
initial scattering state by tuning the external magnetic field B (inset). The resonance occurs at a
magnetic field B0, when the bound state energy matches E.

Our goal for this paragraph is to show how the coupling of a scattering state of the open
channel to a bound state of the close channel induces a drastic modification of the scattering
length. To this end, we consider the situation depicted in figure 3.3. More formally, we will
follow the approach presented in [131] and only consider a single bound state contribution to
the problem in what is known as the isolated resonance approximation.6

In the most general way, we write
∣∣∣ψo,c

〉
the components of the scattering pair wavefunction

respectively projected in the open and closed channels. We include an operator Ŵ which couples
the two channels so that the system satisfies the following coupled Schrödinger equations

(K̂ + V̂o)
∣∣∣ψo

〉
+ Ŵ

∣∣∣ψc
〉

= E
∣∣∣ψo

〉
(3.33)

(K̂ + V̂c)
∣∣∣ψc

〉
+ Ŵ

∣∣∣ψo
〉

= E
∣∣∣ψc

〉
(3.34)

where V̂o,c are the interaction potentials for the open and closed channels. In the absence of
coupling, with Ŵ = 0, the situation is exactly the one described by equation (3.8) for the open
channel and

∣∣∣ψo
〉

=
∣∣∣ψ〉

with the previous notations. In that case, since V̂c(∞) > E, the closed
channel is not populated and

∣∣∣ψc
〉

= 0. Therefore, using the same operatorial approach as earlier
in the section, we can write

∣∣∣ψo
〉

=
∣∣∣ψ〉

+ Ĝ+
o Ŵ

∣∣∣ψc
〉

(3.35)
∣∣∣ψc

〉
= Ĝ+

c Ŵ
∣∣∣ψo

〉
(3.36)

6Accounting for the contribution of multiple other bound states is a tougher task which will not be dealt with here.
In practice, the additional contributions are accounted for using multichannel quantum defect theory [132].
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with the Green operators Ĝ+
o,c(E) = (E − K̂ − V̂o,c + iε)−1. The isolated resonance approximation

consists in singling out the closed channel bound state of interest
∣∣∣ψb

〉
with energy Eb and

disregarding all other bound state contributions to Ĝ+
c so that it can be put under the form of a

single projector

Ĝ+
c (E) =

∣∣∣ψb
〉〈
ψb

∣∣∣
E −Eb

. (3.37)

Its substitution into the previous system of equations yields
∣∣∣ψo

〉
=

∣∣∣ψ〉
+ Ĝ+

o T̂o

∣∣∣ψ〉
(3.38)

∣∣∣ψc
〉

= z
∣∣∣ψb

〉
(3.39)

where we have introduced

T̂o =
Ŵ

∣∣∣ψb
〉〈
ψb

∣∣∣Ŵ
E −Eb −

〈
ψb

∣∣∣Ŵ Ĝ+
o Ŵ

∣∣∣ψb
〉 (3.40)

z =

〈
ψb

∣∣∣Ŵ
∣∣∣ψ〉

E −Eb −
〈
ψb

∣∣∣Ŵ Ĝ+
o Ŵ

∣∣∣ψb
〉 . (3.41)

We see from equation (3.39) that we indeed find an expression for the closed channel wave-
function where only one bound state

∣∣∣ψb
〉

is populated. The problem is thus now reduced
to scattering in a single channel, with the previously derived

∣∣∣ψ〉
acting as the incident state

and a new transition operator T̂o, as described by equation (3.38). The scattering amplitude is
then proportional to the matrix element

〈
ψb

∣∣∣T̂o

∣∣∣ψb
〉

which features a pole at E = Eb +∆ with
∆ =

〈
ψb

∣∣∣Ŵ Ĝ+
o Ŵ

∣∣∣ψb
〉
.7

In the low energy and asymptotic limits, the first term of equation (3.38) will yield a phase
shift of the scattered wavefunction leading to a "background" scattering length exactly given
by equation (3.25), which we note abg. The "resonant" s-wave shift δres induced by the coupling
between both channels can be put under the form [131]

δres = arctan
(
− Γ /2
E −Eb −∆

)
(3.42)

with Γ = 2π|〈ψb

∣∣∣Ŵ
∣∣∣ψ〉 |2. The associated resonant scattering length ares = − limk→0

tanδres(k)
k

contributes to the total scattering length

a = abg + ares

= abg − limk→0 Γ /2k
Eb +∆

.
(3.43)

Using the fact that in practice Eb can be tuned by a variation of an external magnetic field, the
previous equation is often expressed as

a = abg

(
1− ∆B

B−B0

)
(3.44)

7We see here that this resonance condition differs from the naive E = Eb guess by a quantity ∆ which results from the
coupling between the two channels.
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with ∆B the magnetic width of the resonance and B0 its position. Under this form, it appears
clearly that the scattering length diverges at the position of the resonance, and changes sign when
the resonance is crossed. In practice, provided that ∆B is large enough, Feshbach resonances
thus offer a very convenient way of tuning the scattering length to almost arbitrary values. In
the following paragraph, we will specialize in 6Li and present the resonance we use in the
experiment.

Feshbach resonances of 6Li
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Figure 3.4: Broad Feshbach resonance of 6Li (solid blue curve). The position B0 of the resonance
is depicted by the vertical dashed line. The shaded area shows the strong interaction region
typically explored throughout this thesis. In inset, we show an updated and more precise
version of the inset of figure 3.3. Because of its hyperfine coupling with the initial scattering
state (horizontal solid line), the energy of the bound statea (solid green line) gets strongly
displaced and avoids crossing the scattering state energy up until B0. The point B1 where it
would have crossed in the absence of coupling is the location of another, way more narrow,
Feshbach resonance [133]. It originates from the component of the singlet interaction potential
with a zero nuclear spin projection, which thus do not couple to the scattering state via hyperfine
interaction. Its energy is depicted by the oblique dashed line.

aThe bound state in question is the last bound state ν = 38 of the singlet interaction potential 1Σ+
g – with molecular

notations defined in appendix D.

In the case of 6Li, we present in figure 3.4 the Feshbach resonance for a pair of atoms
populating the two lowest hyperfine ground states |1⟩ and |2⟩. The resonance condition occurs
at B0 = 832.18(8)G with a background scattering length abg = −1582(1)a0 and width ∆B =
−262.3(3)G [134]. These values are large with respect to other alkali atoms, for which abg is of
the order of the range of the van der Walls interaction potential of ∼ 100a0 and with ∆B usually
being several orders of magnitude lower.
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The unusual case of Lithium is well explained by taking into consideration an almost bound
state of its triplet potential, lying only at an energy of 300kHz above the dissociation threshold
of the potential, which is orders of magnitude lower than the typical binding energies in such
potentials. From what we have seen with the discussion on bound states, the presence of this
virtual state therefore produces an anomalously large and negative background scattering length.
Had the triplet potential been just a fraction of a percent deeper, the virtual bound state would
have entered the potential and yielded a positive background scattering length.

3.2 Going from two- to many-body fermionic systems

Having presented some properties of two-body ultracold scattering, we now show how one
can put this knowledge to use in order to bridge the gap from two to many fermions systems.
For a Fermi gas of density n, the typical length scale associated with interactions away from a
Feshbach resonance is of the order of abg ∼ RvdW, much smaller than the average interparticle
spacing k−1

F ∼ n−1/3 with kF the Fermi wavevector: the gas is only weakly interacting. However,
the situation drastically changes in the vicinity of a Feshbach resonance, by letting a diverge we
can realize situations where |a| ≫ k−1

F thus entering the strongly interacting regime, where the
consequences of two-body scattering lead to strong modifications of the many-body behavior.
The strength of the interactions are usually characterized by the dimensionless parameter (kFa)−1,
and we accordingly label the strongly interacting regime the region where (kF|a|)−1 < 1.

One point of this strongly interacting regime is of particular interest; when a → ±∞,
(kF|a|)−1 = 0 and k−1

F becomes the only relevant length scale as a drops out of the problem,
making this limit universal. It realizes what is known as a unitary Fermi gas, a name which
comes from the unitary properties of the two-body scattering matrix associated with a diverg-
ing scattering length. Such a gas features the strongest known interpaticle interactions and
therefore is a perfect toy model for the study of strongly correlated systems [23, 24]. While the
limit a→±∞may seem problematic, we will see in the following paragraphs that all physical
quantities behave smoothly when (kF|a|)−1 explores the strongly interacting region.

We will first present a simple model based on two-body scattering to derive the energy
spectrum of the (strongly) interacting Fermi gas, even in the presence of a diverging scattering
length. In a second part, we will look in more details into what is known as the BEC–BCS
crossover [45, 135] and how it is realized in practice by tuning the scattering length across
the strongly interacting regime. Finally, we will introduce a quantity know as the contact
which bridges the conceptual gap between two- and many-body systems, and defines universal
thermodynamical relations.

3.2.1 Energy spectrum of the interacting Fermi gas

We will start our discussion on the energy spectrum of an interacting Fermi gas by reigniting
the previous concern about the limit a→±∞. In a mean field approach, the contribution to the
internal energy of the interparticle interactions is usually expressed as

∆E ∝ gn1n2 (3.45)

with n1,2 the number densities of each fermionic component. The sign of a directly rules the
sign of the coupling g = 4πℏ2a/m and therefore controls the nature of the interactions. A
positive scattering length leads to ∆E > 0 and the interactions are labeled as repulsive since
they tend to increase the gas internal energy, and correspondingly they are attractive for a < 0.
This description obviously raises a question about the above mentioned unitary regime: what
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happens for a = ±∞ ? The issue lies in the expression of g which contradicts the universal
hypothesis, the gas properties should only depend on kF. Indeed, g diverges with diverging a
and changes sign around the resonance which leads to a ill-defined nature of the interactions on
the Feshbach resonance. Even though a more careful calculation of the second virial coefficient –
intimately linked to the internal energy of the system – prevents the divergence of the internal
energy when the Feshbach resonance is approached [136], the nature of the interactions on the
resonance is still paradoxical.

R ∼ 2000a0

RvdW ∼ 30a0

0

Vp

Figure 3.5: Two fermions scattering in a box. The horizontal axis represents the relative coordi-
nate. The vertical dashed line represents the 0−range pseudopotential and the orange shaded
area depicts the effective range of the van der Waals potential which leads to the same value
of a as Vp. The hatched region corresponds to the boundary condition imposed by the N − 2
remaining fermions.

We develop here a simple argument to tackle the above paradox. It is based on a description
of a strongly interacting two-components Fermi gas which involves the scattering concepts
presented in the last section. Doing so, we will also very conveniently derive the typical shapes
of the two-body scattering wavefunctions in the strongly interacting regime 1 > (kF|a|)−1, which
will prove useful in the next chapter. Our approach follows the arguments presented in [137]:
out of a strongly interacting homogeneous Fermi gas comprising N particles, we isolate two
fermions of opposite spins scattering under the influence of the pseudo-potential Vp described
in section 3.1.2. The effect of the interaction of the scattering pair with the N − 2 other particles
of the gas is modeled by a spherical box of radius R ≈ n−1 with absorbing boundary conditions
such that the two-body wavefunction ψ vanishes for r = R. A one dimensional sketch of the
situation is depicted by figure 3.5.

As we have shown in the last section, the usage of the pseudopotential is equivalent to imposing
the contact condition described by equation (3.31) at the origin and then solving the free
Schrödinger equation everywhere else in the box. We consider the gas to have a total energy E
and two particles to be scattering with energy ϵ = ℏ2k2/µ > 0 which verifies E =Nϵ/2. By solving
Schrödinger’s equation, the reduced radial wavefunction u(r) = rψ(r) can be expressed as

u(r) ∝ sin(k(r −R)) (3.46)

where we have imposed the boundary condition u(R) = 0. Applying the contact condition to u(r)
yields tan(kR) = ka, which we can solve to obtain the energy spectrum of the gas as a function
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Figure 3.6: Energy spectrum of the interacting Fermi gas and its graphical derivation. Left panel,
we show some the solutions of tan(kR) = ka, for different values of a (orange lines). For a given
value of a the curves intersect multiple times (circles) and result in the existence of multiple
energy branches. Right panel, the energy branches predicted by the model. As a main result, the
ground branch energy lies below the energy of a non-interacting Fermi gas E0 (horizontal dashed
line) for all values of a. The shaded area represents the values of (kFa)−1 typically explored in
this thesis.

of a. The graphical resolution of such an equation is depicted by the left panel of figure 3.6,
where we see that there exists multiple solutions for a given a: the gas features multiple energy
branches. To get a complete picture, one must also consider negative energies E = −ℏ2κ2/µ < 0,
for which we have u(r) ∝ sinh(κ(r −R)) and tanh(κR) = κa and which lead to the E < 0 branch of
the right panel, connecting smoothly to the E > 0 part of the ground branch.

First and foremost, we notice that the energy of the ground branch lies below the energy of a
non-interacting Fermi gas E0, only crossing it when a changes sign around 0. This ensures that
the interacting Fermi gas prepared in the ground branch is always attractive, no matter the sign
of the scattering length. In addition, the smooth variations of the energies of the branches at the
location of the Feshbach resonance indeed confirm that nothing dramatic happens, a fact which
is also verified by looking at other thermodynamical quantities [137]. From the expressions
for the wavefunctions obtained above, we calculate their shape for energies corresponding to
the ground branch and scattering lengths spanning the strongly interacting regime, shown in
figure 3.7.

3.2.2 BEC–BCS crossover

From the discussion on Feshbach resonances, the a > 0 region of the strongly interacting regime
corresponds to a bound state of the closed channel becoming energetically accessible for a
scattering pair, and therefore allows for atoms to bind in real space with binding energy E = − ℏ2

2µa .
The bosonic character of these fermion pairs and their ability to condense has imposed the name
BEC regime for this interaction region.

When crossing over to the other side of the resonance, with a < 0, one can wonder what
happens to the pairs since two-body scattering theory doesn’t ensure the existence of bound
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Figure 3.7: Two-body reduced wavefunctions for strongly interacting Fermi gases, for different
values of the interaction parameter and corresponding energies in the ground branch of figure 3.6.
Their short range behavior shows the expected ∝ r/a trend from the Bethe-Peierls boundary
conditions. The shaded area corresponds again to the range of the van der Waals interaction
potential, while the hatched area depicts the boundary conditions imposed by the many-body
problem.

states in 3D for arbitrarily weak interactions. The solution lies in Cooper pairing as described by
BCS theory [2, 138, 139]; in the presence of a Fermi sea, pairs of atoms with opposite momenta
can form atop the Fermi sphere. Since the accessible density of state is effectively constant on
the surface of the sphere, pairing is allowed to occur for arbitrarily low interaction strengths.
In other words, pairing becomes a many-body effect stabilized by Pauli blocking, which was
modelized by the box boundary conditions presented above. The ground state of the gas in this
BCS regime is then a condensate of Cooper pairs.

By continuously tuning the interaction parameter thanks to a Feshbach resonance, we can
smoothly follow the ground branch of figure 3.6. Doing so, we explore the so-called BEC–BCS
crossover when the ground state of the system smoothly evolves from a condensate of weakly
bound Cooper pairs on the BCS side of the resonance, to a condensate of tightly bound molecules
on the BEC side. This smooth crossover regime was predicted by Eagles [141] and Leggett [142]
and Nozières and Schmitt-Rink [143] for finite temperatures, and is now routinely explored in
ultracold atoms experiments [144, 145]. One of the greatest success of the BEC–BCS crossover
theory is the prediction of a superfluid phase of pairs, which persists for all values of the
interaction parameter. We show the corresponding phase diagram in figure 3.8. In the following
paragraphs, we will detail some interesting properties of the unitary Fermi gas, and we refer the
reader to more complete articles for further details [45, 48, 49].

The unitary Fermi gas

As mentioned above, the inverse Fermi momentum being the only relevant length scale at
unitarity, the properties of the unitary Fermi gas are independent of the nature of its constituents
and become scale-invariant. As such, the current description can be applied to any fermionic
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Figure 3.8: Critical temperatures for the superfluid phase transition in the BEC–BCS crossover.
The solid blue curve represents the critical temperature for an homogeneous gas T h

c [140] and
the green star the measured critical temperature for a trapped gas at unitarity T t

c [121]. Below
these limits, the gas is in a superfluid state. The shaded area depicts the strongly interacting
regime explored in this work.

systems featuring diverging scattering lengths; the most commonly cited examples apart from
quantum gases being neutron stars and quark-gluon plasmas [46]. The only relevant associated
energy scale in that regime is the Fermi energy

EF =
ℏ2k2

F
2m

(3.47)

on which all thermodynamical quantities depend. For instance, the chemical potential µ∞ at
unitarity is directly proportional to EF with

µ∞ = ξqEF (3.48)

where q = 1 for a homogeneous gas and 1
2 for an harmonically trapped one8. The ratio between

the chemical potential and the Fermi energy at unitarity ξ = 0.370 [134] is called the Bertsch
parameter and is a universal function of the reduced temperature T /TF, with kBTF = EF.

In this regime, the size of the pairs is again of the order of the k−1
F , and they condense to a

superfluid state below a critical temperature

Tc = αTF (3.49)

where α = 0.157(15) for a homogeneous system [110]. According to figure 3.8, this superfluid

8The need to disambiguate between homogeneous and non-homogeneous gases – such as gases trapped in a harmonic
potential – comes from the dependence on the position of all the relevant physical quantities for non-homogeneous gases.
In practice, we work under the local density approximation and assume that these gases are still locally homogeneous in
order to then average the relevant quantities over the trap volume. In this approximation, we usually write the position
dependent chemical µ(r) = µ0 −V (r), with µ0 the chemical potential taken at an arbitrary point and V (r) the trapping
potential.
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state persists for all interaction parameters below the critical temperature. Since the superfluid
character of strongly interacting Fermi gases below Tc has been experimentally observed in
various configurations all over the BEC–BCS crossover [146], we will in this thesis simply rely
on temperature measurements as proofs of superfluidity. To access the gas temperature, we
measure its equation of state through measurements of in-situ density profiles, as reported in
section 2.2.

3.2.3 The two-body contact

Here we define the concept of two-body contact I , also sometimes referred to as Tan’s contact.
The concept originates from the seminal work done by Tan, who introduced the contact as a link
between two- and many-body physics with a series of universal relations [147–149]. Its name
stems from its definition as the universal short-range limit of the two-body correlation function;
it effectively gives a measure of the likelihood of finding two particles "in contact".

We start by giving a definition of the contact which involves the two-body correlation function
and therefore the results of section 3.1.2. In a second part, we then show how this previous
microscopic definition can actually be linked to macroscopic thermodynamical quantities such as
the internal energy of the gas. Finally, we will give a brief overview of the various experimental
evidences, proving the universal relations.

Definition from two-body correlations

Following the approach presented in reference [150], we start with the generic form of the
two-body density matrix found e.g. in chapter 2 of [151] for a generic many-fermions system at
equilibrium

ρ(r1,α ,r2,β ,r3,α ,r4,β) =
〈
ψ†α(r1)ψ†β(r2)ψβ(r4)ψα(r3)

〉
(3.50)

where ψ†σ (r) is the fermionic field operator in a second quantization form, creating a particle of
spin σ at position r. It can be equivalently expressed in terms of the many-body wave function
Ψ (r1, . . . ,rN ) with

ρ(r1,α ,r2,β ,r3,α ,r4,β) =
N2

4

∫
dr5, . . . ,drNΨ

†(r1, . . . ,rN )Ψ (r1, . . . ,rN ). (3.51)

In the following, we set r2 = r4 = 0 to recover the general structure of the two-body correlation
function and our goal is to find a convenient form of the previous integral in the limit r1,r3≪ k−1

F ,
effectively singling out a pair of atoms a short distance and integrating over the rest of the many-
body coordinates. For more convenient notations, we replace the spin indices α,β by the
hyperfine state labelling 1,2 and define r = r3 and r′ = r1. Using the hermiticity of the density
matrix, we decompose it on the basis of two-body wavefunctions [152]

〈
ψ†2(r′)ψ†1(0)ψ1(0)ψ2(r)

〉
=

∑

i

niφ
i†
12(r′)φi12(r). (3.52)

The main assumption of the contact theory is then to state that in the limit r→ 0 the relative parts
of the two-body wavefunctions φi12(r) are solely determined by short-range two-body physics
and, under the influence of the pseudopotential, can be put under the form of equation (3.30)
for k→ 0. We then have

φi12(r) = Biψ(|r|) (3.53)
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with ψ given by equation (3.30). We can therefore reformulate equation (3.52) in the limit
r,r′ ≪ k−1

F such that

〈
ψ†2(r′)ψ†1(0)ψ1(0)ψ2(r)

〉
=

∑

i

Ai

(
1
kFa

,
T
TF

)[ 1
|r′ | −

1
a

][ 1
|r| −

1
a

]
(3.54)

where the coefficients Ai contain the many-body contributions coming from the ni eigenvalues
and center-of-mass factors Bi of the φi12 functions. We explicitly let them depend on the
interaction parameter and reduced temperature to highlight their many-body origin. By defining
the average contact C with

C = 16π2
∑

i

Ai > 0 (3.55)

we obtain the sought-after form of equation (3.50)

〈
ψ†2(r′)ψ†1(0)ψ1(0)ψ2(r)

〉
=

1
16π2 C

[ 1
|r′ | −

1
a

][ 1
|r| −

1
a

]
, (3.56)

which, with equation (3.51) in mind, confirms the role played by the contact; it is the propor-
tionality factor which appears from the integration of Ψ †Ψ after having let

Ψ (r1, . . . ,rN ) −→
r ′=|r1−r2 |≪k−1

F

ψ(r ′)Ψ̄ (R,r3, . . . ,rN ) (3.57)

and integrating over all the remaining many-body coordinates. This leaves the short-range part
of the two-body wavefunction ψ(r ′) as the sole quantity controlling the behavior of ρ, which a
priori was a purely many-body quantity.

To be consistent with the literature, we also introduce the integrated contact – or simply
contact – I and C(R) the contact density as

I =
∫
dRC(R) = ΩC, (3.58)

with Ω the total volume. The contact is an extensive quantity with a dimension corresponding
to the inverse of a distance. We have shown its role as the parameter controlling the short-
range behavior of the many-body physics, but it is also involved in other meaningful physical
quantities. For instance, it gives the number of pairs9 in a given volume of the gas: the left-
hand side of equation 3.56 is nothing less, for r = r′, than the local density-density correlator〈
n1(R + r

2 )n2(R− r
2 )

〉
with ni the local density of spin i. In the limit |r| ≪ a, its integration over a

sphere of radius s then yields the pair density

np(R, s) =
s

4π
C(R). (3.59)

Link to thermodynamics

In this paragraph, we want to show that the contact is involved in the thermodynamical proper-
ties of the system via a series of universal relations proved by Tan [148, 149]. These relations
confirm that the contact is not only defined in some peculiar limits of density or momentum

9Here, the term "pairs" relates to two atoms of opposite spins located at a relative distance r ≪ k−1
F and does not refer

to Cooper pairs, which relative size can very well overcome the mean interparticle distance.
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distributions but rather consists in a true thermodynamical quantity, conjugate to the inverse
scattering length a−1. This is expressed by the adiabatic sweep theorem which states

∂E
∂(1/a)

= − ℏ2I
4πm

(3.60)

with E the energy of the system. The theorem holds true as long as the interparticle distance
remains larger than the range of the interaction potential and does so for any state at equilibrium,
hence its universal label. Its derivation involves the Hellmann-Feynman theorem which links
the variation of energy with the Hamiltonian of the system

∂E
∂a

=
〈
∂Ĥ
∂a

〉
, (3.61)

where the right-hand side can be evaluated in several ways [150, 152, 153] which all involve the
calculation of terms of the form

∫
dr1, . . . ,drNV (|r′ − r|)Ψ †Ψ , making a direct connection with

the previous paragraph.

Experimental measurements

We now turn to actual experimental verifications of the contact theory and present here some of
the measurements performed in the past years which verified the universal relations presented
above.

Figure 3.9: Variation of the contact of unitary Fermi gases with the temperature. The figure is
reproduced from [154] and the datasets correspond to references therein.

The universality of the contact was experimentally demonstrated by the Jin group with a
degenerate gas of 40K [155]. They did so by comparing three different types of measurements
as a function of the interaction parameter (kFa)−1 close to a Feshbach resonance. Two of the
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methods relied on measuring the tail of the momentum distributions which depends on the
contact via [147]

nσ (k)→ I
k4 , (3.62)

while the third one was performed by means of radiofrequency spectroscopy, where the transfer
rate of atoms between hyperfine spin states is directly linked to the contact [156]. In addition,
and in the same article, they demonstrated the adiabatic sweep theorem given by equation (3.60).
Radiofrequency spectroscopy was more recently employed by the Sagi group to measure the
contact in strongly interacting Fermi gases, this time delving deeper on the BEC side of a
Feshbach resonance [157]. Similar results obtained with a completely different technique relying
on the measurement of the dynamic structure factor of an interacting gas of 6Li by the Vale
group [158] have shown the same scaling of the contact against interaction parameter, with the
universality of the contact appearing in the high-energy tail of the structure factor [159, 160].

In figure 3.9 we show measurements of the variations of the contact for unitary Fermi gases
with temperature, as presented by the Zwierlein group with their own work performed with
radiofrequency spectroscopy [154]. It should be noted that the same year, the Vale group
published a similar figure in which their data show an almost identical trend [161], again
highlighting the variety of physical quantities depending on the contact. In chapter 5 we present
yet another object which explicitly depends on the contact: the static density response of our
strongly interacting gas.

As an outlook for the upcoming chapter, we briefly mention the indirect work performed by
the Hulet group to measure the contact. Using bound-to-bound spectroscopy they measured
the closed channel population of a gas of 6Li when crossing over a Feshbach resonance [162],
and in a later analysis of their data Werner, Tarruell and Castin could extract the contact from
that measured population [163]. Our experiment operates in a very similar regime, with one
major difference. The Hulet group measured the population of the closed channel by driving
a transition from a bound state of the interaction potential to an excited molecular state. Our
work on photoassocaition spectroscopy on the other hand addressed a free-to-bound transition,
between scattering pairs of atoms and excited molecular state. Similarly, this allowed us to
measure the contact.
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In this chapter, we present our study of fermionic pairs of atoms coupled to light in a high-finesse
cavity. The chapter closely follows the results reported in [164].

The starting point for the project was the observation of a set of matter-like excitations
strongly coupled to the cavity field as introduced in section 2.1.2 and which correspond to
none of the well-known 6Li transitions. Instead, these extra lines correspond to photoassica-
tion transitions, for which a pair of atoms collectively absorbs a photon to form an excited
molecule [165, 166]. Two-body transitions to excited molecular states were studied in details in
cold atomic gases, employed as a purely spectroscopic tool to accurately determine the shape

61
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of molecular potentials and wavefunctions [167, 168], or as we discussed in the last part of the
previous chapter to measure the closed channel fraction of Feshbach molecules of 6Li in the
BEC-BCS crossover [162], which has been linked to the contact [163]. Photoassociation also
offers interesting perspectives for the field of ultracold chemistry, allowing for the direct creation
of ground state molecules by robust control of the decay channels of excited photoassociated
pairs [169, 170]. While coherent Rabi oscillations on ultra-narrow photoassociation transitions
have been observed in weakly interacting gases of two-electron atoms [171, 172], our experiment
brings photoassociation in the strong coupling regime, where the interaction between photons
and pairs overcomes all dissipative processes. In this regime, the universal properties of the
short-distance pair correlations of the quantum gas get imprinted onto the optical spectrum.

The chapter is organized as follows. In a first part, we explain the mechanisms behind
photoassociation, from its origin with dipole-dipole interactions to its use as a spectroscopic
tool by introducing some molecular spectroscopy concepts. We then present the performed
experiments with a strongly interacting Fermi gas in as high-finesse cavity and interpret our
measurements in terms of the two-body contact, which proves the influence of many-body
physics in the measured optical spectra. Finally, we show how the coupling to photoassociation
transitions, combined with the weakly destructive nature of cavity transmission spectroscopy
as presented in chapter 2, might be harnessed to perform dynamical measurements of pair
correlations.

4.1 From two interacting dipoles to a photoassociated pair

In this section, we aim at conveying an intuitive picture for two-body photoassociation, taking
the example of two colliding 6Li atoms. Starting from the dipole term of the multipole expansion
of the interaction potential for two colliding atoms presented in section 3.1.1, we derive the
characteristic −C3/r

3 long-range shape of the interaction potential for a pair of atoms sharing one
excitation. We then introduce some molecular spectroscopy concepts such as the Franck-Condon
principle, which determines the probability for a pair of atoms to undergo a photoassociation
transition and which will be a central point to the physical interpretations made later in this
chapter. Finally, we turn to the case of 6Li and detail the interaction potentials addressed by our
experiment.

4.1.1 Interacting dipoles

We consider a pair of 6Li atoms in the situation depicted by figure 4.1. We recall the dipole
interaction introduced in chapter 3 under the Born-Oppenheimer approximation and in the
limit where the distance r between the two dipoles is much larger than their respective size:
r ≫ ra,b

V̂d =
1

4πϵ0

d̂a · d̂b − 3(ez · d̂a)(ez · d̂b)
r3 (4.1)

with the same notations. The difference with the previous chapter now consists in the state
basis the V̂d operator acts on, where one of the two atoms is electronically excited to a 2p state
i.e. with orbital angular momentum |lα | = lα = 1, the subscript α denoting either atom a or b.
Taking the atom b to be initially excited, we note |laλa⟩⊗ |lbλb⟩ = |laλa, lbλb⟩ = |00,1λb⟩ the initial
wavefunction. Here λα is the projection of lα on the molecular axis. In this configuration one can
show at the first order of the perturbation, e.g. following the complement CXI of reference [173],
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r
2s

2p

Figure 4.1: Representation of a 6Li atom in its electronic ground state 1s22s1 (here 2s) interacting
with another which valence electron is excited to a 2p orbital, similarly to what is realized in our
experiments. They are separated by a distance r.

that
⟨1λa,00| V̂d |00,1λb⟩ ∝ 1

r3 (4.2)

are the only non-zero matrix elements of V̂d for λa = λb. The invariance by rotation around ez of
the dipole-dipole interaction potential ensures that the projection of the total orbital angular
momentum on the molecular axis Λ = λa +λb is conserved1 or equivalently that [V̂d ,Λ̂] = 0. This
last observation leads to the expression of V̂d with a block diagonal structure composed by three
2× 2 matrices, one for each possible value of Λ

V̂d,Λ = C3kΛ

(
0 1

r3
1
r3 0

)
(4.3)

with kΛ = 1 for |Λ| = 1 or −2 for Λ = 0. The C3 coefficient is directly proportional to the 2p state
radiative linewidth Γ ,2 and emerges from the evaluation of single atom matrix elements of the
form ⟨10|ez · d̂ |00⟩ in equation (4.2).

The diagonalization of the V̂d,Λ matrices yields a set of eigenenergies with typical C3/r
3

scaling, the sign of which determines if the resulting potential is attractive or repulsive. For
the process of photoassociation, we are only interested in the attractive ones and will therefore
disregard repulsive molecular potentials for what follows.3

The previous calculation only considered a simple version of the interaction Hamiltonian –
limited to the electrostatic interactions – to derive the typical shape of the molecular interaction
potential. In practice, to obtain the exact shape of the interaction potential, one would need
to account for all the possible degrees of freedom of the complex molecular system in the
Hamiltonian Ĥm. For example, following reference [174], this results in the addition of extra
terms

Ĥm = ĤSL + ĤR + ĤC + ĤSR + ĤCR + ĤSS + . . . (4.4)

which here describe spin-orbit coupling, rotational energy, centrifugal distortion, spin-rotation

1This assertion only holds true in the absence of other interaction terms of the molecular Hamiltonian, for instance
taking spin-orbit coupling into account leads to a ill-defined value of Λ. This relates to the choice of the proper Hund’s
case to describe the interaction, which will not be discussed here but which is extensively discussed in textbooks [174].

2This direct connection of the strength of the molecular interaction potential with the atomic radiative linewidth has
been used, e.g. for 6Li in [175], to accurately measure linewidths from measurements of the molecular spectra.

3One should note, however, that repulsive potentials can be of interest for some applications. For example, they are
used in the scope of optical shielding to control the spontaneous decay of molecules [176].



64 CHAPTER 4. Fermionic pair-polaritons, magnifiers for two-body correlations

coupling, orbit-rotation coupling and spin-spin coupling respectively. In reality however, one
can take advantage of fact that the energy scales associated with each of these terms remain
small with respect to the electrostatic potential at short distances to neglect them to derive
the general shape of the potential. One must nevertheless keep in mind that they can lead to
coupling and mixing between different potentials, and thus to drastic changes in the computed
distribution of bound states within a given potential.

We can take the example of the next leading order term, the spin-orbit coupling interaction,
which takes the form ĤSL ∝ L · S with S = sa + sb the total spin vector and L = la + lb. For
6Li, this term leads to an energy contribution of the order of 10GHz, which can be neglected
compared with the ∼ 100THz electrostatic interaction at short ranges. However, in the long
range limit, where the dipole-dipole interaction becomes increasingly small, the spin-orbit
coupling interaction dominates and leads to the fine splitting of the asymptotic branch of the
interaction potential. This behavior is well reproduced by the Movre-Pichler model [166] which
explicitly includes molecular spin-orbit coupling on top of the dipole-dipole interaction.

4.1.2 Molecular spectroscopy

In cold atoms experiments, photoassociation involves the transition of a pair of atoms to a
bound state of an excited molecular potential. Experimentally, this is done shining a laser
beam frequency detuned from the dissociation limit of the molecular potentials. When the
process is resonant with a bound molecular state molecular formation may occur, and is typically
accompanied by consequent observed trap losses: either the molecule decays to a bound state
of its ground state potential or the pair dissociates with enough kinetic energy for the two free
atoms to leave the trap. In this section, we present key concepts for the understanding of the
photoassociation in the scope of molecular spectroscopy. In appendix D we give the definitions
of the molecular term symbols used to label adiabatic in the rest of the chapter.

Franck-Condon principle

The transition dipole moments ruling photoassociation transitions are directly proportional to
a quantity called the Franck-Condon factor |〈e|g〉 |2 [166] which quantifies the overlap of the
molecular ground and excited state radial wavefunctions, |g〉 and |e⟩ respectively. This principle
is illustrated by figure 4.2 where we clearly see that the role played by the oscillatory nature of
bound and excited state wavefunctions in the determination of transition probabilities.4

At short distances, rapidly oscillating bound state wavefunctions lead to a vanishingly small
transition matrix element and therefore the Franck-Condon factor is mainly determined by the
contribution near the last lobe of excited wavefunctions, where they can be very accurately
modeled by Airy functions [166]. For long range bound states lying close to the dissociation
limit, the typical radius where the last lobe of the wavefunctions is located is similar to the
classical outer turning point of the potential, and therefore the Condon radius – at which the
photoassociation laser photons are resonant with the |g〉→ |e⟩ transition – is also close to the
classical outer turning point.

These considerations make photoassociation a prime candidate to investigate pair correlations
in the ground state: due to the small relative values of RC compared with typical interparticle
distances in cold gases, systems exhibiting strong short-range correlations feature a higher
coupling to photoassociation transitions as seen in studies of pair correlations [162, 178–181].

4In addition, a more precise evaluation of the Franck-Condon factor with the so-called reflection approximation [177]
shows a systematic decreasing trend with decreasing values of RC, as a consequence of the shape of the potentials. This
decrease is responsible for the observed weakening of photoassociation signals in spectroscopic studies with increasing
binding energies.
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Figure 4.2: Illustration of the Franck-Condon principle. The probability of driving a transition
between a ground scattering state (not shown here) and a bound excited molecular state (olive
horizontal line) is proportional to the integral overlap of the corresponding wavefunctions. Here,
since the excited state wavefunction goes to zero away from the potential and oscillates quickly
at short distances, the only relevant point to consider is the so-called Condon point RC (black
dashed line) where it features a prominent lobe. Two possible scattering wavefunctions in the
ground state are represented, one maximizes the transition probability due to having a maximum
close to RC (olive dashed line) while the other results in a vanishing transition matrix element
due to the presence of a node close to RC (olive dotted line). The solid blue line depicts a 1/r3

potential around RC.

However, without strong light-matter coupling, performing these measurements has been limited
to the investigation of incoherent processes.

Bound states spectroscopy close to the dissociation limit

Close to the dissociation limit where the interaction potentials can be approximated with
D −Cn/rn with D the dissociation limit and n the order of the long range scaling of the potential,
LeRoy and Bernstein have famously demonstrated [182] that the energy E(ν) of a bound state
with integer label ν taken from the dissociation limit can be expressed

E(ν) =D −

(νD − ν)

ℏ
2

(
2π
µ

)1/2
Γ (1 + 1/n)
Γ (1/2 + 1/n)

n− 2

C1/n
n




2n/(n−2)

(4.5)

with µ the reduced mass of the molecule and νD a non-integer index representing the position of
a bound state which would be located exactly at the dissociation limit. With the spectroscopic
measurement of a set of binding energies, this formula can be used to infer the corresponding
Cn coefficients with a few percent uncertainty.5 A more precise version [183] takes into account
higher order dispersion terms of the long range potential and was in particular applied for the
case of 6Li to infer C3 coefficients [167].

5Under the condition that all the measured binding energies effectively belong to the same potential, a statement
which is not so obvious to make for experiments operating close to the dissociation limits of several potentials.
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4.1.3 The case of 6Li2
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Figure 4.3: Ground and excited molecular potentials for 6Li2 obtained from theory calcula-
tions [184]. The blue curves represent triplet potentials with |S| = 1 and the orange one the
ground state single potential with |S| = 0. The excited potential dissociates in the 2s+ 2p limit
(red dashed line) where its fine splitting, of the order of 10GHz, is not resolved at this scale
and thus not displayed. It features the expected −C3/r

3 behavior at long range with a classical
turning point lying around 200a0, while the ground state potentials show a characteristic −C6/r

6

scaling. Molecular term notations are explained in appendix D.

Photoassociation spectroscopy has been used for over two decades for the specific case of
6Li and therefore the spectroscopic properties of the ground and excited molecular potentials
are well studied. We present in figure 4.3 the potentials used in the scope of this manuscript;
the two ground potentials represent the two scattering channels introduced in the scope of our
discussion on Feshbach resonances while the excited c3Σ+

g potential is the one addressed with
our experiments. It was almost entirely characterized, using photoassociation to measure its
most weakly bound ν = 56 − 84 [167] and more tightly bound ν = 20 − 26 [185] vibrational
levels,6 while the most deeply bound levels ν = 1− 7 were measured using Fourier transform
infrared spectroscopy [186].

In addition to pure spectroscopic concerns, photoassociation was also employed with 6Li
in the vicinity of the broad s-wave Feshbach resonance. There, as seen in chapter 3, the ν = 38
bound state of the singlet ground state potential X1Σ+

g is brought into resonance with the zero
energy scattering state of the ground triplet potential a3Σ+

u . This coupling between the open
channel triplet scattering state and closed channel bound singlet molecular state realizes what is
commonly referred to as a Feshbach molecule and previous works have used photoassocitation to

6Here, in order to be consistent with the literature, the labelling convention for vibrational levels is taken to be the
opposite of what was defined for the LeRoy Bernstein formula (4.5); the lowest integer number now corresponds to the
most deeply bound state.
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probe the closed channel fraction of these Feshbach molecules by engineering couplings between
pairs populating the ν = 38 bound state of X1Σ+

g and other accessible states using excited
molecular potentials, with interaction strengths spanning the whole BEC–BCS crossover [162,
179].

4.2 Observation of strong light-matter coupling on photoasso-
ciation transitions

In the previous section we have laid down the principles needed to understand the origin and
some applications of photoassociation. In this section, we will put this knowledge to use by
showing how we achieved the strong coupling of photoassociated pairs of atoms to light via our
high-finesse optical cavity.

4.2.1 Experimenta scheme
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Figure 4.4: Experimental scheme to probe photoassociation transitions with a high-finesse
cavity. a During the experiment, we send a weak probe laser beam at a frequency ωp through
a high-finesse cavity and acquire the photons leaking out of the cavity on the single photon
counter. b The cavity resonance frequency ωc is detuned by an amount ∆a from the 2s + 2p
dissociation limit (red dashed line) of the addressed excited molecular potential (dark blue line)
which, as an example here, supports three bound states (the three solid horizontal lines with
binding energies ω1,2,3). During one realization of the experiment, we dynamically sweep the
detuning ∆c between the probe laser and the cavity.

The measurements described throughout this section and the next are performed similarly as
those presented in section 2.1.2. Instead of focusing on the bare atomic resonances, we now
detune our cavity resonance frequency to the location of photoassociation transitions with the
goal of observing signatures of strong coupling to these transitions by looking at the energy
spectrum of the coupled system using cavity transmission spectroscopy.
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The experiments are schematically described by figure 4.4a. We prepare superfluid gases
comprising around 4 · 105 atoms equally populating the two lowest hyperfine spin states –
denoted |1⟩ and |2⟩ –, with a temperature T = 0.08TF in the crossed optical dipole trap presented
in section 1.2.3. Before probing the system we can tune the value of the magnetic field offset B
from 832G – where evaporative cooling is performed – to another point around the Feshbach
resonance to change the interaction strength. The magnetic field ramp is performed in 50ms
and is accompanied by an increase of the crossed trap depth to reach trapping frequencies of
2π × 188(9), 579(28) and 608(30)Hz in the x,y,z directions respectively. This compression ramp
halts the evaporation process and maximizes the geometrical overlap between the atomic cloud
and the TEM00 mode of the cavity – to which the probe beam is mode-matched – to ensure
maximal light-matter coupling. The transmission spectroscopy technique used to probe the
system is then completely analogous to what was presented in section 2.1.2.

We present the general detuning scheme in figure 4.4b. The zero of energy from which
we quantify our cavity detuning ∆a corresponds to the

∣∣∣2s1/2, mJ = −1/2
〉
→

∣∣∣2p3/2, mJ = −1/2
〉

single atom transition, at a magnetic field of 832G. The zero of energy for the detuning of
the probe beam with respect to the cavity resonance frequency ∆c is taken to be the energy
of the fundamental TEM00 mode of the cavity. We display the example of three bound states
of an excited molecular potential dissociating in the 2s + 2p limit denoted by their binding
energy ω1,2,3, which can be resonantly probed by setting ∆a = ω1,2,3, as we will see in the next
paragraph.

4.2.2 Mapping out photoassociation transitions close to dissociation limits

Energy spectrum

We performed the experiment for ∆a ∈ 2π × [−16.5,+4]GHz by steps of 2π × 10MHz, and
sweeping the value of ∆c either from −2π × 50MHz to 0 or from 0 to 2π × 50MHz. Due to the
large amount of measurements needed, the full dataset acquisition took several days over which
the experimental conditions usually slightly vary, ultimately leading to the "patchwork" features
of the full energy spectrum presented by figure 4.5a.

We observe three major avoided crossings corresponding to the bare atomic transitions
to the D1 and D2 lines. We attribute them respectively, ordered by increasing resonance fre-
quency, to the

∣∣∣2s1/2, mJ = −1/2
〉
→

∣∣∣2p1/2, mJ = 1/2
〉
,
∣∣∣2s1/2, mJ = −1/2

〉
→

∣∣∣2p3/2, mJ = −3/2
〉

and∣∣∣2s1/2, mJ = −1/2
〉
→

∣∣∣2p3/2, mJ = 1/2
〉

transitions, or respectivelyD1 σ+, D2 σ− andD2 σ+ in short.
The D2 σ− avoided crossing was the one studied in more detail in section 2.1.2. These transitions
are the most prominent because of the choice of the linear probe polarization which is almost
horizontal, only making a small angle with the y axis of figure 4.4a. With the vertical direction
of the quantization axis z imposed by the magnetic field, the probe beam thus mainly drives
∆mJ ± 1 or σ± transitions. Since the probe polarization also features a small non-zero component
along z, ∆mJ = 0 or π transitions are also addressed and result in the weaker lines with avoided
crossings observed around ∆a = −2π × 9GHz and ∆a = 0GHz. The weaker branches around
∆c = −2π × 25MHz come from the presence of higher-order transverse cavity modes to which
the probe beam weakly couples.

The remaining features of the spectrum which take the form of a multitude of smaller avoided
crossings located on the main atomic branches correspond to photoassociation transitions to
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Figure 4.5: Strong coupling on photoassocation transitions near the dissociation limits. a Broad
energy spectrum map of the system acquired via cavity transmission spectroscopy. The three
prominent avoided crossings correspond to strong coupling of single atoms to light while the
many smaller ones correspond to coupling to photoassociation transitions. The spectrum is
displayed in log scale. b Zoom on a region of the upper panel, taken with a different polarization
of the probe beam. On this part of the atomic branch we observe three strongly coupled
photoassociation transitions to bound vibrational levels with binding energies ω1,2,3, highlighted
by the oblique solid lines. c Vibrational levels of a same potential and their binding energies
resulting from a fit of equation (4.5) to ω1,2,3. We also depicted the energy of another bound
state considered in this study, ω4, which belong to another potential.

excited molecular states.7 The observation of clear avoided crossings is the signature of the
strong coupling of pairs of atoms to light, with the coherent excitation exchange rate dominating
both the natural cavity decay rate and the decay rate of the excited molecular states.

7The attribution each of these transitions to a given bound state of a well-defined interaction potential represents a
challenge which would surely deserve a detailed study on its own. The complexity is hinted at in the last paragraph of
section 4.1.1. In the dissociation limit, the electrostatic interaction energy becomes comparable with many other possible
energy scales of the molecular problem and one has to take into account the corresponding coupling elements. The
inclusion of the high magnetic field and its coupling to every degree of freedom of a molecule adds another layer of
complexity to the task.
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Selection of specific transitions

To study this coupling in detail, we decided for the rest of the chapter to focus on four specific
transitions. We label each of such transition according to the frequency detuning8 at which
we observed the corresponding resonance on the above spectrum: ω1,2,3,4. These transitions
were probed using a purely vertically polarized probe beam, therefore only coupling to π
transitions to obtain cleaner spectra. The first three resonances are depicted in the spectrum
shown in figure 4.4b, which is taken for detunings depicted by the black box of panel a, but
with a different probe polarization. On this branch, we observe three clear avoided crossings at
respective detunings ω1,2,3 = −2π × 2.03,3.21,4.99GHz. The fourth transition is not depicted
here but corresponds to ω4 = −2π × 25.99GHz.

This last ω4 transition was picked because we could attribute it to a specific documented
bound state of the c(13Σ+

g ) potential described in the previous section. We probed the resonance
in a spectroscopic effort to reproduce the results from [167]9 and found that we were able to
resolve the ν = 65− 84 documented vibrational levels of the c(13Σ+

g ) potential with our setup.
The ω4 transition thus corresponds to the ν = 81 bound state of the molecular potential and was
chosen in particular because there was no other photoassociation transition in its vicinity.

For ω1,2,3 the story is slightly different and we could not attribute them to known bound
states. However, by fitting the measured binding energies to equation (4.5) we observe that
they would correspond to consecutive ν = 12 − 14 bound states of the same potential – with
the convention used for the LeRoy Bernstein equation. The bound state distribution of that
potential inferred from the fit is displayed in figure 4.4c, where we see that the dissociation limit
of the potential is exactly at the location of the D2 π transition. We also verify that ω4 belongs to
another potential as the fit predicts no bound state for this binding energy. The inclusion of ω4
in the initial fit never lead to a meaningful result for all the other transitions.

4.3 Many-body physics from vacuum Rabi splitting

Having shown that we observe strong light-matter coupling on multiple photoassociation tran-
sitions, we now present how the measurement of the strength of this coupling relates to the
contact defined in chapter 3. This measurement demonstrates for the first time a direct con-
nection between a typical observable of quantum optics experiments, the Rabi frequency, and
the universal thermodynamics ruling the many-body ground state of strongly interacting Fermi
gases.

We start with a formal introduction of pairs of atoms coupled to light, by giving an explicit
expression for the light-matter interaction. We show how the corresponding Hamiltonian for the
system can be mapped to a generalization of the Tavis-Cummings model, describing an ensemble
of two-level systems coupled to light. As shown in chapter 2 this model predicts a prominent
Rabi splitting of the eigenenergies of the light-matter coupled system in the strong coupling
regime, which translates into large avoided crossings in the optical spectra. We employ the
model to measure Rabi frequencies for the ω1,2,3,4 lines by directly fitting the observed avoided
crossings. We repeat the measurement by tuning the interaction strength between the ground
state atoms using the Feshbach resonance introduced in chapter 3. We observe clear variations

8As a reminder, the detunings are taken from the D2 π transition at 832G. From what precedes, this does not
necessarily mean that the corresponding bound states all belong to potentials dissociating in the

∣∣∣2s1/2, mJ = −1/2
〉
→∣∣∣2p3/2, mJ = −1/2

〉
limit.

9In that reference, the zero detuning frequency corresponds to the transition frequency between the hyperfine
barycenter of the 2s ground state and the 2p1/2 manifold with unresolved hyperfine structure, at zero magnetic field.
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of the Rabi frequencies as the interaction parameter is varied with magnetic field, with a similar
trend for all the transitions.

To explain these variations, we formally show that the strength of the light-matter coupling
between the pairs and the cavity field is expected to connect to the many-body physics of the gas
by an explicit dependency on the contact. We experimentally prove this fact by comparing our
data to theoretical predictions for the scaling of the contact with interaction strength. For all
transitions, the data fit the model remarkably well, proving the deep connection between the
measured optical spectra and the many-body universal physics ruling the ground-state of the
gas. In addition, we introduce an experimental probing scheme to continuously measure the
value of the contact, on a single run of the experiment.

4.3.1 Rabi frequency of pairs coupled to light

Expression for the Rabi frequency

We consider the Hamiltonian for the system

Ĥ = Ĥ0 + Ĥe + Ĥm + Ĥcav + Ĥint (4.6)

where Ĥ0 encompasses the kinetic energy and external trap terms for both the ground state
atoms and excited molecules. Since the time scales associated with the mechanical motion of the
components of the system contained in the previous terms are small against the ones associated
with optical processes, we disregard this part of the total Hamiltonian in what follows. Ĥe and
Ĥm respectively describe the atomic and molecular excited states. Ĥcav represents the energy of
a single mode cavity light field and Ĥint contains the details of the interactions between ground
state atoms, excited molecules and photons.

We assume to be working in the dispersive regime for the atoms, as introduced in section 2.1.3,
so that the atoms-cavity interaction term simply leads to a dispersive shift of the bare cavity
resonance. In the framework of second quantization and in a frame rotating at the frequency
of a photoassocation transition associated with a bound state with binding energy ωi , the two
remaining terms of Ĥ can then be expressed as

Ĥlight = −∆ωi â†â (4.7)

Ĥint =
iΩ0

2

(∫
dRdrg(R)f (r)ψ̂†i (R)ψ̂1(R− r

2
)ψ̂2(R +

r
2

)â−h.c.
)

(4.8)

where â† and â respectively create and annihilate a photon in the cavity mode. Ĥint describes the
interaction of colliding pairs of atoms with center of mass at position R and spaced by r. We
note ψ̂1,2 the fermionic field operators associated with atoms respectively in state |1⟩ and |2⟩ and
similarly ψ̂i the bosonic field operator for the excited molecule. Through the absorption of a
photon from the cavity field, the atoms form an excited molecule in the considered molecular
state. This process is captured by the term ψ̂†i (R)ψ̂1(R− r

2 )ψ̂2(R + r
2 )â which is integrated over

the relative coordinate r to account for the radial structure of the molecular state wavefunction
f (r). The second integration is performed over the center of mass coordinate to account for the
mode structure g(R) of the cavity field. Last, Ω0 corresponds to the Rabi frequency for a single
pair and a single photon.

From there, Ĥ can be expressed with as a standard single mode light-matter coupling



72 CHAPTER 4. Fermionic pair-polaritons, magnifiers for two-body correlations

Hamiltonian in the rotating wave approximation

Ĥ = −∆ωi â†â+
iΩ0

2

(
F̂†â− F̂â†

)
(4.9)

where F̂† =
∫
dRdrg(R)f (r)ψ̂†i (R)ψ̂1(R− r

2 )ψ̂2(R + r
2 ) encompasses the details of the pairs-light

interaction and can be seen as a collective spin 1/2 operator, as introduced when discussed the
generalized Tavis-Cummings model in section 2.1.2. This form of the Hamiltonian therefore
predicts a vacuum Rabi splitting of the eigenenergies of the pairs-light coupled system, in
complete analogy to what we have already discussed for the case of atoms coupled to light. To
make the connection with the Rabi frequency explicit, we employ a mapping of F̂ to a bosonic
pair annihilation operator b̂ via the Holsetein-Primakoff transformation [99]. It yields

b̂ =
F̂√〈[
F̂, F̂†

]〉 (4.10)

which is an operator describing collective optical excitations shared among pairs of atoms
coupled to light. With this definition, the Hamiltonian can then be rewritten with

Ĥ = −∆ωi â†â+
iΩ
2

(
b̂†â− b̂â†

)
(4.11)

and Ω = Ω0

√〈[
F̂, F̂†

]〉
is now the Rabi frequency of the system which quantifies the excitation

exchange rate between pairs and the cavity field. We call pair-polariton the atomic pair thus
dressed by the cavity field, similarly as for single atoms coupled to light.

The prominent Rabi splitings expected in the strong coupling regime for such a model were
presented in figure 4.5 for ω1,2,3. In addition, we show in figure 4.6a a close-up view of optical
spectra acquired in the vicinity of the ω4 line. We observe a prominent avoided crossing, which
with the model above, confirms that we achieve the strong coupling regime for pairs coupled to
light.

Measurement and magnetic field dependence

In order to extract Rabi frequencies Ω from the observed avoided crossings in the measured
spectra, we fit the latter with an expression for the cavity transmission T obtained from purely
classical considerations [55], incorporating the cavity and atomic decay rates κ and Γ

T =
A

[
1 + Ω2

2κΓm
La(∆ωi + ∆̃c)

]2
+
[

2(∆̃c−α∆ωi )
κ + Ω2

2κΓm
Ld(∆ωi + ∆̃c)

] (4.12)

with κ the natural linewidth of the cavity, ∆ωi = ∆a − ωi and ∆̃c = ∆c − δc the probe-cavity
detuning taken from the dispersively shifted cavity resonance δc defined in section 2.1.3. The
parameters A,α,Γm,δc,Ω and ωi are determined from the fit. A is an overall normalization
parameter, α accounts for a linear slope of the background branch on which we observe the
avoided crossing10, Γm is the linewidth of the excited molecular state, Ω the Rabi frequency

10The slope comes from the background atomic polariton, which "bends" in energy as a resonance is approached, e.g.
as seen in figure 4.4b.
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Figure 4.6: Variation of the coupling strength with magnetic field. a Energy spectrum of
the system measured around ω4 at unitarity on which is overlapped the result of the fit to
eqaution (4.12) (dashed orange line) to extract the coupling strength Ω. b-c Energy spectrum of
the same transition taken at different points of the BEC–BCS crossover. The origin of the ∆ω axis
takes into account the Zeeman shift induced by the change of the magnetic field. d Scaling of the
coupling strength Ω for magnetic fields which correspond to interaction parameters spanning
the strongly interaction regime of the BEC–BCS crossover, for the four considered transitions
with binding energies ω1,2,3,4 (respectively depicted by diamonds, squares, circles and crosses).

and ωi the location of the resonances defined above. The functions La(∆) and Ld(∆) respectively
correspond to the absorptive and dispersive Lorentzian lineshapes with

La(∆) =
Γ 2

m

Γ 2
m + 4∆2

Ld(∆) =
−2∆Γm

Γ 2
m + 4∆2

. (4.13)

We show an example of the fit of the ω4 resonance at unitarity in figure 4.6a and on the
BEC and BCS side of the resonance in panels b and c respectively. The fit results are dis-
played with a model which doesn’t take linewidths into account, for clarity. We measure
Ω = 2π × (12.7(1),18.9(1),32.7(3))MHz for values of the magnetic field B = (730,832,920)G
which respectively correspond to the BEC, unitarity and BCS regimes. While these measured
Rabi frequencies demonstrate that the strong coupling regime persists for values of the inter-
action strength spanning the strongly interacting regime of the BEC–BCS crossover, we also
observe a sizeable variation of Ω, of a factor larger than two, going from the BCS to the BEC side
of the resonance.

To further quantify this large variation of the Rabi frequency, we measure Ω for more
values of the magnetic field around the Feshbach resonance, which controls the ground state
interparticle interactions, and for all four ω1,2,3,4 transitions. We show the results in figure 4.6d,
where we observe a clear trend with the Rabi frequency for a given transition being the largest
on the BEC side and decreasing smoothly towards the BCS side. The quantitatively similar
trend for all the different transitions suggests that the variation of Rabi frequency does not
depend on the details of the molecular transitions – since we address bound molecular states
with different binding energies and electronic configurations – but rather on the nature of the
two-body scattering ground state which is contained in the

〈[
F̂, F̂†

]〉
term obtained above.
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4.3.2 Many-body physics from the optical spectrum
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Figure 4.7: Measurement of the contact from quantum optics observables. a Franck-Condon
principle applied to our strongly interacting Fermi gas, with three ground state two-body wave-
functions depicted for different values of the the interaction parameter (bottom solid lines) and
were computed in section 3.2.1. Their overlap with a typical excited wavefunction (top black
solid line) at the Condon point (vertical dashed line) thus exhibits a sizeable variation with inter-
action parameter. b Rescaled Rabi frequency (see text) for the four photoassocation transitions
as a function of interaction parameter compared to theoretical values of the contact obtained
from Gaussian Pair Fluctuation and Quantum Monte-Carlo [187]. The theory predictions have
already been experimentally confirmed [158]. c Scaling of the measured Rabi frequencies as a
function of the total contact (markers) per particule and their fit with a square root model (solid
line) to extract the single-pair single-photon Rabi frequency.

A simple picture of the influence of the ground state wavefunctions of strongly interacting
Fermi gases on photoassociation transitions can be obtained given the shape of the two-body
scattering wavefunctions derived in section 3.2.1 and is shown in figure 4.7a. We see that
the transition dipole moments – directly proportional to the Franck-Condon factor – show a
significant dependence on the interaction parameter because of the variation of the amplitude
of the ground state wavefunctions around the Condon point11 when interactions are varied. In
what follows, we present a more formal approach to the previous description, with an explicit
calculation of the Rabi frequency to highlight its dependence on the initial two-body ground
state wavefunction and on its short-range part; the contact.

11In our case, the Condon points are located at typical values of the order of 100a0 which are small against the mean
interparticle distance k−1

F ∼ n−1/3 ≈ 0.1− 1µm with n the density. This means the photoassication process effectively
probes the short range part of the two-body ground state wavefunctions.
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Rabi frequency as a function of the contact

We start by computing the commutator contained in the Rabi frequency of equation (4.11)

[
F̂, F̂†

]
=
∫
dRdrdR′dr′g(R)f (r)g∗(R′)f ∗(r′)

×
[
(δ(R−R′) + ψ̂†i (R)ψ̂i(R

′))ψ̂†2(R′ +
r′

2
)ψ̂†1(R′ − r′

2
)ψ̂1(R− r

2
)ψ̂2(R +

r
2

)

− ψ̂†i (R)ψ̂i(R
′)ψ̂1(R− r

2
)ψ̂2(R +

r
2

)ψ̂†2(R′ +
r′

2
)ψ̂†1(R′ − r′

2
)
]

(4.14)

where we have used the bosonic field commutation relation
[
ψ̂i(x), ψ̂†i (x′)

]
= δ(x− x′). Assuming

that we work in the low saturation regime for the photoassociation transition with ⟨ψ̂†i ψ̂i⟩ ∼ 0,
the expectation value of the above expression reads

〈[
F̂, F̂†

]〉
=

∫
dR|g(R)|2

∫
drdr′f (r)f ∗(r′)

〈
ψ̂†2(R +

r′

2
)ψ̂†1(R− r′

2
)ψ̂1(R− r

2
)ψ̂2(R +

r
2

)
〉

(4.15)

where the four-point correlator on the right-hand side corresponds to the one used in equa-
tion 3.50 to introduce the two-body contact, up to a shift of the translation-invariant coor-
dinate system. Following the reasoning presented in section 3.2.3 at short distance, with
a,k−1

F ≫ |r| ∼ RC, we write

〈
ψ̂†2(R +

r′

2
)ψ̂†1(R− r′

2
)ψ̂1(R− r

2
)ψ̂2(R +

r
2

)
〉

=
C(R, a)
16π2

( 1
|r′ | −

1
a

)( 1
|r| −

1
a

)
(4.16)

with a the scattering length and where we let the contact density C explicitly depend on spatial
coordinates, so that

〈[
F̂, F̂†

]〉
=

∫
dR|g(R)|2C(R, a)

∣∣∣∣∣
∫
drf (r)

( 1
|r | −

1
a

)∣∣∣∣∣
2

(4.17)

where the integral on relative radial coordinates can be approximated using a simple expression
for the excited wavefunction. Considering only the last lobe of this wavefunction as yielding a
sizeable contribution due to the Franck-Condon principle, we model the reduced radial wave
function u(r) = f (r)/r by a square function centered around the Condon point, with width L and
amplitude A.12 We then have

∫
drf (r)

( 1
|r | −

1
a

)
= A

∫ RC+L/2

RC−L/2
dr

(
1− r

a

)
= AL

(
1− RC

a

)
(4.18)

and finally

Ω2 = Ω0A
2L2

∣∣∣∣∣
(
1− RC

a

)∣∣∣∣∣
2 ∫

dR|g(R)|2C(R, a) (4.19)

To quantify the relative variations of Ω when we vary the interaction parameter 1/kFa, we

define Ω̃2 = Ω2/(NkF)
∣∣∣∣
(
1− RC

a

)∣∣∣∣
−2

which effectively accounts for the variations of prepared atom

12As we will see below, A and L can be further estimated using the shape of the Airy function solution of Schrödinger’s
equation for a linearized potential around the Condon point, with binding energy ωi .
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numbers across repetitions of the experiment, and for the variations of the density and RC
a with

1/kFa. Using Ω̃2∞ = Ω̃2(1/kFa = 0), we show the rescaled measurements of Ω̃2/Ω̃2∞ in figure 4.7b,
which correspond to the same data as presented in figure 4.6d. We observe a collapse of all the
relative scalings of the rescaled Rabi frequency for the different photoassociation transitions on
theory curves obtained from trap-averaged interaction dependence of the contact I [158, 187].
We attribute the deviation of our data from theory on the BEC side of the resonance by ∼ 15% to
finite temperature and the simplicity of the molecular model employed to rescale Ω.

This collapse of the data confirms the universal role played by the two-body ground state
wavefunction in the photoassociation signal. Once the molecular details factored out in equa-
tion (4.19), the relative scaling of the Rabi frequency with interaction strength only depends
on the contact. It also demonstrates the direct correspondence between the optical spectrum
of the cavity represented by the measured Rabi frequency and the many-body physics of the
quantum gas contained in the contact. The observed relative variation of the Rabi frequency
with interaction strength, spanning tens of MHz, remains surprisingly large before the Fermi
energy of the gas, being two orders of magnitude lower. Through photoassociation, our system
therefore acts as a magnifier for two-body correlations by mapping them onto an amplified
optical spectrum. The magnification factor directly depends on the Ω0

∫
dR|g(R)|2 factor, which

translates small changes on the energy of the gas into large changes in the optical signal.

Number of pairs coupled to light

In order to further build on the pair-polariton approach to describe our system and in analogy
with the Tavis-Cummings model, we write

Ω = Ω0

√
Np

2
(4.20)

where Np is the number of pairs coupled to light and the factor 1/2 accounts for the mode
structure of the cavity field. Integrating equation (3.59) to count the number of pairs in a
sphere of radius L, which again approximates the width of the last lobe of the excited molecular
wavefunction, we get

Ω = Ω0

√
Ĩ NkFL

4π
(4.21)

where the integrated contact per particle Ĩ is defined as a function of the total contact with
I = ĨNkF and N the total atom number. The radius L is estimated to be the width of the Airy
function solution of the Schrödinger equation for a linearized excited molecular potential around
the Condon point. In this case

V (r) = −C3

r3 ≈ −ωi
(
1− 3r

RC

)
(4.22)

and the Schrödinger equation for the reduced radial wavefunction u(r) reads

ℏ2

µ
d2

dr2u(r)− 3
ωi
RC

ru(r) = 0 (4.23)

which solution is the Airy function
u(r) = Ai (r/r0) (4.24)
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with r0 =
(
ℏ2RC
3µωi

)1/3
the spatial extent of the last lobe of u(r). Therefore, by setting L = r0, we

respectively obtain L = (28.9,23.6,19.4,12.6)a0 for ω1,2,3,4.
We show the variations of Ω̄ = Ω/

√
NkFL in figure 4.7c as a function of Ĩ which we assume

to know from the previous mapping of Ω to the contact. We observe the square root scaling
expected from equation (4.21) for all considered photoassociation transitions, which confirms
the analogy with the Tavis-Cummings model for pairs coupled to light. Fitting the curves
with a square root model, we obtain Ω0 = 2π × (595(11),492(5),435(7),765(5))kHz for the
four photoassociation transitions respectively. These values of the single-pair single-photon
Rabi frequencies are of the same order of magnitude as the single-atom single-photon one of
2π × 780kHz for the D2 π transition, such that, in analogy with single atoms, our cavity has
a cooperativity for single pairs close to unity.13 Our system thus allows in principle for the
application of well established single-atom quantum optical protocols using pairs in a strongly
interacting Fermi gas.

4.3.3 Continuous measurement of the two-body contact

So far, our measurement technique of the contact relied on the realization of several experimental
runs, a common limitation of cold atoms platform. However, as already proven in chapter 2
the use of a cQED methods allows to perform weakly destructive transmission spectroscopy
measurements. In this section, we present a weakly destructive method to infer the contact from
single run measurements of the Rabi frequency.

In what we presented above, measurements were repeated for various values of ∆a in order
to reconstruct and fit the avoided crossings of the energy spectra. The need for several points to
reconstruct the avoided crossings stems from the fact that we can not disambiguate changes of
the polariton energy originating from the contributions of atoms and pairs. Indeed, in a single
run we record a Lorentzian profile given by equation (4.12) which location depends both on ∆a
and δc.

To circumvent this limitation and be able to measure Ω from a single experimental run, we
apply a slightly modified probing scheme presented by figure 4.8a. Instead of using a purely
vertical polarization for the probe, addressing only π transitions, we rotate it by an angle of
26◦ so that it acquires a horizontal component now addressing σ± transitions. The practical
consequence in the scope of photoassociation is that we now address simultaneously another set
of excited molecular potentials when performing the above described experiments, similarly
to the early explorations presented in figure 4.5a. The idea behind this modified scheme is to
use one polarization component of the photons to extract the overall dispersive shift δc and the
second one to measure the Rabi frequency, with the independent knowledge of δc.

This probing change is reflected in the measured optical spectra, an example of which is
shown in figure 4.8b for ω4. We now observe two overlapping avoided crossings, corresponding
to two different bound states, each being addressed by one polarization component of the probe
and separated by ω4π −ω4σ . The central, most prominent, avoided crossing corresponds to the
previously defined ω4 bound state, now labelled ω4π, while the second one corresponds to the
newly addressed ω4σ bound state.

In addition, we demonstrate the weakly destructive capabilities of the experiment by probing
the system 50 times during a single run, each probe pulse being separated by 10ms to let the

13Even though the "single pair" concept is ill-defined since pairs cannot be isolated individually because their existence
in the first place is many-body effect.
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Figure 4.8: Modified version of the probe scheme. a By rotating the linear probe polarization
by an angle θ from the original vertical orientation, we address a new set of excited molecular
potentials. The bound states addressed by photoassociation in these potentials are labelled
with respect to the polarization component of the photon addressing them, here we show ω4π
and ω4σ as examples. b-c Energy spectra obtained with the modified probe polarization which
feature two distinct avoided crossings corresponding to strong coupling to both ω4π and ω4σ
transitions. For each value of ∆a, the system is probed 50 times and panels b and c respectively
show the reconstructed spectra corresponding to all the first and 50th probe pulses.

gas thermally equilibrate. For each value of ∆a, we therefore acquire 50 spectra and can then
reconstruct 50 avoided crossings as displayed by figures 4.8b-c. The unusual bending of the
polariton branches of panel c and general smaller avoided crossings come from losses induced
by the repeated measurements, which are more prominent at the location of photoassociation
transitions, and from the finite lifetime of the unitary gas in a trap.

From these 50 repetitions, we now measure the evolution of the Rabi frequency. In figure 4.9a
we show the observed signal during the first probe pulse at a detuning ∆a = −2π × 26.06GHz,
depicted by a vertical dashed line in figure 4.8b. We fit this double Lorentzian signal with
a modified of equation (4.12) accounting for the presence of a second resonance and with
the knowledge of ω4π and ω4σ . The fit result, shown as a solid orange line, models well the
system and allows us to extract simultaneously the values of Ω and δc. For a single run of
the experiment, we show these measured Ω and δc in figure 4.9b for each of the 50 scans. We
observe a continuous decrease of the Rabi frequency along with a continuous decrease of the
dispersive shift, which we both attribute to a decrease of atom number over the duration of a
single run. These losses originate both from the finite lifetime of the gas in the trap and from the
photoassociation process itself.

Even in the presence of significant losses, we show that the many-body physics interpretation
of the Rabi frequency is preserved by evaluating Ω̃ = Ω/

√
NkF for each of the scans, where NkF

is directly inferred from δc. We present the results normalized by the value of the Rabi frequency
obtained for the first scan Ω̃0 in figure 4.9c, with a solid orange line. We repeat the procedure
for 20 different choices of ∆a around ω4π and average the measured Ω̃ shown as the solid black
line in the same panel, which features a constant value across the 50 pulses. As the measured
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Figure 4.9: Continuous measurement of the contact over a single experimental run. a The
measured transmission spectrum for a single probe pulse around ω4π and its fit (solid line)
on a model accounting for a double resonance. The obsrved peaks are attributed to different
components of the probe polarization (see text). b Dispersive shift δc (empty diamonds) and Rabi
frequency Ω (full circles) extracted from the previous fits on single-pulse spectra and shown
for each of the 50 pulses performed during one experimental run. c Rescaled Rabi frequency
measured computed for each of the 50 probe pulses of panel b (solid orange line) and rescaled
by the Rabi frequency of the first pulse Ω̃0. The black solid line is an average of 20 of such
measurements taken at different values of ∆a, with a standard deviation depicted by the shaded
area.

quantity Ω̃ is directly proportional to the total contact per particle from equation (4.21), we have
therefore shown that the contact remains constant over a single experimental run, or equivalently,
our ability to continuously probe the many-body character of the strongly interacting Fermi gas
without disturbing it.

Conclusion

The proven ability of the cavity field to couple directly to the pair correlation function in the
dispersive regime suggests the possibility to engineer pair–pair interactions mediated by cavity
photon exchanges [188], opening an uncharted territory to quantum simulation as presented
in the outlook of chapter 6. Beyond these fundamental questions, the weakly destructive and
time-resolved character of the cavity-assisted measurement will be of immediate, practical
interest in the study of correlations after quenches, such as spin diffusion [189], repulsively
interacting Fermi gases where pairing competes with ferromagnetism [190], or during slow
transport processes [105, 191], complementing other high-efficiency methods [192]. Last, our
work adds the exquisite control over photons of a high finesse cavity to the existing cold molecules
toolbox [170], opening the way to dissipation engineering of cold chemistry [193–195].
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Optomechanical response of strongly
interacting Fermi gases

Those who do not move, do not notice
their chains.

Rosa Luxemburg
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In this chapter, we report on the observation of an optomechanical Kerr nonlinearity in our
degenerate, strongly interacting Fermi gas and on its connection with the underlying many-body
physics. It closely follows our results reported in [196]. Along with our work on photoassociation,
this project brings another physical quantity to be measured from cavity spectra: the density
response function which depends on the ground-state properties of the gas. It thus provides
another direct connection between the many-body physics of strongly interacting Fermi gases
and quantum optics.

The framework of cavity optomechanics naturally describes collective displacements of
atoms within a cloud dispersively coupled to light in a high finesse cavity [197]. When injecting
light into the cavity, the photons induce a collective displacement of the atomic density which
feeds back on the effective length of the cavity and therefore on its resonance frequency. This
results in a well-known Kerr nonlinearity, visible in the experiments as distorted, bistable cavity
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transmission profiles. Such nonlinearities have been observed in the context of cold atoms for
tightly confined, thermal clouds [198, 199] and homogeneous Bose-Einstein condensates [57,
200, 201]. For ideal Fermi gases, the effect has been predicted [202] but was not observed before
our work. In addition to its observation, we harness the dependency of the Kerr nonlinearity
on the many-body ground state properties of the gas to measure those from optical spectra,
bringing a new application to the cavity optomechanics toolbox.

In a first section, we derive the origin of the optomechanical nonlinearity stemming from
the form of the light-matter coupling Hamiltonian in the dispersive regime. We show that the
strength of the nonlinearity depends on the density response function of the gas and demonstrate
our ability to measure it via cavity transmission spectroscopy. In a second section, we prove
that the density response function is deeply connected to many-body physics with the use of an
operator product expansion (OPE) to relate it to two universal thermodynamic properties of the
gas, the contact and the internal energy. In a comparison with measurements in the BEC–BCS
crossover, we find that the response quantitatively describes the scaling of the nonlinearity
with interaction strength. The OPE approach is motivated by the cavity photons wavevector
2kc exceeding the Fermi wavevector kF, so that the response function has a universal character
inherited from the short range physics of the Fermi gas. Our experiment therefore provides a
method to measure universal response functions of strongly correlated systems by the direct
observation of optical spectra.

5.1 Observation of a Kerr nonlinearity in a unitary Fermi gas
coupled to light

In this section, we show how the collective displacement of the atoms originating from a weak
cavity field is connected to the density response of the gas, making the connection between Kerr
nonlinearities and intrinsic many-body properties. We first briefly present Kerr nonlinearities
and their consequences in cavity systems in terms of optical bistability, a phenomenon which
can be observed in the experiment. In a second part, we formally connect the strength of
such observed nonlinearities to the density response function and present their measurement
technique. We report on the observation of a Kerr nonlinearity in a unitary Fermi gas.

5.1.1 Kerr nonlinearities and optical bistability

Optical bistability refers to the situation where an optical system features two possible
output transmission intensities for the same given input intensity. The Fabry-Pérot resonator is a
canonical example of system featuring such a behavior, if a medium with certain absorption and
dispersion coefficients α and k is placed inside the resonator, itself illuminated with a field of
amplitude E0, the circulating field in the resonator can generally be expressed with [203]

E =
tE0

1− r2e2ikl−αl (5.1)

with r and t the reflection and transmission coefficients of the symmetric resonator and l its
length. Bistability emerges in this system when the coefficients α and k are allowed to depend
on E, a situation in which the previous equation now admits multiple nontrivial solutions. From
this description, we see that bistability can emerge from either a saturation of optical transitions
and therefore consists in absorptive bistability or rather, when k depends on E, show refractive
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Figure 5.1: Depiction of optical bistability in a resonator. Darker shades of blue depict increasing
input intensity. As the input intensity increases, the Lorentzian profiles get more and more
distorted as a result of a Kerr nonlinearity. The axis labels are defined from equation (5.2).

bistability. In any case, we also note from the above equation that a change of these parameters
can be interpreted as an effective modification of the resonator length.

Refractive bistability is obtained in the case of a Kerr medium, which index of refraction
kc/ω features a linear dependency on the field E. This is the typical situation realized for cold
atomic gases in optical cavities; in the dispersive regime the intracavity light field acts as an
optical potential for the atoms, modifying their density overlap with the cavity mode and thus
their coupling to light. In turn, this modified coupling impacts the effective length of the cavity
and the atoms effectively act as a Kerr medium in the dispersive regime, making the coupled
atoms-cavity system feature optical bistability.

In the absence of absorption, the intracavity intensity can generally be put under the form

I =
I0

1 + (∆+χI)2 (5.2)

where ∆ represents the detuning between the empty cavity resonance frequency and the fre-
quency of the light field, and χ is the Kerr parameter quantifying the strength of the optical
bistability. If χ = 0 we recover the usual Lorentzian lineshape for the cavity output intensity.
We display some spectra I(∆) computed from the above equation for increasing values of I0 in
figure 5.1. All spectra feature optical bistability which emerges as a strong distortion of the
originally Lorentzian profile towards negative detunings. The bistable branches appear in the
distorted region, where I(∆) features multiple solutions.

5.1.2 Response function from light-matter coupling

We now show how our atoms-cavity coupled system exhibits an optical bistability, its link to
density response and our measurement methods to extract its value from cavity transmission
spectra.
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Hamiltonian of the system

We start from the expression of the Hamiltonian describing a two-component interacting Fermi
gas coupled to light. Expressed in the dispersive coupling regime, as introduced in section 2.1.3,
and in the presence of an external coherent on-axis driving field it reads

Ĥ = Ĥ0 + Ĥlight + Ĥd + Ĥlm, (5.3)

and we recall in what follows the expression for each of its terms, in a frame rotating at the driving
field frequency and setting ℏ = 1 for now. The Hamiltonian Ĥ0 encompasses the contributions
from the external trapping potential Vt, the kinetic energy and the two-body contact interactions
with

Ĥ0 =
∑

σ

∫
drψ̂†σ (r)

[
− ∇

2

2m
+Vt(r)

]
ψ̂σ (r) +

∫
drdr′ψ̂†2(r′)ψ̂†1(r)Vp(|r− r′ |)ψ̂1(r)ψ̂2(r′) (5.4)

where Vp is the pseudopotential described in section 3.1.2, and ψ̂†σ (r) the fermionic field operator
creating a particle of spin σ at a position r. The bare cavity energy is represented by

Ĥlight = −∆câ
†â (5.5)

where ∆c = ωp −ωc is the detuning between the frequency of the fundamental TEM00 mode of
the cavity ωc and the frequency of the driving probe ωp. We explicitly include the contribution
of the probe as a coherent driving field expressed with

Ĥd = iβ(â† − â) (5.6)

with amplitude β. The remaining term of Ĥ describes the dispersive light-matter interaction via

Ĥlm =
g2

0
∆a
â†â

∫
drn̂(r)cos2 kcr (5.7)

with n̂ =
∑
σ n̂σ =

∑
σ ψ̂
†
σ ψ̂σ the total density operator and where the cos2 term comes from the

spatial dependency of the single atom single photon coupling strength g(r) = g0 coskcr, with kc
the cavity mode wavevector. We define Ω = g2

0 /∆a the dispersive shift per particle of the cavity
resonance frequency, with the frequency detuning between the cavity resonance frequency and
the excited atomic manifold ∆a being the largest energy scale of the problem.

Turning our attention to this dispersive interaction term, we put it in a more suitable form

Ĥlm = Ωâ†â
∫
drn̂(r)

1
2

(
1 +

e2ikcr + e−2ikcr

2

)

= Ωâ†â
(N

2
+

1
4

(n̂2kc
+ n̂−2kc

)
)

= Ωâ†â
(N

2
+ M̂

)
(5.8)

where we have introduced the q Fourier component n̂q of the density operator. This interaction
term can therefore be interpreted in a more intuitive picture: from the atoms point of view it
imposes a lattice potential with a depth Ωâ†â depending on the number of intracavity photons
n̄ =

〈
â†â

〉
, with a π/ |kc| spacing. On the other hand, this interaction term also describes a shift of
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the cavity resonance frequency added on top of the dispersive shift δc = ΩN/2, which originates
from a collective displacement of the atoms M̂. Since this collective displacement is induced by
the presence of the lattice potential which depends on n̄, the total shift of the cavity resonance
effectively depends on the intracavity intensity. The system therefore acts as a Kerr medium.

Optical bistability and linear response

Following the previous comment, we now seek to express the intracavity photon number in
a form which makes the bistable behavior explicit. To this end, we write down the equation
of motion for the cavity field using the Heisenberg-Langevin equation1 [59, 204, 205] for â,
disregarding its fluctuations

˙̂a = −i
[
Ĥ, â

]
− κ

2
â (5.9)

= −
(
i∆c +

κ
2

)
â− iΩ

(N
2

+ M̂
)
â− β, (5.10)

with κ the natural linewidth of the cavity. In a mean-field description for the photons, we now
look at the expectation value of the above expression in the steady-state limit ˙̂a = 0,2 and describe
it as a complex number α so that

〈
â†â

〉
= |α|2 = n̄. Equation (5.10) then yields

β = −
(
i(∆c +

N
2
Ω) +

κ
2

)
α − iΩ

〈
M̂â

〉
, (5.11)

with the value of
〈
M̂â

〉
left to evaluate. To do so, we employ linear response theory for a small

perturbation of the system ΩM̂â†â and write down the corresponding Kubo formula [206]

〈
M̂â

〉
=

〈
M̂â

〉
0
− i

∫ 0

−∞
dt

〈[
M̂(0)â(0),ΩM̂(t)â†(t)â(t)

]〉
0
, (5.12)

where the expectation values ⟨·⟩0 are taken with respect to the undisturbed Hamiltonian, so that〈
M̂â

〉
0

= 0 since the ±2kc Fourier components of the density are not populated. Imposing again
the coherent, steady-state cavity field condition we obtain

〈
M̂

〉
α = −iΩα|α|2

∫ 0

−∞
dt

〈[
M̂(0), M̂(t)

]〉
0
, (5.13)

or explicitly

〈
M̂

〉
= −iΩ|α|2

∫ 0

−∞
dt

1
16

(〈[
n̂2kc

(0), n̂−2kc
(t)

]〉
0

+
〈[
n̂−2kc

(0), n̂2kc
(t)

]〉
0

)
, (5.14)

where we have used the condition
〈
n̂qn̂q′

〉
0

= δq,−q′ and the Heisenberg equation of motion to

define the time evolution of the operators Ô(t) = eiĤtÔe−iĤt .
To make sense of the previous equation, we conveniently introduce the retarded density-

1See also e.g. chapter 9.4 of [97] for a complete formal picture and application to a similar case.
2The steady-state condition ensures that at all time, the atomic density has adapted to the external perturbation.
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density response function – or susceptibility – per atom [207]

χR(q,ω) = − i
N

∫ +∞

−∞
dtθ(t)eiωt

〈[
n̂q(t), n̂−q(0)

]〉
0

(5.15)

which characterizes the linear response of the density under a perturbation at wavevector q and
frequency ω. We detail some of its properties and useful relations in appendix C. Its substitution
in equation (5.14) under time-translation invariance yields

〈
M̂

〉
=
NΩ

8
n̄χR(2kc,ω = 0) (5.16)

where we used χR(q,0) = χR(−q,0). Finally, we can rewrite equation (5.11) as

α = − β
κ
2 + i

(
∆c + δc + NΩ2

8 n̄χR(2kc,0)
) , (5.17)

or more conveniently in terms of intracavity photons

n̄ =
n̄0

1 + 4
κ2 (δ+ ηn̄)2 , (5.18)

with the maximal photon number n̄0 = 4|β|2/κ2, δ = ∆c + ΩN/2 the detuning with respect to
the dispersively shifted cavity resonance δc and η = NΩ2χR(2kc,0)/8. Put under this form,
equation (5.18) features two important consequences for the system

• First, the optical nonlinearity is now made explicit via the δ + ηn̄ term of the denominator
which acts as the total refractive shift of the cavity with a linear dependency on the
intracavity photon number and thus indeed describes a nonlinear Kerr medium [203], in a
form similar to that of equation (5.2).

• Second, the strength of this nonlinearity given by η is directly proportional to the density
response of the gas which then can be read out from optical spectra since in the experiment
the detected photon number is proportional to n̄.

The imaginary part of the density response function is connected to the dynamical structure
factor via detailed balancing, and has been measured with high precision [52, 158, 161] using
the dependency of the energy absorption rate of the gas on the structure factor [208]. However,
the purely real zero-frequency – or static – response, which our system is sensitive to according
to equation (5.16), has never been measured due to the impossibility to directly observe weak,
short wavelength density perturbations in a strongly interacting system.

5.1.3 Experimental realization

Experimental parameters

To observe the onset of bistability in the experiment, we slightly modify the cavity transmission
probing procedure described in section 2.1.3 in order to realize the steady-state criterion for the
cavity field imposed in the previous paragraph. When acquiring optical spectra, we therefore set
the probing beam frequency sweep rate to be slow against the typical timescales associated with
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Figure 5.2: A strongly interacting Fermi gas trapped within the mode of the high-finesse cavity
is probed by a weak laser on-axis laser beam. Left, for a low enough probe intensity the dipole
force exerted by the resulting intracavity lattice does not perturb the atomic density and

〈
M̂

〉
= 0.

With equation (5.18) one therefore recovers the usual symmetric Lorentzian cavity spectrum.
Right, for large probe intensities the lattice imposes a weak density modulation with

〈
M̂

〉
, 0.

The observed lineshapes n̄(δ) then feature a significant asymmetry as a consequence of bistability
(blue curve). When varying the detuning δ from positive to negative values, we continuously
follow the highest stable branch for the photons (blue arrow). For the opposite detuning sweep
direction, we would instead follow the lowest stable branch (orange dashed curve).

atomic motion which are of the order of E−1
R = 13.57µs, so that from the field point of view the

atomic density has instantaneously adapted to the imposed density modulation. In addition, we
set the frequency sweep direction to go from positive (blue) to negative (red) detunings as to
adiabatically follow the upper branch of the expected bistable spectra.3 The probing procedure
and effect on the atomic density is summarized in figure 5.2.

We prepare degenerate, balanced two-component Fermi gases with the procedure described
in section 1.2. For the present experiments, the gases typically comprise 6 · 105 atoms in total,
at a temperature of T = 0.08TF held in the crossed dipole trap with trapping frequencies
(ωx,ωy ,ωz) = 2π × (187,565,594)Hz. Before probing the atoms-cavity energy spectrum, we set
the offset magnetic field to 832G, thus only considering unitary Fermi gases.

We tune the cavity length to detune its resonance frequency by ∆a = −2π×13.9GHz from the∣∣∣2s1/2, mJ = −1/2
〉
→

∣∣∣2p3/2, mJ = −1/2
〉

– or D1π transition – where we work in the dispersive

coupling regime.4 The probe beam polarization is linearly oriented along the magnetic field

3In early explorations, we also swept the probe from the red to the blue side of the cavity to follow the lower bistable
branch but found out that the instantaneous jump of the intracavity photon number towards maximal values would lead
to more drastic heating and losses, making the signal harder to interpret.

4We also make sure to carefully avoid any photoassociation transition in the vicinity of the probing region.



88 CHAPTER 5. Optomechanical response of strongly interacting Fermi gases

direction to only couple to π transitions and during a single experimental run we dynamically
sweep its frequency from the blue to the red side of the dispersively shifted cavity position δc,
by −2π × 3MHz in 3ms. This particular probe sweep time was also chosen to mitigate the effect
of atomic loss during the measurement, and we give more detail on the procedure below. While
the probe frequency is being swept, we record the arrival times of the photons leaking out of the
cavity on the single-photon counter.

Observation and measurement of the optical nonlinearity
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Figure 5.3: Onset of optical bistability in a strongly interacting Fermi gas coupled to light. a
Averaged transmission spectra over 20 runs of the experiment for three different probe beam
intensities. As the probe power increases so does the distortion of the measured profiles, from
symmetrical Lorentzian (light blue) to a strongly modified one featuring a sharp edge on the red
side, characteristic of the bistable behavior (dark blue). b Log-scale plot of 30 aggregated and
averaged transmission spectra taken for the highest probe intensity (blue triangles) and of the fit
of the averaged spectrum to equation (5.19) (orange dashed line).

We observe the onset of bistability originating from the Kerr nonlinearity of the system when
increasing the intensity of the probing beam, as shown in figure 5.3a. The distortion of the
transmitted Lorentzian profile and the emergence of the sharp edge towards the red side of the
cavity resonance for higher intensities qualitatively match the predictions of equation (5.18). To
quantify the strength of the nonlinearity, we infer η from a fit of the measured lineshapes n̄(δ) to
a modified version of the same equation

16η′2

κ4 n̄3
det +

16δη′

κ3 n̄2
det +

(
1 +

4δ2

κ2

)
n̄det − n̄0,det = 0 (5.19)

where η′ = η/ϵ with ϵ the quantum efficiency of the detection chain. The fit parameters are η′,
the dispersive shift δc contained in δ and n̄0,det. The detected photon number n̄det is defined
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with respect to the intracavity photon number with

n̄det = ϵ
κ
2
n̄. (5.20)

The roots of equation (5.19) yield the solutions n̄det(δ) for each value of δ. The maximal
values of the real roots represent the upper branch of the bistable profile and therefore are
chosen to fit the data and extract η′, as shown in figure 5.3b. We explicitly fit the logarithm
of the measured transmission spectrum to equally weight all data points, as we found that the
value of the measured nonlinear parameter η′ was extremely sensitive to the shape of the tails
of the signals. To obtain good signal-to-noise ratios in the tails, we average 30 transmission
spectra together, making sure to align them on their characteristic sharp edge to account for
shot-to-shot experimental fluctuations. All in all, the fitting results show excellent agreement
with equation (5.18) over two orders of magnitude and therefore allow us to confidently extract
the values of η′ as fitting parameters.

Losses and probe sweep rate determination
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Figure 5.4: Effect of atomic losses on the measured optical nonlinearity strength η′. The red
vertical dashed line and square mark the chosen probe duration, at which both the trap and
probe induced losses are below the percent level (see text). We observe a clear decrease of η′ for
increasing probe durations (blue circles), a trend which is well explained by adapting our model
to account for a linear loss rate as depicted by the dashed blue curve.

In order to select the optimal probe frequency sweep rate, we vary the probe duration for a
fixed length of the frequency sweep interval and measure the relative variations of η′ using the
procedure described above. The results are shown in figure 5.4 and are normalized with respect
to the value measured for a probe duration of 3ms. We attribute the observed relative decrease
of η′ with increasing probe duration to atomic losses occurring during the measurement.

To confirm this hypothesis, we measure the atomic losses during the slow sweep of the probe
frequency by measuring the relative change of dispersive shift δc before and after the sweep. In
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addition, we measure the losses purely due to the finite lifetime of the trapped Unitary Fermi
gas by repeating the same procedure but sending no light on the atoms during the main sweep.
Both of these measurements are also reported in figure 5.4. We then simulate the effect of a
linear atomic loss rate L on the measured value of η′ by adapting equation (5.18) with

η←→ ηL(t) = η
[
1− Lt

N

]
(5.21)

δ←→ δL(t) =
d∆c

dt
t +

Ω

2
(N −Lt) (5.22)

where d∆c
dt is the probe frequency sweep rate. Using this model we simulate photon traces which

take into account with the measured values of loss rates as a function of the probe duration. We
then fit these simulated data to extract the corresponding nonlinearity strength η′ and obtain
the dashed blue curve of figure 5.4. Since the simulated data accounting for the measured loss
rates feature the same relative trend as the real data, we conclude that atomic losses are indeed
responsible for the decrease of η′ for longer probe durations.

In the end we settle for a probing duration of 3ms, at which the total losses are still around
the percent level at unitarity and, as we will see later, under a few percents in the BEC–BCS
crossover.

5.2 The connection between light-matter coupling and the uni-
versal thermodynamics of strongly interacting fermions

In the previous section, the connection between many-body physics and the optomechanical
nonlinearity was shown to originate from the structure of the dispersive light-matter coupling
Hamiltonian. We have in addition proved our ability to measure the strength of this nonlinearity
by accurately modelling the observed optical transmission profiles acquired in the unitary
regime.

In this section, we make the connection between the strength of the nonlinearity with the
many-body physics of the system explicit by a calculation of the density response function
χR(q,ω) in the strongly interacting and short-range regime. Taking the short-range limit is
motivated by the spacing of the intracavity lattice probing the system compared to the mean
interparticle distance with 2kc ≈ 2.5kF. In this limit, the density response can be asymptotically
expanded using an operator product expansion (OPE) approach. The OPE is a standard approach
of quantum field theory which states that the product of local operators at different points in
space and time can be expanded in terms of local operators. It was originally introduced by
Wilson [209] and was in particular used by Braaten and Platter [153, 210] to derive Tan’s relations
presented in chapter 3. In terms of density operators, the OPE can be generally expressed with

n̂(R + r/2, t)n̂(R− r/2,0) =
∑

m

cm(r, t)Ôm(R,0), (5.23)

where Ôm is a local operator and the Wilson coefficients cm(r, t) are functions of the relative
coordinates. We note that this form is reminiscent to that of equation (3.52) an as such one
can expect the local operators Ôm to depend on the universal thermodynamics of the gas. In
the short-range limit, the OPE becomes a powerful tool as the first few terms with low scaling
dimensions in the operator sum dominate the identity [45] and can therefore be applied to our
system.



5.2. The connection between light-matter coupling and the universal thermodynamics of strongly interacting fermions91

In a second part, we present the measurements of the optical nonlinearity strength in the
BEC–BCS crossover and compare them to the OPE calculation.

5.2.1 The Operator Product Expansion

The detailed analysis and derivations of the OPE on the density response function have been
presented in references [159, 211–213], so that we only focus here on the essential ideas and
results. We also derive limit cases for the OPE results, providing independent boundaries in the
far BEC and BCS regimes.

Derivation of the asymptotic expansion of χR

As the OPE involves products of local operators, we shall first express the susceptibility in
terms of the local density. Taking the inverse Fourier transform of the density components in
equation (5.15) we obtain

χR(q,ω) = − i
N

∫
dR

∫
dr

∫ +∞

−∞
dtθ(t)eiωt−2ikr ⟨[n̂(R + r/2, t), n̂(R− r/2,0)]⟩0 (5.24)

where the correlator now explicitly involves products of local density operators. While we
would like to apply the OPE to this retarded response function as it is directly accessible
in the experiment, the diagrammatic nature of the calculations underlying the OPE makes
preferable the use of time-ordered operators [211, 212]. We therefore introduce the time-ordered
susceptibility

χT(q,ω) = − i
N

∫ +∞

−∞
dteiωt

〈
T
[
n̂q(t), n̂−q(0)

]〉
0

(5.25)

where T denotes time-ordering and which features the same local development as in equa-
tion (5.24). Its connection with the retarded susceptibility is simple; following appendix C
we have Re

[
χT(q,ω)

]
= Re

[
χR(q,ω)

]
. Since we only consider static perturbations with ω = 0,

detailed balancing ensures Re
[
χR(q,0)

]
= χR(q,0) so that χR(q,0) can be retrieved from the

calculation of χT(q,0). Using equation (5.23) we get in a generic way

χT (q,ω) =
∑

m

cm(q,ω)
∫
d3R
⟨Ôm(R)⟩0

N
, (5.26)

for which the Wilson coefficients cm have been explicitly evaluated in the asymptotic limit of
large q and up to order (kF/q)2 in references [211, 212] and by our theory collaborator, Shun
Uchino. The density response per atom can then be written

χT(q,ω) ≈ cn(q,ω) + cI (q,ω)Ĩ + cH(q,ω)H̃ (5.27)

with Ĩ and H̃ respectively the total contact and internal energy per particle. The Wilson
coefficients cn,I ,H(q,ω) can be directly calculated in the limit ω = 0 such that the OPE for χR(q,0)
reads

χR(q,0) = − 2
ϵq
− 8H̃

3ϵ2
q
− πĨ

2ϵqq




1

1− 2
qa

− 8

πqa(1− 2
qa )

+
16

π2(qa)2(1− 2
qa )
− 8

3π2qa


 , (5.28)
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with a the scattering length, q = |q| and ϵq = ℏ2q2/2m. This expression features a singularity
for qa = 2 and thus becomes diverging in the BEC regime, an unphysical situation since the
density response and structure factor for an interacting Fermi gas in the BEC regime are known
to be dominated by the excitation of free pairs and take a finite value [214, 215]. This feature
originating from the uncontrolled nature of the asymptotic OPE is mitigated by considering the
strongly interacting limit with qa≫ 1 so that

χR(q,0) = − 2
ϵq
− 8H̃

3ϵ2
q
− πĨ

2ϵqq

[
1− 8 + 24π − 6π2

3π2qa

]
, (5.29)

which do not feature a divergence anymore.5 This result, via the explicit introduction of
the contact, the internal energy and the scattering length, links the strength of the optical
nonlinearity in our system η ∝ χR(q,0) with the universal thermodynamics of its many-body
ground state via equation (5.18). Again, its interpretation is twofold; we can either control
the strength of an optical nonlinearity by tuning the strength of the two-body interactions in
the BEC–BCS crossover, or we can directly measure the universal many-body quantities by
quantifying the strength of the measure nonlinearity, as shown in the previous section.

Limit cases

We can evaluate equation (5.29) in limits cases of the BEC–BCS crossover for |(kFa)−1| ≫ 1 to
derive boundaries for our measurement of the density response as a function of the interaction
parameter.

In the BEC limit, we already motivated the existence of a finite value for the density response
of a gas of molecules. We calculate its value following the arguments presented in reference [214],
without taking interactions effects into account, the dynamic structure factor SBEC(q,ω) for a
non-interacting BEC is simply peaked at the recoil frequency of a molecule of mass 2m with

SBEC(q,ω) = 2Nδ
(
ℏω − ϵq

2

)
(5.30)

where the pre-factor 2N comes from the f −sum rule, see appendix C

Nϵq = ℏ2
∫ +∞

−∞
dωωSBEC(q,ω). (5.31)

The density response per atom then follows from the structure factor6

χR
BEC(q,0) = − 1

N

∫ +∞

−∞
dω

[
SBEC(q,ω) + SBEC(−q,ω)

ω

]

= − 8
ϵq
. (5.32)

On the other hand on the BCS side, we start from the expression of the total density response
per atom χ(q,ω) of a noninteracting Fermi gas in three dimensions [216]. At zero frequency

5As detailed below, we confirm with the experiment the validity of taking this qa ≫ 1 limit by showing a good
agreement of equation (5.29) with our measurements.

6We note that the following expression is the reason why this problem is trivial for bosonic systems; the density
response per particle is simply constant and follows from textbook definitions [208].
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where it is purely real, it reads

χ(q,0) = − 3
4EF

(
1 +

4− q2

4q
log

∣∣∣∣∣
1 + q/2
1− q/2

∣∣∣∣∣
)

(5.33)

with EF the Fermi energy and where q = k/kF is a reduced wavector, in units of the Fermi
wavevector. In the limit of high q the previous expression can be expanded in powers of 1/q,
yielding

χ(q,0) = − 3
4EF

(
3

8q2 +
32

15q2 + o
(

1
q4

))
. (5.34)

Introducing the internal energy per particle of the non-interacting gas H̃BCS = 3EF/4 and the
definition of q, we get

χ(k,0) = − 2
ϵk
− 8H̃BCS

3ϵ2
k

. (5.35)

We notice that this expression exactly matches equation (5.29) without the contact term, meaning
that the OPE prediction faithfully reproduces the expected behavior of the density response
of a non-interacting Fermi gas far on the BCS side of the Feshbach resonance. By making the
substitution k↔ q we define the density response per atom in the BCS regime with

χR
BCS(q,0) = − 2

ϵq
− 8H̃BCS

3ϵ2
q
. (5.36)

Internal energy evaluation

To calculate the internal energy of the gas in the strongly interacting regime, we make use of the
adiabatic sweep theorem defined by equation (3.60) of section 3.2.3. It relates the variation of
internal energy of the system with scattering length to the contact, and we remind its formulation
under the present chapter’s notations

∂H̃
∂(1/a)

= − ℏ2Ĩ
4πm

. (5.37)

We obtain the internal energy per particle by integrating the above expression from unitarity to
a−1

H̃(a−1) = H̃(0)− ℏ2

4πm

∫ a−1

0
Ĩ (x)dx (5.38)

where the energy per particle at unitarity is defined as a function of the Bertsch parameter
√
ξ

and the energy of the non-interacting gas with H̃(0) =
√
ξH̃BCS [47].

Even though the internal energy has already been evaluated in the BEC–BCS crossover [217,
218], equation (5.38) allows for the calculation of χR(q,0) with the sole knowledge of the contact
I as a function of the interaction parameter which, as presented in section 3.2.3, has been
measured accurately in the crossover in the past decade [219–222]. We therefore rewrite the
density response

χR(q,0) = − 2
ϵq
− 8

3
1

ϵ2
q


H̃(0)− ℏ2

4πm

∫ a−1

0
Ĩ (x)d(x)


−

πĨ
2qϵq

[
1− 8 + 24π − 6π2

3π2qa

]
(5.39)
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where it now only depends on scattering length and the contact. For the sake of completeness and
to the detriment of simplicity, we reformulate the above expression in terms of the adimensionnal
contact Ĩ /kF which is the quantity calculated and measured in the above-mentioned studies.
Doing so, we also explicitly make the contact depend on the interaction parameter. In the end
we obtain

χR(q,0) = − 2
ϵq


1 +

[
kF

q

]2 
√
ξ − 2

3π

∫ 1
kFa

0

Ĩ
kF

(x)dx




+
πkF

4q
Ĩ
kF

(
1
kFa

)[
1− 8 + 24π − 6π2

3π2kFa

kF

q

]

(5.40)

which now allows us to explicitly compute this response function in the BEC–BCS crossover,
and compare it with measurements with q = 2kc.

5.2.2 Density response in the BEC–BCS crossover

Having established the formal link between the retarded density response χR(q,0) controlling
the strength of the optical nonlinearity and the two-body contact, we now focus on measuring
the variations of η as a function of the interaction parameter (kFa)−1 in the BEC–BCS crossover.

Experiment and comparison with theory
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Figure 5.5: Observation of the Kerr nonlinearity in the BEC–BCS crossover. a Measured atom
number via dispersive shift before the main probing pulse for magnetic field spanning the
crossover. b Corresponding losses measured from the comparison of dispersive shifts before and
after the main experiment (green diamonds) and before an after simply holding the atoms in
the trap for the same total duration (orange circles). c Log-scale averages of 30 bistable profiles
measured for three different values of the interaction parameter (solid lines) and their fit (dashed
lines). As (kFa)−1 increases the profiles become wider and sharper, but still require log-scale to
be accurately fit.
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We repeat the experiments presented in the previous section and vary the offset magnetic
field at which the system is probed from 710 to 950G. Doing so, we use the same probe frequency
sweep rate of −2π × 3MHz over 3ms. In figure 5.5a we display the mean total atom number N
measured for each of the magnetic fields, which shows a decreasing trend towards the BEC side
of the Feshbach resonance because of an increased three-body loss rate. From the knowledge of
atom numbers we compute the associated Fermi wavevector using ℏ2k2

F/2m = ℏ(3ωxωyωzN )1/3

in the harmonic trap convention. We verify that even with different trap loss rates over the
crossover, the total atomic losses occurring during the measurement for the considered probing
duration are still well mitigated and below the few percents level, as shown by panel b. Finally,
we present in panel c examples of fits of equation (5.19) to measured bistable profiles for
notable points in the BEC–BCS crossover. In addition, we observe the consequence of a varying
interaction strength: it controls both the width of the profiles and the sharpness of the jump
from the upper to lower branch at fixed maximal intracavity photon number.
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Figure 5.6: Variation of the short-range density response in the BEC–BCS crossover. The
measurements of the density response are normalized by the value measured at unitarity (blue
circles) and compared to the rescaled prediction of equation (5.40) (orange line), showing
excellent relative agreement in the crossover. The dotted line corresponds to the prediction of
equation (5.36) on the BCS side and the dash-dotted one is calculated with equation (5.32) on
the BEC side, providing independent boundaries for our model.

Since our procedure measures the nonlinear strength rescaled by the quantum efficiency of
the detection chain, which calibration is not known a priori, we rescale the values of η′ = η/ϵ
with respect to η′∞ measured at unitarity for 1/a = 0. Considering that the light shift per atom Ω
does not vary in the dispersive regime with a change of the interaction parameter, the rescaled
nonlinear strength reads

η′

η′∞
=
η

η∞

=
NχR(2kc,0)
N∞χR∞(2kc,0)

,

(5.41)
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effectively cancelling the dependency on the quantum efficiency. We apply the same rescaling to
the theoretical predictions given by equation (5.40) in order to compare with the measurements.

The results are presented in figure 5.6 where η̃ = η′/N to account for atom number prepara-
tion variations in the crossover in accordance with panel a of figure 5.5. The excellent agreement
of our data with the theory predictions confirm the deep connection between the optical non-
linearity and the universal, many-body physics of the Fermi gas and adds the static density
response to the set of response functions experimentally accessible following Tan’s relations.
The agreement with equation (5.40) indicates that the increase of nonlinearity towards the
BEC regime originates predominantly from the increase of the contact. On the BEC side, the
agreement validates our extrapolation of expression (5.28) in the strongly interacting qa≫ 1
limit, and calls for a deeper understanding of the singularities of the OPE.

Detection efficiency calibration

From the strong relative agreement between the data and theory, we can turn to absolute
comparisons in order to estimate the quantum efficiency of the detection chain ϵ which appears
in the measured density response but of course not in the theory predictions. Indeed, using
values at unitarity

η′∞,meas

η∞,theo
=

1
ϵ

(5.42)

we obtain
ϵ ≈ 3%, (5.43)

including a reflective optical density filter with an attenuation factor of ∼ 10 placed in front
of the detector in order to desaturate it. This calibration of the detection efficiency can now be
employed to infer the actual intracavity photon number at the peak of transmission profiles using
equation (5.20). This gives n̄0 ≈ 1350 which corresponds to a circulating power of ≈ 1.45µW
inside the cavity, and thus to an intracavity lattice depth ≈ 0.2ER with ER/h = 73.7kHz the
single-photon recoil energy of 6Li. The shallow lattice results in an actual density modulation of
the atomic density of the order of a few percent therefore only weakly disturbing the system
yet strikingly yielding an order-of-magnitude amplification of the cavity signals as seen in
figure 5.3a.

Conclusion

Compared with spectroscopic probes also sensitive to the contact, the optomechanical coupling
operates in the static limit where driving the cavity changes the properties of the steady-state of
the system. In fact, the correspondence established by equation (5.16) also translates the optical
nonlinearity into an interaction between the density fluctuations mediated by light, repulsive
on the blue side of the cavity resonance and attractive on the other, similar to cavity-induced
squeezing in spin ensembles [223]. Our experiment shows that this effect is controlled by the
contact, which we have now proven to be directly accessible from optical spectra albeit differently
as it was with the light-matter coupling to pairs presented in the previous chapter.

Following this remark, we could extend our optomechanical response measurement to
the vicinity of a photo-association transition, where the dispersive shift acquires directly a
contribution proportional to the contact. Correspondingly we could measure the optomechanical
response functions such as the contact-density and contact-contact responses, describing three
and four-body effects, which to our knowledge have never been observed experimentally.
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With this chapter we present a series of experiments conducted with our strongly interacting
atomic ensemble dispersively coupled to light. In addition to the strong short-range interactions
presented in details in chapter 3 we implement density-density long-range interactions, local in
momentum, mediated by a transverse pump beam. For a sufficiently large strength of the long-
range interactions, the atomic density spontaneously acquires a density modulation with a spatial
structure matching that of the long-range interactions. This phase transition is accompanied by
superradiant light scattering into the cavity mode.

This self-organization process to a density ordered phase was observed in wide range of atomic
systems, from thermal gases [224] to BECs [60, 61] and lattice Bose gases [62, 225], and more
recently in non-interacting Fermi gases [226]. In weakly interacting BECs this self-organization
phase transition is a manifestation of the Dicke-superradiant phase transition and has allowed
for the quantum simulation of supersolidity [227]. By exploiting more atomic internal levels
and many cavity modes, a variety of rich phenomena ranging from magnetic ordering [228, 229]
to dynamic gauge fields [230] and self-ordering in elastic optical lattices [231] were observed in
bosonic systems. Even more intriguing phenomena ranging from threshold-less self-organization
in low dimensions to cavity-induced superconducting paring and topological states have been
predicted for fermions [69–71, 232–237]. We observed this phenomenon for the first time with
strongly-interacting fermions and as such, the results and discussions of the present chapter
closely follow our corresponding article [238].

The chapter is organized as follows: we start by presenting the theoretical framework to
describe a strongly interacting Fermi gas coupled to a high-finesse cavity and pumped from
the side by a far-detuned lattice beam. We show that this system features tunable long-range
density-density interactions with a spatial structure inherited from the interference of the pump
and cavity fields. By the examination of the density instabilities in such a system, we prove that
it is prone to acquire a density order above a critical strength of the long-range interactions. We
show that this critical point directly depends on the density susceptibility of the atoms at the
wavevectors corresponding to the imposed density modulation. In a second part, we present
our measurements and experimental realization of the phase transition to a density wave for
a strongly interacting Fermi gas. We explore the regime where both interactions are strong:
the contact interaction allows for the realization of the BEC–BCS crossover across which we
systematically observe density wave ordering due to the long-range interactions. In a third part,
we present a measurement scheme of the density response of the system in the presence of the
long-range interactions, showing that it features a divergence at the location of the critical point
as expected from a second order phase transition. We find that even in the presence of strong
contact interactions, photon-mediated interactions modify the zero-frequency particle-hole
susceptibility, and lead to the spontaneous formation of a density wave order above a critical
strength in the attractive case. Finally, as an outlook, we apply the formalism and experimental
techniques presented in the rest of the chapter to induce long-range interactions between pairs
of atoms, in the vicinity of a photoassociation transition. We report on preliminary observations
of a modified critical strength for the phase transition near the transition. We then introduce an
interesting interpretation of the situation: the realization of an optical Feshbach resonance.
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6.1 Engineering photon-mediated long-range interactions in a
strongly correlated Fermi gas

Recent years have seen tremendous efforts to engineer more complex many-body systems using
tailored longer-range interactions [239]. As a first key extension in this direction, dipolar
interactions between atoms with large permanent magnetic moment were successfully used to
create supersolid phases of bosons [240], marked by the onset of quantum droplets formation.
In such systems however the long-range magnetic dipole-dipole interactions are not tunable,
their strength and anisotropic spatial structure being set by the magnetic moments of the atomic
species used.

Rydberg atoms provide another road to the realization of long-range interacting system, this
time with anisotropic interactions tunable by the choice of Rydberg states [241, 242]. Rydberg
dressing of interacting 6Li atoms on a lattice has recently been used to realize quenches of
strong long-range interactions [243], opening the way for simulation of the dynamics of the
extended Fermi-Hubbard model. Fermionic polar molecules interacting with strong electric
dipole moments are also expected to simulate exotic phases of matter, but have yet to be produced
in the deeply degenerate quantum regime [244].

Cavity quantum electrodynamics on the other hand provides a tunable platform for engineer-
ing non-local, all-to-all interactions among polarizable particles mediated by cavity photons [58,
188, 245]. In a single-mode cavity this interaction has a spatially periodic, infinite-range struc-
ture which arises from the interference of a pump beam and the cavity mode [246], with a
tunable strength given by the intensity of the pump beam. Since the spatial structure of the
interaction is set by the interference pattern, it can be modified by the use of higher-order cavity
modes and lead to rich phases [67].

In this section, we explicitly derive the structure of the long-range interactions stemming
from the peculiar geometry of our system presented in figure B.2 of appendix B. We show that
scattering of photons off single atoms lead to correlated recoils between the atom ensemble,
delocalized over the cavity mode and which magnitude depends on the wavevectors of inter-
ference pattern between the pump and cavity fields. We then show how the existence of this
long-range interaction can lead to density instabilities in the system and therefore to density
ordering. Finally, we show how the density response of the system controls the phase transition
and emphasize on how the small angle between the pump and cavity fields, as described in
appendix B, allows us to address the fermionic nature of our system.

6.1.1 Effective photon-mediated atom-atom interactions from strong light-
matter coupling

Hamiltonian of the system

The many-body Hamiltonian describing the atomic ensemble coupled to the cavity field in the
dispersive regime was introduced in section 2.1.3 and reads

Ĥ = Ĥ0 + Ĥlight + Ĥlm. (6.1)

The first two terms respectively correspond to the atomic and bare cavity energy contributions,
given in the framework of second quantization and in a frame rotating at the pump beam
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frequency by

Ĥ0 =
∑

σ

∫
drψ̂†σ (r)

[
− ∇

2

2m
+Vt(r)

]
ψ̂σ (r) (6.2)

+
∫
drdr′ψ̂†2(r′)ψ̂†1(r)Vp(|r− r′ |)ψ̂1(r)ψ̂2(r′)

Ĥlight =−∆câ
†â (6.3)

where Vt is the external trapping potential, Vp the pseudopotential described in section 3.1.2,
and ψ̂†σ (r) the fermionic field operator creating a particle of spin σ at a position r, expressed with
ℏ = 1. Since the cavity gets populated with photons scattered from the transverse pump, the
detuning ∆c = ωp −ωc is defined as the difference between the frequency of the fundamental
TEM00 mode of the cavity ωc and the frequency of the driving pump beam ωp. Finally, â is the
cavity photon annihilation operator so that the total intracavity photon number is â†â.

Compared with the previous chapters, we account for the presence of the off-resonant
pump beam, which makes a 18◦ angle with the cavity mode as depicted in appendix B, in the
light-matter interaction term Ĥlm by expressing

Ĥlm =
∑

i

1
∆a,i

∫
drn̂(r)φ̂†i (r)φ̂i(r) (6.4)

where n̂ =
∑
σ n̂σ =

∑
σ ψ̂
†
σ ψ̂σ is the total density operator. This Hamiltonian contains the ground

state energy shift contributions from the dispersive coupling of the light field to both the D1 and
D2 π transitions, represented by the indices i = 1,2. We define the detunings again with respect
to the pump beam frequency such that ∆a,i =ωp −ωa,i and with ωa,i the frequency of the Di π
transition of 6Li. The total fields φ̂i(r) are defined as the sum of the cavity and coherent pump
fields [246], taking their standing wave nature into account with

φ̂i(r) = gi âcoskcr +Ωi coskpr, (6.5)

gi being the single atom single cavity photon coupling strength to the Di π transition and Ωi
the pump Rabi frequency for the same transition. Equation (6.4) can therefore be explicitly put
under the form

Ĥlm =
∫
drn̂(r)

[
U0â

†âcos2 kcr +V0 cos2 kpr + η0(â+ â†)coskcrcoskpr
]
, (6.6)

which is the total effective lattice potential experienced by the atoms in the dispersive regime [205],
with

U0 =
g2

1
∆a,1

+
g2

2
∆a,2

, (6.7)

V0 =
Ω2

1
∆a,1

+
Ω2

2
∆a,2

, (6.8)

η0 =
g1Ω2

∆a,1
+
g2Ω1

∆a,2
, (6.9)

the two-photon Rabi frequencies associated with each of the terms of equation (6.6) which



6.1. Engineering photon-mediated long-range interactions in a strongly correlated Fermi gas103

respectively depict

• An optical lattice of depth U0â
†â associated with the TEM00 mode of the cavity field,

dispersively shifting the cavity resonance frequency as described in the previous chap-
ters. We define the resulting dispersive shift with δ̂c = U0â

†â
∫
drn̂(r)cos2 kcr, and the

corresponding shifted pump-cavity detuning ˆ̃∆c = ∆c − δ̂c.

• A second, 1D optical lattice associated with the pump. Its depth V0 is directly proportional
to the power of the beam. In what follows, we include the contribution from this term in
the atomic Hamiltonian Ĥ0.

• A third, 2D optical lattice resulting from the interference between the coherent pump and
the vacuum cavity field. Its depth is given by the photon scattering rate η0 between the
pump and cavity fields, a process analogous to Rayleigh scattering which originates from
the dispersive interaction with the atomic density.

−k−

+k− −k+

+k+

Figure 6.1: Two-photons single-atom scattering processes depicting the total momenta imparted
on single atoms by the dispersive interaction term. The red arrows depict the momentum of the
photons while the gray dashed ones correspond to atomic recoils which sum up to ±k±. We only
show the processes where a photon is first absorbed from the pump and scattered back into the
cavity mode, but the reverse process is as likely to happen.

The crucial part of the light-matter interaction for the present chapter lies in this interference
term. Simply put, in the dispersive regime, it describes the ability of the pump and cavity
fields to coherently exchange photons via atomic absorption and emission processes. We depict
these two-photons, single-atom scattering processes in figure 6.1 where each scattering event
is accompanied by a momentum kick of the atom. For clarity, we only show processes starting
from the virtual absorption of a pump photon followed by its emission into the cavity mode but
the reverse situation where a cavity photon is first absorbed is equally likely. We note ±k± the
total momentum kicks imparted on the atoms by the two-photon scattering processes, defined as

coskcrcoskpr =
1
2

[
cos

(
kcr + kpr

)
+ cos

(
kcr−kpr

)]

=
1
2

[cosk+r + cosk−r] (6.10)

from an expansion of the spatial structure of the last term of equation (6.6).
We define the order parameter Θ̂ =

∫
drn̂(r)coskcrcoskpr, which quantifies the spatial overlap

between the atomic density and the interference lattice. From equation (6.6), this term directly
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controls the photon scattering rate between the pump and cavity fields. It can be expressed in
terms of the Fourier components of the density operator as introduced in section 5.1.2 with

Θ̂ =
1
4

(n̂k+
+ n̂−k+

+ n̂k− + n̂−k− ), (6.11)

so that the total Hamiltonian for the system can be expressed as

Ĥ = Ĥ0 − ˆ̃∆câ
†â+ η0(â+ â†)Θ̂. (6.12)

For an unperturbed system with η0, with either a homogeneous or slowly varying density,〈
Θ̂
〉

= 0 and scattering events from the pump photons into the cavity mode are suppressed. In
the absence of an external on-axis drive and up to fluctuations, the cavity mode is thus not
populated.

In the following paragraph we show that despite a suppressed scattering rate of pump
photons into the cavity mode, virtual photons can still be exchanged between atoms and mediate
long-range interactions between them, with a range extending over the whole cavity mode
volume [58, 204, 247].

Photon-mediated long-range interactions

kp, ωp
kc, ωp

kp, ωp

k−

−k−

Figure 6.2: Long-range interaction processes between atoms stemming from single-atom scat-
tering processes. This specific example pictures how correlated recoils between atoms at ±k±
emerge from successive scattering events.

In the limit where the energy scale associated with the cavity photons given by ˆ̃∆c is large against
the one associated to atomic displacements – of the order of the recoil energy ER – we assume
that the cavity field instantaneously adapts to and adiabatically follows any atomic dynamics.
Writing down the Heisenberg-Langevin equation of motion for the cavity field,

d
dt
⟨â⟩ = −i

〈[
Ĥ, â

]〉
− κ

2
⟨â⟩

= i
[
∆̃c ⟨â⟩ − η0

〈
Θ̂
〉]
− κ

2
⟨â⟩

(6.13)

where we have included the natural cavity linewidth κ, the adiabatic condition for the cavity
field means that we can set

d
dt
â = 0 (6.14)
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by considering its steady state. We obtain

⟨â⟩ =
η0

〈
Θ̂
〉

∆̃c + i κ2
, (6.15)

which emphasizes the point raised in the previous paragraphs, in the steady state limit the
cavity field serves as a measure of the overlap between the atomic density and the pump-cavity
interference lattice quantified by

〈
Θ̂
〉
. As a crucial consequence, because of the one-to-one

correspondence given by the above equations between Θ̂ and â, a measurement of a finite cavity
field implies the existence of a modulation of the atomic density by the 2D optical lattice.

We then perform the adiabatic elimination of the cavity field in equation (6.12) with the use
of a high-frequency expansion of equation (6.15) in the interaction picture for the photon [248].
To first order in 1/∆̃c we obtain

Ĥeff = Ĥ0 +D0Θ̂
2, (6.16)

with
D0 = ∆̃cη

2
0 /(∆̃

2
c +κ2) (6.17)

the strength of the long-range interactions. Because its signs follows that of ∆̃c, it either corre-
sponds to attractive or repulsive interactions, depending on the sign of ∆̃c. Equation (6.16) now
effectively describes the interaction processes in an atom only picture, the effect of the scattered
virtual photons being contained in the Θ̂2 term with

Θ̂2 =
∫
drdr′n̂(r)n̂(r′)coskcrcoskprcoskcr′ coskpr′ , (6.18)

which represents an effective density-density interaction. An example of such an interaction
process for two atoms is shown in figure 6.2. Its range is only limited by the mode volume of
the cavity mode and therefore, under the assumption that the typical atomic clouds are fully
contained within the mode of the cavity, is of infinite nature. The strength of this cavity-mediated
long-range density-density interaction is given by D0. From equation (6.9), we directly see that
D0 is in particular controlled by the power of the pump beam, which tunability then allows for
the variation of the infinite-range interaction strength in the experiment.

6.1.2 Phase transition to a density ordered state

Having motivated the existence of an effective density-density long-range interaction for our
fermionic system coupled to light, we show in this section how this interaction term may lead to a
structural phase transition of the atomic ensemble. We start by proving that there exists a critical
value for the long-range interaction strength D0C above which

〈
Θ̂
〉

acquires a finite value. We
show in a second time that this critical value is in particular determined by the density-density
response of the unperturbed system, the same function we introduced in chapter 5.

The general idea developed in the literature for bosonic self-organization [249] and in theory
proposals for non-interacting fermions [233, 234, 250] to infer the critical point for the phase
transition is based on a calculation of

〈
Θ̂
〉

= Θ̄ at equilibrium, determined by the global minima
of the free energy F . In such systems, the location of the minima of free energy and therefore
the possible values for Θ̄ follow a threshold behavior. This is usually derived by expressing F in
even powers of the order parameter, following Landau theory for thermal phase transitions [251].
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Generally one can write
F = F0 +αΘ̄2 + βΘ̄4 +O

(
Θ̄6

)
(6.19)

with equilibrium points given by ∂F /∂Θ̄ = 0. The solutions of this equation depend on the sign
of α/β, which in turn depends on the strength of the long-range interactions so that above a
certain critical strength, the ratio flips sign. This change of sign therefore corresponds to the
emergence of different equilibrium points for the free energy and thus of different values of Θ̄.
Below the critical point, we see from equation (6.19) that the trivial minimal free energy is given
for Θ̄ = 0, a situation for which the atomic density is unperturbed or equivalently, as we have
shown, the cavity field is not populated. On the other hand, above the critical point we have
Θ̄ , 0 and the system features a modulation of its density, accompanied by scattering of light
inside the cavity mode.

Free energy and density functional

In order to apply a similar reasoning to our strongly-interacting system we resort to a general
density functional theory approach to construct a thermodynamical functional which, as the
Legendre transform of the free energy, carries the same amount of information about the system.
In particular, it will be defined to only depend on the value of the control variable Θ̄. This
approach is motivated by the fact that a direct analytic calculation of the free energy for a strongly
correlated system is extremely challenging. We proceed by following a method presented by
Antoine Georges to derive instabilities of the Ising magnet [252–254] and adapt it to our system.

We start from the Hamiltonian given by equation (6.16), and constrain the expectation value
of Θ̂ to take a given value Θ̄ via the introduction of a Lagrange multiplier λ, thermodynamical
conjugate to Θ̂ such that

Ĥ → Ĥ(λ) = Ĥ0 +D0Θ̂
2 −λΘ̂. (6.20)

We note that this step is completely analogous to introducing a given value of the chemical
potential µ in order to enforce a given value for the particle number N which then verifies〈
N̂

〉
= N . In our case, the value of λ is then fixed as for the system to verify

〈
Θ̂
〉

= Θ̄. We
also note that by design, the minimization of the energy associated with the unconstrained
Hamiltionian of equation (6.20) will yield the same equilibrium points as the minimization of
energy associated with the Hamiltionian of equation (6.16) under the constraint

〈
Θ̂
〉

= Θ̄.

We then introduce the density functional Ω(Θ̄,λ) as

Ω(Θ̄,λ) = F +λΘ̄, (6.21)

which is nothing else than the Legendre transform of the free energy F – often called effective
action in the condensed matter literature – in terms of the parameters Θ̄ and λ. As such, Ω
carries the same information about the system as any other thermodynamical potential, but is
expressed in a more convenient way to be manipulated in terms of Θ̄ and λ. By design, we also
now have an equivalence between imposing

〈
Θ̂
〉

= Θ̄ and the equilibrium condition ∂Ω/∂λ = 0.
In principle, this differential equation can be employed to infer the value of λ(Θ̄) which forces
the system to fulfill

〈
Θ̂
〉

= Θ̄, but in practice we are again limited by our ability to express F in
a convenient way to write down any analytical formula for λ(Θ̄). We can however consider its
value to be known and simply define a new functional Γ

[
Θ̄
]

such that

Γ
[
Θ̄
]

= Ω(Θ̄,λ(Θ̄)). (6.22)
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In the following step, we make explicit the dependency of Γ on the long-range interaction
strength by expanding it with

Γ
[
Θ̄
]

= Γ0

[
Θ̄
]
+
∫ D0

0
dD0

∂Γ
∂D0

[Θ] , (6.23)

where the term Γ0

[
Θ̄
]

is the non-interacting functional, taken for a system withD0 = 0 and with a

different Lagrange multiplier λ0 which still ensures
〈
Θ̂
〉

0
= Θ̄. The derivative under the integral

of the above equation can be computed directly from an application of the Hellmann-Feynmann
theorem such that

∂Γ
∂D0

=
∂F
∂D0

=
H.F.

〈
∂Ĥ
∂D0

〉
=

〈
Θ̂2

〉
(6.24)

where the derivatives are evaluated at constant Θ̄ and λ(Θ̄). We then obtain an exact form of the
functional

Γ
[
Θ̄
]

= Γ0

[
Θ̄
]
+
∫ D0

0
dD0

〈
Θ̂2

〉 ∣∣∣∣∣
Θ̄,λ(Θ̄)

. (6.25)

Mean-field approximation and density instabilities

Effectively, the Legendre transform switched the representation of the system where λ was a
control variable of the free energy F to a more convenient situation, where the order parameter
is now the control variable of a new potential. In the end, F (λ) and Γ

[
Θ̄
]

carry the same
information about the system but with a switch of the control and response parameters. This
statement is better understood by writing down the following direct consequences of taking the
Legendre transform [255]

∂F
∂λ

=− Θ̄ (6.26)

∂Γ
∂Θ

=λ, (6.27)

and as a result, studying the instabilities of the free energy in terms of λ becomes equivalent to
studying those of Γ

[
Θ̄
]
.

Its introduction as a new thermodynamic potential therefore allows us to study the stability
of the system in terms of Θ̄ as the control variable. Our problem then now amounts to computing
∂2Γ /∂Θ̄2 to look for instabilities. In order to do so, we first make an important simplification to
the problem and perform a mean-field approximation by setting

〈
Θ̂2

〉
= Θ̄2 and thus completely

disregarding the correlations
〈
Θ̂2

〉
−
〈
Θ̂
〉2

. Equation (6.25) then reduces to

Γ
[
Θ̄
]

= Γ0

[
Θ̄
]
+D0Θ̄

2, (6.28)

which is a development of the free energy in even powers of Θ̄ as in Landau’s theory, truncated
at second order because of the mean-field approximation. It is likely that in order to capture
the complete physical picture of the phase transition, one has to perform the full calculation
including the neglected quantum correlations of equation (6.25). By defining the susceptibility
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of the system as 1

χ =
∂Θ̄
∂λ

, (6.29)

equation (6.27) leads to
∂2Γ

∂Θ̄2
=
∂λ

∂Θ̄
= χ−1, (6.30)

which, with equation (6.28), yields
χ−1 = χ−1

0 + 2D0 (6.31)

or
χ =

χ0

1 + 2χ0D0
(6.32)

with χ0 the susceptibility of the system in the absence of long-range interactions. This last
relation for the susceptibility is a well-known result for response functions computed in the mean-
field approximation, often labelled as Random Phase Approximation. It features a divergence for
a critical value of the interaction strength

D0C = − 1
2χ0

, (6.33)

uniquely determined by the value of χ0. The diverging susceptibility marks the onset of a second
order phase transition2, and for values of the interaction parameter |D0| > |D0C| the susceptibility
changes sign and the system becomes unstable towards acquiring a finite value of

〈
Θ̂
〉
: towards

density wave ordering.

Experimentally we can therefore access the phase transition using the dependency of D0 on
the pump beam parameters given by equation (6.17). Increasing its absolute value amounts to
either increasing the pump power or decreasing its detuning with respect to the dispersively
shifted cavity resonance, in order to reach the required critical strength D0C. Above the critical
point the system is expected to acquire a modulation of its density, with a spatial structure
given by the geometry of the interference lattice described in equation 6.6 and this process
is accompanied by scattering of light into the cavity mode. To convey a clear picture of the
situation, we sketch the total light field when the system enters the ordered phase in figure 6.3.

6.1.3 Density response function

Before carrying on with the experimental observations of the phase transition, we first present
in this section the physical meaning of the susceptibility χ and introduce a way to compute χ0,
allowing us to compare experimental measurements of D0C with predictions coming from the
equations obtained at the end of the previous section.

To unveil the role of χ as the density response function we again apply the idea of considering
a small perturbation of the system in the form −λΘ̂ so that the formalism developed in the
previous section applies. In particular the definition for the susceptibility holds, and it verifies
χ = ∂Θ̄/∂λ. Our goal is now to show that this quantity is indeed the static density response

1We show in the following paragraph that this seemingly arbitrary definition actually directly connects to the density
response function or density susceptibility already discussed in chapter 5.

2Performing the mean-field approximation for the order parameter and neglecting its correlations has forced us to
consider the phase transition to be of second order.
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λp

u−

u+

Figure 6.3: Geometry of the light fields above the critical point. We clearly observe the role
played by the small angle between the pump and cavity fields. Their interference in the ordered
phase yields a 2D lattice with wavevectors k±, imposing a density modulation with the same
geometry on the atomic density (not displayed here). Below, we show a close-up view of the
direct lattice with associated real space vectors u± to further emphasize the large imbalance
between |k−| and |k+|. λp is the wavelength of the pump and cavity photons.

function of the gas, as introduced in chapter 5. We consider the system without long-range
interactions such that χ = χ0 and the first order response of the expectation value of Θ̂ to the
perturbation is given by Kubo formula [206], such that

〈
Θ̂
〉

= Θ̄ = Θ̄0 + iλ
∫ 0

−∞
dt′

〈
[Θ̂(0),Θ̂(t′)]

〉
0

(6.34)

where the index 0 now refers to the absence of long-range interaction and of density perturbation,
so that with the definition of χ

χ0 =
∂Θ̄
∂λ

= i
∫ ∞

0
dt

〈
[Θ̂(t),Θ̂(0)]

〉
0
. (6.35)

The commutator is easily developed in terms of the time-dependent Fourier components of
the density distribution n̂q(t) coming from the definition of the order parameter Θ̂ defined by
equation (6.11). We recall the definition of the total time-retarded density-density response
function

χR(q,ω) = −i
∫ +∞

−∞
dtθ(t)eiωt

〈[
n̂q(t), n̂−q(0)

]〉
0
, (6.36)

such that equation (6.35) leads to

χ0 = − 1
16

[
χR(k−,0) +χR(−k−,0) +χR(k+,0) +χR(−k+,0)

]
, (6.37)
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which indeed is the sum of the density response functions of the atomic ensemble, evaluated at
all the possible interference lattice wavevectors. We note that we again obtain a purely static
response function, this is due to χ being defined in the thermodynamic ground state of the
system, and as such χ0 is a purely real-valued function. In addition, we have now made clear
the existence of two different length scales for our system, associated with the density responses
at |k+| and |k−|. In the following we focus on deriving approximations to evaluate the density
response contributions to χ0 in these two regimes in order to obtain an estimation for D0C.

Evaluation of the susceptibility

Defining the Fermi energy EF with its value taken at the center of our trap, where the density is
maximal, we have that for the typical gases we prepare at unitarity

|k−| = 0.54kF (6.38)

|k+| = 3.39kF (6.39)

or in terms of the recoil energy associated with scattering processes of total momenta ±k− and
±k+

ϵk− = 0.29EF (6.40)

ϵk+
= 11.51EF, (6.41)

defined with ϵq = ℏ2|q|2/2m.
In the regime |k+| ≫ kF, which corresponds to the short wavelength contributions to χ0,

the density response can be evaluated in the BCS-BEC crossover using the product operator
expansion technique presented in chapter 5. As shown there, the leading order contribution to
the response function reads

χR(k+,0) ∼ −2N/ϵk+
. (6.42)

On the other hand, the long-wavelength contributions χR(q = ±k−,0) are evaluated by
considering the q→ 0 limit. As presented in appendix C, the value of the local response function
χR(0,0) is given by the compressibility sum rule

χR(0,0) = −
∫
dr
∂n
∂µ

= −
∫
drn2κ, (6.43)

where κ is the isothermal compressibility of the gas and can be inferred from the thermodynamic
equation of state for the strongly interacting Fermi gas, which has been accurately measured in
the BEC–BCS crossover as a function of the contact interaction strength [256, 257]. We use the
interpolation formula for the universal thermodynamic functions provided in reference [256]
to deduce the compressibility of the homogeneous Fermi gas, the quantity involved in equa-
tion (6.43). We then use the local density approximation to perform trap-averaging and to relate
it to the Fermi energy EF at the center of the trap.

All in all, we notice that throughout the BCS–BEC crossover, the ratio χR(k−)/χR(k+) is the
smallest in the far BCS regime and bounded from below by 3ϵk+

/4EF, which is ∼ 12 for our
parameters. We therefore neglect the short wavelength contributions to the total response and
simply consider

χ0 =
1
8

∫
dr
∂n
∂µ
. (6.44)
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kF

k−

k+

kp

Figure 6.4: Momentum-space picture of the long-range interactions. Photon scattering from
the pump into the cavity and vice versa via the atoms imparts momentum kicks ±k± onto the
latter, displacing the Fermi surface (blue disc). Since |k−| < kF, the photon-mediated interactions
induce particle-hole excitations at the Fermi surface, which cost little energy to drive. kp is the
magnitude of the wavevector associated with the pump beam.

This hierarchy |k+| ≫ |k−| and its consequence in terms of the relative magnitudes of the
associated density responses is made clear by figure 6.4, which represents the system in mo-
mentum space. The coupling between momentum modes coming from the large wavevector
contributions is not restricted by Pauli principle, at least not without external distortion of the
Fermi surface such as in reference [226]. However, the small wavevector contributions associated
with ±k− directly address particle-hole excitations atop the Fermi surface at zero-frequency,
as demonstrated by a largely increased density response. Equivalently, we see that it is much
more energetically favorable for the system to self-modulate its density at ±k− than for the
short-wavelength case. The general momentum dependency of the response function is well
reproduced by Lindhard function [258], which only quantitatively holds for a noninteracting
system.

6.2 Observation and characterization of density wave ordering

In this section, we now turn to the experimental observation of the phase transition to the density
ordered state and relate it to the concepts developed above. In a first part we present the general
measurement procedure and results, obtained for a unitary Fermi gas. In a second time, we
extend our measurements to the BEC–BCS crossover and compare the measured critical values of
D0 at which the phase transition sets with the theoretical predictions derived from the previous
section, and do it as a function of the interaction parameter. Finally, and for completeness, we
present some useful calibrations of the system.

6.2.1 Experimental procedure and observation of the phase transition

In the experiment, we prepare a degenerate Fermi gas of N = 3.5× 105 6Li atoms equally popu-
lating the two lowest hyperfine states, trapped within a mode of our high-finesse optical cavity
and in the vicinity of a broad Feshbach resonance at 832G. The photon-mediated interactions
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Figure 6.5: Evolution of the intracavity photon number and order parameter as the phase
transition is crossed. We observe a clear threshold behavior for the intracavity photon number
n̄ =

〈
â†â

〉
, which we translate in terms of order parameter following the derivations presented in

the text. We measure the critical value of the pump power V0C by finding the maximal slope
of the signals. This example data set comes from a single repetition of the experiment and was
measured at ∆c = −2π × 2.6MHz. The intracavity photon number is obtained by converting the
measured photon count rate using the quantum efficiency calibration of the detection chain
presented in section 5.2.2. Θ̄ being an extensive quantity, we rescale its value by the number of
atoms to obtain a dimensionless parameter.

are turned on by illuminating the cloud from the side using a retro-reflected pump beam, polar-
ized along the quantification axis given by the direction of the magnetic field. The pump and
the neighboring cavity TEM00 resonance are detuned with respect to the atomic D2 transition
by −2π × 138.0GHz. There, the atoms induce a dispersive shift of the cavity resonance by
δc = U0N/2 = −2π × 280 kHz, exceeding the cavity linewidth κ = 2π × 77(1) kHz. The pump
beam intersects the cavity at an angle of 18◦ as shown in appendix B, such that two discrete,
density-fluctuation modes at momenta k± are coupled to light, as discussed in the previous
section. We use pump-cavity detunings |∆c|/2π between 1 and 10 MHz for which |∆c| ≫ |δc|,κ
and the cavity field adiabatically follows the atomic dynamics, ensuring that the system is
accurately described by the Hamiltonian (6.12).

We observe density wave ordering upon increasing the strength of the photon-mediated
interaction above a critical threshold. Experimentally, we linearly ramp up the pump power, and
therefore the pump lattice depth V0, and monitor the intracavity photon number by recording
the photon flux leaking through one of the cavity mirrors, while keeping all other parameters
fixed. In figure 6.5 we show a typical photon trace and the corresponding values of the order
parameter, linked by equation (6.15), as V0 is linearly increased up to 2.5ER over 5ms, with
ER = ℏ2k2

p/2m = h× 73.67 kHz the recoil energy for 6Li. The built-up in the cavity field above
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a critical pump strength V0C corresponding to a critical long-range interaction strength D0C
marks the onset of density wave ordering as discussed earlier in the chapter. The choice of ramp
time for the pump power and the calibration of the pump lattice depth in terms of ER are both
described later in section 6.2.4.

6.2.2 Mapping the phase diagram
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Figure 6.6: Phase diagram of the unitary Fermi gas in the V0–∆c plane, exhibiting density wave
ordering. The dash-dotted line depicts the location of the theory predictions for the critical
interaction pump depth as described in the text. Each line is an average of three photon traces
taken with a vertical binning of 2π × 200kHz and horizontal binning of 50µs, corresponding to
2.5× 10−2ER.

Repeating this measurement as a function of ∆c, we construct the phase diagram of the system
in the V0–∆c plane, presented in figure 6.6. For small |∆c|, the phase boundary is a straight line,
corresponding to a constant ratio V0/∆c, showing that the boundary is determined only by D0.
For |∆c| ≲ |δc|, we observe instabilities likely due to optomechanical effects. For |∆c| > 2π × 3
MHz, we observe a systematic deviation from the linearity, likely due to the lattice formed by
the pump, changing the gas properties [259]. This single-particle effect is not captured by our
treatment of the effective interaction Hamiltonian (6.12). The structures arising for ∆c ∼ −2π × 7
and −2π × 8MHz originate from the presence of high-order transverse modes of the cavity, with
mode functions overlapping with the atomic density as already discussed in chapter 2. The fact
that we observe such structures in terms of density ordering and not when directly probing the
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system on axis as in section 2.1.2 showcases the sensitivity of the present method. We also note
that when detuning the pump frequency to −2π × 25 and −2π × 50 we observe density ordering
in all of the higher-order cavity modes observed in the same section.

The prediction for the phase boundary is presented as the dash dotted line in figure 6.6. It
comes from an evaluation of equation (6.17) at the critical point, where we have D0C = −1/2χ0
such that

η2
0C = − ∆̃

2
c +κ2

2χ0∆̃c
. (6.45)

By noticing that g1Ω2 = g2Ω1 in equations (6.7) through (6.9), we also have η2
0 = U0V0 and

therefore

V0C = − ∆̃2
c +κ2

2U0χ0∆̃c
, (6.46)

which can be solved for all values of ∆c spanned by the measurement, with the knowledge of χ0
computed from equation (6.44). In the regime |∆c| < 2π × 3MHz, where the effect of the pump
lattice are negligible, we observe a discrepancy of a factor of 2 with respect to the prediction.

6.2.3 Variation of the interaction parameter

0 1 2

V0 (ER)

−10

−8

−6

−4

−2

∆
c/

2π
(M

H
z)

1/kFa = 0.69

0 1 2

V0 (ER)

1/kFa = −0.75

100

101

102

103

n̄

Figure 6.7: Phase diagrams for strongly interacting Fermi gases prepared in the BEC (left) and
BCS (right) regimes. The diagrams show similar features across the BEC–BCS crossover, with
a displaced phase boundary. All other experimental conditions are similar to the ones used to
acquire the phase diagram of figure 6.6.

Having access to calculations of χ0 and thus predictions for the phase boundary spanning the
whole BEC–BCS crossover, we repeat the measurements presented in the above paragraph for
different values of the scattering length. We first note that for all the explored values of the
interaction parameter, we systematically observe density wave ordering for a sufficiently strong
pump. We therefore acquire similar phase diagrams throughout the BEC–BCS crossover and
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present two of them in figure 6.7, which correspond to interaction parameters (kFa)−1 = −0.75
and 0.69 for the BCS and BEC side of the resonance respectively.3 While these phase diagrams
are qualitatively similar to the one measured at unitarity, with a linear phase boundary at small
∆c, we observe a systematic shift of the density wave phase boundary towards larger pump
strengths as the system crosses over from the BEC to the BCS regimes. In the regime −0.7MHz
< ∆c/2π < −3MHz, the linear phase boundary observed at unitarity persists for all scattering
lengths.
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Figure 6.8: Systematic measurement of the critical pump depth as a function of the contact
interaction parameter. Each panel represents a different set of measurement, acquired for
magnetic fields across the Feshbach resonance. The light blue points correspond to single-
shot measurements of V0C and the orange points are their averaged value with a binning of
2π×500kHz. We retrieve V0C by looking at the point with the highest slope in the photon traces,
as showcased by figure 6.5. The dashed blue line is a linear fit to all the data, and we infer the
value of V0C at exactly ∆̃c = 5δc from it (white square).

In order to systematically study the dependency of the phase boundary on the interaction
parameter, we extract the value of the critical pump lattice depth inferred at a fixed relative value
of the pump frequency with respect to the dispersively shifted cavity. This allows to discard the
trivial effect of a systematically varying atom number as we change the interaction parameter in
the gas preparation stage of the experiment. The procedure to determine the critical pump depth
is summarized in figure 6.8. Even by taking the atom number dependency of the dispersive shift
out of the equation, we still observe a clear variation of V0 with (kFa)−1.

3In this chapter we define the Fermi energy by its value at the center of our trap, which systematically overestimates
the trap averaged value used in the previous chapters and therefore leads to lower values of the interaction parameter
for similar magnetic fields.
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To make a qualitative comparison between the critical points which accounts for a varying
Fermi energy in the crossover, we compute the dimensionless long-range interaction parameter
ND0/EF. Figure 6.9 presents the phase diagram in the parameter plane of the short- and long-
range interaction strengths. We observe a smooth dependence of the phase boundary on the
short-range interaction, with a systematically lower critical long-range interaction strength
in the BEC side. It, however, underestimates the absolute threshold by about a factor of two
for all short-range interaction strengths, indicating that our approach which consists in only
considering the zero-temperature compressibility overestimates the actual susceptibility. We
for example expect that finite wavevector and finite temperature should generally decrease the
susceptibility. More so, the discrepancy could also come from the neglected contribution to the
susceptibility which we discarded when making the mean-field approximation back when we
derived equation (6.28).
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Figure 6.9: Phase diagram for the short- versus long-range interaction strengths, measured
at a constant relative detuning ∆̃c = 5δc (blue circles). Above a critical value, the system
systematically exhibits a modulated density, denoted by the ’DW’ label. The orange dash-dotted
line is the critical interaction strength calculated from theory. The left panel pictures the absolute
measured and computed values which features a discrepancy of a factor of 2 over all the BEC–
BCS crossover. Nevertheless, the relative scaling of the critical interaction strength is still well
captured by our model as shown by the right panel where all the data are rescaled with respect
to the value at unitarity.

6.2.4 Experimental calibrations

Pump ramp time and lifetime in the ordered phase

In order to set the pump ramp time used in the measurements presented above, we systematically
varied the duration of its linear power ramp while keeping the endpoints constant and measured
the variation of the critical point as a function of this ramp time. An example of such a
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Figure 6.10: Pump ramp time and lifetime calibration. a Evolution of the critical and photon
number as a function of the pump ramp duration. Each line is a photon trace acquired for a
unitary gas at a detuning of ∆c = −2π×3MHz and displayed in log scale. b Lifetime measurement
of the unitary Fermi gas in the density ordered phase.

measurement is presented by the panel a of figure 6.10, acquired for a unitary Fermi gas and
with ∆c = −2π × 3MHz. We observe that above 2ms, the critical point V0C doesn’t vary with
increasing ramp duration but that the number of photon scattered in the cavity still does.
However, above 5ms the number of photons in the ordered phase stays constant, and therefore
we settled for that particular value of the ramp duration, thus fixing the rate to be 0.5ER/ms. We
observed similar trends for all the explored interaction parameters and detunings.

With similar experimental parameters, we additionally measure the lifetime of the gas in the
ordered phase by first ramping up the pump power recoil at a rate of 0.5ER/ms to V0C = 1.3ER,
slightly above the critical point, and then holding the gas in the trap with the pump at constant
power for varying durations. We measure the atom number after the procedure and plot its
relative variation against the hold time, as shown in the panel b of figure 6.10. Out of and
exponential decay fit we extract a value of τ = 26 ± 4ms for the time constant. We note that
this value is much lower than any of the natural trap lifetimes measured across de BEC–BCS
crossover, suggesting that scattering losses dominate over any other decay process.

Lattice depth calibration

We calibrate the depth of the pump lattice using Kapitza-Dirac diffraction, one of the many
existing techniques to calibrate depths of optical lattices with cold atomic ensembles [260].

The idea is to pulse the pump lattice onto the atomic density for a short time τ and measure
the fraction of atoms diffracted in a number of momentum states |n⟩, which we label in multiples
of the momentum transfer n× ℏk, with k = 2kp. Usually this calibration is done in the Raman-
Nath regime, for which the light-matter interaction time τ is much smaller than the recoil time
of the atoms which sets the typical lattice dynamics time. However, in our case the lowest
experimentally achievable pulse duration is 2.5µs, which is of the order of the recoil time of 6Li
with E−1

R = 13.57µs, so that the kinetic energy of the atoms during the pulse cannot be neglected.
To account for this kinetic energy contribution, we apply the method described in details in
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Figure 6.11: Pump lattice depth calibration. a Absorption picture of a molecular cloud after
diffraction on the pump lattice. We systematically measure the population in each momentum
mode highlighted by the black squares and labelled with the total corresponding two-photon
momentum transfer. b Evolution of the population in the observed momenta modes as a function
of the lattice pulse duration. The dashed lines are fit of our data to equation (6.47), from which
we infer V0 = 2.5ER for a pump power of 3.1mW and a detuning with respect to the atomic
resonances ∆a = −2π × 138.0GHz.

reference [261] and express the relative population of atoms diffracted in state |n⟩ with

Pn = J2
n

(β
2

+ sinc
α
2

)
(6.47)

with β = V0/(ℏτ), α the pulse duration in units of the two-photon recoil time and Jn the nth Bessel
function of the first kind.

Experimentally, we measure the relative populations Pn with a gas produced on the far BEC
side of the Feshbach resonance at 695G in order to obtain a real condensate of molecules, with
the weakest possible interparticle interactions. We pulse the pump lattice for a varying duration
after having released the molecular BEC from the dipole trap and take an absorption image of
the cloud after an additional 1.5ms of time-of-flight. A typical absorption picture is shown in the
panel a of figure 6.11. We extract the relative populations by fitting Gaussian profiles to cropped
regions of the image, as shown in the figure. Repeating the measurement for varying pulse
durations, we obtain the typical curves of panel b on which we fit equation (6.47) to extract a
single value of β in units of ER and therefore of smol = V0/ER,mol. In addition, we have to account
for a reduction of a factor 4 for the measured smol with respect to satom. Indeed, we perform
the measurements on a gas of molecules with ER,mol = ER/2 and with twice the polarizability of
single atoms, thus experiencing a lattice potential four times as deep.

Calibration of pump-induced heating
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Figure 6.12: Measurement of the heating due to the pump lattice. We apply the processing
technique presented in section 2.2 to extract the temperature out of an absorption image of
the cloud with the unitary Fermi gas equation of state. In addition, we present measurements
using a second technique which rely on comparing the shape of the cloud with that of a non-
interacting gas [47]. While the temperature fit to the profile of a non-interacting gas yields
higher temperatures than a direct fit to the equation of state both of the inferred temperatures
are still around the same order of magnitude. In addition, they both confirm that the cloud
remains in a superfluid state even after having entered the ordered phase. The experimental
procedure is detailed in the text and the critical pump depth for the phase transition is denoted
by the vertical orange line, while the critical temperature for a unitary gas trapped under the
harmonic approximation is denoted by the horizontal dash-dotted line.

One major concern when performing the above experiments is the pump-induced heating and
atomic losses. Here we perform thermometry of the unitary gas to verify that it remains in a
superfluid state even after ramping up the pump power and crossed the density wave order
transition.

As discussed in section 2.2, thermometry is performed by transferring the cloud into one of
the arm of the crossed dipole trap and measuring the doubly integrated density profile thanks to
the high-intensity imaging setup. The reduced temperature in this trap is deduced from a fit
of the measured density profiles to the 1D equation of state of a unitary Fermi. This method
yields a reduced temperature T /TFh defined with respect to the Fermi temperature of the gas in
a harmonic trap with

TFh = ℏω̄(3N )1/3, (6.48)

where N is the total number of atoms and ω̄ = (ωxωyωz)1/3 = 2π × 106Hz is the geometric mean
of the oscillation frequencies in the single-arm trap.

We estimate the heating due to the pump by measuring the temperature of the cloud after a
linear ramp of the pump lattice depth to varying end values at a constant rate, and then ramping
it back to zero with the same rate. This measurement thus provides an upper bound for the
pump-induced heating since in the above experiments we only ramp up the probe power. The
measurement is performed for a unitary gas with a pump-cavity detuning of ∆c = −2π×2.5MHz.
The cloud is transferred in the single-arm dipole trap between the pump lattice ramp and the
actual temperature measurement. With increasing pump power we observe a monotonically
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increasing temperature of the cloud shown in figure 6.12. Interestingly, temperature shows no
particular feature when the pump power reaches and exceeds the density wave ordering critical
point. At the critical point, we measure a temperature of T = 0.12(2)TFh, an increase by a factor
of 50% compared with the initial one. Heating is sufficient to heat the cloud above the superfluid
critical temperature of 0.21TFh [120] for a strength of the long-range interactions exceeding
2D0C, deep in the ordered phase. Even though we do not have access to measurements of the
temperature directly in the ordered phase, we have still shown that the cloud remains superfluid
after the phase transition and going back to the unperturbed one.

6.3 Measurement of the density wave susceptibility

While the measurement of the cavity field allows for the identification of the onset of DW
order, it does not yield information on the photon-mediated interactions below the transition.
Nevertheless, the long-range interactions strongly modify properties of the gas even far below
the ordering transition, via virtual cavity photons as shown in section 6.1. In this section, we
now explore this by directly measuring the susceptibility of the system χ as a function of the
long and short-range interaction strengths. Indeed, with equation (6.32) in mind, we expect a
divergence of χ as D0 is increased to approach the critical point.

6.3.1 Implementation of fixed-q Bragg spectroscopy

kp, ωp

kc, ωp +∆p

Figure 6.13: Experimental setup to measure the density wave susceptibility. In the presence of a
given pump field, which sets the strength of the long-range interactions, we shine an on-axis
beam with a finite frequency detuning ∆p from the pump beam. The resulting total light field
features a 2D lattice structure given by the interference of the two beams, with an amplitude
oscillating at a frequency set by their detuning. This effectively excites the system at wavevectors
±k± and its corresponding density response gets mapped onto the cavity field.

In order to directly measure the susceptibility, we slightly modify the experimental procedure
and implement a variant of Bragg spectroscopy by driving the cavity on-axis with a very weak
probe laser in addition to the transverse pump as sketched in figure 6.13. This scheme was first
presented in reference [262] where it was implemented for a similar use for the case of bosons.
It amounts to imposing a density wave pattern at k± for values of D0 below the critical point.
In this paragraph, we show that the value of χ(D0) is directly linked to the resulting photon
leakage rate.
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The Hamiltonian of the system given by equation (6.12) is modified to accommodate the
additional weak probe at frequency ωdrive by adding an on-axis drive term

Ĥdrive = β
[
âei(∆pt−φ0) + h.c.

]
, (6.49)

with strength β. We note φ0 the initial, uncontrolled, phase between the pump beam and on-axis
probe. In the experiment, we impose a small detuning ∆p between the pump frequency ωp and
the drive frequency ωdrive, imposing a slow winding of the phase during the probing time. This
winding leads to a slowly oscillating intracavity photon number as we show below.

The adiabatic elimination of the cavity field in the presence of the drive leads to a modified
expression for the effective Hamiltonian

Ĥeff = Ĥ0 +D0Θ̂
2 +

2β
η0
D0Θ̂ cos

(
∆pt −φ0

)
, (6.50)

and the steady-state cavity field reads

â =
1

∆̃c + iκ

[
η0Θ̂ + βei(∆pt−φ0)

]
. (6.51)

We note that for β = 0, we recover the equations presented in the first section. Considering the
additional drive term in equation (6.50) as a weak perturbation we can once more write the Kubo
formula to calculate the response of Θ̂ under this perturbation, such that

〈
Θ̂(t)

〉
=

〈
Θ̂
〉

0
+

2βD0

η0

∫ ∞

−∞
dt′χ(t − t′)cos

(
∆pt

′ −φ0

)
, (6.52)

where the index 0 refers to the expectation value with β = 0, so that
〈
Θ̂
〉

0
= 0 below the critical

point. The finite detuning between the pump and drive imposes the time dependence of the
problem and the time dependent density response is defined with

χ(t − t′) = −iθ(t − t′)
〈
[Θ̂(t),Θ̂(t′)]

〉
0
. (6.53)

Its temporal Fourier transform gives the dynamical response function, defined by

χ(∆p) = −
∫ ∞

−∞
dtχ(t)ei∆pt , (6.54)

which is an extension to finite frequencies to the density response of the system derived in
section 6.1 and thus verifies equation (6.32). Equation (6.52) can then be recast as

〈
Θ̂(t)

〉
=

〈
Θ̂
〉

0
+

2βD0

η0
Re

[
χ(∆p)e−i(∆pt−φ0)

]
. (6.55)

Taking the low frequency limit ∆p ≪ cs|k−|, where cs is the speed of sound, the dynamical
response function is purely real and χ(∆p) ≃ χ(0) +O((∆p/cs|k−|)2). Below the critical point,
using the mapping of the order parameter onto the cavity field given by equation (6.51), the
intracavity photon number reads, to first order

〈
â†â

〉
=
β2

∆̃2
c

[
1 + 4D0χ(0)cos2(∆pt −φ0)

]
. (6.56)
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This equation explicitly relates the amplitude of the oscillations of the intracavity field to the
static density wave susceptibility χ(0) below the critical point. It also features the importance of
probing the system with a finite detuning ∆p. Should ∆p = 0 we would only observe a constant
signal for each repetition of the experiment with an amplitude varying due the uncontrolled
initial phase φ0. Setting ∆p , 0 thus forces the signal to oscillate and allows to measure its
amplitude on a single realization of the experiment.

6.3.2 Measurement of the density response in the presence of long-range
interactions

0

200 ∆̃c < 0

0 2 4 6 8 10 12
time (ms)

0

200

n̄

∆̃c > 0

Figure 6.14: Photon traces obtained in the presence of the weak on-axis drive. The first 5ms
correspond to the ramp-up of the pump lattice depth. Since it remains below the critical point,
the cavity mode doesn’t get populated. Once the setpoint is reached, we shine the on-axis
drive as depicted by the shaded area in both panels. Both for attractive and repulsive long-
range interactions we observe the predicted oscillatory behavior of the intracavity field, with an
amplitude given by the density wave susceptibility.

Experimentally, we first fix the long-range interaction strength by ramping up the pump lattice
depth to a value below the critical point and then shine the on-axis drive for 10ms with ∆p =
2π × 200Hz as to work in the low-frequency limit. Typical signals are shown in figure 6.14
for ∆̃c = −2π × 1.7MHz and ∆̃c = 2π × 1.7MHz, and for a pump lattice depth of V0 = 0.75ER.
Both signals exhibit the oscillatory behavior expected from equation (6.56) at a frequency of
2∆p together with damping, likely due to heating resulting from the large oscillating signal.
However, we observe that the density response is lower for ∆̃c > 0 which corresponds to repulsive
interactions compared with attractive ones for ∆̃c < 0.

In both cases, as displayed on the figure, the amplitude of the initial oscillations can be
directly fitted to yield the value of χ(0). For attractive photon-mediated interactions, the
intracavity photon number is strongly enhanced by the presence of the atoms, as the gas forms
a Bragg grating and coherently transfers photons form the pump to the cavity, similar to an
optical parametric amplifier [263]. For repulsive interactions, we instead observe a reduced
susceptibility.
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Divergence of the static density wave susceptibility
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Figure 6.15: Divergence of the density wave susceptibility when the strength of the long-range
interactions approaches the critical value. Each color corresponds to a value of the contact
interaction parameter for extreme points of the BEC–BCS crossover and the overlapping data
suggest an identical variation of the density response with the long-range interaction strength
for all short-range interactions. The scaling of the susceptibility is, up to D0/D0C = 0.9, well
captured by equation (6.58) displayed as the dashed black line. The gap around D0/D0C = 0
comes from the inability to resolve oscillations of the cavity field for low values of χ(0). The inset
shows the same data in log scale to further emphasize the divergent scaling of the susceptibility.

To observe the divergence of the susceptibility as the critical point is approached, we repeat the
measurement from above by systematically varying the strength of the long-range interactions
D0 up to 0.9D0C, both for attractive and repulsive interactions. In the repulsive case D0C is not
defined, but we still consider its value to correspond to the same absolute value of the pump
power as for the attractive case. We perform the measurements for ∆c = ±6δc and 1/kFa = −0.75,
0, and 0.69 and present the results in figure 6.15. There, we display the rescaled quantity

D0Cχ(0) =
4D0χ(0)

4 D0D0C

, (6.57)

which features, from equation (6.32), a surprisingly simple and universal form

D0Cχ(0) =
1

2
(
1− D0D0C

) , (6.58)

where we used D0C = −1/2χ0. We observe an increase of the susceptibility over more than one
order of magnitude with increasing D0, which is the expected feature of second order phase
transitions. This was observed for self-organization and supersolid transitions in non-interacting
BECs [262, 264]. For repulsive photon-mediated interactions, no ordering is expected nor
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observed, and we observe a reduction of the susceptibility by up to a factor of ∼ 3 over the
same range of |D0|. Up to normalization of χ(0) and D0 by D0C, we observe that for attractive or
repulsive long-range interactions, the variations of the susceptibility are identical within error
bars for all scattering lengths in the BCS-BEC crossover. This highlights the versatility of our
system in independently tuning the short- and long-range interactions, therefore addressing
separately pairing and particle-hole channels. We have therefore demonstrated that attractive
(repulsive) photon-mediated interactions lower (raise) the energy cost of such particle-hole
excitations.

Extension of the measurement for finite frequencies
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Figure 6.16: Measurement of the density wave response of a unitary Fermi gas as a function of
∆p and for values of D0/D0C between 0.1 and 0.9. The absence of structure at finite frequency
confirms the absence of mode softening. The data is taken for ∆c = −2π × 2MHz.

Similar experiments for bosons with a sharp single-frequency excitation spectrum observed
that the long-range interactions lead to a mode softening of the corresponding excitation mode,
touching zero at the critical point [262, 265]. Free fermions at low momenta in contrast feature a
continuous, incoherent gapless particle-hole spectrum [258], such that no soft mode is expected.

Following up on the last remark we now extend our susceptibility measurements to finite
frequencies, by systematically scanning ∆p up to 2π×10 kHz, larger than ℏ2k2−/2m = h×7.2kHz,
the recoil energy associated with k−. We then extract χ(∆p) from the amplitude of the photon
trace oscillations at 2∆p. In that case, we note that χ(∆p) is not necessarily real-valued anymore
so that taking the real part of equation (6.55) actually amounts to measuring |χ(∆p)|. For the
unitary Fermi gas the results are presented in figure 6.16, and we observe that, for D0 up to
0.9D0C, |χ(∆p)|monotonically decreases with frequency ∆p. The low-frequency susceptibility
increases upon approaching the transition, while the higher-frequencies parts of the spectrum
remain unchanged. We observe such a behavior for all accessible scattering lengths in the
BCS-BEC crossover.

These results contrast with the mode softening observed with weakly interacting BECs.
While it would also be expected in our geometry for free fermions, due to the broad particle-hole
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spectrum, it is surprising that this feature is also present for the unitary Fermi gas which is
known to also display a phonon spectrum at low momentum [266, 267]. This might be due
to the strongly-interacting nature of the system leading to the damping of the excitations, but
could also originate from the combination of finite temperature and trap averaging.

6.4 Long-range interactions between pairs of atoms, an outlook

As a natural follow-up of the results presented above and in chapter 4, one could think of
operating the pump in the vicinity of a photoassociation transition, inducing long-range pair-
pair interactions in addition to the atom-atom interactions. If the analogy with the atoms-only
case holds, this system would also exhibit a critical point above which the density of pairs
becomes unstable towards acquiring a spatial modulation: realizing a pair density wave.

Here we lay down a basic theoretical model to describe such an experiment by expressing the
light-matter interaction Hamiltonian for the pairs in the dispersive regime, and in the presence
of the transverse pump. We then present preliminary experimental observations in such a regime
which show that the coupling to pairs induces a modification of the critical point for the ordered
phase.

6.4.1 Dispersive regime for the pairs

We recall the expression of the total Hamiltonian describing the light-matter interaction between
the atoms and a light field, in the vicinity of a photoassociation transition given by equation (4.6).
In the dispersive regime for the pairs and single atoms, we perform the adiabatic elimination
of their respective excited states following the method presented in section 2.1.3. In a frame
rotating at the pump frequency the Hamiltonian reads

Ĥ = Ĥ0 + Ĥcav + Ĥlm +
1
∆m

∫
dRĜ†(R)Ĝ(R)φ̂†m(R)φ̂m(R) (6.59)

where the first three terms are given by equations (6.2) to (6.4). The additional term comes from
the dispersive coupling of the pairs to both the pump and cavity fields with

Ĝ(R) =
∫
drf (r)ψ̂1(R− r

2
)ψ̂2(R +

r
2

) (6.60)

where f is the radial part of the excited molecular wavefunction. φ̂m(R) is the total light field
interacting with the pairs with a definition similar to that of equation (6.5) and ∆m is the
detuning between the photoassociation transition and the pump frequency. The spatial structure
of the interaction is the same as the one described by equation (6.6), acting on the two-body
density Ĝ†Ĝ.

By defining an order parameter Θ̂m for the pair density with

Θ̂m =
∫
dRĜ†(R)Ĝ(R)coskcrcoskpr, (6.61)

one can think of applying the same reasoning as presented in section 6.1.2 to study the instabili-
ties of the system, accounting for the extra contribution coming from the pairs. Since the strength
of the long-range interaction for the pairs scales with ∆−1

m , one can expect a sizeable contribu-
tion to the free energy when the cavity resonance frequency approaches the photoassociation
transition.
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Figure 6.17: Phase diagram in the V0–∆ω4
plane. Top, dispersive shift measurements indicating

the location of the photoassociation transition. Center, aggregated photon traces obtained when
ramping up the pump power. Bottom, location of the critical point extracted from the photon
traces for a few selected detunings (orange diamonds). The blue circles depict the same data,
accounting for the atomic losses before the critical point is reached and the varying dispersive
shift.

Without pushing the theoretical modelling further, we performed this experiment by proceeding
exactly as described in section 6.2, but tuning the cavity and pump frequencies in the vicinity
of a photoassociation transition. We chose the transition located −2π × 25.99GHz from the
D2 π transition at 832G studied in chapter 4. We fix ∆c = −2π × 4MHz and linearly ramp
up the pump power for different values of the cavity resonance frequency ωc around the
photoassociation transition. In total, we explore ∆ω4

= ωc − ω4 ∈ 2π × [−300,300]MHz, or
equivalently ∆a,2 ∈ −2π × [26.29,25.69]GHz. The aggregated photon traces are presented in
figure 6.17. Away from the transition, the atomic contribution dominates, and the critical point
is systematically located around V0 ≈ 0.5ER. When the transition is approached we observe an
additional contribution to the critical point. We confirm the effect by subtracting the effect of
both atomic losses and a variation of the dispersive shift, as displayed on the last panel.
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6.4.2 Interpretation as an optical Feshbach resonance

One interesting consequence of expressing the coupling to pairs in the dispersive regime is an
interpretation of the system as realizing an optical Feshbach resonance [268], where the coupling
to excited molecular states leads to a modification of the scattering length. Here we present a
quick argument based on Tan’s relations to motivate the interpretation.

In the absence of light-matter coupling, Tan’s energy relation [147] reads, neglecting the
trapping potential

〈
Ĥ0

〉
=

∑

σ

∫
d3k

(2π)3
ℏ2k2

2m

[
nσ (k)− C

k4

]
+

ℏ2I
4πma

(6.62)

In this expression, the sum of the terms proportional to the contact gives the interaction energy
and one of them has been combined with the kinetic energy part to make the integral ultraviolet-
convergent. The idea here is to show that in the presence of long-range interactions between
pairs, the above expression is modified and accounts for an additional term. In that case, the
expectation value of the total energy reads

〈
Ĥ

〉
=

〈
Ĥ0

〉
+
〈
Ĥcav

〉
+
〈
Ĥlm

〉
+

ℏ
∆m

∫
dR

〈
Ĝ†(R)Ĝ(R)φ̂†m(R)φ̂m(R)

〉
. (6.63)

The last term of this expression is reminiscent of expressions for the two-body correlation
functions obtained in chapter 4. By using a mean-field approximation for the photons, we are
led to calculate

〈
Ĝ†Ĝ

〉
. Using equation (4.16) we get

〈
Ĝ†(R)Ĝ(R)

〉
= B(a)C(R, a) (6.64)

where B is a function which depends on both the scattering length and on the Condon radius RC
of the excited molecular state. We remind that C(R) is the local contact density which verifies
I =

∫
dRC(R).

By considering the field to be homogeneous, the last term of equation (6.63) simplifies to

ℏ
∆m

B(a)I
〈
φ†mφm

〉
(6.65)

and leads to a modification of the contact contribution compared to the case without interaction
of equation (6.62), with

ℏ2I
4πma

→ ℏ2I
4πm

[
1
a

+
4πm
ℏ∆m

B(a)
〈
φ†mφm

〉]
, (6.66)

or in terms of scattering length

1
a
→ 1

a
+

4πm
ℏ∆m

B(a)
〈
φ†mφm

〉
. (6.67)

This last expression indicates that in the presence of long range interactions between pairs in
the dispersive regime, the pump field can be used to tune the effective scattering length of
the gas. Indeed, variations of the pump field intensity or detuning, with respect to either the
cavity resonance or the photossociation transitions, yield effective variations of the scattering
length. Similarly to how modulation [269] or quenches [270–272] of the scattering length were
employed to observe the excitations of strongly interacting Fermi gases, one can now think about
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either quenching or modulating the long-range interaction strength for the pairs in our system
to induce changes in the scattering length.

Conclusion

We have shown that for a wide range of the short-range interaction strength, our strongly
interacting Fermi gas with long-range interactions features a phase transition to a density ordered
phase upon increasing the photon-mediated interaction strength. Given our temperature data,
the gas returns to the superfluid phase when the long-range interaction is ramped back to zero,
with limited heating. However, this leaves open the fascinating question whether the system
remains paired and superfluid in the presence of strong long-range interactions and in the
density ordered state.

Compared to condensed-matter systems showing an interplay of charge-density-wave and
superfluidity [273, 274] which is not well understood to this day[275, 276], our system has a fully-
controllable microscopic Hamiltonian. The photon-induced density order shares similarities
with type II charge-density-wave compounds [277] in which the phase transition is mainly
driven by the electron-phonon coupling. For us, cavity photons playing the role of phonons in
real materials. In this context, the real-time weakly destructive measurement channel through
the cavity field opens the possibility of gaining insight into the interplay of structural effects and
strong interactions in complex quantum materials.
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Le laurier du poète est souvent un cyprès.

Louise Michel

In this manuscript, we have presented the first experiments performed with strongly interacting,
superfluid Fermi gases strongly coupled to light by a high finesse optical cavity.

All the results contained in this work were obtained with the experimental apparatus pre-
sented in chapter 1. There, we discussed the main choices which motivated the specificities of the
design of the machine. It was kept simple yet innovative: it is the first experimental setup which
aimed to investigate the physics of strongly interacting fermions coupled to light in a high-finesse
cavity. To that end, we proved with a first series of cavity spectroscopy measurements presented
in chapter 2 that the atoms-light coupled system was evolving in the strong coupling regime.
On the other hand, using absorption imaging, we demonstrated via an efficient thermometry
method that the strongly interacting gases we routinely produce were indeed operating in the
deeply degenerate, superfluid regime.

Along with the observation of the strong coupling regime for the atoms came a surprise: pairs
of interacting atoms were also getting strongly coupled to the cavity field, via photoassociation
transitions. Since the existence of short-range pairs is a purely many-body effect, we dedicated
chapter 3 to the explanation of the mechanisms inducing the strong atom-atom interactions in
our system. We showed how these strong interactions lead to the existence of short-range pairs,
and how the many-body physics of the gas can be captured by a universal thermodynamical
quantity: the contact. In chapter 4 we put our knowledge of both the strong coupling of atoms to
light and of the short-range physics of the gas to use, and studied in details the coupling of pairs
to light. We proved that the measured light-matter coupling strengths for the pair-polaritons
were directly controlled by the contact. This result is significant, for the first time the many-body
nature of strongly interacting Fermi gases was getting imprinted onto cavity spectra. We reached
a similar conclusion albeit with a different method following the experiments presented in
chapter 5. By performing slow, steady-state, transmission spectroscopy measurements in the
dispersive regime we were able to modulate the atomic density during the measurement. Via the
nonlinear Kerr effect, the modulation got translated into distorted cavity transmission spectra.
The strength of the nonlinearity was linked to a ground-state property of the gas: the density-
density response function. Using an operator product expansion technique, we showed that
this response function is controlled by the contact, again linking cavity spectra with universal
many-body physics.

In the remaining part of the manuscript, embodied by chapter 6, we studied the effects of
engineering long-range interactions, mediated by cavity photons. To the contrary of the other
experiments, the cavity field was now actively driving the system. Above a critical strength for
the long-range interactions, we proved and observed that the atoms exhibit a phase transition to
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a density-modulated, superradiant state: a density wave. We observed the onset of the density
wave via its superradiant light scattering properties, in the ordered phase the cavity mode gets
spontaneously populated with photons. The critical strength for the phase transition is again
given by the density-density response of the unperturbed gas, which in turn depends on the
short-range interaction strength. By measuring the excitation spectrum of the gas in the presence
of long-range interactions, we observed the divergence of its density response as the critical
point was approached, confirming the phase transition interpretation. In addition, we proved
that the gas remained superfluid after the long-range interactions were ramped back down to
zero, with limited heating.

In the following we present some natural extensions of and remaining questions about the
experiments described above.

Investigation of the density-wave ordered phase

Besides what we have presented in the scope of this manuscript, a few questions remain unan-
swered regarding the density-wave phase transition.

Is the density-wave superfluid ? We have shown that the temperature of the gas after having
crossed the transition and turning off the long-range interaction strength was still below
the critical point for superfluidity. However, we do not know for sure what happens to
superfluidity in the ordered phase. Since the density of the gas is highly modulated, one
cannot resort to in-situ fits of trapped density profiles for thermometry.

What happens to Cooper pairing ? The short wavevector k− of the density ordered pattern
nests points of the Fermi surface together, locally distorting it. Since Cooper pairing occurs
on top of the Fermi surface, one can wonder what happens to it in these nested regions.
What would then be the impact of a modified, anisotropic superfluid order ?

How much of a role quantum correlations play in the onset of the phase transition ? We dis-
carded the quantum correlation terms in the derivation of the free energy of the gas in
chapter 6. Given the fact that the resulting prediction for the critical point do not match
our observations by a systematic factor of 2, one could assume that these neglected terms
actually play a sizeable role. Even for simple condensed matter systems exhibiting phase
transitions, quantum correlations are known to play a dramatic role: accurate predictions
for the onset of the spontaneous magnetization of an Ising magnet have to account for such
beyond mean-field terms [253].

What is the order of the phase transition ? A question perhaps linked to the previous one, for
which the formal answer lies again in a finer calculation of the free energy. One of the
early theory work on the phase transition for fermions actually predicted the transition to
be of first order in some particular regime of parameters [250]. One characteristic of first
order transitions is their hysteretic nature, which measurement would most likely require
a better stabilization of atomic losses and heating in the presence of the pump beam. In
addition, the measurement of the critical exponent for the order parameter is expected to
give insight about the universality class of the transition.

What role does the geometry of the system play ? Assuming that our description of the critical
point for the phase transition in terms of density response is correct, one should expect
a drastic modification of the critical behavior when the dimensionality of the system is
reduced. Indeed, Lindhard function drastically changes behavior when going from 3D to
2D and 1D systems [216], with the emergence of a divergence at the Fermi wavevector,
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absent in 3D. When reducing the dimension of the system, a single wavevector connects
proportionally more points of the Fermi surface together. If the Fermi surface is completely
nested, Umklapp processes are expected to lead to a thresholdless phase transition [233].
This could be achieved either by directly reducing the dimensionality of the gas, or more
simply by distorting the Fermi surface to increase the total area connected by the density
order wavevectors, for example by trapping the gas in a lattice.

The answer to some of these questions demands a significant theoretical effort while some
others can be tackled directly in the lab. To that end, there is an ongoing effort to implement
a high-resolution imaging setup on the experiment. With it, we hope to be able to resolve
the in-situ density modulations in the ordered phase and therefore the expected translational
symmetry breaking associated with the phase transition. In addition, the high-resolution optics
would be used to project arbitrary potentials on the atoms, paving the way to the production of a
homogeneous cloud. Later, it might even be used to tune the dimensionality of the system.

Simulation of pair density waves

As discussed in section 6.4, we have recently proven our ability, by addressing the dispersive
regime for the pairs, to engineer long-range interactions between them and observe an effective
modification of the critical behavior for the phase transition process. Similarly to how photonic
signals for the atoms-only phase transition were mapped to density modulations, we are cur-
rently trying to find a good observable to which a pair modulation operator would map. One
interpretation of the system, as shown in the text, would be in terms of an optical Feshbach
resonance [278, 279]. Similarly to how the coupling to a molecular channel in the resonance
model might be employed to tune the scattering length [131, 153], the coupling to a molecular
level of a pair of atoms via a photoassociation transition should lead to a similar result. We
sketched a tentative model in the main text for the process.

The addressing of pair density waves is an interesting perspective for the experiment, adding
yet another strongly correlated matter system to the list of what can be simulated. In itself,
studying pair density waves is also expected to grant insight about the not-so-well understood
phase diagrams of the cuprate high temperature superconductors in which they emerge [280].

Cavity-enabled nondemolition transport measurements

The weakly destructive nature of cavity-based measurements makes them attractive to investigate
the dynamics of quantum systems under continuous observation. While we have demonstrated
the ability to probe the system a discrete number of times without disturbing it with cavity
transmission spectroscopy, continuous measurement of the cavity field would require the im-
plementation of a finer detection scheme such as a homodyne4 setup. With it, continuous
nondemolition measurement schemes of transport processes were proposed [106, 281] and could
be implemented in the experiment.

4Homodyning the cavity field would also grant us insight about the phase of scattered light in the density-ordered
state: another potential observable of the symmetry breaking process.
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AppendixA
Experiment control

All the gas preparation and probing procedures are completely automatized thanks to a powerful
computer control software: Labscript [282]. It is an open-source experiment control system
designed to fully supervize shot-based, time-resolved experiments. We cannot stress how
convenient this software was to interface all the various hardware required to run a cold atoms
machine together. It is entirely Python-based with a rich documentation [283–285], making any
modification straightforward to implement.

Within the framework of Labscript, every experiment is described by a series of explicit,
time-resolved hardware instructions in a Python script. For example, the following piece of code
turns on and off the Zeeman slower beam during the MOT loading phase

t = 0

# Open the flag

Li_shutter.constant(t, value = 10)

# Turn on the beam

ZS_amp.constant(t, value = ZeemanSlower_amp)

t += MOT_loading_time

# Stop loading

Li_shutter.constant(t, value = 0)

ZS_amp.constant(t, value = 0)

...

where each Python object relates to a physical element of the experiment. Labscript then makes
use of three different interconnected software

• RUNMANAGER compiles a sequence Python script into a series of time-tagged hardware
instructions. Its interface allows to specify values for variables called in the Python script,
in the example above one can specify the value ZeemanSlower_amp to change the value of
ZS_amp which corresponds to the voltage of one of the outputs of an analog output card.

• BLACS receives the series of hardware instructions and takes care of the communication
with the various instruments. It then sequentially executes all the compiled shots. At the
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end of a shot, it retrieves data from the various measurement instruments and saves them
in a single file.

• LYSE allows for easy, on-the-fly post-processing of the data. One can load custom analysis
scripts to be executed directly once a BLACS run is over, displaying for example absorption
images or cavity spectra almost in real time. It also permits the use of "multi-shot" scripts
which compile the results of single-shot ones together, for example for averaging purposes
or to systematically display the results of scanning one parameter.
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Figure A.1: Hardware architecture for experiment control and data acquisition. The figure is
reproduced from [79]. Blue boxes generate analog and digital control signal, gray ones generate
RF signals, red ones are used for data acquisition and the wavemeter is depicted in green.

The architecture of the hardware for its control with Labscript is presented in figure A.1. The
control software is installed on a computer (PC1) and for each shot it produces a series of
instructions communicated to a programmable arbitrary waveform generator, the pulseblaster
(PB24-100-4k-PCIe from SpinCore). This device provides a main clockline to a rack of digital
and analog output cards (National Instruments PXIe-1073), allowing to control the cards outputs
during the experimental sequence with a time resolution of 2.5µs. The same computer also
controls two CMOS cameras (Hamamatsu Orca Flash 4.0 and pco.edge 4.2 LT) which are used to
acquire absorption images at the end of a sequence, respectively from the vertical and horizontal
directions. In addition, it hosts an ethernet hub on which are connected numerous arbitrary
waveform generators from Siglent and RedPitaya devices.

A second computer accommodates a high-speed, time-resolved single photon acquisition
card with 250ps temporal resolution (TimeHarp 260 NANO from PicoQuant). This acquisition
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card is used to time-tag each photon detected by a single-photon counting module (Excelitas
ARQH-14-FC) at the output of the cavity and send the resulting photon trace to Labscript for
processing. The wavemeter is also connected to this computer and integrated with Labscript,
allowing to automatically tune the frequency of any laser at the beginning of every experimental
cycle.
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AppendixB
Optical setups for the cavity probe
and transverse pump beams

Figure B.1: Pump-probe laser setup on the laser table. Compared with the previous iteration
presented in [79], the 671nm light required to address the atomic transitions with the cavity is
now generated by a frequency doubled diode at 1342nm.
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Figure B.2: Pump-probe setup on the science table. Light leaking out of the cavity is collected by
a microscope objective and fiber coupled to the photon counter.



AppendixC
Properties of the density response
function

In this appendix, we present and derive some useful formal properties of the density-density
response function – or susceptibility – which we heavily refer to throughout this manuscript.
Most of the results and derivations presented here can be obtained following chapter 7 of the
staple book reference [208].

C.1 Definitions and spectral representation

We start from the definition of the time retarded density response function for a perturbation of
the gas at wavevector q and frequency ω which we use in the main text

χR(q,ω) = −i
∫ +∞

−∞
dtθ(t)eiωt

〈[
n̂q(t), n̂−q(0)

]〉
(C.1)

with θ the Heaviside function and n̂q the time-dependent q Fourier components of the density
operator. For convenience and to be consistent with the literature, we work here with the full
density response function and not the one per particle, as in the main text. Its real and imaginary
parts are connected by the Kramers-Kronig relations

Re
[
χR(q,ω)

]
= − 1

π

∫ +∞

−∞
dω′

Im
[
χR(q,ω)

]

ω −ω′

Im
[
χR(q,ω)

]
= − 1

π

∫ +∞

−∞
dω′

Re
[
χR(q,ω)

]

ω −ω′ .

(C.2)

We introduce its spectral representation using the following definitions

n̂q(t) = eiHtn̂qe
−iHt

θ(t) =
∫ +∞

−∞
dω

1
2πi

eiωt

ω − iη
(C.3)
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where η→ 0+. Explicitly developing the expectation value in equation (C.1) we get

χR(q,ω) = −i
∫ +∞

−∞
dtθ(t)eiωtTr

[
e−βH

Z

[
n̂q(t), n̂−q(0)

]]

=
∑

n,m

e−βEn
Z



| ⟨n|n̂q|m⟩ |2

ω+En −Em + iη
− |⟨n|n̂−q|m⟩ |2
ω −En +Em + iη




(C.4)

where we have introduced the partition function Z =
∑
n e
−βEn and the inverse temperature β.

Similarly, the corresponding time-ordered density response used in chapter 5 is defined with

χT(q,ω) =
∑

n,m

e−βEn
Z



| ⟨n|n̂q|m⟩ |2

ω+En −Em + iη
− |⟨n|n̂−q|m⟩ |2
ω −En +Em − iη


 . (C.5)

Each term of the sums above can be developed in the limit η → 0+ using the canonical Dirac
relation

1
ω ± iη = ∓iπδ(ω) +P

( 1
ω

)
(C.6)

where P denotes Cauchy’s principal value. It directly yields the relation

Re
[
χR(q,ω)

]
= Re

[
χT(q,ω)

]
(C.7)

used in the main text.

C.2 Structure factor and sum rules

The density response function is intimately linked to the dynamical structure factor, defined by

S(q,ω) =
1

2π

∫ +∞

−∞
dteiωt

〈
n̂q(t)n̂−q(0)

〉

=
∑

n,m

e−βEn
Z
| ⟨n|n̂q|m⟩ |2δ(ω+En −Em)

(C.8)

so that

χR(q,ω) =
∫ +∞

−∞
dω′

[
S(q,ω′)

ω −ω′ + iη −
S(−q,ω′)
ω+ω′ + iη

]
, (C.9)

again with η→ 0+. Equation C.6 then gives the real and imaginary parts of the density response
in terms of the structure factor

Re
[
χR(q,ω)

]
=

∫ +∞

−∞
dω′

[
S(q,ω′)P

( 1
ω −ω′

)
− S(−q,ω′)P

( 1
ω+ω′

)]

Im
[
χR(q,ω)

]
= π(S(q,ω)− S(−q,−ω)).

(C.10)

Under the assumption that the unperturbed system is invariant with respect to either parity
or time-reversal transformations [208], the identity S(q,ω) = S(−q,ω) holds so that at zero
frequency

Im
[
χR(q,0)

]
= π(S(q,0)− S(−q,0)) = 0, (C.11)
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and the density response function is purely real.
At zero frequency, the real part then reads

Re
[
χR(q,0)

]
= −

∫ +∞

−∞
dω′

S(q,ω′) + S(−q,ω′)
ω′

(C.12)

= −2m−1(q) (C.13)

where mp is the pth moment of the structure factor with mp(q) =
∫
dωωpS(q,ω). The calculation

of these moments gives a series of convenient sum rules. For instance, the inverse energy-
weighted moment of equation C.13 yields the compressibility sum rule in the limit |q| → 0

lim
|q|→0

2m−1(q) =
∫
d3r

∂n
∂µ

=
∫
d3rn2κ (C.14)

where n is the density, κ the isothermal compressibility and µ its chemical potential of the
gas [286]. Similarly, the calculation of the first moment gives the f -sum rule

m1(q) =
ℏ2|q|2

2m
N, (C.15)

for an ensemble of N particles of mass m.
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AppendixD
Molecular term symbols

Here we explicitly describe the structure of some diatomic molecular spectroscopy symbols used
in the main text and the literature. The molecular symbol

2|S|+1|Λ|±Ω,g/u (D.1)

corresponds to a state |LΛSΣσ⟩ with

• Σ the value of the projection of the total spin S on the internuclear axis.

• Λ the value of the projection of the total orbital angular momentum L on the same axis.

• σ = 0 or 1 indicating whether the wavefunction is symmetric with respect to the inversion
of the nuclei about the center of charge of the system. This inversion symmetry is called
gerade or ungerade for σ = 0 or 1 respectively and labelled with a g/u subscript.1

• The ± superscript referring to the reflection symmetry of the electronic part of the wave-
function about any plane containing the internuclear axis.

The value of |Λ| is commonly replaced by a capital Greek letter Σ,Π,∆,Φ , . . . for |Λ| = 0,1,2,3, . . .
respectively. We have also introduced the projection of the total angular momentum on the
internuclear axis Ω for the sake of completeness. In addition, an extra single-symbol label is
often added as a prefix to the above notation. Usually, the letter X denotes the ground state
while excited states with the same value of |S| as the ground state are labelled in increasing order
of energy with capital letters A,B,C, . . . . Lower case letters are then used to denote states where
the value of |S| differs from the ground state; a,b,c, . . . .

1For obvious reasons, the gerade symmetry only holds for homonuclear diatomic molecules.
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This much I’m certain of: it doesn’t happen
immediately. You’ll finish the book and that
will be that, until a moment will come,
maybe in a month, maybe a year, maybe even
several years. You’ll be sick or feeling
troubled or deeply in love or quietly
uncertain or even content for the first time in
your life. It won’t matter. Out of the blue,
beyond any cause you can trace, you’ll
suddenly realize things are not how you
perceived them to be at all. For some reason,
you will no longer be the person you believed
you once were. You’ll detect slow and subtle
shifts going on all around you, more
importantly shifts in you. Worse, you’ll
realize it’s always been shifting, like a
shimmer of sorts, a vast shimmer, only dark
like a room. But you won’t understand why
or how. You’ll have forgotten what granted
you this awareness in the first place.
...
You might try then, as I did, to find a sky so
full of stars it will blind you again. Only no
sky can blind you now. Even with all that
iridescent magic up there, your eye will no
longer linger on the light, it will no longer
trace constellations. You’ll care only about
the darkness and you’ll watch it for hours,
for days, maybe even for years, trying in vain
to believe you’re some kind of indispensable,
universe-appointed sentinel, as if just by
looking you could actually keep it all at bay.
It will get so bad you’ll be afraid to look
away, you’ll be afraid to sleep.
Then no matter where you are, in a crowded
restaurant or on some desolate street or even
in the comforts of your own home, you’ll
watch yourself dismantle every assurance
you ever lived by. You’ll stand aside as a
great complexity intrudes, tearing apart,
piece by piece, all of your carefully conceived
denials, whether deliberate or unconscious.
And then for better or worse you’ll turn,
unable to resist, though try to resist you still
will, fighting with everything you’ve got not
to face the thing you most dread, what is now,
what will be, what has always come before,
the creature you truly are, the creature we all
are, buried in the nameless black of a name.
And then the nightmares will begin.

Mark Danielewski
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