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Abstract
Hydraulic fractures are tensile fractures that occur in solid materials due to the natural in-

trusion or anthropogenic injection of a viscous fluid into a fracture channel. The deliberate

creation of hydraulic fractures is part of an industrial technology having various applications.

For example, it is used for: the stimulation of hydrocarbon wells, the development of deep

geothermal systems, and for measuring the in situ stress in rock formations. Additionally, hy-

draulic fractures may result from industrial processes such as geological carbon sequestration

or wastewater injection.

Hydraulic fractures propagate in a plane perpendicular to the minimum in situ compressive

stress. In most sedimentary basins, the direction of this stress is horizontal, hence hydraulic

fractures propagate in a vertical plane. Their vertical growth, often referred to as height growth,

can be detrimental to the effectiveness of their application. For instance, in the stimulation of

hydrocarbon wells, excessive height growth above the targeted layer will result in the delivery

of fluid and proppant to unproductive zones and possibly the stimulation of water-bearing

layers. Concerns have been raised about the migration of fluids into strata containing potable

groundwater caused by hydraulic fracturing treatments. Another example is the case of in-situ

stress estimation where an excessive height growth can compromise the measurement by

connecting the pressurized interval to the rest of the wellbore. It is known that height growth

can be hindered or arrested by the presence of different rock layers or in situ stress inhomo-

geneity. However, a complete understanding of the relative importance of the different types of

heterogeneities on hydraulic fracture propagation is still lacking. Significant progress has been

made over the last two decades thanks to the understanding of the multi-scale nature of the

problem. This progress has led to the development of the Implicit Level Set Algorithm (ILSA).

This numerical tool has been verified as capable of efficiently and accurately reproducing

the planar propagation of hydraulic fractures, as observed in experiments carried out in both

homogeneous and heterogeneous media.

In this thesis work, we extend the scope of the ILSA algorithm to cases of large fracture front

deformations. These cases are typically encountered when the front is locally pinned by tough

and localized heterogeneities. We then further validate the ILSA algorithm by comparing

it with new and recent analytical and experimental results. In particular, we highlight the

comparison with the co-planar coalescence experiment of two hydraulic fractures. Based on

the results obtained during these comparisons, we use the ILSA algorithm to study the effect

of heterogeneities on fracture propagation. We determine the conditions under which the

fracture front is arrested by a region of material characterized by a higher fracture energy. We

i



Abstract

determine how long two layers of material characterized by higher fracture energy can contain

the hydraulic fracture propagation. We demonstrate a new hydraulic fracture containment

mechanism in the case that propagation occurs in a material composed of a succession of

layers.

Keywords: Hydraulic fracture mechanics, fracture coalescence, fracture toughness, hetero-

geneities, height growth, fracture containment, upscaling.

ii



Sommario
Le fratture idrauliche sono così chiamate perché la loro propagazione viene causata dalla

penetrazione di un fluido viscoso nel canale della frattura. Questo fenomeno fisico può essere

sia il risultato di un processo naturale che di un processo antropico nel quale il fluido viene

forzato all’interno della frattura (ad es. tramite pompaggio). Le fratture idrauliche infatti

sono parte di una vera e propria tecnologia industriale. Essa è utilizzata, ad esempio, per

incrementare la produzione di idrocarburi dai pozzi di estrazione, per lo sviluppo di formazioni

geologiche profonde per usi geotermali, nonché come tecnica di misurazione dello lo stress

in-situ nelle formazioni rocciose. D’altra parte, in certe attività industriali, la creazione di

fratture idrauliche può costituire un rischio risultante dallo svolgimento dell’attività stessa.

Ne sono esempi il sequestro geologico dell’anidride carbonica o l’iniezione di acque di scarto

industriale nel sottosuolo.

La propagazione delle fratture idrauliche avviene in un piano ortogonale alla direzione del

minimo stress in situ chiamato anche "confining stress". Nella maggior parte dei bacini

sedimentari questo stress ha una direzione orizzontale implicando che le fratture idrauliche

siano orientate verticalmente. La propagazione in questa direzione, definita anche come

"height growth" nella letteratura scientifica, può andare a scapito dei vantaggi apportati

dall’uso della fratturazione idraulica. Infatti, nel caso dei pozzi di estrazione degli idrocarburi,

un’eccessiva propagazione della frattura fuori della zona di interesse rappresenta sia uno

spreco del fluido utilizzato per la fratturazione che del "proppant" (particelle in esso sospese

con lo scopo di mantenere aperta la frattura). Uno scenario peggiore si avrebbe nel caso in

cui gli strati di roccia adiacenti contengano acqua e siano raggiunti dalla frattura. Infatti, ciò

provocherebbe un incremento indesiderato del quantitativo di acqua in ingresso al pozzo

di estrazione. Oltre a queste problematiche, sono state sollevate alcune preoccupazioni

riguardanti la possibilità che la fratturazione idraulica faciliti la migrazione di fluidi verso

strati contenenti acqua potabile. Un eccessiva propagazione verticale delle fratture idrauliche

è indesiderata anche in altre applicazioni industriali. Ne è un esempio l’uso delle fratture

idrauliche per la misurazione degli stress in situ. In tale applicazione un tratto del pozzo viene

inizialmente isolato idraulicamente. Successivamente questo tratto è pressurizzato al fine di

indurre la propagazione di una frattura. Nel caso in cui questa riesca a creare una connessione

idraulica tra l’intervallo pressurizzato del pozzo e la rimanente parte di esso, la misurazione

può essere anche totalmente compromessa. È noto che la crescita verticale della frattura possa

essere limitata o addirittura arrestata dalla presenza di strati di roccia di natura differente.

Lo stesso può accadere anche a causa della disomogeneità dello stress tra gli strati. Tuttavia
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l’importanza relativa che le diverse eterogeneità rivestono nella propagazione della frattura

idraulica non è ancora stata quantificata. Ciononostante, grazie alla comprensione della

natura multi-scala del problema, negli ultimi vent’anni sono stati fatti progressi significativi.

Questi progressi hanno portato allo sviluppo dell’algoritmo noto come "Implicit Level Set

Algorithm (ILSA)". Questo strumento di calcolo ha dimostrato di essere sufficientemente

rapido ed accurato per la simulazione della propagazione della frattura idraulica osservata in

esperimenti condotti sia in materiali omogenei che eterogenei.

In questo lavoro di tesi estendiamo il campo di applicazione dell’algoritmo ILSA ai casi di

grandi deformazioni del fronte di frattura. Questi casi sono tipicamente incontrati quando

esso risulta localmente bloccato o "impigliato" da eterogeneità localizzate. Successivamente

validiamo ulteriormente l’algoritmo ILSA grazie al confronto con nuovi e recenti risultati

analitici e sperimentali. In particolare, tra questi evidenziamo il confronto con l’esperimento

di coalescenza co-planare di due fratture idrauliche. Forti dei risultati ottenuti durante questi

confronti, utilizziamo l’algoritmo ILSA per lo studio delle eterogeneità sulla propagazione

della frattura. Nello specifico, determiniamo le condizioni nelle quali il fronte di frattura viene

arrestato da una regione di materiale caratterizzata da una più elevata energia di frattura.

Stabiliamo per quanto tempo due strati di materiale caratterizzati da una più elevata energia

di frattura possono contenere la propagazione della frattura idraulica. Dimostriamo un nuovo

meccanismo di contenimento della frattura idraulica nel caso la propagazione avvenga in un

materiale composto da una successione di strati.

Keywords: meccanica della frattura idraulica, coalescenza di fratture, energia di frattura,

eterogeneità, contenimento della frattura, adeguamento alla scala superiore.
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1 Introduction

1.1 Motivations and Background

1.1.1 Hydraulic fracturing

Hydraulic fracturing is a physical process that consists of the propagation of tensile (mode

I) fractures driven by either the pressurization or the injection of a viscous fluid into a solid

(Detournay, 2016).

Natural hydraulic fractures. Hydraulic fracturing is not only an engineering technology used

in industrial applications, but also a natural phenomenon. It is the case of the formation of

breccias (Phillips, 1972; Jébrak, 1997), and it can explain the morphology of particular rock

veins observed on Mars (Caswell and Milliken, 2017). On Earth, the kilometers-scale intrusions

of magma in the upper part of the lithosphere forming volcanic dikes and sills are one of the

most striking examples of natural hydraulic fractures (Rivalta et al., 2015; Spence et al., 1987;

Lister and Kerr, 1991). Another type of natural hydraulic fracture is the drainage of a glacial

lake that separates a glacier from its bed (Das et al., 2008; Tsai and Rice, 2010, 2012).

Hydraulic fracturing as an industrial technology. Since the 1950s, hydraulic fracturing has

become a widespread practice for enhancing the production of hydrocarbons from low perme-

ability rocks (Economides and Nolte, 2000). Examples of these rocks include mudstones, coal,

tight sandstones, and shales. To describe the typical hydraulic fracturing process, we can begin

by examining a single well drilled to the target formation at a few km of depth in the subsurface.

The initial step involves perforating a target interval of the well (via shaped explosive charges)

to promote a flaw in the formation, then hydraulically isolating this perforated interval from

the rest of the wellbore using specific completion hardware (e.g. packers, bridge plugs). The

fracturing fluid is then injected into the interval until the pressure is sufficient to generate one

or more hydraulic fractures beyond the region of near wellbore damage. Subsequently, solid

particles referred to as proppant are added to the fluid. The proppant, which can be sand or
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specially designed solid particles, prevents the fracture from closing in the long term. The

newly established fracture remains open, providing a highly permeable connection between

the reservoir and the well. This process is typically performed multiple times for each well,

and multiple wells are drilled to exploit the reservoir. Today up to thousands of cubic me-

ters of fluid and hundreds of tonnes of proppant can be injected during hydraulic fracturing

treatments (Montgomery and Smith, 2010).

Other uses of hydraulic fracturing technology. Over time, hydraulic fracturing technology

has been applied in various industrial settings. It is notably used to determine the minimum

in-situ principal stress in rock formations at depth (Desroches and Thiercelin, 1993), and to

create chemically reactive barriers in remediation projects for contaminated soils (Murdoch,

2002). It is also employed to precondition ore (Chacon et al., 2004) and to cause cave-ins

in mining operations (Van As and Jeffrey, 2000). Furthermore, hydraulic fracturing is being

utilized in applications that could aid the shift towards a renewable energy supply, replacing

the reliance on fossil fuels. For example, hydraulic fracturing is used to create underground

water storage lenses, where pumping water enables the storage of excess renewable energy

through both elastic deformation of rock layers (elastic energy) and lifting of the overburden

(potential energy) (Schmidt, 2010; Schmidt et al., 2023). Hydraulic fracturing has also been

used in Enhanced Geothermal Systems (Moska et al., 2021). In this context, creating a network

of fractures in impermeable hot rock at depth allows the flow of technological fluid to be

forced in a loop between at least two wells. The fluid is heated as it passes through the hot rock

and is then pumped to the surface, utilizing the thermal energy to drive turbines for electricity

generation.

Concerns related to anthropogenic hydraulic fracture propagation. There are two primary

concerns about hydraulic fracture propagation. First, hydraulic fracturing can trigger signifi-

cant seismicity if the created fractures interact with an existing fault, then further re-activating

possibly leading to the nucleation of frictional rupture. Only some examples have been

recorded in the past decade (Holland, 2013; Clarke et al., 2014; Schultz et al., 2015; Eyre et al.,

2019). The absence of nearby seismogenic faults is a pre-requisite for any hydraulic fracturing

campaign Schultz et al. (2020). Note that seismicity associated with wastewater injection

(which intrinsically perturbed a larger volume of rock) has been responsible for a much larger

number of induced earthquakes (Council, 2013).

A second paramount concern is the vertical expansion of hydraulic fractures, known as height

growth or fracture containment. Sufficient height growth is essential for optimal stimulation

of the target reservoir, however, excessive height growth can result in the delivery of fluid and

proppant to unproductive zones and even activate water-bearing strata, causing increased

water inflow into the well (Economides and Nolte, 2000). The containment of fluid migration

to strata containing potable groundwater is a matter of concern, particularly in shallow wells

that are close to such resources (EPA., 2016). This issue is particularly relevant for shallow

2



1.1. Motivations and Background

reservoirs such as coal seam methane wells in the United States and Australia. What controls

the vertical propagation of hydraulic fractures is the central theme of this thesis and our sole

focus hereafter.

1.1.2 Heterogeneities and hydraulic fracture propagation

Most of the applications of hydraulic fracturing technology relate to geological formations.

The presence of heterogeneities (strata, bedding planes, joints) and discontinuities (faults,

fractures, microcracks) at a several different length scales can have substantial effects on

fracture propagation (Bunger and Lecampion, 2017). Predicting and controlling the shape of

the growing fracture have essential economic and potential environmental implications. A

characteristic length-scale can be associated with each type of heterogeneity and/or discon-

tinuity. The layer thickness, the microcrack size, and the distance between bedding planes

are just a few examples. The direction and velocity of the hydraulic fracture propagation are

affected by heterogeneities characterized by a length scale similar to the one of the fracture.

A heterogeneous and anisotropic in-situ stress over this length scale can also perturb the

propagation. This can result in multiple and non-planar crack paths. On the other hand,

the presence of a principal direction of minimum in-situ stress (confining stress), together

with its spatial uniformity, promote the planarity of the propagating fracture (Hubbert and

Willis, 1957). Additionally, if heterogeneities are distributed, and their associated length scale

is much smaller than any other, a representative element volume can be identified. Hence,

at larger scales, the solid material can be modeled as homogeneous and characterized by

equivalent properties (equivalent fracture toughness, equivalent elastic constants). This in-

terplay between heterogeneities and hydraulic fracture growth at different length scales has

been documented by several hydraulic fracture field experiments (see Jeffrey et al. (2009)

and references therein). In particular, as reported in Jeffrey et al. (2009), the path followed

by the hydraulic fracture can be tortuous at the meter scale while, at the decameter scale,

the fracture appears quasi-planar. In situations where the stress regimes are either normal

or strike-slip, the plane of propagation is vertical, and the hydraulic fracture interacts with

sub-horizontal sedimentary rock layers of dissimilar materials with a length-scale comparable

to the hydraulic fracture’s one. The strata in sedimentary rock formations can differ in elastic

properties, fracture toughness and/or permeability. Their in-situ confining stress also often

differs. The variation of one or more of these parameters between the layer in which the frac-

ture initiates and the bounding ones, can accelerate, hinder, or even arrest the growth of the

planar fracture. The fractures can deviate into a weak bedding plane or a weak layer’s interface,

when the in-situ stresses are sufficiently low and transform into T-shape like fractures (Bunger

and Lecampion, 2017; Xing, 2018; Chen et al., 2015). In these situations homogenizing the

material properties is impossible, and the heterogeneity must be explicitly accounted for in

physical models. This has been the case since the earliest hydraulic fracturing models. The

PKN (Perkins, Kern, and Nordgren’s) model (Perkins and Kern, 1961; Nordgren, 1972) assumes

a hydraulic fracture lying on a vertical plane and characterized by a constant vertical extent

(constant height), and extending only in the horizontal direction. The works of Simonson
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et al. (1978), Cleary (1978) and Daneshy (1978) are among the first to address the main factors,

currently considered to promote or impede hydraulic fracture containment. Namely, the stress

contrast between layers, the variation of elastic properties and the density contrast between

the fluid and the rock that can lead to buoyant fractures. Many other works shortly followed

and investigated those factors theoretically and/or experimentally, see, for example Hanson

et al. (1981); van Eekelen (1982); Warpinski et al. (1982) and the review of Mendelsohn (1984).
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Figure 1.1 – Evolution of hydraulic fracture models, from simple 1D fixed-height approximation
to full planar-3D geometries. .
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1.2. Research questions addressed in this thesis

1.1.3 Effect of fracture toughness variation on the height growth

Variation of fracture toughness between different layers is another mechanism that can pro-

mote fracture containment. However, it has received less attention than the other types of

heterogeneities. This is explained because, as argued in van Eekelen (1982); Gu and Siebrits

(2008), it appears that the toughness of rocks varies only “over a limited range.” A decade after

the work of Simonson et al. (1978), Thiercelin et al. (1989) demonstrated, employing a few

3D numerical simulations, that a “sufficiently” higher fracture toughness in the bounding

layers (while keeping all the other properties constant) can stop the height growth of a 3D

planar hydraulic fracture (and vice versa). Later Li and Keer (1992) confirmed these results but

only considered the injection of an inviscid fluid for larger fracture toughness in the bounding

layers. Ho and Suo (1993) studied the propagation of a radial defect into a contained fracture.

This last study was conducted in the context of dry cracks and layered materials, but it paved

the way for the recent derivation of the PKN-K solution in the context of hydraulic fractur-

ing by Sarvaramini and Garagash (2015). We will recall the meaning of “-K” (related to the

dominance of fracture energy) shortly as this notation was introduced in a more recent body

of literature. After these early works, no further significant investigations have been made

on this topic. In the meantime, during the last twenty years, significant progress has been

made in understanding hydraulic fracture propagation in a homogeneous medium. It became

clear that, during propagation, two energy dissipation mechanisms are competing: the energy

dissipated in the creation of new fractures and the one dissipated in the flow of a viscous fluid

(see Detournay (2016) for a review). In the limit of a low-permeability medium (little to no

fluid leak-off in the surrounding media), the ratio between these two dissipations (namely the

dimensionless toughness) is the only dimensionless number governing the spatiotemporal

evolution of fracture opening, fluid pressure, and fracture velocity. Two different limiting

propagation regimes correspond to the extreme values of this ratio. In the so-called viscosity

dominated regime (“-M” regime), the work required by the flow of a viscous fluid is much

greater than the one spent in the fracturing process. The opposite holds in the toughness

dominated regime (“-K” regime). To appreciate the difference between these regimes, it is

worth recalling the case of a penny-shaped hydraulic fracture driven by constant injection. The

fracture radius LR evolves from LR,M ∝ t 4/9 in the viscosity dominated regime, to LR,K ∝ t 2/5

at late time, in the toughness dominated regime (see Savitski and Detournay (2002) for more

details). Conversely, as recently shown by Dontsov (2021) and Garagash (2023), for a blade-like

(also referred to as PKN) fracture geometry, the fracture half-length evolves from LPK N ,K ∝ t in

the toughness dominated regime to LPK N ,M ∝ t 2/5 at late time when the viscosity dominated

regime has established.

1.2 Research questions addressed in this thesis

In summary, the research questions addressed in this thesis are:

• Can current hydraulic fracture models reproduce quantitatively complex coplanar prop-
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agations, such as the coalescence of two hydraulic fractures?

• What are the conditions for arresting a hydraulic fracture by a region of larger fracture

toughness?

• For how long can two layers of fracture toughness can confine the propagation of a

hydraulic fracture?

• Can a hydraulic fracture be ultimately contained when propagating in a material with a

layered distribution of fracture toughness?

1.3 Outline of the different chapters

The thesis is organized as follows.

In Chapter 2, we present the mathematical formulation used to model hydraulic fracture

propagation. We describe the numerical implementation and examine the fracture front

reconstruction algorithm that has been presented in the existing literature. We then introduce

a novel fracture front reconstruction algorithm and compare its results against the analytical

solution of a semi-infinite fracture encountering a zone of higher fracture toughness.

In Chapter 3, we compare the predictions generated by the numerical model to labora-

tory experiments conducted in both homogeneous and heterogeneous media. Emphasis is

placed on the comparison with an experiment that involves the interaction and coalescence

of two hydraulic fractures propagating in the same plane.

In Chapter 4, we derive the energy balance for a 3D planar hydraulic fracture of general

shape, and we make some considerations about the relative importance of the different physi-

cal processes at play.

In Chapter 5, we determine the minimum contrast in fracture toughness necessary for a

region with an arbitrary shape to arrest the propagation of a finite hydraulic fracture, locally.

This is accomplished by combining the energy balance for a semi-infinite hydraulic fracture

and a local propagation condition.

In Chapter 6, we analyze a three-layer scenario where the fracture toughness varies be-

tween the layers (but elastic properties remain uniform), with higher values in the bounding

layers than the central layer. We evaluate the duration of containment for an initially radial

fracture, confined within the bounding layers in this scenario.

In Chapter 7, we study the propagation of a hydraulic fracture through a repetitive sequence

of layers having similar elastic properties but varying fracture toughness. We analyze the long-

term evolution of the fracture footprint and distinguish two possible outcomes, depending on

6



1.3. Outline of the different chapters

both the ratio of fracture toughness between the layers and the relative height of the layers. In

the first outcome, the fracture will be effectively contained at late times, while in the second

outcome, the fracture will propagate with a nearly constant aspect ratio.

The conclusions of this work and the perspectives for the future are reported in Chapter

8.
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2 Simulating 3D planar HF

Disclaimer and acknowledgements: My contributions to this chapter are: i) the development

and implementation of a new front reconstruction algorithm in the original numerical code

(PyFrac) ii) the idea and the comparison to the solution of a semi infinite fracture penetrating

a layer of higher fracture toughness iii) the formulation and implementation of a technique to

reduce the memory requirement of the elastic kernels (taking advantage of their block Toeplitz

structure). iv) the integration of an iterative solver in PyFrac and the implementation of the

preconditioner described in Peirce (2006). v) The written exposition of this chapter and the

numerical results presented. Dr. H. Zia. has first found why the front reconstruction proposed

in Peirce and Detournay (2008) breaks down for large front deformations. Prof. B. Lecampion,

had the idea to use a bilinear interpolation of the discrete level set function to develop a new

front reconstruction algorithm. Both Dr. H. Zia and Prof. B. Lecampion developed the original

version of the numerical code (PyFrac) to which I contributed.

2.1 Mathematical model

The mathematical model adopted in this thesis to study hydraulic fracture propagation belongs

to Linear Hydraulic Fracture Mechanics (Detournay, 2016; Lecampion et al., 2018). It combines

the use of Linear Elastic Fracture Mechanics describing the fracture propagation and the

lubrication approximation for the fluid flow inside the fracture. The other usual assumptions

are that:

• the dimension of the injection source (the wellbore diameter) is much smaller than the

fracture length such that the injection can be considered to take place at a point

• the fracture propagation plane is perpendicular to the in-situ minimum confining stress

σo , such that zeros shear tractions act on the fracture

• the fluid lag is assumed to remain negligible during the entire process. This condition is

9



Chapter 2. Simulating 3D planar HF

ensured when µV E ′2/σ3
o ¿ 1 where V is the fracture front velocity, µ is the fracturing

fluid viscosity, E ′ is the rock plane-strain elastic modulus and σo the in-situ confining

stress normal to the fracture plane (Garagash and Detournay, 1998). This is typically

the case of deep fractures in rocks for which σo is sufficiently large (Lecampion and

Detournay, 2007)

• the inertial effects are considered to be negligible as hydraulic fractures propagate at

the very most of a few meters per second

• the solid medium is consider as a homogeneous linearly elastic isotropic medium, and

we restrict to the case of an infinite medium

• the fluid rheology is assumed to be Newtonian.

Elastic deformations. For one or more coplanar tensile fractures, loaded by an internal fluid

pressure, the momentum balance written for the solid medium reduces to a single hyper sin-

gular boundary integral equation that relates the fracture width w and the normal component

of the traction vector (Hills et al., 2013; Crouch S.L., 1983):

Tx,y,t
(
x, y

)−σo
(
x, y

)=− E ′

8π

∫
∑

(t )

w
(
x ′, y ′, t

)[
(x ′−x)2 + (

y ′− y
)2

]3/2
dx ′dy ′ , (2.1)

where the
∑

represents the fractures’ trace on the middle fracture plane. The symbols T and

σo are the normal components of the tractions on the fracture surfaces and the far-field in-situ

compressive stress (the confining stress). Rough surfaces are formed during hydraulic fracture

propagation in rocks. For this reason when the fracture closes it never does completely. We

assume the fracture does not close back below a residual opening wa . We define this residual

opening as the minimum between the maximum opening ever achieved at a given location

and a minimum value wmin, which can be considered as an empirical ’fracture’ material

property. This can be expressed by the contact conditions:

(w −wa) ≥ 0,
(
T −p f

)
(w −wa) = 0. (2.2)

In particular, if the fracture is mechanically open at a given position, the fluid pressure p f
(
x, y

)
is equal to the normal traction T

(
x, y

)
on the faces of the fracture.

Fluid flow and mass balance Thin-film lubrication flow occurs inside the deformable fracture.

The local fluid volume conservation for a slightly compressible liquid (of compressibility c f )

can thus be expressed as follows (Batchelor, 1967):

∂w (x , t )

∂t
+ c f w (x , t )

∂p f (x , t )

∂t
+∇·q+ vL −Qo (x , t )δ(x) = 0, (2.3)
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2.2. The algorithm for simulating hydraulic fracture propagation

where the fluid flux in the fracture is expressed by (the vector) q = wv f (width times averaged

fluid velocity) generally as

q = q
(
Re (x , t ) , w (x , t ) , p (x , t )

)
,

where Re is the fluid Reynolds number to possibly account for turbulent flow in the fracture

(Lecampion and Zia, 2019). The vector x indicates the dependence on the coordinates x

and y . Under most practical conditions, fluid flow is laminar in the fracture, such that the

width-averaged balance of momentum for the fluid gives the well-known Poiseuille relation

q =−w (x , t )3

µ′
(∇∇∇p f (x , t )−ρ f g

)
, (2.4)

where µ′ = 12µ, µ is the fluid viscosity, ρ f is the fluid density and g is the gravitational vector.

The fluid volume conservation 2.3 also accounts for the potential leak-off of the fracturing

fluid in the surrounding medium. The leak off velocity vL is

vL = vL
(
x , t , p (x , t )

)
(2.5)

In its simplest form, at early time for normally pressurized porous formation, it can be evalu-

ated using the Carter’s leak off approximation:

vL = 2CL (x)p
t − t0 (x)

(2.6)

where CL is the leak-off coefficient and t0 is the time at which the fracture front reaches the

position x (see Lecampion et al. (2018) for a discussion).

Propagation conditions The quasi-static fracture propagation conditions apply at each coor-

dinate γ along the fracture front Γ{
V

(
γ
)

Gc
(
γ
)≥ 0(

G −Gc
(
γ
))

V
(
γ
)= 0

∀γ ∈ Γ (2.7)

where G is the energy release rate, V
(
γ
) = v (x) ·n(

γ
)

is the magnitude of the local fracture

front velocity and n
(
γ
)

is the normal to the front. In the absence of a fluid lag, both the width

and the fluid flux normal to the front vanish at the crack front (see Detournay and Peirce (2014)

for discussion).

2.2 The algorithm for simulating hydraulic fracture propagation

The efficient and accurate numerical modelling of hydraulic fractures is a challenging task.

The reasons can be found in the moving boundary nature of the fracture problem, the non

locality of elasticity and the central role played by the coupling between fluid flow in the

fracture and elastic deformation in the material. Assuming a "simple" linear elastic brittle
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solid and a lubrication-like fluid flow leads to an extremely non-linear coupling between the

solid deformation and the fluid flow. The root of this extremely non-linear coupling is the

dependence of the hydraulic transmissivity with the cube of the local fracture width (w3). This

strong coupling is also responsible for the multiscale structure of the solution near the fracture

front. The classic linear elastic fracture mechanics asymptote describes the solution near the

fracture front well, where energy is mainly dissipated in creating new fracture surfaces. On the

other hand, a viscous asymptote controls the far field behaviour where the energy entering the

system is mainly dissipated in the viscous fluid flow (Desroches et al., 1994). Such a transition

from a linear elastic asymptote to a viscous asymptote has been observed experimentally

(Bunger and Detournay, 2008). The structure of the solution becomes even more complex

if we consider the transient phenomenon of the fluid leaking off from the fracture in the

surrounding medium. In this case, an intermediate asymptote can appear as analytically

demonstrated by Garagash et al. (2011). To address the final level of added complexity in this

discussion, let us consider the case where there is no fluid leak-off. Even for this simpler case,

the size of the near tip region where the solution can be described by the classic linear elastic

fracture mechanics asymptote evolves in time as the fracture propagates. This region can

reduce to a small boundary layer in the case where the energy flux entering the system via

the injection is mainly dissipated in the flow of the viscous fluid in the newly created fracture.

This represents a real challenge for a numerical model as it implies that the discretization of

the near tip region needs to be adapted during the simulation to properly capture the solution

to the problem near the fracture front. Because of the moving boundary nature of the fracture

problem, capturing the solution near the fracture front is needed to guarantee the overall

accuracy of the results.

2.2.1 The Implicit Level Set Algorithm

The Implicit Level Set Algorithm (ILSA) is an efficient and accurate numerical scheme for

hydraulic fracture propagation originally developed by Peirce and Detournay (2008) (see also

Dontsov and Peirce (2017)). The main idea behind the algorithm is to avoid resolving the

multiscale structure of the solution near the fracture front by taking advantage of the known

asymptotic solution of a steadily moving hydraulic fracture (Garagash et al., 2011).

In the following, we limit the description of the algorithm to its initial version where the

fracture is growing over a fixed Cartesian mesh. The cells that discretize the fracture footprint

are divided in three groups: "the survey elements", "tip elements", and the "channel elements"

(see Fig. 2.3). The tip elements are the ones partially traversed by the fracture front. The survey

elements are located immediately behind the tip elements and are inside the footprint. The

channel elements consist of all the cells that discretize the fracture except the tip cells.

The unknowns in the problem are: the fluid pressure, the fracture opening, the fracture front

position and the fracture velocity. The fluid pressure and the fracture opening are defined in

the fracture footprint for each cell. The fracture velocity is defined locally along the front. The
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2.2. The algorithm for simulating hydraulic fracture propagation

different fracture front position between two successive time steps characterize it. While going

from the time step n to n+1, the focus of the algorithm is to converge on the new fracture front

position together with the increments of fracture opening and fluid pressure in the fracture

domain. The fracture front position is tracked by its closest distances to the centres of the

survey elements.

The solution for a time-step is articulated in two distinct steps.

• In the first step, the fracture is supposed to be non propagating and the footprint at the

previous time step is considered. The non-linear system of equations is solved for the

fluid pressure increment and the fracture opening increment in all of the cells.

• The second step involves the iteration on the front position, and the asymptotic solution

of a steadily moving hydraulic fracture (Garagash et al., 2011) comes into play. This

solution is used as a relationship between the fracture opening and the distance to the

front. For clarity, we divide this step in few substeps.

– At the beginning of the second step, the asymptotic solution is used along with the

new fracture opening at the survey cells to compute the distance to the new trial

front position.

– The distance to the front at the survey cells is then used as initial condition to solve

for the (signed) distances in the rest of the grid. The signed distances in the rest of

the grid are the values of a level set function. These values are obtained by solving

the Eikonal equation (2.39) via a fast marching method.

– The fracture front is reconstructed using a piece-wise linear approximation within

each cell. The new fracture front possibly includes new cells classified as tip cells.

– Knowing the distance of each tip cell from the new front and integrating the

asymptotic solution, it is possible to compute the fluid volume stored in each tip

cell. The average fracture opening to be imposed in a given tip cell is then obtained

by dividing the fluid volume stored in the tip cell by the cell area.

– The coupled system of equations (elasticity and lubrication) is then solved again.

Unlike in the initial step, the openings at the tip cells are now imposed according

to the near-tip asymptote. The new unknowns are the pressure in the tip cells and

the opening in the channel elements.

– A new position of the fracture front can be calculated once the new fracture open-

ing is calculated at the survey elements. Then the procedure repeats until conver-

gence.

• Convergence is reached when subsequent estimates of the level set function at all survey

points fall below a given tolerance.
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Chapter 2. Simulating 3D planar HF

Figure 2.1 – Schematic of the algorithm used by the numerical code PyFrac to advance a time
step. Figure reproduced from Zia and Lecampion (2020).

Our implementation of the ILSA algorithm allows for other two strategies to advance the front.

These are the "explicit front advancement" and the "predictor-corrector" schemes. The idea

behind the explicit front advancement scheme is to avoid the iteration on the front position

and use the velocity computed at the end of the previous time-step to advance the fracture.

Similarly, the predictor corrector scheme uses the velocity from the previous time step to

advance the fracture. However, after the first computation of the front position, this algorithm

follows back the implicit scheme. A comparison between the different front advancement
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algorithms is shown in Fig. 2.1 - see also Zia and Lecampion (2019).For further details on our

numerical solver "PyFrac" the reader is referred to Zia and Lecampion (2020). The code has

been released under open source and is available at https:// www.epfl.ch/labs/gel/pyfrac/.

2.3 Numerical discretization of the equations

In this section, we discretize the governing equations in time and space and derive the final

system of equations to be solved at each trial position of the fracture front. At each time step tn ,

the fracture opening (w) and the net pressure (p) are the main unknowns. In the following, we

express a generic quantity (· ) at time tn using the following notation (· )n ≡ (· )tn . Analogously,

at time tn+1 we assume that (· )n+1 ≡ (· )tn+1 .

Spatial discretization - elasticity

Equation (2.1) is discretized on a Cartesian mesh with rectangular cells of sizes ∆x and ∆y .

Within each cell, the fracture opening is constant.

Ti , j −σ0 i , j =
∑
m,n

Ei−m, j−n wm,n(t ), (2.8)

where

Ei−l , j−m =− E ′

8π


√

(xi −x)2 + (y j − y)2

(xi −x)(y j − y)


x=xl+∆x/2,y=ym+∆y/2

x=xl−∆x/2,y=ym−∆y/2

In matrix form, the previous equation writes as:

Ew (x , t ) = T (x , t )−σ0 (2.9)

One important property of Eq. (2.1) is that the kernel of the integral equation depends only on

the distance between the points
(
x ′, y ′) and

(
x, y

)
considered. As a consequence, when this

equation is discretized through a Cartesian mesh, the resulting matrix E is symmetric with

a Block Toeplitz structure 1. Furthermore, the total number of independent matrix entries

depends on the number of unique distances Nd between the centers of the elements in the

Cartesian mesh. An example is presented in Figure 2.2.

1A Block Toeplitz matrix is made by the repetition of a set of smaller matrices. An example is shown in Fig. 2.2.
The letters identify distinct matrix entries while the colours highlight the repeated blocks.
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a b c b d e c e f

array of unique matrix entries 

nx
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Figure 2.2 – A Cartesian mesh where the elements are numerated form 1 to 9 is shown on the
left. On the right, the corresponding matrix E is displayed.

On the left, a Cartesian mesh discretized with nx = ny = 3 elements in both the x and y

directions is shown. Each element has sizes ∆x and ∆y and has been numbered from 1 to 9.

On the right part of the figure one can see the structure of the corresponding matrix E. Each

entry is identified by a letter such that the same numerical value corresponds to the same letter.

The empty matrix blocks are supposed to contain the same letters found in the filled block of

the corresponding color. The value of Nd depends both on the choice of nx , ny and ∆x, ∆y as

shown in Table 2.1. In general Nd =O
(
nx ny

)
. This represents a particular advantage in case

the solution of a system involving Eq. (2.8) is obtained utilizing an iterative scheme where

the dot product of E·w is necessary for its solution. In fact, instead of memorizing all the

O
(
n2

x n2
y

)
entries it is possible to store only O

(
nx ny

)
. Then, when the dot product is needed, it

is possible to use a simple mapping to reconstruct one row of E at a time and compute one

vector-vector product. Note that this operation can be executed in parallel. If necessary, a

number of copies of the vector of unique entries of E can be created in the memory of the

computer to limit the possibility of simultaneous memory access by different cores.

The elasticity equation (2.9) is valid ∀t such that we can write it at two times tn and tn+1 and

subtract the two equations

E∆w (x , t ) =∆T (x , t ) (2.10)

Note that between two time steps the confining stress is assumed to be constant (although it

may vary in space).
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nx = ny = n nx 6= ny

∆x =∆y Nd = n2 − 1
2 n (n +1) Nd = nx ny − 1

2 min
(
nx ,ny

)[
min

(
nx ,ny

)+1
]

∆x 6=∆y Nd = n2 Nd = nx ny

Table 2.1 – Number of unique distances Nd between the centers of the elements in a Cartesian
mesh as a function of the number of elements in the two directions (nx and ny ) and the
element sizes (∆x and ∆y).

Temporal discretization - fluid flow

We note that in case where the confining stress does not vary in time, we can rewrite Eq. (2.3)

in terms of the net pressure p. To avoid confusion, it is sufficient to remember that the fluid

pressure is p f = p +σo . We integrate all the terms in Eq. (2.3) between time tn and tn+1 using

a Backward Euler (BE) scheme. Let us recall the application of the BE scheme on a simple

ODE like d f
dt = g

(
t , f (t )

)
. First we integrate in time, and afterwards we approximate the RHS

integral by the right-hand rectangle method as∫ tn+1

tn

d f

dt
dt =

∫ tn+1

tn

g
(
t , f (t )

)
dt

fn+1 − fn ≈ [
g

(
tn+1, f (tn+1)

)− g
(
tn , f (tn)

)]
(tn+1 − tn)

fn+1 − fn ≈ [
g

(
tn+1, f (tn+1)

)− g
(
tn , f (tn)

)]
∆t

Now, with regard to equation (2.3) one obtains:

(wn+1 −wn)+ c f wn+ 1
2

(
pn+1 −pn

)−∆t
(
∂
∂x

(
w 3

12µ
∂pn+1

∂x

)
+ ∂

∂y

(
w 3

12µ
∂pn+1

∂y

))
+

+∆t
(
∂
∂x

(
w 3

12µρ f gx

)
+ ∂

∂y

(
w 3

12µρ f g y

))
+∫ tn+1

tn

2CL (x)p
t−t0(x)

dt −∆tQ (x , t )δ(x −xi ) = 0

(2.11)

One can notice that we approximated the integral
∫ tn+1

tn
c f w ∂p

∂t dt ≈ c f wn+ 1
2

(
pn+1 −pn

)
where

wn+ 1
2
= 1

2 (wn+1 +wn). The integral left in the equation (2.11) can easily be solved analytically.

Finally

∆w + c f wn+ 1
2
∆p −∆t

(
∂
∂x

(
w 3

12µ
∂pn+1

∂x

)
+ ∂

∂y

(
w 3

12µ
∂pn+1

∂y

))
−∆t

(
∂
∂y

(
w 3

12µρ f g
))
+

+4CL (x)
(p

tn+1 − t0 (x)−p
tn − t0 (x)

)−∆tQ (x , t )δ(x −xi ) = 0

(2.12)

where we expressed∆w = (wn+1 −wn),∆p = (
pn+1 −pn

)
, and we assumed gx ≡ 0 and g y ≡−g

(gravity acting along the −y direction).
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Spatial discretization - fluid flow

x

y

C(t)

s
pf

V

(i-1, j-1) (i, j-1)

(i-1, j) (i, j)w
i-1,j w

i,j

w
i,j          -1

d

Cartesian mesh

∆x

∆y
elem. i

elem. s

elem. t

elem. u

elem. r

(l+1,m)

(l,m)

(l,m+1)

(l,m+1/2)

(l+1/2,m)

(l-1,m)

(l,m-1)

(l   -1/2,m)

(l,m -1/2)

Figure 2.3 – Five point stencil related to the element i located at (l ,m) with l and m respectively
the column and row numbers in the Cartesian mesh.

We adopt the same spatial discretization for both the equations describing the fluid flow and

the elasticity. The fluid pressure p f is assumed to be constant in each cell (as the fracture

opening). The number of cells in the domain at time tn+1 is Ne (tn+1) and the number of

unknowns is 2Ne (tn+1). The system in equation (2.9) provides a set of Ne (tn+1) equations. The

remainings are obtained by writing the width averaged mass conservation for each cell in the

domain represented by equation (2.12).
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The spatial derivatives that are left in equation (2.12) are approximated by a finite differ-

ence method. Considering the five point stencil in Fig. 2.3, the term containing the second

derivative in space is expressed by(
∂

∂x

(
w3

12µ

∂pn+1

∂x

)
+ ∂

∂y

(
w3

12µ

∂pn+1

∂y

))
≈

≈ 1

12µ

1

∆x2

(
w3

l+1/2,m p l+1,m −
(
w3

l+1/2,m +w3
l−1/2,m

)
pl ,m +w3

l−1/2,m pl−1,m

)
tn+1

+ 1

12µ

1

∆y2

(
w3

l ,m+1/2pl ,m+1 −
(
w3

l ,m+1/2 +w3
l ,m−1/2

)
pl ,m +w3

l ,m−1/2pl ,m−1

)
tn+1

and the term containing the first derivative in space results as

∂

∂y

(
w3

12µ
ρ f g

)
≈ ρ f g

12µ

(
w3

l ,m+1/2 −w3
l ,m−1/2

)
tn+1

The final equation, integrated over the cell area ∆Ae =∆x∆y , is:

∆w + c f wn+ 1
2
∆p+

−∆t
12µ∆x2

(
w3

l+1/2,m p l+1,m −
(
w3

l+1/2,m +w3
l−1/2,m

)
pl ,m +w3

l−1/2,m pl−1,m

)
tn+1

−∆t
12µ∆y2

(
w3

l ,m+1/2pl ,m+1 −
(
w3

l ,m+1/2 +w3
l ,m−1/2

)
pl ,m +w3

l ,m−1/2pl ,m−1

)
tn+1

+
−∆t

ρ f g
12µ

(
w3

l ,m+1/2 −w3
l ,m−1/2

)
tn+1

+4CL (x)
p

t − t0 |tn+1
tn

−∆t Q(x ,t )
∆Ae

δ(x −xi ) = 0

(2.13)

Writing the previous equation for all the cells in the domain leads to the following system:

∆w+C f (wn+1/2)∆p+∆t V(wn+1)pn+1+

−∆t G(wn+1)+qout (tn+1, tn)−∆t qin (tn+1)/∆Ae = 0

, (2.14)

where C f is the compressibility matrix

C f i , j =
 c f (wn +wn+1)i /2 if i = j

0 if i 6= j
,

V(wn+1) is the five point stencil finite difference matrix, where the row associated to element i
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in figure 2.3 has been explicitated

V =



· · · · · · · · ·
...
...
...

. . .
...

0 · · · 0 Vi ,t 0 · · · 0 Vi ,s Vi ,i Vi ,u 0 · · · 0 Vi ,r 0 · · · 0
...

. . .
...

· · · · · · · · ·


tn+1

Vi ,i = 1

12µ∆x2

(
w3

l+1/2,m +w3
l−1/2,m

)
tn+1

+ 1

12µ∆y2

(
w3

l ,m+1/2 +w3
l ,m−1/2

)
tn+1

Vi ,r =−
(

w3
l ,m+1/2

12µ∆y2

)
tn+1

Vi ,s =−
(

w3
l−1/2,m

12µ∆x2

)
tn+1

Vi ,t =−
(

w3
l ,m−1/2

12µ∆y2

)
tn+1

Vi ,u =−
(

w3
l+1/2,m

12µ∆x2

)
tn+1

Note that the matrix V is symmetric and diagonal. G is the gravity term vector, and its i -th

term is expressed as

Gi = ρg

12µ∆y
(w3

l ,m+1/2 −w3
l ,m−1/2)tn+1 ,

qin and qout are vectors containing the injection and leak off terms respectively. It is useful to

write the system (2.14) only in terms of increments∆w and∆p. The main steps are summarized

below.

∆w+C f ∆p+∆t Vpn+1 −∆t G+qout −∆t qin/∆Ae = 0

∆w+C f ∆p+∆t Vpn+1 −∆t Vpn =−∆t Vpn +∆t G−qout +∆t qin/∆Ae

∆w+C f ∆p+∆t V∆p =−∆t Vpn +∆t G−qout +∆t qin/∆Ae

Finally one obtains:

∆w+ (
∆t V+C f

)
∆p =−∆t Vpn +∆t G−qout +∆t qin/∆Ae (2.15)
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2.4 Coupling the equations and forming the non-linear system

In the case in which the fracture is open, i.e. there is no contact between the fracture faces, the

normal component of the traction vector T on the fracture is assumed to be equal to the fluid

pressure p f . An increment on the fluid pressure ∆p f between two time steps corresponds to

an increment on the net pressure ∆p, as the confining stress is constant in time. Coupling the

elasticity (2.10) and hydrodynamic (2.15) equations results in the following nonlinear system.[
E −I

I ∆t V+C f

][
∆w

∆p

]
=

[
0

fL

]
(2.16)

where L =∆t V+C f and fL =−∆t Vpn +∆t G−qout +∆t qin/∆Ae .

The Implicit Level Set Algorithm (Peirce and Detournay, 2008; Dontsov and Peirce, 2017)

incorporates near tip asymptote solution in the cells traversed by the fracture front by imposing

the average fracture width obtained by integrating the tip asymptote solution. Therefore for

this set of cells the unknown is only the fluid pressure. In addition, the scheme implemented in

our numerical solver (PyFrac) allows for fracture closure. As previously discussed, we assume

that once the fracture opens for the first time, it never closes back below a residual opening

wa . We defined this residual opening as the minimum between the maximum opening ever

achieved at a given location and a minimum value wmin. Recall that for the cells where this

minimum width constraint is active, the traction T and the fluid pressure p f are not equal, as

assumed in Eq. (2.16), and have to be solved separately. To identify the cells where we solve for

the fracture opening and the ones where the width has been imposed during the numerical

solution, we use:

• the superscript C to represent the channel cells, i.e. the cells inside the fracture, apart

from the tip cells.

• the superscript A to represents the cells where the width constraint is active.

• the superscript T represents the tip cells where the fracture opening is imposed.

We can rewrite the system (2.16) making the distinction between these different cell types as:

EC C EC T EC A

ET C ET T ET A −I

EAC EAT EA A

LC C LC T LC A

I LT C LT T LT A

LAC LAT LA A





∆wC

∆wT

∆wA

∆pC

∆pT

∆pA


=



0

0

0

fCL
fTL
fAL


(2.17)

where∆wT = wT
n+1−wT

n and wT
n+1 represents the width in the tip cells evaluated using the tip

asymptote. Similarly, ∆wA = wA
n+1 −wA

n but wA
n+1 = wA

n ≡ wa and wa is the minimum width
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corresponding to the asperity of the rock material. Therefore, the value of ∆wA is always zero

for an active cell. The system is made of 6 equations and 4 unknowns i.e.: ∆wC , ∆pT , ∆pA

and ∆pC . One can express the first row of the matrix as:

EC C∆wC +EC T ∆wT +EC A∆wA −∆pC = 0

∆pC = EC C∆wC +EC T ∆wT +EC A∆wA

∆pC = EC C∆wC +bC (2.18)

where bC = EC T ∆wT +EC A∆wA . One can substitute this equation in the last 3 equations of

system (2.17) obtaining: I+LC C EC C LC T LC A

LT C EC C LT T LT A

LAC EC C LAT LA A


 ∆wC

∆pT

∆pA

=

 fCL −LC C bC

fTL −LT C bC

fAL −LAC bC

 (2.19)

By recalling that L =∆t V+C f and that C f is strictly diagonal, one can rewrite the previous

system as following: I+LC C EC C ∆t VC T ∆t VC A

∆t VT C EC C
[
∆t V+C f

]T T
∆t VT A

∆t VAC EC C ∆t VAT
[
∆t V+C f

]A A


 ∆wC

∆pT

∆pA

=

=

 fCL −LC C bC

fTL −∆wT +∆t VT C bC

fAL −∆wA +∆t VAC bC


(2.20)

[
I+LC C EC C LC A

LAC EC C LA A

][
∆wC

∆pA

]
=

=
[

fCL −LC C EC A∆wA

fAL −∆wA +LAC EC A∆wA

] (2.21)

[
I+ [

∆t V (wn+1)+C f
]C C EC C ∆t V (wn+1)C A

∆t V (wn+1)AC EC C
[
∆t V (wn+1)+C f

]A A

][
∆wC

∆pA

]
=

=
[

fCL − [
∆t V (wn+1)+C f

]C C EC A∆wA

fAL −∆wA +∆t V (wn+1)AC EC A∆wA

] (2.22)
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2.4. Coupling the equations and forming the non-linear system

where the right hand side of the system can be explicitly written as: fCL −LC C bC

fTL −∆wT +∆t VT C bC

fAL −∆wA +∆t VAC bC

=

 +∆t GC −qC
out +∆t qC

in/∆Ae

+∆t GT −qT
out +∆t qT

in /∆Ae −∆wT

+∆t GA −qA
out +∆t qA

in /∆Ae −∆wA

+

+

 −∆t
[
Vpn

]C − [
∆t V+C f

]C C bC

−∆t
[
Vpn

]T +∆t VT C EC T ∆wT +∆t VAC EC A∆wA

−∆t
[
Vpn

]A +∆t VAC EC T ∆wT +∆t VAC EC A∆wA


(2.23)

Now we rewrite the last term on the right hand side, in the previous equation in order to

express it in function of the pressure at time tn , rather than the opening increment ∆w . The

first component can be written as:

−∆t
[
Vpn

]C − [
∆t V+C f

]C C bC =

−∆t VC C pC
n −∆t VC T pT

n −∆t VC A pA
n +

−[
∆t V+C f

]C C EC T ∆wT − [
∆t V+C f

]C C EC A∆wA =

−∆t VC C pC
n −∆t VC T pT

n −∆t VC A pA
n +

−∆t VC C EC T ∆wT −C C C
f EC T ∆wT +

−∆t VC C EC A∆wA −C C C
f EC A∆wA =

−∆t VC C pC
n −∆t VC T pT

n −∆t VC A pA
n +

−∆t VC C EC T ∆wT −∆t VC C EC A∆wA+
−C C C

f

(
EC T ∆wT +EC A∆wA

)
we substitute pC

n = EC C wC
n +EC T wT

n +EC A wA
n +σC

0 in this last expression, and we obtain:

−∆t VC C
(
EC C wC

n +EC T wT
n +EC A wA

n +σC
0

)+
−∆t VC C EC T ∆wT −∆t VC C EC A∆wA+

−∆t VC T pT
n −∆t VC A pA

n +
−C C C

f

(
EC T ∆wT +EC A∆wA

)
.

(2.24)

We can now simplify expression (2.24) by recalling that ∆w = wn+1 −wn :

−∆t VC C
(
EC C wC

n +EC T wT
n+1 +EC A wA

n+1 +σC
0

)+
−∆t VC T pT

n −∆t VC A pA
n +

−C C C
f

(
EC T ∆wT +EC A∆wA

)
.

(2.25)
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We shorten expression (2.25), by defining p′C
n = EC C wC

n +EC T wT
n+1 +EC A wA

n+1 +σC
0 :

−∆t VC C p′C
n +

−∆t VC T pT
n −∆t VC A pA

n +
−C C C

f

(
EC T ∆wT +EC A∆wA

)
.

(2.26)

We note that:

−C C C
f

(
EC T ∆wT +EC A∆wA

)=
−C C C

f p′C
n +C C C

f

(
EC C wC

n +EC T wT
n +EC A wA

n +σC
0

)
,

(2.27)

and we substitute this equation in expression (2.26):

−∆t VC C p′C
n −C C C

f p′C
n +

−∆t VC T pT
n −∆t VC A pA

n +
+C C C

f

(
EC C wC

n +EC T wT
n +EC A wA

n +σC
0

)
.

(2.28)

The expression between brackets in (2.28) coincides with the definition of p′C
n . After substitut-

ing it we obtain the final expression

−∆t
[
∆t V+C f

]C C p′C
n −∆t VC T pT

n −∆t VC A pA
n +C C C

f pC
n . (2.29)

The second component of the last term in equation (2.23) can be written as:

−∆t
[
Vpn

]T +∆t VT C EC T ∆wT +∆t VAC EC A∆wA =

−∆t VT C pC
n −∆t VT T pT

n −∆t VT A pA
n +

+∆t VT C EC T ∆wT +∆t VAC EC A∆wA .

We expand the right hand side of the previous equation by recalling that pC
n = EC C wC

n +
EC T wT

n +EC A wA
n +σC

0 :

−∆t VT C
(
EC C wC

n +EC T wT
n +EC A wA

n +σC
0

)
+∆t VT C EC T ∆wT +∆t VAC EC A∆wA+

−∆t VT T pT
n −∆t VT A pA

n

(2.30)

Expression (2.30) can be simplified by considering that ∆w = wn+1 −wn :

−∆t VT C
(
EC C wC

n +EC T wT
n+1 +EC A wA

n+1 +σC
0

)
−∆t VT T pT

n −∆t VT A pA
n .

(2.31)

We finally substitute p′C
n = EC C wC

n +EC T wT
n+1 +EC A wA

n+1 +σC
0 in expression (2.31):

−∆t VT C p′C
n −∆t VT T pT

n −∆t VT A pA
n . (2.32)

A similar rearrangement can be made on the 3rd component of the last term in equation (2.23)
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2.5. Numerical solution of the non-linear system of equations

obtaining:

−∆t VAC p′C
n −∆t VAT pT

n −∆t VA A pA
n . (2.33)

Finally, by replacing the three expressions (2.29), (2.32) and (2.33) with the respective three

entries of the last term in the right hand side of (2.23) we obtain: fCL −LC C bC

fTL −∆wT +∆t VT C bC

fAL −∆wA +∆t VAC bC

=

 +∆t GC −qC
out +∆t qC

in/∆Ae

+∆t GT −qT
out +∆t qT

in /∆Ae −∆wT

+∆t GA −qA
out +∆t qA

in /∆Ae −∆wA

+

+


−∆t

[
∆t V+C f

]C C p′C
n −∆t VC T pT

n −∆t VC A pA
n +C C C

f pC
n

−∆t VT C p′C
n −∆t VT T pT

n −∆t VT A pA
n

−∆t VAC p′C
n −∆t VAT pT

n −∆t VA A pA
n


(2.34)

2.5 Numerical solution of the non-linear system of equations

We can synthetically write the system of Eq. (2.22) as

A
(
xn) ·xn = b

(
xn)

. (2.35)

This non-linear system must be solved for each trial position of the fracture front. We solve it

using an Anderson Acceleration method of the classical fixed point iteration scheme (Anderson,

1965; Walker and Ni, 2011). This involves the multiple solution of the linearised system of

equations

A
(
xn

k

) ·xn
k+1 = b

(
xn

k

)
. (2.36)

This system is non symmetric and non diagonal dominant despite although the elastic operator

E and the finite difference operator V are both positive definite. We solve the linearised

system of equations using the iterative method Bi-CGSTAB (van der Vorst, 1992) and a right

preconditioning strategy:
AP−1z = b

x = P−1z
(2.37)

We assume a preconditioner to be an approximate of the matrix of the system

P−1 ∼ A−1 (2.38)

such that its application allows for a proper reduction of the spectral radius of the precon-

ditioned system. To develop a robust preconditioner, we follow the approach originally

suggested by Peirce (2006).

• we first compute an approximate elastic operator Ẽ. This is done similarly to what

proposed by Peirce (2006). For each row of Ẽ, we consider only the diagonal values and

the off diagonal values which absolute value is above a given percentage of the diagonal
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one,

• we then assemble the approximated system of equations Ã using the approximated

operator Ẽ,

• we finally compute the preconditioner P̃ via an ILUT decomposition of the approximated

system Ã (dual threshold incomplete LU factorization (Saad, 1994)).

This preconditioner has proven to be particularly efficient and robust, in line with the statistics

presented in Peirce (2006).

2.6 Front reconstruction

x

y

x

y

s
pf

(i-1, j-1) (i, j-1)

(i-1, j) (i, j)
w

i-1,j w
i,j

w
i,j          -1

d

(i-1, j-1) (i, j-1)

(i-1, j) (i, j)
d1

d2

α

Δx

Δy

α
θ

γ

A

B

C

Figure 2.4 – On top, the distance to the fracture front at the survey cells is defined by inverting
the asymptotic relation between the fracture opening and the distance to the front. The lower
figure represents the geometrical interpretation of the front reconstruction algorithm in Peirce
and Detournay (2008).
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2.6. Front reconstruction

The signed distances are the values of the level set function. This function is defined as the

minimum distance to the fracture front and the sign of this distance carries the information

about the location of the point where it is evaluated. The level set is negative when evaluated

within the fracture and positive otherwise. The level set can be computed at the center of each

cell in the domain by solving the Eikonal equation∣∣∇d
(
x, y

)∣∣= 1, (2.39)

where d is the level set function. The equation is solved by the fast marching method (Sethian,

1999). The boundary conditions for this equation are represented by the values of the level set

function at the survey cells. The red segments in the top part of Fig. 2.4 mark these distances.

The additional distances computed by solving the Eikonal equation are displayed with blue

segments the bottom part of Fig. 2.4. By the expression "font reconstruction", we simply refer

to the algorithm that allows the computation of the fracture front position in all the cells of the

Cartesian mesh. The fracture front is a straight segment within each cell of the Cartesian mesh.

The position of each segment is computed based on the knowledge of the level set around the

fracture front. This position is defined locally within each cell by two pieces of information: 1)

the angle α of the segment with respect to the horizontal line. 2) the largest distance ` to the

front from a cell vertex located inside the fracture. The front reconstruction proposed in Peirce

and Detournay (2008); Peirce (2015); Dontsov and Peirce (2017) allows one to reconstruct the

front independently in each cell traversed by it. As a consequence the front is discontinuous

between two neighbouring cells (it is only piece-wise linear). This may be unpleasant to see

but it does not cause a problem for the accuracy of the solution. A geometrical interpretation

of the front reconstruction algorithm is shown in the bottom part of Fig. 2.4. The angle α for

the front located in cell (i , j ) is defined by considering the triangle ABC and the two distances

d1 and d2 in the neighbours cells. The assumption taken by the algorithm is that the vector

d1 is parallel to the vector d2. The front curvature may be too large, and this assumption is

violated. From a mathematical point of view the algorithm proposed in (Peirce and Detournay,

2008; Peirce, 2015; Dontsov and Peirce, 2017) fails when

|d1 −d2| >
√
∆x2 +∆y2. (2.40)

A large curvature of the fracture front that leads to the failure of this algorithm can be the

result of the presence of tough inclusions in the domain. A test case where a hydraulic

fracture encounters four inclusions of tough material is displayed in Fig. 2.5. The right

panel in subfigure b) shows the overall evolution of the fracture front and the last time step

before failure. The details of the reconstructed front approaching the tough heterogeneity are

shown in the left panel in subfigure c). For this test case, the simulation fails due to the front

reconstruction algorithm when the condition in Eq. 2.6 is satisfied.
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the front reconstruction algorithm fails at the next 
time step and the simulation is interrupted

Figure 2.5 – Test case where a hydraulic fracture encounters four inclusions of higher fracture
toughness. The front reconstruction algorithm proposed in Peirce and Detournay (2008);
Peirce (2015); Dontsov and Peirce (2017) (red line) fails and the simulation ultimately crashes.
The new front reconstruction algorithm is represented by the black line, and can simulate the
creation of islands of un-broken materials.

In order to address this problem, we propose a new fracture front reconstruction algorithm
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that does not fail in case of large front curvature while maintaining the same accuracy of the

overall scheme. We can summarise this new algorithm as follows:

• consider a sub-Cartesian mesh obtained by simply joining all the cell centers of the

main mesh. We refer to this mesh as "fictitious mesh" and to its cells as "fictitious cells".

Both the Cartesian mesh and the "fictitious mesh" (dashed line) are displayed in the

cartoon in Fig. 2.6.

• The values of the level set function are known at the cell centers of the elements in the

original mesh. These correspond to the four vertexes of each "fictitious cell". Therefore,

the level set is also known at the four vertexes of each "fictitious cell". We consider a

bilinear interpolation of the level set between the four vertexes.

• The fracture front position is then defined by the curve where the bilinear interpolation

assumes a value equal to zero. This is represented by the green curve in Fig. 2.6. We

compute the intersections of such curve with the original Cartesian mesh. A trial front

is consequently obtained by simply joining all points defined on the original Cartesian

mesh.

• In most cases the steps above are just enough to obtain the final front. This means that,

we know the two intersections between the front and the cell edges for each element

traversed by the fracture front. However, in some cases and for few cells in the fracture,

these same steps result in more than two intersections per cell. It is impossible to define

a straight front within the cell if there are more than two intersections for a cell traversed

by the front. An example is shown in Fig. 2.7. The red points in the figure are produced

by the steps above. The solution adopted is to detect these situations and remove one

point. In some cases there is more than one choice in deleting the point. The dashed

lines in the example in Fig. 2.7 are two possible outcomes of the fracture front. Each of

them corresponds to a different removed point. Resolving this ambiguity by removing

one of the points does not impact significantly the accuracy of the overall scheme.

In Fig. 2.5, we compare this fracture front reconstruction algorithm with the one proposed in

Peirce and Detournay (2008); Peirce (2015); Dontsov and Peirce (2017). Note the capability of

the new algorithm to handle both the coalescence ahead of the heterogeneity, and the creation

of an "island" of intact material.
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Figure 2.6 – Schematic representation of the new fracture front reconstruction algorithm.
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tion of the bilinear interpolation of the LS and 
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outside the 
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Figure 2.7 – Rare but possible ambiguities arising when using the new fracture front recon-
struction algorithm.
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2.7 Verification against analytical solution

Rice (1985) derived the first-order expression of the variation of the mode I stress intensity

factor (SIF) induced by some small, but otherwise arbitrary, coplanar perturbation of the

front of a semi-infinite tensile crack in an infinite body. However, Rice (1985)’s expression

is accurate only to first order in the perturbation of the front. This was the motivation for

Leblond et al. (2012)’s extension to second order of Rice (1985)’s first-order formula. Vasoya

et al. (2013) applied Leblond et al. (2012)’s formula to some geometrically nonlinear analysis

of quasistatic, coplanar crack propagation in media having a heterogeneous distribution of

fracture toughness. They first extended Leblond et al. (2012)’s formula to the case where the

unperturbed SIF, for the straight configuration of the front, depends on the position of this

front within the crack plane. Such an extension was required to address the case where the

unperturbed SIF becomes independent of the front position.
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Figure 2.8 – a) Semi-infinite tensile crack in an infinite body. b)Penny shaped tensile crack
in an infinite body. In both configurations the fractures are loaded internally by a uniformly
pressurised fluid and they approach the same semi- infinite layer of high fracture toughness.

As an application, they have considered the case of a crack penetrating into a single obstacle

of infinite length in the direction of propagation. For a given loading, provided that the energy

release rate G is equal to Gc at every point of the crack front, the distribution of toughness

determines the shape of this front. The equilibrium shape of the front is calculated up to

second order in the contrast of toughness between the matrix and the obstacle. By simple su-

perposition, we can relate this configuration to the case where the fracture is loaded internally
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Chapter 2. Simulating 3D planar HF

by a uniformly pressurised fluid. A geometrical representation of the initial configuration of

this application is shown in Fig.2.8-a). Such configuration also corresponds, under certain

conditions, to the case of a penny shaped fracture that is loaded by a uniformly pressurized

fluid. The main differences between the two problems are:

• the different radius of curvature of the front while approaching the heterogeneity. The

initial radius of curvature of the straight front is infinite while it is equal to the fracture

radius in the case of a penny shape fracture.

• the geometry of the two problems is different, as one fracture is semi infinite while the

other is finite.

However, when radius of curvature of the fracture Ro is much bigger than the finite size of

the obstacle, 2d , the equilibrium shape of the two problems should coincide in vicinity of

the front. We investigated this possibility by means of numerical simulations. We start by

adopting a fixed toughness contrast ε= 0.75

ε= K 2
Ic-2 −K 2

Ic-1

K 2
Ic-1

, (2.41)

where K 2
Ic-2 is the fracture toughness in the obstacle. We varied the ratio between the fracture

radius Ro and the size of the obstacle 2d assuming Ro/d = 27.5, 34.6 and 48.4. We also decided

to adopt different discretizations, resulting in a different number of cells in the obstacle. In

particular, for the case Ro/d = 27.5 we used 13 cells, for Ro/d = 34.6 we used 7 cells and for

Ro/d = 48.4 we used 3 cells. The superposition between the analytical solution Φ(z) and the

numerical one in the top part of Fig. 2.9 shows a good agreement. Although the analytical and

the numerical solutions are expected to be alike for the case Ro/d = 48.4, the lower number of

cells in the discretization causes a larger difference between the analytical and the numerical

predictions when compared to the case Ro/d = 27.5. The relative difference between the

analytical and the numerical solutions shown in the bottom part of Fig. 2.9 confirms this point.

In this plot we also compare the relative difference ∆ between the initial radial and straight

fronts. We find that the relative difference between the numerical and the analytical solutions

far from the center scale as ∆/d . This is not the case when we use a finest discretization. This

can be explained by the fact that the analytical solution we are comparing is only "second order

accurate". Larger toughness contrasts between the obstacle and the surrounding medium

imply larger deformations of the fracture front.
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Chapter 2. Simulating 3D planar HF

Finally we considered the case with Ro/d = 27.5 and a fixed number of cells in the obstacle to

study the variability of the results when varying the toughness contrast ε= 0.75. Particularly,

we considered ε= 0.25, 0.5, 0.75, and 1.25. We find that the larger the toughness contrast the

more the relative difference between the two solutions increases (see Fig. 2.10).
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Figure 2.10 – Comparison between the analytical and numerical front configurations for two
fractures propagating over a semi infinite obstacle of higher fracture toughness. We vary only
the toughness contrast ε between the obstacle and the surrounding medium. We assume the
same number of cells in the obstacle and the ratio Ro/d between the initial radius Ro and the
size of the obstacle 2d .

2.8 Conclusions

We have demonstrated that the current front reconstruction scheme adopted by the Implicit

Level Set Algorithm (Peirce and Detournay, 2008; Peirce, 2015; Dontsov and Peirce, 2017) fails

in some cases of large and localised fracture front curvatures. We have presented an improved
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2.8. Conclusions

algorithm to reconstruct the fracture front that is capable of handling large curvature, such

as those caused when tough heterogeneities pin the fracture front. We tested the algorithm

against the analytical solution of a semi infinite fracture penetrating a single tough obstacle of

infinite length in the direction of propagation. The next Chapter, will compare the new front

reconstruction and the overall scheme to existing laboratory experiments.
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3 Comparisons against experiments

Disclaimer and acknowledgements: The ideas and work presented in this chapter are original

and represent my contributions, except for the comparison with the stress jump experiment.

This comparison was made jointly with Dr B. Fryer.

Note: The last part of this chapter is currently being adapted into a scientific publication:

C. Peruzzo, B. Lecampion, "Interaction and coplanar coalescence of two hydraulic fractures",

to be submitted to Int J. Eng. Sci., 2023

The comparison with the stress jump experiment shown in the first part of this chapter will be

adapted into a scientific publication:

C. Peruzzo, B. Fryer, B. Lecampion, "Conditions for hydraulic fracture height-growth arrest by a

bi-lateral stress jump", in prep., 2023

3.1 Introduction

Our numerical code Pyfrac has previously been benchmarked by Zia and Lecampion (2020)

against analytical solutions for both radial and fully contained fractures that are either fully

viscosity or fully toughness dominated. It was additionally validated by Zia and Lecampion

(2019) against the experimental results of Wu et al. (2008) for the case of a hydraulic fracture

encountering an asymmetrical stress jump. Here, however, further validation will be provided

against the following experiments:

• the experimental results of Garagash et al. (2009); Jeffrey and Bunger (2009) for the case

of a viscosity-dominated fracture encountering a symmetrical bi-lateral stress jump,

equivalent in form the problem presented in Fig 3.1.

• the experimental results of O’Keeffe et al. (2018a); O’Keeffe (2019) for the case of a single

penny shaped fracture propagating mostly in the toughness dominated regime.
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Chapter 3. Comparisons against experiments

• the experimental results of O’Keeffe et al. (2018b); O’Keeffe (2019) for the case of a two

coplanar penny shaped fractures propagating in the toughness dominated regime.

3.2 Stress jump experiment

The experiment “scon7” of Jeffrey and Bunger (2009) is the same experiment as the “positive

stress jump” experiment presented by Garagash et al. (2009). Therefore, the experiment will

be referred to as “scon7” when discussing the results of both papers. This experiment was also

modelled in Peirce (2015).

3.2.1 setup

The experiment is carried in polymethylmethacrylate (PMMA). The idea was to create step-like

stress changes on an interface between two blocks, injecting a viscous fluid in the interface

and propagating a hydraulic fracture. A conceptual scheme of the experimental setup is

presented in Fig. 3.1. To produce the designed stress variations along the interface between

the two PMMA blocks one surface of one block is machined with a prescribed profile. When

the two, equally sized, PMMA blocks are pressed against each other the interface contact stress

presents the required stress variation. No material bond is created between the two blocks, so

the fracture toughness during the propagation is zero. A mixture of water, glucose and food

dye is injected via a computer-controlled positive displacement pump. During the experiment

different physical quantities were measured:

• The fracture opening was obtained from the video images by analyzing the decrease in

light intensity associated with light passing through the fracturing fluid.

• The video images were also used to measure the evolution of the main fracture dimen-

sions.

• The fluid pressure at the fracture inlet was measured via a pressure transducer.

• A local fracture opening measurement was made via a pair of linear variable differential

transceivers (LVDTs). The position of this point with regard to the footprint is marked by

the point "A" in Fig. 3.1-a).

For further details refer to Jeffrey and Bunger (2009).

3.2.2 Discussion of the results

The experiment scon7 was repeated in Pyfrac with, Qo = 1.7×10−9m3/s, µ = 30.2Pa s, and

∆σ= 4.3MPa, H = 25mm, K 1C = 0Pa
p

m E ′ = 3.93GPa. The simulation was performed twice

with two different grid resolutions, once with 75 square vertical elements in the reservoir and
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3.2. Stress jump experiment

once with 25 square vertical elements. The results are presented in Fig. 3.1. The different

discretizations used do not lead to a significant difference in the numerical results. The largest

difference is probably appreciated when comparing the numerical and the experimental

footprints at two different time steps (see Fig. 3.1-a)). The different comparisons of the

numerical fracture opening across the stress jump presented in Fig. 3.1-c) do not show

significant differences with the experimental observations. The experimental points around

X = −20 mm that drop to zero do not have to be considered. In Fig 3.1-d) we present the

comparison of the evolution of the fracture opening measured at point "A" via LVDTs and the

evolution of the fluid pressure at the fracture inlet. Except for an initial period at the beginning

of the experiment, the numerical results match the experimental data. The evolution of the

half fracture length L shown in Fig. 3.1-d) presents a larger difference. This is caused by the fact

that we assumed a constant injection rate for the whole duration of the simulation. Another

variable of interest is the breakthrough distance λ. It is defined as the maximum penetration

of the fracture front measured from the interface. The comparison between the numerical

predictions match the experimental observations (see Fig. 3.1-e))
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Figure 3.1 – Numerical versus experimental observations for the "stress jump" experiment. a)
A comparison of the numerical fracture footprint against scon7 for a fine and coarse mesh
at two different times. b) An overview of the experimental setup with the low and high stress
regions shown in blue and pink, respectively. c) A comparison of the scon7 and numerical
fracture openings at four different times for two different mesh resolutions. d) A comparison
of the scon7 and numerical half lengths, fluid pressures, and fracture opening for a fine and
coarse mesh. e) A comparison of the breakthrough distance for scon7 and the fine and coarse
numerical mesh resolutions.
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3.3 Single, radial, toughness dominated experiments

3.3.1 setup

A set of 18 experiments is carried out in a block of hydrogel. The setup of the experiments is

shown in Fig. 3.2. The hydrogel block is closed on 5 sides and open on one side. The injection

is performed by using a displacement syringe pump. To promote the planarity of the hydraulic

fracture 4 plates of 1 mm thickness are inserted between the hydrogel and the mould where

it was casted (see Fig. 3.2). The light attenuation measurement technique is used to obtain

the fracture opening profile for each experiment. For further details refer to O’Keeffe et al.

(2018a); O’Keeffe (2019). The numerical values of the experimental parameters used in the

simulations are reported in Table 3.1. The accuracy related to the experimental derivation

of these parametes is about 10%. All the experiments can be considered mostly toughness

dominated.
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Figure 3.2 – Experimental setup used for the single fracture experiment.
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exp. ID
E ′

[kPa]
µ

[Pa s]
Qo

[mL/min]
KIc[

kPa
p

m
]

1 165 0.1 15 1.205
2 129 0.1 20 1.202
3 209 0.28 20 1.474
4 200 0.08 35 1.497
5 207 0.08 10 1.221
6 129 0.08 10 1.202
7 207 0.001 15 1.221
8 85 0.08 15 0.903
9 347 0.08 15 2.738

10 209 0.08 15 1.474
11 427 1 2 1.753
12 213 1 2 1.238
13 213 1.2 10 1.238
14 209 1.13 20 1.474
15 425 1.13 23 1.749
16 489 1.13 23 1.876
17 415 3.4 23 1.729
18 489 10 20 1.876

Table 3.1 – Parameters used in the numerical simulations of the single hydraulic fracture
experiments.

3.3.2 Discussion of the results

The time evolution of the fracture radius for the 18 experiments is shown in Fig. 3.3 and

numerical predictions generally captured it. In most cases the discrepancies are related to the

time of fracture initiation. A close look at the Fig. 3.3 reveals that in the experiments n. 4, 5, 7,

9 and 16 the evolution of the fracture radius departs from the trend shown by the numerical

solution. This can be understood because the numerical simulations do not account for the

boundary effect. Additionally the fracture footprint in the experiment tends to drift its center

away from the injection point reinforcing the boundary effect. In Fig. 3.4 we compare the

opening profile near the fracture front to the analytical solution of a toughness dominated

radial fracture. The results are related to the experiment n. 10. In the same figure we also

present the comparison with the numerical solution (red curve). The mismatch between

the numerical and analytical solutions is caused by the coarse numerical discretization we

used. Finally, in Fig.3.5 we present a successful comparison between the numerical and

the experimental fracture opening profiles for the experiment n. 18. In this rare case the

numerical fracture radius (black line) matches almost perfectly the experimental one for the

same time (see the bottom part of Fig. 3.5). It is important to note the "rigid body motion" of

the experimental footprint. This implies that the fracture center moves away from the initial

injection point.

42



3.3. Single, radial, toughness dominated experiments

-40 -20 0 20 40-40

-20

0

20

40

-40 -20 0 20 40-40

-20

0

20

40

Single fracture 
experiment

-40 -20 0 20 40-40

-20

0

20

40

-40 -20 0 20 40-40

-20

0

20

40

Experiment #8

Simulation

22

�

�
�

�
�

� � � � � �

■

■

■
■

■
■

■ ■ ■ ■ ■

◆

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆

✶
✶

✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶

★

★
★

★
★

★
★

★
★ ★ ★

▲

▲
▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

◀

◀

◀
◀

◀ ◀ ◀ ◀ ◀ ◀
◀

▶
▶

▶
▶

▶ ▶ ▶ ▶ ▶ ▶ ▶

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆◆

■ ■
■ ■

■ ■ ■ ■

5 10 50 100
5

10

20

50

11

4

7

6

5

3

1

8

2 10
9

Numerical result

Experiment number

Experimental data

�

�
�

�
�

� � � � � �

■

■

■
■

■
■

■ ■ ■ ■ ■

◆

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆

✶
✶

✶ ✶ ✶ ✶ ✶ ✶ ✶ ✶

★

★
★

★
★

★
★

★
★ ★ ★

▲

▲
▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

◀

◀

◀
◀

◀ ◀ ◀ ◀ ◀ ◀
◀

▶
▶

▶
▶

▶ ▶ ▶ ▶ ▶ ▶ ▶

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆◆

■ ■
■ ■

■ ■ ■ ■

5 10 50 100
5

10

20

50

11

� �
� �

�

�

�

�

�
�

■

■ ■ ■
■

■

■

■

■

■

◆ ◆ ◆
◆

◆

◆

◆

◆

◆

◆

✶ ✶
✶ ✶

✶
✶

✶
✶

✶
✶

★ ★
★

★

★
★

★

★
★

★

▲
▲

▲
▲ ▲

▲
▲

▲
▲

▲

▼ ▼

▼
▼

▼

▼

▼

▼

▼
▼

0.01 0.10 1 10 100

1

5

10

50

16

1214

18

15

17

13

Numerical result

Experiment number

Experimental data

13

� �
� �

�

�

�

�

�
�

■

■ ■ ■
■

■

■

■

■

■

◆ ◆ ◆
◆

◆

◆

◆

◆

◆

◆

✶ ✶
✶ ✶

✶
✶

✶
✶

✶
✶

★ ★
★

★

★
★

★

★
★

★

▲
▲

▲
▲ ▲

▲
▲

▲
▲

▲

▼ ▼

▼
▼

▼

▼

▼

▼

▼
▼

0.01 0.10 1 10 100

1

5

10

50

Footprint from 
numerical 
simulation

��
��
����
����
���
�����
������
�����
���������

�������
�����
�
�
������������

���������
������
�������

�����
����
������
�������

�
����
����������

�
��
������
�������������

����������
����
����������

������������������
����������

���������
���
�
��
����

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.5

1.0

1.5

2.0

��
����
������
������
����
������
��������

������
����������

�
�
��������������

��������
������
������������

����������
������������

���������
���������

���������������
������������

�����������������
���������������������

���������
���
�
��
����

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.5

1.0

1.5

2.0

2.5

3.0

Experiment #10

��
���
����
����
����
���
����
�����
�����
����������

�������
����
������
���������

�����
��������

����
�������
����
���
����
����������

�����
�
���
���������������

��������
�����
���������

������������
�
���
�
�
�����
���
�
�������
�
�������
�
�
�
��
���
�����
�
������
�
��
��

�

��
�
�
����
�
���
������
��
�
��
�
���

�
����
�
�

�����
�
�
�
��
��
���
�
���������

��

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.5

1.0

1.5

2.0

2.5

��
���
����
����
�����
�����
�����
����
���������

��������
������
������
���������

�����
��������
����
��������
����������

����������
�����
�
���
���������������

��������
�����
���������

������������
�
���
�
�
�����
���
��������
��������
�
�
�
��
��������
�
������
�
��
��

�

��
�
�
����
�
���
������
��
�
��
�
���

�
����
�
�
�����
�
�
�
��
��
���
�
���������
��

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.0

0.5

1.0

1.5

2.0

2.5 Experiment #10

<latexit sha1_base64="BG0hmqEYPi4+wZRv+Q+p9girVSw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diK/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGivV73ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDrpmM3A==</latexit>

R

Numerical result

Analytical solution

Experimental data

Numerical result

Analytical solution

Experimental data

Figure 3.3 – Numerical versus experimental evolution of the fracture radius for 18 different
single-fracture experiments.
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Figure 3.4 – Numerical, analytical and experimental comparison of the opening profile around
the fracture front for at two times in Experiment n. 10 (single-fracture experiments).
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Figure 3.5 – Numerical and experimental comparison of the 3D opening profile in Experiment
n. 10 for t = 39.4 s (single-fracture experiments).

3.4 Coalescence of two coplanar HF

In this section we present the comparison of the numerical predictions against a set of experi-

ments where the simultaneous fluid injection generates two hydraulic fractures that first grow

independently and then coalesce. The coalescence takes place on the same plane thanks to

the presence of a sufficient amount of confining stress.
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3.4. Coalescence of two coplanar HF

3.4.1 setup

The experimental setup is shown in Fig. 3.6 and is similar to the one presented in the previous

section. However in this case the fluid is injected at two locations in the hydrogel. To measure

the average fluid velocity within the fracture O’Keeffe et al. (2018b) used the optical method

of Particle Image Velocimetry. In this flow visualisation technique a particular flow section

with particles is illuminated to allow instantaneous velocity measurements. For further details

refer to O’Keeffe et al. (2018b); O’Keeffe (2019). The numerical values of the experimental

parameters used in the simulations are reported in Table 3.2. All the experiments can be

considered toughness dominated.
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Figure 3.6 – Experimental setup for the double fracture experiment.
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Chapter 3. Comparisons against experiments

exp. ID
exp. ID

reference

E

[kPa]

µ

[Pa s]

Qo

[mL/min]

KIc[
kPa

p
m

]
1 db03 97 1.13 5 2.166

2 db12 125 1.13 20 2.166

3 pivdb13 97 0.44 5 2.166

Table 3.2 – Parameters used in the numerical simulations of the double hydraulic fracture
experiments.

3.4.2 Discussion of the results

Experiment 1

In Fig. 3.7 and 3.8 we selected a set of time instants for which we present the comparison of

the numerically predicted fracture front (black line) and the experimental footprint. Even

though the injections started simultaneously, the fracture initiation occurred at different times

for the two fractures. To account for this in the numerical simulation we considered two

different radii for the initial fractures. The selected radii correspond to the radius of the first

observable fracture and to the radius of the needle used for the injection. Despite this caution

the fracture footprints obtained by numerical simulation evolves only qualitatively as the

ones shown in the experiment. In particular we see that the numerical footprints are more

extended in the direction away from the coalescence point. A possible explanation for this

phenomenon is that in the numerical simulations we assume that the propagation takes place

in an infinite medium while the experiment takes place in a relatively small block of hydrogel.

The numerical simulations and the experiments show that once the fractures have grown

enough, they interact and attract each other. The closer the two fractures are the higher is

the stress intensity factor at the closer parts of the fracture front. Although our numerical

simulations do not exactly reproduce the time of coalescence, we obtain excellent comparisons

if we shift in time the numerical results taking the time of coalescence as reference. An almost

perfect match between the numerical simulation and the experiment is obtained for the 3D

fracture opening profile around the point of coalescence. This is shown in Fig. 3.9. The

"wiggles" or the "scattered points" seen in the experimental results are related to the light

attenuation measurement technique used to obtain the fracture opening. To demonstrate

the consistent level of accuracy obtained in comparing with this unique set of experiments

we choose to continue reporting on the geometrical comparisons concerning a different

experiment.
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3.4. Coalescence of two coplanar HF

Figure 3.7 – EXP n.1 - Numerical (black line) versus experimental comparison of the fracture
footprint before near the beginning of the simulation. Note the delayed initiation of the second
fracture (top left).
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Chapter 3. Comparisons against experiments

Figure 3.8 – EXP n.1 - Numerical (black line) versus experimental comparison of the fracture
footprint before and after the time of coalescence.
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3.4. Coalescence of two coplanar HF
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Figure 3.9 – EXP n.1 - Numerical versus experimental comparison of the 3D opening profile
0.04 s after coalescence (top). 2D comparison of the opening profile on the central plane z −x.

Experiment 2

As for the previous experiment, the light attenuation measurement technique is used to

measure the fracture opening. In Fig. 3.10 we focus on the evolution of the fracture opening

profile along two orthogonal planes intersecting the two fractures. Plane "B" in Fig. 3.10 is
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Chapter 3. Comparisons against experiments

passing through the two injection points and is orthogonal to the fracture plane. Plane "A"

is orthogonal to plane "B" and it is passing through the point where the coalescence occurs.

We consider the fracture opening profiles for few instants before and after the coalescence

time (taken as reference). The evolution of the fracture opening profiles obtained numerically

match the experimental observations around the point where the coalescence occurs. The

scattering in the experimental data is due to the interference of the experimental setup with the

light attenuation measurements. As in the previous experiment, we observe that the simulated

fracture grows away from the point of coalescence more than what was observed in the

experiment. We now turn to consider the evolution of the fracture opening near the injection

points shown in Fig. 3.11. The drop of the fracture opening observed in the experiments

was previously attributed to the passage of a shear wave O’Keeffe (2019). In our opinion, this

drop is mostly due to a quasi static evolution of the fracture opening as a consequence of the

coalescence. Our numerical results shown in Fig. 3.11 capture the same drop, with the same

variation of fracture opening.
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Figure 3.10 – EXP n.2 - Numerical versus experimental evolution of the fracture opening on
the planes A and B.
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3.4. Coalescence of two coplanar HF
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Figure 3.11 – EXP n.2 - Numerical versus experimental evolution of the fracture opening at the
injection points. The sudden drop in the fracture opening upon coalescence is a geometrical
effect captured by our quasi-static numerical simulations.

Experiment 3

In this experiment the fluid velocity in the fracture is measured via the particle image velocime-

try method. This is the first time the fluid velocity inside a hydraulic fracture is compared to

numerical simulations. We shifted in our numerical results in time to take the coalescence

time as a reference. We start by analysing the average fluid velocity ux along a cross section

connecting the two injection points. In the top part of Fig. 3.12 we present the comparison

for the fracture velocity ux at an early stage of the interaction between the two fractures. In

this case the order of magnitude of the fracture velocity is perfectly matched. However, a close

look at the plot reveals that the fracture in the numerical simulations extends further in the

direction away from the injection points. The diversion of part of the fluid in this direction

causes a temporal mismatch between the numerical and the experimental results. In the cen-

tral part of Fig. 3.12 we consider the velocity profiles immediately before the coalescence time.

A close look at the velocity profiles around the coalescence point shows that the fluid starts to

accelerate as the two fractures get closer. The numerical simulation captures quantitatively the

values of fluid velocity up to −0.02s from the coalescence time. From time equal to −0.02s and
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Chapter 3. Comparisons against experiments

during the subsequent times (see the bottom plot of Fig. 3.12), the fluid velocities predicted by

the numerical simulation do not match quantitatively with the experimental observations but

they still match qualitatively. It must be noted that not only the numerical simulations are

challenged by the rapid evolution of the system during coalescence but also the experimental

technique used to measure the velocity in the experiment. We now examine the evolution of

the fluid velocity uy upon coalescence on a plane that is orthogonal to the injection points and

passes through the coalescence point. The comparisons between the numerical predictions

and the experimental measurements of the fluid velocity are shown in Fig. 3.13. The fluid

velocity is larger for times closer to the coalescence time, and decreases later as the fracture

regains its radial shape. The large discrepancies between the fluid velocities shown on the

top plot in Fig. 3.13 are explained as the fracture footprints in the experiments and in the

simulations have different extensions. As mentioned before this is probably caused by the

finite boundaries of the specimen.
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Figure 3.12 – EXP n.3 - Evolution of the fluid velocity along an axis connecting the injection
points. Time equal to zero corresponds to the time of coalescence. The order of magnitude of
the fluid velocity is captured until few seconds before the coalescence time.

The evolution of the fracture velocity upon coalescence is shown in Fig. 3.13.

53



Chapter 3. Comparisons against experiments

Axis orthogonal to coalescence direction

-10 -5 0 5 10
-15
-10
-5

0
5

10
15

-15 -10 -5 0 5 10 15

-3
-2
-1

0
1
2
3

0.05

Experiment

Simulation

time zero corresponds 
to coalescence

0.11
0.17
0.24
0.3
0.36

t [s]

0.39

Experiment

Simulation

0.66
0.94
1.21
1.48
1.75
2.03
2.3

t 

t 

t 

t 

Axis orthogonal to coalescence direction

Figure 3.13 – EXP n.3 - Evolution of the fluid velocity along an axis orthogonal to the coales-
cence direction. Time equal to zero corresponds to the time of coalescence.

3.5 Conclusions

We have analyzed three different experiments. The propagation of a viscosity dominated

fracture between two stress barriers. The propagation of single toughness dominated fracture

and the interaction and coplanar coalescence of two hydraulic fractures. Our numerical

scheme has proven capable of describing hydraulic fracture growth in all the experiments.

The numerical simulations also matched the order of magnitude of the quantities observed.

For the first time we have presented the comparison between the numerical predictions and

the experimental measurements of the fluid velocity in the fracture.
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4 Energy balance of a hydraulic frac-
ture

Disclaimer and acknowledgements: My contributions to this chapter are: i) linking the energy

balance of the solid and the fluid by introducing Newton’s third law. ii) the extension of the

energy balance to the case where the gravitational effects are present. iii) the idea of using

the definition of the total differential of a function to express the elastic energy stored in the

medium. The derivation of the energy balance was done together with Prof. B. Lecampion who

pointed out that the scaling of the energy balance leads to the definition of the dimensionless

toughness. I acknowledge the work of Andreas Möri who ran the simulations and post-

processed the results to confirm that the extension of the energy balance to the case where the

gravity effects are present is correct (not shown here). The numerical results presented in this

chapter are the product of my contribution.

Note: This chapter is currently being adapted into a scientific publication:

C. Peruzzo, B. Lecampion, "The energy balance of a hydraulic fracture", to be submitted to Int

J. Eng. Sci., 2023

4.1 Introduction

A hydraulic fracture can be viewed as a dissipative phenomenon where the mechanical energy

entering the system is dissipated both in breaking the solid and in the flow of the viscous fluid

towards the propagating front. Therefore, enough energy needs to be provided to the system

from its boundaries for the process to continue. In this Chapter we derive the energy balance

for a hydraulic fracture.
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Chapter 4. Energy balance of a hydraulic fracture

4.2 The power balance of the solid with a fracture

4.2.1 The energy release rate

We consider a bodyΩS ⊆R3 1 with boundary ∂ΩS = (∂ΩSu ∪∂ΩST ) such that (∂ΩSu ∩∂ΩST ) =
∅, where ∂ΩSu and ∂ΩST are respectively the part of the boundary where displacements ui ,

and tractions Ti , i = 1,2,3 are prescribed. The fracture area is represented by the symbol a.The

energy release rate is defined as (Keating and Sinclair, 1996; Zehnder, 2012):

−∂W

∂a
+ ∂Wext

∂a

∣∣∣∣
F=const

=G

where W and Wext are the work of internal and external forces respectively. We can rewrite

this equation as:

− ∂

∂a
(W−Wext ) =G

−∂φ
∂a

:=G (4.1)

where φ is the total potential energy of the system, i.e:

φ= 1

2

∫
ΩS

σi jεi j dV −
∫
∂ΩST

Ti ui ds (4.2)

Note that the last integral on the right is made only over the part of the boundary where

the tractions are applied. By using the Clapeyron’s theorem (in absence of body forces), the

previous becomes:

φ= 1

2

∫
∂ΩS

ui Ti ds −
∫
∂ΩST

ui Ti ds

we can split the first integral by recalling that ∂Ω= (∂Ωu ∪∂ΩT ):

φ= 1

2

∫
∂ΩSu

ui Ti ds + 1

2

∫
∂ΩST

ui Ti ds −
∫
∂ΩST

ui Ti ds

φ= 1

2

∫
∂ΩSu

ui Ti ds − 1

2

∫
∂ΩST

ui Ti ds

following the definition given by Eq. (4.1), we obtain:

G =−1

2

∂

∂a

(∫
∂ΩSu

ui Ti ds

)
+ 1

2

∂

∂a

(∫
∂ΩST

ui Ti ds

)
(4.3)

1Note the “S” refers to “solid”.
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4.2. The power balance of the solid with a fracture

The derivative can not be immediately moved inside of the integral sign because the region

of integration ∂ΩST depend on the fracture advancement da. However, we show that in case

∂ui /∂a is not diverging, the derivatives with respect to the variation of fracture area can be

taken within the integral sign. In particular, the second term on the right hand side can be

expressed as:

1

2

∂

∂a

∫
∂ΩST

Ti ui ds = 1

2
lim
δa→0

[
1

δa

(∫
∂ΩST

Ti (a +δa)ui (a +δa)ds+

+
∫
δa

Ti (a +δa)ui (a +δa)ds −
∫
∂ΩST

Ti (a)ui (a)ds

)]
(4.4)

Note that a similar expansion of the first term on the right hand side would not include the

integral over the small quantity δa. In fact, we do not consider δa part of ∂ΩSu . We expand

the terms in the integral of Eq. (4.4) using Taylor’s theorem:

ui (a +δa) = ui (a)+ ∂ui

∂a

∣∣∣∣
a
δa +O

(
δa2) (4.5)

Ti (a +δa) = Ti (a)+ ∂Ti

∂a

∣∣∣∣
a
δa +O

(
δa2) (4.6)

We focus on the integral over the small increment δa:

lim
δa→0

[(∫
δa Ti (a +δa)ui (a +δa)dS

δa

)]
=

lim
δa→0

[
1

δa

∫
δa

(
ui Ti +ui

∂Ti

∂a
δa +Ti

∂ui

∂a
δa + ∂ui

da

∂Ti

da
δa2 +O

(
δa2))ds

]
The external tractions acting on δa are zero when the fracture is of size a (i.e. Ti (a)|δa = 0),

thus the previous limit can be simplified as:

lim
δa→0

[∫
δa

(
ui
∂Ti

∂a
+Ti

∂ui

∂a
+ ∂ui

∂a

∂Ti

∂a
δa + O

(
δa2

)
δa

)
ds

]
(4.7)

The term ui∂Ti /∂a is zero because the displacement field ui is finite and the external tractions

are fixed with respect to crack advancement. The limit in Eq. (4.7) further simplifies as:

lim
δa→0

[∫
δa

(
Ti
∂ui

∂a
+ ∂ui

∂a

∂Ti

∂a
δa + O

(
δa2

)
δa

)
ds

]
(4.8)

This limit is zero when the functions under the integral sign are finite quantities because the

domain of integration goes to zero (thanks to the limiting process). The other possibility is

that the function ∂ui /∂a is singular such that the whole limit may diverge. A singular function

∂ui /∂a implies that the displacement field does not change continuously as the fracture
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Chapter 4. Energy balance of a hydraulic fracture

advances. This case is not considered here and we assume that the limit is zero.

Upon substituting equations (4.5) and (4.6) in the remaining part of the limit in Eq. (4.4) we

obtain:
∂Wext

∂a
= 1

2
lim
δa→0

[
1

δa

(∫
∂ΩST

Ti (a +δa)ui (a +δa)ds+

−
∫
∂ΩST

Ti (a)ui (a)ds

)]
= 1

2

∫
∂ΩST

∂

∂a
(Ti ui )ds (4.9)

Thus, we can write:

G =−1

2

∫
∂ΩSu

(
ui
∂Ti

∂a
+ ∂ui

∂a
Ti

)
ds + 1

2

∫
∂ΩST

(
ui
∂Ti

∂a
+ ∂ui

∂a
Ti

)
ds =

=−1

2

∫
∂ΩSu

ui
∂Ti

∂a
ds + 1

2

∫
∂ΩST

∂ui

∂a
Ti ds

being the applied displacements ui on ∂ΩSu independent of the crack advancement δa, (i.e.
∂ui
∂a = 0∀ui ∈ ∂ΩSu) and ∂Ti

∂a = 0∀Ti ∈ ∂ΩST . More generally it can be written:

G = 1

2

∫
∂ΩS

(
∂ui

∂a
Ti −ui

∂Ti

∂a

)
ds

4.2.2 The energy balance for the solid phase

Equation 4.3 can be expressed as a function of the crack velocity. First we note that ui =
ui (x1, x2, a (t )), thus:

dui = ∂ui

∂x1
dx1 + ∂ui

∂x2
dx2 + ∂ui

∂a
da

that implies:
dui

dt
= ∂ui

∂x1

dx1

dt
+ ∂ui

∂x2

dx2

dt
+ ∂ui

∂a

da

dt

Looking at a point fixed in space and assuming that the fracture propagates at one or more

locations along the fracture front such that da
dt 6= 0, we obtain:

∂ui

∂a
=

(
dui

dt

)(
da

dt

)−1

The same applies to Ti = Ti (x1, x2, a (t )). In this case we have:

G
da

dt
= 1

2

∫
∂ΩS

(
u̇i Ti −ui Ṫi

)
ds ≥Gc

da

dt
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4.3. The energy balance of a laminar fluid flow

Upon adding the quantity 1
2

∫
∂ΩS

Ti u̇i ds to both sides and assuming G =Gc

1

2

∫
∂ΩS

(
u̇T+uṪ

)
ds︸ ︷︷ ︸

elast.en.rate

+Gc
da

dt

︸ ︷︷ ︸
Pi

=
∫
∂ΩST

u̇Tds︸ ︷︷ ︸
Pe

(4.10)

It is important to note that the fact that u̇ = 0 on ∂ΩSu implies that
∫
∂ΩS

Ti u̇i ds = ∫
∂ΩST

Ti u̇i ds.

The previous expression can be written as:∫
∂ΩS

d

dt

(
1

2
uT

)
ds︸ ︷︷ ︸

elast.en.rate

+Gc
da

dt

︸ ︷︷ ︸
Pi

=
∫
∂ΩST

u̇Tds︸ ︷︷ ︸
Pe

or

∫
∂ΩS

d

dt

(
1

2
uT

)
ds︸ ︷︷ ︸

elast.en.rate

+
∫
Γ

Gc v ndγ︸ ︷︷ ︸
elast.en.rate︸ ︷︷ ︸

Pi

=
∫
∂ΩST

u̇Tds︸ ︷︷ ︸
Pe

where v is the local front velocity, Pe is the total external power exerted by the external forces.

Pi is the internal power formed by the sum of the dissipated energy via fracture advancement

and the rate of elastic energy stored into the medium. Note that the domain ∂ΩS is fixed in

time. We now refer the previous equations to a system subjected to an initial state of tractions

T0. The initial displacements corresponding to the situation where the sole load T0 act in the

system are assumed to be zero. The previous equations become:

∫
∂ΩS

d

dt

[
1

2
u (T−T0)

]
ds +

∫
Γ

Gc v ndγ︸ ︷︷ ︸
Pi

+
∫
∂ΩST

u̇T0ds =
∫
∂ΩST

u̇Tds

4.3 The energy balance of a laminar fluid flow

In what follows, the principle of virtual power is derived. The balance of momentum for a

volume of fluid, the definition of work done by a force and the constitutive law that relates

stress and strain rates are used. The balance of momentum of a material volume τ of fluid

bounded by the surface S is expressed by (Batchelor (2000)):∫
ΩF

Du̇i

Dt
ρdτ=

∫
ΩF

Fiρdτ+
∫
∂ΩF

σi j n j ds i , j = 1,2,3 (4.11)

where:
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Chapter 4. Energy balance of a hydraulic fracture

• u̇i
[ L

T

]
is the i−component of the velocity vector u̇,

• t is time [T],

• D()
Dt = ∂( )

∂t +u̇·∇( ) is the operator giving the material derivative, it applies only to functions

of t and u̇,

• ρ is the fluid density
[ M

L3

]
,

• Fi is the i−component of the force per unit mass vector, defined per unit of mass of

fluid
[ L

T2

]
,

• σi j is the component i j of the second order stress tensor σ
[

M
LT2

]
,

• n j is the j−component of the normal vector to the small element of surface δS.

By using the divergence theorem Eq. (4.12) can be expressed as follows:

∫
ΩF

Du̇i

Dt
ρdτ=

∫
ΩF

Fiρdτ+
∫
ΩF

∂σi j

∂x j
dτ (4.12)

we multiply both sides by u̇i and add the term
∫
σi j

∂u̇i
∂x j

dτ:

∫
ΩF

σi j
∂u̇i

∂x j
dτ+

∫
ΩF

u̇i
Du̇i

Dt
ρdτ=

∫
ΩF

u̇i Fiρdτ+
∫
ΩF

(
u̇i
∂σi j

∂x j
+σi j

∂u̇i

∂x j

)
dτ (4.13)

and after applying the divergence theorem to the last integral on the right hand side the

Principle of Virtual Powers is obtained2:∫
ΩF

σi j
∂u̇i

∂x j
dτ+

∫
ΩF

D

Dt

(
1

2
ρu̇2

i

)
dτ︸ ︷︷ ︸

Pi

=
∫
ΩF

u̇i Fiρdτ+
∫
∂ΩF

u̇iσi j n j ds︸ ︷︷ ︸
Pe

(4.14)

The two integrals on the right hand side represent the rate of work (i.e. the power) done by

the external actions done to the system (i.e. the volume of fluid). It is important to note

that the last integral on the right hand side can represent both the rate of work done on the

system by the external forces and the rate of work done by injecting fluid into the system at a

given velocity and consequent pressure. This observation will be clearer later when the actual

boundary conditions are given. The second integral on the left hand side represents the rate of

change of kinetic energy 1
2ρu2

i . The first integral on the left hand side embeds several different

terms that will appear after introducing the relationship between stress and strain rates (i.e.

the constitutive law).

The Navier-Stokes constitutive relation assumes that the Cauchy stress tensor σ is a function

of the density ρ, temperature T and the velocity gradient ∇u̇, i.e. σ= f
(
ρ,T,∇u̇

)
. The velocity

2Note:u̇ Du̇
Dt = u̇¯ ∂u̇

∂t +u̇¯u̇·∇u̇ = ∂
∂t

(
1
2 u̇¯ u̇

)
+u̇·∇

(
1
2 u̇¯ u̇

)
= D

Dt

(
1
2 u̇¯ u̇

)
, and ¯ denotes the Hadamart product.
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4.3. The energy balance of a laminar fluid flow

gradient ∇u̇ can be decomposed as:

∇u̇ = E+R = 1

2

(∇u̇+ (∇u̇)T )+ 1

2

(∇u̇− (∇u̇)T )
where R is a tensor representing a rigid rotation and E is the strain rate tensor; the first does

not contribute to the rate of change of deformation and is subsequently excluded from the

expression of the constitutive law. The strain rate tensor can be further decomposed in two

parts:

Ei j = Di j +Si j = 1

3

∂u̇k

∂xk
δi j︸ ︷︷ ︸

Di j

+ 1

2

(
∂u̇ j

∂xi
+ ∂u̇i

∂x j

)
− 1

3

∂u̇k

∂xk
δi j︸ ︷︷ ︸

Si j

Where D and S are respectively the rate of expansion tensor and rate of shear tensor. The

constitutive equation is then expressed as:

σi j =−pδi j +κ∂u̇k

∂xk
δi j +2µ

[
1

2

(
∂u̇ j

∂xi
+ ∂u̇i

∂x j

)
− 1

3

∂u̇k

∂xk
δi j

]
(4.15)

where κ is the expansion viscosity and µ is the shear viscosity. Note that p = −1
3σi i is the

thermodynamic equilibrium pressure while the departure from it, generally happening in a

moving fluid, is take into account by the term κ∂u̇k
∂xk

δi j (see Batchelor (2000) for more details).

Substituting Eq. (4.15) in Eq. (4.14) leads to:

−
∫
ΩF

pδi j
∂u̇i

∂x j
dτ︸ ︷︷ ︸

elast.en.rate

+
∫
ΩF

κ
∂u̇k

∂xk
δi j

∂u̇i

∂x j
dτ︸ ︷︷ ︸

dissipationbyexpansion

+
∫
ΩF

2µ

[
1

2

(
∂u̇ j

∂xi
+ ∂u̇i

∂x j

)
− 1

3

∂u̇k

∂xk
δi j

]
∂u̇i

∂x j
dτ︸ ︷︷ ︸

dissipationbyshear

+

+
∫
ΩF

D

Dt

(
1

2
ρu̇2

i

)
dτ︸ ︷︷ ︸

kineticen.rate

=
∫
ΩF

u̇i Fiρdτ+
∫
∂ΩF

u̇iσi j n j ds︸ ︷︷ ︸
Pe

(4.16)

Introducing the mass balance
1

ρ

Dρ

Dt
+∇· u̇ = 0,

and simplifying it for the case of an incompressible fluid leads to

∇· u̇ = ∂u̇k

∂xk
= 0. (4.17)
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Chapter 4. Energy balance of a hydraulic fracture

This result can be used to simplify Eq. (4.16):

−
∫
ΩF

pδi j
∂u̇i

∂x j
dτ︸ ︷︷ ︸

reversiblepower

+∫
ΩF
µ

(
∂u̇ j

∂xi
+ ∂u̇i

∂x j

)
∂u̇i
∂x j

dτ+

+
∫
ΩF

D

Dt

(
1

2
ρu̇2

i

)
dτ︸ ︷︷ ︸

kineticen.rate

=
∫
ΩF

u̇i Fiρdτ+
∫
∂ΩF

u̇iσi j n j ds︸ ︷︷ ︸
Pe

(4.18)

Note that Eq. (4.18) expresses a set of 3 distinct balances between internal and external power

provided to the system. For the sake of clarity we express the balance in direction x1 (i.e. for

i = 1):

−∫
ΩF

p ∂u̇1
∂x1

dτ+∫
ΩF
µ

(
2
(
∂u̇1
∂x1

)2 +
(
∂u̇2
∂x1

+ ∂u̇1
∂x2

)
∂u̇1
∂x2

+
(
∂u̇3
∂x1

+ ∂u̇1
∂x3

)
∂u̇1
∂x3

)
dτ+

+∫
ΩF

D
Dt

(1
2ρu̇2

1

)
dτ= ∫

ΩF
u̇1F1ρdτ+∫

∂Ω f
u̇1 (σ11n1 +σ12n2 +σ13n3)ds

(4.19)

A scalar balance is obtained by summing the separate balances over the three directions:

−
∫
ΩF

p∇· u̇dτ︸ ︷︷ ︸
reversiblepower

+∫
ΩF

2µ (∇· u̇) · (∇· u̇)dτ+

+
∫
ΩF

µ

((
∂u̇1

∂x2
+ ∂u̇2

∂x1

)2

+
(
∂u̇2

∂x3
+ ∂u̇3

∂x2

)2

+
(
∂u̇1

∂x3
+ ∂u̇3

∂x1

)2)
dτ︸ ︷︷ ︸

dissipationbyshear

+

+
∫
ΩF

D

Dt

(
1

2
ρu̇2

)
dτ︸ ︷︷ ︸

kineticen.rate

=
∫
ΩF

u̇Fρdτ+
∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.20)

using the assumption of fluid incompressibility (i.e.: Eq. (4.17)) leads to a number of simplifi-

cations 3: ∫
ΩF

µ

((
∂u̇1

∂x2
+ ∂u̇2

∂x1

)2

+
(
∂u̇2

∂x3
+ ∂u̇3

∂x2

)2

+
(
∂u̇1

∂x3
+ ∂u̇3

∂x1

)2)
dτ︸ ︷︷ ︸

dissipationbyshear

+

+
∫
ΩF

D

Dt

(
1

2
ρu̇2

)
dτ︸ ︷︷ ︸

kineticen.rate

=
∫
ΩF

u̇Fρdτ+
∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.21)

The previous equation needs to be written in dimensionless form to choose the terms that can

be neglected thanks to the assumptions of lubrication flow. The approach already exposed in

Szeri (2010) is repeated but applying it to an energy balance. The independent and dependent

dimensionless variables can be defined as:

x̄i = xi /xi∗, t̄ = t/t∗,

3Note that (∇· u̇) · (∇· u̇) = 0 because the conservation of mass for an incompressible fluid implies that ∇· u̇ = 0.
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4.3. The energy balance of a laminar fluid flow

¯̇ui = u̇i /u̇i ∗, p̄ = p/p∗, σ̄=σ/p∗

where the characteristic dimensions are denoted with ()∗. The assumptions that define the

lubrication flow, guide the choice of these dimensions of the problem. This type of flow is

distinguished by the fact that one spatial dimension of the fluid domain is much smaller than

the other two; here it is assumed x3 ¿ x1 and x3 ¿ x2. Therefore a single length scale L can

be chosen for both x1∗ and x2∗, i.e.: x1∗ = x2∗ = L and x3∗ = εL with ε¿ 1. Similarly, the

velocity parallel to the fracture plane is assumed to scale with single characteristic velocity

U̇ , i.e.: u̇1∗ = u̇2∗ = U̇ . It follows that a choice for the characteristic time t∗ is t∗ = L/U̇ . The

conservation of mass becomes:

ε
∂ ¯̇u1

∂x̄1
+ε∂

¯̇u2

∂x̄2
+ u̇3∗

U̇

∂ ¯̇u3

∂x̄3
= 0

Given the choices of t∗ = L/U̇ and x3∗ = εL, the characteristic velocity u̇3∗ is chosen as

u̇3∗ = εU̇ . Note that consequently the mass conservation simplifies as:

∂ ¯̇u1

∂x̄1
+ ∂ ¯̇u2

∂x̄2
+ ∂ ¯̇u3

∂x̄3
= 0

Finally, only p∗ remains to be defined. Writing the energy balance in dimensionless variables

leads to4:

µU̇ 2Lε2
∫
ΩF

((
∂ ¯̇u1

∂x̄2
+ ∂ ¯̇u2

∂x̄1

)2

+2

(
∂ ¯̇u2

∂x̄3

∂ ¯̇u3

∂x̄2
+ ∂ ¯̇u1

∂x̄3

∂ ¯̇u3

∂x̄1

))
dτ̄︸ ︷︷ ︸

dissipationbyshear

+

+µU̇ 2L
∫
ΩF

((
∂ ¯̇u2

∂x̄3

)2

+
(
∂ ¯̇u1

∂x̄3

)2
)

dτ̄+µε4U̇ 2L
∫
ΩF

((
∂ ¯̇u3

∂x̄2

)2

+
(
∂ ¯̇u3

∂x̄1

)2
)

dτ̄+︸ ︷︷ ︸
dissipationbyshear

+ρU̇ 3L2ε2
∫
ΩF

D

Dt̄

(
1

2
¯̇u2

)
dτ̄︸ ︷︷ ︸

kineticen.rate

= ρFU̇ L3ε2
∫
ΩF

(
¯̇u1F̄1 + ¯̇u2F̄2 +ε ¯̇u3F̄3

)
dτ̄+p∗ε2U̇ L2

∫
∂ΩF

¯̇uσ̄nds̄

ε︸ ︷︷ ︸
Pe

dividing all the terms by the non-zero quantity µU̇ 2L and recognizing the Reynolds number

4Note that u̇ = [
U̇ ¯̇u1 U̇ ¯̇u2 εU̇ ¯̇u3

]
and nds = [

εL2ds̄ εL2ds̄ L2ds̄
]
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Chapter 4. Energy balance of a hydraulic fracture

Re = ρU̇εL
µ = ρU̇ w

µ the previous equation becomes:

ε2
∫
ΩF

((
∂ ¯̇u1

∂x̄2
+ ∂ ¯̇u2

∂x̄1

)2

+2

(
∂ ¯̇u2

∂x̄3

∂ ¯̇u3

∂x̄2
+ ∂ ¯̇u1

∂x̄3

∂ ¯̇u3

∂x̄1

))
dτ̄︸ ︷︷ ︸

dissipationbyshear

+

+
∫
ΩF

((
∂ ¯̇u2

∂x̄3

)2

+
(
∂ ¯̇u1

∂x̄3

)2
)

dτ̄+ε4
∫
ΩF

((
∂ ¯̇u3

∂x̄2

)2

+
(
∂ ¯̇u3

∂x̄1

)2
)

dτ̄+︸ ︷︷ ︸
dissipationbyshear

+εRe
∫
ΩF

D

Dt̄

(
1

2
¯̇u2

)
dτ̄︸ ︷︷ ︸

kineticen.rate

=
(
εRe× F L

U̇ 2

)∫
ΩF

(
¯̇u1F̄1 + ¯̇u2F̄2

)
dτ̄+ε2Re

F L

U̇ 2

∫
ΩF

¯̇u3F3dτ̄+p∗
L

µU̇
ε2

∫
∂ΩF

¯̇uσ̄nds̄

ε︸ ︷︷ ︸
Pe

(4.22)

It must be noted that different dimensionless groups multiply the different components of

the energy balance. The characteristic pressure p∗ has to be set to p∗ = µU̇
Lε2 for the power

exchanged at the boundary to be of order 1. It follows that:

∫
ΩF

((
∂ ¯̇u2

∂x̄3

)2

+
(
∂ ¯̇u1

∂x̄3

)2
)

dτ̄︸ ︷︷ ︸
Pi=dissipationbyshear

= ε2ρF L2

µU̇

∫
ΩF

(
¯̇u1F̄1 + ¯̇u2F̄2

)
dτ̄+

∫
∂ΩF

¯̇uσ̄nds̄︸ ︷︷ ︸
Pe

(4.23)

The external power is essentially dissipated in the gradient of velocity perpendicular to the

flow direction. Expressing the latter in dimensional form leads to:∫
ΩF

µ

((
∂u̇2

∂x3

)2

+
(
∂u̇1

∂x3

)2)
dτ︸ ︷︷ ︸

Pi=dissipationbyshear

=
∫
ΩF

ρ (u̇1F1 + u̇2F2)dτ+
∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.24)

Performing the same dimensional analysis on the Navier-Stokes equations (i.e. Eq. (4.11)) and

neglecting the terms the terms of order ≥O (ε) leads to (e.g. see Szeri (2010)):

∂p

∂x1
=µ∂

2u̇1

∂x2
3

−ρF1,
∂p

∂x2
=µ∂

2u̇2

∂x2
3

−ρF2,
∂p

∂x3
= 0 (4.25)

these results will now be used. Integrating the left hand side of Eq. (4.24) by parts along x3

gives:

∫
ΩF

µ

2

(
u̇2

1 + u̇2
2

)∣∣w/2
−w/2 dx1dx2 −

∫
ΩF

(
u̇1µ

∂2u̇1

∂x2
3

+ u̇2µ
∂2u̇2

∂x2
3

)
dτ︸ ︷︷ ︸

Pi=dissipationbyshear

=
∫
ΩF

ρ (u̇1F1 + u̇2F2)dτ+
∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.26)

where w is the thickness of the domain in the x3 direction. Assuming no slip boundary

condition, that is u̇i
(
x1, x2,±w

2

)≡ 0 for i = 1,2 and ∀x1, x2 implies that the first integral on the

left hand side vanishes. Then, upon making use of the first 2 reduced Navier-Stokes equations
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4.3. The energy balance of a laminar fluid flow

in (4.25) the previous becomes:

−
∫
ΩF

(
u̇1

∂p

∂x1
+ u̇2

∂p

∂x2

)
dτ−

∫
ΩF

ρ (u̇1F1 + u̇2F2)dτ︸ ︷︷ ︸
Pi=dissipationbyshear

=
∫
ΩF

ρ (u̇1F1 + u̇2F2)dτ+
∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.27)

The 3rd Equation in (4.25) implies that p = p(x1, x2) allowing us to rewrite the left hand side

integral in Eq. (4.27) as:

−
∫
ΩF

((∫ w/2

−w/2
u̇1dx3

)
∂p

∂x1
+

(∫ w/2

−w/2
u̇2dx3

)
∂p

∂x2

)
dx1dx2 −

∫
ΩF

ρ
(
q1F1 +q2F2

)
dx1dx2︸ ︷︷ ︸

Pi=dissipationbyshear

=
∫
ΩF

ρ

((∫ w/2

−w/2
u̇1dx3

)
F1 +

(∫ w/2

−w/2
u̇2dx3

)
F2

)
dx1dx2 +

∫
∂ΩF

u̇σnds︸ ︷︷ ︸
Pe

(4.28)

and upon introducing the average velocities

vi =
∫ w/2
−w/2 u̇i dx3∫ w/2
−w/2 dx3

= 1

w

∫ w/2

−w/2
u̇i dx3 i = 1,2 (4.29)

and fluxes

qi = w vi i = 1,2 (4.30)

Eq. (4.28) finally becomes (with T =σn):

−
∫
ΩF

[
q1

(
∂p

∂x1
+ρF1

)
+q2

(
∂p

∂x2
+ρF2

)]
dx1dx2︸ ︷︷ ︸

Pi=dissipationbyshear

=
∫
ΩF

ρ
(
q1F1 +q2F2

)
dx1dx2 +

∫
∂ΩF

u̇Tds︸ ︷︷ ︸
Pe

(4.31)

This equation can be alternatively expressed only as a function of the average fluid velocity. For

this purpose, the first two of Eq. (4.25) have to be integrated along x3 between ±w
2 assuming

no slip boundary condition, that is u̇i
(
x1, x2,±w

2

)≡ 0 for i = 1,2 and ∀x1, x2. It results:

u̇i (x1, x2, x3) = 1

2µ

(
∂p

∂xi
+ρFi

)(
x2

3 −
w2

4

)
i = 1,2 (4.32)

this shows that in a vertical cross section the velocity distribution is parabolic. Substituting

(4.32) into Eq. (4.29) results:

vi (x1, x2) =− 1

12µ

(
∂p

∂xi
+ρFi

)
w2 i = 1,2 (4.33)

Note that if instead of the fluid pressure p we consider p = pnet +σo(x1, x2), where σo(x1, x2)
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Chapter 4. Energy balance of a hydraulic fracture

is the in-situ stress orthogonal to the fracture plane, the previous becomes:

vi (x1, x2) =− 1

12µ

(
∂pnet

∂xi
+ ∂σo

∂xi
+ρFi

)
w2 i = 1,2 (4.34)

and further assuming that ∂σo
∂xi

=−ρsFi we have:

vi (x1, x2) =− 1

12µ

(
∂pnet

∂xi
+ (ρ−ρs)Fi

)
w2 i = 1,2 (4.35)

Substituting the latter Eq. (4.33) and Eq. (4.30) in the left hand side of (4.31) leads to an

alternative expression of the internal energy that makes use of the average fluid velocity

vi (x1, x2) i = 1,2:

12µ
∫
ΩF

1

w

(
v2

1 + v2
2

)
dx1dx2︸ ︷︷ ︸

Pi=dissipationbyshear

=
∫
ΩF

wρ (v1F1 + v2F2)dx1dx2 +
∫
∂ΩF

u̇Tds︸ ︷︷ ︸
Pe

(4.36)

where T =σn. The energy balance is finally obtained by integrating either Eq. (4.31) or (4.36).

4.3.1 The energy balance of a fluid driven fracture

Equation (4.36) represents the equivalence between the rate of energy dissipated into the

system and the energy provided to it. The fluid boundary can be regarded as to be composed

of two different parts ∂ΩF = ∂ΩF−i n j ∪∂ΩF−S . The part of the boundary where the fluid enters

or exits the domain (e.g. via injection or leakoff) is identified by ∂ΩF−i n j and the other one, in

contact with the elastic material, is identified by ∂ΩF−S . We finally obtain:

12µ
∫
ΩF

1

w

(
v2

1 + v2
2

)
dx1dx2︸ ︷︷ ︸

Pi(fluid)=dissipationbyshear

=

=
∫
ΩF

wρ (v1F1 + v2F2)dx1dx2 +
∫
∂ΩF−i n j

u̇Tds +
∫
∂ΩF−S

u̇Tds︸ ︷︷ ︸
Pe (fluid)

=

=
∫
ΩF

wρ (v1F1 + v2F2)dx1dx2 +Qo po −
∫
∂ΩF−S

vLTds +
∫
∂ΩF−S

u̇Tds︸ ︷︷ ︸
Pe (fluid)

(4.37)

we particularize the expression on the where Qo po is the power entering the system via the

fluid injection at the constant rate Qo and inlet pressure po . The fluid leaves the system from

the crack faces at a velocity vL (x , t ). The power entering the fluid system is minus the one
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4.3. The energy balance of a laminar fluid flow

entering the elastic system, i.e.: ∫
∂ΩF−S

u̇Tds︸ ︷︷ ︸
Pe (fluid)

=−
∫
∂ΩS

u̇Tds︸ ︷︷ ︸
Pe (solid)

Remembering that:∫
∂ΩS

d

dt

[
1

2
u (T−T0)

]
ds +

∫
Γ

Gc v ndγ︸ ︷︷ ︸
Pi

+
∫
∂ΩST

u̇T0ds =
∫
∂ΩST

u̇Tds

with ∂Ωs denoting the solid boundary, we obtain:

∫
∂ΩF−S

u̇Tds︸ ︷︷ ︸
Pe (fluid)

=−


∫
∂ΩS

d

dt

[
1

2
u (T−T0)

]
ds︸ ︷︷ ︸

rateofelasticenergy

+ Gc
da

dt︸ ︷︷ ︸
fractureenergyrate

+
∫
∂ΩST

u̇T0

 (4.38)

substituting Eq. (4.38) into Eq. (4.37) leads to:

12µ
∫
∂ΩF

v2

w
ds︸ ︷︷ ︸

dissipationbyshear

+
∫
∂ΩS

d

dt

[
1

2
u (T−T0)

]
ds︸ ︷︷ ︸

rateofelasticenergy

+
∫
Γ

Gc v ndγ

fractureenergyrate︸ ︷︷ ︸
+∫

∂ΩST
u̇T0

Pi (fluidandsolid)

=

∫
∂ΩF

wρ (v1F1 + v2F2)ds +Qo po −
∫
∂ΩF−S

vLTds︸ ︷︷ ︸
Pe (fluid)

(4.39)

By considering that:

• the fracture consists of two opposite surfaces with two opposite oriented surfaces.

• the normal component of the traction vector T equals the fluid pressure p.

• the fluid pressure is related to the net pressure via the relation p = pnet +σo(x1, x2)

where σo(x1, x2) is the component of the in-situ stress normal to the fracture plane.

• for a planar fracture mode-I decouples from the other two fracture modes
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Chapter 4. Energy balance of a hydraulic fracture

one can express the previous equation as:

12µ
∫
∂ΩF

v2

w
ds︸ ︷︷ ︸

dissipationbyshear

+
∫
∂ΩF−S

d

dt

(
1

2
w ×pnet

)
ds︸ ︷︷ ︸

rateofelasticenergy

+
∫
Γ

Gc v ndγ

fractureenergyrate︸ ︷︷ ︸
Pi (fluidandsolid)

+
∫
∂ΩF−S

dw

dt
×σo(x1, x2)ds︸ ︷︷ ︸

reversiblepower

+=

=
∫
∂ΩF

wρ (v1F1 + v2F2)ds +Qo ×
(
pnet (0,0)+σo(0,0)

)−∫
∂ΩF−S

vL ×
(
pnet +σo(x1, x2)

)
ds︸ ︷︷ ︸

Pe (fluid)
(4.40)
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Figure 4.1 – Different terms of the power balance for a radial hydraulic fracture.

As an example we consider the case where a penny shaped fracture propagates in a ho-

mogeneous and impermeable medium. We simplify the power balance by excluding the

work linked to the confining stress σo . In Figure 4.1 we show the evolution of each term

of the balance. In the figure, each term is made dimensionless by the following quantity:

Qo
(
K 6

Ic/
(
E ′3Qoµ

′))1/2 =Qo pmk . The horizontal axis reports the dimensionless toughness K .

This dimensionless number can be derived by nondimensionalizing the power balance by the
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4.4. Conclusions

same scaling approach reported in Savitski and Detournay (2002). In this case we assume that,

for the radial fracture, the characteristic size of the domain scales as the fracture diameter H .

For small values of the dimensionless toughness the main energy dissipation mechanism is

the flow of the viscous fluid. Conversely, for large values of K , the main energy dissipation

mechanism is the creation of new fracture surfaces.

4.4 Conclusions

In this chapter we have derived the energy balance for a hydraulic fracture. For the case of a

simple radial fracture we have demonstrated that the main energy dissipation mechanism

evolves as a function of the fracture size.
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5 Conditions for the local arrest of a
hydraulic fracture by a toughness
heterogeneity

Disclaimer and acknowledgements: The idea of using the energy balance for a steadily mov-

ing semi-infinite hydraulic fracture to express the arrest criterion for a propagating hydraulic

fracture is my contribution. Prof. B. Lecampion has fully developed the approach described

in the subsection "matching the far field opening across the jump for the semi-infinite HF"

and has contributed in some steps of deriving the energy balance of a semi infinite hydraulic

fracture. He also improved the written presentation of the results.

Note: This chapter is currently being adapted into a scientific publication:

C. Peruzzo, B. Lecampion, "Conditions for the local arrest of a hydraulic fracture by a region of

larger toughness", to be submitted to Mechanics of Materials, 2023

In this chapter we will answer to the following research question. When is a heterogene-

ity of fracture toughness is capable of arresting locally the propagation of a hydraulic fracture?
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Chapter 5. Conditions for the local arrest of a hydraulic fracture by a toughness
heterogeneity

5.1 Problem definition
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Figure 5.1 – Sketch representing the three-layer configuration considered throughout this
work and the three different possible scenarios occurring upon the fracture has touched the
interfaces. In the 1st scenario the propagation stops at the interfaces and continues along with
the central layer (footprint t2) before breaking through into the bounding layers (footprint
t3). In both the 2nd and 3r d scenarios, the breakthrough happens immediately at footprint t1.
In the 2nd scenario the velocity after breakthrough V + around γi , i = 1,2 is smaller than V −,
the one immediately before touching the interface. In the 3r d scenario V + ≈V − i.e. it is not
immediately affected by the presence of the heterogeneity.

Our primary interest stems from the practical configuration of a hydraulic fracture propa-

gating initially in a layer bounded symmetrically by two layers of higher fracture toughness.

However, as we shall see, our results can be generalized to other configurations. To frame

our arguments, we consider three layers of the same impermeable linear-elastic material,

characterized by uniform Young’s modulus E , Poisson’s ratio ν and uniform confining stressσo

acting perpendicularly to the plane x − z in Figure 5.1. The central layer has thickness H while
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5.1. Problem definition

the others extend indefinitely above and below. The material in the central layer differs from

the others by its fracture energy Gc−1 which is smaller than the one of the bounding layers

Gc−2. Throughout the rest of the document we will either refer to Gc−i i = 1,2, or to the fracture

toughness K I c−i =
√

E ′Gc−i where E ′ = E/(1−ν2) (Irwin, 1957). An incompressible Newtonian

fluid of viscosity µ is injected at the center of the middle layer. The injection proceeds at

a constant rate Qo and drives the propagation of a penny shaped fracture. The fracture is

characterized by the diameter 2L(t ) evolving in time t , the fracture opening w(x, z, t ) and the

net pressure p(x, z, t) or, equivalently, by the fluid pressure p f (x, z, t) = p(x, z, t)+σo . The

injection source lengthscale (the wellbore diameter) is assumed to be much smaller than the

fracture length, so the injection can be considered to take place at a point. We also assume

that the fluid lag remains negligible during the entire process. This condition is ensured by

the relation µ′V E ′2/σ3
o ¿ 1 where V is the front velocity (Garagash and Detournay, 1998). The

equation that govern this moving boundary problem relate to elasticity, fluid flow and fracture

propagation. The balance of momentum for the solid can be reduced to a scalar boundary

integral equation for mode I planar fracture (Hills et al., 2013; Crouch S.L., 1983),

p (x, z) = p f (x, z)−σo =− E ′

8π

∫
∑

(t )

w
(
x ′, z ′, t

)
[
(x ′−x)2 + (z ′− z)2]3/2

dx ′dz ′ , (5.1)

where the
∑

represents the fracture’s trace on the middle fracture plane. The local fluid volume

conservation inside the fracture in the case of an impermeable rock reads (Batchelor, 1967):

∂w (x, z, t )

∂t
+∇·q−δ(x)δ(z)Qo (x, z, t ) = 0 , (5.2)

that integrated both in time and in space reduces to the global volume balance∫
∑

(t )
w

(
x ′, z ′, t

)
dx ′dz ′ =Qo t . (5.3)

The width-averaged balance of momentum for the fluid in laminar conditions is:

q =
[

qx qz

]
=−w (x, z, t )3

µ′ ∇p (x, z, t ) µ′ = 12µ (5.4)

and the quasi-static fracture propagation conditions locally reads:{
V

(
γ
)

Gc
(
γ
)≥ 0(

G −Gc
(
γ
))

V
(
γ
)= 0

∀γ ∈ Γ (5.5)

where G is the energy release rate, V
(
γ
)= v (x, z) ·n(

γ
)

is the magnitude of the local fracture

front velocity at the curvilinear coordinate γ along the front and n
(
γ
)

is the normal to the

front. As shown in Savitski and Detournay (2002), when the hydraulic fracture propagates

in a homogeneous medium, i.e. before reaching the interfaces in our case, the solution of

equations 5.1,5.2, (or 5.3), 5.4 and 5.5 in terms of L, w and p depends on a single dimensionless

number. The nondimensionalization of these equations leads to two alternative definitions for
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it. If it is assumed that the viscous dissipations involved in the fluid flow are of O (1) compared

to the energy required to break the material (viscosity scaling), the dimensionless number

appearing upon nondimensionalization is the dimensionless toughness

KR =
(

K 18
I c−1

E ′13Q3
oµ

′5

)1/18

t 1/9

(with the subscript “R” reminding that the parameter refers to the case of a radial fracture

geometry). By reversing the assumptions (toughness scaling), the dimensionless number

appearing upon the nondimensionalization is MR =
(
µ′5E ′13Q3

o

K 18
I c−1

)1/5
t−2/5 denoted dimensionless

viscosity. As shown in Chapter 4, K 2
R , or equivalently M−5/9

R , is exactly the ratio between the

two energy dissipation mechanisms occurring during the hydraulic fracturing process. In

the case of a radial fracture, their expressions show that this ratio evolves with time. Thus,

the hydraulic fracture solution changes from the viscosity dominated regime (at early time)

where the energy required by the viscous flow of the fluid is much larger than the fracture

energy, to the toughness dominated regime (at late time) where the opposite holds (Savitski and

Detournay, 2002). This suggests that, at the time ttouch when the fracture touches the interfaces,

either the value of dimensionless toughness KR (t = ttouch,K I c−1) or MR (t = ttouch,K I c−1),

together with the toughness ratio K I c−2/K I c−1, are expected to control the fracture behavior. It

is convenient to introduce the length scale H in both KR (ttouch,K I c−1) and MR (ttouch ,K I c−1)

in place of ttouch. By substituting ttouch : LR−M (t ) = H in KR (t ,K I c−1) we obtain:

K (H ,K I c−1) = K I c−1

(
H

E ′3Qoµ′

)1/4

(5.6)

Analogously by substituting ttouch : LR−K (t) = H in MR (t ,K I c−1) we obtain M = K
−4

. The

functions LR−M (t) and LR−K (t) are the solutions of the penny shaped hydraulic fracture

problem in the viscosity dominated and in the toughness dominated regime respectively

(Savitski and Detournay, 2002).

We assume that the change in fracture toughness occur abruptly at the layers interface, and

that the fracture propagates on the same plane after touching them (i.e. no deviation of the

fracture plane) This represents one possible limiting case for layer’s interfaces in sedimentary

rock formations. Thus, the possible scenarios are restricted to the ones represented in Figure

5.1. In all the three scenarios a penny-shaped fracture is propagates at a velocity V in the

central layer at t = t0. During the whole propagation, V is assumed to remain small enough

such that any inertial effect can be neglected. At time t1 = ttouch, the fracture touches the

interfaces at two points, γ1 and γ2, along the front. Then, the three scenarios differ in relation

to the change of velocity happening around γi i = 1,2. Since inertia is negligible for hydraulic

fracture growth, the velocity changes instantaneously from V − > 0 to V + and the scenarios

are characterized as follows:

• Scenario n. 1 (transient containment - transiently arrested height growth): V + = 0, any
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5.2. The existence of fracture containment

point of the fracture front stops immediately upon reaching the interfaces. The fracture

growth develops only in the central layer. The fluid flow is nonzero only along the x

direction, except for a region near the injection point where the flow transitions from

radial to unidirectional. The fracture remains contained between the two interfaces for

a finite time ∆tc . Possibly ∆tc → 0. As shown later, in case of a finite viscosity such a

containment time is never infinite: ∆tc <∞.

• Scenario n. 2 (no containment - slowed height growth): 0 <V + <V −, the propagation in

the new medium continues albeit with a lower velocity. The fracture footprint deviates

from a radial geometry. It is important to note that the limit V + → 0 in Scenario n. 2

corresponds to the limit ∆tc → 0 in Scenario n. 1.

• Scenario n. 3 (unperturbed propagation): V + =V −, the fracture crosses the interface

maintaining (temporarily) the same velocity. This corresponds to the limit K → 0. The

fracture footprint remains radial for some time before the heterogeneity affects it. In

any case, no containment is possible.

5.2 The existence of fracture containment

In the previous section, we have introduced the dimensionless parameters that govern the

problem: K I c−2/K I c−1 and K (or KR (t = ttouch,K I c−1)). They can be retrieved by nondimen-

sionalizing the energy balance expressed for the case where Gc is heterogeneous along the

front (generalising the derivation of Lecampion and Detournay (2007)). In absence of leak-off

and other energy losses, the energy balance in rate from reduces to:

µ′
∫
Σ

v ·v

w
ds︸ ︷︷ ︸

viscousdissipation

+
z

Γ

G
(
γ
)

v ·ndγ

︸ ︷︷ ︸
energyrel.rate

+
∫
Σ

1

2

d

dt

(
w × (p f −σo)

)
ds︸ ︷︷ ︸

rateofelasticenergyaccretion︸ ︷︷ ︸
P i

=Qo po (t )︸ ︷︷ ︸
Pe

(5.7)

where Γ≡ ∂Σ is the crack front. We denote the fluid velocity with v (x, z) and the net pressure

at the injection as p
(
x = 0, y = 0, t

)= po (t ) = p f o (t )−σo . The external power provided to the

system Pe (t ) (on the right hand side), is balanced by three contributions that, all together,

constitute the internal power P i (t ): i) the energy dissipation associated with viscous fluid flow

inside the fracture, ii) the energy dissipation associated with new fracture creation and iii) the

accretion of elastic energy stored in the solid medium. The nondimensionalization of the en-

ergy balance, following the same approach as in Savitski and Detournay (2002), reveals that the

problem is a function of only two dimensionless parameters KR (t ,K I c−1) and KR (t ,K I c−2). Or

alternatively, KR (t ,K I c−1) and the ratio Instead ofKR (t ,K I c−2)/KR (t ,K I c−1) = K I c−2/K I c−1.

To retrieve K , we express the dimensionless number KR (t ,K I c−1) as KR (ttouch,K I c−1) and we

replace ttouch as done in the previous section. Moreover, the energy balance makes it evident

that the states of the system, associated to a negligible energy spent in the creation of new frac-

tures are described by the combination K ¿ 1 and K I c−2/K I c−1 ¿ 1. This limit corresponds to
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Scenario n. 3 (unperturbed propagation) described before. For other values of the parameters

K and K I c−2/K I c−1 it is possible to fall either in scenario n. 2 (no containment - slowed height

growth) or n. 1 (transient containment - transiently arrested height growth). The limit between

these scenarios (or limit of occurrence of fracture containment) is defined by a function that re-

lates the two dimensionless parameters: the function K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
.

In what follows we prove the existence of fracture containment and determine this function

analytically. To obtain this estimate, we follow two different approaches that eventually lead to

two results that differ only about 2% from one another. In both case, we consider the fracture

at the moment it touches the interfaces as shown in the cartoon on the top right part of Figure

5.2. Then we study the region around the point along the fracture front that touches one of the

interfaces (see the top left part of Figure 5.2). As shown experimentally both in homogeneous

(see Bunger and Detournay (2008) or bottom plot in Figure 5.2) and heterogeneous cases

(see Garagash et al. (2009)), in this region, the fields w (x, z) and p f (x, z) reduce to the ones

of a plane-strain steadily-moving semi-infinite fluid driven fracture for which asymptotic

solutions exist (Garagash, 2009; Garagash et al., 2011). In such an approximation, the fluid

velocity coincides with the front velocity V . For finite fractures, up to a distance h from the

propagating front, the width-average fluid velocity v f and fracture front velocity vs can be

regarded to be approximately equal, i.e.:
∥∥v f

∥∥≈ ∥∥vs(γ)
∥∥≈V . This applies in case the fluid-lag

can be considered negligible:

lim
α→0

[
v f

(
αn

(
γ
))−vs(γ)

]= 0 ∀γ ∈ Γ, α ∈R−

The fracture opening in a semi-infinite steadily-moving hydraulic fracture has two asymptotic

limits separated by a transition length scale `mk . At a distance ẑ ¿ `mk from the propagating

front the energy dissipated in the creation of new fractures dominates the one spent in the fluid

flow. In this region w (ẑ ¿ `mk ) → ŵk =p
32/πK I c E ′−1 ẑ1/2 and the solution is independent

of the fluid viscosity. The opposite holds at a distance ẑ À `mk where w (ẑ À `mk ) → ŵm =
21/335/6

(
µ′V E ′−1

)1/3
ẑ2/3 (see Garagash (2009); Garagash et al. (2011)). The transition length

scale `mk separates the two different asymptotic behaviors characterizing ŵ/wmk , and it is

defined such that ŵm (ẑ) = ŵk (`mk ) =⇒ `mk = K 6
I c /

(
E ′4µ′2V 2

)
. The corresponding scale for

the opening is ŵm (`mk ) = ŵk (`mk ) = wmk = K 4
I c /

(
E ′3µ′V

)
. The bottom plot in Figure 5.2

shows the evolution of the dimensionless opening ŵ/wmk as a function of the dimensionless

distance ẑ/`mk from the tip of the steadily-moving hydraulic fracture. When the front touches

the interface at t = ttouch, the lack of inertia forces makes the system to change instantaneously

from the state characterized by Gc−1, V −, w− and p−, to a new one, characterized by Gc−2, V +,

w+ and p+.

The two approaches to find K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
differ on the hypothesis

that relates the two states of the system. In the first approach, we assume that the energy

dissipated by the system does not manifest a sudden change. In the second approach, we

assume the fracture opening at the injection point to be equal before and after the fracture

touches the interface: w−(0,0, ttouch) = w+(0,0, ttouch). In the next three sub-sections, we

present the two approaches and their comparison to numerical predictions obtained using
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5.2. The existence of fracture containment

the fully-coupled hydraulic fracturing solver PyFrac (Zia and Lecampion, 2020).
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Figure 5.2 – The cartoon on the top-right shows the fracture footprint at the time it has reached
the layers interfaces. The interior of the fracture middle’s plane is denoted by Σ and its front
Γ = ∂Σ is parametrized by the curvilinear coordinate γ. ∀γ ∈ Γn

(
γ
)

:= normal vector. The
cartoon on the top-left represents a cross section A-A’ of the radial fracture along the plane
z − y of the tip region {(x, z) : x = 0 and z & h}. The coordinate system ẑ is attached to the
fracture tip and moves with its velocity V . The plot at the bottom (redrawn from Bunger
and Detournay (2008)) shows the opening profile ŵ of a plane-strain semi-infinite fracture
obtained theoretically and experimentally. Two cases are considered h À `mk and h ¿ `mk .
`mk is the length-scale over which w and p f are influenced from energy dissipation occurring
at the tip.
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5.2.1 A semi-infinite HF encountering a toughness jump

Energy balance across the jump for the semi-infinite HF

The energy balance in Eq. 5.7 is valid for any 3D planar fluid driven fracture. In particular,

we can express it for the region close to the crack tip at coordinates (x, z) = (0, H/2) shown

in Figure 5.2, and further assume the geometry being described by a plane-strain, semi-

infinite and steadily-moving fluid-driven fracture. We limit the integrals to the interval z ∈
[H/2−h, H/2]. After changing to the reference system ẑ moving with the same speed V of the

tip (d()/dt =−V d()/dẑ), we obtain:

µ′V 2
∫ h

0

1

ŵ
dẑ︸ ︷︷ ︸

viscousdissipationrate

+ G ×V︸ ︷︷ ︸
energyrel.rate

+
∫ h

0

1

2

d

dẑ

(
ŵ × (p̂ f −σo)

)
dẑ︸ ︷︷ ︸

rateofelasticenergyaccretion

=V ŵ (h) p̂ (h)︸ ︷︷ ︸
Pe

(5.8)

where f̂ highlights the fact that the field f is expressed in the moving reference system ẑ

( f̂ = f (ẑ)) (see Appendix A for more details). By recalling that p̂ (h) = (
p̂ f (h)−σo

)
and that

ŵ (0) p̂ (0) = 0 (Garagash, 2009; Garagash et al., 2011), the previous equation reduces to:

G︸︷︷︸
fractureenergyrel.

+ µ′V
∫ h

0

1

ŵ
dẑ︸ ︷︷ ︸

viscousdissipation︸ ︷︷ ︸
Total internaldissipatedenergy

= 1

2
ŵ (h) p̂ (h)︸ ︷︷ ︸

quotaofext.energydissipated

(5.9)

The latter is formally an energy balance valid at any given time. Furthermore, the first term

on the right hand side corresponds to the quota of external energy provided to the system

that is dissipated during the process by viscous flow and fracturing. Substituting the previous

equation into the propagation condition 5.5, we obtain:

 1

2
ŵ (h) p̂ (h)︸ ︷︷ ︸

quotaofext.energydissipated

− µ′V
∫ h

0

1

ŵ
dẑ︸ ︷︷ ︸

viscousdissipation

−Gc

V = 0

V ≥ 0

∀γ ∈ Γ (5.10)

We now apply this propagation condition at the moment when such a semi-infinite hydraulic

fracture touches the fracture toughness boundary (see Figure 5.2). In the state characterized

by Gc−1, V −, ŵ− and p̂−, since V − > 0, we have

1

2
ŵ− (h) p̂− (h) =V −µ′

∫ h

0

1

ŵ− dẑ +Gc−1 (5.11)

We then assume that the energy enters the system at ẑ = h, and that the quota of external
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5.2. The existence of fracture containment

energy does not change:

1

2
ŵ− (h) p̂− (h) ≡ 1

2
ŵ+ (h) p̂+ (h) at t = ttouch (5.12)

This assumption is justified by the fact that the change of material fracture energy happens

suddenly at time ttouch.

Considering Eq. 5.10 for the propagation in the medium n. 2 and substituting Eqs. 5.11 and

5.12 therein leads to:


(
V −µ′

∫ h

0

1

ŵ− dẑ +Gc−1

)
︸ ︷︷ ︸
total dissipation in medium n.1

−
(
V +µ′

∫ h

0

1

ŵ+ dẑ +Gc−2

)
︸ ︷︷ ︸
total dissipation in medium n.2

V + = 0

V + ≥ 0

(5.13)

This new form of the propagation condition includes all the dissipation mechanisms and

provides a relationship that justifies the three different scenarios at t = ttouch.

• In case the local velocity changes from V − > 0 to V + > 0 the system 5.13 reduces to:

V −µ′
∫ h

0

1

ŵ− dẑ +Gc−1 =V +µ′
∫ h

0

1

ŵ+ dẑ +Gc−2 (5.14)

We rescale the fracture opening ŵ (ẑ) by introducing the characteristic length-scale `mk

and opening wmk such that w (ẑ/`mk ) = wmkΩ (ẑ/`mk ). `mk is the length-scale over

which w and p f are influenced from energy dissipation occurring at the tip:

(∫ h/`mk−1

0

1

Ω− (ẑ/`mk−1)
d(ẑ/`mk−1)+1

)
Gc−1 =

(∫ h/`mk−2

0

1

Ω+ (ẑ/`mk−2)
d(ẑ/`mk−2)+1

)
Gc−2

A simple approximation, up to a few percent error, for the function w (ẑ/`mk ) has

been proposed by Dontsov and Peirce (2015) where: w (ẑ/`mk ) = wmkΩ (ẑ/`mk ) and

Ω (s) =
√

32
π

(
1+ 9

64

√
3
2π

3/2ps
)1/3p

s with s = ẑ/`mk . It allows us to express each integral

in the previous equation as:

∫ h
`mk−i

0

1

Ω−
(

ẑ
`mk−i

)d

(
ẑ

`mk−i

)
=

−32×31/3 +
(
128

p
6+54π3/2

√
h

`mk−i

)2/3

6×35/6π
i = 1,2

(5.15)

A simple inspection of this result reveals that the energy dissipated in the fluid flow is

proportional to (h/`mk )1/3. In virtue of that, we can approximate Eq. 5.14 as:

[
hE ′µ′2 (V −)2]1/3 +Gc−1 =

[
hE ′µ′2 (

V +)2
]1/3 +Gc−2

This equation demonstrates that a positive toughness jump Gc−2/Gc−1 > 1 implies that

79



Chapter 5. Conditions for the local arrest of a hydraulic fracture by a toughness
heterogeneity

upon touching the interface V − >V + > 0.

• In case V + = 0 and ∆tc ≥ 0 the system 5.13 reduces to:(
V −µ′

∫ h

0

1

w− dẑ +Gc−1

)
≤Gc−2 (5.16)

where the equivalence corresponds to the special case of ∆tc = 0. Using `mk−1 and

wmk−1 to scale the integral of Eq. 5.16 leads to:

K I c−2

K I c−1
=

(
1+

∫ h/`mk−1

0

1

Ω− (ẑ/`mk−1)
d(ẑ/`mk−1)

)1/2

(5.17)

where w (ẑ/`mk ) = wmkΩ (ẑ/`mk ). By substituting the result in Eq. 5.15 in the previous

equation we finally obtain the ratio of toughness between the two materials which is

sufficient to stop the propagation of a semi-infinite HF in the limiting case of zero time

of containment (∆tc = 0)

K I c−2

K I c−1
=

√√√√
1+

−32×31/3 +
(
128

p
6+54π3/2

√
h

`mk−1

)2/3

6×35/6π
(5.18)

We recall that, in this equation, h represents the distance from the crack tip at which we

truncate the energy balance for the semi-infinite fracture problem. A physical meaning

to h will be given when considering the problem in the context of a finite fracture

problem.

Matching the far field opening across the jump for the semi-infinite HF

Here we present a similar, somewhat simpler, approach to obtain an estimate for the ratio

of toughness between the two materials that is sufficient to stop the propagation of a semi-

infinite HF in the limiting case of zero time of containment:∆tc = 0. At time t = ttouch the

system changes from the state characterized by Gc−1, V −, w− (ẑ), to the one characterized

by Gc−2, V +, w+ (ẑ). We assume that at a distance ẑ = h from the fracture front the fracture

opening remains unchanged:

w− (h, ttouch) = w+ (h, ttouch) (5.19)

Making use of the approximation w (ẑ/`mk ) proposed by Dontsov and Peirce (2015), the

previous equation reduces to:

V + =V −− 64

9

√
2

3π3

(
K 3

I c−2 −K 3
I c−1

)
µ′E ′2ph

(5.20)

Note that this expression is valid only at time t = ttouch. It shows similar properties of the

system:
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• V + = 0 when the second term on the right hand side of the previous equation is ≥V −.

This corresponds to Scenario n. 1 (transient containment - transiently arrested height

growth);

• V + < V − when K I c−2 > K I c−1, this corresponds to Scenario n. 2 (no containment -

slowed height growth);

• V + → V − when (K 3
I c−2−K 3

I c−1)
µ′E ′2ph

→ 0 that corresponds to Scenario n. 3 (unperturbed propa-

gation);

By assuming that V + = 0, Eq. 5.20 can be re-expressed to obtain the minimum toughness ratio

require to stop the semi-infinite hydraulic fracture at the interface:

K I c−2

K I c−1
=

1+ 9

64

√
3π3

2

√
h/`mk−1

1/3

(5.21)

5.2.2 Application to a finite HF encountering a toughness jump

To estimate the function K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
, we consider the penny-

shaped hydraulic fracture at the moment it touches the interfaces as shown in the top right part

of Fig. 5.2. In a layer close to the fracture front the solution reduces to the one of a semi-infinite

hydraulic fracture moving at the local front speed (top left part of Fig. 5.2). For this reason,

we have previously estimated the function K I c−2/K I c−1 (h/`mk−1) :
[
V + = 0 and ∆tc = 0

]
for

the semi-infinite fracture problem (i.e.: Eqs. 5.21 or 5.18). To derive these estimates, we have

introduced a generic distance h where either the fracture opening, or the external energy, have

been assumed independent from the toughness variation occurring at the front. To link the

semi-infinite fracture problem to the actual one, we match h to the fracture radius at ttouch i.e.:

h = H/2 and we set the velocity V − to be the one of the radial fracture. This is equivalent to

introducing both, the characteristic length scale of the finite fracture H and the global volume

balance via the radial velocity V −. This approach is essentially the same as the one discussed

in Garagash (2009) to investigate the propagation regimes of a finite hydraulic fracture.

Energy balance across the jump for a finite HF

We introduce h = H/2 and the velocity of the viscosity dominated regime VM at ttouch, in the

dimensionless number h/`mk obtaining (without reporting prefactors): H/`mk =K
−6

. Thus,

Eq. 5.18, in the viscosity scaling, becomes:

K I c−2

K I c−1

(
K

)= 1

3
p

2π

√√√√−32
p

3+18π+21/331/6

(
221.703+ 70.6819

K
3

)2/3

K < 1 (5.22)
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For the toughness scaling we express the velocity of the toughness dominated regime VK at

ttouch obtaining, (without reporting the prefactors): H/`mk =M
−3/2

with M =K
−4

. Then,

Eq. 5.18 becomes:

K I c−2

K I c−1

(
M

)
=

√
1+ 1

180π

[
−320

p
3+31/651/3

(
2560

p
3+162

p
2πM

)2/3
]

M < 1 (5.23)

Taking a Maclaurin expansion of Eqs. 5.22, we obtain:

K I c−2

K I c−1

(
K → 0

)∝K
−1 +O

(
K

)
(5.24)

This demonstrates that, in the cases where there is a finite amount of fracture toughness in

the system, a toughness ratio that allows the fracture containment always exist. Then, taking

a Maclaurin expansion of Eq. 5.23 result in:
K I c−2

K I c−1

(
M → 0

)
∝ 1+O

(
M

)
. This shows that in

case of negligible dissipation due to the viscous flow (compared to the one involved in the

creation of new fractures) an arbitrarily small increase of fracture toughness along the front is

sufficient to locally stop the fracture propagation.

Matching the opening across the jump for a finite HF

Similarly to what has been done in the previous paragraph, we introduce h = H/2 and

VM (ttouch) (viscosity scaling) or VK (ttouch) (toughness scaling) with the right prefactors Savitski

and Detournay (2002), in Eq. 5.21:

K I c−2

K I c−1
=

(
1+ 0.3188

K
3

)1/3

K < 1 (5.25)

K I c−2

K I c−1
=

(
1+ 27π

640

√
3

2
M

)1/3

M < 1 (5.26)

When taking a Maclaurin expansion of these equations, the same limits that have been found

previously by energy conservation arguments can be retrieved up to a prefactor of order one.

5.2.3 Comparisons

In the top part of Fig. 5.3, we plot the estimates of the function K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
provided by the different approaches discussed: the “energy approach” and the “w(H)-

matching” approach. The equations 5.22, 5.25 are valid for K ¿ 1 while Eqs. 5.23 and

5.26 are valid for K À 1. These estimates divide the parametric space
(
K ,K I c−2/K I c−1

)
in

two regions as shown in the top plot of Fig. 5.3. The upper region consists of all points

above K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
and it is characterized by a period containment

∆tc > 0. Conversely, in the region below K I c−2/K I c−1
(
K

)
:
[
V + = 0 and ∆tc = 0

]
the break-
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5.2. The existence of fracture containment

through takes place as soon as the fracture has reached the interface. The relative difference

between the two estimates is plotted in the bottom part of Fig. 5.3. It is computed by taking

as a reference the “w(H)-matching” approach. The relative difference is comprised between

1% and 2% showing that the different assumptions behind the two approaches lead to similar

results in the whole parametric space.
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Figure 5.3 – Comparison between the estimates of the function K I c−2/K I c−1
(
K

)
:[

V + = 0 and ∆tc = 0
]

provided by two different approaches. The top plot shows, in the viscos-
ity scaling, Eqs. 5.22 with a thin green line, 5.25 with a thick blue line and, in the toughness
scaling, Eqs. 5.23 (thin orange line) 5.26 (thick purple line). The bottom plot shows the relative
difference between the two approaches in the respective ranges of validity

In Fig. 5.4, we compare the estimates provided by Eqs. 5.25 (dashed blue curve) and 5.26

(dashed red curve) with the numerical estimation obtained by using the 3D-Planar hydraulic

fracture simulator Pyfrac Zia and Lecampion (2020) (green stars). The numerical solution is

obtained by stating that the breakthrough takes place when the aspect ratio of the fracture

is two percent larger than one: L/(0.5H) = 1.02. The largest relative difference between the
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analytical estimates and the numerical results is 38%±2.5% in the limit K → 0. While Eqs. 5.25

and 5.26 have been obtained by replacing V − in Eq. 5.21 with the fracture velocity either in the

viscosity (M-) or in the toughness dominated regime (K-regime), the numerical simulations

allows us to use the actual V − at ttouch. The related curve is represented by the orange crosses

in Fig. 5.4. Similarly, the black line with circular markers is obtained by inserting in Eq. 5.21

the velocity V − computed numerically by Madyarova (2003) for a radial hydraulic fracture.
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Figure 5.4 – Parametric space of the problem delimiting regions of immediate breakthrough
(red), and local arrest (green) for a hydraulic fracture encountering an infinite toughness
heterogeneity. The green stars represent points where the breakthrough happens almost
immediately (aspect ratio at breakthrough = 1.02). They correspond to the numerical solution
obtained using the 3D-Planar hydraulic fracture simulator PyFac Zia and Lecampion (2020).
The orange crosses correspond to the semi-analytical equation 5.21 evaluated with the actual
numerical estimate of the fracture velocity V −. The same equation has been evaluated using
the velocity obtained numerically in Madyarova (2003). The corresponding results are plotted
using a black line with black dots as markers.

5.3 Conclusions

In this chapter, focusing on the case of hydraulic fracture propagating from a point source

encountering a symmetrical jump of fracture toughness, we have established a relationship for

the local arrest of the fracture as a function of i) the intensity of the fracture toughness hetero-

geneity (K I c,2/K I c,1) and ii) the ratio of the energy dissipated in surface creation versus fluid
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flow in the fracture at the instant where it touches the heterogeneity (K ). Using arguments

based on the near-tip behavior of a steadily moving hydraulic fracture, we have established

analytical expressions for the minimum toughness ratio in the viscosity dominated and tough-

ness dominated regimes. These analytical predictions are in-line with fully-coupled planar

3D simulations. Notably, the minimum toughness ratio scales as 1/K when the fracture

propagates in the viscosity dominated regime, and obviously tends to one in the toughness

dominated regime. Although established with the case of a symmetrical toughness jump

in mind (the case of two bounding layers), these results are actually valid for any type of

toughness heterogeneity as their expression are local by nature. In practice, the minimum

toughness ratio as a function of the propagation regime K for a local arrest to occur is not the

final quantity of interest. If arrested by a layer of larger toughness, it remains to quantify how

long the hydraulic fracture will remain arrested: this is the subject of the next chapter.
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6 Fracture containment by two layers of
higher fracture toughness

Disclaimer and acknowledgements: The ideas and the work presented in this chapter are my

contributions, with the following exceptions. Prof. B. Lecampion fully developed the numerical

solver used to derive the 1D solution to the PKN problem. He also contributed to the discussion

of the implications of the results in the case of field scale hydraulic fracturing applications

and improved the written presentation of the results. I acknowledge the contribution of Dr. J.

Desroches in discussing the implications of the results in the case of micro hydraulic fracturing

tests. I acknowledge the contribution of Judith Capron, with whom I developed the volume

control solver used for the toughness dominated simulations.

Note: This chapter is currently being adapted into a scientific publication:

C. Peruzzo, B. Lecampion, "How long a planar 3D hydraulic fracture remains contained by two

layers of larger toughness", to be submitted to Int. J. Eng. Sci., 2023

6.1 Introduction

In this work, we consider a hydraulic fracture propagating initially radially in a layer bounded

by two layers having a larger fracture toughness than the central layer. At the moment when the

hydraulic fracture touches the tougher layers, it can either break through immediately into the

bounding layers or can be transiently contained and grow with a blade-like / PKN geometry, at

least for a while. Recent work has quantified the minimum ratio of fracture toughness required

for the containment to occur as a function of the ratio between viscous and fracture energy

dissipation, see Peruzzo and Lecampion (2023). In the following, for toughness values above

this minimum ratio of fracture toughness, that is the case when containment does occur, we

estimate the amount of time the fracture remains contained between the bounding layers.

We quantify the duration of containment as a function of both the ratio of fracture toughness

and the main energy dissipation mechanism at the moment when the fracture reaches the
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interfaces of the tougher layers. Our semi-analytical predictions are compared to numerical

ones obtained with the fully-coupled 3D-planar hydraulic fracture simulator PyFrac (Zia and

Lecampion, 2020). Throughout this work, we assume the hypotheses of quasi-static linear

hydraulic fracture mechanics (Detournay, 2016) and focus on 3D-planar fracture propagation

in an infinite impermeable medium driven by the injection of a Newtonian fluid at a constant

rate.

6.2 Order of magnitude of the fracture toughness contrast between

rock layers

Adjacent rock strata can have different mode-I fracture toughness. Before quantifying the

effect of such a toughness contrast on hydraulic fracture propagation, we first discuss the order

of magnitude of the variation of fracture toughness observed in rocks. We found solely one

work (Senseny and Pfeifle, 1984) that estimated the natural distribution of fracture toughness

between layers considering hectometers-long successions of layers at depths & 1km from the

surface of the Earth. In particular, the published data consists of the vertical distribution of

fracture toughness measured at a number of depths in three wellbores in the Rulison Field

– Piceance Basin, Garfield County, Colorado, USA. The same method (“short rod specimen”

test (Barker, 1977)) was used in all the samples to measure the fracture toughness. The three

plots in Figure 6.1a) reproduce the data sets bk for each borehole (k = 1,2,3). Each point in

the plots reports the average fracture toughness in a thin layer from which up to 6 fracture

toughness measurements were performed from just as many samples. We consider the layers

to be thin because they have an average thickness of 0.53m (Std. Dev. of 1.03m, min. thickness

of 0.10m, max of 7.00m), which is much smaller than the extent of the investigated ranges of

depth (min > 300m). To estimate how frequently a given toughness contrast
(

K I c−i/K I c− j

)
k ≥ 1

is within each wellbore k, we start by taking all the possible combinations of layers (i , j )k

with i 6= j . Then, for each data set bk , we count the number of toughness ratios
(

K I c−i/K I c− j

)
k

falling in a given interval of amplitude 0.1. The results are shown in the histogram at the top

of Figure 6.1b). We note that only in few occasions is the toughness ratio
(

K I c−i/K I c− j

)
k ≥ 2. By

inspecting the data set b1 in Figure 6.1a), most of the toughness ratios > 2, shown in Figure

6.1b), are due to the presence of just one layer with very low fracture toughness. In order to

compare the results between the different data sets, we computed both the relative and the

cumulative relative frequency of a given toughness ratio. The results are shown in Figure 6.1c)

The cumulative relative frequency evolution does not substantially differ among different

bk . This can be explained by the relatively small distance between the three wellbores (min

∼ 30m, max ∼ 152m (Atkinson et al., 1981)). The cumulative relative frequency shows that,

by randomly taking a combination of layers (i , j )k with i 6= j and k ∈ [1,3], a toughness ratio
K I c−max/K I c−mi n ∈ (1,2] can be found in ≈ 80% of the cases. This result can not yet be safely

considered to represent an order of magnitude, without considering other examples.

88



6.2. Order of magnitude of the fracture toughness contrast between rock layers

1250

1500

1750

2000

2250

Sandstone
Shale
Siltstone

1600

1800

2000

2200

2400

Sandstone
Shale
Siltstone
Mudstone

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2000

2100

2200

2300

MPa

Sandstone
Shale

wellbore n.1

wellbore n.3

wellbore n.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0 2.0 5.0 10.0
0.001

0.005
0.010

0.050
0.100

0.2

0.4

0.6

0.8
1.0

15.0

wellbore 
n.

layers  
n.

combinations  
n.

1 18 154
2 30 437
3 17 137

wellb. n. 1

wellb. n. 3

wellb. n. 2

0.1

0.5

1

5

10

50 wellbore 
n.

layers  
n.

combinations  
n.

1 18 154
2 30 437
3 17 137

0.1

a) b)

example of layers 
“i ” and “j ” for 
wellbore n. 3

c)

Figure 6.1 – a) Mode-I fracture toughness (KIc) at different depths from 3 different boreholes.
Data reproduced from Senseny and Pfeifle (1984). The horizontal error bar represents the
error in the measurements, while the vertical one (barely visible) represents the thickness
of layer i where KIc−i was measured. b) histogram of toughness ratios KIc−i/KIc−j > 1 (const.
intervals of size 0.1). c) shows, on the left vertical axis, the histogram of the relative frequency
of toughness ratio. The cumulative relative frequency is shown on the right axis.

Unfortunately, due to the absence of other similar works, we also analyze fracture tough-

ness measurements of rock samples that have not necessarily been obtained from a natural

succession of rock layers nor measured by the same experimental protocol / author(s). We

consider published results where, within the same work, fracture toughness measurements

are reported either for different lithologies (see Table 6.2) or for different rock units of the

same lithology (see Table 6.1). Then, for each work, we compute the maximum toughness

ratio that can be observed among the measurements. In almost all the cases in tables 6.2 and

6.1, the largest toughness ratio is greater than 2. This evidence only confirms that the interval

(1,2] estimated from the work of Senseny and Pfeifle (1984) is not an outlier. From all the

data presented, it emerges that typical values of mode-I toughness ratios, measured from rock

samples of decimeter-scale, happen to be mostly in a range ≈ (1,2]. Since the published data

that can be used for this estimation is both limited in terms of the number of measurements

and heterogeneous in its quality, we do not claim this conclusion to be definitive - but this

range can be considered to give a realistic order of magnitude for the variation of laboratory

derived fracture toughness between different sedimentary rocks.
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Lithology
n. of
rock
units

K I c
[
MPam1/2

] K I c−max
K I c−mi n

Ref.

Sandstone

3 0.36 ≤ K I c ≤ 0.89 2.5 Nara et al., 2012

3 0.37 ≤ K I c ≤ 1.1 2.9 Roy et al., 2017

5 0.49 ≤ K I c ≤ 1.60 3.3 Noël et al., 2021

3 0.98 ≤ K I c ≤ 2.12 2.2 Thiercelin, 1989

3 0.53 ≤ K I c ≤ 0.73 1.38 Chandler et al., 2016

Limestone
3 0.48 ≤ K I c ≤ 0.92 1.9 Chandler et al., 2016

2 1.36 ≤ K I c ≤ 2.06 1.5 Gunsallus et al., 1984

Table 6.1 – Mode-I fracture toughness ranges for typical rocks in conventional and uncon-
ventional reservoirs (Schmoker and Oscarson, 1995; Zou, 2013). For each lithology, we
report the range of fracture toughness measured by each research group under the same
conditions (group specific) but testing different rock units of the same lithology. The ratio
K I c−max /K I c−mi n represents the ratio between the extremes of each range. Comparisons
between rows are not possible because of the different testing methods and conditions used
in the different works. Each value of fracture toughness is the average of at least 2 samples of
the same rock unit within the same lithology.

6.3 Problem definition

We consider three layers made of the same impermeable linear-elastic material, characterized

by a uniform Young’s modulus E , Poisson’s ratio ν, and uniform confining stress σo acting

perpendicularly to the plane x − z in Figure 6.2-a). The central layer has thickness H , while

the others extend indefinitely above and below. The material in the central layer differs from

the others by its fracture energy Gc−1 which is smaller than the one of the bounding layers

Gc−2. Throughout the rest of this work, we will either refer to Gc−i i = 1,2, or to the fracture

toughness K I c−i =
√

E ′Gc−i where E ′ = E/(1−ν2) (Irwin, 1957). An incompressible Newtonian

fluid of viscosity µ is injected at the center of the middle layer. The injection proceeds at a

constant rate Qo and drives the propagation of a penny shape fracture initially. The fracture

is characterized by its diameter 2L(t) evolving in time t , the fracture opening w(x, z, t), and

the net pressure p(x, z, t ) or, equivalently, by the fluid pressure p f (x, z, t ) = p(x, z, t )+σo . In

addition to the usual hypotheses of linear hydraulic fracture mechanics (Detournay, 2016), we

further assume that:

• the dimension of the injection source (the wellbore diameter) is assumed to be much

smaller than the fracture length such that the injection can be considered to take place

at a point.

• the fluid lag is assumed to remain negligible during the entire process. This condition
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Lithology n. of rock
units

K I c
[
MPam1/2

] K I c−max
K I c−mi n

Ref.

Granitea 1 2.14
5.9 Nara et al., 2012

Sandstonea 3 0.36 ≤ K I c ≤ 0.89

Shaleb 1 0.31
3.4 Roy et al., 2017

Sandstone* 3 0.37 ≤ K I c ≤ 1.1

Mudstone* 1 2.12
4.9 Thiercelin, 1989Shale* 1 0.43

Sandstone* 3 0.98 ≤ K I c ≤ 2.12

Shalea 1 0.44

2.1
Chandler et al.,

2016
Shaleb 1 0.44

Limestone* 3 0.48 ≤ K I c ≤ 0.92

Sandstone* 3 0.53 ≤ K I c ≤ 0.73

Dolostone* 5 1.66 ≤ K I c ≤ 2.47
1.8

Gunsallus et al.,

1984Sandstone* 1 1.47

Limestone* 2 1.36 ≤ K I c ≤ 2.06

*= no explicit information are given about the direction of crack

propagation with respect to the bedding planes. Otherwise: a = arrester

direction,b = divider direction

Table 6.2 – Comparison of Mode-I fracture toughness K I c between lithologies studied by the
same research group. Comparisons between rows are not possible because of the different
methods and protocols used to measure fracture toughness. Each fracture toughness value
reported is the average of at least 2 samples for the same rock unit.

is ensured when µV E ′2/σ3
o ¿ 1 where V is the fracture front velocity (Garagash and

Detournay, 1998). This is typically the case for deep fractures in rocks for which σo is

sufficiently large (Lecampion and Detournay, 2007).

• the fracture is assumed to propagate on the same plane after touching the interfaces

between the layers. This represents one possible limiting case for the interaction of a

hydraulic fracture with a layer’s interfaces in sedimentary rock formations (see Bunger

and Lecampion (2017) for more discussion).

• gravity effects are negligible, an assumption we further discuss at the end of this paper.

The equations governing this moving boundary problem relate to elasticity, fluid flow, and

fracture propagation. The quasi-static balance of momentum for the elastic solid can be

reduced to a scalar boundary integral equation for a single mode I planar 3D fracture (Hills
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et al., 2013; Crouch S.L., 1983),

p (x, z) = p f (x, z)−σo =− E ′

8π

∫
∑

(t )

w
(
x ′, z ′, t

)
[
(x ′−x)2 + (z ′− z)2]3/2

dx ′dz ′ , (6.1)

where the
∑

represents the fracture’s trace on the middle fracture plane. Lubrication flow

apply in the fracture, and the local fluid volume conservation in the case of an impermeable

rock reads (Batchelor, 1967):

∂w (x, z, t )

∂t
+∇·q−δ(x)δ(z)Qo (x, z, t ) = 0 , (6.2)

which provides after integrating both time and space the global volume balance

∫
∑

(t )
w

(
x ′, z ′, t

)
dx ′dz ′ =Qo t . (6.3)

The width-averaged balance of momentum for the fluid under laminar flow gives the well-

known Poiseuille relation:

q =
[

qx qz

]
=−w (x, z, t )3

µ′ ∇∇∇p (x, z, t ) µ′ = 12µ (6.4)

and the quasi-static fracture propagation conditions locally reads:{
V

(
γ
)

Gc
(
γ
)≥ 0(

G −Gc
(
γ
))

V
(
γ
)= 0

∀γ ∈ Γ (6.5)

where G is the energy release rate, V
(
γ
)= v (x, z) ·n(

γ
)

is the magnitude of the local fracture

front velocity at the curvilinear coordinate γ along the front and n
(
γ
)

is the normal to the front.

In the absence of a fluid lag, both the width and the fluid flux normal to the front vanishes at

the crack front (see Detournay and Peirce (2014) for discussion).

Under the previous assumptions, at t1 = ttouch when the fracture touches the interfaces, three

scenarios are possible, as sketched in Figure 6.2-a) (see Peruzzo and Lecampion (2023)). These

three scenarios differ in relation to the change of velocity at the top and bottom points γ1 and

γ2, where the fracture front first touches the tougher layers (see Figure 6.2).
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Figure 6.2 – a) Sketch representing the three-layer configuration considered throughout this
work and the different possible evolution of the fracture upon reaching the interfaces with the
bounding layers. b) parametric space that represents the separations between the different
scenarios. Both, a) and b) are adapted from Peruzzo and Lecampion (2023).

• Scenario n. 1 (transient containment - or alternatively transiently arrested height

growth): the fracture front stops immediately upon reaching the interfaces. The fracture

then grows only horizontally in the central layer. The fluid flow occurs only along the
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x direction, with the exception of the region near the injection point where the flow

transitions from radial to unidirectional. The fracture then remains confined between

the two interfaces for a finite amount of time ∆tc , albeit possibly small. Moreover, as

it will be shown later, in the case of a finite amount of fluid viscosity, the containment

time ∆tc is always finite.

• Scenario n. 2 (no containment - slowed height growth): the propagation continues

immediately in the new medium albeit at a lower velocity. The fracture footprint deviates

significantly from a radial geometry.

• Scenario n. 3 (unperturbed propagation): the fracture crosses the interface maintaining

(temporarily) a radial shape. After some time, the fracture senses the larger toughness

which then starts to affect the shape of the fracture front. In any case, no containment is

possible.

In Peruzzo and Lecampion (2023), the limit between Scenario n. 1 and the Scenarios n. 2 & 3

has been obtained as a function of two dimensionless numbers: the ratio of fracture toughness

between the layers K I c−2/K I c−1 and the dimensionless toughness of the initially radial fracture

when it touches the interfaces:

K = K I c−1

(
H

E ′3Qoµ′

)1/4

(6.6)

The limit in such parametric space is shown in Fig. 6.2-b) (see Peruzzo and Lecampion

(2023)). It is important to recall the meaning of the dimensionless toughness K as we will

estimate ∆tc as function of K and K I c−2/K I c−1. Before the fracture reaches the interfaces,

the solution of equations 6.1,6.2, (or 6.3), 6.4 and 6.5 in terms of L, w and p, depends on a

single dimensionless number as shown by Savitski and Detournay (2002). This number can be

expressed in the form of a dimensionless toughness

KR = K I c−1

(
1

E ′13Q3
oµ

′5

)1/18

t 1/9 (6.7)

(where the subscript “R” reminds us that it refers to the case of a radial fracture). Note the

dependence of this number on time. The parameter K corresponds to the value of KR at the

time a viscosity dominated hydraulic fracture reaches a diameter H . In particular, we define

ttouch as the time t such that LR−M (t) ≡ H , where the function LR−M (t) represents how the

characteristic radius of a penny shaped hydraulic fracture scales with time in the viscosity

dominated regime (see for example Eq. (27) in Savitski and Detournay (2002)). To find the

expression for K in Eq.(6.6), we simply substitute this estimate for ttouch in KR . According to

Savitski and Detournay (2002), (pending a factor
p

32/π used in this previous contribution)

when the dimensionless toughness KR & 1.097, a penny shaped fracture propagates in the

toughness dominated regime whereas, when KR . 0.313 the fracture grows in the viscosity

dominated regime. Naturally, these limits apply to K as well, and they are marked in Fig.

6.2-b).
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6.4. Quantification of the duration of fracture containment

6.4 Quantification of the duration of fracture containment

6.4.1 Fully confined fractures: the transition from K to M

In the limit K I c−2/K I c−1 →∞, the fracture will remain contained between the bounding layers

indefinitely. The aspect ratio of the fracture L/(0.5H) increases as the fracture spreads along

the x direction as injection continues. For a sufficiently large aspect ratio, the problem can

be approximated by a constant height fracture model known as the PKN model (Perkins and

Kern, 1961; Nordgren, 1972; Adachi and Peirce, 2007). Such a well-known hydraulic fracture

model assumes that:

1. The fracture footprint has a rectangular/blade-like shape. In other words, the fracture

height H (see Fig. 6.2) is constant,

2. For each coordinate x, the net pressure p (x) is only a function of x, rather than both x

and z: the fluid flow becomes unidirectional.

3. Any cross-section on a plane parallel to z − y in Fig. 6.2-a) has an elliptical shape,

independently from the value of the aspect ratio L/(0.5H).

Upon the introduction of these assumptions in the system of Eqs. (6.1), (6.2), (6.4) and (6.5)

two limiting solutions can be derived. The first one is the viscosity dominated regime for a

PKN fracture where fracture energy/toughness is negligible. This viscosity limit corresponds

to the original hypothesis layout in Perkins and Kern (1961), and Nordgren (1972) (see also

Kemp (1990)). A more accurate solution was obtained in Kovalyshen and Detournay (2009) as:

wPK N−M (x = 0, z, t ) = 2.2142
(
µQ2

o
E ′H

)1/5
t 1/5

√
1− (2z

H

)2

pPK N−M (x = 0, z, t ) = 1.1071
(
µE ′4Q2

o

H 6

)1/5
t 1/5

LPK N−M (t ) = 0.660422
( 2
π3

)1/5
(

E ′Q3
o

µH 4

)1/5
t 4/5

(6.8)

We will denote it shortly as the PKN-M solution (M for viscosity). The second limiting solution

corresponds to the toughness dominated regime for a PKN fracture, where the energy dissi-

pated in the viscous fluid flow is neglected entirely. Such a PKN-K solution (K for toughness)

was derived in Sarvaramini and Garagash (2015):

wPK N−K (x, z, t ) = 4p
π

K I c
p

H
E ′

√
1− (2z

H

)2

pPK N−K (x, z, t ) = 2 K I cp
πH

LPK N−K (t ) = E ′Qop
πK I c H 3/2 t

(6.9)

As already noted in Dontsov (2021) Garagash (2023), a PKN fracture evolves from the “early

time” toughness-dominated to the “late time” viscosity-dominated regime. This behavior

can be explained intuitively after observing that the energy dissipated in the fluid flow is

proportional to the fracture length (see L in Fig. 6.2 a)) while the energy dissipated in the
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Chapter 6. Fracture containment by two layers of higher fracture toughness

creation of new fracture surfaces is proportional to the extension of the propagating front (see

H in Fig. 6.2 -a)). Since the latter quantity remains constant while the former increases, the

viscous fluid flow, therefore, dominates at “late time”. On the contrary, in the case of a fracture

propagating with a radial shape, the late time behavior is toughness dominated. Indeed for a

radial fracture, the ratio between the energy dissipation mechanisms in Eq. (6.7) increases

with the fracture diameter and thus time (as per Eq. (6.6)). The characteristic transition-times

between the toughness and viscosity-dominated regimes for both the radial and PKN fracture

geometries are recalled in Table 6.3. In the same Table, the other characteristic scales are also

reported for completeness (fracture size L, the net pressure p and fracture opening w), all are

evaluated at the transition time between the two limiting regimes. These quantities can be

PKN fracture Radial fracture

tK−M
H 7/2K 5

I c

E ′4µQ2
o

tM−K

(
E ′13Q3

oµ
′5

K 18
I c

)1/2

pK−M
K I cp

H
pM−K

(
K 6

I c

E ′3µ′Qo

)1/2

wK−M

p
HK I c
E ′ wM−K

(
E ′µ′Qo

K 2
I c

)1/2

LK−M
H 2K 4

I c

E ′3µQo
LM−K

E ′3µ′Qo

K 4
I c

Table 6.3 – Transition scales for time t , net pressure p, fracture opening w , and fracture
length/radius L in the PKN and radial models respectively.

used to express the ratio between the powers dissipated in the two dissipation mechanisms.

For example, a PKN fracture of length L À LK−M(PK N ) propagates in the PKN-M regime, while

if L ¿ LK−M(PK N ) it propagates in the toughness dominated regime. Moreover, they can also

be used to relate the fracture evolution from the initial radial propagation (prior to reaching

the interfaces) to the elongated (blade-shaped) fracture described by the PKN model. The

radial fracture can reach the layer boundaries at different times during the transition from the

viscosity-dominated regime (radial-M) K ¿1 to the toughness-dominated regime (radial-K)

K À1. We can actually express the dimensionless toughness K , using the following ratio of

length-scales:

K
4 = H

LM−K (R AD I AL)
. (6.10)

By recalling how the propagation regimes are linked to the values of K , we observe that:{
H ¿ LM−K (R AD I AL) ⇒ radial-M regime at ttouch

H À LM−K (R AD I AL) ⇒ radial-K regime at ttouch
(6.11)
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6.4. Quantification of the duration of fracture containment

In addition, up to a constant prefactor, the ratios between the radial and the PKN transition

length-scales are actually related as:

H

LM−K (R AD I AL)
= LK−M(PK N )

H
(6.12)

This implies that the ratio between the energy dissipation mechanisms when the fracture is

being confined is also reflected in the subsequent PKN behavior:{
H ¿ LM−K (R AD I AL) ⇒ H À LK−M(PK N ) ⇒ PKN-M regime at ttouch

H À LM−K (R AD I AL) ⇒ H ¿ LK−M(PK N ) ⇒ PKN-K regime at ttouch
(6.13)

As a result, we finally obtain that:{
radial-M regime at ttouch ⇒ PKN-M regime at ttouch

radial-K regime at ttouch ⇒ PKN-K regime at ttouch
(6.14)

The same reasoning can be conducted in terms of time-scales. We first have to note that the

transition time-scales of the radial and the PKN fractures are linked (see Table 6.3 for their

respective expressions). In fact, up to a prefactor of O (1):

K =
(

tK−M(PK N )

tM−K (R AD I AL)

)1/14

(6.15)

Moreover, by recalling that K =K (ttouch-M) and that K (t ) = (
t/tM−K (R AD I AL)

)1/9, we obtain

the following relation between the transition time-scales for a strictly radial and a strictly PKN

hydraulic fracture and the time at which the radial fracture reaches (touches) the interface:(
ttouch-M

tM−K (R AD I AL)

)5

=
(

tK−M(PK N )

ttouch-M

)9

(6.16)

As a result, if a radial fracture touches the interfaces in the Radial-M regime that is ttouch <
tM−K (R AD I AL) , respectively in the Radial-K regime ( ttouch > tM−K (R AD I AL)) then the PKN

fracture will propagate in the PKN-M regime with ttouch > tK−M(PK N ), respectively in the

PKN-K regime (ttouch < tK−M(PK N )).

It is important to keep in mind that the PKN-behaviour is not immediately established when

the radial fracture reaches the interfaces. The fracture aspect ratio L/(0.5H) has to increase

sufficiently above unity for the PKN model to be valid (Adachi and Peirce, 2007). In Fig.

6.3, we show a comprehensive description of the transition from radial to PKN-like fracture

propagation. In particular, we compare the numerical solution of the 3D-planar problem

(colored dotted curves) to the different radial and PKN solutions (black continuous and dashed

lines). The plots in this figure represent the fracture length L in the x-direction (parallel to

the layers), the fracture length zmax in the z-direction (orthogonal to the layers), the inlet

net pressure p(0,0, t), and fracture opening w(0,0, t), as a function of t . In Figs. 6.3-d), -e),

and f), these quantities are nondimensionalized by their corresponding values at the times
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Chapter 6. Fracture containment by two layers of higher fracture toughness

of touching the interfaces. In Figs. 6.3-a), -b), and c) the scales correspond to the ones

reported in Table 6.3. We present a total of six different numerical simulations, each of them

characterized by a different value of dimensionless toughness K and marked by a different

color. The dimensional values of the parameters chosen for each simulation are reported in

the Appendix. The time when each fracture touches the interfaces is marked by a red dot. The

curves characterized by K = 5.68 and K = 0.0568 in Fig. 6.3-a), -b), and c) touch the interfaces

in the radial-K and radial-M regimes, respectively. As predicted by the scaling relations 6.13,

after a small transition period, these tend to the PKN-K and PKN-M regimes respectively. The

simulation K = 5.68 has been interrupted before the transition to the PKN-M regime was

reached due to the large computational cost that it would have involved. Instead, the transition

from the PKN-K to the PKN-M regime is partially represented by the set of simulations with

K = 1.01, 0.568, 0.319. The plot in Fig. 6.3-d) shows the evolution of the fracture length L

as a function of time, while the fracture grown in the z direction is reported in the Appendix

. The inset quantifies the relative difference between the two limiting PKN solutions. For

K = 5.68, the relative difference is computed with respect to the PKN-K solution, while for

K = 0.180 and K = 0.0568, the PKN-M is taken as a reference. Interestingly, the difference to

the PKN-M solution is less than about ∼ 1% only when the fracture aspect ratio has reached

L/(0.5H) ∼ 5 . For K = 5.68, this aspect ratio has to increase as much as L/(0.5H) ∼ 20 for

the relative difference to be of ∼ 1%. The plot in Fig. 6.3-e) shows that, during the transition

from the radial-M to the PKN-M behaviour, the net pressure at the injection point reaches a

minimum that is only ∼ 17% less than the PKN-K pressure. The pressure at the injection point

in the radial-M analytical solution is log-singular. When it is rescaled by pr adi al−M (ttouch)

it becomes pr adi al−M (t )/pr adi al−M (ttouch) = (t/ttouch)−1/3. Nevertheless, To circumvent the

log-singularity at the inlet, we consider the scaled-pressure equal to the pressure of the radial-

M solution at ttouch and at a small distance from the injection point (0.01446×H ). To highlight

this on the plot in Fig. 6.3-e), we have used a dashed line to represent the PKN-M analytical

solution. Interestingly, the plot in Fig. 6.3-f) shows that the fracture opening between t/ttouch

and ∼ 2t/ttouch is evolving more or less independently of K̄ . Such independence with respect

to the ratio of viscous to fracture energy dissipation is only observed on the fracture opening.

The inset in Fig. 6.3-f) quantifies the relative difference to the PKN solutions. The green

dots (lower curve) and the brown dots (upper curve) represent the relative difference of the

numerical solutions to the PKN-M solution for K = 0.180 and K = 0.0568. The reason why

the relative difference is smaller for K = 0.180 is due to the different numerical accuracy

achieved with different spatial discretizations. Denoting `cel l the size of an element of the

mesh, H/`cel l = 47.6 for the first simulation, respectively H/`cel l = 33.72 for the second. The

purple and scattered dots refer to K = 5.68 and are obtained by comparing to the PKN-K

solution. The plots presented in Fig. 6.3 confirm the validity of the two limiting solutions of

the PKN model and their underlying assumptions. For aspect ratio L/0.5H & 5, an initially

viscosity dominated hydraulic fracture differs by less than 5% from the PKN-M solution. The

same is not true for initially toughness dominated fractures. These require L/0.5H & 20 for

the evolution of L to differ less than 5% to the PKN-K solution.
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Figure 6.3 – Transition from radial to a fully contained PKN hydraulic fractures in the limit
K I c,2/K I c,1 →∞. Sub-figures a), b) and c) show the evolution of fracture length L, net pressure
p and opening w . Sub-figure d), e), and f ) present the same results but scaled by using the
corresponding quantities at ttouch. Different colors are used to distinguish the different values
of the dimensionless toughness K . The red dots mark the instant when the radial fracture
touches the bounding layers. The black-continuous lines represent the PKN-K and PKN-M
analytical solutions. The black-dashed line is parallel to the PKN-M solution. Dotted curves
with the same color in different plots represent the results of the same simulations. The dots
match the time-discretization in the numerical scheme.

The Figs. 6.4-a), -b), and -c) represent a zoom into the corresponding Figs. 6.3-a), -b), and

c). Here, we compare the numerical solution obtained with the 3D-planar numerical solver

PyFrac (Zia and Lecampion, 2020) with the numerical solution of the (1D-)PKN model reported

in Dontsov (2021) or Garagash (2023) (black line). Note that the large relative difference of

the fluid pressure in Fig. 6.4-b) is due to the fact that the pressure obtained from the 3D

99



Chapter 6. Fracture containment by two layers of higher fracture toughness

simulations is related to the injection point, whereas in the (1D-)PKN model the fluid is

injected from a line source. Figs. 6.4-d), and -e) represent the relative difference of the (1D-

)PKN model solution to the limiting solutions PKN-K and PKN-M as a function of time. In

Fig. 6.4-d), it is shown the relative difference of the crack length evolution whereas Fig. 6.4-e)

represents the relative difference of either inlet fluid pressure or inlet fracture opening. The

oscillations in the left part of the plot are artifacts associated with the numerical scheme used.
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)PKN model reported e.g. in Dontsov (2021) or Garagash (2023). Subfigures d), and e) report
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6.4.2 The breakthrough time

The toughness dominated PKN limit (PKN-K)

A closer look at the transition from radial to PKN

In the case of zero viscosity, (PKN-K regime), the system of governing equations simplifies

further. A key ingredient necessary to derive the analytical solution of the PKN-K regime

(Sarvaramini and Garagash, 2015), is the expression of the energy release rate GPK N−K for a

such a constant height fracture. It was originally obtained by Dvorak and Laws (1986, 1987)

following the idea of Gille (1985) for such a blade like fracture geometry:

GPK N−K = πH p2

4E ′ ⇒ K I PK N−K =
p
π

2
p
p

H (6.17)

Theoretically, Eq. (6.17) represents an exact limit for a fracture with an infinitely large aspect

ratio. Ho and Suo (1993) conjectured that the energy release rate of a radial crack that gets

confined by two layers quickly approaches this value (6.17) as the fracture aspect ratio L/(0.5H )

increases. In Fig. 6.5, we provide quantitative evidence. We compare the analytical expressions

for the stress intensity factors of the radial K I radial−K and blade-like K I PK N−K =√
GPK N−K ×E ′

geometries against the numerical results obtained by 3D-planar simulations spanning the

transition (in the case of an inviscid fracturing fluid). For an aspect ratio L/(0.5H ) greater than

∼ 2, the relative difference between the analytical and the numerical is about ∼ 1% (see inset in

Fig. 6.5). To understand the larger relative difference ∼ 10% for L/(0.5H ). 0.5 and its increase

for L/(0.5H) > 5, it is important to keep in mind that, numerically, the fracture is growing over

a fixed Cartesian mesh. A low number of elements discretizes the fracture at the beginning of

the simulation (L/(0.5H ). 0.5), which leads to an initially large value of the relative difference

with respect to the analytical radial-K solution. The increase of the relative difference for a

larger aspect ratio (L/(0.5H) > 5) can be understood by recalling a theoretical result obtained

in Gao and Rice (1987) which states that for a uniformly loaded mode I fracture, the fracture

geometry is known up to a zero-order perturbation. The fracture footprint’s position is thus

defined up to a “rigid” body motion: an additive constant along the x− and z−directions for

L/(0.5H) < 1 and only along the x−direction for L/(0.5H) ≥ 1 . When the number of cells

discretizing the fracture is “low”, the numerical scheme prevents “artificially” such rigid body

motion.When the number of cells increases, the fixed point scheme for the new fracture

footprint in the implicit level set algorithm has a harder time converging, due to this rigid body

motion. This has a negative impact on the accuracy of the solution. More details about the

numerical solution of the system of equations for the zero-viscosity limit and the numerical

estimate of G are reported in the Appendix.
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Figure 6.5 – Evolution of the “global” stress intensity factor K I =
p

G ×E ′ for a fracture that gets
confined by two layers of higher fracture toughness and propagates driven by the injection
of an inviscid fluid. The dots represent the numerical results of 3D-planar simulations. The
different colors represent simulations with different parameters (see the Appendix). The black
straight lines represent the radial-K (t < ttouch) and PKN-K analytical solutions to which we
computed the relative error for t < ttouch and the relative difference for t ≥ ttouch shown in the
inset. The spaces between dots of the same color match the time-discretization used by the
numerical scheme.

Given the accuracy of the estimate for GPK N−K in Eq. (6.17), even for relatively small values

of the aspect ratio L/(0.5H), it is interesting to compare the PKN-K solution to numerical

simulations of the transition from a radial to a contained geometry. The curves in Fig. 6.6

correspond to two choices of toughness contrasts: K I c−2/K I c−1 = 1.47 and K I c−2/K I c−1 = 1.30,

respectively. The first corresponds to a case where the fracture transitions to PKN-K while in

the other case, the fracture breaks through before. We first limit our attention to the case where

the fracture is able to make the transition to PKN-K. In Fig. 6.6-a), we display the evolution

of the fracture radius (t/ttouch ≤ 1) or half length L (t/ttouch ≥ 1) scaled by the thickness

of the layer H . The inset shows the relative difference of the numerical curve marked by

K I c−2/K I c−1 = 1.47 to the pertinent analytical solutions. In Fig. 6.6-b), we plot the evolution of

the maximum front position zmax. While from the figure it appears that for K I c−2/K I c−1 = 1.47,

after ttouch, the front position zmax remains constant, the inset shows that the height growth is

not always arrested.

The evolution of the fracture opening at the injection point and net pressure in the fracture
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are displayed in Figs. 6.6-c), and -d). This last quantity is uniform over the fracture, because

the viscosity of the injected fluid is zero. The relative difference of the numerical curves for

K I c−2/K I c−1 = 1.47 to the PKN-K solution amounts to few percents for L/(0.5H) > 1 (see inset

of Figs. 6.6c, d). Note that while both the fluid pressure and the fracture opening differ of

less than 5% to the PKN-K solution for L/(0.5H) ∼ 3, the aspect ratio has to increase up to

L/(0.5H) ∼ 8 before the fracture length matches the PKN-K solution within the same accuracy.
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Figure 6.6 – Fracture behavior in case of inviscid fracturing fluid / large toughness limit.The
dimensionless a) fracture length L, b) max z-coordinate of the front, c) opening w at the
injection point and d) pressure p are represented as a function of the dimensionless time t .
The insets of all the sub-figures show the corresponding relative error to the radial-K analytical
solution for t < ttouch and the relative difference to the PKN-K solution for t > ttouch. In all the
plots, the colors distinguish the parameters used in the simulations (see the Appendix for the
values of the different parameters). The spaces between dots of the same color match the
time-discretization used by the numerical scheme.

Prediction of the containment duration

The stress intensity factor K ⊥
I at the point x = 0, z = H/2, where the fracture touches the

bounding layer evolves after ttouch as the fracture gets elongated along the x−direction. The
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Chapter 6. Fracture containment by two layers of higher fracture toughness

fracture will remain confined as long as

K ⊥
I ≤ K I c,2. (6.18)

The evolution of K ⊥
I allows us to quantify the time

∆tc = tbreakthrough − ttouch (6.19)

during which the fracture remains confined. As previously discussed, when the aspect ratio

L/(0.5H ) À 1 (for t À ttouch), the hypotheses behind the PKN model are verified. In particular,

on a plane orthogonal to the propagation direction, the fracture cross section is elliptical, and

the stress intensity factor at the interface with the bounding layers is given by the solution of a

uniformly loaded 2D-plane strain fracture (Tada et al., 2000)

K ⊥
I =

√
π

2
×p

p
H

Because the pressure in the fracture becomes ultimately constant in the PKN-K regime the

stress intensity factor K ⊥
I becomes also constant. Substituting the pressure from the PKN-K

solution (see Eq. (6.9)) we obtain:

K ⊥
I

∣∣
PK N−K =p

2×K I c−1 (6.20)

We can make three important observations:

• during the transition from radial-K to PKN-K, the stress intensity factor K ⊥
I (at x = 0, z =

H/2) increases from K I c,1 to
p

2×K I c−1.

• if the toughness K I c,2 is larger than K ⊥
I

∣∣
PK N−K (that is K I c−2 ≥ p

2K I c−1), the radial

fracture will transition to the PKN-K (otherwise it will necessarily breakthrough).

• once the fracture propagates in the PKN-K regime, in the case of inviscid fluid, the time

of containment ∆tc is infinite.

We verified this result by two numerical experiments in which the two different values for

K I c−2/K I c−1 are chosen to be slightly smaller and larger than
p

2 (K I c−2/K I c−1 = 1.30 and

K I c−2/K I c−1 = 1.47, respectively) - see Fig. 6.6. For the smaller value of toughness ratio, the

breakthrough happens, as expected, before the PKN-K solution is reached. For K I c−2/K I c−1 =
1.47 >p

2, the fracture remains fully contained. Interestingly, such a ratio of
p

2 between the

stress intensity factors in the two directions has been already observed in the context of ply

failure of composite laminates (see Eq. (14) in Dvorak and Laws, 1986).

The evolution of K ⊥
I can be expressed in terms of the numerical evolution of the fracture

opening w (x = 0, z = 0, t ), at the injection point. Not only for both t = ttouch (radial-K regime)

and t À ttouch (PKN-K regime) the fracture opening profile is elliptical, but also during the
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6.4. Quantification of the duration of fracture containment

transition, as demonstrated by the results of 3D-planar numerical simulations shown in Fig.

6.7. The top plot shows the fracture opening (normalized by its maximum value wmax) along

a section parallel to the plane y − z at different times. The bottom plot of Fig. 6.7 shows

the actual relative difference of the numerical solution to the elliptic profile welliptic (z). The

relative difference (far from the fracture front) is below 1% indicating that the opening profile

can be considered elliptical, such that:

w(x = 0, z, t ) = w (x = 0, z = 0, t )

√
1−

( z

H/2

)2
(6.21)

Knowing the opening behavior on a plane orthogonal to the fracture front allows us to obtain

the stress intensity factor K ⊥
I from the linear elastic fracture mechanics asymptote(Rice, 1968):

K ⊥
I = lim

s→0

(√
π

32
×E ′ w (s)p

s

)
(6.22)

where s = H/2− z is the normal distance to the fracture front in the vertical direction. We can

express the evolution of K ⊥
I for time greater than ttouch as:

K ⊥
I (t ) =p

2×K I c−1
w (x = 0, z = 0, t )

wPK N−K (z = 0)
(6.23)

where wPK N−K is the toughness dominated PKN solution (6.9). The condition for containment

and a numerical estimate of the fracture opening at the injection point (Fig. 6.6-c)) allow us to

extend the prediction of the containment time for value of the toughness ratio lower than
p

2.

Indeed, ∆tc (K I c−2/K I c−1) is implicitly defined as:

K I c−2

K I c−1
=p

2× w (x = 0, z = 0,∆tc )

wPK N−K (z = 0)
(6.24)

The corresponding inversion for ∆tc is plotted in Fig. 6.8-a). The “coarse mesh” results refer to

a simulation with a resolution H/`cel l = 49.3, while the “fine” mesh correspond to a resolution

of H/`cel l = 98.7 . The inset shows the prediction of the aspect ratio at the breakthrough, and

as a function of the toughness ratio.

105



Chapter 6. Fracture containment by two layers of higher fracture toughness

1.0
1.1
1.2
1.3
1.5
2.0
2.2
3.4
4.7
5.9
7.0
8.2
9.4

10.5
11.4

1.0
1.3
1.5
1.7
2.1
3.1
3.6
6.2
8.9

11.5
14.0
16.5
19.2
21.7
23.7

0.0

0.2

0.4

0.6

0.8

1.0

1

10

10-1

10-2

-0.6 -0.4 -0.2 0.0

z/(0.5H)

-0.6 -0.4 -0.2 0.0

-0.5

 H

A’

A

Qo

2L

z

x

aspect
ratio

ellipse

ellipse

Figure 6.7 – Dimensionless fracture opening along section A-A’ at x = 0 for a toughness
dominated confined fracture (top). The different colors correspond to different fracture aspect
ratios and times. The bottom figure displays the relative difference of the numerical solution
from an elliptic profile. The spaces between dots of the same color match the numerical
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In Fig. 6.8-a), the predictions of ∆tc /ttouch for K I c−2/K I c−1 = 1.1, 1.2, and 1.3 are highlighted

as red paths. These predictions are then compared against numerical simulations in Fig.

6.8-b) and c), where the maximum z-coordinate is plotted as a function of time. Figure 6.8-b),

analogous to the one in Fig. 6.6-b), shows the three different simulations departing from

zmax /(0.5H) = 1 at their respective breakthrough times. Before this time, the fracture front

slowly advances in the new layer, and then the process accelerates as soon as the breakthrough

occurs over a larger portion of the front. The curves represented by gray and black dots are

related to simulations where the interface between the bounding layers is respectively inclined

at 30° and parallel to the discretization. We refer to these cases as “regular discretization” and

“inclined discretization”, and both have the same element sizes. If it is evident that the dis-

cretization orientation does not significantly impact the overall trend, it matters with regard to

the accuracy of the observed breakthrough time. In fact, in the case of “regular discretization”,

the breakthrough time happens slightly earlier. This last point can be appreciated in Fig. 6.8

c). The percentages in the plot refer to the relative error between the predicted breakthrough

time and the one estimated numerically (as the time when zmax/(0.5H)−1& 10−3).
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Chapter 6. Fracture containment by two layers of higher fracture toughness

The finite viscosity & finite toughness case

We now consider cases where the fracture toughness and the fluid viscosity are finite. The

fracture containment now depends on both the toughness ratio K I c−2/K I c−1 and the dimen-

sionless toughness K (Eq. 6.10), which quantifies the ratio of energy spent in fracture creation

over viscous flow at the instant where the hydraulic fracture reaches the tougher layer. As

in the case K I c−2/K I c−1 →∞, for high values of K I c−2/K I c−1, the newly formed PKN fracture

transitions to the PKN-M regime for any value of K (see Fig. 6.3). By recalling that the stress

intensity factor K ⊥
I scales with the fracture opening (Eq. (6.23)), and that this grows as t 1/5

(Eq. (6.8)), we conclude that breakthrough always occurs. The analytical expression for the

breakthrough time tbreakthrough-M (for large K I c−2/K I c−1) follows by combining the evolution

of K ⊥
I with the containment condition (Eq. (6.18)):

tbreakthrough-M

tK-M(PK N )
= 0.19443×

(
K I c−2

K I c−1

)5

(6.25)

To express the duration of fracture containment ∆tc (6.19) analytically, we further need to

estimate the time ttouch when the radial fracture reaches a diameter equal to the layer height

H . We can estimate ttouch when either the fracture reaches the interfaces in the viscosity

dominated (K ≤ 0.31) or in the toughness dominated (K ≥ 1.1) regime. The two expressions

for ttouch are respectively (Savitski and Detournay, 2002):

ttouch-M = 0.4727

(
H 9µ′

E ′Q3
o

)1/4

ttouch-K =
p

2π

3

K I c−1H 5/2

E ′Qo

(6.26)

The duration of fracture containment ∆tc (6.19) in the viscosity dominated regime is then

simply:
∆tc

ttouch-M
= tbreakthrough-M

ttouch-M
−1

= 4.9359×K
5
(

K I c−2

K I c−1

)5

−1

for

{
K ≤ 0.31

K I c−2/K I c−1 &K
−1 (6.27)

Note that for a fixed value of containment time ∆tc , the value of toughness ratio K I c−2/K I c−1

scales as K
−1

. This is precisely how the minimum amount of toughness ratio K I c−2/K I c−1

required to arrest hydraulic fracture scales in the viscosity dominated regime (K ≤ 0.31).

Therefore, it should be no surprise that the series of isolines (of constant ∆tc /ttouch-M) shown

on the left part of the parametric space in Fig. 6.10-a), -b), and c) are inclined with slope −1.

The very first isoline K I c−2/K I c−1 =K
−1

corresponds to the amount of time ∆tc = 4× ttouch-M

that the fracture needs to transition from radial-M to the PKN-M regime. This value is obtained

by requiring that both the opening evolution at the injection point follows the PKN-M solution

(see Fig. 6.3) and the opening profile differs less than . 2% form an ellipse, see Fig. 6.11 -a),

-b), -c), -d).
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6.4. Quantification of the duration of fracture containment

The predictions provided by Eq. (6.27) for
(
K ,K I c−2/K I c−1

)
respectively equal to (0.32,3.5),

(0.32,4.0) and (0.18,6.5) are tested against numerical simulations (see Fig. 6.12 a) and b)). In

all cases, the relative difference between the analytical predictions and the numerical results

are below 10% (see Fig. 6.12 b)). For K = 0.32, we obtained higher values (respectively 6.2%

and 8.2%) than for K = 0.18 (1.8%) because K = 0.32 is right at the validity limit of the

viscosity-dominated regime solution.

For the remaining interval, going from ttouch to ttouch + (4× ttouch-M), that corresponds to

low values of the toughness ratio K I c−2/K I c−1 (but at the same time sufficient to arrest the

propagation), we have estimated numerically the containment time over a wide range of

K ∈ [0.0047,1.57]. Note that this range covers the values of K ≈ 1 and low values of the

toughness ratio K I c−2/K I c−1 for which no analytical predictions are possible. The results are

presented by the colored dots in Fig. 6.10-b) and c). The color code expresses the actual value

of ∆tc /ttouch while a line connects the points where the aspect ratio at breakthrough is the

same. The details concerning the numerical exploration of the parametric space are reported

in the Appendix.

We now turn to express the duration of fracture containment ∆tc (6.19) in the toughness dom-

inated regime (K ≥ 1.1) and for large K I c−2/K I c−1. Analogously to the viscosity-dominated

case, but now using ttouch-K, we obtain:

∆tc

ttouch-K
= tbreakthrough-M

ttouch-K
−1

= 2.79235×K
4
(

K I c−2

K I c−1

)5

−1

≈ tbreakthrough-M

tK-M(PK N )

for

{
K ≥ 1.62

K I c−2/K I c−1 > 3
(6.28)

Note that for a fixed value of containment time ∆tc , the value of toughness ratio K I c−2/K I c−1

scales as K
−4/5

while the minimum value of toughness ratio K I c−2/K I c−1 sufficient to arrest

the propagation goes to one, independently from K (see Fig. 6.10-a) -b) and c)). This apparent

contradiction is reconciled by the fact that:

• for small values of toughness ratio (K I c−2/K I c−1 <p
2), the breakthrough happens in

the transition between the radial and the PKN-K regime (K ). The predictions for

∆tc (K I c−2/K I c−1) obtained in the limit of infinite toughness (K →∞), are displayed

in Fig. 6.8 providing a good approximation in this case. This is confirmed by the

comparison shown in Fig. 6.10-d), where the numerical estimates for the containment

time for K = 1.56 (star symbols) are close to the predictions for the zero viscosity case

of Fig. 6.8.

• for values of toughness ratio K I c−2/K I c−1 ≥
p

2 (for which indefinite containment occur

when K →∞), the fracture propagates in the PKN-K regime for an amount of time

∆tconst K ⊥
I

during which the stress intensity factor K ⊥
I remains constant, as the contained
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fracture elongates transitioning to the PKN-M regime where the stress intensity factor

increases as K ⊥
I ∝ t 1/5. This creates a “jump” in the containment time that is visible in

Fig 6.10-a). The reason why K ⊥
I remains constant, is that the fracture opening remains

constant in the PKN-K regime. The corresponding “latency period” ∆tconst K ⊥
I

can be

estimated as the difference between the time when the fracture (opening) departs from

the PKN-K solution (that is ∼ 0.1× tK−M(PK N ) from Fig. 6.4-e)) and the time that is

required to transition to the PKN-K solution (that is ∼ 10× ttouch from Fig. 6.6-c)):

∆tconst K ⊥
I
≈ 0.1× tK−M(PK N )︸ ︷︷ ︸

end of

PKN-K propagation

− 10× ttouch−K︸ ︷︷ ︸
beginning of

PKN-K propagation

(6.29)

The large toughness ratio K I c−2/K I c−1 predictions (Eq. 6.28) are not valid immediately after

the end of the PKN-K propagation because the breakthrough can take place in the transition

from PKN-K to PKN-M. To complete the predictions of the containment time for the cases

K I c−2/K I c−1 ≥ p
2 and K I c−2/K I c−1 ≤ 3, we take the solution w (x = 0, z = 0, t ) obtained by

solving numerically the (1D-)PKN model (see the black line in Fig. 6.4-c)) and we compute

the evolution of the stress intensity factor K ⊥
I (Eq. 6.23). Then, by combining it with the

propagation condition (6.18) we explicit the breakthrough time tbreakthrough as a function of

K I c−2/K I c−1 ≥
p

2. The result is marked by the label “prediction from the full PKN solution” in

Fig. 6.9-a). It is interesting to compare this prediction to the one obtained for large toughness

ratio K I c−2/K I c−1 (Eq. (6.28)). The relative difference between these two predictions is below

∼ 2%, when K I c−2/K I c−1 > 3 (see Fig. 6.9-b)).
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Now, we want to define where the jump of∆tc /ttouch begins along the K axis of the parametric

space
(
∆tc /ttouch,K ,K I c−2/K I c−1 −1

)
. We marked this position through the red point “P”

in Fig. 6.10-a). The “beginning of the discontinuity" corresponds to the case where the

“beginning time of propagation as a PKN-K fracture" coincides with the transition to the

PKN-M regime. In other words, in that case, the stress intensity factor K ⊥
I keeps increasing

continuously without being constant for a finite period of time. This equals setting∆tconst K ⊥
I
=
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Chapter 6. Fracture containment by two layers of higher fracture toughness

0 in Eq.(6.29), from which we obtain:

K (P ) ≈ 1.62 (6.30)

It is interesting to check numerically that for K . 1.62 the containment time ∆tc /ttouch as

a function of K I c−2/K I c−1 does not present a discontinuity for K I c−2/K I c−1 ≥ p
2. For this

purpose, we computed numerically the function ∆tc /ttouch as a function of K I c−2/K I c−1 for

K = 1.56. The results are shown with the black stars in Fig. 6.9-d) and they are compared to

the case K →∞ of Fig. 6.8-a). Clearly no discontinuity is observed for K I c−2/K I c−1 ∼
p

2.
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difference of the numerical solution from an elliptic profile. The spaces between dots of the
same color match the spatial-discretization used in the numerical simulation.
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6.5 Orders of magnitude in practice

In Tables 6.4 and 6.5, we computed the dimensionless toughness K , the containment time∆tc ,

and aspect ratio at breakthrough for two practical applications: a open-hole micro-hydraulic

fracturing test (Haimson, 1993), and a hydraulic fracturing treatment for well stimulation. For

all cases, the estimates are computed assuming K I c−2/K I c−1 ≤ 2 because this can be already

considered as a large value for the variation of toughness (see section 6.2). The values have
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Chapter 6. Fracture containment by two layers of higher fracture toughness

been obtained from the parametric space in Fig. 6.10-b), from Figs. 6.4 and by using the

analytical estimates previously derived.

Micro-hydraulic fracturing tests

The open-hole micro hydraulic fracturing test is used to estimate the minimum in-situ princi-

pal stress σo in a rock formation. The measurement is based on the interpretation of the fluid

pressure evolution during both hydraulic fracture propagation and closure phases that follow

a prescribed injection schedule (Haimson and Cornet, 2003; Thiercelin et al., 1996; Desroches

et al., 2021). The fluid is injected in a wellbore interval around the targeted depth where the

stress is measured. Before the injection phase, the interval is hydraulically isolated from the

rest of the wellbore by inflating two expansible elastic chambers (packers) respectively at the

beginning and at the end of the interval. A fluid is then injected to initiate and propagate a

hydraulic fracture. In a successful test, the interval has to remain hydraulically isolated from

the rest of the wellbore, and the hydraulic fracture has to grow past the region subjected to

the largest wellbore-induced stress perturbation. If the hydraulic fracture extends above the

packers, it can create a hydraulic connection (packer bypass), interrupting the test before

being completed. The presence of layers of higher fracture toughness above and below the

targeted wellbore interval could potentially be a mechanism that prevents packer bypass

and allows the fracture to grow further away from the wellbore. Table 6.4 considers typical

values for the parameters characterizing the problem. Two values of injection rate are con-

sidered 1.6667×10−6m3/s and 2.5×10−5m3/s (respectively 0.1 liters/min and 1.5 liters/min)

within the typical range of flow rates used to test low-permeability formations (Thiercelin and

Desroches, 1993; Thiercelin et al., 1996; Haimson and Cornet, 2003). The injected fluids are

assumed to be water and water-diluted drilling mud. Despite the latter being more viscous

(and possibly non-Newtonian), we assume a constant viscosity of 0.025Pa s (Caenn et al.,

2011). We considered two possible layers heights H accounting for the fact that the distance

between the packers is typically in the range 1−2 m and the packer length is about 0.5 m

(Desroches et al., 2021). We have combined the values of viscosity, injection rate, and fracture

height to obtain the widest range of K that is possible with the chosen parameters. The results

in Table 6.4 show that for the cases of low injection rate, low fluid viscosity, and large layer

height, the fracture can be considered contained for the whole test duration. Note that the

stress perturbation induced by the wellbore and the inflated packers may potentially promote

fracture breakthrough. This particular point deserves further investigation.

Hydraulic fracturing well stimulation treatment

We consider the limiting cases of a hydraulic fracturing treatment performed either with a

low viscosity fluid (slick water with µ= 0.005Pa s.) but a large injection rate or with a large

viscosity fluid (polymer gel with µ= 1.0Pa s)/lower injection rates.

A reference range of injection rates is 5.9×10−3 −1.99×10−1m3/s (3−100. bbl/min) (Econo-

mides and Nolte, 2000). For each case we consider a few sub-cases varying the value of K I c−1
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a) Micro-hydraulic fracturing test∗

Qo[
m3/s

] µ

[Pa s]
H

[m]
K I c−1[

MPa
p

m
] K

[-]
ttouch-M

[s]
ttouch-K

[s]
∆tc

[s]

aspect
ratio
at bt.

1.667×10−6

(0.1 L/min)
0.001 2. 1.0 1.3 - 88 . 4400 . 24

2.5×10−5

(1.5 L/min)
0.025 1. 1.0 0.25 2.3 - ∼ 0. ∼ 1.

∗K I c−2/K I c−1 ≤ 2, E = 30 GPa and ν= 0.25 in all the considered cases

Table 6.4 – Dimensionless toughness K , and containment time ∆tc computed for some cases
of open-hole micro-hydraulic fracturing test. In all cases K I c−2/K I c−1 ≤ 2 is assumed. The
aspect ratio at breakthrough is defined as L/0.5H (see Fig. 6.2-a)).

because it appears with the largest exponent in the definition of K (Eq. (5.6)). In particular, it

is known (Garagash, 2023) that the fracture toughness observed in-situ may be larger than

the one measured at the laboratory scale (Liu et al., 2019). We observe that for a large value of

fracture toughness of the central layer, the fracture may be transiently contained even for a

relatively low jump in toughness (K I c−2/K I c−1 ≤ 2).

The results provided in this work do not consider the effect of gravity on hydraulic fracture

propagation. The effects of gravity can be neglected if the fracture height is smaller than

the critical length-scale for buoyant growth H . Lb with Lb = (
K I c−1/

(
γsolid −γfluid

))
2/3 is

the buoyancy length-scale (see Lister and Kerr (1991)) and γ the specific weight. Assuming

K I c−1 = 2MPa
p

m and γsolid −γfluid = 16kN/m3, we obtain Lb = 26m. An estimate larger than

the few meters scale of a micro-hydraulic fracturing treatment (for which buoyant effects are

thus negligible), but possibly on par with the scales of hydraulic fractures observed in well

stimulation operations.

6.6 Conclusions

In this work, we have estimated how long two bounding layers of higher fracture toughness can

contain the propagation of a hydraulic fracture between them, therefore restricting its vertical

propagation as per Fig. 6.2-a). We demonstrated that provided the injection at a constant

rate continues for long enough, the hydraulic fracture will eventually always breakthrough. A

toughness ratio above
p

2 significantly increases the containment time when the propagation

regime is toughness dominated at the time when the hydraulic fracture touches the bounding

layers.

These results can be applied to the non-symmetric scenario where the toughness distribu-

tion in the three layers is K I c−2 −K I c−1 −K I c−3 with K I c−3 > K I c−2 > K I c−1. In this case, the

toughness ratio K I c−2/K I c−1 will determine the first (and possibly the only) breakthrough.
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b) Hydraulic fracturing treatment∗

Qo[
m3/s

]
([bbl/min])

µ

[Pa s]
H

[m]
K I c−1[

MPa
p

m
] K

[-]
ttouch-M

[s]
ttouch-K

[s]
∆tc

[s]

aspect

atio
at bt.

6.0×10−3

(3.0)
1.0

20
2.0 0.11 82 - 0. 1.

10.0 0.54 82 78 ∼ 350. . 4.0

40
2.0 0.13 388 - 0. 1.

10.0 0.64 6.5 3.1 < 60. < 5.0

3.0×10−2

(15.)
0.005

20
2.0 0.27 6.5 - ∼ 0. ∼ 1.

10.0 1.40 - 16 . 103 -

40
2.0 0.32 31 - ∼ 6. ∼ 1.1

10.0 1.60 - 88 . 104 -
∗K I c−2/K I c−1 ≤ 2, E = 30 GPa and ν= 0.25 in all the considered cases

Table 6.5 – Dimensionless toughness K , and containment time ∆tc computed for some cases
of hydraulic fracturing well stimulation treatment. The unit in brackets is bbl/min=barrel
per minute. The aspect ratio at breakthrough is defined as L/0.5H (see Fig. 6.2-a)). When
K & 1.1 (K . 0.34) only ttouch-K (ttouch-M ) is computed, otherwise both ttouch-M and ttouch-K

are computed.

Other factors, not considered here, can also have a first-order impact on the estimate of

breakthrough time, notably: heterogeneity of elastic properties between layers, fluid leak-off

in the surrounding medium, non-Newtonian fluid rheologies (Moukhtari and Lecampion,

2018), different types of injection (line source, varying injection rate) Garagash (2023). Finally,

upon breakthrough, a substantial amount of time is required for the fracture to regain a radial

shape. As a result, the estimations provided in this work have to be considered as a lower

bound for the time during which the hydraulic fracture propagates in an elongated shape with

a larger horizontal than vertical extent. The results presented here provide a basis for a proper

in-depth investigation of the effect of multiple layers on the vertical containment of hydraulic

fracture.
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7 Multilayers of heterogeneous fracture
toughness

Disclaimer and acknowledgements: The ideas and the work presented in this chapter are my

contributions.

Note: This chapter is currently being adapted into a scientific publication:

C. Peruzzo, B. Lecampion, "Hydraulic fracture containment emerging from a layered distribu-

tion of fracture energy", in prep., 2023

7.1 Introduction

Unconventional hydrocarbon reservoirs are primarily located in sedimentary basins, which

can exhibit heterogeneities on two-length scales. The large-scale heterogeneity is associated

with the arrangement of various lithologies into layer-like formations, with layer thicknesses

ranging from several centimeters to tens of meters (see, for example, Fig. 6.1). Conversely,

the small-scale heterogeneity relates to features smaller than layer thickness. It is a result of

anisotropy caused by the depositional and diagenetic processes of sedimentary rocks. For

instance, shale is an anisotropic rock with a layered structure composed of thicker and thinner

layers (referred to as bedding planes)(Sone and Zoback, 2013). The mechanical properties of

shale, such as fracture toughness and elasticity, vary significantly in different directions relative

to these bedding planes, requiring a Transverse Isotropic model to describe its elastic behavior.

The two main directions of concern for fracture toughness variations are the arrester direction,

where the fracture plane is perpendicular to the bedding planes, and the divider direction,

where the fracture plane is parallel to the bedding planes. A simple way to understand these

two directions is to consider cutting a log of wood with an axe - the arrester direction would

correspond to the blade striking the wood perpendicular to the fibers, while the divider
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direction would correspond to a cut parallel to the fibers1. The few available measurements

indicate that the fracture toughness can be 1.05 up to 1.5 times larger in the arrester compared

to the divider direction (Chandler et al., 2016; K. et al., 2017).

The present chapter examines the effect of layer-like heterogeneities of fracture toughness on

hydraulic fracture propagation. In sedimentary basins, it is common for hydraulic fractures to

propagate on a vertical plane due to the frequent horizontal orientation of the minimum in

situ stress. As the fracture propagates through a layered material, it can be assumed that at

least two portions of the fracture front advance in the arrester direction while the remaining

two portions progress in the divider direction. The fracture toughness of the remaining portion

of the front, which is not oriented in either the arrester or the divider direction, is dependent

on the direction of propagation. In recent work, Zia et al. (2018) conjectured that when the

size of the layers is much smaller than the fracture size (at the limit infinitesimal) it is feasible

to define a fracture toughness that varies with the direction of propagation. Various trial

functions were used to represent the direction-dependent toughness to test this hypothesis.

The numerical simulations showed that the late-time propagation, dominated by toughness,

exhibits self-similarity. Additionally, the late-time aspect ratio was found to be dependent on

the specific expression for the direction-dependent toughness function used.

This study, presents a novel approach to investigating the hydraulic fracture behavior in

materials with layer-like toughness heterogeneities. Unlike the approach proposed by Zia

et al. (2018), who considered the size of the layers to be much smaller than the fracture

size, we consider layers with dimensions comparable to the initial hydraulic fracture size.

Our approach involves examining the interaction and propagation of the hydraulic fracture

through the layers, which reveals a repetitive pattern. This enables us to identify two possible

late-time fracture behaviors that emerge when the fracture size is significantly larger than the

layer size. In one scenario, the fracture propagates with a practically constant aspect ratio,

while in the second scenario, the fracture is practically contained. By contained, we mean that

the fracture velocity in the vertical direction (arrester direction) becomes negligible compared

to that in the horizontal direction (divider direction). This latter scenario was not predicted by

the direction-dependent toughness approach presented in Zia et al. (2018).

Prior to presenting our method, it is important to note other studies investigating the impact

of layer-like variations in fracture toughness on hydraulic fracture propagation. The work of

Dontsov and Suarez-Rivera (2021) evaluates the homogenization of small scale variations in

fracture toughness through 3D planar simulations, where "small scale" refers to dimensions

smaller than the element size in their numerical discretization. The authors propose that the

fracture toughness in the direction of propagation parallel to the layering can be obtained

from the average fracture energy, while in the vertical direction (arrester), the maximum

fracture toughness should be considered. However, caution should be exercised in applying

1This particular illustration simplifies the differentiation of the two orientations by virtue of the fact that the act
of striking a log with an axe only affords two potential outcomes. In contrast, within layered materials, there exists
a third possibility wherein a fracture plane aligns with a bedding plane.
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7.2. Problem formulation

the first result, as the average fracture energy argument is only applicable when the shape

of the fracture front remains unchanged during propagation (as described in Rice (1988) or

Gao and Rice (1989)). The second result has been theoretically confirmed by Hossain et al.

(2014) and recently by Fies et al. (2022a,b) through their examination of a 1D hydraulic fracture

propagating through a periodic distribution of fracture toughness, where they demonstrate

that during the "late time" or toughness dominated phase, the higher fracture toughness

dominates the propagation.

7.2 Problem formulation

We consider the case where a hydraulic fracture propagates in a medium consisting of a repet-

itive sequence of layers with similar mechanical properties. For simplicity, only one property

varies between layers: fracture toughness. We could consider any repetitive distribution of

fracture toughness but we choose a "simple" one: the sequence is constructed by alternat-

ing a tougher layer of height H2 of fracture toughness KIc-2 to a layer of height H1 ≥ H2 and

KIc-1 ≤ KIc-2. A schematic representation of the problem is displayed in Fig. 7.1.

7.3 The effect of layers on an initially viscosity dominated fracture

We begin by considering the case where a radial hydraulic fracture is propagating in the

viscosity dominated regime (which is always the case at an early time). Assuming that the

initial fracture propagates in one of the layers helps the clarity of the presentation but does

not influence the "late time" fracture behaviour. The length-scale of the initial fracture can

cover several layer sizes. However, for clarity, we assume that the initial fracture size is less or

equal to the size of a layer such that the fracture toughness along the front is uniform. The

injection can be located in either layer n. 1 or n. 2, and it does not affect the "late time"

propagation. First, we consider the injection point placed in the less tough layer. If the fracture

is viscosity dominated (K ¿ 1) when reaching the interfaces with the bounding layers, it

might not even be affected by the toughness jump. In this case, the propagation continues

maintaining a radial shape initially. As the radius increases, the power dissipated in creating

new fracture surfaces becomes more relevant compared to the power dissipated in the viscous

flow 2. Consequently, the toughness variation between the layers starts to play an increasingly

important role in the fracture propagation, and the shape of the fracture becomes more

elongated in the direction of the layers. In this phase, the vertical propagation is not (yet)

stopped when the fracture front reaches a new interface with a tougher layer. Instead, the

vertical velocity reduces upon penetrating the high toughness layer. Once the overall fracture

height h is sufficiently large, a layer of higher fracture toughness (KIc-2) can arrest (for a finite

amount of time) the height growth. In Chapter 5, we have already derived the conditions that

lead to the arrest of the propagating fracture. Once the vertical velocity is zero, the propagation

continues only in the direction parallel to the layers. This situation is similar to the three layer

2This is confirmed by recalling that the dimensionless toughness K scales with the fracture size.
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scenario previously described in Chapter 6. The only difference concerning that case is that

the contained fracture was propagating in a homogeneous medium, while in this case, the

fracture propagates traversing a parallel sequence of layers. However, we assume it is possible

to replace the heterogeneous distribution of fracture toughness with an equivalent fracture

toughness KIc-equiv. This assumption will be justified in a subsequent section. The value of

KIc-equiv is clearly smaller than KIc-2 and higher than KIc-1 and it depends on the relative layer

heights H2/H1. The containment problem can be formulated as shown in the three-layer

scenario described in Chapter 6.

7.4 The repeated pattern during the propagation in a layered medium

In the interaction of a hydraulic fracture with a layered medium, a discernible, repetitive

pattern emerges that becomes evident when two layers of higher fracture toughness arrest

vertical propagation. Initially, we consider a radial fracture propagating in a low toughness

layer, with a "sufficiently large" toughness contrast to immediately arrest vertical propagation

(Figure 7.2-A). If this is not the case, propagation will be arrested by a subsequent layer. As the

contained fracture becomes more elongated in the horizontal direction, the stress intensity

factor K ⊥
I at the interface with the bounding layers increases. When K ⊥

I exceeds KIc-2, the

fracture restarts propagation in the vertical direction. After the breakthrough, the fracture

propagates in both the vertical and horizontal directions (Figure 7.2-B), until the fracture front

vertically reaches the layers of lower fracture toughness. At this point, vertical propagation

abruptly accelerates locally until the next layer of higher fracture toughness is reached (Figure

7.2-C). Meanwhile, horizontal propagation is practically arrested. The fracture then has a cross-

like shape and propagates mainly in the newly penetrated layers until a global "rectangular"

shape is reached (Figure 7.2-D). At this point, the propagation restarts globally only in the

horizontal direction, and the fracture elongates until the next breakthrough (Figure 7.2-E).

This process then repeats. In Figure 7.3-F, the fracture propagates in both the vertical and

the horizontal directions. When reaching the layers of lower fracture toughness, the fracture

accelerates (Figure 7.3-G) before being stopped by a new pair of layers of higher fracture

toughness. The cross-shaped fracture then regains a rectangular or blade-like shape (Figure

7.3-H). Subsequently, the global contained propagation starts again.

7.5 The mechanism that leads to the "late time" fracture contain-

ment

7.5.1 The main idea

Between two subsequent breakthroughs, the overall fracture height h increases, and the

equivalent fracture toughness in the horizontal direction KIc-equiv tends to be a constant. As a

consequence, the newly formed contained fracture will become more and more toughness

dominated (h/LK−M(PK N ) ∝ 1/h) from which it follows that (see Chapter 6) the containment
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time ∆tc increases as tK−M(PK N ) ∝ h7/2 when KIc-2/KIc-equiv ≥
p

2. In other words, we want to

demonstrate that for toughness contrasts KIc-2/KIc-equiv ≥
p

2 the aspect ratio of the fracture

increases with time (while propagating over a number of several layers) and it "practically"

reaches an equilibrium height. For this purpose, we compute the ratio between the average

velocities of fracture propagation in the vertical (Vvertical) and horizontal (Vhorizontal) directions.

This ratio can be simplified as:

Vvertical

Vhorizontal
= ∆h

∆t
× ∆t

∆(2L)
= ∆h

∆(2L)
(7.1)

The increments of fracture height ∆h, and total fracture length (∆(2L)) are evaluated be-

tween two subsequent fracture breakthroughs. The value of ∆h is thus given by ∆h = 2×H ,

where H = H1 +H2. On the other hand, when KIc-2/KIc-equiv ≥
p

2 the fracture length at break-

through (2L) scales as LK−M(PK N )(h). Therefore, we can express∆(2L) as LK−M(PK N )(h+∆h)−
LK−M(PK N )(h). While doing this, we are neglecting the increase of length occurring from

the first breakthrough to the moment when the fracture gets contained again. We can also

approximate the current fracture height h as a simple multiple of the repetitive height H ,

where H = H1 +H2, such that h ≈ n ×H with n being the integer number of layers pair (n > 2).

The ratio between the velocities (Eq. ( 7.1)) becomes:

Vvertical

Vhorizontal
≈ 1

2
× 1

1+n

E ′3µQo

HK 4
Ic-equiv

(7.2)

For large n, 1/(n +1) ≈ 1/n such that the previous equation can be further approximated as:

Vvertical

Vhorizontal
≈ 1

24
× 1

K
4 , K = KIc-equiv

(
h

E ′3µ′Qo

)1/4

(7.3)

The factor 1/24 appears because of the use of µ in Eq. (7.2) and µ′ = 12µ in Eq. (7.3). Equation

(7.3) proves that as the fracture height h becomes larger the ratio of both velocities tends to

zero. As a consequence the fracture height will practically become constant.

7.5.2 The equivalent toughness KIc-equiv

Definition of KIc-equiv

The propagation of a contained fracture in the direction parallel to a sequence of layers of

different fracture toughness can be described by considering an "equivalent" homogeneous

medium. In other words, we can replace the fracture toughness distribution of the layers

KIc (z) by considering a uniform toughness KIc-equiv. This is possible if:

• the contained fracture is sufficiently elongated in the layers direction x (aspect ratio

L/(0.5h)& 10), such that the finite dimension along the x-direction does not affect the

stress intensity factor at the propagating front.
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• the front does not change shape as it propagates. In other words, it simply translates in

the x-direction.

If these conditions are satisfied, the equivalent toughness can be calculated by equating the

energy release of the homogeneous and heterogeneous systems during a unit translation of

the crack front in the x-direction (see Rice (1988) or Gao and Rice (1989)):

K 2
Ic-equiv =

〈
[K I c (z)]2〉 (7.4)

where the angle brackets 〈·〉 denote an average along the z-direction.

The case of a square-wave toughness distribution

We consider a square-wave fracture toughness distribution characterised by values KIc-1 with

wavelength H1 (i.e. the thickness of the layer) and KIc-2 with wavelength H2. We express the

equivalent fracture toughness according to Eq. 7.4. Two different expressions can be derived

depending on the location where the injection takes place (layer 1 or 2):

KIc-equiv

KIc-1
=

√√√√√√√n

[
1+ H2

H1

(
KIc-2
KIc-1

)2
]
+ H2

H1

(
KIc-2
KIc-1

)2

n
(

H2
H1

+1
)
+ H2

H1

injection in

layer n. 2

KIc-equiv

KIc-1
=

√√√√√√√n

[
H1
H2

+
(

KIc-2
KIc-1

)2
]
+ H1

H2

n
(

H1
H2

+1
)
+ H1

H2

injection in

layer n. 1

(7.5)

where n is an integer number that represents the number of repetitions of the pair of layers 1

and 2 in the height of the fracture. In other words, n is the smallest integer value representing

the number of times that the value H is contained within the height (h) of the fracture. As the

fracture intersects a growing number of layers, the value of KIc-equiv approaches a constant

value KIc-equiv(n→∞). This value is obtained by taking the limit of both equations for n →∞. In

both case the limit is:

KIc-equiv(n→∞)

KIc-1
=

√√√√√ H1
H2

+
(

KIc-2
KIc-1

)2

H1
H2

+1
(7.6)

However, depending on the location of the injection point, the same value KIc-equiv(n→∞) is

approached in two different ways as n increases. When the injection point is located in layer

n. 1, the equivalent toughness is always smaller than KIc-equiv(n→∞) and it increases with n.

In this case, we can say that increasing the number of layers has a "toughening effect" on

the equivalent fracture toughness. The opposite is true when the injection point is located

in layer n. 2. Increasing the number of layers has a "weakening effect" on the equivalent

fracture toughness for this case. This result is shown in Fig. 7.4-a). The largest is the toughness
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7.5. The mechanism that leads to the "late time" fracture containment

contrast KIc-2/KIc-1 between the layers, the more layers the fracture needs to intersect before

KIc-equiv approaches KIc-equiv(n→∞). This is shown clearly in Fig. 7.4-b). When either one of

the two layers is very small compared to the other, H1/H2 À 1 or H1/H2 ¿ 1, the toughening

and the weakening effects saturate over a smaller number of layers. This is shown in Fig.

7.5. Since these effects depend on the fracture size (via the number of layers traversed by

the fracture footprint), they are possible mechanisms that could explain the size-dependent

fracture toughness observed in some works related to hydraulic fracturing (see Liu et al. (2019)

for discussion).

Validation against numerical simulations

We want to demonstrate that when the fracture aspect ratio L/(0.5h) is sufficiently large, the

fracture behaviour tends to the PKN-K solution evaluated using the equivalent toughness

KIc-equiv, as defined in Eq. (7.5). We consider a set of contained hydraulic fractures of different

height (h) which propagate in the toughness dominated regime in a layered material. Along

the height of each fracture, there is a different number of layers pairs n such that a different

value of KIc-equiv characterizes each simulation. We have considered values of n ranging

from 4 to 12. The corresponding layer distributions are displayed in the top part of Fig. 7.6.

When the fracture reaches an aspect ratio L/(0.5h) & 10 the fracture opening at the center

differs only about 4 to 6.5% from the analytical solution. This relative error is acceptable

because it is similar to the order of magnitude observed in the homogeneous case (see Fig.

6.6-c)). We note that the evolution of the fracture opening in Fig. 7.6 is oscillating. This

can be explained by considering the combined effect of: i ) the explicit front advancement

algorithm used, i i ) the very coarse discretisation of the fracture front compared to the layers

heigh (H2/`cel l = (0.4m)/(0.15m) ' 2.7), i i i ) the assumption that for each front segment,

fracture toughness is constant, i v) the iterative loop on the front direction associated to the

direction dependent toughness implemented to regularise the jump between the layers, and

v) the fact that the fracture propagates in the toughness dominated regime. It is now possible

to explain the occurrence of transient local and artificial front pinning in certain footprint

evolutions, as observed in the upper portion of Fig. 7.6. The fact that the fracture propagates

in the toughness dominated regime already implies that the fracture behaviour is affected by

a small local variation of fracture toughness. Now, imagine a front segment that is located

in the layer of lower toughness for half of his length and in the layer of higher toughness for

the other half. The algorithm evaluates the values of fracture toughness at the two segment

ends 3 and it always selects the lower toughness value despite the fact that, in this case, a

higher value is more appropriate. Imagine also that the chosen value of fracture toughness

remains unchanged during the direction dependent toughness loop. Then the asymptotic tip

solution is inverted using this toughness value to obtain the new front position. A lower value

of toughness leads to overestimating the propagation in the layer of higher toughness. Then,

such an estimate can not be further corrected by the algorithm because (for these simulations)

we have used an explicit front advancing algorithm. Consequently, the front is locally pinned,

3The toughness field is not discretised and it is defined by a function of the coordinates x and z.
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7.5. The mechanism that leads to the "late time" fracture containment

resulting in a local increase of fracture opening. As the fracture opening increases, the stress

intensity factor follows, causing a de-pinning phase to occur and the concomitant reduction

of fracture opening (see Fig. 7.6). Note that this problem can be solved while maintaining

the explicit front advancing algorithm. In fact, it is sufficient to increase the discretisation

of the front in the thinner layer of height H2. A proof of this are the results displayed in Figs.

7.2 and 7.3. Although we used an explicit front advancing algorithm, the footprint evolution

does not present the artificial pinning observed in Fig. 7.6. Note that similar ratios of energy

dissipations characterize the set of simulations considered.

A final comment is needed concerning the evolution of the fracture footprint in the case of

n = 12. Such a case is somewhat different from the others because after a few steps the fracture

propagates only towards the right side. This also happens in the cases n = 10 and n = 8, but

then the propagation in the arrested direction restarted. This can be understood by recalling a

theoretical result obtained in Gao and Rice (1987) which states that for a uniformly loaded

mode I fracture, the fracture geometry is known up to a zero order perturbation. The position

of the fracture footprint is thus defined up to a “rigid” body motion: an additive constant along

the x− direction. In the case of contained propagation in a homogeneous medium, we have

seen that when the number of cells discretising the fracture height is “low”, the numerical

scheme prevents “artificially” such rigid body motion. On the other hand, when the number

of cells increases, the fixed point scheme for the new fracture footprint in the implicit level set

algorithm has a harder time converging due to this rigid body motion. The theoretical result

obtained in Gao and Rice (1987) remains valid for the heterogeneous distribution of fracture

toughness that we considered. The heterogeneity is symmetric with respect to the plane z − y .

Because the number of cells discretising the initial fracture front increases from case n = 4

to case n = 12, the localised front pinnings have different effects on the overall propagation.

Particularly, for the case n = 12 it causes the entire fracture to propagate only on one side.

7.5.3 Impact of the toughening and weakening effects on the "late time" behaviour

For a periodic square-wave-like toughness distribution, the equivalent fracture toughness

KIc-equiv truly approaches KIc-equiv(n→∞) only in the limit of an infinite number of layers. In the

case where the initial fracture propagates from the "less tough" layer, the equivalent toughness

increases from the lower limit KIc-1 to its final value. On the contrary, in the case where the

initial fracture propagates from the "tougher" layer, the equivalent toughness decreases from

the upper limit KIc-2 to its final value. To verify that these behaviours do not exclude the

possibility that the fracture becomes contained at "late time" we compute again the ratio

between the vertical and the horizontal velocities accounting for the size dependence of the

equivalent toughness. In other words:

Vvertical

Vhorizontal
= ∆h

∆(2L)
= 2H

LK−M(PK N )
(
h +2H ,KIc-equiv(n +2)

)−LK−M(PK N )
(
h,KIc-equiv(n)

) (7.7)
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In both cases, for a large n, the ratio of velocities scales as ∝ 1/n, confirming the existence of

the contained "late time" behaviour. Here, we report the expression for the case where the

fracture propagates from the "less tough" layer:

Vvertical

Vhorizontal
≈ f (H1/H2,KIc-2/KIc-1,n)

E ′3µQo

HK 4
Ic-1

f (a,b,n) = 2

(n+2)2((n+2)(a+b2)+a)2

(a(n+3)+n+2)2 − n2(an+a+b2n)2

(an+a+n)2

(7.8)

7.5.4 The conditions that lead to "late-time" fracture containment

For a given periodic toughness distribution the equivalent fracture toughness KIc-equiv be-

comes (practically) constant when the fracture has propagated through a sufficiently large

number of repetitive units n. In analogy to the three layers case considered in Chapter 6, the

jump in the containment time is only activated when:

K2

KIc-equiv(n→∞)
≥p

2 (7.9)

This is the condition that leads to "late-time" fracture containment. For toughness ratios belowp
2 the breakthrough will happen before a PKN-K fracture can be formed. In other words,

when the toughness ratio is less than
p

2 there is no separation between the vertical fracture

length-scale h and the horizontal one 2L. Each time the fracture is arrested after growing

vertically of a given quantity ∆h, the propagation increases laterally of the same quantity

∆L. While the vertical increment ∆h remains the same in time because of the distribution of

fracture toughness, the increment∆L becomes constant as KIc-equiv approaches KIc-equiv(n→∞).

For this reason if K2/KIc-equiv(n→∞) <
p

2 the late time propagation is self-similar and the

aspect ratio is constant. Only when the separation of length-scales takes place the position

of the propagating front does not affect the stress intensity factor at the center (until the

transition to PKN-M).

Now, if we consider a square-wave variation of fracture toughness the condition that ensures

"late-time" fracture containment (Eq. (7.9)) becomes:

H1

H2
≥ 1

1−
( p

2
KIc-2/KIc-1

)2 (7.10)

For this particular toughness distribution, a necessary condition to have a “late time" fracture

containment is that the toughness ratio between the layers must be KIc-2/KIc-1 ≥
p

2. Another

necessary condition is that the height H1 related to the less tough layer must be larger than

that of the tougher layer H2. These two conditions correspond to the two asymptotes in the

130



7.5. The mechanism that leads to the "late time" fracture containment

1 2 5 10

0.5

0.6

0.7

0.8

0.9

1.0

1.1

-1 0 1 2 3 4
- 1.0

- 0.5

0.0

0.5

1.0

-5 0 5

-5 0 5

-5 0 5

-6 -4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

-15 -10 -5
-1.0

-0.5

0.0

0.5

1.0

10 -5
-1.0

-0.5

0.0

0.5

1.0

-

-5 0
-1.0

-0.5

0.0

0.5

1.0

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Fracture 
opening at the 
injection point

Fracture opening 
according to the 

PKN-K model and 
assuming that: 

increasing number of 
cells discretizing the 
total fracture height. 
This causes a mild 
but consistent 
decrease in the 
relative error 

number 
of layer 
pairs  

Figure 7.6 – Numerical versus analytical predictions of the fracture opening at the injection
point. We considered toughness dominated hydraulic fractures propagating parallel to differ-
ent toughness distributions. On the top we display the setup of the numerical simulations
together with a number of footprints.

131



Chapter 7. Multilayers of heterogeneous fracture toughness

1.0 1.5 2.0 2.5 3.0 3.5
0.5

1

5

10

1
“late time” 

self similar prop. 
const. aspect ratio

“late time” 
contained 

height growth

(E, ν) 
(E, ν) 

KIc-2
 

KIc-1 H1 
H2 (E, ν) 

Figure 7.7 – Parametric space that defines the conditions under which the late time contain-
ment of a hydraulic fracture is established. The isolines are related to constant values of the
toughness ratio K2/KIc-equiv(n→∞).

parametric space in Fig. 7.7 by red dashed lines. In the same parametric space we show the

position of the isoline corresponding to K2
KIc-equiv(n→∞)

= p
2 using a red continuous line. The

position of the other isolines is obtained similarly as:

KIc-2

KIc-equiv(n→∞)
= const → H1

H1
=

(
KIc-2
KIc-1

)2 [
1− (const)2

]
(const)2 −

(
KIc-2
KIc-1

)2 (7.11)

By inspecting Fig. 7.7 and keeping in mind that the usual toughness contrast KIc-2/KIc-1

measured at the laboratory scale is in the range KIc-2/KIc-1 ∈ (1,2) we can expect the ratio

K2/KIc-equiv(n→∞) to be in the range (1,1.8).

7.6 Scale of applicability

Provided that K2/KIc-equiv(n→∞) ≥
p

2, the “late-time" containment mechanism occurs regard-

less the initial propagation regime. Even if the hydraulic fracture is initially viscosity domi-

nated, as the fracture height h becomes larger, the transition length-scale LK M(PK N ) ∝ h2 will

dominate. However, the results provided in this work do not consider the effect of gravity on

hydraulic fracture propagation. If the fracture height h is larger than the critical lengthscale

for buoyant growth Lb , the gravity effect must be taken into account. We can estimate the

buoyancy lengthscale as Lb = (
K I c−1/

(
γsolid −γfluid

))
2/3 (see Lister and Kerr (1991)), where γ

is the specific weight. Assuming K I c−1 = 2MPa
p

m and γsolid −γfluid = 16kN/m3, we obtain

Lb = 26m. An estimate larger than the few meters scale of a micro-hydraulic fracturing treat-
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ment (for which buoyant effects are thus negligible), but possibly on par with the scales of

hydraulic fractures observed in well stimulation operations. Another limitation to the applica-

bility of the mechanism that we have described is that Linear Elastic Fracture Mechanics is

assumed to be valid at all scales.

7.7 Orders of magnitude in practice

Micro-hydraulic fracturing test∗

Qo[
m3/s

] µ

[Pa s]
h

[m]
H1

[m]
H2

[m]
KIc-1 KIc-2 h

LK M(PK N )

Vvert.
Vhoriz.

[
MPa

p
m

]
1.6667×10−6

(0.1 L/min)
10−3 1. 0.09 0.01 1.1 1.65 0.09 0.014

2.5×10−5

(1.5 L/min)
0.025 2. 0.146 0.054 1.45 2.61 0.89 0.42

∗E = 30 GPa and ν= 0.25 in all the considered cases

Table 7.1 – Ratio between the average vertical velocity and the average horizontal velocity
computed for some cases of open-hole micro-hydraulic fracturing test. The lengthscale
LK M(PK N ) is computed using KIc-equiv (h).

We consider a few examples of two practical applications: the open-hole micro-hydraulic

fracturing test (Haimson, 1993) and the hydraulic fracturing treatment for well stimulation.

For each of them, we use Eq. (7.8)4 to compute the ratio between the vertical and the hori-

zontal velocity (Vvert./Vhoriz.) for a given fracture size h. For all the cases, we choose values of

layer heights H1, H2 and toughness contrast KIc-2/KIc-1 such that KIc-2/KIc-equiv ≥
p

2. When

Vvert./Vhoriz. ¿ 1 the fracture can be considered practically contained; otherwise, the contain-

ment mechanism does not occur. We also compute the ratio between the fracture size h and

the transition lengthscale LK M(PK N ) to check that, for Vvert./Vhoriz. ¿ 1, the born PKN-like

fracture is in the toughness dominated regime. The numerical values chosen for the injection

rate Qo , fluid viscosityµ, fracture height h, Young’s modulus E and Poisson’s ratio ν correspond

to the usual values encountered in the corresponding applications. For further clarifications

regarding the chosen values, the reader is referred to the section "Orders of magnitude in prac-

tice" of Chapter 6. The estimates of Vvert./Vhoriz. for the cases of open-hole micro-hydraulic

fracturing test reported in Table 7.1 demonstrate that the fracture can be practically contained.

In particular, for the "low-injection" and "low-viscosity" case, the ratio Vvert./Vhoriz. is about 1%

when h = 1 m. A larger value Vvert./Vhoriz. = 0.42 for h = 2m is obtained in the "high-injection",

and "high-viscosity" case. In the case of a hydraulic fracturing treatment, the fracture prop-

agates mostly in the viscosity dominated regime. Therefore, even relatively high values of

fracture toughness, such as 1.8 and 2.6MPa m1/2 cannot create the containment effect (see

Table 7.2). By reducing the injection rate to a value one order of magnitude lower than what

is commonly used in practical applications, the velocity ratio Vvert./Vhoriz. becomes 0.3 for

h = 40 m(see Table 7.2).

4The results do not change significantly when Eq. (7.2) is used instead of Eq. (7.8).
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Hydraulic fracturing treatment∗

Qo[
m3/s

] µ

[Pa s]
h

[m]
H1

[m]
H2

[m]
KIc-1 KIc-2 h

LK M(PK N )

Vvert.
Vhoriz.

[
MPa

p
m

]
6.0×10−3

(360 L/min)
1.

40. 0.96 0.04 1.8 2.61
10.8 5.25

3.0×10−2

(1800 L/min)
0.005 430. 210

6.0×10−4

(36 L/min)
0.005 40.

1.58 0.42
1.2 2.0

0.61 0.29
0.40 0.10 0.61 0.30

∗E = 30 GPa and ν= 0.25 in all the considered cases

Table 7.2 – Ratio between the average vertical velocity and the average horizontal velocity
computed for some cases of hydraulic fracturing treatment. The lengthscale LK M(PK N ) is
computed using KIc-equiv (h).

7.8 Conclusions

In this work, we have considered a hydraulic fracture propagating in a layered material char-

acterised by a periodic distribution of fracture toughness. We have demonstrated that the

"late time" hydraulic fracture propagation can be self similar (with constant aspect ratio),

or practically contained. The ratio between the highest fracture toughness in the periodic

system and an "equivalent" fracture toughness determines the "late time" behaviour. In

particular, when this ratio is above
p

2 the fracture will be practically contained at “late time".

The "equivalent" fracture toughness must be computed from the average fracture energy of

the repeated layers. Other factors, not considered here, can also have a first order impact on

the estimate of breakthrough time, notably: heterogeneity of elastic properties between layers,

fluid leak-off in the surrounding medium, non-Newtonian fluid rheologies (Moukhtari and

Lecampion, 2018), different type of injections (line source, varying injection rate) Garagash

(2023). Finally we must mention that this work does not consider the nucleation and coales-

cence with secondary fractures. The secondary fractures are those that could form in the "less

tough" material because of the stress concentration induced by the nearby fracture front that

is propagating in the "tougher material".
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8 Conclusions

8.1 Main findings

In the framework of this thesis, we have contributed to the improvement of the Implicit

Level Set Algorithm by proposing a new strategy to reconstruct the fracture front. We have

demonstrated that the current algorithm available in the literature breaks for high front curva-

ture. The newly proposed strategy uses a bilinear interpolation of the level set field between

neighbouring cells to find the front intersections with the underlying Cartesian discretization.

Throughout the thesis, we have proven the accuracy of the new front reconstruction scheme

by comparing it to a number of analytical solutions, such as the toughness and viscosity

dominated radial solutions, and the toughness and viscosity dominated PKN solutions. We

also compared the numerical scheme to the analytical solution for the front deformation

caused by the presence of a tough obstacle. We have also considered comparisons against lab-

oratory experiments involving strong deformations of the fracture front. In particular, we have

demonstrated that the Implicit Level Set Algorithm can successfully predict the interaction and

coalescence of a pair of three dimensional and planar hydraulic fractures. For the first time,

we have shown a qualitative and almost quantitative comparison of the fluid flow velocity to

the one observed in the experiment. We then used this numerical tool to investigate the effect

of toughness heterogeneities on hydraulic fracture propagation, focusing on the limiting case

of an impermeable medium. We have established the conditions under which a region of

higher fracture toughness can stop hydraulic fracture propagation. We have then considered

the important case where the fracture encounters and arrests its propagation at the interfaces

with two semi-infinite layers of higher fracture toughness. We have demonstrated that the

fracture between these two tough layers can never be indefinitely contained. In other words,

the fracture will always breakthrough in the bounding layers. We have quantified the amount

of time the fracture propagates contained, between the two layers before breaking through.

We found that this time is larger when the radial hydraulic fracture reaches the bounding

layers in the toughness dominated regime. For this case, we found that the containment

time strongly depends on the toughness contrast between the layers. A finite jump in the

containment time is observed between the cases where the toughness ratio is below and above
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p
2. We have elucidated the mechanical reason for this jump. We have finally extended our

study to the case where the hydraulic fracture interacts with a periodic distribution of fracture

toughness. We have demonstrated that a size dependent fracture toughness can be observed

when the fracture propagates in the toughness dominated regime over a small number of

layers. Depending on the toughness distribution between the layers, this "early time" size

dependent fracture toughness can either be "weakening" or "strengthening". We have then

considered the "late time" toughness dominated propagation corresponding to the case where

the hydraulic fracture has propagated over a large number of layers such that the size depen-

dent fracture toughness can not be manifested. We have demonstrated two possible "late

time" evolutions of the fracture. In one case, the fracture propagates maintaining a constant

aspect ratio (self-similar propagation), while in the other, the aspect ratio keeps increasing,

resulting in a "practically contained" propagation. This last case is similar to the one where

the fracture is contained between two tough layers. As a result of this thesis, we can conclude

that the effect of layers of toughness heterogeneities on the containment of hydraulic fractures

strongly depends on their propagation regime. By combining low injection rates with a low

viscosity fluid there is a potential to promote fracture containment in small scale industrial

applications such as the micro-hydraulic fracturing tests.

8.2 Perspectives

Several research questions in direct relation to this work would deserve further investigations.

In the following, we list some possible future studies on this topic. We divide them into two

different themes: experimental developments, analytical and numerical developments.

Experimental developments

• An experiment should be made to prove the two different "late time" hydraulic fracture

behaviours that we derived in the case of a fracture propagating through a layered

material. 3D printing technology can be used to create a layered material structure

where the size of each layer can be as small as a few mm.

• An experiment can be made to simulate the interaction and coalescence of two coplanar

hydraulic fractures in the viscosity dominated regime.

Analytical and Numerical developments

• The scaling of the phenomenon of the coplanar coalescence of two hydraulic fractures

is still lacking both, in the toughness and viscosity dominated propagation regime.

• It would be interesting to extend the analysis of the experiment related to the coales-

cence of two hydraulic fractures by accounting for the presence of finite boundaries.
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• Further verification is needed for the ILSA scheme in the case of self-coalescence of a

fracture front. A self-coalescing fracture front appears, for example, when the fracture

cannot propagate through an inclusion of higher fracture toughness. In this case, the

fracture propagates around the inclusion, then it coalesces ahead, leaving behind an is-

land of intact material. As the fracture propagates, the island of intact material becomes

smaller and smaller until self-coalescence of the fracture front.

• Another topic not explored before is the effect of randomly distributed toughness het-

erogeneities on hydraulic fracture propagation. In particular, it would be essential to

establish under which conditions the hydraulic fracture leaves behind its fracture front

"islands" of tougher and unbroken material.

• When a hydraulic fracture approaches the interface with a "less tough" layer, a fracture

can nucleate ahead of the interface. The two fractures then interact and coalesce. This

phenomenon was not included in the numerical simulations, and it could represent a

reason for an anticipated breakthrough.

• The results obtained for the case of a hydraulic fracture contained between two tough

layers should be extended, accounting for a possible contrast in elastic properties

between the layers.

• In the context of the hydraulic fracture interaction with different layers, we have assumed

that the propagation remains coplanar. This hypothesis can be relaxed, allowing for a

possible propagation on the interfacial plane between the layers.

• The existing numerical tool further developed during this thesis can be extended to

describe more physical effects. To mention a few examples, it would be possible to

extend the code to account for the interaction of several parallel hydraulic fractures or

the case where the fluid front does not coincide with the fracture front.
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A Appendix

The energy balance in Eq. 5.7 expressed in a Cartesian reference system is reduced here to a

plane strain geometry consisting of a semi-infinite fracture. For this purpose, we set x = 0 and

we limit the integrals to the interval z ∈ [H/2−h, H/2] obtaining:

G ×V︸ ︷︷ ︸
fractureenergyrel. rate

+µ′V 2
∫ H/2

H/2−h

1

w
dz︸ ︷︷ ︸

viscousdissipationrate

+
∫ H/2

H/2−h

1

2

D

Dt

(
w × (p f −σo)

)
dz︸ ︷︷ ︸

rateofelasticenergyaccretion︸ ︷︷ ︸
P i

=V w (h) p (h)︸ ︷︷ ︸
Pe

(A.1)

The reference system zis fixed in time. We consider a new coordinate system z̄ that has its

origin at the fracture tip and moves at its same constant velocity V , see Fig. A.1. In this

reference system the total derivative in the previous equation reduces to:

D(·)
Dt

= d(·)
dt

+ d(·)
dz̄

dz̄

dt

z

zz

H/2

h

 H/2 -h

VV

Figure A.1 – Reference systems for a semi-infinite steadily-moving hydraulic fracture. The
origin of the reference system x is fixed in time, while the one of systems x̂ and x̄ is moving at
the constant velocity of the fracture front V .
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Appendix A. Appendix

When expressed in the a reference system ẑ =−z̄, as shown in Fig. A.1, the previous becomes:

D(·)
Dt

= d(·)
dt

+ (−1)
d(·)
dẑ

(−1)
dẑ

dt

now defining V = (−1) dẑ
dt and considering that V = const implies that:

D(·)
Dt

=−d(·)
dẑ

V

At time t the fracture front is at position H/2 and the relation between the coordinate systems

ẑ and z is:

z = H/2− ẑ ⇒ dz

dẑ
=−1

Thus, the 1st integral on the left hand side of Eq. A.1 becomes:

µ′V 2
∫ H/2

H/2−h

1

w
dz =µ′V 2

∫ 0

h

1

ŵ
(−1)dẑ =µ′V 2

∫ h

0

1

ŵ
dẑ

where w = w (z) and ŵ = ŵ (ẑ). The 2nd integral on the left hand side of Eq. A.1 becomes:

1

2

∫ H/2

H/2−h

D

Dt

(
w ×p

)
dz = 1

2

∫ 0

h

D

Dt

(
w ×p

)
(−1)dẑ =−1

2
V

∫ h

0

d

dẑ

(
w ×p

)
dẑ = 1

2
V

[
w (0) p (0)−w (h) p (h)

]
By noting that the term w (0) p (0) = 0 (e.g. Garagash (2009); Garagash et al. (2011)) Eq. A.1

reduces to:

G︸︷︷︸
fractureenergyrel.

+ µ′V
∫ h

0

1

ŵ
dẑ︸ ︷︷ ︸

viscousdissipation︸ ︷︷ ︸
Total internaldissipatedenergy

= 1

2
ŵ (h) p̂ (h)︸ ︷︷ ︸

quotaofext.energydissipated
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B.0.1 Supplemental material to Figures 4.1 and 4.2

The parameters used in the numerical simulations related to Figs. 4.1 and 4.2 are: fluid

viscosity µ, Young’s modulus E , Poisson’s ratio ν, injection rate Qo , layer’s height H and

fracture toughness K I c . Their numerical values for different simulations are reported in Table

B.1 .

K
µ

[Pa s]

K I c−M I N[
MPa m1/2

] K I c−M AX[
MPa m1/2

] ν

[−]

E

[GPa]

H

[m]

Qo[
m3/s

]
5.68 1×10−8

0.4

4.0

0.4 3.3 2.96 0.001

1.01 1×10−4

0.568 1×10−3

2.0
0.319 1×10−2

0.180 1×10−1

4.0
0.0568 1×104

Table B.1 – Parameters used in the numerical simulations related to Figs. 4.3 and 4.4.

In Fig. B.1 we show the evolution of the max front coordinate zmax for the set of simulations

in Table B.1. When the propagation is radial, i.e. for t/ttouch < 1, the growth of zmax lies

in between the radial-M (∝ t 4/9) and the radial-K (∝ t 2/5) regimes. For t/ttouch > 1 the

propagation is confined. The small increments of zmax that can be seen in the figure are

related to the numerical regularization of the toughness jump between the layers. A a linear

ramp, taking place over a distance much smaller than the radial discretization, has been

imposed for the toughness variation between the layers. Thus, zmax can either slowly grow

or it can undergo small numerical oscillations (see the plot at the top of Fig. B.1). When the

front is close to the interface between two elements of the discretization can get artificially
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“attracted” to the new element. In order to prevent this effect from happening we impose that

the interface between the bounding layers is located in the middle of one element.
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Figure B.1 – Evolution of the max front coordinate zmax as a function of time for the set of
simulations in Table B.1.

B.0.2 Supplemental material to Figures 4.3, 4.4 and 4.5

In Table B.2 we show the parameters used in the numerical simulations reported in Fig. 4.3,

4.4 and 4.5.

sim ID
K I c−M I N[
MPa m1/2

] K I c−M AX[
MPa m1/2

] ν

[−]

E

[GPa]

H

[m]

Qo[
m3/s

]
1

0.400

0.735

0.4

3.3 2.96 1×10−3

2 0.735
33.0 2.96 1×10−3

2-bis 0.650

3 0.735 3.3 29.6 1×10−3

4 0.735 3.3 2.96 1×10−4

Table B.2 – Parameters used in the numerical simulations reported in Figs. 4.3, 4.4 and 4.5.

B.0.3 Numerical solution of a volume-control hydraulic fracture

The equations governing the problem of a fracture propagating under the injection of an

inviscid fluid are Eqs. (M 3.1), (M 3.3) and (M 3.5) of the main manuscript. The numerical

scheme to the solution of these equations is essentially the one discussed in Peirce and
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Detournay (2008). Here we are reporting the numerical strategies used to efficiently solve the

system of Eqs. (M 3.1) and (M 3.3), at each time step, and for a trial fracture front position. The

system of equations is discretized using a Cartesian mesh and can be written as (see Peirce

and Detournay (2008)):
−1

E ...

−1

1 ... 1 0




w1

...

wN

p f

=


−σo (xi , zi )

...

−σo (xi , zi )

Qo t/
(
∆x∆yβi

)
 (B.1)

where E is the discretized elasticity (Eq.(M 3.1)), p f is the fluid pressure andσo is the confining

stress, ∆x,∆y are the cell sizes and βi is a coefficient that accounts for the partially filled cells

that are traversed by the fracture front.

Iterative solution of the system of equations

The system in Eq. (B.1) belongs to the class of saddle point problems and can be rewritten as

Benzi et al. (2005): [
A BT

1

B2 C

][
w

p

]
=

[
f

g

]
(B.2)

where A ≡ E is a positive definite matrix, B1 =
[
−1 ... −1

]
, B2 = −B1 and C ≡ 0. To the

solution of the system we used the GMRES method in combination to the following upper

triangular preconditioner Benzi et al. (2005):

P =
[

Â BT
1

0 Ŝ

]
P−1 =

[
Â−1 −BT

1 Ŝ−1Â−1

0 Ŝ−1

]
(B.3)

where Â is a diagonal matrix with the same entries of the matrix A and Ŝ = −B2ÂBT
1 is the

approximated Schur complement of the system.

B.0.4 Numerical integration of the energy release rate

The method that we used to estimate the energy release rate G is essentially the “energy or

compliance method ” presented in Watwood (1970). The difference is that here the numerical

solution that we used is obtained by the Displacement Discontinuity Method. We will briefly

recall the procedure. Consider a 3D-planar fracture of surface Σ embedded in an infinite

medium. When its faces are loaded by an internal net pressure p, the elastic energy stored

into the medium U amounts to:

U = 1

2

∫
A(t )

p (x, z) w (x, z)dxdz (B.4)
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G can be approximated by considering 2 fracture footprints, one at a time tn and one at a time

tn+1 = tn +4t with 4t → 0:

G =
(
∂U

∂Σ

)
p
w

(
∆U

∆Σ

)
p
=

(
Un+1 −Un

Σn+1 −Σn

)
p

At time tn , the integral in Eq. (B.4) has been computed by discretizing the fracture footprint,

using N n
c rectangular cells, each of area Ac . The coefficients ηi accounts for cells that are only

partially traversed by the fracture front, i.e. partially opened (the fracture front position is

tracked as in Peirce and Detournay (2008)). They express the ratio between the fractured area

and the total cell area Ac (i.e. ηi = 1 for a cell completely inside the fracture footprint). The

term Un+1 in the previous equation can be written as:

Un+1' 1

2
Acp

(
N n+1

c∑
i=1

wiηi

)
n+1

Finally, by combining the previous equations, G can be estimated by:

G ' p

2

(
N n+1

c∑
i=1

wiηi

)
n+1

−
(

N n
c∑

i=1
wiηi

)
n(

N n+1
c∑

i=1
ηi

)
n+1

−
(

N n
c∑

i=1
ηi

)
n

B.0.5 Numerical exploration of the parametric space
(
K I c−2/K I c−1;K ;∆tc /ttouch

)
We have determined numerically the value of ∆tc /ttouch for a wide range of coordinates in

the parametric space
(
K I c−2/K I c−1,K

)
with K ∈ [0.0047,1.57]. Since ∆tc /ttouch must scale as

the aspect ratio at breakthrough we have chosen to explore the parametric space by fixing

this last quantity together with K and we iterated (via a fixed point scheme) on the value of

K I c−2/K I c−1 until convergence. The convergence was reached as soon as one of the following

criteria was met:

• the relative difference between the upper and the lower toughness ratios is < 0.001.

• the penetration in the bounding layers at tbreakthrough is in the range (0,`cel l /100).

Both an acceptable numerical accuracy and computational time were ensured by discretizing

the central layer such that H/`cel l ∈ [54.3,98.6]. The results are presented by the colored dots

in Fig. 4.8-b) and -c).
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