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Abstract 
This article proposes methods to model non-stationary temporal graph processes motivated by a hospital 
interaction data set. This corresponds to modelling the observation of edge variables indicating interactions 
between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus 
blends (integer) time series models with flexible static network models to produce models of temporal 
graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our 
proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling 
and inferring correlation between a large number of variables. 
Keywords: correlated Bernoulli time series, exchangeable networks, link communities, time-varying network 

1 Introduction 
This paper introduces time series models for observations of dynamic graphs over time, and methods to 
estimate these models. This set of developments is motivated by the increasing prevalence of temporal 
observations of interactions between entities in many application areas (Ahmed & Xing, 2009; Liu & 
Duyn, 2013; Ribeiro et al., 2013). We call such observations dynamic graphs, and the observations cor-
respond to samples from a temporal graph process (Crane, 2016), rather like a time series can be viewed 
as samples of a continuous-time stochastic process. The aim of this paper is to introduce a natural gen-
eralised linear modelling framework for discretely regularly sampled temporal graph processes that can 
flexibly capture data features such as cyclostationary and dependence of edges in time. 

The rising ubiquity of dynamic graphs has been matched by technical innovation for their ana-
lysis, see, for example, recent contributions in Matias et al. (2018), Ludkin et al. (2018), Pensky 
(2019), Jiang et al. (2020), Pamfil et al. (2020), Hoff (2015), and Krivitsky and Handcock (2014). 
We also note existing work that is less recent, illustrating the importance of temporal graphs, for 
example, Snijders (2001), Hanneke and Xing (2006), and Guo et al. (2007). In the aforementioned 
articles (like in our model), the conditional distribution of the graph may be specified between time 
steps using exponential random graph models and by seeking to directly capture evolving topology 
of a graph. Simultaneously, the realisation that networks should be described directly in terms of 
observed interactions or edges rather than in terms of describing the interactions between nodes, in 
a nodal view, has been gaining considerable traction (Crane & Dempsey, 2018). These theoretical 
developments are paralleled by the recognition that nodal clustering may not be sufficient to model 
a graph due to overlapping node communities, and this problem may be resolved by assuming the 
links themselves to form communities on their own. Papers dealing with the detection of link com-
munities and characterising their behaviour are, for example, Ahn et al. (2010), Evans (2010), Kim 
and Jeong (2011), Nguyen et al. (2011), and Meng et al. (2016). 

Key to understanding dynamic graphs is proposing models for their dependence and evolution. 
The basic building blocks must consider the natural invariances of entities and temporal processes, 
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permutation invariance of measure, and shift-invariance of measure for stochastic processes. In 
addition, for non-Euclidean observations such as graphs it no longer makes sense to put all de-
pendence in a zero-mean perturbation, as is done for most time series problems. First, we still 
want to encode additional temporal structure. We do not want to pose models whose structure 
is constant over time, and the perturbations are purely random. Second, the temporal structure 
should be parameterisable, and estimable from one process realisation. Our choice of model 
will be motivated by a real data example. For this reason, we wish to consider models satisfying 
some permutation invariance at fixed time stamps, but that are not stationary in time. This will be 
necessary especially as the processes we study could at most be assumed to be cyclostationary. 

To explain about our modelling framework, and to be sufficiently concrete, let us study an ex-
ample of a dynamic graph, depicted in Figure 1 as a set of six link communities. Link communities 
assume the same set of parameters for every edge in the same link community (set of edges). This is 
in contrast to the group membership of a node, as per the stochastic blockmodel (SBM). An alter-
native to assuming data is generated by the SBM is the mixed membership of Airoldi et al. (2005). 
Link communities are not equivalent to the mixed membership model. This follows as the mixed 
membership model specifies a set of behaviours per edge, since for each edge the Bernoulli success 
probability is drawn as a mixture over a fixed blockmodel. 

Figure 1 shows the interactions over time of various groups of personnel and patients in a hos-
pital ward in Lyon, France (the data set, the model and the fit resulting in the clustering shown in the 
Figure is described in Section 4.3). As in many other social networks, people in a hospital have dis-
tinct and varying contact patterns over time, dictated by a common rhythm of work meetings, pa-
tient visits, medical examinations (temporally scheduled ‘rounds’), care for patients, meals (also 
periodic) and so on. The different colours indicate communities of similarly behaving link probabil-
ities over time. The panels show the instantaneous contact probabilities of the communities at dif-
ferent times during the day as intensity of colour, so that, for example, deep purple corresponds to 
the maximal contact probability of the ‘purple’ community, and white, to a near-zero contact prob-
ability. The upper row shows the morning hours from 6a.m. to 8a.m., the lower row, the afternoon 
from 3p.m. to 5p.m. We see that different link communities have very different contact probability 
at different times of the day. Whereas, for example, the ‘green’ and ‘orange’ edges are mostly 
switched on in the morning, the ‘purple’ edges activate preferably in the afternoon. 

These empirical facts must be linked with our choice of graph process modelling framework. 
Our observations are that: first, it is obvious that a model that intends to gain a detailed insight 
into the dynamics of such a network must be able to account for (periodic/cyclical) time-varying 
contact patterns, ubiquitous in human contacts. Second, links in human society can show interest-
ing clustering according to their time variation patterns, which can be quite different from a node 
clustering scheme. Third, it is also evident that temporal evolution and community structure of this 
network cannot be written in a separable form ρ(t)f (ξk(t), ξj(t)), where f (ξk(t), ξj(t)) is a fixed con-
stant baseline probability of interaction between nodes k and j depending on a latent process ξk, 
and ρ(t) as a term driving the common temporal variation of these probabilities (thus the type of 
interactions change over time, not just the density of them). Fourth, it also seems plausible that 
human interactions, especially when observed with high temporal resolution, are in general tem-
porally correlated as interactions cannot come and go willy-nilly from one moment to the other. 

It is important to model these patterns, as an alternative to a classical SBM independently gen-
erated at each time-point. There are situations where the temporal dynamics of the links is an im-
portant factor in the scientific question. An example can be the modelling of the spread of an 
infectious disease in an evolving community. In this case, a detailed model of the temporal patterns 
of the contacts may inform much better the public health policymakers about the intervention with 
optimal cost-efficiency ratio than alternatives. We could have calculated node centrality measures 
and average contact probabilities, or fitted an SBM putting emphasis on similarities between no-
des, rather than link communities that are discriminated based on their different temporal dynam-
ics. Stationary processes cannot reproduce all manner of cyclostationary processes common in 
observations of human activities. Other similar examples with clear cyclostationary patterns 
will be found as energy networks or mobile phone networks. The application of detailed dynamic 
link community models can give a deeper insight as to risks of system breakdowns or overloads. 

Currently, there are many proposed methods to perform inference on dynamic networks, say, 
for example, Matias and Miele (2017), Matias et al. (2018), Ludkin et al. (2018), Pensky  
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(2019), Jiang et al. (2020), and Olivella et al. (2021), each method coming with either explicit or 
implicit modelling assumptions. Most of these approaches use the SBM imposing clustering struc-
ture on the nodes (SBM; Anderson et al., 1992; Faust & Wasserman, 1992; Holland et al., 1983;  
Snijders & Nowicki, 1997) to model the underlying dynamic structure of the network, with clear 
choices on how parameters change or evolve across time. In the framework of the SBM, dynamics 
may arise from a latent process describing the evolution of the node memberships in the clusters 
over time, such as, for example, a set of independent discrete-state Markov processes for each node 
(e.g., Pensky, 2019) or a hierarchical model allowing for mixed memberships of the nodes and spe-
cifying a latent process on the membership distributions (e.g., Olivella et al., 2021). In most of 
these models, edges are generated independently, perhaps conditionally on the block memberships 
of the endpoints of the edges. Using latent variables to specify block membership will introduce 
marginal correlation in the adjacency matrix, but this correlation is not equivalent to modelling 
explicit correlation directly on observed edges. In this paper, we will instead argue that in the tem-
poral setting, direct correlation in edges over time is natural, and this is why we prefer to use such 
relative to inducing correlation via latent variables. To this end, Figure 10 will later motivate our 
desire to model explicit correlation across edges. Finally, we note that many dynamic network ob-
servations, such as our example, cannot be taken as a series of temporally independent snapshots, 
especially in the context of human activities. 

Exceptions to the description applied in those SBM-based papers cited above are Jiang et al. (2020) 
and Ludkin et al. (2018), where the former constructs correlated graphs by adding correlated noise 
that may erase or construct edges, that is, introduces correlation at the observed process, while the lat-
ter models community membership by a switching process, and directly imposes correlation on the 
edge variables. Thus over a given time interval, a correlation between edges is produced. 
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Figure 1. Snapshots of the varying daily activity levels of different link community groups in a hospital ward (see 
Section 4.3). The four groups of nodes according to status in the hospital is ADM (administrator), MED (medical 
staff), NUR (nursing staff), and PAT (patients). The hours of the day are shown in the main title of the panels. The 
colours indicate the membership of the links, while the intensity of the colours is proportional to the probability of the 
link being ‘switched-on’ at that particular time in the day. The maximal intensity of the colour corresponds to the 
maximal probability of the link to be ‘on’, which is different for all link communities (they are 0.063, 0.0004, 0.020, 
0.011, 0.008, and 0.058 for the orange, black, green, dark blue, light blue, and purple clusters, respectively). White 
indicates 0 everywhere.   
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In this paper, we shall model correlation explicitly in the observed edges across time, based on 
using popular Bernoulli time series models. For the formulation, we reach back to generalised lin-
ear models (GLMs), using their well-known inferential characteristics to model the Bernoulli ob-
servations of simple graphs. This framework lends itself easily to extensions to Poisson time series 
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Figure 2. Exploring the sampling characteristics of fitted link communities in simulated data. The panels display the 
distribution of the estimates of the marginal probability (upper row) and the lag-1 autocorrelation (lower row) for the 
four simulated clusters. The vertical red line indicates the true value of the parameter (known as the data is 
simulated).  

Figure 3. Exploring the sampling characteristics of fitted link communities in simulated data. The panels show 
estimates of model parameters of the simulated BALARM(2) model of Section 5 with two link communities G1 (top 
row) and G2 (bottom row). The red horizontal lines indicate the true parameter values (known as the data is 
simulated).   
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for counts of interactions, see, e.g., Hoff and Ward (2004), Minhas et al. (2016), Donnet and 
Robin (2019), and Schein et al. (2014). In terms of the latent edge variables defining the edge clus-
ter memberships, we shall assume them fixed across time, drawing them at the temporal starting 
point of the process (assigning a community to each edge). Conditional on link community mem-
bership, for each edge, we then use the ALARM (A Logistic Autoregressive Model) generating 
mechanism (Agaskar & Lu, 2013), mainly because this allows the generation of positively and 
negatively correlated processes within the same model, as explained in Section 3.1. We then put 
the ALARM specification in the block model framework, introducing the block-ALARM specifi-
cation (BALARM model), and give its likelihood, as described in Section 3.2. We use the EM al-
gorithm to estimate the BALARM model. Whilst a simulation study lets us study the performance 
under correct model specification, see Sections 4.1 and 4.2, we also study the performance of this 
dynamic graph model when analysing temporal social interaction data from the geriatric short- 
stay ward of a university hospital in Lyon, France (Vanhems et al., 2013), mentioned already 
above. Using the BALARM model, we uncover groups of interactions between patients and staff, 

Figure 4. Time-varying contact probabilities conditioned on an immediate past Xt−1 = 0, Xt−2 = 0 for all t, in the 
simulated BALARM(2) model of Section 4.2. The curves have been computed using the estimated model 
parameters for each of the repetitions of the process. The blue line is the true contact probability, the thick orange 
line is the pointwise median estimate, the thin orange lines represent the pointwise 0.95 confidence band.  

Figure 5. Link probabilities, averaged over time, between nodes of the hospital network. Shades of grey indicate 
the value of the probability, with black indicating 0 and white, 0.15. ADM, administrative staff; MED, medical staff; 
NUR, nursing staff; PAT, patients.   
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with a clear daily temporal rhythm. This allows us to describe the graph process of temporally cor-
related edges in a compressed and simple, yet realistic manner. 

2 Conditionally independent edge variable models 
Consider a network with a fixed set of N nodes, without loss of generality, labelled by 
{k : 1, . . . , N}. Let Akj ∈ {0, 1} denote the absence or presence of an edge (link) between nodes k 
and j, the value 0 indicating the ‘switched-off’ state of the edge, and 1, its ‘switched-on’ state. 

The matrix {Akj}k,j∈{1,...,N} is called the adjacency matrix. We model Akj as a Bernoulli variable 
with expectation pkj: 

Akj ∼ Bernoulli(pkj), 1 ≤ i < j ≤ N, 

where pkj ∈ [0, 1] is the probability of an edge (kj). As the indexing k is arbitrary in order, without 
constraining pkj this would be a high-dimensional model. To improve statistical efficiency it is 
standard practice to model Akj as conditionally independent given some latent variables determin-
ing pkj. There is more than one way to specify the number of latent variables, and the dimension-
ality of the latent variable model. 

A common choice of specifying latent structure corresponds to the SBM. This assumes that each 
node k belongs to one of M possible clusters, and the probability pkj of an edge being ‘switched on’ is 
determined by the M × M matrix θab called the blockmatrix: if node k belongs to cluster a and node j 
to cluster b, then the probability of a link forming between them is equal to θab. Introducing the ran-
dom variable Zk ∈ {1, . . . , K} to indicate the cluster membership of node k, we can then formulate 
the SBM as Akj ∣ Zk = a, Zj = b iid∼ Bernoulli(θab), and Zk iid∼ Multinom(π1, . . . , πM), where πa 

is the probability that a node belongs to cluster a. With Z random, drawn from a distribution of la-
bels, the marginal variability of an edge is greater than the inhomogeneous Bernoulli model that is 
specified conditionally. For a dynamical case where we observe the network over time, we need to 
also specify the temporal structure. There are various ways to do this. The possibility most often 
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Figure 7. Geometric quantile–quantile plots for a few edges with link probability higher than 0.2. The black line has slope 
1 and intersection 0, indicating the alignment of the expected positions of a sample from a geometric distribution.  
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discussed in the literature is supposing the underlying blockmodel θab stable over time, and assume 
that the nodes change cluster memberships over time according to some stochastic process, that is, 
suppose a specific time series structure for the indicators Zk(t), for example, a Markov process (e.g.,  
Ludkin et al., 2018; Matias & Miele, 2017). A SBM varying in time is less frequently discussed, since 
this may make the model non-identifiable (Matias & Miele, 2017) if at the same time the nodes are 
allowed to change cluster. However, Jiang et al. (2020) proposes an autoregressive network model 
with changepoints over time in the blockmodel, and Pensky (2019) discusses the theoretical prop-
erties of models with smoothly varying connectivity probabilities. Finally, to obtain interesting dy-
namics, one can also relax the conditional independence in the generation of the Bernoulli variables 
Akj over time, which is especially realistic if in a modern data acquisition setting we sample rather 
frequently, and expect edges not to flip very frequently. The simplest way of doing this is by intro-
ducing an autoregressive structure in the edge formation, making the value of Akj(t) directly depend 
on its previous measured value. This is done by imposing a first-order discrete autoregressive de-
pendence in Jiang et al. (2020), and by imposing a continuous-time Markovian process CAR(1) 
in Ludkin et al. (2018). 

The above-mentioned models estimate the network structure assuming nodal clusters and a 
unique membership of each node at any time. However, in real data, nodes may belong to more 
than one cluster (Palla et al., 2005, 2007). The first generalisation of the SBM is to allow the block 
structure to be relaxed, and this is called a mixed membership model (Airoldi et al., 2005). The 
mixed membership still references a latent set of nodal blocks, and so constrains the possible 
edge patterns we can observe. More generally, in order for edges to behave like groups of other 
edges, without referencing a latent nodal block structure, we shall use a link community model 
(Ahn et al., 2010). 

Link communities, that is, when instead of nodes, edges are assumed to belong to one of a set of 
possible clusters in a data set, were originally proposed as a solution to this problem (Ahn et al., 
2010), since in this way every node can maintain links belonging to different communities. 
Dynamical link communities are discussed in, for example, Meng et al. (2016) and Nguyen 
et al. (2011) using one-by-one updates of an initial link community state of the network, but no 
statistical inference is drawn about the network and its parameters. We shall use a model which 
groups generating mechanisms over edges, as is detailed in the next section. 

3 Likelihood analysis of correlated edge models 
3.1 The logistic autoregressive model 
A class of basic models to deal with a regression with a binary response variable is the GLMs. Its 
definition consists of the specification of the response distribution (the Bernoulli distribution), the 
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Figure 8. Bayes Information Criterion for the BALARM(1) models fitted to the hospital data. The different harmonic 
orders H are indicated with different colours and plotting symbols.   
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linear predictor (comprising the influence of the covariates on the response), and the link function 
(the functional relationship between the linear predictor and the expected value of the response). 
We will use one such model to model the observed time series of an edge of a network, and com-
bine these time series models into a blockmodel-type cluster structure based on the different dy-
namics of the time series. 

Let X(t) = {X1(t), . . . , XP(t)}T denote a P-dimensional binary-valued vector with a multivariate 
Bernoulli dependence structure at time t. The collection of time series {X(t)}t=1,...,n satisfies an 
ALARM (a logistic autoregressive model Agaskar & Lu, 2013) if its conditional probability dis-
tribution can be given as 

Figure 10. 95% pointwise bootstrap confidence intervals for the estimated daily variations of the lag-1 
autocorrelation from the model with six components and three harmonic terms for the clusters with the highest link 
probabilities, for each identified cluster labelled according to Table 1, and colour-coded according to Figure 11. The 
line types correspond to the same quantities as presented in the caption of Figure 9.  

Figure 9. 95% pointwise bootstrap confidence intervals for the estimated daily variations of the link probabilities 
from the model with six components and three harmonic terms, for each identified cluster labelled according to  
Table 1, and colour-coded according to Figure 11. The thick solid line is the estimate on the real data. The heavy 
dashed line is the median of 500 bootstrap repetitions, the thin dashed lines represent the pointwise 0.025 and 
0.975 quantiles. Note that while the five panels for the clusters HPM, MPM, MPD, MPA, and HPD have common 
y-axis limits [0, 0.15], the upper right panel showing the LP cluster has different limits, [0, 0.0025].   
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Xi(t) |X(t − 1), . . . , X(t − K) ∼ Ber logit−1
􏽘K

k=1

􏽘P

d=1

bikdXd(t − k) + ci

􏼠 􏼡􏼨 􏼩

,

bikd, ci ∈ R for all i, k, d,

(1) 

where logit−1(x) = exp (x)/[1 + exp (x)]. The coefficients bikd represent the temporal dependence 
of Xi on the previous values of the complete vector X(t − 1), . . . , X(t − K), offering not only an 
autoregressive model for an edge, but also the possibility to model lagged cross-edge dependence. 
The ALARM model was originally introduced to model observed binary time series, whose covari-
ance was governed by a graph. This graph would determine the linear term in our GLM, the {bikd} 
terms of. We have modified the modelling strategy of Agaskar and Lu (2013) to generate block 
structure, but not allowed on the order of (N2/2) · n (or higher) potential cross-dependencies, 

for n temporal observations. We, therefore, use the word possibility, as inferring 
N
2

􏼒 􏼓2 

random 

latent variables remains computationally unfeasible in most real examples. Depending on the val-
ue of the coefficients bikd, a wide range of associations can be modelled, including negatively cor-
related processes within the framework of one single model. The coefficients ci adjust the overall 
marginal probabilities of the component Bernoulli processes. 

The relationship between the parameters of the model (1) and observable features such as auto-
correlation and stationary marginal probability of the realised process is not straightforward for 
higher autoregressive orders, but for an illustration, we show these for a range of parameter pairs 
for a first-order autoregressive ALARM model for D = 1, that is, a single binary time series: 

Xt |Xt−1 ∼ Ber logit−1 b Xt−1 + c
( 􏼁􏽮 􏽯

, b, c ∈ R. (2) 

The stationary probability of an edge and the correlation between two consecutive edge values can 
be computed in this case either directly, or using the Markov character of the process as 
Pr(Xi = 1) = ec(1 + eb+c)/(1 + 2ec + eb+c), and Corr(Xi, Xi−1) = (eb+c − ec)/(1 + ec)(1 + eb+c). 

Although negative values of the linear coefficient b are associated with negatively correlated 
processes, and positive values with positively correlated ones, the relationship is not linear, and 
the value of the constant c also has an influence on the relationship. Moreover, maybe somewhat 
counter intuitively, both large negative and large positive b values can produce near-zero autocor-
relations when they are associated with large constants c of the same sign. Note that while posi-
tively correlated binary time series can have any marginal probability, negatively correlated 
ones can have only much more restricted marginal probabilities as shown theoretically by  
Teugels (1990) and Chaganty and Joe (2006). 

Statistical tests are needed to decide whether we should include autocorrelation into the model 
for a data set or not. One such test may be the comparison of the proportion of switched-on link 
states in the time series to an estimate of the edge probability based on the geometric distribution of 
the run lengths of the states. The two coincides only under independence, since the run lengths will 
no longer have a geometric distribution if the time series is dependent. Another possibility is to 

Table 1. Summaries of the estimated link communities 

Cluster Type Percent Max. link prob.  

LP Low link probability  72%  0.0004 

MPM Moderate link prob., morning  13%  0.02 

MPA Moderate link prob., afternoon  8%  0.011 

MPD Moderate link prob., day-long  3%  0.008 

HPM High link prob., morning  3%  0.063 

HPD High link prob., day-long  2%  0.058   
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check the validity of the geometric distribution for the run lengths, either by a simple quantile– 
quantile plot or by an (approximate) Kolmogorov–Smirnov type distributional equivalence test. 
We will show an example of such a test for our data example in Section 4.3. 

3.2 The block-ALARM model 
Using the ALARM model, we can make the state of a link between two nodes depend directly on 
the state of the link at previous times. Link communities may then be assumed to follow distinctive 
temporal dependence models, with block-wise different parameters. 

Let us suppose we are dealing with a series of snapshots from an undirected network, observed 
at times t1, . . . , tn, all on the same node set consisting of N nodes. Let Akj(tl) denote its (symmetric) 
adjacency matrix at time tl. Define the (one-to-one) mapping 
σ : {(k, j) : k < j; k, j = 1, . . . , N} 7! {1, . . . , N(N − 1)/2}. Define the collection of random varia-
bles {Xil} by the induced mapping Xil = Xσ(kj),l = Akj(tl). Assume that each edge can belong to 
one of G link communities, and let the variable Zi ∈ {1, . . . , G} indicate the membership of 
edge Xil for all time indices l (we assume that the membership of the edge does not vary over 
time). Our model, which we call block-ALARM (BALARM) model, can then be written as 

Xil ∣ Xi,l−1, . . . , Xi,l−K, Zi = g ∼ Ber logit−1(ηilg)
􏽮 􏽯

, (3) 

where ηilg is a linear predictor containing the characterisation of the system such as autoregressive 
terms, temporal patterns expressed by explicit functions of time (for instance, a harmonic model), 
and covariates characterising the links. 

ADM MED NUR PAT

A
D

M
M

E
D

N
U

R
PA

T

Figure 11. Cluster memberships of the edges (arranged in an adjacency matrix format) in the best model with six 
clusters and H = 3 for the hospital data. The colours indicate the different link communities the edges belong to 
(black, LP; red, HPD; orange, HPM; green, MPM; light blue, MPD; dark blue, MPA; for the naming, see Table 1). The 
arrangement of the nodes is the same as in Figure 5.   
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In the case when the model is supposed to contain only autoregressive terms, but no covariates 
or temporal patterns, its form is 

ηilg =
􏽘K

k=1

bkgxi,l−k + cg, (4) 

where bkg ∈ R represents the order k autoregressive parameters in link community g, and cg ∈ R 

determines the link probability value for link community g when all the preceding k time series val-
ues are zero. If the model is supposed to have a deterministic variation over time, such as in the pres-
ence of a typical daily pattern, this can be modified by adding terms containing time explicitly: 

ηilg =
􏽘D

d=1

adgfd(tl) +
􏽘K

k=1

bkgxi,l−k + cg, (5) 

where fd(t) is an appropriate basis, for instance, harmonic functions in the case of a periodic tem-
poral evolution. Here, we let tl = (l − 1)Δ for some sampling period Δ, which we shall not dwell on, 
and when possible we set Δ = 1. The class of ALARM models falls into the class of Generalised 
Autoregressive Moving Average Models (Benjamin et al., 2003), for further discussion of this 
and related models, see Armillotta et al. (2022). 

Observing a collection of edges with unknown memberships, and supposing that an edge can be 
a member of a single cluster, we also assume a multinomial model for memberships: 
Zi ∼ Multinom(π1, . . . , πG). Here, πg is the probability of an edge to belong to cluster g. The 
complete-data likelihood of the model can then be written as 

L(θ; {xil}, zi) =
􏽙J

i=1

􏽙G

g=1

πg

􏽙n

l=K+1

exp (ηilg)

1 + exp (ηilg)

􏼢 􏼣xil
1

1 + exp (ηilg)

􏼢 􏼣1−xil
⎧
⎨

⎩

⎫
⎬

⎭

I(zi=g)

, (6) 

where the parameter θ represents all parameters πg, adg, bkg, and cg, and J is the number of edge 
variables in the observed network at a fixed time tl. The corresponding log-likelihood is 

ℓ(θ; {xil}, zi) =
􏽘J

i=1

􏽘G

g=1

I(zi = g) log πg +
􏽘n

l=K+1

xilηilg − log (1 + eηilg )
􏽨 􏽩

􏼨 􏼩

, (7) 

with ηilg defined in Equation (5). This model can be fitted using the EM algorithm (Dempster et al., 
1977). We have here grouped edges that are governed by the same parameters, rather than nodes. 
This allows more flexibility in the behaviour of a node. A person may behave like others just in 
certain environments, and there are versions of this such as the mixed membership model 
(Airoldi et al., 2005). However, in the mixed membership model the grouping of behaviour is 
structurally constrained by an underlying nodal block structure that is not enforced here. 

4 Simulation studies and data analysis 
4.1 Simulation study of AR(1) processes 
To explore the performance of the model described above when applied to autocorrelated network 
data with a mixture of various edge probabilities ranging from moderately high to extremely low 
(similar to our data example), we simulated a series of BALARM models using the following 
ALARM(1) processes: 

Cluster A : b1 = 2.89, c1 = −1, p1 = 0.67;

Cluster B : b2 = 4.48, c2 = −4, p2 = 0.045;

Cluster C : b3 = 5.43, c3 = −5, p3 = 0.016;

Cluster D : b4 = 6.42, c4 = −6, p4 = 0.006,  
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where pi denotes the stationary marginal probability of the resulting Markov chain, and 
{bi, ci} (i = 1, . . . , 4) corresponds to four different sets of coefficients in Equation (2). The lag-1 
autocorrelation was set as 0.6 for all four processes. We created three two-component 
BALARM mixture models by combining Cluster A with each of the other three ALARM(1) mod-
els. This sequence represented a series of models in which all the edge processes had the same lag-1 
autocorrelation, but they differed in their marginal link probabilities across a wide range, mimick-
ing human interaction data in which link probabilities can range from very low to high, but where 
the persistence of edges is similarly high once switched-on. We generated R = 200 replicated data 
sets from each model, where each cluster contained 300 edge time series of a length of n = 1,200 
(totalling 600 edges per model). The length of the time series and the low edge probabilities were 
chosen to mimic the situation with our data set. We fitted each data set using the procedure de-
scribed in Section 3.2, using initial values randomly generated from a normal distribution centred 
on 0 and with a standard deviation of 0.5 for the EM algorithm. 

Estimates of the marginal probabilities and the lag-1 autocorrelations from the fits are shown in  
Figure 2 (the histogram of cluster A, which occurred in all three models, is presented only once, 
although it was separately simulated and fitted for all three). Whereas the estimates for the clusters 
A and B appear to be reasonably good, the distribution of the estimated marginal probability for 
the two low-probability clusters is asymmetric. This is expected as an asymptotic normal theory of 
maximum likelihood estimates (which is approximated by the EM algorithm) breaks down for 
such low probabilities with the given time series length. Moreover, the estimate of the autocorrel-
ation becomes unreliable, covering the whole [0, 1] interval, especially for cluster D with the low-
est contact probability. This suggests that in data analysis with sparse contacts, which are quite 
typical in many applications of network analysis, we need to carefully consider the reliability of 
our estimates, and since asymptotic theory does not provide a sufficient quality of approximation, 
bootstrap methods are necessary. 

4.2 Simulation study of an AR(2) process 
We have also simulated a more complex case, with two different link communities, a periodic non- 
stationary component, and a second-order autoregressive temporal dependence (namely, a non- 
stationary BALARM(2)). The linear predictor of the model used was Equation (5), with parameter 
values chosen as a11 = 0.15, a21 = 0.09, b11 = 0.3, b21 = 0.3, c1 = 0.5 for cluster 1 (denoted by G1 
in Figures 3 and 4), and a12 = −0.8, a22 = 0.2, b12 = −0.5, b22 = 0.5, c2 = −0.55) for cluster 2 
(G2). We defined the base functions for the non-stationary time-varying term as f1 = sin (2πt/P) 
and f2 = cos (2πt/P) with period P = 288. One simulated dataset consisted of 300 independent 
realisations of length n = 1,000 from each of the clusters (that is, one dataset contained 
600-time series, 300 belonging to each clusters). We produced 425 repetitions of this dataset, 
and performed estimation using the EM algorithm on each of them. 

The distribution of the resulting parameter estimates is shown in Figure 3. We find that the fit-
ting procedure is able to estimate the model parameters without large bias, including the second- 
order autoregressive parameters a21 and a22. To judge the quality of the estimates better, we have 
reconstructed the time-varying contact probability patterns conditioned on the immediate lag-1 
and lag-2 past of Xt being Xt−1 = Xt−1 = 0 for all t, both based on the estimated and the true par-
ameter values. The 425 estimated curves are presented in Figure 4, together with the pointwise me-
dian of the estimates and with the true curve, illustrating convincingly the good quality of the 
estimates. 

4.3 Data analysis 
Our data set contains a high-resolution dynamic network of social interactions in a hospital ward, 
taken with the aim to identify crucial spreaders in a hypothetical epidemics (Vanhems et al., 2013). 
Social interactions between humans seem to be particularly in need to include correlations in their 
modelling, especially if observed at high temporal resolutions. Moreover, the strict daily schedules 
in a hospital imply daily varying contact probabilities between different groups in the hospital. The 
BALARM model, presented in Section 3.2, imposes a direct correlation between successive states 
of edges, and is adapted to provide a detailed model about the dynamics of the network over time, 
which can be particularly beneficial for modelling the unfolding of an epidemic.  
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4.3.1 University hospital social interaction data 
Social interaction data over time from the geriatric short-stay ward of a university hospital in 
Lyon, France, was collected between Monday, 6 December 2010 at 1:00p.m. to Friday, 10 
December 2010 at 2:00p.m., using RFID (radio frequency identification) devices attached to 29 
patients (coded PAT in what follows), 27 nurses (NUR), 11 medical doctors (MED) and 8 admin-
istrative staff (ADM), in total N = 75 individuals (Vanhems et al., 2013). These node categories 
will be termed ‘status’, following Vanhems et al. (2013). The RFID gives a contact signal if it is 
able to exchange radio signals with another RFID, which happens when their owners stand closer 
than about 1.5 m from each other. This closeness was used as a proxy for a contact between two 
persons. Every 20 s, the presence or absence of these contact signals during the preceding 20 s pe-
riod were recorded between each pair of devices. 

For our use, we aggregated the data into 5 min snapshots, by defining the adjacency value 
Akj(tl) = 1 at time tl between nodes k, j ∈ {1, . . . , 75} if there was at least one contact signal in 
the preceding 5 min between RFIDs i and j, and Akj(tl) = 0 if there was none. We used the time ser-
ies Akj(tl), l ∈ 1, . . . , n with n = 1,159 as our input data. The number of edge variables in the ad-
jacency matrices is J = N(N − 1)/2 = 2,775. 

4.3.2 Choice of model 
The plot of the average edge probabilities arranged in an adjacency matrix format, shown in  
Figure 5, indicates a block structure, which nevertheless does not fully coincide with the status 
of the nodes in the hospital, although a notable overlap exists in the case of doctors. This suggests 
that in these data, a hidden node cluster membership (related to but not identical with the hospital 
status) may explain at least part of the network structure within the framework of a time-varying 
SBM. However, a link community may, for example, provide the possibility of recognising sub- 
clusters of edges in different node communities with similar temporal patterns and correlations, 
or to scrutinise whether, in this data example, information on the status of the individuals in 
the hospital is sufficient to fully determine the patterns of the interactions. 

The plot of the number of contacts 
􏽐

k≠j Akj(tl) versus tl, shown in Figure 6, suggests daily re-
peated patterns through the time span of the records, corresponding to the strict daily routine 
in a hospital. Since we are analysing human interaction data, which is typically autocorrelated, 
we should also test for the necessity of including an autoregressive term. For possibilities, we refer 
to Section 3.1. For our data, we use geometric quantile–quantile plots, where we estimated the 
marginal probability of each time series as p̂kj =

􏽐T
l=1 Akj(tl)/T. We show these for some edges 

in Figure 7, which indicates a discrepancy from the geometric distribution. However, in our 
case, the visible presence of the periodically varying contact probabilities can also cause this. In 
our model, we will include an autoregressive term, and will test for its significance using bootstrap. 

We, therefore, complemented the linear predictor of the model (7) with a H-order harmonic ser-
ies with a period P equal to a day (P = 288 in 5-min units): 

ηilg =
􏽘D

d=1

adgfd(tl) +
􏽘K

k′=1

bk′gxi,l−k′ + cg, (8) 

where D = 2H, fd(t) = cos (2π⌈d/2⌉P−1t) for d = 1, 3, . . . , 2H − 1 and fd(t) = sin (2π(d/2)P−1t) for 
d = 2, 4, . . . , 2H, and ⌈·⌉ stands for the function ceiling. Moreover, as we model the self- 
maintaining nature of human contacts, we suppose the autoregressive order to be K = 1. 

The model was fitted using the EM algorithm (Dempster et al., 1977), for a range of different 
choices for the number of link communities (G = 2, . . . , 9) and harmonic order (H = 2, 3, 4). 
The best model was selected by the Bayes Information Criterion (Schwarz, 1978), since BIC is a 
consistent selector of model complexity in clustering models and in linear modelling, and thus 
for our large data set, we can expect good performance. Moreover, according to Brewer et al. 
(2016), in cases like ours when the regression model is not expected to contain collinear variables, 
BIC slightly outperforms AIC and AICc in terms of its power to select the correct model. We pre-
sent the selected model fit in the next sections.  

J R Stat Soc Series A: Statistics in Society,                                                                                               13 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnad028/7083542 by guest on 24 April 2023



4.3.3 Results 
Figure 8 shows the resulting BIC values from the model fits. The overall best fit is the model with 
H = 3 and K = 8. However, the decrease in BIC values for K > 6 is small in comparison to the im-
provement on models with K ≤ 6, and especially with the apparent best harmonic order H = 3, the 
models are practically equivalent above K = 6. Based on the principle of parsimony, we chose the 
model with H = 3 and K = 6, as the model representing the best compromise between quality of 
description and simplicity. A summary of the basic parameters of the communities in this model 
and our notation for the clusters is given in Table 1. 

From the estimated model parameters, we can derive the average temporal variation of both the 
link probability and the lag-1 autocorrelation, and the most likely link community membership of 
each edge. The estimated memberships are shown in Figure 11, and the time-varying link probabil-
ities and autocorrelations in Figures 9 and 10 (in heavy solid lines). The very low contact probabil-
ities are reflecting the fact that in the data set, most (nearly 60%) of the edges have no contacts at 
all through the whole observation period. These links are appropriately attributed to the LP clus-
ter, for which, accordingly, the maximal contact probability in any 5 min interval during a day is 
estimated at only 0.0004. Those links that do have at least one contact over this time have on aver-
age around three contacts during the data collection. The highest link forming probabilities belong 
to the HPM and HPD communities, still with a value of only about 0.06. With such low probabil-
ities, we will resort to bootstrap for inference on the estimated daily patterns and autocorrelations. 

We performed a parametric bootstrap analysis. We simulated 500 repetitions of the model using 
the estimated value of the parameters, and repeated the estimation on them. The initial values for 
the EM algorithm were fixed at the values used to perform the simulations (that is, the estimated 
model parameters), to facilitate the identification of clusters. Finally, from the estimated bootstrap 
parameters, we reconstructed the temporal pattern of the marginal probabilities for all six clusters 
and the correlations for the two clusters with the highest link probability levels, for which we can 
hope for a realistic correlation estimation. The results are shown in Figures 9 and 10. 

Figure 9 shows that the 95% pointwise confidence bands are quite wide, but broadly support 
the estimated daily patterns, such as with the two-peaked aspect of clusters HPM and HPD, the 
low-activity tail of MPM stretching into the early afternoon, and the day-long, moderate-level ac-
tivity of MPD (for the definitions, please see Table 1). The median of the bootstrap estimates 
matches very well the estimates on the real data, which indicates that the method estimates the 
contact probabilities in a reliable way. The broad uncertainty bands are not surprising, given 
the sparse contacts due to the extremely low contact forming probabilities together with a small 
degree of freedom. The lower limit of the bands, despite its appearance, does not include p = 0, 
since the inverse logit transform does not allow for the probabilities to be precisely 0 or 
1. However, they can get arbitrarily small. Longer observational time would be necessary to 
put a more stringent lower limit on the estimates. The spiky look of the confidence bands in panel 
LP is due to the combination of the extraordinarily low link probability (at most 0.0004) of the 
cluster and the inverse logit transformation. 

It is not reasonable to calculate the lag-1 autocorrelations for the four low-probability clusters 
MPM, MPD, MPA and LP using time series of this length, as our simulations in Section 4.1 illus-
trated. Nevertheless, it can be calculated and estimated for the two clusters with the highest link 
probabilities, as shown in Figure 10. The daily pattern of the correlations are again supported by 
the bootstrap estimation, and are markedly bounded away from 0, indicating that it is indeed ne-
cessary to include an autoregressive term into the modelling of this data set. However, the corre-
lations appear to be estimated with a negative bias. This suggests an even stronger correlation of 
human relations in reality than that implied by our model estimates, and underlines the import-
ance to incorporate this autoregressive nature into modelling efforts. 

4.3.4 Interpretation 
The model fit offers a very detailed insight into the social network of a hospital ward. Several in-
teresting conclusions can be drawn. 

Relationship to hospital status. The patterns discovered in Figure 11 are similar to the block pat-
terns suggested by the time-averaged link probabilities in Figure 5. It appears thus that the link  
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clustering performed by the BALARM model is at least partly based on the time-averaged link 
probability of the different edges, and overlaps with what we would expect from a SBM which 
is based on the similarity of contact probabilities within blocks. However, the resulting link com-
munity model does not coincide fully with the clusters defined by status in the hospital. 

Discrimination of link communities based on different edge dynamics. The model does not ex-
clusively base its decision on the time-averaged contact probability of the edges. Many dynamic 
SBMs in the literature (Ludkin et al., 2018; Matias & Miele, 2017; Matias et al., 2018; Olivella 
et al., 2021; Pensky, 2019) suppose that the edge probabilities of the different blocks are constant 
over time, and the dynamics of the networks are determined by the latent process of the nodes 
moving among the blocks. Some models have conditionally independent edges with time-varying 
edge probabilities, while our model includes explicit correlation in the observed edges over time 
coupled with time-varying characteristics. In fact, the blocks in our model are discriminated based 
on their different time series characteristics, as our model definitions (7) and (8) imply. Figure 9 
shows this very clearly: the daily variations of the contact probabilities of the six link communities 
are visibly different. For example, although the HPM and the HPD clusters have a qualitatively 
different two-peaked shape, the HPM cluster starts activity earlier than the HPD, at about 
7a.m. when the HPD is still very close to 0 link probability confirmed by its bootstrap confidence 
bands. The activity of HPD cluster lasts longer than the HPM, being still highly active around 
5p.m. when the HPM community has already ceased to be active. In addition, we are able to de-
scribe the dynamics of edges as we model their correlation. 

Realistic picture of the dynamics. The structures in Figure 11, together with the dynamics in  
Figure 9 capture many realistic details from the life of a hospital, which lends credibility to the 
model fit. 

• We have identified two clusters with the most frequent contacts, HPM (orange in the figures) 
and HPD (purple). Figure 11 shows that one of them corresponds mostly to interactions be-
tween doctors, and the other is mostly associated to nurse-nurse interactions. It appears that 
as far as doctor-doctor interactions are concerned, they form their own near-exclusive block. 
Those doctors not following the same daily pattern in their interactions (a mostly black and a 
mostly green row in the MED-MED block in Figure 11) may be a nutritionist and a physio-
therapist who, according to the description of the data set in Vanhems et al. (2013), visited the 
ward occasionally, but were not present as regularly as the resident medical staff. They also 
have more sporadic interactions with the nursing staff than the other doctors, and less contact 
with patients and the administration too. Those doctors belonging to the main cluster HPD 
have not only very similar interaction patterns and link probabilities among themselves, 
but quite similar interaction patterns with nurses (those edges belonging mostly to the cluster 
MPM, green in the plots), and with patients too. Perhaps somewhat surprisingly, their edges 
with patients belong in majority to the cluster LP (black in the plots) and to the cluster MPM, 
which are the two clusters with the lowest contact probabilities. We can also draw the con-
clusion that for the modelling of the interaction of doctors with everybody else, a 2-compo-
nent SBM might be an adequate model. 

• Link structure within the block of nurses is far more complex. The NUR-NUR block is itself 
sub-divided into two large and at least one smaller block. (1) Some nurses interact with each 
other mostly in the morning (a mostly green and orange block along the diagonal, with HPM 
(orange) or MPM (green) contact probability patterns). Their interactions with patients also 
follow the morning patterns. (2) Another group interact within itself rather in the afternoon 
(predominantly dark blue block along the diagonal indicating the MPA cluster), though with 
more mixing of morning and afternoon patterns. Contacts with patients also belong to the 
MPA cluster.  

The interaction of these two groups of nurses mostly goes by the morning patterns. This prob-
ably reflects both a division of the nurses into morning and afternoon shifts, and the existence of  
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an overlap between the shifts, which is a reasonable conclusion since flow of information about 
the patients will need some time for transmission. 

• An anomalous group of nurses can be found as mostly black rows in the middle and at the top 
of the NUR-NUR block in Figure 11. Almost all their contacts with other staff members be-
long to the LP (black) cluster. With patients, however, many of their links belong to the cluster 
not mentioned so far, the MPD cluster (light blue in the plots). More complex models, such as 
the BIC-best 3-harmonic, 8-cluster model or the 4-harmonic, 6-cluster model, identify the 
NUR-PAT links of these nurses as a separate link cluster with a specific daily pattern consist-
ing of a morning and an evening burst of activity. These bursts in these more complex models 
reach the highest link probabilities earlier in the morning and later in the evening than any 
other links. Based on this, we might guess that our model has identified the nurse-aides, those 
who have fewer medical tasks than the regular nurses or none at all, but care about the pa-
tients’ basic needs such as getting dressed, washed or fed, possibly before or after the medical 
needs of the patients are satisfied during the workday. 

• Doctors and nurses interact mostly in the morning, according to the MPM (green) link cluster 
pattern, with on average lower link probability than doctors have with other doctors, and a 
definitely different temporal pattern. Some links, however, belong to the MPA (dark blue) 
afternoon pattern. These two moderate link probability patterns make up those MED–PAT 
interactions too which do not belong to the low-probability LP (black) cluster. 

• Patients have almost no contact with each other. They also have on average much fewer con-
tacts with anybody else than the others with each other. They have the most frequent contacts 
with the nurses, but even that does not reach the average level of interactions which is ob-
served between nurses and doctors. This, although striking at first sight, is perhaps expected. 
Patients in a geriatric short-stay ward may be seriously ill, affected by neurodegenerative dis-
eases, and generally not in the mood of making contacts beyond the necessary (visitors were 
not tagged with an RFID (radio frequency identification device), and were not followed in the 
experiment).  

4.3.5 Cross-correlations between edges 
The question can be asked whether we need to include between-edge (possibly lagged) cross- 
correlations as well as the temporal autocorrelations. In the presence of periodically varying 
link probabilities of the clusters, apparent correlations may be found simply due to the similarities 
in the temporal patterns of some edges: contacts may be observed simultaneously simply because 
of their higher probability at some times at some lags, giving rise to spurious cross-correlations. To 
check for this, we simulated 5,000 time series of a length equal to the observed data, independently 
from each of the clusters of our model, and computed the cross-correlations between them. 

The main results are presented in Figure 12. The only strong difference between the simulations 
with no cross-correlations (in grey) and the real data (red) was between two HPM or two HPD 
edges, as shown in the left two panels of Figure 12. This suggests that cross-correlation might exist 
between such link types. However, it is also possible that some insufficiently modelled temporal 
patterns give rise to these apparent excess correlations. 

We found only small discrepancies for any other edge combination, of which two are shown in 
the right-hand panels (HPM-HPD and HPD-MPA). The existence of cross-correlations can, of 
course, not be ruled out. Indeed, our finding may just mean that, similarly to the autocorrelation, 
for such low contact probabilities the estimation of cross-correlation needs more observations to 
be reliable. 

4.4 Comparison to other analysis methods 

4.4.1 Comparison to Jiang et al. (2020) 
The data set from a university hospital in Lyon was also analysed by Jiang et al. (2020). In that 
study, the researchers used a rougher aggregation of the data than we did, taking Akj = 1 if there 
was at least one contact between nodes k and j during any given day. This was needed since their  
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model is stationary by construction, but the data at aggregations finer than one day are not station-
ary as they possess strong cyclostationary features. Jiang et al. (2020) found no evidence for the 
existence of nodal communities, and no evidence of significant autoregressivity. It is not surprising 
that our findings differ from those of Jiang et al. (2020), as the absence of autoregressivity at the 
timescale of a day is plausible in the data. We expect human contacts to be strongly correlated on 
shorter timescales (∼minutes), but much less so over days, if not for specific circumstances. As to 
the nodal clustering, our conclusion that there may be an approximate SBM-like block structure at 
least for a MED-(everyone else) division relies strongly on the estimated sub-daily contact prob-
ability patterns, and thus may remain undetectable with long aggregation times. 

4.4.2 Comparison to Olivella et al. (2021) 
For the sake of comparison, we modelled the data using another recent model. Among the many 
possibilities, for example Ludkin et al. (2018), Matias and Miele (2017) and Matias et al. (2018), 
we have chosen a method that permits us to include non-stationary terms in the contact probabil-
ities, and thus providing an opportunity to model the daily patterns obvious in the data, but which 
(similarly to the majority of the statistical dynamic network models) is based on nodal clustering: 
the hierarchical mixed membership model of Olivella et al. (2021). 

The model of Olivella et al. (2021) assumes not only latent mixed membership classes but also 
latent temporal classes. Thus given a latent state of ‘day’ or ‘night’ the slice of adjacency tensor 
have a distribution governed by a set of mixed membership probability vectors in G possible nodal 
clusters. It is also possible to incorporate nodal covariates in this model, such as in our dataset the 
status MED, ADM, NUR, or PAT of the study participants, by means of a logistic linear model. A 
Bernoulli variable is describing the existence or the absence of a contact between any two nodes. 
The model is implemented in the R package NetMix. 

Initially, we assumed a two-state latent Markov chain (perhaps describing day and night shifts), 
using the status in the hospital as nodal covariates, and a harmonic model of order 3 as edge co-
variates, similarly to our fitted BALARM model. However, it turned out that the Markov chain 
switches between states very rarely. Indeed, intuitively the harmonic model is able to describe 
the variation of the activity between day and night shifts, as it repeats with a daily period. 
Thus, we dropped the assumption of a two-state latent Markov chain, and fitted the model using 
only one state and the harmonic model. 

The results of the data analysis are summarised in Figure 13. The blockmodel is shown in the left 
panel, representing the temporally constant blockmodel structure of the network. The time- 
averaged share of three nodal clusters, G1, G2, and G3, in the population, is represented by the 
size of the circles corresponding to the clusters. Edge probabilities are indicated by the grey shade 
of the lines connecting the clusters to each other or to themselves. The cluster with the overall high-
est contact probability, G2, is instantiated most probably by ADM, MED, or NUR nodes, and 
much less likely by PAT nodes. Edges formed by nodes of which at least one belongs to this nodal 
cluster may roughly correspond to our link communities with the highest contact probability, 
namely, HPM and HPD, perhaps MPM, which are indeed most often formed between nurses, 
medical and administrative staff, but rarely including patients. It is also visible that we have edges 
of very low-probability contact probability, mainly when one or both nodes involved belong to 
G3, the one instantiated preferentially by patients. Contacts between nodes belonging to G1 
and G2 or both belonging to G2 are more likely than contacts involving at least one node belong-
ing to G3, but less likely than when both nodes are in G1. 

The shape of the temporal patterns found, shown in the right panel of Figure 13, appear uni-
form. This is due to the model setup that does not allow the edges to have different temporal var-
iations, unlike in the BALARM model. Thus, regardless of what nodal cluster the forming nodes 
belong to, all edges have the same temporal pattern, albeit possibly multiplied with a different sca-
lar constant corresponding to a different average contact probability. 

In contrast, our model is able to find the distinct time variations characterising the different roles 
in a hospital ward. Because of the strictly regulated schedule of the activities in a hospital, the 
BALARM model is better suited to give a detailed summary of the dynamics of the underlying hos-
pital social network. Interpretation of the estimated nodal clusters (G1, G2 and G3) is also much 
less clear than the link communities in the BALARM model. In fact, G1, G2, and G3 are  

J R Stat Soc Series A: Statistics in Society,                                                                                               17 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnad028/7083542 by guest on 24 April 2023



discriminated based on not much more than their average contact probability. However, in this 
data problem (and in many more involving human interactions which usually have a daily rhythm) 
there is a far greater wealth of distinguishing information if one considers link communities and 
allows them to have their own clustering than if one considers solely nodal clustering. A combin-
ation of the two may be beneficial for modelling dynamic human societies. 

5 Discussion 
In our study, we proposed an approach combining binary-valued time series models with mixture 
modelling, in order to model the dynamics of networks describing human interactions. The nature 
of the data, which was collected in a hospital ward during four workdays with a high temporal 
resolution, raised an important modelling questions. Namely, how to account for the likely strong 
temporal autocorrelation and repetitive time-varying patterns present in the data, and in human 
interactions in general? Conditional independence and thus the connecting graphon framework 
may not be able to adequately model the strong and direct autoregressivity of human contacts: 
we do not decide randomly and independently at each moment whether we continue a conversa-
tion. This leads us out of the most often used family of models, the SBM (e.g., Matias & Miele, 
2017; Olivella et al., 2021; Pensky, 2019; Xu & Hero, 2014), which are based on conditional in-
dependence. We proposed our temporal link community model (which we call BALARM) using 
the GLM framework in reply to this question, and in order to explore its potential in real-life sit-
uations, and applied it to hospital data. 

Our BALARM modelled the time series of the elements of the adjacency matrix of the network 
as an autoregressive binary time series, assuming that each of these edges belonged to a single link 
cluster. The time series model for each edge included deterministic, time-varying linear compo-
nents with a period of a day to account for the workday patterns at the hospital, and a linear au-
toregressive term, capturing the fact that, conditioned on the immediate past, the contacts’ 
existence does not depend on the more distant past (a reasonable assumption for these contacts 
focusing mostly on current events and problems in the hospital), but it does depend on the imme-
diate past. The logit transformation linked this linear predictor to the instantaneous probability of 
the edge to become switched-on. We further assumed that there is a finite number of link commu-
nities (clusters) the edges can belong to, and that within these clusters, the parameters of the time 
series are constant. Furthermore, we assumed that the model is identifiable in a sense that at least 
one parameter differs for two different link clusters. 

We fitted the model using the EM algorithm for a range of model complexities, and selected the 
fit realising the best trade-off between simplicity and richness of interpretation according to the 
BIC. We obtained inference about the quantities of interest such as the daily contact probability 
patterns of the different communities and the autocorrelation over time produced by the fit by 
bootstrap. The results gave an unprecedentedly detailed insight into the time variations of the con-
tacts of a social network. We could distinguish six clusters of different typical link probability var-
iations over the day. These daily patterns could be put into realistic correspondence with the 
normal working day in a hospital, and also with the status of the persons in the hospital that 
formed them. We observed that although much of the link community structure found was clearly 
related to the status of the individuals in the hospital (namely, medical or administrative staff, 
nurse or patient), no perfect correspondence with an SBM could be found. 
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Figure 12. Histogram of cross-correlations between edge time series belonging to different link communities from 
the real data (red) and from simulations from the fitted model (grey).   
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Our approach differs in several aspects from the currently available models (Jiang et al., 2020;  
Ludkin et al., 2018) that explicitly take into account the autocorrelated nature of the links. The 
most important of these is that we have deliberately stepped out of the usually considered frame-
work of node clustering, and instead, considered edges as the basic units of modelling. Both of the 
analysis methods of Jiang et al. (2020) and Ludkin et al. (2018) is based on node clustering (if with 
autoregressivity directly into the network’s temporal dynamics). In terms of implementation for 
technical reasons Ludkin et al. (2018) does effectively use link clusters within their methodology. 
Our model thus provides an alternative to these models for social situations where the nature of 
the links themselves is the subject of investigation. 

Another important difference is that the time series model at the core of our model is the classical 
GLM framework (McCullagh & Nelder, 1989), which has not yet been used in the modelling of 
dynamical networks, and which confers several significant advantages to our model. First, it offers 
the possibility to fit both negatively and positively correlated networks within one single model. 
This has strong relevance in practice, when trying to find link communities in real data. If it is pos-
sible that the data contain both positively and negatively correlated time series, most models cur-
rently in use need to set up two formally different models, which causes difficulties such as 
obtaining correct inference including uncertainty arising from the decision about positivity or 
negativity of correlation in the model. Our model accommodates naturally both possibilities with-
in a single modelling framework. Another advantage provided by our framework is the flexibility 
to specify the temporal evolution of the network. Higher-order autoregressive terms and further 
relevant covariates, such as the harmonic terms in our model, can be straightforwardly added 
to the linear predictor of the model, and thus the detailed analysis of both stochastic and determin-
istic components of the dynamics becomes possible. This flexibility allowed us to decipher a real-
istic image of the life of the hospital ward under investigation from the network data, and to detect 
communities and distinguish their daily patterns, where the SBM-based model of Jiang et al. 
(2020) hit the problem of non-stationarity. 

In principle, our model also allows for the inclusion of cross-correlation terms into the model, 
leading effectively to a model with similarities to spatio-temporal models. However, care needs to 
be taken then on how to select the basis in which we express the model’s various temporal and 
spatial characteristics, and the large number of latent variables that have to be determined (we 

could hypothetically have dependence between all 
N
2

􏼒 􏼓

edge variables). The computational chal-

lenges with such an approach are unsurmountable. Identifiability issues can arise due to confound-
ing between the cross-correlation terms and the deterministic time variations due to similarities in 
time patterns. Another possible generalisation is the adaptation of mixed membership models for 
link communities, which may be important and interesting for applications where edges cannot be 
supposed to belong to one single link community. An example of this may be the contacts between 
two people whose contacts are at times ‘collaborator’ type and at other times ‘friendship’ type. 

Figure 13. Model structure and edge probabilities in the model of Olivella et al. (2021). The left panel shows the 
time-independent component of the SBM, indicating probability levels of edge formation in shades of grey of the 
lines, and time-averaged membership proportion as the size of the circles. The right panel shows the temporally 
dependent component of the edge probabilities between the different groups.   
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This needs to model edges which change membership over time. Mixed membership models could 
be the correct way to model such social networks. However, for such models, identifiability issues 
must be considered carefully. 

We believe that our model provides a level of insight into the link community evolution that has 
not been previously reached yet. Moreover, it offers a model-based, controllable simplification to 
compress useful information of observed complex networks, which can be used as a building block 
to gain insight into processes on the networks, and is amenable to statistical inference. Such real-
istic model fits can serve, for example, as the basis for in-depth investigations of the spread of an 
infectious disease within a social unit, providing a detailed insight into the evolution of the disease 
in the community, and helping identify the most efficient intervention points. Their practical use, 
we hope, will be a strong spur in the future to develop both more easy-to-apply, useful, realistic 
models and the theory behind dynamic link community models. 
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