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A KÜNNETH THEOREM FOR CONFIGURATION SPACES

KATHRYN HESS AND BEN KNUDSEN

Abstract. We construct a spectral sequence converging to the homology of the ordered con-
figuration spaces of a product of parallelizable manifolds. To identify the second page of this
spectral sequence, we introduce a version of the Boardman–Vogt tensor product for linear op-
eradic modules, a purely algebraic operation. Using the rational formality of the little cubes
operads, we show that our spectral sequence collapses in characteristic zero.

1. Introduction

In this article, we study the singular homology of the ordered configuration space of k points
in a manifold X , which is the space

Confk(X) =
{
(x1, . . . , xk) ∈ X

k : xi 6= xj if i 6= j
}
.

Although these spaces have enjoyed a long history of study in algebraic topology [FN62, May72,
McD75], complete homology computations remain rare [Arn69, CLM76, FZ00].

The current tool of choice for such computations is the Leray–Serre spectral sequence for
the inclusion Confk(X) ⊆ Xk, as studied in [Tot96]. The first nontrivial differential of this
spectral sequence, although explicit, often presents a computation too forbidding to permit
further progress, and the spectral sequence is known not to collapse in general [FT04].

Even the celebrated representation stability theorem of [CEF15] does little to lighten this
gloomy outlook; indeed, computing stable multiplicities of representations in H∗(Confk(X);Q)
is a difficult open problem in almost all cases [Far, Prob. 3.5]. Even the multiplicity of the trivial
representation, corresponding to the homology of unordered configuration spaces, was unknown
for closed, orientable surfaces of positive genus until very recently—see [DCK17] for the general
case and [Mag, Sch] for two concurrent computations in the case of the torus.

The main contribution of this article is a new tool for attacking such computations, which is
valid for manifolds of the form X =M ×N with M and N parallelizable. Building on [DHK18],
we view the sequence Conf(M) =

(
Confk(M)

)
k≥0

of configuration spaces ofM as a module over

the little m-cubes operad Cm, and similarly for N and M × N . The main result is a kind of
Künneth decomposition in terms of the linearized Boardman–Vogt tensor product ⋆, introduced
below in Section 4.1.

Theorem 1.1 (“Künneth” spectral sequence). LetM and N be parallelizable m- and n-manifolds,
respectively, and R a commutative ring such that H∗(Confk(M);R) and H∗(Confk(N);R) are
R-projective for each k ≥ 0. There is a natural, convergent spectral sequence

E2
p,q
∼= Hp

(
H∗ (Conf(M);R) ⋆L H∗ (Conf(N);R)

)
q
=⇒ Hp+q (Conf(M ×N);R)

of R-linear Cm+n-modules.

For many purposes, the utility of a spectral sequence is determined by one’s knowledge—or,
more typically, lack of knowledge—of its differentials. We resolve this difficulty over the rationals,
which is already a case of great interest.
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2 KATHRYN HESS AND BEN KNUDSEN

Theorem 1.2 (Collapse). If R is a field of characteristic zero, then the spectral sequence of
Theorem 1.1 degenerates at E2.

The proof relies on Kontsevich’s formality theorem, as recently extended by Fresse–Willwacher
[FW18], and applies to any field over which formality holds—at the time of writing, the formality
question remains unanswered in odd characteristic. Both results have natural extensions to
non-parallelizable manifolds, and we prove these more general statements assuming a certain
additivity conjecture of [DHK18]—see Corollary 5.10 and Theorem 6.8 below.

Theorems 1.1 and 1.2 reduce the computation of the rational homology of ordered configura-
tion spaces of products—assuming knowledge of the factors—to a purely algebraic problem in the
representation theory of certain combinatorial categories. For example, in the case m = n = 1,
which encompasses the motivating example of the torus, the relevant representation theory is
that of Pirashvili–Richter’s category of non-commutative finite sets [PR02]. We will return to
these computations in the sequel to this paper.

Remark 1.3. With more care, one can construct a cohomology spectral sequence with E2 describ-
able in terms of a certain cotensor product of linear operadic comodules. We leave the details of
this extension to future work or the enthusiastic reader.

Remark 1.4. It is natural to imagine that the assumption of projectivity in Theorem 1.1 could
be weakened to one of flatness by working with slightly different model structures. In practice,
of course, the ring of interest is typically either a field or the integers, so the utility of such a
weakening would likely be small.

1.1. Conventions. We adhere to the following throughout.

(1) We work over a fixed commutative, unital ring R.
(2) We always consider the categories sSet of simplicial sets and ChR of unbounded chain

complexes of R-modules to be equipped with the standard Kan–Quillen and projective
model structures, respectively.

(3) Abusively, the phrase “simplicial category” refers to a category enriched over sSet.
(4) We write F for the category of finite sets and functions between them, Σ ⊆ F for the

wide subcategory of bijections, and N ⊆ F for the discrete subcategory consisting of the
sets {1, . . . , n} for n ≥ 0.

(5) Manifolds are implicitly smooth of finite type.
(6) Topological groups are assumed to be locally compact and Hausdorff.
(7) We write ΣI for the automorphisms of the finite set I and set Σn = Σ{1,...,n}.

(8) Given a comonad K = (K,∆, ε) on a category A, we write BK
• : A → A∆

op

for the
comonadic bar construction on K. Explicitly, BK

n (A) = Kn+1(A), and the faces and
degeneracies are induced by the counit ε and comultiplication ∆, respectively.

(9) Variations on the Boardman–Vogt tensor product considered below will be denoted by
the symbol ⋆ rather than ⊗. This notation is motivated by the desire to avoid confusion
with other tensor products at play, but the reader is warned that it differs from that of
most other references.

1.2. Acknowledgements. The authors thank the Isaac Newton Institute for Mathematical Sci-
ences for support and hospitality during the programme Homotopy Harnessing Higher Structures.
This work was supported by EPSRC grants EP/K032208/1 and EP/R014604/1 and NSF award
1606422.

2. Operads and modules

In this section, we recall the concepts from the theory of operads and operadic modules
employed throughout the remainder of the article.



A KÜNNETH THEOREM FOR CONFIGURATION SPACES 3

2.1. Operads and modules. We review here the fundamental definitions that we will use
throughout the remainder of the paper. Throughout this section (V,⊗,HomV, 1V) denotes a
cocomplete closed symmetric monoidal category with an initial object, ∅. The two examples
relevant for our purposes are the categories sSet of simplicial sets, equipped with the Cartesian
monoidal structure, and ChR of unbounded chain complexes over a commutative ring R, equipped
with the tensor product over R.

Definition 2.1. A sequence in V is a functor N → V. A symmetric sequence in V is a functor
Σop → V.

A symmetric sequence is determined by the Σn-objects X(n) := X
(
{1, ..., n}

)
for n ≥ 0.

The V-category of symmetric sequences carries a (non-symmetric) monoidal structure called the
composition product, which is defined by the formula

(Y ◦ X)(I) = colim
Σ



J 7→ Y(J)⊗
⊕

f∈F(I,J)

⊗

j∈J

X(f−1(j))



 ,

where X and Y are symmetric sequences and I is a finite set.

Definition 2.2. An operad in V is a monoid in (VΣ
op

, ◦). A map of operads is a map of monoids.

We write Op(V) for the category of operads in V and abbreviate this notation to Op in the
case V = sSet.

Example 2.3. The unit operad J is the unique operad in V with

J(I) =

{
1V : |I| = 1

∅ : |I| 6= 1.

Any other operad O in V receives a canonical map of operads from J.

We pause to establish some notation that will be useful in Section 2.3 below.

Notation 2.4. For finite sets I and J and a symmetric sequence X, we write πi : {i} × J → J

for the projection and π∗
i : X(J) → X({i} × J) for the induced map. Similarly, we write

π̄j : I × {j} → I for the projection and π̄∗
j : X(I)→ X(I × {j}) for the induced map.

Remark 2.5. The summand of (Y ◦ X)(I × J) corresponding to the projection I × J → J is

Y(J)⊗ΣJ

⊗

j∈J

X
(
I × {j}

)
∼= Y(J) ⊗ΣJ

⊗

j∈J

X
(
I
)
,

where the isomorphism is induced by the maps π̄∗
j . Similarly, the summand of (X ◦ Y)(I × J)

corresponding to the projection I × J → I is

X(I)⊗ΣI

⊗

i∈I

Y
(
{i} × J

)
∼= X(I)⊗ΣI

⊗

i∈I

Y
(
J
)
.

We turn now to the theory of right modules over an operad O, which can be described as
enriched presheaves on a certain V-category associated to O—see [AT, Section 3], for example.
For any subcategory F′ of F, there is a V-category F′(O) with objects the objects of F′, hom
objects given by

HomF′(O)(I, J) =
∐

f∈F′(I,J)

⊗

j∈J

O
(
f−1(j)

)
,

and composition defined using composition in F′ and the operad structure of O. A map of operads
ϕ : O → P induces a V-functor F′(O) → F′(P) covering the identity on F′, which we also denote
by ϕ. Moreover, the inclusion F′ →֒ F induces a V-functor F′(O)→ F(O) for every operad O.
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Definition 2.6. Let O be an operad in V. A right O-module is a V-functor F(O)op → V.

We writeModO for the V-category of right O-modules. We typically omit the adjective “right,”
as no other type of module will enter the discussion.

Remark 2.7. An obvious modification of this definition leads to a notion of O-module in any
V-category C. We shall have no use for such generality.

Example 2.8. In the case O = J of the unit operad, a J-module is simply a symmetric sequence.

Suppose now that V is V-bicomplete. For any morphism of operads ϕ : O → P, there is an
induced V-adjunction

ModO

ϕ! //
⊥ ModP,
ϕ∗

oo

where ϕ∗ is precomposition with ϕ and ϕ! is enriched left Kan extension along ϕ.

Example 2.9. When η : J→ O is the unit map of the operad O, then the adjunction

ModJ

η! //
⊥ ModO
η∗

oo

is the usual free-forgetful adjunction for O-modules.

It will be important for us in what follows to work with a more restrictive notion of free module.
Write ι : N = N(J) →֒ F(J) for the inclusion functor, and set FO = η! ◦ ι! and UO = ι∗ ◦ η∗.

Definition 2.10. An O-module M is totally free if it lies in the essential image of FO.

Remark 2.11. Take V = sSet. The category sSetN(J) is simply the category of sequences in
sSet, and the functor ι! sends a sequence (Cn)n∈N to (Cn ⊗ Σn)n∈N, where ⊗ denotes simplicial
tensoring.

The (FO,UO)-adjunction witnesses O-modules as monadic over sequences (not over symmetric
sequences). The corresponding comonad KO will be important in the following section in defining
a version of the bar construction.

2.2. Homotopy theory of operadic modules. Under reasonable conditions, ModO inherits
a model structure from V, as established in [Mos, Section 7]. We are particularly interested in
the following cases.

Proposition 2.12. Let V denote either sSet or ChR, equipped with the Kan-Quillen or projective
model structure, respectively. For every O ∈ Op(V), the category ModO admits the projective
model structure inherited from V, in which weak equivalences and fibrations are defined object-
wise. This is a proper V-model structure.

Proof. See Examples 7.6 and 7.8 and Propositions 8.1. and 8.2 in [Mos]. �

It is easy to see that if V is either sSet or ChR, then, for any morphism of operads ϕ : O→ P,
the adjunction

ModO

ϕ! //
⊥ ModP
ϕ∗

oo

is a Quillen adjunction with respective the projective model structures.
For the rest of this subsection, we restrict to V = sSet.
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Definition 2.13. Let O be a simplicial operad. The sequential O-bar construction is the com-
posite

BO
N : ModO

B
KO
•−−−→ Mod∆

op

O

|−|
−−→ ModO

of the simplicial comonadic bar construction with geometric realization.

Warning 2.14. The reader is urged not to confuse our sequential bar construction, which is
premised on viewing O-modules as monadic over sequences, with the more standard bar con-
struction premised on viewing O-modules as monadic over symmetric sequences.

Lemma 2.15. Let O be a simplicial operad. For any O-module M, the natural map BO
N
(M)→M

is a cofibrant replacement in ModO.

Proof. That the map in question is a weak equivalence is an immediate consequence of [JN14,
Prop. 3.13], since UO preserves colimits and since ModO carries the projective model structure
so that [JN14, Def. 3.1] applies, i.e., the monad UOFO is simplicial Quillen.

To see that BO
N
(M) is a cofibrant O-module, it suffices to show that BKO

• (M) is a Reedy
cofibrant simplicial O-module. For this, we proceed, as in [JN14, Sec. 3.3], by noting that
the restriction of BO

N
(M) to the wide subcategory ∆

op
0 ⊆ ∆op of the order-preserving functions

preserving the minimal element is isomorphic to a diagram of the form FO(X•), whereX• : ∆op
0 →

sSet is given on objects by Xn = UOK
◦n
O (M). This diagram satisfies the hypotheses of [JN14,

Prop. 3.22], so the desired conclusion follows by applying [JN14, Prop. 3.17] to BKO

• (M). �

2.3. Tensor products of operads and modules. In this section, we take V = sSet. The
Boardman–Vogt tensor product of simplicial operads, denoted here by ⋆, codifies interchanging
algebraic structures [BV73]. That is, for all O,P ∈ Op, a (O ⋆ P)-algebra can be viewed as a
O-algebra in the category of P-algebras or as a P-algebra in the category of O-algebras. (We
provide this equivalent description of O ⋆ P for readers familiar with algebras over operads, but
do not define the term “algebra” here, since we shall have no use for it.)

Definition 2.16 ([BV73]). The Boardman–Vogt tensor product of simplicial operads O and P

is the simplicial operad O ⋆ P given by the quotient of the coproduct of O and P in Op by the
equivalence relation generated by

(1)
(
o, (π∗

i (p))i∈I
)
∼
(
p,
(
π̄∗
j (o)

)
j∈J

)

for all o ∈ O(I), p ∈ P(J), and I, J ∈ F.

Notation 2.17. Let o ⋆ p denote the equivalence class of
(
o, (π∗

i (p))i∈I
)
and

(
p,
(
π̄∗
j (o)

)
j∈J

)
in

(O ⋆ P)(I × J).

Note that, in light of Remark 2.5, the lefthand side of (1) is an element of (O ◦ P)(I × J) and
the righthand side an element of (P ◦ O)(I × J). To make sense of this definition, we use that
O◦P and P◦O are both summands (modulo identification of identity elements) of the coproduct
in Op of O and P.

We now explain how to lift the Boardman–Vogt tensor product from simplicial operads to
operadic modules. For concreteness, we consider only modules in sSet, but our framework may be
adapted with ease to include other simplicial targets equipped with suitable monoidal structures.

Write ν : F × F → F for the Cartesian product of finite sets, and fix a subcategory F′ ⊆ F

closed under finite products. Recall that, for a simplicial operad O and finite sets I and J , a
p-simplex of HomF′(O)(I, J) is a pair

(
f, (oj)j∈J

)
, where f : I → J is an arrow in F′ and oj is a

p-simplex of O
(
f−1(j)

)
. If P is another operad, there is a simplicial functor

µ : F′(O)× F′(P)→ F′(O ⋆ P)
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covering ν and natural in O and P. Explicitly, µ is defined on objects by µ(I, I ′) = I × I ′ and
on simplicial hom sets as the map

HomF′(O)(I, J)×HomF′(P)(I
′, J ′)→ HomF′(O⋆P)(I × I

′, J × J ′)
((
f, (oj)j∈J

)
,
(
g, (pj′)j′∈J′

))
7→
(
f × g, (oj ⋆ pj′)(j,j′)∈J×J′

)
.

To see that µ is indeed a functor, note that the construction (o, p) 7→ o⋆p determines a map from
the matrix product of the underlying symmetric sequences of O and P to O ⋆P. The Boardman-
Vogt tensor product is define precisely so that this is a map of operads in each variable separately,
from which follows easily that µ is functor.

The following definition is a mild generalization of the one given in [DHK18] following [DH14].
Our notation here, which differs from those references, is chosen to avoid confusion with various
other tensor products of interest.

Definition 2.18. Let O and P be simplicial operads and F′ ⊆ F a subcategory closed under

finite products. For M ∈ sSetF
′(O)op and N ∈ sSetF

′(P)op , the Boardman–Vogt tensor product of
M and N is the enriched left Kan extension in the diagram of simplicial categories

F′(O)op × F′(P)op

µ

��

M×N
// sSet× sSet

−×−
// sSet

F′(O ⋆ P)op

M⋆N

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

In other words, M ⋆N = µ!(M⊠N), where

−⊠− : sSetF
′(O)op × sSetF

′(P)op → sSetF
′(O)op×F

′(P)op

is the external product, specified by (M⊠N)(I, J) = M(I)×M(J).

Example 2.19. When F′ = Fdisc, so that sSetF
′(O)op is equivalent to the category of sequences

in sSet, the Boardman–Vogt tensor product takes a particularly simple form. If X and Y are
sequences, then

(X ⋆ Y)(n) ∼=
∐

lm=n

X(l)× Y(m).

The Boardman–Vogt tensor product of presheaves is natural in the operad coordinate and in
the F′ coordinate, in the following sense.

Lemma 2.20. Let F′ be a subcategory of F that is closed under finite products. Let ϕ : O→ O′

and ψ : P→ P′ be morphisms of simplicial operads. For all M ∈ sSetF
′(O)op and N ∈ sSetF

′(P)op ,
there is a natural isomorphism

(ϕ ⋆ ψ)!(M ⋆N) ∼= ϕ!(M) ⋆ ψ!(N)

in sSetF
′(O′⋆P′)op . Moreover, if ι : F′ →֒ F denotes the inclusion functor, then there is a natural

isomorphism
ι!(M ⋆N) ∼= ι!(M) ⋆ ι!(N)

in ModO⋆P.

Proof. Naturality of µ implies that the diagram

sSetF
′(O)op×F

′(P)op µ! //

(ϕ×ψ)!
��

sSetF
′(O⋆P)op

(ϕ⋆ψ)!
��

sSetF
′(O′)op×F

′(P′)op µ! // sSetF
′(O′⋆P′)op
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commutes. Since formation of the Cartesian product with a fixed simplicial set preserves colimits,
it follows from the colimit description of left Kan extensions that the diagram

sSetF
′(O)op × sSetF

′(P)op −⊠−
//

ϕ!×ψ!

��

sSetF
′(O)op×F

′(P)op

(ϕ×ψ)!
��

sSetF
′(O′)op × sSetF

′(P′)op −⊠−
// sSetF

′(O′)op×F
′(P′)op

also commutes, concluding the proof of the first isomorphism. We omit the argument for the
second isomorphism, which is very similar. �

Example 2.21. Applied to the unit maps ηO : J→ O and ηP : J→ P, Lemma 2.20 implies that

(ηO)!(X) ⋆ (ηP)!(Y) ∼= (ηO⋆P)!(X ⋆ Y)

for all symmetric sequences X and Y, i.e., the Boardman–Vogt tensor product of a free O-module
and a free P-module is the free O ⋆ P-module on the Boardman–Vogt tensor product of the
generating symmetric sequences. This isomorphism was first established in [DH14], where the
Boardman–Vogt tensor product of symmetric sequences was called the matrix monoidal product
and denoted �.

Example 2.22. In the case F′ = N and O = J = P, Lemma 2.20 implies that for all seqences X
and Y, we have a natural isomorphism

ι!(X) ⋆ ι!(Y) ∼= ι!(X ⋆ Y)

of symmetric sequences (we use that J ⋆ J ∼= J). Thus, applying Example 2.19, we have the
natural isomorphism of O ⋆ P-modules

FO(X) ⋆ FP(Y) ∼= FO⋆P(X ⋆ Y) ∼= FO⋆P

(
n 7→

∐

lm=n

X(l)× Y(m)

)
.

The lifted Boardman–Vogt tensor product behaves well with respect to colimits and cofibra-
tions.

Lemma 2.23 ([DHK18, Lem. 3.2, Prop. 3.12]). Let O and P be simplicial operads. The functors

M ⋆− : ModP → ModO⋆P

and

− ⋆N : ModO → ModO⋆P

are left adjoints for any O-module M and P-module N. If M (resp. N) is cofibrant, then the left
adjoint is a left Quillen functor.

Remark 2.24. As Emily Riehl pointed out to the authors, it is likely that

− ⋆− : ModO ×ModP → ModO⋆P

is actually a Quillen bifunctor, in particular because the Boardman–Vogt tensor product of free
modules is free. Since we do not need this stronger result here, we leave its proof to the curious
reader.

By Lemma 2.23, it makes sense to speak of the derived Boardman–Vogt tensor product of an
O-module M and a P-module N. By Lemma 2.15, this derived tensor product is computed as

M ⋆L N = BO
N (M) ⋆ BP

N (N).
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3. Linear modules

Fix a commutative, unital ring R. Throughout this section and the following two sections,
homology is implicitly with R-coefficients, and tensor products are implicitly over R. We use the
terminology R-flat to refer to objects built from simplicial sets—simplicial operads or modules
over them, for example—with R-flat homology. We let grModR denote the category of Z-graded
R-modules, which is a closed symmetric monoidal category with the respect to the graded tensor
product.

Recall that the functor H∗ : sSet → grModR is lax monoidal; in particular, for every pair
of simplicial sets K and L, there is a natural map H∗(K) ⊗H∗(L) → H∗(K × L), which is an
isomorphism if K or L is R-flat. It follows that, if O is a simplicial operad, then H∗(O) is a
operad in grModR.

3.1. Linearization.

Definition 3.1. Let C be a simplicial category. The R-linearization of C is the grModR-enriched
category CR where

(1) ObCR = C,
(2) HomCR(X,Y ) = H∗

(
HomC(X,Y )

)
for all objects X and Y , and

(3) composition is given by the composites of the form

H∗

(
HomC(X,Y )

)
⊗H∗

(
HomC(Y, Z)

)
→ H∗

(
HomC(X,Y )×HomC(Y, Z)

)
→ H∗

(
HomC(X,Z)

)
,

where the first map is obtained from the lax monoidal structure of H∗, and the second
from composition in C.

This construction is functorial in the sense that a simplicial functor ϕ : C → D induces a
grModR-functor ϕR : CR → DR coinciding with ϕ on objects. In particular, a map ϕ : O→ P of
simplicial operads induces a grModR-functor ϕR : F′(O)R → F′(P)R for every subcategory F′ ⊆ F.
The R-linearization functor is lax monoidal in the sense that there is an enriched comparison
functor

∇ : CR ⊗ DR → (C× D)R,

where the objects of CR ⊗ DR are those of their Cartesian product, and the hom objects are
the tensor products of the hom objects of the factors. This comparison functor ∇ is often an
isomorphism, e.g., whenever C or D has R-flat simplicial mapping spaces.

Definition 3.2. Let O be a simplicial operad. An R-linear (right) O-module is a grModR-functor
F(O)opR → grModR.

We let ModOR denote grMod
F(O)opR
R , the grModR-category of R-linear O-modules.

Remark 3.3. An obvious modification of this definition leads to a notion of R-linear O-module
in any grModR-category C. We shall have no use for such generality.

As in the non-linear case, we have a functor that produces “totally free” modules.

Notation 3.4. Let ι : N(J) →֒ F(J) denote the inclusion functor of the discrete subcategory.
For any simplicial operad O with unit map η, we let

FOR = (ηR)! ◦ (ιR)! : grMod
N(J)op

R → ModOR ,

while UOR denotes the corresponding forgetful functor and KOR the resulting comonad.
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Note that, contrary to what the notation might suggest, there is in general no operad called
OR. On the other hand, there is an operad in graded R-modules associated to O, namely H∗(O),
and the lax monoidal structure of H∗ supplies a canonical grModR-functor

ξ : F(H∗(O))→ F(O)R,

that is the identity on objects and natural in O.
The easy proof of the next lemma is left to the reader.

Lemma 3.5. Let O be a simplicial operad. If O is R-flat, then the canonical functor ξ :
F(H∗(O))→ F(O)R is an isomorphism of grModR-categories.

Thus, in the R-flat case, the category ModOR coincides with the category of modules for
H∗(O), interpreted as an operad in grModR.

Definition 3.6. Let O be a simplicial operad and M an O-module. The R-linearization of M is
the object H∗(M) in ModOR given by the composite R-linear functor

F(O)opR
MR−−→ sSetR

H∗−−→ grModR.

Note that the first functor in the composition above involves applying homology to the sim-
plicial hom sets of the categories in question, while the second is given by applying homology to
the objects of the second category, which are themselves simplicial sets.

In the obvious way, R-linearization of modules extends to a functor, which is natural with
respect to base change; that is, for every morphism of simplicial operads ϕ : O→ P, the diagram

ModP

ϕ∗

��

H∗ // ModPR

ϕ∗

R

��

ModO
H∗ // ModOR

commutes. With flatness assumptions, R-linearization is also compatible with the “extension of
scalars” functor ϕ!. We need only the following rudimentary case if this compatibility.

Lemma 3.7. Let O be a simplicial operad and X a simplicial sequence. There is a natural
transformation FOR(H∗(X)) → H∗(FO(X)) that is an isomorphism provided either O or X is
R-flat.

Proof. The map arises from the universal property of FOR applied to the map induced on homol-
ogy by the inclusion of X into UOFO(X). Either flatness assumption implies that the Künneth
isomorphism holds. �

3.2. Homotopy theory of linear operadic modules. We now situate R-linear O-modules in
a homotopical context.

Write grChR for the category of chain complexes of graded R-modules. Explicitly, an object of
this category is a bigraded R-module V =

⊕
p,q∈Z

Vp,q equipped with a differential that decreases

p and preserves q. Write grCh
≥0
R for the subcategory of chain complexes V such that Vp,q = 0

for p < 0. Note that we require non-negativity only in the direction of the chain grading.
A version of the classical Dold–Thom correspondence asserts that the functor of normalized

chains witnesses an equivalence of categories

N : grMod∆
op

R
≃
−→ grCh

≥0
R .

An account of this correspondence at a suitable level of generality may be found in [Lur, Thm.
1.2.3.7], for example. For any simplicial operad O, this equivalence extends to an equivalence of
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module categories

N : (grMod∆
op

R )F(O)opR
≃
−→ (grCh≥0

R )F(O)opR .

A slight variant of [Mos, Example 7.9] shows that if we equip grCh
≥0
R with the model structure

in which fibrations are surjections in positive degrees and weak equivalences quasi-isomorphisms,

then (grCh≥0
R )F(O)opR admits the projective model structure, which transfers via the equivalence

N to (grMod∆
op

R )F(O)opR ∼= Mod∆
op

OR
.

A bar construction serves as a cofibrant replacement in the R-linear context as well.

Definition 3.8. Let O be a simplicial operad. The R-linear sequential O-bar construction is the
composite

BOR

N
: Mod∆

op

OR

B
KOR
•−−−−→ Mod∆

op×∆
op

OR

|−|
−−→ Mod∆

op

OR

of the simplicial comonadic bar construction with geometric realization.

Lemma 3.9. Let O be an R-projective simplicial operad and M• a simplicial R-linear O-module.
If M• is R-projective in each simplicial degree, then the natural augmentation BOR

N
(M•) → M•

is a cofibrant replacement in Mod∆
op

OR
.

Proof. The proof is identical to that of Lemma 2.15. The assumptions on O and UOR(M•) are
necessary to verify the hypotheses of [JN14, Prop. 3.22] (the corresponding assumption in the
non-linear case is always satisfied). �

The two bar constructions admit the following comparison, which is easy to verify (see Lemma
3.7).

Lemma 3.10. There is a natural transformation BOR

N
◦H∗ → H∗ ◦B

O
N

of functors from ModO

to Mod∆
op

OR
that is an isomorphism provided O is R-flat.

3.3. Simplicial linear vs. differential graded modules. Throughout this section, we fix an
R-flat simplicial operad O. By Lemma 3.5, the category ModOR coincides with the category of
modules obtained by viewing H∗(O) as an operad in grModR. In this situation, we may compare

the homotopy theory of Mod∆
op

OR
with another natural homotopy theory associated to H∗(O),

namely that of the category of modules in ChR obtained by viewing H∗(O) instead as an operad
in ChR. We denote this category dgModH∗(O) to avoid ambiguity.

To compare the two, we use the total complex functor T : grChR → ChR. There is a natural
isomorphism

T ◦N ◦ UOR ◦ FOR
∼= UH∗(O) ◦ FH∗(O) ◦ T ◦N,

where N denotes the functor of normalized chains, as above, enabling us to formulate the fol-
lowing definition.

Definition 3.11. The dg-ification functor is the unique dashed filler making both of the following
square diagrams commute.

Mod∆
op

OR
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

UOR

��

dgModH∗(O)

UH∗(O)

��

(grMod∆
op

R )N(J)op

FOR

CC

N // (grCh≥0
R )N(J)op �

� i // grCh
N(J)op

R
T // Ch

N(J)op

R

FH∗(O)

[[

It is not hard to construct the dg-ification functor, since we know how it should be defined
on free modules, and every module is a coequalizer of free modules of a type preserved by the
forgetful functors [BW05, Prop. 3.7].

The only fact about dg-ification relevant for our purpose is the following.
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Proposition 3.12. For any R-flat simplicial operad O, dg-ification preserves and reflects ho-
motopy colimits.

Proof. Homotopy colimits of operadic modules are preserved and reflected by the relevant forget-
ful functor, as the forgetful functor preserves and reflects both weak equivalences, and colimits of
modules are created in the underlying category of sequences. it suffices to show that each of the
bottom functors preserves and reflects homotopy colimits. Each of these functors preserves and
reflects weak equivalences, so it suffices to demonstrate mere preservation of homotopy colimits.

It is well known that the normalized chains functor preserves homotopy colimits. The functor
T also preserves homotopy colimits because it is a left Quillen functor, since the right adjoint
sends a chain complex V to the graded chain complex given in auxiliary degree q by V [−q],
a construction that preserves surjections and quasi-isomorphisms. Finally, the inclusion i of
non-negatively graded complexes preserves weak equivalences, hence is its own total left derived
functor, and, since i also preserves colimits, this left derived functor preserves homotopy colimits.

�

4. The operadic Künneth spectral sequence

4.1. Linearized Boardman–Vogt tensor products. The constructions and results of Section
2.3 generalize in a straightforwardway to the R-linear context. To begin, for any subcategory F′ of
F that is closed under products, let µR denote the R-linearization of µ : F′(O)×F′(P)→ F′(O⋆P).

Definition 4.1. Let O and P be simplicial operads and F′ ⊆ F a subcategory closed under

finite products. The linearized Boardman–Vogt tensor product of M ∈ grMod
F
′(O)opR
R and N ∈

grMod
F
′(P)opR
R is the enriched left Kan extension in the following diagram of grModR-categories.

F′(O)opR ⊗ F′(P)opR

∇

��

M⊗N
// grModR ⊗ grModR

⊗
// grModR

(
F′(O)× F′(P)

)op
R

µR

��

F′(O ⋆ P)opR .

M⋆N

66♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

♠
♠

Remark 4.2. The definition of the linearized Boardman–Vogt tensor product extends in an obvi-
ous way to R-linear modules valued in R-linear categories with a compatible symmetric monoidal
structure. We will have no use for such generality.

Naturality of the linearized Boardman–Vogt tensor product of presheaves in the operad and
F′ coordinates can be established by a proof essentially identical to that of Lemma 2.20.

Lemma 4.3. Let F′ be a subcategory of F that is closed under finite products. Let ϕ : O→ O′ and

ψ : P→ P′ be morphisms of simplicial operads. For all M ∈ grMod
F
′(O)opR
R and N ∈ grMod

F
′(P)opR
R ,

there is a natural isomorphism

(ϕR ⋆ ψR)!(M ⋆N) ∼= (ϕR)!(M) ⋆ (ψR)!(N)

in grMod
F
′(O′⋆P′)opR
R . Moreover, if ι : F′ →֒ F denotes the inclusion functor, then there is a natural

isomorphism

ι!(M ⋆N) ∼= ι!(M) ⋆ ι!(N)

in Mod(O⋆P)R .
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Example 4.4. As in the non-linear case, Lemma 4.3 implies that for all sequences X and Y in
grModR

FOR(X) ⋆ FPR(Y)
∼= F(O⋆P)R(X ⋆ Y)

in Mod(O⋆P)R .

There is a comparison map between the homology of Boardman–Vogt tensor products of
sequences and the Boardman–Vogt tensor product of their homologies.

Lemma 4.5. Let X and Y be sequences of simplicial sets. There is a natural map H∗(X) ⋆
H∗(Y)→ H∗(X ⋆ Y) of sequences of graded R-modules, which is an isomorphism if either X or Y

is R-flat.

Proof. The component of the desired map in arity k is the map

(H∗(X) ⋆ H∗(Y)) (k) =
⊕

ij=k

H∗(X(i))⊗H∗(Y(j))→ H∗




∐

ij=k

X(i)× Y(j)



 = H∗ ((X ⋆ Y)(k))

induced by the lax monoidal structure and compatibility with coproducts of H∗. The hypothesis
of R-flatness ensures that the Künneth isomorphism holds. �

Lemma 4.6. Let O and P be simplicial operads. For all M ∈ ModO and N ∈ ModP, there is a
natural map H∗(M) ⋆ H∗(N)→ H∗(M ⋆N) of R-linear O ⋆ P-modules, which is an isomorphism
if M and N are totally free on R-flat generating sequences.

Proof. For all pairs of modules M, N as in the statement of the lemma, the respective lax
monoidal structures of H∗ and of the tensor product of grModR-categories combine to produce
a grModR-natural transformation

α : (− ⊗−) ◦ (H∗(M)⊗H∗(N))⇒ H∗ ◦ (−×−)R ◦ ∇ ◦ (MR ⊗ NR).

On the other hand, the canonical sSet-natural transformation

(−×−) ◦ (M×N)⇒ (M ⋆N) ◦ µ

induces a grModR-natural transformation

β : H∗ ◦ (−×−)R ◦ (M×N)R ⇒ H∗ ◦ (M ⋆N)R ◦ µR = H∗(M ⋆N) ◦ µR.

By the universal property of enriched left Kan extensions, there is therefore a unique grModR-
natural transformation

H∗(M) ⋆ H∗(N)⇒ H∗(M ⋆N)

factoring the composite βα.
When M and N are totally free, we may write M = FO(X) and N = FP(Y), where X and Y

are seqences in sSet. Taking these sequences to be R-flat, we have the isomorphism

H∗(M ⋆N) = H∗(FO(X) ⋆ FP(Y))

∼= H∗(FO⋆P(X ⋆ Y)) (2.22)

∼= F(O⋆P)R(H∗(X ⋆ Y)) (3.7)

∼= F(O⋆P)R(H∗(X) ⋆ H∗(Y)) (4.5)

∼= FOR(H∗(X)) ⋆ FPR(H∗(Y)) (4.4)

∼= H∗(FO(X)) ⋆ H∗(FP(Y)) (3.7)

∼= H∗(M) ⋆ H∗(N).

�
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As in the non-linear case, the linearized Boardman–Vogt tensor product with a fixed mod-
ule behaves well. The proofs of the properties below again follow immediately from results in
[DHK18, Sec. 3].

Lemma 4.7. Let O and P be simplicial operads. The functors

M ⋆− : ModPR → Mod(O⋆P)R

and

− ⋆N : ModOR → Mod(O⋆P)R

are left adjoints for any R-linear O-module M and R-linear P-module N. If M (respectively, N)
is cofibrant, then the left adjoint is a left Quillen functor.

By Lemma 4.7, it makes sense to speak of the derived Boardman–Vogt tensor product of an
R-linear O-module M and a R-linear P-module N. In good circumstances, Lemma 2.15 allows
us to compute this derived tensor product as a tensor product of bar constructions.

4.2. The spectral sequence. The operadic Künneth spectral sequence is a special case of the
following construction.

Proposition 4.8. Let O be a simplicial operad, and let M• be a simplicial O-module. There is
a natural, convergent spectral sequence of R-linear O-modules

E2
p,q
∼= Hp

(
H∗(M•)

)
q
=⇒ Hp+q(|M•|).

Proof. The homology H∗(|M•|) is computed by the total complex of the double complex ob-
tained by first applying the singular chains functor C∗(−;R) levelwise to M• and then using the
normalized complex functor N∗ of the Dold–Kan correspondence to pass from simplicial chain
complexes to double complexes over R. The desired spectral sequence is one of the two spectral
sequences associated to this bicomplex; specifically, it is the spectral sequence obtained by us-
ing the differential derived from the singular chains functor first and the simplicial differential
second. This spectral sequence is concentrated in the first quadrant, hence convergent.

By naturality, this is a spectral sequence of R-linear O-modules. �

Specializing now to Boardman–Vogt tensor products of modules, we obtain a spectral se-
quence converging from the (derived) Boardman–Vogt tensor product of homology modules to
the homology of the (derived) Boardman–Vogt tensor product.

Theorem 4.9. Let O and P be simplicial operads, M an O-module, and N a P-module, and
assume that all four are R-projective. There is a natural, convergent spectral sequence

Hp

(
H∗(M) ⋆L H∗(N)

)
q
=⇒ Hp+q

(
M ⋆L N

)

of R-linear O ⋆ P-modules.

In the statement above, we consider H∗(M) and H∗(N) as constant objects in Mod∆
op

OR
and

Mod∆
op

PR
, respectively. Their derived Boardman–Vogt tensor product is an object in Mod∆

op

(O⋆P)R
that is, in general, not constant. The external homology is computed by applying the normalized
chains functor to the simplicial, graded R-module, which gives rise to a chain complex in graded
R-modules, then computing homology. This homology is graded by homological degree p and
internal degree q.
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Proof of Theorem 4.9. We observe that

M ⋆L N ≃ BO
N (M) ⋆ BP

N (N) (2.15)

∼=
∣∣|BKO

• (M) ⋆ BKP

• (N)|
∣∣ (2.23)

∼= | diag(BKO

• (M) ⋆ BKO

• (N))|.

Applying Proposition 4.8 to the simplicial O ⋆ P-module diag(BKO

• (M) ⋆ BKO

• (N)), we obtain a
spectral sequence converging to the homology of M ⋆L N. It remains to identify the E2-page of
this spectral sequence. To do so, we note that

H∗(diag(B
KO

• (M) ⋆ BKP

• (N))) ∼= diag(H∗(B
KO

• (M)) ⋆ H∗(B
KP

• (N))) (4.6)

∼= diag
(
B

KOR
• (H∗(M)) ⋆ B

KPR
• (H∗(N))) (3.10)

≃ H∗(M) ⋆L H∗(N). (3.9)

Note that only the last step uses the assumption of projectivity. �

5. Application to configuration spaces

In this section, we combine the general considerations of Section 4 with the results of [DHK18]
to prove Theorem 1.1, which we deduce as a special case of a general result concerning products
of manifolds equipped with tangential structures.

5.1. Reminders on structured manifolds. We review the conventions of [DHK18, 4.1], fol-
lowing [And10, V.5-10], on manifolds equipped with tangential structures.

Definition 5.1. Let M be an m-manifold and G → GL(m) a continuous homomorphism, and
write FrM for the frame bundle of the tangent bundle of M . A G-framing on M is a principal
G-bundle FrGM together with an isomorphism

ϕM : FrGM ×G GL(m)
∼=
−→ FrM

of principal GL(m)-bundles covering the identity. A framing is a G-framing with G trivial.

We often abbreviate to M the triple constituting a G-framed manifold, leaving all other data
implicit. Examples of canonically G-framed manifolds include Euclidean m-space and disjoint
unions and open subsets of G-framed manifolds. The Cartesian product of a G-framed mani-
fold and an H-framed manifold is canonically G × H-framed. Combining these examples, the
configuration space Confk(M) ⊆Mk is canonically Gk-framed whenever M is G-framed.

Definition 5.2. The G-framed configuration space of k points in M is the Gk ⋊ Σk-space

ConfGk (M) := FrG
k

Confk(M),

where Σk acts on Gk by permuting the factors.

The collection of G-framed manifolds forms a category under the following type of map.

Definition 5.3. Let M1 and M2 be G-framed manifolds. A G-framed embedding consists of
an embedding f : M1 → M2, a bundle map f̃ : FrGM1

→ FrGM2
, and a GL(m)-equivariant

homotopy h : FrM1 × [0, 1]→ FrM2 from Df to the composite ϕM2 ◦ (f̃ ×GGL(m)) ◦ϕ−1
M1

, where

Df : FrM1 → FrM2 is the induced bundle map. We require that f̃ and h each cover f .

The set EmbG(M1,M2) carries a natural topology in which composition is continuous, where
the composite of G-framed embeddings is defined using composition of embeddings and bundle
maps and pointwise composition of homotopies. We denote the resulting topological category,
which is symmetric monoidal under disjoint union, by MfldGm.
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Formation of structured configuration spaces extends to a functor ConfGk : MfldGm → Top,

which is closely related to certain spaces of G-framed embeddings.

Proposition 5.4 ([And10, 14.4]). For each k ≥ 0, the natural transformation

EmbG(∐kR
m,−) −→ ConfGk (−)

induced by evaluation at the origin is a Gk ⋊ Σk-equivariant weak equivalence.

5.2. Skew little cubes and configuration spaces. Denote by Λ(m) ⊆ GL(m) the subgroup
of diagonal matrices with positive entries.

Definition 5.5 ([DHK18, Def. 4.9]). A dilation representation is a continuous group homomor-
phism ρ : G→ GL(m) such that im(ρ) = (im(ρ) ∩O(m)) · Λ(m).

We fix a dilation representation ρ : G → GL(m), which is left implicit in the notation, and
write �

m := (−1, 1)m ⊆ Rm for the open m-cube of side-length 2 centered at the origin.

Definition 5.6 ([DHK18, Def. 4.11]). A G-skew little cube is a pair (v, g) with v ∈ �
m and

g ∈ G such that the formula fv,g(x) = ρ(g)x + v specifies an embedding fv,g : �m → �
m. A

little m-cube is a Λ(m)-skew little cube.

The space CGm(k) of k-tuples of G-skew little cubes with pairwise disjoint images forms an

operad, with C
Λ(m)
m recovering the usual little m-cubes operad Cm.

Theorem 5.7 ([DHK18, Thm. 4.14]). Let ρ : G → GL(m) be a dilation representation. There
is a canonical weak equivalence of operads

ϕ : CGm → EndMfldGm
(Rm).

Using this map, we obtain a CGm-module CGM := ϕ∗HomMfldGm
(Rm,M) organizing the homotopy

types of the structured configuration spaces of the G-framed manifold M .

5.3. Additivity and the main result. Fix dilation representations G → GL(m) and H →

GL(n). There are canonical maps of operads CGm → CG×H
m+n and CHn → CG×H

m+n , and these two maps
satisfy the interchange relations defining a map ι from the Boardman–Vogt tensor product.

Conjecture 5.8. [DHK18, Conf. 4.18] Let G→ GL(m) and H → GL(n) be dilation represen-
tations. The map

ι : CGm ⊗ CHn → C
G×H
m+n

is a weak equivalence.

We view this conjecture as a statement of “local additivity” for configuration spaces. The
main result of [DHK18] is the following global additivity statement.

Theorem 5.9. [DHK18, Thm. 5.7] Let G → GL(m) and H → GL(n) be dilation representa-
tions, M a G-framed m-manifold, and N an H-framed n-manifold. If Conjecture 5.8 holds for
G and H, then there is a natural isomorphism

Ho(ι∗)(CG×H
M×N ) ∼= CGM ⊗

L CHN

in Ho(ModCG
m⊗CH

n
).

Combining this result with Theorem 4.9, we obtain the following consequence.

Corollary 5.10. Let G→ GL(m) and H → GL(n) be dilation representations, M a G-framed

m-manifold, and N an H-framed n-manifold such that G, H, ConfGk (M) and ConfHℓ (N) are all
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R-projective, and assume that Conjecture 5.8 holds for G and H. There is a natural, convergent
spectral sequence

E2
p,q
∼= Hp

(
H∗

(
ConfG(M);R

)
⋆L H∗

(
ConfH(N);R

))

q
=⇒ Hp+q

(
ConfG×H(M ×N);R

)

of R-linear CG×H
m+n -modules.

Since Conjecture 5.8 is known to hold in the classical case of G = Λm and H = Λn [Dun88,
Bri00], the proof of Theorem 1.1 is complete.

6. Formality and collapse

In this section, we prove Theorem 1.2, which asserts that the spectral sequence of Theorem
1.1 collapses in characteristic zero. In fact, we will show that collapse occurs in any situation in
which the operads in question are formal.

We maintain our convention that homology and tensor products are taken with respect to a
fixed commutative, unital ring R.

6.1. Formality and Yoneda diagrams. Throughout this section, O denotes a fixed operad
in ChR. The homology H∗(O) is then an operad in both ChR and grModR. In order to avoid
confusion, we reflect this distinction in the notation for categories of modules.

Definition 6.1. We say that O is formal if there is a zig-zag

O
f
←− Õ

g
−→ H∗(O)

of weak equivalences of operads such that the induced automorphism of H∗(O) is the identity.

Although it appears stronger, this condition is equivalent to the existence of an isomorphism
between O and H∗(O) in the homotopy category of operads in ChR. We record the following
basic observation about the homology of modules over a formal operad.

Lemma 6.2. If O is formal, and both O and H∗(O) are R-projective, then the diagram of functors

Ho(ModO)

H∗
((◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

f∗

// Ho(Mod
Õ
)

H∗

��

Lg!
// Ho(ModH∗(O)(ChR))

H∗uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

ModH∗(O)(grModR)

commutes.

Proof. The commuting of the lefthand triangle is obvious. Under the assumption of projectivity,
Lg! is an equivalence with inverse g∗ [Fre09, Thm. 16.B], so the righthand triangle commutes
for the same reason. �

The goal of this section is to investigate a consequence of formality at the level of certain
diagrams of O-modules.

Definition 6.3. Let I be a small category. A functor F : I→ ModO is called a Yoneda diagram
if it factors as

F : I −→ F(O)
YO−−→ ModO,

where YO denotes the enriched Yoneda embedding.
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Proposition 6.4. Suppose that O is formal and that both O and H∗(O) are R-projective. If
F : I→ ModO is a Yoneda diagram, then the canonical map

hocolim
I

H∗(F )→ H∗(hocolim
I

F )

in Ho(ModH∗(O)(ChR)) is an isomorphism.

Proof. The main step in the proof is to construct a weak equivalence H∗(F )
≃
−→ Lg!f

∗F of
diagrams ofH∗(O)-modules. Taking this task for granted momentarily, there results the sequence
of isomorphisms

H∗(hocolim
I

H∗(F ))
∼=
−→ H∗(hocolim

I

Lg!f
∗F )

∼=
−→ H∗(Lg!f

∗ hocolim
I

F ) ∼= H∗(hocolim
I

F )

in Ho(ModH∗(O)(ChR)), where the second uses that f∗ and Lg! both preserve homotopy colimits,
and the third uses Lemma 6.2. It follows that the standard spectral sequence, which converges
from the leftmost term to the rightmost term, collapses, implying the claim.

We construct the desired map in the universal case of I = F(O) and show that it is natural.
Let I and J be finite sets and ϕ ∈ F(O)(I, J) an operation. Consider the following commuting
diagram of H∗(O)-modules:

Lg!f
∗YO(I)

Lg!f
∗YO(ϕ)

// Lg!f
∗YO(J)

Lg!YÕ(I)

��

OO

Lg!YÕ
(ϕ)

// Lg!YÕ(J)

��

OO

g!YÕ(I)

≀

g!f
∗YO(ϕ)

// g!YÕ(J)

≀

YH∗(O)(I)
ψ

//❴❴❴❴❴❴❴ YH∗(O)(J)

(the map ψ is defined by requiring the bottom square to commute). We abuse notation slightly
in viewing the value of the derived functor Lg! as an object of the category of modules itself
rather than of the homotopy category, for example by applying a cofibrant replacement functor
pointwise.

Now, since Y
Õ

takes values in cofibrant modules, and since g! is left Quillen, the middle
vertical arrows are both weak equivalences. Since the top vertical arrows are weak equivalences
by assumption, it remains to verify that ψ = YH∗(O) ([ϕ]), but our assumption on the induced
automorphism of H∗(O) implies that this equality holds up to homology in F(H∗(O))(I, J). Since
this complex has trivial differential, the claim follows. �

6.2. Configuration spaces from Yoneda diagrams. In this section we complete the proof of
Theorem 1.2. The main step is to realize the module organizing the G-structured configuration
spaces of a G-framed manifold as the homotopy colimit of a Yoneda diagram. For the sake of
brevity, we write EGm := C∗(EndMfldGm

(Rm);R) and EGM := C∗(HomMfldGm
(Rm,M);R), which we

consider as an operad in ChR and a module over that operad, respectively. Notice that EGm is
always R-projective, and H∗(E

G
m) is R-projective provided H∗(G) is so—this last claim follows

from the Künneth and universal coefficient theorems and the fact that H∗(Confk(R
n);Z) is free

Abelian for every n and k [CLM76, Lem. III.6.2].
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Notation 6.5. Given a topological category C, we write Cδ for the underlying discrete category—
that is, the hom sets in Cδ are the underlying sets of the hom spaces of C.

Write DiskGm ⊆ MfldGm for the full topological subcategory spanned by those G-framed mani-
folds that are G-framed diffeomorphic to a (possibly empty) finite disjoint union of copies of Rm

with its canonical G-structure. Since the discrete topology is initial, there is a canonical enriched
functor Cδ → C. Thus, for a G-framed manifold M , there is a composite functor

Disk
G,δ
m/M → DiskG,δm → DiskGm → MfldGm

E
G
(−)
−−−→ ModEG

m
,

which we abusively write as EG(−), where the first functor in the sequence forgets the map to M .

Lemma 6.6. Let G→ GL(m) and H → GL(n) be dilation representations, M a G-framed and
N an H-framed manifold, and R a commutative ring.

(1) The functor EG×H
(−×−) : Disk

G,δ
m/M × Disk

H,δ
n/N → Mod

E
G×H
m+n

is a Yoneda diagram.

(2) The natural map

hocolim
Disk

G,δ
m/M

×Disk
H,δ
n/N

E
G×H
(−×−) → E

G×H
M×N

is an isomorphism in Ho(Mod
E

G×H
m+n

).

Proof. The first claim follows easily from the definitions and the equivalence of simplicial cate-
gories DiskG×H

m+n ≃ F(End
Mfld

G×H
m+n

(Rm+n)).

The second claim is essentially standard. In order not to duplicate efforts made elsewhere
in the literature, we will pass briefly into an ∞-categorical (i.e., quasicategorical) context—see
[Lur09] for a general reference on quasicategories. The reader is warned that our notation differs
from that of our references.

Our first task is to explain the following commutative diagram:

Disk(M)× Disk(N)

00

// Disk
G,δ
m/M × Disk

H,δ
n/N

��

// Disk
G,∞
m/M × Disk

H,∞
n/N

{{✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

DiskG,δm × DiskH,δn

ConfG×H
k (−×−)

��

Top∞

We consider the ordinary categories appearing in this diagram as ∞-categories via the (sup-
pressed) nerve functor, while the superscript ∞ indicates an ∞-category obtained from a topo-
logical category via the topological nerve functor [Lur09, Def. 1.1.5.5]. The category Disk(M) is
the partially ordered set of (possibly empty) unions of disjoint Euclidean neighborhoods in M

(resp. N).
As for the functors, the unmarked vertical functor is the product of the projections from the

overcategories, the righthand horizontal functor is the canonical one, the lefthand horizontal
functor is given by a choice of a set of parametrizations of the Euclidean neighborhoods in M

and N , and the curved functor is defined by commutativity.
We claim that the natural map from the ∞-categorical colimit of the vertical composite to

ConfG×H
k (M ×N) is an equivalence. To prove this claim, we will argue that this colimit agrees

with the colimit of the curved functor, then prove the corresponding claim for the curved functor.
According to [AF15, Prop. 2.19], the righthand horizontal functor is a localization inverting the

isotopy equivalences. Since configuration spaces are isotopy invariant, we conclude the existence
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of the dashed filler. Moreover, the same horizontal functor, as a localization, is final, so the
colimit in question coincides with the colimit of the dashed functor [Lur09, Prop. 4.1.1.8]. To
conclude that this colimit coincides with that of the curved functor, it suffices to show that the
horizontal composite is final, which follows by combining [Lur, Prop. 5.5.2.13] with the proof of
[AF15, Prop. 3.9].

We conclude the claim by noting that the ∞-categorical colimit coincides in the homotopy
category with the homotopy colimit [Lur09, Thm. 4.2.4.1], and the natural map

hocolim
Disk(M)×Disk(N)

ConfG×H
k (−×−)→ ConfG×H

k (M ×N)

is a weak equivalence by a well-known hypercover argument (see [DHK18, Lem. 5.5], for example).
The lemma now follows, after a second invocation of [Lur09, Thm. 4.2.4.1], from the natural

equivalences EmbG×H(∐kR
m+n,−×−)

∼
−→ ConfG×H

k (−×−), since the singular chains functor
preserves weak equivalences and homotopy colimits. �

Note the special cases of M = pt and N = pt, respectively.

Hypothesis 6.7. For the dilation representations G → GL(m) and H → GL(n) and the com-

mutative ring R, the operads EGm, EHn , and EG×H
m+n are formal.

We strongly emphasize that this hypothesis is not a conjecture; indeed, it is known to fail
in some cases [Mor17, Sal18]. On the other hand, by [FW18], the hypothesis holds for any m
and n as long as G and H are both contractible and R is a field of characteristic zero—see also
[Kon99, LV14]. Thus, Theorem 1.2 is a consequence of the following more general conditional
statement.

Theorem 6.8. Let G → GL(m) and H → GL(n) be dilation representations, M a G-framed
and N an H-framed manifold, and R a commutative ring. If Conjecture 5.8 and Hypothesis 6.7
hold for G, H, and R, and if G, H, ConfGk (M), and ConfHℓ (N) are all R-projective, then the
spectral sequence of Corollary 5.10 degenerates at E2.

Proof. To reduce notational clutter, we leave implicit all restriction functors along maps of

operads. We explain the following sequence of isomorphisms in Ho
(
Mod∆

op

(CG
m⋆C

H
n )R

)
:

H∗

(
CGM
)
⋆L H∗

(
CHN
) ≃
−→ H∗

(
EGM
)
⋆L H∗

(
EHN
)

≃
←− H∗

(
hocolim
Disk

G,δ
m/M

EG(−)

)
⋆L H∗

(
hocolim
Disk

H,δ
n/N

EH(−)

)

≃
←−

(
hocolim
Disk

G,δ
m/M

H∗

(
EG(−)

))
⋆L

(
hocolim
Disk

H,δ
n/N

H∗

(
EH(−)

))

≃
←− hocolim

Disk
G,δ
m/M

×Disk
H,δ
n/N

H∗

(
EG(−)

)
⋆L H∗

(
EH(−)

)

≃
−→ hocolim

Disk
G,δ
m/M

×Disk
H,δ
n/N

H∗

(
E
G×H
(−×−)

)

≃
−→ H∗

(
hocolim

Disk
G,δ
m/M

×Disk
H,δ
n/N

EG×H
(−×−)

)

∼=
−→ H∗

(
E
G×H
M×N

)

∼=
←− H∗

(
C
G×H
M×N

)
.
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The first and last follow from Theorem 5.7, the second and seventh from Lemma 6.6(2), the fourth
follows from Lemma 4.7, and the fifth from Lemma 4.6 (note that the modules in question are
totally free), Conjecture 5.8, and [DHK18, Thm. 5.6(2)]. For the remaining two, we argue as
follows. Using the dg-ification functor introduced in Section 3.3, we may interpret the diagrams
in question as diagrams of modules over the differential graded operads H∗(E

G
m), H∗(E

H
n ), and

H∗(E
G×H
m+n ), respectively. For these dg-ified diagrams, the desired equivalences follow, in light of

our assumptions, from Proposition 6.4 and Lemma 6.6(1). Since dg-ification preserves and reflects
homotopy colimits in our situation by Proposition 3.12, the claimed equivalences follow. �
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A KÜNNETH THEOREM FOR CONFIGURATION SPACES 21

[Mor17] S. Moriya, Non-formality of the odd dimensional framed little balls operads, Int. Math. Res. Notices
(2017).

[Mos] L. Moser, Injective and projective model structures on enriched diagram categories, arXiv:1710.11388.
[PR02] T. Pirashvili and B. Richter, Hochschild and cyclic homology via functor homology, J. K-Theory 25

(2002), 39–49.
[Sal18] P. Salvatore, Planar non-formality of the little discs operad in characteristic two, Quart. J. Math.

(2018).
[Sch] C. Schiessl, Betti numbers of unordered configuration spaces of the torus, arXiv:1602.04748.
[Tot96] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), no. 4, 1057–1067.

EPFL SV UPHESS, Station 8, CH-1015 Lausanne, Switzerland

Email address: kathryn.hess@epfl.ch

Department of Mathematics, Northeastern University, Boston 02115, USA

Email address: knudsen@math.harvard.edu


	1. Introduction
	1.1. Conventions
	1.2. Acknowledgements

	2. Operads and modules
	2.1. Operads and modules
	2.2. Homotopy theory of operadic modules
	2.3. Tensor products of operads and modules

	3. Linear modules
	3.1. Linearization
	3.2. Homotopy theory of linear operadic modules
	3.3. Simplicial linear vs. differential graded modules

	4. The operadic Künneth spectral sequence
	4.1. Linearized Boardman–Vogt tensor products
	4.2. The spectral sequence

	5. Application to configuration spaces
	5.1. Reminders on structured manifolds
	5.2. Skew little cubes and configuration spaces
	5.3. Additivity and the main result

	6. Formality and collapse
	6.1. Formality and Yoneda diagrams
	6.2. Configuration spaces from Yoneda diagrams

	References

