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ABSTRACT Regression is one of the core problems tackled in supervised learning. Neural networks with
rectified linear units generate continuous and piecewise-linear (CPWL) mappings and are the state-of-the-art
approach for solving regression problems. In this article, we propose an alternative method that leverages the
expressivity of CPWL functions. In contrast to deep neural networks, our CPWL parameterization guarantees
stability and is interpretable. Our approach relies on the partitioning of the domain of the CPWL function by
a Delaunay triangulation. The function values at the vertices of the triangulation are our learnable parameters
and identify the CPWL function uniquely. Formulating the learning scheme as a variational problem, we use
the Hessian total variation (HTV) as a regularizer to favor CPWL functions with few affine pieces. In this way,
we control the complexity of our model through a single hyperparameter. By developing a computational
framework to compute the HTV of any CPWL function parameterized by a triangulation, we discretize the
learning problem as the generalized least absolute shrinkage and selection operator. Our experiments validate
the usage of our method in low-dimensional scenarios.

INDEX TERMS Regression, sparsity, CPWL, simplicial splines, generalized LASSO.

I. INTRODUCTION
Supervised learning entails finding a function f : Rd → R

using a set of M training data points {xm}M
m=1 ⊂ R

d and their
target values {ym}M

m=1 ⊂ R. The function f should approx-
imate the target values at the data points ym ≈ f (xm) and
generalize well to new inputs [1]. In a variational framework,
the learning problem is formalized as the optimization task

min
f ∈X

M∑
m=1

E( f (xm), ym) + λR( f ), (1)

where X is the function search space, E : R × R → R+ is a
convex loss function controlling the data-fitting error, and R :
X → R is the regularizer. The hyperparameter λ ≥ 0 adjusts
the contribution of the regularizer. Regularization is used to
promote functions with desirable structures such as sparsity
and to reduce overfitting [2], [3].

In order to make (1) tractable, the search space X is usu-
ally expressed as a parametric space. For instance, linear

regression—the simplest model—reduces the learning prob-
lem to the search for a ∈ R

d and b ∈ R such that f (x) =
aᵀx + b [4]. This model is very well understood, but it is
severely lacking expressivity. Another approach to the learn-
ing problem is founded on the theory of reproducing-kernel
Hilbert spaces (RKHS) [5], [6]. If the search space in (1) is
the reproducing-kernel Hilbert space X = H(Rd ) with ker-
nel k : Rd × R

d → R, and R( f ) = ‖ f ‖2
H where ‖ · ‖H is

the Hilbert-space norm, then the RKHS representer theorem
states that the solution of (1) admits the closed-form

f (·) =
M∑

m=1

amk(·, xm) (2)

for some coefficients (am) ∈ R
M [7]. There, the problem

is recast into a solvable linear model. Moreover, by using
radial-basis functions as kernels, one can approach continuous
functions as closely as desired [8], [9], [10]. While kernel
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methods have nice theoretical properties, they are outper-
formed by deep neural networks, which have state-of-the-art
performance in many applications [11], [12], [13], [14].

A. FROM NEURAL NETWORKS TO CONTINUOUS AND
PIECEWISE-LINEAR MODELS
A neural network of depth L forms a mapping

x �→ (σL ◦ f θL
◦ σL−1 ◦ · · · ◦ σl ◦ f θl

◦ · · · ◦ σ1 ◦ f θ1
)(x),

(3)
where f θl

: Rdl−1 → R
dl is a learnable affine mapping param-

eterized by θl and σl is the nonlinearity (a.k.a. “activation
function”) performed in the lth layer. Among all possible
activation functions, the most common choice and usually
the best in terms of performance is the rectified linear unit
ReLU(x) = max(x, 0) [15]. It is known that a ReLU network
produces continuous and piecewise-linear (CPWL) functions
[16]. Conversely, any CPWL function can be described by a
ReLU network [17]. The CPWL model is universal, in the
sense that it can approximate any continuous mapping [18].

A major drawback of letting deep networks learn a CPWL
function is the lack of their interpretability, in the sense that
the effect of each parameter on the generated mapping is
not understood explicitly [19]. As such, it is hard to find a
regularization scheme for the training of networks that would
have an explicit geometric effect on the learned mapping
[20]. For instance, weight decay (the most popular regularizer)
somehow regulates the magnitude of the network parameters,
but its impact on the final mapping is hard to understand [21].
Recent research links the effect of weight decay in shallow
ReLU networks to the sparsity of the mapping in certain
latent spaces [22], [23], [24]. However, shallow networks are
not capable of representing all CPWL functions [25]. To the
best of our knowledge, there is no comprehensive variational
interpretation for deep networks.

B. VARIATIONAL LEARNING OF CPWL FUNCTIONS
Linear regression is interpretable but has almost no expres-
sivity. Deep neural networks, by contrast, have excellent
expressivity but are difficult to interpret. In this paper, we
try to reconcile the two approaches by proposing a scheme
that locally resembles linear regression and is therefore in-
terpretable. Our model maintains expressivity through the
underlying CPWL construction. This is achieved by inves-
tigating CPWL models that are solutions of a variational
problem with a regularization term that explicitly promotes
certain structures on the generated mapping. Such models
are well understood in the one-dimensional scenarios [26],
[27]. To that end, one rewrites (1) with f : R → R and the
second-order total variation TV(2)( f ) as the regularizer. Then,
by restricting the search space to functions with a bounded
second-order total variation, the extreme points of the solution
set are necessarily of the form

f : x �→ ax + b +
K∑

k=1

dk (x − τk )+, (4)

where a, b ∈ R, d = (dk ) ∈ R
K , K < M, and (τk ) ∈ R

K . By
inspection of (4), f is indeed a CPWL function [28]. For
such solutions, the regularization has the simple closed-form
TV(2)( f ) = ‖d‖�1 . As the �1-norm promotes sparsity, a reg-
ularization by the second-order total variation will promote
CPWL functions with few knots. The natural multidimen-
sional generalization of TV(2) is the Hessian total-variation
(HTV) seminorm [29] whose origin can be traced back to [30].
Since the null space of HTV is composed of affine mappings,
this regularization favors solutions that are predominantly
affine; typically, CPWL functions with few pieces. Hence,
HTV regularization allows direct control over the complexity
of the learned mapping. This concept was put into prac-
tice in [31], albeit in the restricted setting d = 2 (two input
variables). The CPWL functions in [31] are parameterized
through box splines on a hexagonal lattice. The extension
of this uniformly gridded framework to higher dimensions is
computationally restricted due to the exponential growth of
the number of grid points with the dimension.

Our framework addresses those limitations: (i) it is theo-
retically applicable to any number of dimensions and for any
type of (uniform or nonuniform) triangulation; and (ii) it can
be used in practice for intermediate dimensions d up to 9,
through our implementation. The present contributions are as
follows.

1) Use of a flexible parameterization of CPWL functions:
We partition the input domain by performing a Delau-
nay triangulation on a set of data-adaptive grid points;
the function values at the grid points are our learnable
parameters and identify the CPWL functions uniquely.
In fact, any d-dimensional CPWL function can be de-
scribed exactly by such a parameterization [32].

2) Development of a tractable scheme for computing HTV:
For the mentioned CPWL model, we show that HTV
is the �1-norm applied to a linear transformation of the
grid-point values. We present the details of the compu-
tation of this transformation for any set of grid points in
any dimension.

3) Efficient algorithm to solve the HTV learning problem:
We develop an iterative algorithm based on a two-step
fast iterative shrinkage-thresholding algorithm (FISTA)
to solve the training optimization problem [33]. Our
algorithm accommodates any choice of grid points.

We then validate the performance of our method, which we
refer to as DHTV, through experimental results.

C. ROADMAP
Our paper is organized as follows: In Section II, we intro-
duce the mathematical tools that we need to develop our
method. In Section III, we describe our CPWL parame-
terization, explain the procedure to calculate its HTV, and
derive the generalized least-absolute-shrinkage-and-selection-
operator (LASSO) formulation of our learning problem and
our proposed algorithm for solving it. Finally, we present our
experimental results in Section IV.
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FIGURE 1. Domain of a two-dimensional CPWL function. Each patch
corresponds to one linear region (left) and its partition into simplices
through a Delaunay triangulation (right).

II. PRELIMINARIES
A. DELAUNAY TRIANGULATION
In the d-dimensional space R

d , the convex hull of d + 1
affinely independent points forms a polytope known as a
d-simplex, or simplex for short. These simplices are indeed
triangles and tetrahedrons in 2- and 3-dimensional spaces.
A triangulation of a set X ⊂ R

d of points is the partition of
their convex hull into simplices such that any two simplices
intersect either at a face joint or not at all. Also, the triangula-
tion vertices, referred to as grid points, are exactly the points
themselves. We consider two simplices as neighbors if their
intersection is a facet, which is a (d − 1)-simplex. In general,
a triangulation of a set of points is not unique. A celebrated
triangulation method is the Delaunay triangulation.

Definition 1 (Delaunay Triangulation): For a set X of
points in R

d , a Delaunay triangulation is the triangulation
DT (X) such that no point in X is inside the circum-
hypersphere of any simplex in DT (X).

Simply put, the Delaunay triangulation partitions the con-
vex hull of points into well-formed simplices. Specifically for
d = 2, it is known that the Delaunay triangulation maximizes
the minimal angle of the triangles of the triangulation and
avoids skinny triangles. Similar optimal properties exist in
higher dimensions [34]. In addition, there exist computational
methods that produce Delaunay triangulations in any dimen-
sion [35], [36].

B. CONTINUOUS AND PIECEWISE-LINEAR FUNCTIONS
Definition 2 (CPWL function): A function f : Rd → R is
continuous and piecewise-linear if

1. it is continuous;
2. its domain � = ⋃

n Pn can be partitioned into a set of
non-overlapping polytopes Pn over which it is affine,
with f |Pn (x) = aT

n x + bn.
The gradient of the function over each polytope or, equiv-

alently, each linear region Pn, is ∇ f |Pn (x) = an. We denote
the intersection facet of two neighboring polytopes Pn and Pk

as Ln,k . The (d − 1)-dimensional volume of the intersection
is denoted by Vold−1(Ln,k ). For d = 2 and d = 3, this volume

corresponds to length and area, respectively. Finally, we define
un,k ∈ R

d as the unit vector that is normal to Ln,k . We follow
these notations throughout the paper.

Alternatively, any CPWL function can be defined by a
triangulation and the values of the function at its vertices,
which we refer to as the simplicial parameterization of CPWL
functions. The Authors in [37] use a similar parameterization.
This parameterization yields a Riesz basis, which guarantees
a unique and stable link between the model parameters and
the CPWL function [32]. In Fig. 1, we show an example of
the domain of an arbitrary CPWL function and a possible
triangulation of it.

C. HESSIAN TOTAL VARIATION
1) GENERALIZED HESSIAN MATRIX
The Hessian matrix of a twice-differentiable function f :
R

d → R is defined as

H{ f } =

⎡
⎢⎢⎢⎣

∂2 f
∂x2

1
· · · ∂2 f

∂x1∂xd

...
. . .

...
∂2 f

∂xd ∂x1
· · · ∂2 f

∂x2
d

⎤
⎥⎥⎥⎦ . (5)

One can extend this definition to generalized functions (dis-
tributions) by using the notion of weak partial derivatives.
This enables us to define the Hessian of CPWL functions
even though they are not twice-differentiable in the classical
sense. Using the Hessian matrix, we have that D2

u f (x) =
uT H{ f }(x)u, where D2

u f is the second-order directional
derivative of f along the direction u. A symmetric Hessian
matrix has a complete set of eigenvalues and eigenvectors
which form an orthogonal basis for R

d . Consequently, the
second-order directional derivative along the eigenvector vq

of the Hessian is its associated eigenvalue λq, with D2
vq

f (x) =
λq for q ∈ 1, . . . , d . If we use the eigenvectors of the Hessian
to represent the direction u = ∑d

q=1 tqvq, then we have that

D2
u f (x) = ∑d

q=1 t2
q λq. This means that at each point x ∈ R

d

of the domain, the second-order directional derivatives along
the eigenvectors of the Hessian fully characterize the second-
order derivatives of f along any direction.

2) SCHATTEN P-NORM
The Schatten p-norm ‖ · ‖Sp of a matrix A ∈ R

d×d for p ∈
[1,+∞] is defined as the �p-norm of its singular values given
by

‖A‖Sp :=

⎧⎪⎪⎨
⎪⎪⎩
(

d∑
k=1

σk
p

) 1
p

, 1 ≤ p < +∞

max
k

σk, p = +∞,

(6)

where (σ1, . . . , σd ) are the singular values of A. In this paper,
we focus on the S1-norm and its dual S∞.
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3) HESSIAN TOTAL VARIATION
If f is twice differentiable with a symmetric Hessian at
x ∈ R

d , then ‖H{ f }(x)‖S1 is given by the �1-norm of the
second-order directional derivatives along the eigenvectors of
the Hessian matrix. This measure provides a local character-
ization of the second-order variation of f . Hence, the total
variation of the mapping · �→ ‖H{ f }(·)‖S1 is a reasonable
generalization of the second-order total variation for multi-
dimensional functionals. This is referred to as the Hessian
total variation. If H{ f } ∈ L1(Rd ;Rd×d ), then HTV is simply
defined as

HTV( f ) = ∥∥‖H{ f }‖S1

∥∥
L1

=
∫
Rd

d∑
k=1

σk (H{ f }(x))dx. (7)

In particular, by using the HTV as a regularizer, we pro-
mote configurations where most of the singular values of
the Hessian are zero throughout the function domain due to
the sparsity effects of the �1- and L1-norms. In that manner,
CPWL functions are of special interest as their second-order
directional derivatives vanish almost everywhere. Specifically,
the gradient of a CPWL function f admits the explicit form

∇ f (x) =
∑

n

an1Pn (x), (8)

where the indicator function 1Pn is equal to one inside the
simplex Pn and zero elsewhere. Hence, the second-order direc-
tional derivatives vanish everywhere except on the boundaries
of the domain polytopes. There, the generalized Hessian ma-
trix of the CPWL functions exhibits delta-like distributions.
While (7) helps us understand the effect of HTV, it is not ap-
plicable to CPWL functions which are not twice-differentiable
in the classical sense. To accommodate for this latter type of
functions, we need to adopt a more permissive distributional
definition of HTV. Specifically, we define

HTV( f ) = ‖H{ f }‖S1,M , (9)

where H denotes the Hessian in the sense of distributions. The
mixed norm ‖ · ‖S1,M for any matrix-valued distribution W ∈
S ′(Rd ;Rd×d ) is

‖W‖S1,M := sup{〈W, F 〉 : F ∈ S (Rd ;Rd×d ),

‖F‖S∞ ≤ 1}. (10)

This formulation enables us to derive a closed form for the
HTV of a CPWL function f as

HTV( f ) =
∑

(n,k)∈N

∣∣uT
n,k (ak − an)

∣∣Vold−1(Ln,k ) (11)

=
∑

(n,k)∈N
‖ak − an‖2 Vold−1(Ln,k ), (12)

where the set N contains all unique pairs of neighboring
polytope indices (see [29] for more details). Eq. (12) tells
us that, for CPWL functions, HTV penalizes the change of

FIGURE 2. The kth vertex of the triangulation with coordinate τk is
included in 4 domain simplices {Tk,l }4

l=1 over which the associated
simplicial basis (hat) function sk (x) is illustrated.

slope at neighboring domain polytopes by the volume of their
intersection. For a purely affine mapping, the HTV is zero.
Otherwise, it increases with the number of affine pieces.

HTV admits the following properties [29, Appendix C]:

1) HTV ( f (U ·))) = HTV( f ), U ∈ R
d×d : UT U = I;

2) HTV ( f (α ·)) = |α|2−d HTV( f ), ∀α ∈ R;
3) HTV ( f (· − x0)) = HTV( f ), ∀x0 ∈ R

d . (13)

In other words, HTV is invariant to translation and rotation
while it is covariant with scaling.

III. METHODS
Let us perform a Delaunay triangulation on the set Tg =
{τk}Ng

k=1 ⊂ R
d of grid points. We denote the resulting sim-

plices by T = {Tn}Ns
n=1. We define the CPWL functions fHull

inside the convex hull Hull(Tg) by designating the members
of T as their linear regions. Then, the functions are parame-
terized as

fHull(x) =
Ng∑

k=1

cksk (x) (14)

with expansion coefficients ck ∈ R and basis functions sk . The
basis sk is the hat function attached to the kth vertex. It is is
given by

sk (x) =
{

βk,l (x), x ∈ Tk,l

0, otherwise.
(15)

Tk,l is the l-th simplex that contains the vertex k and βk,l (x)
is the barycentric coordinate of the point x inside the simplex
Tk,l with respect to vertex k [32]. The basis functions sk are
continuous and form a Riesz basis for the space. From the
definition of barycentric coordinates, we know that sk (τk ) = 1
and that sk (τn) = 0, n �= k. We illustrate an example of this
basis function in Fig. 2 for d = 2. Consequently, the ck in
(14) are given by ck = fHull(τk ). The item of relevance is that
the function fHull is uniquely identified by {(τk, ck )}Ng

k=1. An
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FIGURE 3. (a) Example of a CPWL function fHull defined through a
triangulation. Over each simplex TA, one can identify the function fHull by
the plane that passes through the points {(τk, fHull (τk ) = ck )}τk∈TA . The
vector nA corresponds to the normal vector of that plane. (b) Top view of
the domain simplices TA and TB.

example of such a function is illustrated in Fig. 3(a). In our
work, the grid points are immutable and c = (ck ) is our vector
of learnable parameters. These parameters are the sampled
values of the function at the vertices of the triangulation.
Hence, their effect on the generated mapping is known, which
makes our model directly interpretable. We can also write the
function fHull as

fHull(x) = γT
x c, (16)

where γx = (sk (x))
Ng
k=1. The importance of this representation

is that it expresses the function value as a linear combination
of the grid-point values c. In each simplex, the only nonzero
basis functions are the ones defined over the vertices of that
simplex. This implies that there are at most (d + 1) nonzero
values in the vector γx.

A. FORWARD OPERATOR
Given the set of training {(xm, ym)}M

m=1 data, we choose grid
points Tg such that all data points are inside Hull(Tg). Then,
the function fHull is evaluated at data points as

f = Hc, (17)

where f = ( fm)M
m=1 and fm = fHull(xm). The matrix H ∈

R
M×Ng is referred to as the forward operator and is a mapping

between the grid-point values c and the values of the function

f at the data points. If we represent the forward matrix as

H =

⎡
⎢⎢⎣

hT
1
...

hT
Ng

⎤
⎥⎥⎦ , (18)

then, by (16), each row of H can be written as h�
m = γ�

xm
. This

implies that H is a sparse matrix with at most (d + 1) nonzero
entries per row.

B. REGULARIZATION OPERATOR
To determine the Hessian total variation of the function fHull
through (11), we need to calculate three quantities for each
pair of neighbor simplices in T ; the gradient difference of
the affine pieces over those pairs; the unit normal of their
intersection; and, finally, their intersection volume.

Setup: Assume that TA, TB ∈ T are two neighboring sim-
plices and that the sets of indices of their vertices are VA

and VB, with |VA| = |VB| = d + 1. We denote the vertices
of their intersection by VA,B = VA ∩ VB. There are exactly
d common vertices between two neighboring simplices, so
that |VA,B| = d . We assume that τ̃0, τ̃d+1 and c̃0, c̃d+1 are the
coordinates and values at the vertices indexed by members
of VA \ VA,B and VB \ VA,B. Also, we denote τ̃l and c̃l the
coordinate and value of the vertex indexed by the l-th smallest
member of VA,B for 1 ≤ l ≤ d . We show an example of this
setup in Fig. 3(b).

Theorem 1 (Gradient difference): Let ∇ fHull|TA (x) = aA

and ∇ fHull|TB (x) = aB. Their difference can be expressed as
the linear combination of grid points values c given by

aA − aB = GA,Bc, (19)

where

GA,B =
[
GA1 GB − GA −GB1

]
WA,B,

GA =

⎡
⎢⎢⎣

(τ̃0 − τ̃1)T

...

(τ̃0 − τ̃d )T

⎤
⎥⎥⎦

−1

, GB =

⎡
⎢⎢⎣

(τ̃d+1 − τ̃1)T

...

(τ̃d+1 − τ̃d )T

⎤
⎥⎥⎦

−1

.

(20)

There, the symbol 1 represents the vector (1)d
k=1 and WA,B =

[wp,k](d+2)×Ng is a sparse binary matrix such that wp,k = 1 if
and only if τ̃ p = τk .

Proof: Since fHull is affine over the simplices TA and TB,
we have that{

(τ̃0 − τ̃ p)T aA = c̃0 − c̃p, p = 1, ..., d

(τ̃d+1 − τ̃ p)T aB = c̃d+1 − c̃p, p = 1, ..., d.
(21)

Putting all equations together, we obtain that

aA =

⎡
⎢⎢⎣

(τ̃0 − τ̃1)T

...

(τ̃0 − τ̃d )T

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

c̃0 − c̃1
...

c̃0 − c̃d

⎤
⎥⎥⎦ = GA

⎡
⎢⎢⎣

c̃0 − c̃1
...

c̃0 − c̃d

⎤
⎥⎥⎦
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= c̃0GA1 − GA

⎡
⎢⎢⎣

c̃1
...

c̃d

⎤
⎥⎥⎦ . (22)

By analogy, we have that

aB = c̃d+1GB1 − GB

⎡
⎢⎢⎣

c̃1
...

c̃d

⎤
⎥⎥⎦ . (23)

Next, we write the difference of aA and aB as

aA =
[
GA1 −GA 0

]
⎡
⎢⎢⎣

c̃0
...

c̃d+1

⎤
⎥⎥⎦ , (24)

aB =
[
0 −GB GB1

]
⎡
⎢⎢⎣

c̃0
...

c̃d+1

⎤
⎥⎥⎦ , (25)

where 0 = (0)d
k=1. Hence,

aA − aB =
[
GA1 GB − GA −GB1

]
⎡
⎢⎢⎣

c̃0
...

c̃d+1

⎤
⎥⎥⎦ (26)

and, from the definition of WA,B, we know that⎡
⎢⎢⎣

c̃0
...

c̃d+1

⎤
⎥⎥⎦ = WA,Bc. (27)

From (26) and (27), we finally obtain (19). �
Theorem 2 (Determination of a normal vector): The unit

normal uA,B of the intersection of TA and TB is given by

uA,B = N[1:d,1]∥∥N[1:d,1]
∥∥ , (28)

where

N =

⎡
⎢⎢⎢⎢⎣

τ̃T
0 1

τ̃T
1 1
...

...

τ̃T
d 1

⎤
⎥⎥⎥⎥⎦

−1

(29)

and where the slicing operator [1 : d, 1] returns the first d
elements of the first column of N.

Proof: The intersection of TA and TB is the facet opposite to
the vertex with coordinate τ̃0 in the simplex TA. We show that
z0 = N[1 : d, 1] is perpendicular to that facet and, hence, to
the intersection. From the definition of the inverse, we know

that ⎡
⎢⎢⎢⎢⎣

τ̃T
0 1

τ̃T
1 1
...

...

τ̃T
d 1

⎤
⎥⎥⎥⎥⎦N = I. (30)

Hence, if we write the matrix N as

N =
[

z0 · · · zd

−b0 · · · −bd

]
(31)

for some {zk}d
k=0 ⊂ R

d and {bk}d
k=0 ⊂ R, then we have that⎡

⎢⎢⎣
τ̃T

0 1
...

...

τ̃T
d 1

⎤
⎥⎥⎦
[

z0 · · · zd

−b0 · · · −bd

]
=

⎡
⎢⎢⎣

1 0
. . .

0 1

⎤
⎥⎥⎦ . (32)

In particular, this implies that τ̃T
0 z0 = 1 + b0 and τ̃T

mz0 = b0

for m > 0, so that

(τ̃m − τ̃l )
T z0 = b0 − b0 = 0, (33)

for m > 0, l �= m. Eq. (33) implies that z0 is perpendicular to
the simplex formed by τ̃1, . . . , τ̃d , which is exactly the facet
opposite to τ̃0 and is the intersection of TA and TB. �

Theorem 3 (Cayley–Menger determinant [38]): The (d-
1) dimensional volume Vol of the simplex formed by
{τ̃1, . . . , τ̃d } is given by

Vol2 = γ

∣∣∣∣∣∣∣∣∣∣∣

0 d̃1,2 · · · d̃1,d 1
d̃2,1 0 · · · d̃2,d 1

...
...

. . .
...

...
d̃d,1 d̃d,2 · · · 0 1

1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣
, (34)

where d̃k,l = ‖τ̃k − τ̃l‖2 and

γ = (−1)d

((d − 1)!)22d−1
. (35)

The intersection of TA and TB is the simplex formed by
{τ̃1, . . . , τ̃d }. Hence, by using Theorem 3, we can obtain the
intersection volume VolA,B.

We define the matrix RA,B as

RA,B = VolA,BuT
A,BGA,B. (36)

From Theorems 1, 2, 3 we have that∣∣uT
A,B(aA − aB)

∣∣Vold−1(LA,B) = ∣∣RA,Bc
∣∣ . (37)

From (11), we then calculate the HTV of fHull as

HTV( fHull) =
∑

(A,B)∈NT

∣∣RA,Bc
∣∣ = ‖Lc‖1 , (38)

where NT is the set of all unique neighbor simplices in T .
In (38), L is a sparse matrix that is referred to as the regular-
ization operator. It is of size (|NT |, Ng), and each of its rows
corresponds to the HTV term associated with two neighbor

172 VOLUME 4, 2023



Algorithm 1: Iterations to Solve. (41)
1: Initialize :c0 = 0, d0 = 0, t0 = 1;
2: for k = 0 → Niter1 do
3: ck+1 = Proxα1,g(dk − α1(HT Hdk − HT y));

4: tk+1 = 1+
√

4t2
k +1

2 ;

5: dk+1 = ck+1 + tk−1
tk+1

(ck+1 − ck )
6: end for
7: return ck+1

simplices. Hence, there are at most d + 2 nonzero elements at
each row of L.

C. LEARNING PROBLEM
To learn the regressor f̂ for some given data {xm, ym}M

m=1, we
propose to solve the optimization problem

f̂ ∈ arg min
f ∈XCPWL

M∑
m=1

E( f (xm), ym) + λHTV( f ), (39)

where XCPWL represents the CPWL function search space. If
we restrict the search space to CPWL functions fHull parame-
terized by a triangulation over a set of grid points Tg, then we
have that

f̂Hull ∈ arg min
fHull∈XTg

M∑
m=1

E( fHull(xm), ym) + λHTV( fHull). (40)

Using the forward and regularization operators introduced in
Sections III-A and III-B and with y = (ym)M

m=1, we rewrite
(40) as

ĉ ∈ arg min
c∈RNg

1

2
‖y − Hc‖2

2 + λ ‖Lc‖1 . (41)

Formulation (41) recasts the problem of finding f̂ into a
discrete problem of finding grid values ĉ. It is generically re-
ferred to as the generalized LASSO in the literature [39], [40].
We have developed an iterative procedure based on FISTA to
solve (41) [33]. We report its steps in Algorithm 1, where
g(z) = λ‖Lz‖1. We set the value of α1 as the reciprocal of
the largest eigenvalue of HT H. The most critical calculation
in Algorithm 1 is the evaluation of the proximal operator of g,
which is done as

Proxα1,g(z) = arg min
w∈RNg

(
1

2
‖w − z‖2

2 + α1λ ‖Lw‖1

)
. (42)

In our particular setting, it is more efficient to consider the
dual problem of (42), as expressed by

û ∈ arg min
u∈R|NT |

1

2

∥∥z − LT u
∥∥2

2 subject to ‖u‖∞ ≤ α1λ, (43)

and to then invoke Proxα1,g(z) = (z − LT û) [39]. We use
another FISTA to solve (43). We report its steps in Algorithm
2. There, α2 is set to the reciprocal of the largest eigenvalue of

Algorithm 2: Computation of Proxα1,g(z).

1: Initialize :u0 = 0, v0 = 0, t0 = 1;
2: for k = 0 → Niter2 do
3: uk+1 = Clip(vk − α2(LLT vk − Lz), α1λ);

4: tk+1 = 1+
√

4t2
k +1

2 ;

5: vk+1 = uk+1 + tk−1
tk+1

(uk+1 − uk )
6: end for
7: return (z − LT uk+1)

LT L, while the function Clip(a, λ) is defined as

(Clip(a, λ))k =

⎧⎪⎨
⎪⎩

−λ, ak < −λ

ak, |ak| ≤ λ

λ, ak > λ.

(44)

If we choose the grid points of the triangulation as the data
points, then the forward matrix H is the identity. In this case,
the solution of (41) is unique and equal to ĉ = Prox1,g(y),
which is directly made accessible using Algorithm 2.

D. FINAL REGRESSOR
The solution of (41) gives us the grid values ĉ that define
uniquely the CPWL function f̂Hull. However, the domain of
the definition of this function is restricted to the convex hull
of the grid points. The most intuitive way to extend f̂Hull is
to use the notion of nearest neighbors and assign the value of
the closest grid points to the points outside the convex hull.
However, the mapping generated by using nearest neighbors
is piecewise-constant outside the convex hull, which does not
generate a global CPWL relation. To overcome this issue, we
define our final CPWL function f̂CPWL over Rd as

f̂CPWL(x) =
{

f̂Hull(x), x ∈ Hull(Xg)

f̂Hull(�(x)), otherwise,
(45)

where � is the orthogonal projection of the point x onto the
convex hull of the grid points. The projection on the convex
hull can be formulated as a quadratic optimization problem
[41]. It can be shown that the solution to this problem cor-
responds to CPWL functions so that our final regressor is
guaranteed to be globally CPWL [42].

E. LIPSCHITZ CONSTANT OF THE FINAL REGRESSOR
The Lipschitz constant of a mapping is the maximal modulus
of the rate of change in the output relative to a change in the
input. It measures the stability of the mapping. The Lipschitz
constant of a continuous and almost-everywhere differentiable
function f : Rd → R is known to be

Lip( f ) = ess supx∈Rd (‖∇ f (x)‖2), (46)

which is the supremum of the gradient magnitudes. By plug-
ging in (8), we find that

Lip( f̂Hull) = max
A∈T

(‖aA‖2). (47)
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FIGURE 4. Effect of the regularization hyperparameter λ on the learned function for the evaluation map of the Matterhorn with our framework. Each
column includes the results for the specified λ. The images in the first and second row give the top and side views of the learned mappings.

Our final regressor f̂CPWL is the composition of the projection
on the convex hull � and f̂Hull. Since the projection onto a
convex set is non-expansive [43], we have that Lip(�) = 1.
Moreover, we infer that

Lip( f̂CPWL) = max
A∈T

(‖aA‖2). (48)

Hence, we can compute the exact Lipschitz constant of our
introduced regressor. Through our experiments, we are going
to show that regularization with HTV favors mappings with
low Lipschitz constants.

IV. EXPERIMENTS
In this section, unless stated otherwise, we choose the grid
points as the training data points. In case of duplicate data
points, we keep only one of them and let its target value be the
average of the target values of the duplicates. This results in
the forward operator H being identity and enables us to solve
the learning problem with Algorithm 2. To have comparable
ranges in each dimension of the input space, we standardize
each feature. For the Delaunay triangulation, we use Scipy,
which can safely handle data up to dimension d = 9 [44]. Our
codes are available on the GitHub repository1.

A. EFFECT OF REGULARIZATION
The purpose of our first experiment is to illustrate the effect
of regularization. To that end, we consider the elevation map
f : R2 → R of the iconic Swiss mountain Matterhorn. We
sample randomly 4800 points from the domain of the func-
tion2. Then, the mountain is reconstructed from the sampled
data using our framework (DHTV). The result of the DHTV
learning is reported in Fig. 4 for several values of the regu-
larization hyperparameter λ. When λ increases, we see that

1https://github.com/mehrsapo/DHTV/
2https://lpdaac.usgs.gov/products/astgtmv003/

TABLE 1. Comparison with [31]

the number of affine pieces of the final mapping decreases.
Interestingly, the regularizer tends to omit local fluctuations
while preserving the main ridges. We also report the Lipschitz
constant of each mapping. As expected, the Lipschitz constant
decreases with an increase of λ.

B. COMPARISON WITH [31]
In two dimensions, we validate our framework by comparing
it to [31] (HTV-Box). We learn a R2 → R mapping using data
from a face-height map3 corrupted with additive Gaussian
noise. We use 15000 training points.

For our framework, we propose two alternative ways to
define the grid: (i) we place grid points on a (128 × 128)
hexagonal lattice (DHTV-Hex); or, (ii) we set them as the
training data points (DHTV-Id). For fair comparisons, we also
set the size of the HTV-Box lattice to (128 × 128). DHTV-
Hex and HTV-Box have the same triangulation; therefore,
they induce the same CPWL parameterization. To solve the
learning task for DHTV-Hex and DHTV-Id, we use Algorithm
1 with {niter1 = 400, niter2 = 500} and {niter1 = 1, niter1 =
200000}, respectively. For HTV-Box, we use the alternating
direction method of multipliers (ADMM) as in [31] with
200000 iterations.

In Table 1, we report the number Ng of parameters and the
training and testing errors of each model for the validated

3https://www.turbosquid.com/3d-models/3d-male-head-model-1357522/
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FIGURE 5. Loss of the learning task as implemented through Algorithm 1
versus the scheme used in [31].

regularization hyperparameter. We find that DHTV-Hex and
HTV-Box are equivalent, as expected, and that DHTV-Id has
comparable performance in terms of the test error. However,
we observe a difference in the HTV values. This difference for
DHTV-Id is due to the different parameterization. For DHTV-
Hex and HTV-Box, it originates from the faster convergence
of Algorithm 1 in comparison with ADMM used in [31]. We
illustrate this phenomenon in Fig. 5, where we show that, if
we use Algorithm 1 to solve the learning problem in [31],
then DHTV-Hex and HTV-Box obtain the exact same final
cost. Meanwhile, for a fixed number of iterations, ADMM
yields a larger objective cost. In this figure, we have that
Obj(c) = 1

2‖y − Hc‖2
2 + λ‖Lc‖1, and ĉ is the solution with

the lowest cost achieved across all methods.

C. EXPERIMENTS ON REAL DATA
For the experiments of this section, we use four different
datasets suitable for regression analysis. The tasks there are to
predict (i) the energy output of a power plant (PowerPlant),
(ii) an average localization error (ALE), (iii) house prices
(Housing with two features), and (iv) the autonomy of a car
in miles per gallon (AutoMPG) based on some relevant input
variables [45], [46], [47], [48]. These datasets correspond to
the learning of f : R4 → R, f : R4 → R, f : R2 → R, and
f : R7 → R, respectively. The mappings contain 9569, 108,
20433, 398 samples, respectively. We compare four learning
schemes: linear regression (LR), our framework (DHTV),
neural networks (NN), and a kernel method with Gaussian

TABLE 2. Comparisons of Metrics for different datasets

radial-basis functions (RBF). For all learning schemes, we
perform 30 independent runs. At each run, we split the data
randomly into the train (70%), validation (15%), and test
(15%) points. In our framework, at each run, we perform a
grid search on the values of the regularization hyperparameter
λ and retain the best λ in terms of the validation error. For
the neural network, we try two fully connected networks: the
first is a two-layer neural network (NN2) with 500 units in
the hidden layer (253501 parameters); the second is a six-
layer network (NN6) with 200 units per hidden layer (202201
parameters). To train the networks, we use the ADAM op-
timizer [49], a batch size of 1024, and 1000 epochs. We
set the learning rate to 0.001 at the beginning and reduce
it by a factor of 10 in the 400th, 600th, and 800th epochs.
For these architectures (NN2 and NN6), we perform at each
run a grid search on the weight-decay hyperparameter. We
also perform a grid search on the hyperparameters of the
RBF method and choose the model with the best validation
error. To achieve a fair comparison of the HTV estimations
of each model, we construct a random triangulation where
the coordinates of these grid points follow a standard normal
distribution in each dimension. We sample the final mapping
of each model on the random grid points and calculate the
HTV of the mapping using the sampled function values cR,
the regularization operator of the random triangulation LR,
and Formula (38). In addition, we define a metric of sparsity
as ‖|LRcR|≤ε‖0

Number of rows of LR
× 100. It corresponds to the percentage

of almost-coplanar linear pieces over neighboring pairs of
simplices. In practice, we set ε = 0.05. We report in Table 2
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FIGURE 6. Effect of the regularization hyperparameter λ in the DHTV framework on: (i) average validation mean-squared error; (ii) sparsity; (iii) HTV; and
(iv) Lipschitz constant for the PowerPlant dataset. The 90% confidence interval of each metric is depicted.

the metrics averaged over 30 random splittings. The reported
HTV is normalized by the mean HTV of the interpolation
result or, equivalently, the generated mapping when λ = 0 in
the DHTV framework. We observe that DHTV performs well
in terms of prediction error in comparison with other methods,
Our parameterization results in a mapping with a low fitting
error and a good prediction power. Furthermore, our literal
description of a CPWL function is easier to interpret than
what is provided by a neural network. An important feature
of our method is the control of the complexity of the model
by the value of λ. In Fig. 6, we show that tuning λ yields
(i) sparser mappings while maintaining or even increasing the
generalization performance, and (ii) more stable mappings
in the sense of a smaller Lipschitz constant. In addition, as
we can see in Table 2, the HTV and sparsity metrics are
in correspondence with the prediction error of the various
models, confirming that HTV is a good metric for the model
complexity.

D. DISCUSSION
Our numerical experiments showed that DHTV has a perfor-
mance that is on par with that of neural networks. The key
advantages of our approach over the networks are as follows.

1) Stable parameterization: We use a simplicial parameter-
ization where the effect of each parameter is local and
stable in contrast to that of neural networks [32].

2) Global understanding of the mapping: Our model allows
for a direct access to the linear regions of the map-
ping. In effect, this enables the computation of the exact
Lipschitz constant. By contrast, the identification of the
linear regions of ReLU neural networks is known to be
NP-hard, while the same holds true for the determina-
tion of their Lipschitz constant [50].

3) Promotion of simplicity: The generated mappings are
solutions to a variational optimization problem with
HTV regularization that has an explainable geomet-
ric effect on the mapping. More precisely, HTV is a
relaxation of the number of affine pieces of a CPWL
function and, thus, favors simpler models.

4) Training with global-minima guarantees: Our optimiza-
tion problem is convex. This is unlike the training of

neural networks, which involves a highly non-convex
optimization task.

These four features make our method interpretable. Al-
though our method can be theoretically used in any dimen-
sion, it is challenging to deploy for d ≥ 10 in practice, mainly
due to the construction of the Delaunay triangulation, which
faces the curse of dimensionality. Neural networks, by con-
trast, can handle data in arbitrary high dimensions, which is
one of the main reasons for their popularity.

V. CONCLUSION
We have proposed a novel regression method referred to as
Delaunay Hessian total variation (DHTV). Our approach pro-
vides continuous and piecewise-linear (CPWL) mappings—
the same class of functions generated by ReLU networks.
We employ a parameterization based on the Delaunay trian-
gulation of the input space. This parameterization represents
any CPWL function by its samples on a grid. Unlike deep
networks, it is straightforward to understand the effect of
the model parameters on the mapping, which makes the pro-
posed model directly interpretable. We have formulated the
learning process as a convex minimization task. The Hessian
total variation (HTV) regularization was used to control the
complexity of the generated mapping. HTV has an intuitive
formula for CPWL functions which involves a summation
over individual affine pieces. We have shown that the HTV
of the proposed model is the �1-norm applied to a linear
transformation of the grid-point values. This result has en-
abled us to recast the learning problem as the generalized least
absolute shrinkage and selection-operator. By a clever choice
of grid points, we use the fast iterative shrinkage-thresholding
algorithm to solve the optimization problem. Our experiments
show that the HTV regularizing leads to simple models while
preserving the generalization power. In future works, we plan
to investigate the removal of unnecessary grid points based
on their contribution to the HTV, which could be used for
mesh-simplification purposes.
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