
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 1

Self-Correcting Quadratic Programming-Based
Robot Control

Farshad Khadivar1†∗, Konstantinos Chatzilygeroudis2,3†, and Aude Billard1

Abstract—Quadratic Programming (QP)-based controllers al-
low many robotic systems, such as humanoids, to successfully
undertake complex motions and interactions. However, these
approaches rely heavily on adequately capturing the underlying
model of the environment and the robot’s dynamics. This
assumption, nevertheless, is rarely satisfied, and we usually turn
to well-tuned end-effector PD controllers to compensate for model
mismatches. In this paper, we propose to augment traditional
QP-based controllers with a learned residual inverse dynamics
model and an adaptive control law that adjusts the QP online to
account for model uncertainties and unforeseen disturbances. In
particular, we propose (i) learning a residual inverse dynamics
model using the Gaussian Process and linearizing it so that it
can be incorporated inside the QP-control optimization procedure
and (ii) a novel combination of adaptive control and QP-based
methods to avoid the manual tuning of end-effector PID con-
trollers and faster convergence in learning the residual dynamics
model. In simulation, we extensively evaluate our method in
several robotic scenarios ranging from a 7-DoFs manipulator
tracking a trajectory to a humanoid robot performing a waving
motion for which the model used by the controller and the
one used in the simulated world do not match (unmodeled
dynamics). Finally, we also validate our approach in physical
robotic scenarios where a 7-DoFs robotic arm performs tasks
where the model of the environment (mass, friction coefficients,
etc.) is not fully known.

Index Terms—Learning control systems, model reference adap-
tive control, quadratic programming, torque control, residual
inverse dynamics.

I. INTRODUCTION

In multi-body robotic systems, we need to carefully co-
ordinate a large number of degrees of freedom (DoFs) and
interaction forces. Such coordination becomes more challeng-
ing when operating in task-space, even for the simplest tasks,
e.g., a bimanual robot interacting with an object [1]. Quadratic
programming (QP)-based methods provide a principled control
framework to tackle these challenges [2, 3, 4]. In QP, task
requirements are formulated as an optimization process for
minimizing an objective function together with satisfying
constraints such as joint limits, system dynamics, and contact
forces [5, 6]. Due to the smart formulation and modern
computation, this optimization process can run up to 1KHz,
allowing for high-frequency control even in humanoids [2].

However, similar to most model-based controllers [7], the
key assumption of any QP-based control is the precision of
the model and whether it adequately captures the underlying
robot/environment model. This is, of course, rarely the case

∗Corresponding author: farshad.khadivar@epfl.ch
† Equal Contribution
1LASA, Swiss Federal School of Technology in Lausanne, Switzerland
2Computer Technology Institute & Press “Diophantus”, Patras, Greece
3Computer Engineering and Informatics Department, University of Patras,

Greece
This work was supported by the European Research Council, Advanced

Grant agreement No 741945, Skill Acquisition in Humans and Robots.

since in many real-world scenarios, the model at hand and the
real model do not match. Even when the system is coupled
with accurate state estimators and high-gain PID feedback,
real-world experiments are subject to frequent failures due to
model imperfections, friction, actuator nonlinearities, etc. [8].
In practice, for these reasons, configuring a QP-based con-
troller for a convoluted robot (e.g., humanoid) or complex
interactions (e.g., handling objects) almost always involves a
great deal of hand-tuning of the model parameters and the cost
function for each specific instance of the task [9]. In this study,
we aim to address these limitations of QP-based controllers.
We focus on the problem of model imprecision and feedback
inadequacy of the control law.

Humans and animals have a remarkable way of performing
new tasks or adapting to unforeseen situations. They learn
from their mistakes and, by trial-and-error, master new skills.
We envision a similar robotic system that learns through
trial-and-error: it tries to achieve the task with a QP-based
controller, fails (e.g., the box slips from the hands of the
robot), and tries again until it manages to realize the goal. This
adaptation is functional only if it is fast; e.g., imagine having
to wait 2 days for a robot to learn how to perform a search
and rescue scenario task. Thus we would like the procedure
to happen in as short an interaction time as possible1 [10].

Therefore, the main question that arises here is: how can
we improve a QP-based controller as per previous trials?
Assuming an accurate/perfect QP solver, three central elements
can be updated: (i) the task specification (i.e., end-effector
desired accelerations), (ii) the cost function of the QP, and
(iii) the model of the QP. The first would require an external
oracle to give us feedback on whether or not we were
performing the task well, and then one would have to find
which is the best oracle to do so. We, therefore, assume that
the task specifications are well-designed, and we do not update
them. Altering the cost function freely is likewise dangerous.
The QP solver might fail or produce weird motions, and this
is why most related approaches model the cost function as a
series of waypoints or attractors/repulsors [11, 12]. In contrast,
improving the model of the QP with data gathered from the
physical trials will make the task of the QP solver easier.

In this paper, we focus on QP-based inverse dynamics (ID)
controllers and investigate means by which we can update the
cost function to ensure the stability of the system and improve
the precision of the ID model efficiently. More precisely, we
formulate an ID model learning procedure to improve the
model of the QP and show that it applies to a variety of
robots with different dynamics. We then introduce a novel
QP-based control scheme that is able to overcome model

1Minimizing the interaction time with the system is equivalent to minimiz-
ing the number of trials in episodic settings.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 2

Fig. 1: Our proposed framework for robot torque control using a
quadratic programming scheme. Green components, indicating our
contributions, are developed in this study to compute the joint torques
τ for realizing a desired end-effector acceleration ẍd. Through
online reference adaptation, given the feedback from robot end-
effectors, and error model exploitation, using Taylor expansion, our
approach enables the QP to correct itself such that the expected joint
accelerations, q̈d, converge to the actual values, q̈.

inaccuracies and large model mismatches by combining the
slow ID model learning with a fast online adaptive control
law in task-space to regulate the cost function of the QP (see
Figure 1). Using adaptive control per se for robot control is
not new, however, to the best of our knowledge, we have,
for the first time, employed online adaptation of nonlinearities
and model uncertainties to close the control loop for QP-based
controllers.

In a nutshell, our approach builds upon existing ID model
learning techniques to improve the QP dynamics model over
time [8, 13, 14] and existing adaptive control methods [15] that
can regulate the feedback term and change the cost function
of the QP on-the-fly. This is different from previous methods
of learning for QP-based controllers that mostly attempt to
alter the QP cost function only (e.g., [11, 12]). Our main
contributions are:

i. An episodic procedure of learning residual ID model
for QP-based control where we use an expressive and
differentiable Gaussian Process with Rigid Body Dy-
namic (RBD) model as prior. In our method, ID is
differentiable with respect to the optimization variables;
hence, it actively exploits the learned ID model within the
optimization of the QP-based control.

ii. A novel scheme for continuous online reference adapta-
tion in the cost function QP. To this end, we employ an
adaptive controller that avoids manual tuning, addresses
model uncertainties online, and results in a faster conver-
gence for ID model learning.

We validate our approach extensively in simulations and also
perform experiments in a physical robotic setup. Our results
showcase that our method (i) is able to compensate for large
model inaccuracies in little interaction time (i.e., in a few
trials), and (ii) consistently outperforms the baselines.

II. RELATED WORK

Control structures based on optimization are used widely in
general-purpose simulations and automatic motion synthesis.
Among early studies of interest, Abe et al. [16] controlled

the balancing of animated humans by integrating constraints,
namely the frictional and non-planar contact model. Later, De
Lasa et al. [17] and Coros et al. [18] extended the approach
and incorporated physical features into prioritized levels of
optimization for locomotion with periodic contact switching.

QP is an example of an optimization-based controller and
has also been employed frequently in various applications in
robotics such as trajectory planning/tracking [19], multi-body
control [5], multi-task planning [20], and dynamic balanc-
ing [21]. For instance, regarding multi-body robots, Zhang et
al. [5] proposed a torque optimization scheme for controlling
robots with kinematic redundancy. QP also allows nesting
multiple optimizations for task planning [22]. Similarly, for
multi-tasking, several approaches have been proposed: the
soft-hierarchy method [20], learning task priorities [23], and
priority determining via stochastic optimization [9]. More
recently, Marcucci et al. [24] defined a multi-parametric non-
linear program to generate offline trajectories and adapt the
task parameters online.

The simple pipeline for integrating constraints such as phys-
ical limits [3], task-space restrictions [25], and robot dynam-
ics [26, 27] into the control scheme is the other advantage of
QP-based methods. For instance, promisingly in [26], Herzog
et al. proposed a momentum-based balance algorithm and
implemented a task-space torque controller on a robot in real-
time. Contacts and interactions are other critical constraints
in the dynamics model. Bouyarmane et al. [27] investigated
task-space force control and embedded contact and interaction
constraints into multi-body QP control by utilizing sensory
feedback for contact.

The performance of the optimization solver for QP-based
controllers was the primary focus in successful studies like [28,
19] and also [2] where the control rate for multi-body systems
with large DoFs was enhanced. However fast the solver,
these controllers heavily rely on the presence of accurate
models. Such a requirement highly limits QP’s success in
real experiments as small model inaccuracies can lead to
catastrophic behavior in multi-body systems [29]. To avoid
this, some authors have sought to find an analytical solution
for a simplified version of ID [30], whereas others have tried
to employ separate optimization schemes for ID and inverse
kinematics (IK) [31]. Still, these approaches neither guarantee
stability nor convergence to an optimal solution, especially in
the presence of inconsistency between ID and IK solutions.

As an alternative method for model identification [32], some
authors tried non-parametric model learning approaches [8,
33] for robot dynamics. Nonetheless, the accuracy of such
models depends on the richness of the training data, which is
arduous to capture in systems with larger DoFs. In most cases,
these models are learned in an offline fashion: we excite the
system in pre-defined trajectories and learn the models from
the gathered data [34]. These settings assume that we already
have controllers working under many different scenarios and
that we know how to generate meaningful trajectories, which
is a strong assumption to make for any system, i.e., it is much
easier to do with a manipulator than with a humanoid [35, 8].

Some approaches attempted to update QP-based controllers
with trial-and-error learning techniques [10]. Spitz et al. [11]

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 3

adopted an episodic learning scheme and used the state-
space trajectories of failed trials to introduce repulsors. They
used these repulsors to push the QP controller away from
the already visited states. Lober et al. [12] used a Bayesian
Optimization procedure to select waypoints that the whole-
body controller should follow when controlling a humanoid
robot. Modugno et al. [36, 9] used an offline optimization
procedure, in simulation, to learn the temporal profiles of the
task weights [36]. Using reinforcement learning techniques in
simulation, Ichnowski et al. [37] learn policies that produce
different QP solver parameters at each time step resulting in
faster and more reliable convergence of the QP optimization.

Although these results are successful and promising, the
methods do not update the model of the environment and
can produce harmful behaviors for the robot. Moreover, most
methods (especially in the literature about combining learning
and QP-based controllers) utilize position-controlled schemes.
By contrast, we focus mainly on torque-controlled scenarios
that allow for more compliant and finer control.

The computation of control efforts from QP is open-loop,
and for closing the loop, PID controllers are mainly used. In
this study, we use adaptive controllers [15], which are capable
of compensating for model inaccuracies and unmodeled dy-
namics. Furthermore, adaptive controllers do not discard the
valuable information from the previous trials. The adaptive
nature of the controller mitigates the challenge of gain tuning
and provides higher flexibility for various desired behaviors
or tasks [15, 38]. For instance, in a collaborative scenario for
wheeled robots, Wang et al. [39] proposed distributing the
control among agents and controlling the leader robot by an
adaptive control law. Within the adaptive class of controllers,
model reference adaptive control (MRAC) methods have
demonstrated substantial performance in addressing model un-
certainties, thereby emerging in numerous studies [40, 41, 42].
For instance, Culbertson et al. [43] manipulate an object by
using a decentralized MRAC for controlling a group of collab-
orative robots where the dynamic and geometrical properties
of the object are unknown. Similarly, we employ MRAC for
online reference adaptation in QP-based controllers to react
online to nonlinearities and model uncertainties.

III. PRELIMINARIES

For many applications in robotics, it is more convenient
and intuitive to design the desired behavior in the Cartesian
coordinate system of the end-effector(s), also known as the
task-space. In the ID formulation, we have as input desired
end-effectors accelerations ẍd ∈ Rl (l is the dimension of the
task-space), and we would like to find the joint-level torques
needed to achieve these accelerations. The equations of motion
and constraint equations for a robot can be described as [31]:

M(q)q̈ + Cg(q, q̇) = Sτ + JT (q)W

J(q)q̈ + J̇(q, q̇)q̇ = ẍr (1)

where q∈ Rj is the full state of the system (with j being
the number of DoFs of the robot, including the 6-DoFs of
the floating base, if present)2, x∈ Rl is the concatenation of

2We denote time derivatives with an upper dot: e.g., ẋ.

the poses (containing position and orientation) in Cartesian
space of all the contact points (if present), M(q)∈ Rj×j is the
inertia matrix, Cg(q, q̇)∈ Rj is the sum of the gravitational,
centrifugal and Coriolis forces, S∈ Rj×j is a selection matrix
where the first 6 rows are all zeros and the rest is the identity
matrix, W∈ R6nc×j is the concatenation of all nc contact
wrenches (in world frame), J∈ R6nc×j is the concatenation
of the Jacobians of all the contact points, and τ∈ Rj is the
vector containing the control torques of all DoFs of the system.
We can re-write the equations of motion as [31]:

[
M(q) −S −J(q)T

] q̈
τ
W

 + Cg(q, q̇) = 0 (2)

This formulation is interesting as given a state (q, q̇), the
equations of motion are linear with respect to

[
q̈ τ W

]T
.

By defining X =
[
q̈ τ W

]T
in this paper, we can now

express the ID formulation as a QP-based whole-body control
problem [31]:

min
X

− 1

2
X TGX + gTX

s.t. HEX = bE

HIX ≥ bI (3)

where we are optimizing tasks of the form 1
2∥HX − b∥2, and

where G = HTH and g = −HT b. In particular, we turn
the equations of motion into equality constraints (HE and
bE), and we turn joint limits and other constraints, such as
friction cone or center of pressure constraints, into inequality
constraints (HI and bI). We then define desired accelerations
of some end-effector by filling G and g appropriately3 (the
QP task objectives). To make things more concrete, imagine
a manipulator which is rigidly attached to the world, and
we treat the base of its gripper as the end-effector. In this
case, x represents the position and orientation of the base
of the gripper of the manipulator (see Section V-A1 for an
example on how to fill G and g). When we have multi-
ple tasks with different weights wi, we can decompose H

and b as H =
[
w1H

T
1 ,w2H

T
2 , . . . ,wnH

T
n

]T
, and b =[

w1b1,w2b2, . . . ,wnbn
]T

.
In this paper, we compute the reference end-effector accel-

erations ẍr by:
ẍr = ẍf + ẍd (4)

where ẍd, the end-effector desired acceleration, is the feed-
forward control term specified by a higher-level controller and
can change over time based on the defined current task. ẍf

is the feedback term which closes the control loop. Previous
work has usually applied PID or PD control structure to close
the loop: ẍf = −kp(x− xd) − kv(ẋ− ẋd). Finding proper
gains (kp∈ R+ and kv∈ R+) for each task requires heavy gain
tuning with no stability guarantee and no control over the
transient error behavior. In this paper, we close the control loop
via an MRAC control scheme. In other words, ẍr is derived
from a nonlinear adaptive controller presented in Section IV-A.
By doing so, we modulate ẍr in an online fashion to follow

3We use the whc library: https://github.com/costashatz/whc.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575
https://github.com/costashatz/whc

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 4

a desired dynamical system, thereby controlling the transient
behavior of the error signal, and we guarantee the stability of
the system in the feedback line with appropriate adaptive laws.

IV. SELF-CORRECTING QP-BASED CONTROL

We propose a novel QP-based control scheme, called the
Self-Correcting QP-based Control framework (SCQP, see Fig-
ure 1), where a nonlinear adaptive controller computes the
reference accelerations for the QP-based ID (Section IV-A),
and a learning procedure improves the ID model of the QP
(Section IV-B). Overall, in the SCQP, we adopt an episodic
learning scheme and perform the following steps (see also
Algorithm. 1):

1) Design the task specifications: xd(t), ẋd(t), ẍd(t).
2) Configure the adaptive controller and model learning

procedure.
3) Perform an episode. For each time step:

a) Compute the reference accelerations, ẍr using our
nonlinear adaptive controller (Section IV-A).

b) Compute the cost function for the QP given ẍr;
c) Get the torques τ from the QP with the updated cost

function, and the learned ID model, h∗(q, q̇, q̈) via
linearization.

d) Apply the torques to the robot and collect data.
e) Update the adaptive controller at each time step.

4) Learn the ID model with Gaussian Processes with all the
collected data.

5) Go back to step 3 until convergence.
Throughout the paper, we use n, l, and m ∈ N to refer

to the dimension of the state-space, task-space, and control
input, respectively. For easier reference, in Table I, we list all
the notations necessary to follow our approach and derivations;
hereafter, refer to Table I for the variable-related dimensions.
We use subscripts r and d for indexing reference and desired
variables and utilize the following conventions throughout the
article: typeface for scalars (e.g., a), lowercase bold font to
represent vectors (e.g., a), and uppercase bold font to refer to
matrices (e.g., A). For brevity, we drop the variable-related
indexing of each variable in Table I.

TABLE I: Core Notations

Symbol Dimension Description

x Rl Robot end-effector Cartesian position
ζ Rn Robot task-space states
ν Rm Adaptive output control signal
Φ(·) Rp Vector of basis functions
P Rn×n A symmetric positive definite matrix
Q Rn×n A positive definite matrix
A Rn×n State matrix of a dynamical system
B Rn×m Input matrix of a dynamical system
r(t) Rn Input signal of the reference model
Ψ̄v Rm×nv Estimated control gain for v = ζ, r,ϕ
Λv Rm×nv Adaptation gain for v = ζ, r,ϕ

A. Task-Space Adaptive Control

Let us define ζ = [xT , ẋT]T to be the states of the end-
effector in the task-space. Then, the objective of our adaptive

controller is to ensure that the ζ converge to the desired states
ζd = [xT

d , ẋ
T
d]

T .
1) Reference Model: The state selection depends on the

task requirement; for instance, one might define ζ = ẋ where
ζ̇d can be directly given or derived from a stable dynamical
system ζ̇d = fd(ζ). We consider a general case where the full
states of the robot end-effector, ζ, need to follow a desired
reference model given by:

ζ̇r = Arζr + Brr(t) (5)

where r(t) is a bounded regulation signal. Ar, Br, and r(t)
are design parameters to shape the reference model and have to
be such that the dynamic model (5) is stable, from a Lyapunov
perspective, at ζd, meaning that ∥ζr − ζd∥ → 0 as t → ∞.
In addition to stable control, this model allows modulating
the transient behavior of the stable convergence. For instance,
matrix Ar controls how fast ζr converges to ζd while Br

regulates ζr to track ζd. The regulation signal, r(t), as the
reference signal could be computed from r(t) = −B†

rArζd

with B†
r being the pseudo inverse of Br.

2) End-Effector Model: Given ζ being the concatenation
of end-effector position, x, and velocity, ẋ, we can formulate
a dynamic model that governs the derivative of these states,
ζ̇, by having the acceleration, ẍf , from Eq.4, to be the input:

ζ̇ = Aζ + Bν + F(ζd, ζ) (6)

and ν = ẍf is the control effort. Matrices A, and B are
unknown and to be determined by adaptation laws. F(·) ∈ Rn,
either fully or partially unknown, is a smooth function, and we
approximate it by employing universal function approximators
F(·) = Ψ∗

ϕΦ(·) explained in Appendix IX. Such a model im-
plies that to perfectly track the desired states ζd, the controller
effort has to take into account unmodeled nonlinearities and
adapt for unexpected uncertainties. In a nutshell, the dynamic
model (5) and the defined r(t) build the reference model for
MRAC that is utilized to find ẍf for Eq. (4).

3) Control Rules & Adaptive Laws: To ensure that ζ
track the reference dynamics model (5) in the presence of
nonlinearities and uncertainties, we propose the following
control rule for the system (6):

ν = Ψζζ + Ψrr(t) + ΨϕΦ(e) (7)

where Ψζ , Ψr, and Ψϕ are approximated online. Our task-
space adaptive controller takes ζ and ζd as input, and outputs
ẍr to be fed to QP optimization:

ẍr = ẍd + Ψ̄ζζ + Ψ̄rr(t) + Ψ̄T
ϕΦ(e) (8)

in which Ψ̄ζ , Ψ̄r, and Ψ̄ϕ are the approximated matrices in
Eq.7, based on the following adaptation laws:

˙̄Ψζ = −Λζ B
T
r P e ζT

˙̄Ψr = −Λr B
T
r P e rT (t)

˙̄Ψϕ = −Λϕ B
T
r P eΦ(e)T (9)

where Λζ , Λr, and Λϕ are positive definite matrices that
tune the convergence rate of the adaptive gains. P with Ar

satisfy PAr + AT
r P = −Q as the necessary and sufficient

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 5

stability condition for tracking the reference model (5); see
Appendix VIII for the stability proof. Note that, in the first
trial, we need to initialize the adaptive gains Ψ̄ζ , Ψ̄r, and
Ψ̄ϕ in Eq.9 with imposed upper and lower bounds. The
adaptation rate has to be faster than the actual dynamics. Once
a task is completed, we can store the trained adaptive gains
and use them as the initial guess for new trials. Due to the
adaptation laws (9), the proposed controller is now able to cope
online with errors in the QP dynamic model and unforeseen
uncertainties.

As for the whole system stability when using QP-based
controllers, Bouyarmane et al. [4] show that under certain
assumptions, QP is stable in terms of solution existence,
uniqueness, robustness to perturbation, and continuity. Also, a
QP-based controller can be seen as a one-step horizon model
predictive controller (MPC). Regarding the stability of MPC,
in [44], authors prove (i) the recursive feasibility by showing
the existence of a feasible control sequence when starting from
a feasible initial point and (ii) the stability by showing that the
optimal cost function is a Lyapunov function.
B. Inverse Dynamics Learning Procedure

The task of ID is to provide a model h∗ that gives us the
torques needed to apply to the system to achieve some desired
joint accelerations in a particular robot state:

τ = h∗(q, q̇, q̈d) (10)

This is a classic reformulation of Eq. (1) in order to “see”
the equation as a data-driven model/mapping to learn (see [8,
35] for a detailed overview of ID model learning). This is
a supervised learning task, and we can employ any suitable
learning algorithm. Learning ID model can give us accurate
models that can operate inside a control loop and improve
tracking performance [35]. To reduce the sample complexity,
or in other words to reduce the number of samples needed for
achieving good accuracy, we can learn the difference from an
available analytic model h̄:

h∗(q, q̇, q̈d) = h̄(q, q̇, q̈d) + eh(q, q̇, q̈d) (11)

where h̄ = M(q)q̈d +Cg(q, q̇)−JT (q)W . In essence, we
insert prior information coming from our inaccurate yet useful
analytical RBD modeling.

In order to be able to exploit the ID model inside the
optimization process, it needs to be linear with respect to the
optimization variables X =

[
q̈d τ W

]T
of the QP. This is

required to take full advantage of the ID model that otherwise
operates as a static offset. Thus, the error model eh(.)∈ Rj

must not violate this linearity constraint. At the same time,
training a linear model would deteriorate the performance and
reduce the flexibility of both the model and the controller.

To overcome this limitation, we propose using more expres-
sive and differentiable models and linearizing them around the
current state. In particular, if we assume that the system is in
a state (qt, q̇t, q̈t), we take the first two terms of the Taylor
series expansion of eh(·, ·, ·):

h∗(qt, q̇t, q̈t+1) = h̄(qt, q̇t, q̈t) + eh(qt, q̇t, q̈t)

+ (q̈t+1 − q̈t)
∂eh(q, q̇, q̈)

∂q̈

∣∣∣q=qt
q̇=q̇t
q̈=q̈t

(12)

where q̈t+1 contains the desired joint accelerations and is
one of the variables optimized by the QP-based controller
(i.e., q̈d ≡ q̈t+1). Here, it is important to note that for
QP optimization, the qt, q̇t, q̈t take fixed values that cannot
change during an optimization at each time step.

This linearization yields a loss in expressivity but al-
lows us to insert the models inside the QP-based controller.
Nevertheless, because our QP-based controller runs at high
frequency (usually ≥ 200Hz), the linearized version of the
model captures quite well the behavior of the full model in
the optimization range and, as we show in the experiments,
does not affect the system performance.

1) Gaussian Processes for Inverse Dynamics Learning: We
use Gaussian Process Regression (GP) [45] to learn the ID
model. We choose GPs because they are accurate, generalize
well, and, hence, are suitable for learning from few data
points [14, 46]. Another key property of GPs, when combined
with prior information, is that they are guaranteed to fall
back, in regions far from the data, to the prior model. This
property ensures that the QP optimization, which is sensitive
to the model it accepts, never fails. In preliminary experiments
with neural networks, we observed frequent failures in QP
optimization; see also Section IV-B2.

As inputs, we use tuples made of the state vector q̃ =
(qt, q̇t, q̈t). As training targets, we use the difference between
the prediction of the analytic model and the actual command
sent: et = h̄(qt, q̇t, q̈t+1) − τ t, where τ t is the torque
command sent at time t. We use independent GPs to model
each dimension of the difference vector et. For each dimension
d of et, the GP is computed as (ked

is the kernel function):

êd(q̃) ∼ GP(µêd
(q̃, kêd

(q̃, q̃′))) (13)

Assuming Dd
1:N = {ed(q̃1), ..., ed(q̃N)} is a set of observa-

tions, we can query the GP at a new input point q̃∗:

p(êd(q̃∗)|Dd
1:N , q̃∗) = N (µêd

(q̃∗), σ
2
êd
(q̃∗)) (14)

The mean and variance predictions of this GP are computed
using a kernel vector kkkêd

= k(Dd
1:N , q̃∗), and a kernel matrix

Kêd
with entries Kij

êd
= kêd

(q̃i, q̃j):

µêd
(q̃∗) = kkkTêd

K−1
êd
Dd

1:N

σ2
êd
(q̃∗) = kêd

(q̃∗, q̃∗)− kkkTêd
K−1

êd
kkkêd

(15)

We use the exponential kernel [45] in this study: kêd
(q̃p, q̃q) =

σ2
dexp(− 1

2 (q̃p − q̃q)
TΛ−1

d (q̃p − q̃q)) + δpqσ
2
nd

, where δpq
equals 1 when p = q and 0 otherwise, and [Λd, σ

2
d, σ

2
nd
] is

the vector of hyperparameters of the kernel (length scales for
each dimension, signal variance, and noise).

To linearize the learned model around a query point, we
need to compute the derivative of our GPs. The derivative is
another GP, and its existence depends on the differentiability
of its kernel function [45]. In our particular case, the squared
exponential kernel that we use is infinitely differentiable, and
the associated GP has infinitely many derivatives. In this paper,
we do not use the predicted GP variance, and we only detail
the derivatives of µêd

with respect to the input point q̃∗. If we
look at Eq.15 closely, only kkkêd

depends on the input point q̃∗,
meaning that we just need to differentiate the kernel function.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 6

Assuming that we have only one sample for training q̃i, we
can compute the derivative of the kernel as follows:

∂kêd
(q̃i, q̃∗)

∂q̃∗
=
∂
(
σ2
dexp(− 1

2 (q̃∗ − q̃i)
TΛ−1

d (q̃∗ − q̃i))
)

∂q̃∗

=
∂
(
− 1

2 (q̃∗ − q̃i)
TΛ−1

d (q̃∗ − q̃i)
)

∂q̃∗
kêd

(q̃i, q̃∗)

= −Λ−1
d (q̃∗ − q̃i)kêd

(q̃i, q̃∗) (16)

It is trivial to generalize/compute the gradient when consider-
ing a set of training points.

2) Practical Considerations: Gaussian Process Regression
has a training time complexity of O(n3) and is thus impractical
when having to deal with many samples. Since our controllers
operate at high frequency (around 200Hz in our experiments),
we can easily gather big datasets. There are many approaches
to approximately learning GPs that reduce the time complex-
ity [47], but we chose to subsample the data in order to
reduce the number of points. In practice, we keep 10% to
20% of the data. In order to avoid unbalanced subsampling and
catastrophic forgetting, we keep all the data (ordered in time)
and take one sample every 5 or 10 timesteps. We performed
initial experiments in the simulated environments with and
without subsampling, and we did not observe any significant
deterioration of the performance of the SCQP algorithm while
achieving real-time querying of the GPs.

Another important point that we considered is the careful
mixing of the prior model and the error model learned by
the GPs. The QP controllers are model sensitive and can
easily fail if there are inconsistencies. For this reason, we did
not optimize the hyperparameters of the GPs so we could
consistently fall back to the prior model away from data
points. Initial experiments with hyperparameter optimization
frequently led to QP optimization failures. Conversely, the
GPs without hyperparameter optimization rarely triggered QP
failures. We use the limbo C++11 library for GP regression
and the GP derivatives [48]. In all experiments (simulation
and real-world), querying from GPs is in real-time, and the
maximum processing time we have observed for updating GPs
between episodes (line 12 of Algorithm 1) was less than 3s.

V. SIMULATED EXPERIMENTS
With our simulated experiments, we aim to answer the

following questions:
• Can the SCQP method cope with big model mismatches?
• Can the SCQP method generalize to several different

scenarios and robot setups?
• Can the SCQP method generalize to high-dimensional

robots (e.g., humanoids) and contact-rich tasks?
• Is learning the ID alone or using task-space adaptive

control alone enough?
To answer the questions, we devise the following scenarios:

i. A 7-DoFs KUKA LBR iiwa manipulator (14kg version)
that tracks end-effector trajectories with an unknown mass
attached to the end-effector.

ii. A 32-DoFs PAL Robotics Talos humanoid robot4 that
performs a waving task while having unknown masses

4We disable the hands and use the 30-DoFs.

Algorithm 1 Self-Correcting QP-based Control

1: Design the task specifications: xd(t)
2: Configure the adaptive controller and the model learning

procedure
3: for n = 1 → Nepisodes do ▷ For each episode
4: for t = 0 → T do ▷ For each time step
5: Get ẍr from Eq.8
6: Update the reference of cost function in QP given

the ẍr

7: Get τ t from the QP using the updated cost function
and the learned model h∗ (from Eq.12)

8: Apply τ t to the robot
9: Collect data {qt, q̇t, q̈t, τ t}

10: Update the adaptive controller with Eq.9
11: end for
12: ID model learning (Section IV-B)
13: end for

attached to both of the hands and/or unknown friction
coefficients.

iii. Two 7-DoFs KUKA LBR iiwa manipulators (14kg ver-
sions) that coordinate in order to manipulate a box with
unknown mass; we provide preliminary results for this
scenario.

For the above scenarios (except the experimental bimanual
task), we experiment with the following approaches:

i. Our SCQP approach (see Section IV-B).
ii. Learning the ID model (as in Section IV-B1) combined

with a PID end-effector controller (the case where the
adaptive controller is absent).

iii. Using the adaptive controller without any model learning.
If not stated otherwise, we control the robot(s) at 200Hz,
and each episode has a length of 10 s. We utilize the DART
simulator [49] with the robot dart wrapper5. Note that all
robots used in this paper can be controlled directly in torque
mode, i.e., we can send the computed joint torques as the
direct command for the robot actuators.

A. KUKA LBR iiwa Trajectory Tracking
We begin the evaluation of our methods using a 7-DoFs

KUKA iiwa manipulator that needs to track specified end-
effector trajectories. We will perform two types of experi-
ments: (a) a task that involves moving the end-effector only
along one axis (z-axis/gravity direction) and (b) a task that
involves moving the end-effector along two axes (the yz-
plane). We perform these two tasks to extensively evaluate
our method against baselines. In order to emulate real-world
uncertainties, we consider the following model mismatches:

i. The QP controller assumes perfect actuators (no Coulomb
friction or damping), whereas, in the real world, the
actuators have both Coulomb friction and damping.

ii. A 1 kg mass attached to the end-effector of the actual
KUKA that is not presented to the QP model.

The first mismatch represents the typical differences between
the ideal and the actual model of the actuators. The second

5https://github.com/resibots/robot dart/

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575
https://github.com/resibots/robot_dart/

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 7

Fig. 2: Results of the simulated experiment with KUKA iiwa, z-axis
tracking. The experiment is repeated 20 times, each consisting of
10 episodes in succession. The tracking error for an episode is the
cumulative mean square tracking error over time steps. Solid lines
are the median over 20 replicates, and the shaded regions are the
regions between the 5th and 95th percentiles.

Fig. 3: KUKA iiwa z-axis tracking trajectories before and after
learning: the first episode with PID and wrong QP model where the
model mismatch affects the tracking, and the last episode with the
SCQP approach which is able to track the desired trajectory.

mismatch has a significant effect on the dynamics of the robots
and simulates an exaggerated case of an unexpected situation.
Imagine the case, for instance, where the robot is lifting an
object, and abruptly, the force-torque sensor fails and outputs
zero wrenches at the end-effector. Lastly, we add noises in
the joint position and velocity measurements, emulating noisy
real-sensor feedback.

1) QP Configuration: Here, we configure the QP with the
desired Cartesian acceleration of the end-effector given by:

ẍ = J(q)q̈ + J̇(q, q̇)q̇ (17)

Thus, the QP formulation can be written as follows:

Hacc = [J(q) 0 0]

bacc = ẍr − J̇(q, q̇)q̇ (18)

Finally, we add regularization constraints such as joint position
and velocity limits, preferred null joint configurations, actuator
torque limits, etc. Hence the optimization variables do not
violate the functional limits, and the robot remains stable.

2) Z-axis Tracking: The objective here is that the robot’s
end-effector has to follow a sinusoidal trajectory on the z-axis.
The results showcase that when using the SCQP, the learning
converges faster (i.e., in fewer trials/episodes) and to a more
accurate model than when using the baselines; see Figure 2.
The PID controller, despite being tuned with high gains, yields
poor tracking with a high cost. This is because the model
mismatch is, indeed, significant, and the PID controller cannot
compensate for it without the aid of the learned ID model.
The adaptive controller achieves a relatively better cost even

Fig. 4: Results of the 8-shape trajectory tracking experiment on
KUKA iiwa in a simulated environment. The experiment is repeated
20 times, each consisting of 10 episodes in succession. The tracking
error for an episode is the cumulative mean square tracking error
over time steps. Solid lines are the median over 20 replicates, and the
shaded regions are the regions between the 5th and 95th percentiles.

Fig. 5: KUKA iiwa yz-axis tracking before and after learning: typical
trajectories across episodes with PID and the SCQP approach. SCQP
enables accurate tracking of the desired trajectory.

in the initial trials, and the tracking performance, without the
learned model, improves over the remaining trials. However, it
is inadequate to compensate for all the unmodeled dynamics,
for which it needs the learned ID model. In other words, we
observe that the model flexibility issue in fast online learning
with the adaptive controller is tackled by learning the residual
dynamics in SCQP.

Qualitatively, the SCQP approach can quickly compensate
for model mismatches and requires less than 5-6 episodes
to achieve desirable trajectory tracking. Figure 3 showcases
typical z-axis trajectories before and after learning.

3) YZ-plane Tracking: In this task, the robot’s end-effector
has to follow an 8-shaped trajectory in the yz-plane. The
results closely follow the outcomes of the previous scenario
(Figure 4). The SCQP approach converges in fewer episodes
than both baselines. Model learning with a PID end-effector
controller can achieve good results but requires more episodes
to converge. The adaptive controller alone cannot sufficiently
compensate for all the model mismatches.

Qualitatively, the SCQP approach can quickly compensate
for model mismatches and requires less than 5-6 episodes
to achieve desirable trajectory tracking. Figure 5 illustrates
typical yz-plane trajectories of the SCQP and the PID+model
learning approaches.

B. Talos Humanoid Task

Here, we control a 32-DoFs Talos humanoid robot. While
maintaining balance, the robot has to follow a sinusoidal
trajectory with the right arm and keep the left arm in place;
see Figure 6, left. We devised this scenario to evaluate our
approach in high-dimensional state/action spaces with a more

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 8

Fig. 6: Successful trial of the Talos task. Through ID learning and online adaptation, SCQP learns to perform the waving task (left) without
falling despite relatively big mismatches in the mass of the arms and the friction coefficient. The phase tracking accuracy during the waving
task (middle) indicates the effectiveness of model learning in SCQP after only a few trials compared to the other approaches (right). Solid
lines are the median over 10 replicates, and the shaded regions are the areas between the 25th and 75th percentiles.

complex QP task. In addition to considering, for each arm, the
same mismatch models as those in Section V-A, we assume
that the friction coefficients of the contact surfaces are not
known. The real world has a coefficient of friction set to 0.7,
whereas the QP model takes a coefficient of 1, i.e., contact
surfaces are more slippery than what the QP expects. This
assumption attempts to create a model mismatch in a crucial
part of the environment, strongly affecting the stabilization of
the humanoid robot. We again add noise to the joint position
and velocity measurements.

1) QP Configuration: We define six Cartesian acceleration
tasks following Eq.18: (i) one tracking task per arm end-
effector, (ii) two tracking tasks for the torso (COM position
and upright preference), and (iii) one zero acceleration task
(without feedback) for each foot. We also define one 6D
contact constraint per foot to handle the balance of the
humanoid (we assume the contact points are in the middle
of the feet). More precisely, for each foot, we define a contact
as inequality constraints of the following form:

HIcontact = [0 0 C]

bIcontact =

[
−∞ −∞ 0 0 Fmin

0 0 ∞ ∞ Fmax

]
(19)

where C is defined as:

−µ12

µ12

1

nT +

I2

I2

0

 [
t1 t2

]T
and

where µ ∈ R+ is the coefficient of friction, n ∈ R3 is the
contact normal, and ti ∈ R3 are the tangential directions. We
also add a few rows for constraining the center of pressure
similar to [31]. Instead of using a center of pressure constraint,
one can use four contact points in the corners of the foot.

2) Results: The results show that our SCQP method can
scale to high-dimensional systems and handle passive contacts;
see Figure 6. The SCQP converges faster (i.e., in fewer
trials/episodes) to high-performance controllers than the base-
lines. In this scenario, the adaptive controller alone might
diverge if not properly tuned (due to the smaller value of
the coefficient of friction). Thus, to showcase this drift issue
and also the importance of the learned ID model, we chose a
parameter configuration in which the adaptive controller alone
diverges. Then, we used the same parameters for SCQP where
model learning is present. The gains of the PID controller,
however, are tuned to get its best performance for maintaining
the robot’s stability. In Figure 6 (right), we observe that the

learned model “stabilizes” the adaptive controller that would
diverge if left on its own.

Qualitatively, the SCQP approach is able to quickly com-
pensate for model mismatches and requires less than 3-4
episodes to achieve desirable trajectory tracking. Figure 6
(middle) showcases a typical y-axis trajectory. The supple-
mentary video shows an example of the learning procedure6.

C. Preliminary Experiments on Bimanual Manipulation

In this scenario, we perform a bimanual manipulation task
in which two KUKA LBR iiwa arms have to lift a box of
unknown mass; see Figure 7. This experiment is used to
simulate contact-rich tasks and tasks where objects need to
be manipulated. We consider the following model mismatches
that act in combination (similar to the previous):

i. The QP controller assumes perfect actuators (that is, no
Coulomb friction or damping), whereas in the real world,
the actuators have both Coulomb friction and damping.

ii. The mass of the box is not well-calibrated, and there is
a mismatch of 0.5 kg (the real box has a mass of 1.5 kg,
whereas the QP model assumes 1 kg).

1) QP Configuration: To control the robots while perform-
ing the bimanual task, we extend the decision variables to
contain the acceleration and torques of all entities, i.e., the two
robots and the box. We add one constraint for the dynamics
of each entity; see Eq.2. To “connect” the two arms with the
box, we have two sets of contact forces for the contact between
each arm and the box. We then couple the dynamics of the
individual entities by inserting the forces at the correct places,
i.e., JT

armW for the arms and −JT
boxW for the box, since

the forces acting on the box are identical in magnitude and in
the opposite direction to the actions of the ones on the arms.

2) Results: We provide preliminary results of this contact-
rich task that involves active contacts for manipulation. The
results illustrate that our SCQP approach can be used to learn
this type of task. The most challenging part is learning the ID
model. We were able to consistently learn a good model within
three episodes, but after the 3rd episode, our model learning
pipeline did not work consistently: we obtained significant
mean square errors in the training set, meaning that something
did not go well with the model learning. Nevertheless, three
episodes were enough for the SCQP approach to improve the

6The video is also available at https://youtu.be/cA- SKoO 9c.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575
https://youtu.be/cA-_SKoO_9c

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 9

Fig. 7: From left to right, screenshots of a successful trial of a bimanual manipulation task: grasping and manipulating a box with unknown
mass. Through ID learning and online adaptation, SCQP learns to insert higher contact force to avoid slippage. Also, thanks to the torque
control scheme, the robot configuration varies during task execution to maintain compliant joint behavior.

Fig. 8: Physical robot setup with a mass mismatch at the end-effector.
The KUKA manipulator needs to track a desired trajectory. This task
is similar to Section V-A but is here applied to a real robot where
overcoming joints’ friction and nonlinearities in real-time control add
to the control problem.

performance and produce trajectories that achieve the desired
box movement. An example trajectory can be seen in Figure 7
and in the supplementary video.

VI. PHYSICAL ROBOT EXPERIMENTS

To validate our SCQP approach in the physical world, we
devise two setups. The first is similar to Section V-A, where
a KUKA manipulator needs to track a desired trajectory. The
second setup demonstrates the SCQP application in a pick-
and-place task using a robotic hand while both the hand’s
and objects’ dynamics are unknown. Apart from the imposed
mass mismatch in both setups, there is also the “reality gap”
in this scenario since many small yet important details are not
modeled in our original QP model (e.g., idealistic actuators).
The robot is controlled at 200Hz, and each episode lasts 10 s.

A. Tracking Periodic Trajectory on Z-axis

As in the simulated experiment in Section V-A, the robot
has to follow a periodic trajectory on the z-axis with a mass
mismatch at the end-effector (around 0.6 kg mismatch, see
Figure 8). The results show that SCQP works in a physical
system and provides similar performance to the simulated
variant; see Figure 9. In particular, the SCQP converges to low-
error trajectory tracking in less than 30 − 40 s of interaction
time (3-4 episodes); see Figures 9 and 10. Additionally, it
performs better than the PID+model learning baseline and
performs comparably to the adaptive control alone. Given the
lower variance in tracking error (over 10 replicates), the SCQP
shows higher consistency and robustness in tracking compared
to the baselines. Qualitatively, the SCQP approach can quickly
compensate for model mismatches and requires less than 5-6
episodes to achieve desirable trajectory tracking robustly. The
supplementary video shows an example of the learning and
control procedure.

Fig. 9: Results of real KUKA iiwa experiments with end-effector
mass mismatch in the z-axis tracking. The experiment is repeated
10 times, each consisting of 10 episodes in succession. The tracking
error for an episode is the cumulative mean square tracking error
over time steps. Solid lines are the median over 10 replicates, and
the shaded regions depict the region of the 5th to 95th percentiles.

Fig. 10: Examples of control responses and adaptive gains during
the first three episodes of the periodic trajectory tracking task (see
Figure 9). The first two rows are the second and the fourth joint
torques (the most load-bearing joints) in N.m.s−1, respectively.
The third and the fourth rows are the norms of linear, Ψ̄T

ζzΨ̄ζz ,
and nonlinear, Ψ̄T

ϕz
Ψ̄ϕz , adaptation gains active on the z-axis,

respectively. After the first episode, the learned residual dynamic
model results in modifying the torque commands to achieve a higher
tracking accuracy consistently; see Figure 9. Also, adaptive gains
converge to constant values, and since the residual model learning
handles big model mismatches, the online adaptation remains reactive
to uncertainties faced online.

B. Pick-and-Place with a Robotic Hand

In the experiment, we perform a pick-and-place scenario
with a robotic hand. The task is to grasp different objects from
a certain place and drop them into a bucket fixed in another
position; see Figure 11. In this experiment, the dynamics and
physical properties (e.g., mass and inertia) of the robotic hand
and the objects are unknown. We use objects of different
weights for the task to showcase that SCQP can account for

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 10

online uncertainties in addition to residual model learning. The
experiment is an extreme use case of SCQP where it knows
nothing about the hand and the objects to be grasped (a rather
unrealistic assumption since we usually have some idea about
the properties of the hand and the objects). Figure 11 shows
that SCQP can execute the task successfully despite significant
unmodeled dynamics at the end-effector and model changes
from one object to the other. The supplementary video shows
examples of task execution for this experiment.

VII. CONCLUSION

In this work, we proposed a novel combination of an MRAC
scheme with an ID model augmented QP-controller. Our main
intuition was to merge a fast online adaptive control law in
task-space to regulate the cost function of the QP with a
slower ID model learning procedure inserted inside the QP
model. This pipeline, called SCQP, was effective, and we could
successfully apply it to many different scenarios and robots.

In particular, the SCQP was able to compensate, in a
handful of trials, for large model inaccuracies in tasks ranging
from simple end-effector tracking to humanoid balancing
and contact-rich tasks. Using SCQP, one can avoid tedious
PID controller tuning while capturing significant unmodeled
dynamics with the learned ID model.

Despite the successful application of SCQP, there remain
several limitations that we would like to address in the future:
(a) SCQP requires either a different model for each contact
configuration of the system or a learning model that can
generalize to different contact configurations, and (b) learning
the ID model is itself a difficult task (as we observed in
Section V-C). Although there exist methods for learning ID
models with contacts [50], learning effectively ID models from
unstructured data7 remains an open problem that deserves
further investigation.

Finally, in this work, we assumed that the high-level tasks
remained fixed throughout the process. It is straightforward to
combine SCQP with methods that update online the high-level
planning part. Task modulating can be crucial if the original
specifications are not achievable; for example, the left arm is
damaged and the task has to be performed with the right arm.
Moreover, our approach can be combined with reinforcement
learning algorithms. One idea is to enable exploration around
the commands the QP outputs while ensuring safety and not
allowing deviations that could potentially harm the robot.

REFERENCES

[1] C. Chen, Z. Liu, Y. Zhang, and S. Xie, “Coordinated mo-
tion/force control of multiarm robot with unknown sen-
sor nonlinearity and manipulated object’s uncertainty,”
IEEE Trans. on Systems, Man, and Cybernetics: Systems,
vol. 47, no. 7, pp. 1123–1134, 2017.

[2] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical
quadratic programming: Fast online humanoid-robot mo-
tion generation,” The International Journal of Robotics
Research, vol. 33, no. 7, pp. 1006–1028, 2014.

[3] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space
regions: A framework for pose-constrained manipulation

7We do not have access to a full static dataset, but rather collect data as
we apply the controller on the system.

planning,” The International Journal of Robotics Re-
search, vol. 30, no. 12, pp. 1435–1460, 2011.

[4] K. Bouyarmane and A. Kheddar, “On weight-prioritized
multitask control of humanoid robots,” IEEE Trans. on
Automatic Control, vol. 63, no. 6, pp. 1632–1647, 2017.

[5] Y. Zhang, S. S. Ge, and T. H. Lee, “A unified quadratic-
programming-based dynamical system approach to joint
torque optimization of physically constrained redundant
manipulators,” IEEE Trans. on Systems, Man, and Cy-
bernetics, Part B, vol. 34, no. 5, pp. 2126–2132, 2004.

[6] C. Collette et al., “Dynamic balance control of hu-
manoids for multiple grasps and non coplanar frictional
contacts,” in International Conference on Humanoid
Robots, 2007.

[7] J. Nakanishi et al., “Operational space control: A the-
oretical and empirical comparison,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008.

[8] D. Nguyen-Tuong and J. Peters, “Model learning for
robot control: a survey,” Cognitive processing, vol. 12,
no. 4, pp. 319–340, 2011.

[9] V. Modugno et al., “Learning soft task priorities for
control of redundant robots,” in International Conference
on Robotics and Automation, 2016.

[10] K. Chatzilygeroudis et al., “A survey on policy search
algorithms for learning robot controllers in a handful of
trials,” IEEE Trans. on Robotics, 2019.

[11] J. Spitz et al., “Trial-and-error learning of repulsors
for humanoid qp-based whole-body control,” in Interna-
tional Conference on Humanoid Robots, 2017.

[12] R. Lober, V. Padois, and O. Sigaud, “Efficient rein-
forcement learning for humanoid whole-body control,”
in International Conference on Humanoid Robots, 2016.

[13] K. Chatzilygeroudis and J.-B. Mouret, “Using parame-
terized black-box priors to scale up model-based policy
search for robotics,” in International Conference on
Robotics and Automation, 2018.

[14] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaus-
sian processes for data-efficient learning in robotics and
control,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 37, no. 2, pp. 408–423, 2013.

[15] P. A. Ioannou and J. Sun, Robust adaptive control.
Courier Corporation, 2012.

[16] Y. Abe, M. Da Silva, and J. Popović, “Multiobjec-
tive control with frictional contacts,” in Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pp. 249–258, 2007.

[17] M. De Lasa, I. Mordatch, and A. Hertzmann, “Feature-
based locomotion controllers,” ACM Trans. on Graphics
(TOG), vol. 29, no. 4, pp. 1–10, 2010.

[18] S. Coros, P. Beaudoin, and M. Van de Panne, “Gener-
alized biped walking control,” ACM Trans. on Graphics
(TOG), vol. 29, no. 4, pp. 1–9, 2010.

[19] Z. Li et al., “Trajectory-tracking control of mobile robot
systems incorporating neural-dynamic optimized model
predictive approach,” IEEE Trans. on Systems, Man, and
Cybernetics: Systems, vol. 46, no. 6, pp. 740–749, 2015.

[20] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 11

Fig. 11: Examples of pick-and-place task with a robotic hand. The robot needs to grasp different objects, follow a specific trajectory (dashed
yellow line) while keeping the objects vertical, and place them into a fixed bucket. The dynamics and physical properties of the robotic
hand and the objects are unknown (the robotic hand is around 1.5kg, and the objects are 250± 40g), and different objects are used for each
episode. In the first episode, the robot has a significant deviation (solid red line) from the desired trajectory; however, after residual model
learning, the tracking error reduces progressively in the other episodes. In the third episode, the robot fails to drop the object in the target
place; nevertheless, the task is successfully completed in the fourth episode with the same object.

humanoid whole-body behavior: A focus on sequencing
and tasks transitions,” in International Conference on
Robotics and Automation, 2011.

[21] Z. Li et al., “Dynamic balance optimization and con-
trol of quadruped robot systems with flexible joints,”
IEEE Trans. on Systems, Man, and Cybernetics: Systems,
vol. 46, no. 10, pp. 1338–1351, 2016.

[22] S. Kuindersma et al., “Optimization-based locomotion
planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, no. 3,
pp. 429–455, 2016.

[23] R. Lober, V. Padois, and O. Sigaud, “Multiple task
optimization using dynamical movement primitives for
whole-body reactive control,” in International Confer-
ence on Humanoid Robots, 2014.

[24] T. Marcucci et al., “Parametric trajectory libraries for
online motion planning with application to soft robots,”
in Robotics Research, pp. 1001–1017, Springer, 2020.

[25] F. Burget, A. Hornung, and M. Bennewitz, “Whole-body
motion planning for manipulation of articulated objects,”
in International Conference on Robotics and Automation,
2013.

[26] A. Herzog et al., “Momentum control with hierarchical
inverse dynamics on a torque-controlled humanoid,” Au-
tonomous Robots, vol. 40, no. 3, pp. 473–491, 2016.

[27] K. Bouyarmane et al., “Quadratic programming for mul-
tirobot and task-space force control,” IEEE Trans. on
Robotics, vol. 35, no. 1, pp. 64–77, 2018.

[28] S. Kuindersma, F. Permenter, and R. Tedrake, “An
efficiently solvable quadratic program for stabilizing
dynamic locomotion,” in International Conference on
Robotics and Automation, 2014.

[29] J. Vaillant, K. Bouyarmane, and A. Kheddar, “Multi-
character physical and behavioral interactions controller,”
IEEE Trans. on visualization and computer graphics,
vol. 23, no. 6, pp. 1650–1662, 2016.

[30] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics
control of floating base systems using orthogonal decom-
position,” in International Conference on Robotics and
Automation, 2010.

[31] S. Feng et al., “Optimization based full body control
for the atlas robot,” in International Conference on
Humanoid Robots, 2014.

[32] B. Siciliano and O. Khatib, Springer handbook of

robotics. Springer, 2016.
[33] W. He et al., “Model identification and control design for

a humanoid robot,” IEEE Trans. on Systems, Man, and
Cybernetics: Systems, vol. 47, no. 1, pp. 45–57, 2017.

[34] F. Khadivar et al., “Efficient configuration exploration in
inverse dynamics acquisition of robotic manipulators,” in
International Conference on Robotics and Automation,
2021.

[35] D. Nguyen-Tuong and J. Peters, “Using model knowl-
edge for learning inverse dynamics,” in International
Conference on Robotics and Automation, 2010.

[36] V. Modugno et al., “Learning soft task priorities for safe
control of humanoid robots with constrained stochastic
optimization,” in International Conference on Humanoid
Robots, 2016.

[37] J. Ichnowski et al., “Accelerating quadratic opti-
mization with reinforcement learning,” arXiv preprint
arXiv:2107.10847, 2021.

[38] C. Sun et al., “Adaptive neural network control of biped
robots,” IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 2, pp. 315–326, 2017.

[39] Z. Wang et al., “Distributed formation control of non-
holonomic wheeled mobile robots subject to longitudinal
slippage constraints,” IEEE Trans. on Systems, Man, and
Cybernetics: Systems, vol. 51, no. 5, pp. 2992–3003,
2019.

[40] G. Tao, Adaptive control design and analysis, vol. 37.
John Wiley & Sons, 2003.

[41] V. Azimi et al., “Model-based adaptive control of
transfemoral prostheses: Theory, simulation, and experi-
ments,” IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 2, pp. 1174–1191, 2019.

[42] M. Sharifi et al., “Adaptive cpg-based gait planning
with learning-based torque estimation and control for
exoskeletons,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 8261–8268, 2021.

[43] P. Culbertson, J.-J. Slotine, and M. Schwager, “Decen-
tralized adaptive control for collaborative manipulation of
rigid bodies,” IEEE Trans. on Robotics, vol. 37, no. 6,
pp. 1906–1920, 2021.

[44] D. Limón et al., “On the stability of constrained mpc
without terminal constraint,” IEEE Trans. on automatic
control, vol. 51, no. 5, pp. 832–836, 2006.

[45] C. E. Rasmussen and C. K. Williams, Gaussian processes

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS
Digital Object Identifier 10.1109/TSMC.2023.3262954
Link to the paper on IEEE Xplore: https://ieeexplore.ieee.org/document/10102575 12

for machine learning, vol. 1. MIT press Cambridge,
2006.

[46] K. Chatzilygeroudis et al., “Black-box data-efficient pol-
icy search for robotics,” in International Conference on
Intelligent Robots and Systems, 2017.

[47] J. Quinonero-Candela and C. E. Rasmussen, “A unifying
view of sparse approximate gaussian process regression,”
The Journal of Machine Learning Research, vol. 6,
pp. 1939–1959, 2005.

[48] A. Cully et al., “Limbo: A flexible high-performance
library for gaussian processes modeling and data-efficient
optimization,” Journal of Open Source Software, vol. 3,
no. 26, 2018.

[49] J. Lee et al., “DART: Dynamic animation and robotics
toolkit,” The Journal of Open Source Software, vol. 3,
p. 500, Feb 2018.

[50] R. Calandra et al., “Learning inverse dynamics models
with contacts,” in International Conference on Robotics
and Automation, 2015.

[51] P. Culbertson and M. Schwager, “Decentralized adaptive
control for collaborative manipulation,” in International
Conference on Robotics and Automation, 2018.

[52] H. K. Khalil and J. W. Grizzle, Nonlinear systems, vol. 3.
Prentice hall Upper Saddle River, NJ, 2002.

[53] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela,
“Bayesian nonparametric adaptive control using gaussian
processes,” IEEE Trans. on neural networks and learning
systems, vol. 26, no. 3, pp. 537–550, 2014.

VIII. ADAPTIVE CONTROL STABILITY PROOF

Let e = ζ− ζr be the tracking error. Using Eq. 5, 6 and 7,
the error’s dynamics (time derivative) is given by:

ė = (A+BΨζ)ζ −Arζr + (BΨr −Br)r(t)

+BΨϕΦ(e) + F(ζd, ζ). (A1)

For the error dynamic (A1) to follow the reference dy-
namic (5), we set that the desired gain matrices Ψ∗

ζ , Ψ
∗
r , and

Ψ∗
ϕ satisfy:

A+BΨ∗
ζ = Ar

BΨ∗
r = Br (A2)

BΨ∗
ϕΦ(e) = −F(ζd, ζ).

Given that system (5) is by construction stable (Matrices P,
Ar satisfy PAr + AT

r P = −Q; see Section IV-A), then
e → 0. We define the gain prediction errors as Ψ̃ζ = Ψζ−Ψ∗

ζ ,
Ψ̃r = Ψr−Ψ∗

r , and Ψ̃ϕ = Ψϕ−Ψ∗
ϕ. Replacing (A2) in (A1),

we obtain:

ė = Are+BΨ̃ζζ +BΨ̃rr(t) +BΨ̃ϕΦ(e) (A3)

Theorem 1. The error dynamics (A3) is Lyapunov stable,
and the tracking error, e, vanishes asymptotically under the
proposed control law (7) and adaptation law (9).
Proof. Consider the following Lyapunov function:

V(e,Ψ̃ζ , Ψ̃r, Ψ̃ϕ) =
1

2
eTPe

+
1

2
tr
(
Ψ̃T

ζ ΘζΨ̃ζ + Ψ̃T
r ΘrΨ̃r + Ψ̃T

ϕΘϕΨ̃ϕ

)
(A4)

where P,Θζ , Θr, and Θϕ ≻ 0. V is positive. It is zero when
both the tracking error vanishes and the gains no longer vary.
Taking the time derivative of Eq.A4 yields:

V̇ =
1

2
eT (PAr +AT

r P)e

+ eTPB
(
Ψ̃ζζ + Ψ̃rr(t) + Ψ̃ϕΦ(e)

)
+ tr

(
Ψ̃T

ζ Θζ
˙̃
Ψζ + Ψ̃T

r Θr
˙̃
Ψr + Ψ̃T

ϕΘϕ
˙̃
Ψϕ

)
. (A5)

From BΨ∗
r = Br, we replace B = BrΨ

∗−1
r (if Br ≻ 0,

then Ψr ≻ 0 and inevitable by construction [51]). Setting
Θζ = Ψ∗−T

r Λ−1
ζ , Θr = Ψ∗−T

r Λ−1
r , and Θϕ = Ψ∗−T

r Λ−1
ϕ ,

we can rewrite Eq.A5 as:

V̇ = −1

2
eTQe+ eTPBrΨ

∗−1
r

(
Ψ̃ζζ + Ψ̃rr(t) + Ψ̃ϕΦ(e)

)
+ tr

(
Ψ̃T

ζ Ψ
∗−T
r Λ−1

ζ
˙̃
Ψζ + Ψ̃T

r Ψ
∗−T
r Λ−1

r
˙̃
Ψr

+ Ψ̃T
ϕΨ

∗−T
r Λ−1

ϕ
˙̃
Ψϕ

)
(A6)

where matrices Λζ , Λr, and Λϕ are positive definite and tune
the convergence rate of the adaptive gains. Replacing the
adaptation law Eq. (9) in Eq. (A6), and taking advantage of the
trace property for square matrices tr(AB) = tr(BA), all the
right-hand side terms of Eq.A6, except the first one, vanish and
the Lyapunov time derivative simplifies into V̇ = − 1

2e
TQe.

Since V > 0 and V̇ ≤ 0 the system in Eq. (A3) is
Lyapunov stable, thus e, Ψ̃ζ , Ψ̃r, and Ψ̃ϕ are bounded. As
r(t) is bounded (see Section IV-A), the system given by
Eq. (A3) and all variables in closed-loop remain bounded. By
extension, V̈ = −eTQė remain bounded at all time. Thus,
from Barbalat’s lemma [52] V̇ → 0 with t→ ∞ and e → 0.

IX. FUNCTION APPROXIMATION FOR ADAPTIVE CONTROL

In this paper, the adaptive control algorithm assumes that
the system’s non-linearities are encapsulated in a nonlinear
function F(·), which needs to be approximated online. For this,
universal function approximators mostly in the form of RBF
neural networks, are widely adopted [53]. F(·) can be approx-
imated by F(·) = Ψ∗

ϕΦ(·) + ϵ∗ where ϵ∗ denotes the network
reconstruction error. With ψi ∈ Rn being the NN weight
for the ith node, we can construct the weight matrix Ψ∗

ϕ =

[ψ1 ψ2 ... ψp]. Also Φ(·) = [ϕ1(·) ϕ2(·) ... ϕp(·)]T
is a vector of radial basis functions in which ϕi(·) the ith

node function is given by ϕi(x) = 1√
2πσi

exp

(
− ∥x−ξi∥

2

2σ2
i

)
,

with ξi ∈ Rn the center, and σi the corresponding kernel
width for RBF kernel of the ith node. It is noteworthy that
basis function ϕi(·) is not restricted to RBF kernels, and
one could select other types of kernels, such as Cosine or
Polynomial kernels. We adopt this methodology to estimate
unmodeled non-linearities in multi-body systems, described in
Section IV-A.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/10102575

	Introduction
	Related Work
	Preliminaries
	Self-Correcting QP-based Control
	Task-Space Adaptive Control
	Reference Model
	End-Effector Model
	Control Rules & Adaptive Laws

	Inverse Dynamics Learning Procedure
	Gaussian Processes for Inverse Dynamics Learning
	Practical Considerations

	Simulated Experiments
	KUKA LBR iiwa Trajectory Tracking
	QP Configuration
	Z-axis Tracking
	YZ-plane Tracking

	Talos Humanoid Task
	QP Configuration
	Results

	Preliminary Experiments on Bimanual Manipulation
	QP Configuration
	Results

	Physical Robot Experiments
	Tracking Periodic Trajectory on Z-axis
	Pick-and-Place with a Robotic Hand

	Conclusion
	Adaptive Control Stability Proof
	Function Approximation for Adaptive Control

