
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Communication-efficient distributed training of
machine learning models

Thijs VOGELS

Thèse n° 9926

2023

Présentée le 11 avril 2023

Prof. A.-M. Kermarrec, présidente du jury
Prof. M. Jaggi, directeur de thèse
Prof. M. Rabbat, rapporteur
Prof. D. Alistarh, rapporteur
Prof. P. Thiran, rapporteur

Faculté informatique et communications
Laboratoire d’apprentissage automatique et d’optimisation
Programme doctoral en informatique et communications

ii

Acknowledgements

What a privilege, when learning is your job.
I ended up with that job mainly thanks to my environment growing up. At my parents’

home, learning was considered something fun. Practicing multiplications became a game my
dad and I played in the bath tub. At school, I was surrounded by friends like Tobias, Willem,
Wim and Rens, who still considered learning to be fun—a rare belief amongst teenagers—
and by passionate teachers like Jeroen, Quintijn, Henk and Richard, who fed my passion for
learning and research with their enthusiasm for mathematical puzzles and computer science.

MLO has been a fantastic working place. Martin has created an exceptionally open and
friendly environment for everyone to work. His optimistic down-to-earth attitude has shielded
me from much of the stress of academia. Martin’s mentorship has provided direction to my
research, while allowing for great flexibility to experiment and fail. I am very grateful for the
opportunity to work with him.

At MLO, I have been lucky to work with exceptionally skillful collaborators—Anastasia,
Annie, Cécile, Daniel, Lie, Omar, Sebastian, Tao—and with two incredible mentors—Praneeth
and Hadrien. Working closely with them is the thing I enjoyed most during my PhD time.
Together, we translated vague thoughts into concrete ideas, and then into the papers that
are featured in this thesis.

During internships at NVIDIA and Google, I was hosted by Jan, Fabrice, Sean, and
Florian. It was amazing to see and learn from the energy and the enthusiasm they put into
their work. Fabrice’s opinions about ‘what makes good code’ currently form the basis of
my beliefs on the topic, and Jan’s attention to detail for the presentation of research results
inspires me whenever I make figures.

Many of the people that I met on the top floor of INJ have become close friends. Frequent
game nights with Anastasia and Maksym, long walks and bike trips with Praneeth, and
recycling an IKEA book-case into custom shelving with Jean-Baptiste are some of the things
that I will remember most fondly. Jean-Baptiste also deserves an additional acknowledgement
for having the courage to alpha-test and to be the single current user of SlideKit.

Throughout my time in Lausanne, even though it clearly was nice to spend time at MLO, I
have always looked forward to coming back home to see Emma. She has been unconditionally
encouraging, and exploring Switzerland with her has been the true highlight of my time here.

Finally, my sister Renee deserves to be acknowledged for the most careful proofreading
of most of the papers in this thesis.

Thank you all contributing to my time in Lausanne, and to the great memories I will take
with me wherever I go.

iii

iv

Abstract

In this thesis, we explore techniques for addressing the communication bottleneck in data-
parallel distributed training of deep learning models. We investigate algorithms that either
reduce the size of the messages that are exchanged between workers, or that reduce the
number of messages sent and received.

To reduce the size of messages, we propose an algorithm for lossy compression of gradients.
This algorithm is compatible with existing high-performance training pipelines based on the
all-reduce primitive and leverages the natural approximate low-rank structure in gradients of
neural network layers to obtain high compression rates.

To reduce the number of messages, we study the decentralized learning paradigm where
workers do not average their model updates all-to-all in each step of Stochastic Gradient
Descent, but only communicate with a small subset of their peers. We extend the afore-
mentioned compression algorithm to operate in this setting. We also study the influence
of the communication topology on the performance of decentralized learning, highlighting
shortcomings of the typical ‘spectral gap’ metric to measure the quality of communication
topologies, and proposing a new framework for evaluating topologies. Finally, we propose
an alternative communication paradigm for distributed learning over sparse topologies. This
paradigm, which is based on the concept ‘relaying’ updates over spanning trees of the com-
munication topology, shows benefits over the typical gossip-based approach, especially when
the workers have very heterogeneous data distributions.

Keywords Deep learning, machine learning, distributed training, decentralized learning, gra-
dient compression, stochastic gradient descent.

v

vi

Résumé

Dans cette thèse, nous explorons des techniques pour résoudre les problèmes de goulot d’étran-
glement des communications qui surviennennt lors de l’entrainement des modèles d’appren-
tissage profond lorsque les données sont traitées de manière parallèle et distribuée. Nous
étudions des algorithmes qui réduisent la taille des messages échangés entre les noeuds de
calcul ou bien qui réduisent le nombre de messages envoyés et reçus. Nous étudions les al-
gorithmes qui réduisent la taille des messages échangés entre les noeuds de calcul ou qui
réduisent le nombre de messages envoyés et reçus.

Pour réduire la taille des messages, nous proposons un algorithme de compression non-
exacte des gradients. Cet algorithme est compatible avec les pipelines déjà existantes d’en-
trainement haute performance basées sur la “all-reduce” primitive et exploite la structure
approximative de rang faible occurant naturellement dans les gradients des couches du ré-
seau neuronal afin d’obtenir des taux de compression élevés.

Pour réduire le nombre de messages, nous étudions le paradigme d’apprentissage décen-
tralisé où les travailleurs ne font pas la moyenne de leurs mises à jour de modèle à chaque
itération de la descente de gradient stochastique, mais ne communiquent qu’avec un petit
sous-ensemble de leurs pairs. Nous étendons l’algorithme de compression susmentionné pour
qu’il fonctionne dans ce cadre. Nous étudions également l’influence de la topologie de com-
munication sur les performances de l’apprentissage décentralisé afin de mettre en évidence les
lacunes de la métrique classique du « trou spectral » qui mesure la qualité des topologies de
communication et nous proposons un nouveau cadre d’évaluation des topologies. Enfin, nous
proposons un paradigme de communication alternatif pour l’apprentissage distribué sur des
topologies parsimonieuses. Ce paradigme, qui est basé sur le concept de « relais » des mises à
jour sur des arbres couvrants de la topologie de communication, présente des avantages par
rapport à l’approche classique basée de “bavardages”, en particulier lorsque les travailleurs
ont des distributions de données très hétérogènes.

Mots-clés Apprentissage profond, apprentissage automatique, apprentissage distribuée, ap-
prentissage décentralisé, compression de gradient, algorithme du gradient stochastique.

vii

viii

Contents

Acknowledgements iii

Abstract (English / Français) v

1 Introduction 1
1.0.1 Outline of the thesis . 2
1.0.2 Contributions beyond this thesis . 3

2 Practical low-rank gradient compression 5
2.1 Preface . 5
2.2 Introduction . 5
2.3 Related work . 6
2.4 Follow-up work . 8
2.5 Method . 9
2.6 Analysis of PowerSGD . 10

2.6.1 Effect of error feedback . 11
2.6.2 Effect of warm-start . 11
2.6.3 Effect of varying the rank . 12

2.7 Results . 13
2.7.1 Comparison with other compressors 13
2.7.2 Scalability of PowerSGD . 14
2.7.3 Beneficial regularization . 15
2.7.4 Other tasks and methods . 15

2.8 Conclusion . 16
2.9 Acknowledgements . 16

3 Low-rank gradient compression for decentralized learning 17
3.1 Preface . 17
3.2 Introduction . 17
3.3 Related work . 18
3.4 Decentralized machine learning . 19
3.5 Algorithm . 20

3.5.1 Properties . 22
3.6 Theoretical analysis . 22

3.6.1 Assumptions and setup . 22
3.6.2 Convergence rates . 23

3.7 Experimental analysis . 25

ix

Contents

3.8 Conclusion . 27
3.9 Acknowledgements . 27

4 The role of the topology in decentralized learning 29
4.1 Preface . 29
4.2 Introduction . 29
4.3 Related work . 31
4.4 A toy problem: D-SGD on isotropic random quadratics 33
4.5 Theoretical analysis . 34
4.6 Experimental analysis . 38
4.7 Conclusion . 40
4.8 Acknowledgements . 40

5 A relay mechanism for decentralized learning with heterogeneous data 41
5.1 Preface . 41
5.2 Introduction . 42
5.3 Related work . 43
5.4 Method . 44
5.5 Theoretical analysis . 46
5.6 Experimental analysis and practical properties 48

5.6.1 Effect of network topology . 48
5.6.2 Spanning trees compared to other topologies 49
5.6.3 Effect of data heterogeneity in decentralized deep learning 49
5.6.4 Robustness to unreliable communication 51

5.7 Conclusion . 53
5.7.1 Applicability to data center training 53

5.8 Acknowledgements . 53

6 Conclusion 55
6.1 Discussion and future work . 55

A Appendix for PowerSGD 57
A.1 Discussion of convergence . 57

A.1.1 Eigen compression . 57
A.1.2 Subspace iteration . 58
A.1.3 Single/multi worker equivalence . 60

A.2 Cluster specifications . 61
A.3 Convergence curves . 62
A.4 Language modeling with transformers . 64
A.5 The need for error feedback . 66
A.6 Network parameters . 67
A.7 Compressor implementation details . 68

A.7.1 Random Block . 68
A.7.2 Random K . 68
A.7.3 Sign+Norm . 69
A.7.4 Top K . 69
A.7.5 Signum . 70
A.7.6 Atomo . 70

x

Contents

A.7.7 Best-approximation PowerSGD . 71
A.8 Performance optimizations . 72
A.9 Learning rate tuning . 72

B Appendix for PowerGossip 73
B.1 Compressed Consensus . 73
B.2 Compressed optimization . 75
B.3 Experimental settings . 75
B.4 Convergence curves . 75

B.4.1 ResNet-20 on Cifar-10 . 76
B.4.2 LSTM on WikiText-2 . 76

B.5 The power spectrum of parameter differences 77
B.5.1 LSTM Training . 77
B.5.2 Consensus . 78

B.6 Changing rank vs changing # power iterations 78
B.7 Hyperparameters . 79

B.7.1 Consensus . 79
B.7.2 ResNet-20 on Cifar-10 . 79
B.7.3 LSTM on WikiText-2 . 80

B.8 Compared-to algorithm implementations . 80
B.8.1 ChocoSGD . 80
B.8.2 DeepSqueeze . 80
B.8.3 Moniqua . 80

B.9 Parameters in architectures . 81
B.10 Experiment runtime and compute infrastructure 82

C Appendix for Beyond Spectral gap 83
C.1 Notation . 83
C.2 Topologies . 84
C.3 Random quadratics . 86

C.3.1 Objective . 86
C.3.2 Algorithm . 86
C.3.3 Linear convergence of an unrolled error vector 87
C.3.4 Random walks with gossip averaging 88
C.3.5 Converging random walk . 89
C.3.6 The rate for D-SGD . 91

C.4 (Strongly)-Convex case, missing proofs and additional results 91
C.4.1 Preliminaries on Bregman divergences 91
C.4.2 Main result . 92
C.4.3 Obtaining Corollary IV . 97
C.4.4 Deterministic algorithm . 97

C.5 Cifar-10 experimental setup . 99
C.6 Additional experiments . 100

C.6.1 Results on Fashion MNIST . 101
C.6.2 Heterogeneous data . 101
C.6.3 The role of γ in the experiments . 102

xi

Contents

D Appendix for RelaySGD 107
D.1 Convergence Analysis of RelaySGD . 107
D.2 Detailed experimental setup . 107

D.2.1 Cifar-10 . 107
D.2.2 ImageNet . 107
D.2.3 BERT finetuning . 108
D.2.4 Random quadratics . 108

D.3 Hyperparameters and tuning details . 109
D.3.1 Cifar-10 . 109
D.3.2 ImageNet . 110
D.3.3 BERT finetuning . 110
D.3.4 Random quadratics . 111

D.4 Algorithmic details . 111
D.4.1 Learning-rate correction for RelaySGD 111
D.4.2 RelaySGD with momentum . 111
D.4.3 RelaySGD with Adam . 112
D.4.4 D2 with momentum . 112
D.4.5 Gradient Tracking . 112
D.4.6 Stochastic Gradient Push with the time-varying exponential topology 112

D.5 Additional experiments on RelaySGD . 113
D.5.1 Rings vs double binary trees on Cifar-10 113
D.5.2 Scaling the number of workers on Cifar-10 113
D.5.3 Independence of heterogeneity . 114
D.5.4 Star topology . 114

D.6 RelaySum for distributed mean estimation . 115
D.7 Alternative optimizer based on RelaySum . 115

D.7.1 Empirical analysis of RelaySGD/Grad 119

Bibliography 119

Curriculum Vitae 131

xii

Chapter 1

Introduction

The progress made in deep learning in the last few years has been remarkable. Current large
language models are starting to be practical assistants. They can help us to write code and
text [Brown et al., 2020], or help us to generate and edit images using text prompts [Ramesh
et al., 2021]. At the same time, deep learning models are finding their way into science
and engineering. Most notably, AlphaFold has made great progress in protein structure
prediction [Jumper et al., 2021]. These, and many other recent successes, rely heavily on
scale: they require both large models and large datasets. Attached to this scale is a cost:
training these models takes significant energy and time.

While reducing the energy consumption of training is perhaps the most pressing challenge
in deep learning right now, it is not the main focus of this thesis. Instead, we focus on reduc-
ing the time it takes to train these models. First and foremost, fast training improves the
productivity of machine learning researchers and practitioners. It also reduces the latency
between collecting new data and releasing a model trained on this data. The primary strat-
egy to achieve fast training, which is used by each of the aforementioned successes, is data
parallelism. Multiple compute devices look at different parts of the dataset, and compute
updates to the model in parallel.

As we increase the data parallelism to speed up training, we hit two key bottlenecks. The
first bottleneck is fundamental to the Stochastic Gradient Descent (SGD) algorithm used
to train deep learning models. In SGD, parallelism helps to reduce the variance of model
updates by computing gradients on larger batches of training data. If the noise is high
enough, reducing it enables larger step sizes, and thus faster training. If the noise is low,
however, stochastic noise is no longer the bottleneck that limits the step size and the training
speed. What is more, practitioners find that training with high parallelism (large batch
sizes) can result in worse accuracy on data outside the training set (generalization) [Goyal
et al., 2017]. A second bottleneck in the scalability of data parallel training is communication.
Communication is required to exchange the model parameters or the gradients between the
devices, and if the number of workers is large, the time spent communicating can outweigh
the time saved on computation and data loading, forming a bottleneck.

In this thesis, we focus on solutions to the communication bottleneck in data parallel
training. The typical solution to this bottleneck is to use expensive networking infrastructure
to increase the available bandwidth [Markov et al., 2021]. This solution requires little effort on
the part of the practitioners, but the cost can be prohibitive. Another option is to reduce the
communication, either by making messages smaller, or by reducing their number. We could
reduce the size of messages by using small parameter-efficient models or by compressing the

1

Chapter 1. Introduction

messages. The number of messages could be reduced by increasing local batch sizes [Goyal
et al., 2017], taking local steps [Stich, 2019] before communicating, or by replacing all-to-all
communication by sparser node-to-node synchronization [Lian et al., 2017].

When we use lossy compression to reduce the size of the gradients that are averaged
between workers after each gradient computation, we should be careful about two things.
Firstly, it is important to preserve enough gradient information. The error feedback mecha-
nism [Seide et al., 2014, Cordonnier, 2018, Stich et al., 2018, Karimireddy et al., 2019b] is a
way to ensure this. This mechanism uses memory local to each worker to store compression
errors, and compensate for those errors in future steps to avoid losing the information. A
second requirement is that the compression should be fast enough to not become a bottleneck
itself [Agarwal et al., 2022, Markov et al., 2021]. The gain in data transfer time should always
be larger than the cost of compression.

1.0.1 Outline of the thesis

Chapter 2 introduces the PowerSGD compression scheme [Vogels et al., 2019]. PowerSGD was
designed with the above constraints in mind. By leveraging natural low-rank structure in the
gradients of deep learning models, PowerSGD supports high compression rates while being
relatively efficient on today’s GPUs and easy to integrate with current optimized parallel
training code based on the all-reduce communication pattern. Instead of averaging gradients
across workers, PowerSGD computes a low-rank matrix that approximates the average worker
gradient. Crucially, this low-rank approximation is not computed using an expensive Singular
Value Decomposition, but it is computed using a process akin to power iteration that only
relies on cheap matrix multiplications and orthogonalization operations.

Apart from sending smaller messages between workers, another approach to alleviating
the communication bottleneck can be to reduce the number of messages. Such sparsity in the
communication patterns is naturally supported by the decentralized learning paradigm [Lian
et al., 2017], which avoids the need for synchronizing models between all workers at the start
of each iteration. While there are various forms of decentralization in machine learning [Lu
and De Sa, 2021], we focus on the setting where workers only communicate with few others
in each gradient computation round, resulting in inconsistent models across workers. As
long as those inconsistencies are kept small enough, they do not harm the convergence of
the training process. Most of the research in decentralized learning assumes that a particular
communication topology between the nodes is given. We are interested in using this paradigm
mainly for reducing the communication in data parallel training, and therefore we typically
assume that we can choose the communication topology ourselves.

Chapter 3 extends the PowerSGD compression scheme to the decentralized learning set-
ting [Vogels et al., 2020]. PowerSGD is closely tied to the all-reduce pattern, but here we
generalize the scheme to be a general mechanism for synchronizing models between work-
ers using any connectivity. The resulting PowerGossip algorithm carries the same benefits
of PowerSGD, but additionally, it avoids the need for compression-specific hyperparameters
that other compression methods for the decentralized learning require.

If we use decentralized learning purely for communication-efficiency, and if we assume that
we can choose the communication topology ourselves, we need to be able to reason about
how good a topology is. Chapter 4 explores this question, following [Vogels et al., 2022]. We
find that the ‘spectral gap’, the most popular metric used to capture the effect of a graph
topology in decentralized learning, does not correlate well with empirical performance. It

2

also does not naturally extend to time-varying graphs, which are popular in practice [Assran
et al., 2019]. In this chapter, we improve our understanding of how a topology influences
convergence, both theoretically, and empirically in deep learning, and we introduce a notion
of ‘effective number of neighbors’ that links decentralized performance to the performance
under all-to-all communication.

In chapter 5, we investigate an alternative communication mechanism to gossip commu-
nication for decentralized training. The typical gossip-based D-SGD algorithm [Lian et al.,
2017] does not work well if the different workers have data sets with different distributions.
This is because the workers receive more ‘influence’ from others close by in the communi-
cation network, and less from others that are far away. The RelaySum mechanism [Vogels
et al., 2021] that we discuss in this chapter replaces gossip communication by a form of ‘re-
laying’ or ‘forwarding’ of messages between workers. While relayed messages may arrive with
delays, workers receive exactly one update from everyone in the network at each step. This
means that, in some way, all peers have the same ‘influence’ on each other. We find that
this mechanism can be efficiently implemented on spanning trees, resulting in the same num-
ber of messages sent and received as in typical gossip communication, while outperforming
gossip-based baselines on deep learning experiments with non-iid data distributions.

1.0.2 Contributions beyond this thesis

The chapters in this thesis are a selection of work that the author contributed to during his
Ph.D. and that are related to communication efficiency in distributed learning. The author
also contributed to projects on other topics.

In [Sivaprasad et al., 2020], we observe that the efficacy of new optimizers in deep learning
is usually demonstrated under near-optimal hyperparameters. Finding those parameters in
practice can be infeasible for practitioners outside of research. Therefore, we introduce a
framework to evaluate optimizers that takes the cost of hyperparameter tuning into account.

In [Zhang et al., 2021], we study using machine learning for denoising Monte Carlo render-
ings. We introduce a modification to the commonly used kernel-predicting model architecture
that improves denoised image quality.

In [Trottet et al., 2022], we present a model architecture tailored to questionnaire data
collected for clinical decision support systems. The model works well with the structured
missing data that is common in decision-tree based questionnaire data.

3

Chapter 1. Introduction

4

Chapter 2

Practical low-rank gradient compression

2.1 Preface

This chapter follows [Vogels et al., 2019], with minor edits. This paper was written in 2019,
and the PowerSGD algorithm has since been adopted in practice and improved by others.
The new Section 2.4 discusses follow-up work that was published after the original paper.
Summary We study lossy gradient compression methods to alleviate the communication
bottleneck in data-parallel distributed optimization. Despite the significant attention re-
ceived, current compression schemes either do not scale well, or fail to achieve the target
test accuracy. We propose a low-rank gradient compressor based on power iteration that
can i) compress gradients rapidly, ii) efficiently aggregate the compressed gradients using
all-reduce, and iii) achieve test performance on par with SGD. The proposed algorithm is
the only method evaluated that achieves consistent wall-clock speedups when benchmarked
against regular SGD using highly optimized off-the-shelf tools for distributed communica-
tion. We demonstrate reduced training times for convolutional networks as well as LSTMs
on common datasets.
Code https://github.com/epfml/powersgd

Co-authors Sai Praneeth Karimireddy and Martin Jaggi.
Contributions
T. Vogels: methodology (50%), software, visualization, writing (70%).
S.P. Karimireddy: methodology (50%), formal analysis, writing (30%).
M. Jaggi: writing – review and editing, project administration, supervision.

2.2 Introduction

Synchronous data-parallel SGD is the most common method for accelerating training of deep
learning models [Dean et al., 2012, Iandola et al., 2016, Goyal et al., 2017]. Because the
gradient vectors of such models can be large, the time required to share those gradients
across workers limits the scalability of deep learning training [Seide et al., 2014, Iandola
et al., 2016, Lin et al., 2018].

Previous work proposes lossy gradient compression as a solution to this issue. Notable ex-
amples include replacing the coordinates of the gradient with only their sign [Seide et al., 2014,
Carlson et al., 2015, Bernstein et al., 2018, 2019, Karimireddy et al., 2019b], quantizing the

5

https://github.com/epfml/powersgd

Chapter 2. Practical low-rank gradient compression

individual coordinates [Alistarh et al., 2017, Wen et al., 2017], and low-rank approximation of
the gradient [Wang et al., 2018]. While these works demonstrate speedups over full-precision
SGD in some settings, we find that their speedups vanish with a fast network and highly
optimized communication backend, even on commodity hardware. Some prior work also
suffers from degraded test accuracy compared to SGD. We combine three observations to
fix these issues: i) Linear compressor operators achieve scalability by enabling aggregation
using all-reduce. ii) Error feedback ensures convergence with general biased compressors. iii)
Low-rank updates enable aggressive compression without sacrificing quality.

First, we explore the properties of various gradient compression schemes for SGD and
identify which ones are crucial for high scalability. In particular, we note that currently
proposed gradient compressors are not linear. Their compressed messages cannot be added
up directly, unlike raw gradients. This prevents current compressed SGD algorithms from
aggregating gradients using an efficient reduce operation and instead require a gather oper-
ation. Current deep learning frameworks rely either solely or predominantly on all-reduce,
which is key to why regular SGD scales well with fast communication hardware [cf. Awan
et al., 2018, Panda et al., 2019].

Secondly, it was recently shown that using error feedback, i.e., storing the difference
between the computed and compressed gradient, and reinserting it at the next iteration,
improves both convergence and generalization for compression schemes [Karimireddy et al.,
2019b]. This enables the use of general biased gradient compression schemes.

Thirdly, there is growing evidence that the generalization ability of over-parameterized
deep learning models is related to low-rankedness [Arora et al., 2018, Martin and Mahoney,
2018, Collins et al., 2018]. Using a low-rank update (as we do) can be viewed as implicitly
performing spectral regularization [Gunasekar et al., 2018] and hence can be expected to
have good generalization properties [Yoshida and Miyato, 2017]. Further, Wang et al. [2018]
show that the eigenspectrum of the stochastic gradients for deep learning models decays,
suggesting that a rank-based schemes can get away with aggressive compression without
sacrificing convergence.

In this work, we design PowerSGD with the above observations in mind. PowerSGD com-
putes a low-rank approximation of the gradient using a generalized power iteration (known as
subspace iteration [Stewart and Miller, 1975]). The approximation is computationally light-
weight, avoiding any prohibitively expensive Singular Value Decomposition. To improve the
quality of the efficient approximation, we warm-start the power iteration by reusing the ap-
proximation from the previous optimization step. Using all-reduce gradient aggregation, we
empirically demonstrate that PowerSGD achieves wall-clock speedups over regular SGD in a
16-GPU setting, even with the optimized NCCL communication backend on a fast network
(and is the only algorithm to do so.) By compressing gradients more than 120×, we reduce
communication time (including coding and decoding) by 54% for ResNet-18 on Cifar-10 and
by 90% for an LSTM on Wikitext-2. End-to-end wall-clock training time to full test quality
is reduced by 24% for ResNet-18 and by 55% for the LSTM.

2.3 Related work

Gradient compression A variety of compression schemes (fig. 2.1) have been proposed: Alis-
tarh et al. [2017] and Wen et al. [2017] quantize each gradient coordinate; Seide et al. [2014],
Carlson et al. [2015], Bernstein et al. [2018, 2019] and Karimireddy et al. [2019b] replace each

6

2.3. Related work

Layer gradient

In
pu

t
ne

ur
on

s

Output neurons

Sign Sign+Norm Top K Random K Rand. block Low-rank (ours)

Compressed gradients

Figure 2.1: Compression schemes compared in this paper. Left: Interpretation of a layer’s
gradient as a matrix. Coordinate values are color coded (positive, negative). Right: The
output of various compression schemes on the same input. Implementation details are in
Appendix A.7.

coordinate of the gradient with its sign; Lin et al. [2018], Stich et al. [2018] and Wangni et al.
[2018] use the largest few coordinates; and Konečný et al. [2016] and Wang et al. [2018] use
a low-rank approximation.

Spectral Atomo [Wang et al., 2018] is perhaps closest to our work. It importance-samples
the gradient’s singular vectors and is an unbiased compression scheme. It requires, however, a
full Singular Value Decomposition every iteration and is hence computationally impractical.

Commutative compression and addition Yu et al. [2018] stress that commutability of compres-
sion with gradient addition enables efficient aggregation with ring all-reduce. Most of the
compressors, however, lack this property. Yu et al. utilize temporally-consistent correlations
between gradients coordinates to compress them linearly. PowerSGD has a similar property
that we call ‘linearity’.

Error feedback First introduced in [Seide et al., 2014] and analyzed in [Stich et al., 2018,
Cordonnier, 2018] for the convex case, error feedback involves computing the difference be-
tween a worker’s gradient and the compressed gradient (error) and adding it back to the
next gradient (feedback). Karimireddy et al. [2019b] and Stich and Karimireddy [2019] fur-
ther develop and generalize the framework of error feedback with improved rates. In the
non-convex setting, Karimireddy et al. [2019b] show that error feedback is crucial both for
convergence and generalization when using biased compressors, e.g., sign or top-K. In gen-
eral, biased compression schemes equipped with error feedback tend to out-perform their
unbiased counterparts. The practical algorithm by Lin et al. [2018] is also as an approximate
top-K compressor with error feedback.

Low-rankmethods Recent works argue that in modern over-parameterized deep networks, the
final model learned has a ‘low stable rank’ [Martin and Mahoney, 2018, Li et al., 2018]. This
can partially explain their impressive generalization properties despite being substantially
overparameterized [Arora et al., 2018]. Adding explicit spectral regularization has shown to
further improve the performance of such models [Mazumder et al., 2010, Yoshida and Miyato,
2017]. Using a low-rank update (as we do) can be viewed as implicitly performing a similar
regularization [Gunasekar et al., 2018]. If the target matrices are known to be exactly low-
ranked (instead of just low stable rank), Yurtsever et al. [2017] show that it is sometimes
possible to converge to the optima using low rank approximations of the gradients without
the need for error feedback.

7

Chapter 2. Practical low-rank gradient compression

2.4 Follow-up work

Variations and extensions While PowerSGD applies low-rank approximations to gradients
over the course of training, it is also possible to apply low-rank approximation to the model.
The Pufferfish algorithm [Wang et al., 2021a] does this after using PowerSGD for a warm-up
period of several epochs, and Yu et al. [2021] use this kind of compression for differentially pri-
vate learning. Such decompositions can have additional benefits over reduced communication,
such as cheaper computation [Wang et al., 2021a], or improved privacy trade-offs [Yu et al.,
2021]. It was also found to be beneficial to use adaptive compression rates for PowerSGD.
Agarwal et al. [2021] propose to use a lower compression rate in the beginning of training than
in the end, and Alimohammadi et al. [2022] demonstrate that layer-wise adaptive compression
rates can benefit the algorithm.

In an effort to combine PowerSGD compression with decentralized averaging, Vogels et al.
[2020] (chapter 3) also introduce several algorithmic improvements to PowerSGD. These
include a more flexible approach to choosing the number of power iteration steps per SGD
step, providing the user with a trade-off over communication latency and orthogonalization
time. If orthogonalization is a bottleneck, the user can use multiple communication rounds
with a smaller rank. If latency is a bottleneck, the user can use a single communication round
per SGD step instead of two.

Finally, the error-feedback mechanism in this paper has remained an active area of re-
search, and many alternatives have been proposed [Xie et al., 2020, Richtárik et al., 2021, Xu
and Huang, 2022, Horváth and Richtárik, 2021].

Benchmarks and the need for speed Several authors have benchmarked PowerSGD and other
compression schemes on various datasets and models. Xu et al. [2021] provide a library
with unified optimized implementations of many algorithms. Agarwal et al. [2022] make a
clear case that, under typical data center bandwidths, the time required for compression
can outweigh the savings in communication time. Markov et al. [2021] further identify that
PowerSGD is less effective on transformers compared to CNNs, requiring a high compression
rank to obtain full accuracy. In general, the consensus is that the focus of the community
is better spent optimizing compression speed than further increasing compression rates over
PowerSGD [Agarwal et al., 2022, Markov et al., 2021].

Promising compression techniques Since the publication of PowerSGD, several new compres-
sion algorithms have been proposed. In particular, Chen et al. [2020] and Shi et al. [2021]
show that slight modifications to top-k compression can be both computationally efficient
and compatible with all-reduce. Sketching methods are also viable compressors, and due to
their linearity, they are also compatible with all-reduce [Ge et al., 2022, Ivkin et al., 2019].
Finally, Markov et al. [2021] show that, through low-level programming efforts, quantization
can be made very fast and practical.

Applications outside academia PowerSGD was implemented in PyTorch as a communication
hook for the Distributed Data Parallel API [Contributors, 2020]. It was used with to speed up
training of language models [Wang et al., 2021b], and it was used to train DALL-E [Ramesh
et al., 2021]. Ramesh et al. [2021] also show that PowerSGD benefits from a fast CUDA
implementation of the orthogonalization procedure, and they provide practical guidelines for
dealing with low-precision (sub 32-bit) floating point numbers.

8

2.5. Method

2.5 Method

In data-parallel optimization of machine learning models, a number of W workers share
the same model parameters x ∈ Rd. They iteratively update x by computing independent
stochastic gradients, aggregating these gradients by averaging1, and updating the model
parameters based on this aggregate.

Algorithm 1 Rank-r PowerSGD compression
1: The update vector ∆w is treated as a list of tensors corresponding to individual model

parameters. Vector-shaped parameters (biases) are aggregated uncompressed. Other
parameters are reshaped into matrices. The functions below operate on such matrices
independently. For each matrix M ∈ Rn×m, a corresponding Q ∈ Rm×r is initialized
from an i.i.d. standard normal distribution.

2: function compress+aggregate(update matrix M ∈ Rn×m, previous Q ∈ Rm×r)
3: P ←MQ
4: P ← all reduce mean(P) ▷ Now, P = 1

W (M1 + . . .+MW)Q

5: P̂ ← orthogonalize(P) ▷ Orthonormal columns
6: Q←M⊤P̂
7: Q← all reduce mean(Q) ▷ Now, Q = 1

W (M1 + . . .+MW)⊤P̂

8: return the compressed representation (P̂ , Q).
9: end function

10: function decompress(P̂ ∈ Rn×r, Q ∈ Rm×r)
11: return P̂Q⊤

12: end function

PowerSGD compression We approximate each layer in the model independently. The pa-
rameters of fully-connected layers (dense matrix multiplication) and their gradients have an
inherent matrix structure. The parameters of convolutional layers can be naturally inter-
preted as fully-connected layers applied repeatedly over a 2D grid of inputs. Practically, this
amounts to flattening input and kernel dimensions in the 4D gradient tensors. Neural net-
works also contain bias vectors, but these typically constitute a tiny fraction of the parameter
space and can be aggregated uncompressed.

For each parameter’s gradient M ∈ Rn×m, the aim of rank-r matrix approximation is to
find matrices P ∈ Rn×r and Q ∈ Rm×r such that PQ⊤ approximates M well. To motivate
such a representation, consider that a gradient M of a linear layer is computed as M =∑

b∈batch
∂lossb
∂yb x⊤

b , where xb is the input to the layer for data point b and yb is the output. In
the limiting case when the batch size is 1, this gradient is exactly rank-1, and it could be
represented much more efficiently than in its dense form. Even with larger batch sizes, or
with convolutional or LSTM layers, low-rank structure in either the layer’s inputs or output
gradients translates to a peaky power spectrum and effective low-rank compression.

PowerSGD uses a single step of subspace iteration—power iteration generalized to r > 1—
to compute such an approximation. This involves performing one right multiplication, one
left multiplication, and an orthogonalization. Chapter 3 will outline a more general variant
of PowerSGD that can use only a single left or right matrix multiplication step per SGD

1 Bernstein et al. [2019] propose Signum which aggregates 1-bit gradients by majority voting instead of
averaging.

9

Chapter 2. Practical low-rank gradient compression

iteration. We use the Gram-Schmidt procedure to orthogonalize our matrices since they have
very few columns (1–4), and this is the most expensive part of the compression procedure.
Further, we ‘warm-start’ the subspace iteration by reusing the approximation computed at
the previous step. With the inclusion of warm-start, a single step of subspace iteration yields
a factorization M ∼ PQ⊤ with the same performance as the best rank-r approximation from
an expensive Singular Value Decomposition.

Efficient aggregation between workers In data-parallel optimization, we want to approximate
the average of the worker’s gradients. Suppose PowerSGD operates on a list of corresponding
gradients [M1 . . .MW] from W workers. Both occurrences of M in the algorithm are a (linear)
matrix multiplication followed by a (linear) mean reduction over workers. This introduces a
practical invariance: execution on 1 worker with batch size B×W is equivalent to execution on
W workers with batch size B each. We call this property ‘linearity’. Refer to Appendix A.1.3
for more details.

(a) Gather (b) Reduce

An important benefit of PowerSGD’s linearity
is that it can be implemented using the all-reduce
protocol as opposed to needing a gather operation.
To illustrate the difference, suppose that we want
to compute the sum of W matrices

∑W
i=1Mi for

W = 4. The all-reduce method can use associa-
tivity of addition to rewrite the computation as (M1 + M2) + (M3 + M4). This enables a
divide-and-conquer approach and allows the summation task to be split over multiple workers,
as illustrated on the right. With W workers, both the computation and the communication
timescale as O(logW) for all-reduce, compared to O(W) for all-gather.

In addition to improved scaling, all-reduce communication is preferred over a parameter-
server setting because it avoids double compression. With a parameter server, both the
‘clients → server’ and ‘server → clients’ communication have to be compressed [Caldas et al.,
2018, Bernstein et al., 2019, Seide et al., 2014]. We avoid this by merging compression and
aggregation into one step.

Error-feedbackSGD Since the PowerSGD scheme is biased (i.e., compressing and decompress-
ing a random gradient does not yield the original in expectation), we use error feedback [Seide
et al., 2014, Karimireddy et al., 2019b]. Our version of error feedback (Algorithm 2) extends
the original by introducing post-compression momentum. This simple extension allows us to
reuse the same learning rate and hyperparameters as those tuned for SGD with momentum.

Adaptive optimizers like Adam We experimentally observe that PowerSGD can be used with
optimizers like Adam. The recommended way is to replace line 11 of Algorithm 2 with
the Adam update rule. Applying adaptive optimizers after compression and decompression
ensures that the optimizer’s state remains synchronized across workers by design.

2.6 Analysis of PowerSGD

In this section, we consider different aspects of PowerSGD in isolation and hope to empirically
understand: i) the effect of using error feedback, ii) the effect of ‘warm-start’, and iii) the
trade-off between test accuracy and compression rate with varying approximation rank.

10

2.6. Analysis of PowerSGD

Algorithm 2 Distributed Error-feedback SGD with Momentum
1: hyperparameters: learning rate γ, momentum parameter λ
2: initialize model parameters x ∈ Rd, momentum m← 0 ∈ Rd, replicated across workers
3: at each worker w = 1, . . . ,W do
4: initialize memory ew ← 0 ∈ Rd

5: for each iterate t = 0, . . . do
6: Compute a stochastic gradient gw ∈ Rd.
7: ∆w ← gw + ew ▷ Incorporate error-feedback into update
8: C(∆w)← compress(∆w)
9: ew ← ∆w − decompress(C(∆w)) ▷ Memorize local errors

10: C(∆) ← aggregate(C(∆1), . . . , C(∆W)) ▷ Exchange gradients
11: ∆′ ← decompress(C(∆)) ▷ Reconstruct an update ∈ Rd

12: m ← λm +∆′

13: x ← x− γ (∆′ + m)
14: end for
15: end at

Table 2.1: Rank-based compression with and with-
out error feedback. The biased PowerSGD outper-
forms an unbiased linear rank-r compressor on test
accuracy.

Algorithm Test accuracy Data/epoch

SGD 94.3% 1023 MB
Rank-1 PowerSGD 93.6% 4 MB
Rank-2 PowerSGD 94.4% 8 MB
Unbiased Rank 1 71.2% 3 MB
Unbiased Rank 2 75.9% 4 MB

Table 2.2: Best rank-2 approximation
vs. PowerSGD. Warm-start improves
test accuracy, even matching the per-
formance of the best rank-2 approxi-
mation.

Algorithm Test accuracy

Best approximation 94.4%
Warm start (default) 94.4%
Without warm start 94.0%

2.6.1 Effect of error feedback

Using error-feedback SGD as a base algorithm for PowerSGD has two advantages. First, it
enables our use of a biased compressor. Secondly, EF-SGD improves convergence and obtains
better test accuracy [Karimireddy et al., 2019b].

To illustrate the improved test accuracy, we compare PowerSGD—a biased compressor
with error feedback—to an unbiased low-rank approximation. To approximate a matrix
M ∈ Rn×m, the unbiased rank-r approximator samples a random matrix U ∈ Rm×r such
that E[UU⊤] = Im and outputs (MU,U) as the low-rank approximation. This scheme is
unbiased since

E[(MU)U⊤] = M E[UU⊤] = MI = M .

PowerSGD can be seen as the natural biased counterpart of this unbiased scheme. Table 2.1
demonstrates that our biased approximator with error feedback outperforms the unbiased
operator on image classification.

2.6.2 Effect of warm-start

PowerSGD does not compute the best rank-r approximation of a gradient matrix, but uses a
cheaper, low-fidelity approximation based on power iteration. Comparing the time per batch

11

Chapter 2. Practical low-rank gradient compression

Table 2.3: PowerSGD with
varying rank. With sufficient
rank, PowerSGD accelerates
training of a ResNet-18 and an
LSTM by reducing communica-
tion, achieving test quality on
par with regular SGD in the
same number of iterations. The
time per batch includes the for-
ward/backward pass (constant).
See Section 2.7 for the experi-
mental setup.

Image classification — ResNet on Cifar
Algorithm Test accuracy Data sent per epoch Time per batch

SGD 94.3% 1023 MB (1×) 312 ms +0%
Rank 1 93.6% 4 MB (243×) 229 ms −26%
Rank 2 94.4% 8 MB (136×) 239 ms −23%
Rank 4 94.5% 14 MB (72×) 260 ms −16%

Language modeling — LSTM on WikiText
Algorithm Test perplexity Data sent per epoch Time per batch

SGD 91 7730 MB (1×) 300 ms +0%
Rank 1 102 25 MB (310×) 131 ms −56%
Rank 2 93 38 MB (203×) 141 ms −53%
Rank 4 91 64 MB (120×) 134 ms −55%

of PowerSGD and Spectral Atomo in Table 2.6, we see the importance of avoiding a Singular
Value Decomposition. With ResNet-18 gradients shaped like in PowerSGD, computing the
SVD of a stochastic gradient takes 673ms, the equivalent of computing 6 mini-batch gradients
on the system described in appendix A.2. In contrast, one full step of rank-2 PowerSGD,
including communication between 16 workers, takes only 105ms.

Given that we only use a single step of power iteration, the quality of the approxima-
tion suffers—compare the test accuracy of ‘without warm start’ and ‘best approximation’ in
Table 2.2. A key feature of PowerSGD is the warm start strategy which reuses previously
computed matrix approximations to initialize the power iteration algorithm. If the matrix
on which we perform power iteration remains constant, then this recovers the best rank-r
approximation (see Theorem VI in the Appendix). We argue that this strategy sometimes
makes sense even if the underlying matrices are varying.

Suppose we approximate the sequence of gradient matrices {Mt} at time steps t. At time
step t, we leverage the previous factorization Mt−1 ≈ Pt−1Q

⊤
t−1. If Mt ≈ Mt−1 then we

would benefit from reusing Pt−1 and Qt−1 as our starting point. While this is unlikely to be
true, if Mt and Mt−1 are stochastic approximations of the full gradient, we can expect that
E[Mt] ≈ E[Mt−1] since the function is smooth, and we only take small update steps. The
result is akin to Oja’s algorithm for stochastic power iteration [Oja, 1982], and hence could
result in an improved approximation quality. As we show empirically in Table 2.2, this ‘warm
starting’ strategy is sufficient to close the gap in test accuracy between PowerSGD and the
much more expensive best rank-r approximation.

2.6.3 Effect of varying the rank

PowerSGD allows users to choose the rank of its gradient approximations. The trade-off
between approximation quality and compression, decompression and transfer cost is explored
in Table 2.3. In both the image classification and language modeling tasks we explore, the
test quality achieved by PowerSGD grows with increasing rank. In both cases, it reaches a
quality that is as good, or even slightly better than regular SGD.

12

2.7. Results

Table 2.4: Comparing different compression operators for Error-feedback SGD in a unified
setting; 300 epochs of Error-feedback SGD with Momentum (Algorithm 2) with a learning
rate tuned for full-precision SGD on 16 GPUs for Cifar-10. The variations of PowerSGD with
ranks 2 and 7 strike the best balance between the achieved test accuracy and time per batch
(total time for forward, backward, compression, decompression, and gradient aggregation).

Test accuracy Sent/epoch All-reduce Time/batch

No compression 94.3% 1023 MB 3 312 ms

Medium Rank 7 94.6% 24 MB 3 285 ms
Random Block 93.3% 24 MB 3 243 ms
Random K 94.0% 24 MB 3 540 ms
Sign+Norm 93.9% 32 MB 7 429 ms
Top K 94.4% 32 MB 7 444 ms

High Rank 2 94.4% 8 MB 3 239 ms
Random Block 87.8% 8 MB 3 240 ms
Random K 92.6% 8 MB 3 534 ms
Top K 93.6% 8 MB 7 411 ms

2.7 Results

Default experimental setting

Dataset Cifar-10
Architecture ResNet-18

Num. of workers 16
Backend NCCL (fastest in PyTorch)
Batch size 128× number of workers

Momentum 0.9
Learning rate Tuned for 16 workers — 0.1×

16 for SGD. Scaled linearly by
the number of workers

LR decay /10 at epoch 150 and 250
LR warmup Linearly within 5 epochs,

starting from the single-
worker LR

Epochs 300
Weight decay 10−4,

0 for BatchNorm parameters

Repetitions 3, with varying seeds
Error bars min — max

This section demonstrates the practicality of Pow-
erSGD for distributed deep learning. We show
that the compression scheme of PowerSGD i) is
fast and matches test performance of SGD, ii)
scales well with increasing workers even with a
suboptimal communication backend, and iii) sig-
nificantly reduces training time for larger models.

Most of the analysis is performed on Cifar-10,
in the setting described in the table on the right.
We verify the generality of PowerSGD by an addi-
tional evaluation of an LSTM for language model-
ing on Wikitext-2. We use 16 GPUs on 8 machines,
connected through a fast (10Gbit/s) network. To
obtain meaningful timings, we have aimed to op-
timize all compared optimizers to a similar level.
We provide a list of our performance optimizations
in Appendix A.8. Throughout these results, we tune the learning rate for full-precision SGD,
and use the same parameters for PowerSGD and other compression algorithms that use error
feedback with momentum. Learning rates for the compared-to Spectral Atomo [Wang et al.,
2018] and Signum [Bernstein et al., 2019] were separately tuned cf. Appendix A.9.

2.7.1 Comparison with other compressors

Error feedback in compressed optimization enables the use of a multitude of compression
schemes, including biased ones. The potential compression operators illustrated in fig. 2.1
are compared in table 2.4. We evaluate compressors based on the test accuracy achieved
and the total time taken to process one mini-batch. The former is a holistic measure of the
accuracy of the compression operator, and the latter is the net time required for a forward
pass, backward pass, gradient compression and decompression and gradient communication.

13

Chapter 2. Practical low-rank gradient compression

Table 2.5: Breakdown of time spent (in sec.) in one iteration of ResNet-18 training. Because
PowerSGD (Rank 2) uses all-reduce, time spent encoding/decoding gradients is constant.
Workers represent GPUs located in pairs of two per computer.

Forward pass, Backward pass, Gradient exchange, Encoding and decoding.

2 workers 4 workers 8 workers 16 workers
Rank 2
SGD
Signum

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

We study two compression regimes—medium and high.
At around 32× compression, achieved by sign-based methods, all compression schemes

(other than Random Block) achieve test accuracy close to full-precision SGD. This implies
that all schemes in this regime (other than Random Block) obtain a good-enough compression
quality. At high compression (128×), PowerSGD particularly stands out as the only method
to achieve the target test accuracy.

In both the medium and high compression settings, the only schemes to be faster than
full-precision SGD are PowerSGD and Random Block. Note that both are simple linear
schemes and hence support all-reduce. While Random K also supports all-reduce, the over-
head for random memory access during both the compression and decompression stages is
substantial, making it slower overall than SGD. Thus, on modern GPU-enabled infrastruc-
ture, PowerSGD, which relies on matrix multiplication, is faster and much more accurate
than the other compression schemes.

2.7.2 Scalability of PowerSGD

Here we investigate how PowerSGD scales with an increasing number of workers, shedding
light on what we can expect if we use a significantly larger number of workers. Additionally, we
investigate how these results depend on the choice of communication backend. We benchmark
PowerSGD against SGD and Signum (signSGD with majority vote) from Bernstein et al.
[2019] which we believe is the current state-of-the-art for distributed algorithms.

Table 2.5 provides a detailed breakdown of the time spent for each mini-batch (i.e., one
step) into the forward pass, backward pass, gradient exchange (communication), and compres-
sion/decompression. The time spent in the forward and backward pass is constant across all
algorithms and numbers of workers. Since both SGD and PowerSGD use all-reduce, the gra-
dient communication time (solid green in Table 2.5) scales gracefully with increasing number
of workers. Signum—which uses all-gather instead of all-reduce—has a steeper increase. It
has comparable time to PowerSGD for 4 workers but becomes more expensive for 16 workers.

There is another, more subtle, consequence of all-reduce vs. all-gather on the decoding
times. In all-reduce, the aggregation step and the communication step happen simultane-
ously. Each worker receives a pre-aggregated gradient, making the cost of decompression
independent of the number of workers. On the other hand, in all-gather, a worker receives
W compressed gradients that need to be individually decompressed and aggregated (either
using majority vote or averaging). The time for decompression with all-gather therefore
scales linearly with number of workers. This shows when comparing the hatcheted regions in
Table 2.5. This observation speaks to the importance of the reduce operation for scalability.

We next study two different backends—the more optimized NCCL and the slower GLOO.

14

2.7. Results

1 2 4 8 16

Number of workers

1×
2×

4×

8×
S

p
ee

d
u

p
ov

er
S

G
D

GLOO backend

SGD

Rank 2

Signum

1 2 4 8 16

Number of workers

NCCL backend

SGD

Rank 2

Signum

Figure 2.3: Scaling of PowerSGD on Cifar-10 compared to full-precision SGD and
Signum [Bernstein et al., 2019] on two communication backends. The batch size increases lin-
early with the number of workers. We compare training time for one epoch to 1-worker SGD.
The faster NCCL backend used throughout benefits the baselines more than our method.
Workers represent GPUs located in pairs of two per computer.

All three methods scale reasonably well with the optimized NCCL backend, although Signum
has a slope less than 1 in the log-log plot, indicating sublinear scaling. On the slower GLOO
backend, PowerSGD is the only method that scales well due to its high compression rate.

2.7.3 Beneficial regularization

In some occasions, like in the results in Table 2.4, we observe that PowerSGD with a high
enough rank can outperform SGD without compression, using a learning rate that was tuned
for SGD without compression. We hypothesize that this is due to the beneficial regularization
effect of PowerSGD. This observation also implies that, by tuning the learning rate and other
regularization parameters like weight decay specifically for PowerSGD, the method could be
used to improve model performance instead of to reduce communication.

2.7.4 Other tasks and methods

In Table 2.6, we compare PowerSGD against the state-of-the-art compressed optimization
algorithms Signum and Spectral Atomo. The cost of performing a full SVD at each step
renders Spectral Atomo impractical in a high-performance setting, especially because it fails
to match the test accuracy of the other methods. Signum performs better, with a minor
speedup over SGD. PowerSGD is the fastest and most accurate of the compared methods.

The advantage of PowerSGD truly shows when using really large models, i.e., where the
communication actually becomes a bottleneck. To verify this, we run Signum, full-precision
SGD, and PowerSGD to train an LSTM on a language modeling task which has a substantially
larger model size than ResNet-18 (see Appendix A.6). To match the test score of full-precision
SGD, we needed to use a rank-4 approximation (see Section 2.6.3). PowerSGD reduces
communication by 90% and the overall running time by 55%, while Signum becomes slower
than full-precision SGD and also obtains a worse test score.

Convergence curves on test accuracy corresponding to Tables 2.3, 2.6 and 2.7 are provided
in Appendix A.3. Those figures show our improvements in time-to-accuracy for any target
accuracy. Appendix A.4 contains a case study on using PowerSGD for a novel task (language
modeling with transformers on Wikitext-2) and more workers (32) on the public cloud.

15

Chapter 2. Practical low-rank gradient compression

Table 2.6: Results on Cifar-10. Con-
trary to rank-2 Spectral Atomo [Wang
et al., 2018] and Signum [Bernstein
et al., 2019], PowerSGD achieves the
same test accuracy as full-precision
SGD within the default epoch budget.

Algorithm Test accuracy Data/epoch Time per batch

SGD 94.3% 1023 MB 312 ms +0%
Atomo 92.6% 113 MB 948 ms +204%
Signum 93.6% 32 MB 301 ms −3%
Rank 2 94.4% 8 MB 239 ms −23%

Table 2.7: In language modeling,
rank-4 PowerSGD achieves the target
test accuracy and provides a signifi-
cant speedup over SGD.

Algorithm Test perplexity Data/epoch Time per batch

SGD 91 7730 MB 300 ms +0%
Signum 142 242 MB 424 ms +41%
Rank 4 91 64 MB 134 ms −55%

2.8 Conclusion

Gradient compression is a promising approach to tackling the communication bottleneck
in synchronous distributed optimization. Thus far, however, it has not found widespread
adoption because existing compression schemes either run slower than SGD with optimized
all-reduce gradient aggregation, or more importantly do not reach the same test performance.
We see PowerSGD as the first practical gradient compression method, and believe it is ready
for adaptation in practice.

The key to the practicality of PowerSGD is its linear compression scheme that is cheap to
compute and allows for all-reduce gradient aggregation, while simultaneously matching the
test performance of full-precision SGD. This speedup gained over SGD actually increases for
larger models such as those commonly found in NLP. Further, as a result of our modifications
to the error-feedback algorithm, PowerSGD is a plug-in replacement for SGD with momentum,
avoiding the need for additional hyperparameter tuning. We expect that these properties of
PowerSGD will enable training of even larger models with even more workers than what is
possible with full-precision SGD.

While PowerSGD enables faster training with larger batch sizes, increasing batch sizes
are known to eventually suffer from a ‘generalization gap’ [Shallue et al., 2019]. This is an
orthogonal issue that we see as the next step towards solving large-scale training. In our
experiments, we have observed that PowerSGD can achieve higher test accuracy than SGD.
Combined with the intriguing links between low-rankedness and generalization, this indicates
that PowerSGD may also be helpful for closing the generalization gap in large batch training.

2.9 Acknowledgements

We thank Alp Yurtsever and Tao Lin for valuable discussions and the reviewers for their
feedback. This project was supported by SNSF grant 200021_175796, as well as a Google
Focused Research Award.

16

Chapter 3

Low-rank gradient compression for
decentralized learning

3.1 Preface

This chapter follows [Vogels et al., 2020], with minor edits.

Summary Lossy gradient compression has become a practical tool to overcome the commu-
nication bottleneck in centrally coordinated distributed training of machine learning models.
However, algorithms for decentralized training with compressed communication over arbitrary
connected networks have been more complicated, requiring additional memory and hyperpa-
rameters. We introduce a simple algorithm that directly compresses the model differences
between neighboring workers using low-rank linear compressors applied to model differences.
Inspired by the PowerSGD algorithm for centralized deep learning [Vogels et al., 2019] (chap-
ter 2), this algorithm uses power iteration steps to maximize the information transferred per
bit. We prove that our method requires no additional hyperparameters, converges faster than
prior methods, and is asymptotically independent of both the network and the compression.
Out of the box, these compressors perform on par with state-of-the-art tuned compression
algorithms in a series of deep learning benchmarks.

Code https://github.com/epfml/powergossip

Co-authors Sai Praneeth Karimireddy and Martin Jaggi.

Contributions
T. Vogels: methodology, software, visualization, writing.
S.P. Karimireddy: methodology, formal analysis, writing.
M. Jaggi: writing – review and editing, project administration, supervision.

3.2 Introduction

The major advances in machine learning in the last decade have been made possible by very
large datasets collected by multifaceted organizations. We live in a society where almost
every individual owns electronic devices that collect huge amounts of data, which—when
used collaboratively—could lead to transformative insights [Nedic, 2020]. Often this data is

17

https://github.com/epfml/powergossip

Chapter 3. Gradient compression for decentralized learning

bound to the device it is captured on. This might be for practical reasons of communication
efficiency, or for more fundamental reasons such as privacy constraints.

Decentralized machine learning enables collaborative processing of this new kind of data.
In this paradigm, devices (nodes) have their own local data. The nodes jointly train a
model by minimizing a loss function on their joint dataset. To do so, nodes communicate
in a peer-to-peer fashion without any central coordination. A node can only communicate
with few ‘neighbor’ nodes. This decentralized approach is not only useful in fundamentally
decentralized systems, but the sparse communication patterns can sometimes even lead to
efficiency gains in a datacenter [Assran et al., 2019].

In bringing decentralized optimization algorithms into the realm of deep learning, the
more-than gigabytes large model parameters and gradients [Rajbhandari et al., 2019, Brown
et al., 2020] have spurred interest in communication compression techniques to reduce the
bandwidth requirements of training such models. While practical plug-and-play compres-
sors already exist for communication in centralized deep learning [Seide et al., 2014, Vogels
et al., 2019] that can retain full model quality at significant communication reductions, cur-
rent compression algorithms in decentralized optimization require the tuning of additional
hyperparameters. This is unfortunate, since running many experiments to tune these hyper-
parameters is especially challenging and costly in a decentralized environment.

In this paper, we study a specific class of low-rank compressors for decentralized opti-
mization inspired by [Vogels et al., 2019, Cho et al., 2019] (chapter 2) that are reliable and
require no tuning. Like in their work, we consider model parameters as matrices X. Each
pair of connected nodes (i, j) repeatedly estimates the difference between their parameters
Xi − Xj through low-rank approximation. These approximations can be made without com-
municating full matrices due to the linearity of power iteration steps.

We validate these plug-and-play compressors on decentralized image classification and
language modeling tasks, and show that we can achieve competitive performance to other
methods that require additionally tuned hyperparameters. This allows users to tune a learn-
ing rate in a simpler centralized setup, and then transition to decentralized learning without
extra effort. We prove hyperparameter-free convergence on a subclass of random low-rank
approximations. For consensus, our method converges faster than prior methods [Koloskova
et al., 2019b]. For stochastic optimization, our rates are asymptotically independent of the
compression rate.

3.3 Related work

Communication compression in centrally coordinated learning Communication compression is
an established approach to alleviate the communication bottleneck in parallel optimization
in deep learning. For example, Alistarh et al. [2017], Wen et al. [2017], Seide et al. [2014],
Bernstein et al. [2019], Karimireddy et al. [2019b] study gradient quantization, and [Lin et al.,
2018, Stich et al., 2018, Wangni et al., 2018] sparsify gradients, keeping only large coordinates.

It has become clear that linear compression operators are practical in the centralized
setting because they enable efficient all-reduce aggregation [Yu et al., 2018, Vogels et al.,
2019, Cho et al., 2019]. Ivkin et al. [2019] use linear sketches to detect which parameter
coordinates change most in a distributed setting. Wang et al. [2018] observed that gradients
in deep learning can be well approximated as low-rank matrices.

PowerSGD [Vogels et al., 2019] (chapter 2), on which this work is based, is both linear

18

3.4. Decentralized machine learning

and low-rank and performed well in a recent benchmark [Xu et al., 2020]. An iteration of
PowerSGD makes a low-rank approximation of the average error-corrected gradient across
workers. The proposed decentralized scheme “PowerGossip” makes separate approximations
for each pair of connected neighbors, directly approximating their pairwise model differences.

Decentralized optimization Decentralized, or ‘gossip’-based, optimization has been studied
for many years [Tsitsiklis, 1984]. Popular methods include those based on (stochastic) sub-
gradient descent [Nedic and Ozdaglar, 2009] on node’s local objective functions and with
averaging between sparsely connected neighbors. Lian et al. [2017] evaluated the effectiveness
of such schemes in the non-convex setting.

Tang et al. [2018a] extend decentralized optimization with compressed communication,
but require relatively high precision compression to ensure convergence. Koloskova et al.
[2019a] and Tang et al. [2019] alleviate this constraint, supporting arbitrary-strength com-
pression. Lu and Sa [2020] study a compression based on the assumption that model differ-
ences across connected nodes are coordinate-wise bounded. However, the above-mentioned
methods introduce additional hyperparameters specific to compression (e.g., the consensus
step size)—an inconvenience we overcome in this work.

3.4 Decentralized machine learning

In decentralized training of machine learning models there is no central ‘master’ node and
nodes can only communicate with few other nodes, their ‘neighbors’. This can be a physical
limitation of the network, but even in a datacenter, sparse, decentralized connectivity can be
desirable for scalability [Assran et al., 2019]. Each worker has its own local training data, and
these datasets may be non-identically distributed between workers. The data has to remain
local to the nodes, either for privacy reasons, or to co-locate computation with data storage.

The setup is formalized as follows: n worker nodes collectively minimize a loss function

f(X) :=
1

n

n∑
i=1

fi(X), fi(X) := Eξi∼Di
Fi(X, ξi)

over model parameters X, where fi(·) are smooth potentially non-convex loss functions over
local data distributions Di. We assume that X ∈ Rp×q where p represents the size of the
‘input’ and q is the output size. For linear models, this matrix representation is natural. For
multi-layer networks, each weight and bias is considered separately, and for convolutional
layers, q represents the number of input channels and the kernel size and p is the number of
output channels.

The network topology is represented by an undirected connected graph G that connects
nodes i with their neighbors Ni (including self-links). Communication between nodes i and
j is typically weighted by the i, j-th entry of a mixing matrix W ∈ Rn,n which is non-zero
only for connected nodes. This matrix is chosen such that for any scalars v ∈ Rn held by
the nodes, repeated averaging (gossip) between connected nodes, Wv, gradually leads to
consensus, vi → 1

n

∑n
i=1 vi ∀i.

In stochastic gradient-based optimization, each worker typically has its own model pa-
rameters Xi. Gossip averaging is used to bring the Xi’s closer together and share information
between nodes, while local stochastic gradient updates change Xi to fit local data. Our
method builds on the elegant D-SGD algorithm [Lian et al., 2017]. In D-SGD, for each time

19

Chapter 3. Gradient compression for decentralized learning

step t and each worker i,

X(t+1)
i := X(t)

i − η∇fi(X(t)
i , ξi,t) +

∑
j∈Ni

Wij

(
X(t)

j −X(t)
i

)
, (3.1)

where η is the learning rate and ξi,t ∼ Di represents a local data point. Each step requires
sending and receiving the full model parameters between all pairs of connected neighbors,
but this communication can be overlapped with computation of the stochastic gradient.

3.5 Algorithm

Naively applying lossy communication compression (quantization / sparsification) to the
gossip update in Eq. (3.1) leads to non-convergence. To support arbitrary compression,
prior approaches introduce algorithmic modifications and additional hyperparameters to
tune [Koloskova et al., 2019b, Tang et al., 2019, 2018a]. In this section, we introduce Pow-
erGossip, a compressed consensus algorithm based on low-rank approximations and power
iteration that does not suffer from these issues. Low-rank decomposition has already been
shown to perform well in centralized deep learning [Vogels et al., 2019, Cho et al., 2019, Xu
et al., 2020], and we find that they can be competitive with expensively tuned quantization-
or sparsification-based algorithms for decentralized training as well.

PowerGossip is based on the premise that Cv(X) := (Xv)v⊤, for a matrix X ∈ Rp×q and
vector v ∈ Rq with ∥v∥2 = 1, can be a reasonable low-rank approximation of X that can
be communicated with only p floats instead of p × q, given that all parties know v. For the
large weight matrices in deep learning, this reduction is significant. For a random v, Cv is a
random projection, while for v being the top right singular vector, Cv(X) is the best rank-1
approximation of X in the Frobenius norm.

We use the low-rank compressor Cv to compress the gossip part of Eq. (3.1):

X(t+1)
i := X(t)

i +
∑
j∈Ni

Wij Cvij (X
(t)
j −X(t)

i), (3.2)

for a time-varying vector vij shared between each pair of connected workers. Due to linearity,
Cv(Xj − Xi) = (Xj − Xi)vv⊤ = (Xjv− Xiv)v⊤. Therefore, the compressed difference can be
computed jointly by nodes i and j without ever communicating the full Xj − Xi. Thus, any
nodes i and j only need to exchange vectors instead of matrices.

The approximation quality of Cv depends on the choice of the projection vector v, and we
leverage the mechanism of power iteration to find good ones. Every time (k) the compressor
Cv is used on some parameter difference D(k) := X(k)

j − X(k)
i , we choose v(k) based on the

previous low-rank approximation. Starting with a random initial vector v(0), we use

v(2k+1) :=
D(2k)v(2k)

∥D(2k)v(2k)∥
, v(2k) :=

D(2k−1)⊤v(2k−1)

∥D(2k−1)⊤v(2k−1)∥
, ∀k ∈ Z≥0. (3.3)

If X(k)
j − X(k)

i changes slowly over time, this procedure approaches power iteration, and it
finds the top eigenvector v. This approach empirically leads to better approximations and
faster convergence than compression with random projections.

Algorithm 3 describes how we use PowerGossip for stochastic optimization. Algorithm 4
presents the details of our compression scheme.

20

3.5. Algorithm

Algorithm 3 Decentralized SGD with edge-wise compression

1: input model parameters X(0)
i ∈ Rp×q for each node i out of n, randomly initialized

identically
2: given a symmetric, doubly stochastic, diffusion matrix W ∈ RN×N

3: given a compressor C that can approximate Xi −Xj with little communication
4: for each time step t at each worker i do
5: G← a stochastic gradient ∇f(X(t−1)

i , ξi,t) for mini-batch ξi,t

6: X(t)
i ← X(t−1)

i +
∑

j∈Ni
WijC(X(t−1)

j −X(t−1)
i)− η ·G

7: end for

Algorithm 4 Rank-1 s-step PowerGossip compression for Algorithm 3
1: initialize a projection vector vij = −vji ∈ Rq for each pair of connected nodes i, j,

initialized from an entry-wise standard normal distribution, stored on nodes i and j.
Initialize k ← 0.

2: procedure C(Xj −Xi)
3: for s power iteration steps do
4: increment k ← k + 1
5: if k ≡ 1 mod 2 then
6: v̂← vij

∥vij∥
7: pj ← Xj v̂, pi ← Xiv̂ ▷ computed on nodes i and j

8: Q̂← (pj − pi)v̂⊤

9: vij ← pj − pi ▷ vij changes between Rp and Rq

10: else
11: do the same, but with X transposed as in Eq. (3.3).
12: end if
13: end for
14: return the approximation Q̂
15: end procedure
16: note that computations of C(Xj −Xi) = −C(Xi−Xj) overlap and share communication.

21

Chapter 3. Gradient compression for decentralized learning

3.5.1 Properties

Linearity Due to the linearity of matrix multiplication, we can compute a matrix-vector
product (Xi − Xj)v with matrices stored on different workers in a distributed fashion as
(Xiv)− (Xjv). This circumvents communication of matrices by sending much smaller vectors
instead. By compressing the differences of the models, we ensure that the models get closer
to the average in every step without the need for additional ‘consensus step size’ like prior
protocols. In particular, if two workers agree on the parameters and their difference is 0, then
the compressed update will also be 0. This ensures that consensus is always a fixed-point of
our method for arbitrary-strength compressors.
Low-rank compression PowerGossip approximates differences between model parameters by
low-rank matrices. The quality of these approximations depends on the power spectra of
the differences. Similar to how top-k compression—which approximates a vector by its top
k coordinate in absolute value, and zeros otherwise—works best when a few coordinates are
much larger than the rest, low-rank compression can leverage the peaky power spectra found
in deep learning [Vogels et al., 2019, Cho et al., 2019] to maximize information sent per
bit. Our experiments in Section 3.7 confirm that low-rank compression is competitive with
quantization- or sparsification-based approaches, while keeping our algorithm simple and free
of hyperparameters.
Memory and computation complexity The linear projection operations in PowerGossip are well
suited for accelerator hardware used in deep learning [Vogels et al., 2019, Cho et al., 2019, Xu
et al., 2020], and are typically even faster than compression based on random sparsification
or quantization. Like in D-SGD [Lian et al., 2017], this computation and the communication
between nodes can be overlapped with gradient computation. Storing the previous projection
vectors v requires memory linear in the number of connections per worker, but these vectors
are very small compared to a full model (0.1–2% of the full model in our experiments). This
yields lower memory usage than competing methods ChocoGossip [Koloskova et al., 2019a]
and DeepSqueeze [Tang et al., 2019].

3.6 Theoretical analysis

3.6.1 Assumptions and setup

Loss functions We make standard assumptions about our loss functions. Note that our
analysis covers both functions satisfying (A1) and more general non-convex functions which
do not.

(A1) fi is µ-convex for µ ≥ 0 if it satisfies for any X, and X⋆ minimizing f

∇fi(X) ◦ (X⋆ −X) ≤ −
(
fi(X)− fi(X⋆) +

µ

2
∥X−X⋆∥2F

)
.

(A2) We assume {fi} are L-smooth and thus satisfy:

∥∇fi(X)−∇fi(Y)∥F ≤ L∥X−Y∥F , for any i,X ,Y .

(A3) Bounded variance: We assume there exist constants σ2 and ζ2 which bound the
variance within and across different nodes, i.e., for any X we have

Eξi∼Di
∥∇Fi(X, ξi)−∇fi(X)∥2F ≤ σ2 and 1

N

∑N
i=1∥∇fi(X)−∇f(X)∥2F ≤ ζ2 .

22

3.6. Theoretical analysis

Assumption A1, known as star-convexity, is weaker than the usual definition of convexity
[Stich and Karimireddy, 2019]. While A3 requires both the variance within each node and
across nodes be bounded, we allow heterogeneous (non-iid) data distributions across nodes.

Communication network We assume that we are given a mixing matrix W ∈ Rn×n and an
underlying communication network over n nodes ([n], E) satisfying (A4):

(A4) Wij ̸= 0 only if (i, j) ∈ E, and W ∈ Rn×n is symmetric (W⊤ = W) and doubly
stochastic (W1= 1, 1⊤W= 1⊤). Further, W2 has eigenvalues 1 = λ2

1 ≥ λ2
w ≥ . . . λ2

n

with spectral gap ρ := 1− λ2
2 > 0.

Assumption (A4) characterizes the mixing matrix W for decentralized optimization and con-
trols the rate of information spread in the network [Lian et al., 2017, Pu and Nedic, 2018].
If W satisfies (A4) for ρ > 0, then the underlying communication network is undirected and
strongly connected.

Compression operators We introduce a new class of compression operators C(·) and assume
that every compressor used in Algorithm 3 satisfies (A5):

(A5) We assume that C is a δ-approximate unbiased linear projection operator, i.e., for
any X and Y, the following are true for some δ > 0:

C(X + Y) = C(X) + C(Y) , C(C(X)) = C(X) , and E[C(X)] = δX .

Consider a random-p sampler whose (i, j) element [Sp(X)]i,j is Xi,j with probability p and 0
otherwise. Then Sp(·) is a linear projection operator satisfying (A5) with δ = p.

For another example closer to Algorithm 4, consider the following compressor for X ∈ Rp,q:

R(X) := (Xu)u⊤ for u ∼ S(q−1) ,

i.e., we project X along u which is sampled uniformly from the unit sphere. The operator
R(X) approximates X as a product of two rank-1 matrices u and Xu. Then, R(·) is clearly
linear in X, is an unbiased projection operator, and satisfies (A5) with δ = 1

q . We can also
approximate X by two rank-k matrices as Rk(X) = (XU)U⊤ for U ∈ Rq×k being a uniformly
sampled orthonormal matrix. Then Rk(·) satisfies (A5) with δ = k

q . We can also define a left
projection operator L(X) := v(v⊤X) for v ∼ S(p−1). The operator L(·) approximates X with
two rank-1 matrices v and X⊤v and satisfies (A5) with δ = 1

p .
While the compression operators defined in (A5) are a subset of those in [Koloskova et al.,

2019b], they can still be of arbitrary approximation quality δ > 0.

3.6.2 Convergence rates

We study the rate of consensus as well as convergence of the objective function in stochastic
optimization with compressed communication. Our analysis shows that our algorithm is not
only simpler than the previous approaches, but also significantly faster. To simplify notation,
we will use ·̄ to indicate the average across the n nodes, e.g., X̄ := 1

n

∑n
i=1 Xi.

23

Chapter 3. Gradient compression for decentralized learning

Compressed consensus At every iteration, each worker i performs the following update:

X(t)
i := X(t−1)

i +
∑
j∈Ni

Wij

(
C(t)ij (X(t−1)

j)− C(t)ij (X(t−1)
i)

)
. (3.4)

Each edge (i, j) can use a different compressor C(t)ij that can be varied over time. In this
update, only compressed parameters are communicated.

Theorem I Assuming all compressors C(t)ij are δ-approximate satisfying (A5) and that the
mixing matrix W has spectral gap ρ as in (A4), then the update (3.4) achieves consensus at
a q-linear rate:

1

N

N∑
i=1

E
∥∥X(t)

i − X̄(0)
∥∥2
F
≤ (1− ρδ)

1

N

N∑
i=1

∥∥X(t−1)
i − X̄(0)

∥∥2
F
.

Note that update (3.4) requires no additional parameters and that our rate is linear in
both δ and ρ. When δ = 1, i.e., with uncompressed messages, the rate in I corresponds to the
classical consensus rate [Xiao and Boyd, 2004]. In contrast, [Koloskova et al., 2019b] require
a consensus step size, do not obtain q-linear rates, and are slower with a rate depending on
ρ2δ instead of our ρδ.

Compressed optimization Consider the following algorithm where every node i performs the
following updates using a sequence of predetermined step sizes {ηt}:

Y(t)
i := X(t−1)

i − ηt∇Fi(X, ξi,t)

X(t)
i := Y(t)

i +
∑
j∈Ni

Wij(C(t)ij (Y(t))
j)− C(t)ij (Y(t))

i)) . (3.5)

This algorithm is like PowerGossip, but it applies the consensus update of (3.4) after a
local gradient update rather than simultaneously. Again, the compressors are allowed to
vary across edges and with time, and only compressed parameters are communicated. After
running for T steps, we will randomly pick the final model given some weights {αt} as

Xout
i := X(t)

i with probability proportional to αt. (3.6)

Theorem II Suppose that assumptions A2–A5 hold at every round of (3.5). Then, in each of
the following cases there exist a sequence of step sizes {ηt} and weights {αt} such that the
output X̄out computed using (3.5) and (3.6) is ε-accurate.

• Non-convex E∥∇f(X̄out)∥2 ≤ ε after

T = O
(
Lσ2

nε2
+

√
L(ζ + σ)

ρδε3/2
+

L

ρδε

)
rounds.

• Convex If {fi} are convex and satisfy (A1) with µ = 0, then E[f(X̄out)]− [f(X∗)] ≤ ε
after

T = O
(

σ2

nε2
+

ζ + σ

ρδε3/2
+

L

ρδε

)
rounds.

24

3.7. Experimental analysis

• Strongly-convex If {fi} satisfy (A1) with µ > 0, then E[f(X̄out)]− [f(X∗)] ≤ ε after

T = Õ
(

σ2

nµε
+

ζ + σ

ρδµ
√
ε
+

L

ρδµ
log
(1
ε

))
rounds.

Let us focus on the strongly convex case ignoring logarithmic factors. Theorem II proves
that the iteration complexity is σ2

nµε +
ζ+σ

ρδµ
√
ε
+ L

ρδµ log
(
1
ε

)
. This can be decomposed into three

terms. The first stochastic term σ2

nµε is independent of both the compression factor δ as well as
spectral-gap ρ implying that these terms do not affect the asymptotic rates. It scales linearly
with the number of nodes n. The second term ζ+σ

ρδµ
√
ε

corresponds to the drift experienced and
is a penalty due to computation of gradients at inexact points [Karimireddy et al., 2019a].
However, this is asymptotically smaller than the stochastic term. Last is the optimization
term L

ρδµ log
(
1
ε

)
, which is the slowed down by a factor of ρδ. If ρδ = 1 and σ2 = ζ = 0, this

term matches the linear rate of gradient descent on strongly convex functions [Nesterov, 2004].
In contrast, the optimization term of [Koloskova et al., 2019b] is sub-linear. The dependence
on ρ and δ is linear in our rates while [Koloskova et al., 2019b] have a quadratic dependence
on ρ. With exact communication (δ = 1) we recover the rates of [Koloskova et al., 2020].

3.7 Experimental analysis

We study PowerGossip in three settings. We first evaluate bits of communication required
to reach consensus between 8 workers in a ring through (compressed) gossip averaging. The
workers start with personal data matrices Xi (i = 1 . . . 8) that are either unstructured, from
a 100× 100 standard normal distribution, or structured, with 64× 64 images from the Faces
Database [AT&T Laboratories Cambridge]. Then we evaluate PowerGossip in deep learning.
We study the algorithm on the Cifar-10 image classification benchmark of [Koloskova et al.,
2019a], using a ResNet-20 and labeled images that are reshuffled between 8 workers every
epoch. We also follow the language modeling experiment on WikiText-2 with an LSTM
from [Vogels et al., 2019] (chapter 2) and extend it to a decentralized setting with 16 workers
in a ring. Here, the training data is strictly partitioned between workers, dividing the source
text equally over the workers in the original ordering.

In all experiments, we tune the hyperparameters of our baselines following Appendix B.7
and use the same learning rate as uncompressed centralized SGD for all instances of Power-
Gossip. Further details on the experimental settings are specified in Appendix B.3.

Random projections v.s. power iteration Power iteration helps PowerGossip to leverage approx-
imate low-rank structure in parameter differences between workers. This is illustrated by the
consensus experiments in fig. 3.1. While on random data no compressed gossip algorithm out-
performs full-precision gossip in bits to an arbitrary level of consensus, PowerGossip leverages
structure in images of faces [AT&T Laboratories Cambridge] with less communication.

Algorithm Test loss

PowerGossip w/ Random projections 4.627
w/ Power iteration 4.565

D-SGD 35× communication 4.583

In our deep learning experiments,
we also observe that PowerGossip re-
quires less communication than random
projections. The table on the right
shows that more efficient communica-
tion leads to improved test accuracy
within a fixed budget of 90 epochs.

25

Chapter 3. Gradient compression for decentralized learning

M
ea

n
sq

ua
re

d
er

ro
r

Random 100×100 Normal Matrices

10 –6

10 –4

10 –2

10 0

10 2

10 4

10 6

0 2MB 4MB 0 2MB 4MB

64×64 Grayscale Faces (Structured)

10 –6

10 –4

10 –2

10 0

10 2

10 4

0 .5MB 1MB 0 .5MB 1MB

Uncompressed PowerGossip Edge-wise random projections ChocoGossip (Best Rank 1) ChocoGossip (Sign+Norm)

Figure 3.1: Consensus in an 8-ring. We study the level of consensus achieved as a function of
bits transmitted by decentralized averaging. We compare out-of-the-box PowerGossip with
power iterations and random projections against ChocoGossip [Koloskova et al., 2019b] with
varying diffusion parameters. PowerGossip is competitive to the best tuned instances of
ChocoGossip, and can leverage low rank structure in structured data (right).

Algorithm η γ Test loss Sent/epoch

All-reduce (baseline) tuned 4.46
Uncompressed (D-SGD) tuned 4.58 15.0 GB

PowerGossip (8 iterations) default 4.73 127 MB (122×)
PowerGossip (16 iterations) default 4.63 230 MB (67×)
PowerGossip (32 iterations) default 4.57 437 MB (35×)

Choco (Sign+Norm) tuned tuned 4.49 483 MB (32×)
Choco (top-1%) tuned tuned 5.04 464 MB (33×)

Table 3.1: Test loss achieved within 90 epochs on WikiText-2 language modeling with an
LSTM on a 16-ring with strictly partitioned training data. PowerGossip requires no tuning,
supports varying levels of compression, and is competitive to tuned ChocoSGD [Koloskova
et al., 2019a] at a similar compression rate, matching the test loss of uncompressed D-SGD.

Compression rate The compression rate in PowerGossip is determined by the number of
power iteration steps per stochastic gradient update. For models with large, square parameter
tensors, like our LSTM (Appendix B.9), a single step of PowerGossip uses less than 0.1% of
the bits used by an uncompressed averaging step. For a smaller model like the ResNet-20,
the compression ratio is much lower. While our algorithm works for any compression rate,
more gradient steps may be required to reach the same accuracy under extreme compression.

In our experiments, we use compression levels similar to those studied in related work.
At those levels, PowerGossip achieves test performance similar to uncompressed D-SGD in
the same number of steps. Our compression level is varied through the number of power
iterations per gradient update. More power iteration steps speed up consensus at the cost of
increased communication in the same way as increasing the rank of the compressor does (see
Appendix B.6), but it requires less memory to store the previous approximation and avoids
an expensive orthogonalization step [Vogels et al., 2019] (chapter 2). Table 3.1 shows the
effect of varying our compression rate while keeping the number of epochs fixed.

Hyper-parameter tuning We use the same learning rate tuned for centralized, uncompressed
SGD for all PowerGossip configurations. Tables 3.1 and 3.2 show that we reach performance
competitive to D-SGD on both tasks, at a similar compression rate to the best tuned config-
urations of ChocoSGD [Koloskova et al., 2019b] and DeepSqueeze [Tang et al., 2019].

26

3.8. Conclusion

Algorithm η γ θ Test accuracy Sent/epoch

All-reduce (baseline) tuned 92.3%
Uncompressed (D-SGD) tuned 92.1% 102 MB

Choco (top-1%) tuned tuned 91.2% 3.1 MB (33×)
Choco (Sign+Norm) tuned tuned 92.0% 3.2 MB (32×)
Moniqua (2-bit) tuned tuned tuned 90.7% 6.4 MB (16×)
DeepSqueeze (Sign+Norm) tuned tuned 91.2% 3.2 MB (32×)

PowerGossip (1 iteration) default 91.7% 1.8 MB (57×)
PowerGossip (2 iterations) default 91.9% 3.0 MB (34×)

Table 3.2: Test accuracy reached on Cifar-10 within 300 epochs with a ResNet-20 by de-
centralized optimization algorithms. PowerGossip has no additional hyperparameters and is
competitive to all related work at a similar compression rate. Other algorithms used tuned
learning rate η, averaging step size γ. Moniqua has an additional parameter θ that can be
computed or tuned.

3.8 Conclusion

The introduction of communication compression to decentralized learning has come with al-
gorithmic changes that introduced new hyperparameters required to support arbitrary com-
pression operators. Focusing on a special class of linear low-rank compression, we presented
simple parameter-free algorithms that perform as well as the extensively tuned alternatives
in decentralized learning. Using power-iterations, this method can leverage the approximate
low-rank structure present in deep learning updates to maximize the information transferred
per bit, and reduce the communication between workers significantly at no loss in quality
compared to full-precision decentralized algorithms. This is achieved with lower memory
consumption than current state-of-the-art decentralized optimization algorithms that use
communication compression.

Plug-and-play algorithms like PowerGossip can be directly deployed in a decentralized
setting while reusing standard learning rates set in the centralized environment without com-
pression. In view of the environmental, financial, and productivity impact of hyperparameter
tuning in deep learning, such tuning-free methods are crucial for practical applicability of
communication compression in decentralized machine learning.

3.9 Acknowledgements

This project was supported by SNSF grant 200021_175796, as well as a Google Focused
Research Award. The experiments were run using Google Cloud credits donated by Google.

27

Chapter 3. Gradient compression for decentralized learning

28

Chapter 4

The role of the topology in decentralized
learning

4.1 Preface

This chapter follows [Vogels et al., 2022], with minor edits.

Summary In data-parallel optimization of machine learning models, workers collaborate to
improve their estimates of the model: more accurate gradients allow them to use larger
learning rates and optimize faster. We consider the setting in which all workers sample from
the same dataset, and communicate over a sparse graph (decentralized). In this setting,
current theory fails to capture important aspects of real-world behavior. First, the ‘spectral
gap’ of the communication graph is not predictive of its empirical performance in (deep)
learning. Second, current theory does not explain that collaboration enables larger learning
rates than training alone. In fact, it prescribes smaller learning rates, which further decrease
as graphs become larger, failing to explain convergence in infinite graphs. This paper aims to
paint an accurate picture of sparsely-connected distributed optimization when workers share
the same data distribution. We quantify how the graph topology influences convergence
in a quadratic toy problem and provide theoretical results for general smooth and (strongly)
convex objectives. Our theory matches empirical observations in deep learning, and accurately
describes the relative merits of different graph topologies.

Code https://github.com/epfml/topology-in-decentralized-learning

Co-authors Hadrien Hendrikx and Martin Jaggi.

Contributions
T. Vogels: methodology, software, visualization, formal analysis (quadratic toy problem).
H. Hendrikx: methodology, formal analysis (full convex analysis), writing.
M. Jaggi: writing – review and editing, project administration, supervision.

4.2 Introduction

Distributed data-parallel optimization algorithms help us tackle the increasing complexity of
machine learning models and of the data on which they are trained. We can classify those
training algorithms as either centralized or decentralized, and we often consider those settings

29

https://github.com/epfml/topology-in-decentralized-learning

Chapter 4. The topology in decentralized learning

to have different benefits over training ‘alone’. In the centralized setting, workers compute
gradients on independent mini-batches of data, and they average those gradients between all
workers. The resulting lower variance in the updates enables larger learning rates and faster
training. In the decentralized setting, workers average their models with only a sparse set of
‘neighbors’ in a graph instead of all-to-all, and they may have private datasets sampled from
different distributions. As the benefit of decentralized learning, we usually focus only on the
(indirect) access to other worker’s datasets, and not of faster training.

While decentralized learning is typically studied with heterogeneous datasets across work-
ers, sparse (decentralized) averaging between is also useful when worker’s data is identically
distributed (i.i.d.) [Lu and Sa, 2021]. As an example, sparse averaging is used in data cen-
ters to mitigate communication bottlenecks [Assran et al., 2019]. In fact the D-SGD algo-
rithm [Lian et al., 2017], on which we focus in this work, performs well mainly in this setting,
while algorithmic modifications [Lorenzo and Scutari, 2016, Tang et al., 2018b, Vogels et al.,
2021] are required to yield good performance on heterogeneous objectives. With i.i.d. data,
the goal of sparse averaging is to optimize faster, just like with all-to-all averaging.

Yet, current decentralized learning theory poorly explains the i.i.d. case. Analyses typ-
ically show that, for small enough learning rates, training with sparse averaging behaves
the same as with all-to-all averaging [Lian et al., 2017, Koloskova et al., 2020]. Compared to
training alone with the same small learning rate, all-to-all averaging reduces the gradient vari-
ance by the number of workers. In practice, however, such small learning rates would never
be used. In fact, a reduction in variance should allow us to use a larger learning rate than
training alone, rather than imposing a smaller one. Contrary to current theory, we show that
averaging reduces the variance from the start, instead of just asymptotically. Lower variance
increases the maximum learning rate, which directly speeds up convergence. We characterize
how much averaging with various communication graphs reduces the variance, and show that
centralized performance is not always achieved when using optimal large learning rates. The
behavior we explain is illustrated in fig. 4.1.

In current convergence rates, the graph topology appears through the spectral gap of its
averaging (gossip) matrix. The spectral gap poses a conservative lower bound on how an
averaging step brings all worker’s models closer together. The larger, the better. If the
spectral gap is small, a significantly smaller learning rate is required to make the algorithm
behave close to SGD with all-to-all averaging with the same learning rate. Unfortunately, we
experimentally observe that, both in deep learning and in convex optimization, the spectral
gap of a graph is not predictive of its performance under realistically tuned learning rates.

The problem with the spectral gap quantity is clearly illustrated in a simple example. Let
the communication graph be a ring of varying size. As the size of the ring increases to infinity,
its spectral gap goes to zero, since it becomes harder and harder to achieve consensus between
all the workers. This leads to the optimization progress predicted by current theory to go
to zero as well. Yet, this behavior does not match the empirical behavior of the rings with
i.i.d. data. As the size of the ring increases, the convergence rate actually improves (fig. 4.1),
until it saturates at a point that depends on the problem.

In this work, we aim to accurately describe the behavior of i.i.d. distributed learning
algorithms with sparse averaging, both in theory and in practice. We quantify the role of
the graph in a quadratic toy problem designed to mimic the initial phase of deep learning
(section 4.4), showing that averaging enables a larger learning rate. From these insights, we
derive a problem-independent notion of ‘effective number of neighbors’ in a graph that is
consistent with time-varying topologies and infinite graphs, and is predictive of a graph’s

30

4.3. Related work

10

100

1000

↑ Steps until loss < 0.01

0.001 0.01 0.1 1

Learning rate →

Fully connected

Ring

Alone (disconnected)

Current theory uses
lower learning rates

but decentralized averaging
enables higher learning rates

0.001 0.01 0.1 1

Learning rate →

1-ring (spectral gap 1)

2-ring (spectral gap 1)
4-ring (spectral gap 0.67)

8-ring (s.g. 0.20)
∞-ring (s.g. 0)

= Instead of a speedup,
current theory predicts a slowdown with ring size

Figure 4.1: ‘Time to target’ for D-SGD [Lian et al., 2017] with constant learning rates on
an i.i.d. isotropic quadratic dataset (section 4.4). The noise disappears at the optimum.
Compared to optimizing alone, 32 workers in a ring (left) are faster for any learning rate,
but the largest improvement comes from being able to use a large learning rate. This benefit
is not captured by current theory, which prescribes a smaller learning rate than training
alone. On the right, we see that rings of increasing size enable larger learning rates and
faster optimization. Because a ring’s spectral gap goes to zero with the size, this cannot be
explained by current theory.

empirical performance in both convex and deep learning. We provide convergence proofs for
convex and (strongly) convex objectives that only mildly depend on the spectral gap of the
graph (section 4.5), and consider the whole spectrum instead. At its core, our analysis does
not enforce global consensus, but only between workers that are close to each other in the
graph. Our theory shows that sparse averaging provably enables larger learning rates and
thus speeds up optimization. These insights prove to be relevant in deep learning, where we
accurately describe the performance of a variety of topologies, while their spectral gap does
not (section 4.6).

4.3 Related work

Decentralized SGD This paper studies decentralized SGD. Koloskova et al. [2020] obtain the
tightest bounds for this algorithm in the general setting where workers optimize heterogeneous
objectives. Contrary to their work, we focus primarily on the case where all workers sample
i.i.d. data from the same distribution. This important case is not described meaningfully by
their analysis: while they show that gossip averaging reduces the asymptotic variance suffered
by the algorithm, the fast initial linear decrease term in their convergence rate depends on
the spectral gap of the gossip matrix. This key term does not improve through collaboration
and gives rise to a smaller learning rate than training alone. Besides, as discussed above, this
implies that optimization is not possible in the limit of large graphs, even in the absence of
heterogeneity: for instance, the spectral gap of an infinite ring is zero, which would lead to a
learning rate of zero as well.

These rates suggest that decentralized averaging speeds up the last part of training (domi-
nated by variance), at the cost of slowing down the initial (linear convergence) phase. Beyond
the work of Koloskova et al. [2020], many papers focus on linear speedup (in the variance phase)

31

Chapter 4. The topology in decentralized learning

over optimizing alone, and prove similar results in a variety of settings [Lian et al., 2017, Tang
et al., 2018b, Lian et al., 2018]. All these results rely on the following insight: while linear
speedup is only achieved for small learning rates, SGD eventually requires such small learning
rates anyway (because of, e.g., variance, or non-smoothness). This observation leads these
works to argue that “topology does not matter”. This is the case indeed, but only for very
small learning rates, as shown in fig. 4.1. In practice, averaging speeds up both the initial
and last part of training. This is what we show in this work, both in theory and in practice.

Another line of work studies D-(S)GD under statistical assumptions on the local data.
In particular, Richards and Rebeschini [2020] show favorable properties for D-SGD with
graph-dependent implicit regularization and attain optimal statistical rates. Their suggested
learning rate does depend on the spectral gap of the communication network, and it goes to
zero when the spectral gap shrinks. Richards and Rebeschini [2019] also show that larger
(constant) learning rates can be used in decentralized GD, but their analysis focuses on
decentralized kernel regression. It does not cover stochastic gradients, and relies on statistical
concentration of local objectives rather than analysis on local neighborhoods.
Gossiping in infinite graphs An important feature of our results is that they only mildly de-
pend on the spectral gap, and so they apply independently of the size of the graph. Berthier
et al. [2020] study acceleration of gossip averaging in infinite graphs, and obtain the same
conclusions as we do: although spectral gap is useful for asymptotics, it fails to accurately
describe the transient regime of averaging. This is especially limiting for optimization (com-
pared to of just averaging), as new local updates need to be averaged at every step. The
transient regime of averaging deeply matters. Indeed, it impacts the quality of the gradient
updates, and so it rules the asymptotic regime of optimization.
The impact of the topology Some works on linear speedup [Lian et al., 2017] argue that the
topology of the graph does not matter. This is only true for asymptotic rates in specific
settings, as illustrated in fig. 4.1. Neglia et al. [2020] investigate the impact of the topol-
ogy on decentralized optimization, and contradict this claim. Compared to us, they make
different noise assumptions, which in particular depend on the spectral distribution of the
noise over the eigenvalues of the Laplacian (thus mixing computation and communication
aspects). Although they show that the topology has an impact in the early phases of training
(just like we do), they still get an unavoidable dependence on the spectral gap of the graph.
Our results are different in nature, and show the benefits of averaging and the impact of the
topology through the choice of large learning rates.

Another line of work studies the interaction of topology with particular patterns of data
heterogeneity [Dandi et al., 2022, Bars et al., 2022], and how to optimize graphs with this
heterogeneity in mind. These works “only” show a benefit from one-step gossip averaging
and this is thus what they optimize the graph for. In contrast, we show that it is possible to
benefit from distant workers beyond direct neighbors, too. This is an orthogonal direction,
though the insights from our work could be used to strengthen their results.
Time-varying topologies Time-varying topologies are popular for decentralized deep learning
in data centers due to their strong mixing [Assran et al., 2019, Wang et al., 2019]. The
benefit of varying the communication topology over time is not easily explained through
standard theory, but requires dedicated analysis [Ying et al., 2021]. While our proofs only
cover static topologies, the quantities that appear in our analysis can be computed for time-
varying schemes, too. With these quantities, we can empirically study static and time-varying
schemes in the same framework.

32

4.4. A toy problem: D-SGD on isotropic random quadratics

4.4 A toy problem: D-SGD on isotropic random quadratics

Before analyzing decentralized stochastic optimization through theory for general convex
objectives and deep learning experiments, we first investigate a simple toy example that
illustrates the behavior we want to explain in the analysis. In this setting, we can exactly
characterize the convergence of decentralized SGD. We also introduce concepts that will be
used throughout the paper.

We consider n workers that jointly optimize an isotropic quadratic Ed∼N d(0,1)
1
2(d⊤x)2 =

1
2∥x∥2 with a unique global minimum x⋆ = 0. The workers access the quadratic through
stochastic gradients of the form g(x) = dd⊤x, with d ∼ N d(0, 1). This corresponds to a linear
model with infinite data, and where the model can fit the data perfectly, so that stochastic
noise goes to zero close to the optimum. We empirically find that this simple model is a
meaningful proxy for the initial phase of (over-parameterized) deep learning (section 4.6). A
benefit of this model is that we can compute exact rates for it. These rates illustrate the
behavior that we capture more generally in the theory of section 4.5. Appendix C.3 contains
a detailed version of this section that includes full derivations.

The stochasticity in this toy problem can be quantified by the noise level

ζ = sup
x∈Rd

Ed∥dd⊤x∥2
∥x∥2 , (4.1)

which is equal to ζ = d+ 2, due to the random normal distribution of d.
The workers run the D-SGD algorithm [Lian et al., 2017]. Each worker i has its own

copy xi ∈ Rd of the model, and they alternate between local model updates xi ← xi − ηg(xi)
and averaging their models with others: xi ←

∑n
j=1wijxj . The averaging weights wij are

summarized in the gossip matrix W ∈ Rn×n. A non-zero weight wij indicates that i and j are
directly connected. In the following, we assume that W is symmetric and doubly stochastic:∑n

j=1wij = 1 ∀i.
On our objective, D-SGD either converges or diverges linearly. Whenever it converges,

i.e., when the learning rate is small enough, there is a convergence rate r such that

E∥x(t)
i ∥

2 ≤ (1− r)∥x(t−1)
i ∥2,

with equality as t → ∞ (proofs in appendix C.3). When the workers train alone (W = I),
the convergence rate for a given learning rate η reads:

ralone = 1− (1− η)2 − (ζ − 1)η2. (4.2)

The optimal learning rate η⋆ = 1
ζ balances the optimization term (1− η)2 and the stochastic

term (ζ − 1)η2. In the centralized (fully connected) setting (wij =
1
n ∀i, j), the rate is simple

as well:

rcentralized = 1− (1− η)2 − (ζ − 1)η2

n
. (4.3)

Averaging between n workers reduces the impact of the gradient noise, and the optimal
learning rate grows to η⋆ = n

n+ζ−1 . D-SGD with a general gossip matrix W interpolates
those results.

To quantify the reduction of the (ζ − 1)η2 term in general, we introduce the problem-
independent notion of effective number of neighbors nW(γ) of the gossip matrix W and decay
parameter γ.

33

Chapter 4. The topology in decentralized learning

Definition A The effective number of neighbors nW(γ) = limt→∞

∑n
i=1 Var[y(t)i]∑n
i=1 Var[z(t)i]

measures the
ratio of the asymptotic variance of the processes

y(t+1) =
√
γ · y(t) + ξ(t), where y(t) ∈ Rn and ξ(t) ∼ N n(0, 1) (4.4)

and

z(t+1) = W(
√
γ · z(t) + ξ(t)), where z(t) ∈ Rn and ξ(t) ∼ N n(0, 1). (4.5)

We call y and z random walks because workers repeatedly add noise to their state, some-
what like SGD’s parameter updates. This should not be confused with a ‘random walk’ over
nodes in the graph.

Since averaging with W decreases the variance of the random walk by at most n, the
effective number of neighbors is a number between 1 and n. The decay γ modulates the
sensitivity to communication delays. If γ = 0, workers only benefit from averaging with their
direct neighbors. As γ increases, multi-hop connections play an increasingly important role.
As γ approaches 1, delayed and undelayed noise contributions become equally weighted, and
the reduction tends to n for any connected topology.

For regular doubly-stochastic symmetric gossip matrices W with eigenvalues λ1, . . . , λn,
nW(γ) has a closed-form expression

nW(γ) =

1
1−γ

1
n

∑n
i=1

λi
2

1−λ2
i γ

. (4.6)

The notion of variance reduction in random walks, however, naturally extends to infinite
topologies or time-varying averaging schemes. Figure 4.2 illustrates nW for various topologies.

In our exact characterization of D-SGD’s convergence on the isotropic quadratic toy prob-
lem (Appendix C.3), we find that the effective number of neighbors appears in place of the
number of workers n in the fully-connected rate eq. (4.3). The rate is the unique solution to

r = 1− (1− η)2 − (ζ − 1)η2

nW
((1−η)2

1−r

) . (4.7)

For fully-connected and disconnected W, nW(γ) = n or 1 respectively, irrespective of γ,
and Equation 4.7 recovers Equations 4.2 and 4.3. For other graphs, the effective number of
workers depends on the learning rate. Current theory only considers the case where nW ≈ n,
but the small learning rates this requires can make the term (1− η)2 too large, defeating the
purpose of collaboration.

Beyond this toy problem, the notion of effective number of neighbors also turns out to be
meaningful in the analysis of general objectives (section 4.5) and deep learning (section 4.6).

4.5 Theoretical analysis

In the previous section, we have derived exact rates for a specific function. Now we present
convergence rates for general (strongly) convex functions that are consistent with our observa-
tions in the previous section. We obtain rates that depend on the level of noise, the hardness

34

4.5. Theoretical analysis

↑ Effective number of neighbors (variance reduction in a ‘random walk’)

1

4

8

16

24

32

0.99990.9990.990.90

Decay γ of the ‘random walk’→
(Think “lower learning rate” or “iterates moving slower”)→

Fully connected

Two cliques

Time-varying
exponential

Ring
Alone (disconnected)

· · ·

Figure 4.2: The effective number of neighbors for several topologies (appendix C.2) measured
by their variance reduction in eq. (4.5). The point γ on the x-axis that matters depends on
the learning rate and the task. The ‘best’ topology varies from problem to problem. For
large decay rates γ (corresponding small learning rates), all connected topologies achieve
variance reduction close to a fully connected graph. For small decay rates (large learning
rates), workers only benefit from their direct neighbors, e.g., 3 in a ring. These curves can
be computed explicitly for constant topologies, and simulated efficiently for the time-varying
exponential scheme [Assran et al., 2019].

of the objective, and the topology of the graph. We will assume the following randomized
model for D-SGD:

x(t+1)
i =

x(t)
i − η∇f

ξ
(t)
i

(x(t)
i) with probability 1

2 ,∑n
j=1wijx(t)

j otherwise,
(4.8)

where f
ξ
(t)
i

represent sampled data points and the gossip weights wij are elements of W. This
randomized model yields a clean analysis, but similar results hold for standard D-SGD as
well (Appendix C.4.4).

Assumption B The stochastic gradients are such that: (i) ξ
(t)
i and ξ

(ℓ)
j are independent for all

t, ℓ and i ̸= j. (ii) E [f
ξ
(t)
i

] = f for all t, i (iii) E ∥∇f
ξ
(t)
i

(x⋆)∥2 ≤ σ2 for all t, i, where x⋆ is a
minimizer of f . (iv) f

ξ
(t)
i

is convex and ζ-smooth for all t, i. (v) f is µ-strongly-convex for
µ ≥ 0 and L-smooth.

The smoothness ζ of the stochastic functions fξ defines the level of noise in the problem
(the lower, the better). The ratio ζ/L compares the difficulty of optimizing with stochastic
gradients to the difficulty with the true global gradient (before reaching the ‘variance region’ of
distanceO(σ2) to the optimum). Assuming better smoothness for the global average objective
than for the local functions is key to showing the benefit of averaging between workers.
Without communication, convergence to the variance region is ensured for learning rates
η ≤ 1/ζ. If ζ ≈ L, there is little noise and cooperation does not help before ∥x(t)−x⋆∥2 ≈ σ2.
Yet, in noisy regimes (ζ ≫ L), such as in section 4.4 in which ζ = d+ 2≫ 1 = L, averaging
enables larger step-sizes up to min(1/L, n/ζ), greatly speeding up the initial training phase.
This is precisely what we prove in Theorem III.

35

Chapter 4. The topology in decentralized learning

If the workers always remain close (xi ≈ 1
n(x1 + . . .+ xn) ∀i, or equivalently 1

n11
⊤x ≈ x),

D-SGD behaves the same as SGD on the average parameter 1
n

∑n
i=1 xi, and the learning rate

depends on max(ζ/n,L), showing a reduction of variance by n. To maintain “ 1
n11

⊤x ≈ x”,
however, we require a small learning rate. This is a common starting point for the analysis
of D-SGD, in particular for the proofs in Koloskova et al. [2020]. On the other extreme, if
we do not assume closeness between workers, “Ix ≈ x” always holds. In this case, there is
no variance reduction, but no requirement for a small learning rate either. In section 4.4, we
found that, at the optimal learning rate, workers are not close to all other workers, but they
are close to others that are not too far away in the graph.

We capture the concept of ‘local closeness’ by defining an averaging matrix M. It allows
us to consider semi-local averaging beyond direct neighbors, but without fully averaging with
the whole graph. We ensure that “Mx ≈ x”, leading to some improvement in the smoothness
between ζ and ζ/n, interpolating between the two previous cases. Each matrix M implies
a requirement on the learning rate, as well as an improvement in smoothness. Based on
section 4.4, we therefore focus on a specific family of matrices that strike a good balance
between the two: We choose M as the covariance of a decay-γ ‘random walk process’ with
the graph, meaning that

M = (1− γ)
∞∑
k=1

γk−1W2k = (1− γ)W2(1− γW2)−1. (4.9)

Varying γ induces a spectrum of neighborhoods from M = W2 (γ = 0) to M = 1
n11

⊤ (γ = 1).
γ also implies an effective number of neighbors nW(γ): the larger γ, the larger nW(γ).

Theorem III provides convergence rates for any value of γ, but the best rates are obtained
for a specific γ that balances the benefit of averaging with the constraint it imposes on
closeness between neighbors. In the following theorem, we assume that W is regular and
Mii = Mjj for all i, j, so that Mii

−1 = nW(γ): the effective number of neighbors defined
in (4.6) is equal to the inverse of the self-weights of matrix M. For irregular graphs, all
results still hold by replacing nW(γ) with mini Mii

−1, but they are more difficult to interpret
in that case.

Theorem III If Assumption B holds, and the learning rate satisfies

η ≤ min
(

1

8(ζ/nW(γ) + L)
,
1− γλ2(W)

2nW(γ)L

)
, (4.10)

then the iterates obtained by (4.8) verify

∥x(t) − x⋆∥2M +
1

nW(γ)
∥x(t)∥2I−M ≤

(
1− ηµ

2

)t
C0 +

8ησ2

nW(γ)
, (4.11)

The bound on the learning rate (4.10) represents the tension between (i) reducing the noise
ζ by averaging with more people (larger nW(γ)), which is the first term in the minimum, and
(ii) staying close to all of them. A large spectral gap 1−λ2(W) reduces the second constraint,
but we allow non-trivial learning rates η > 0 even when λ2(W) = 1 (infinite graphs) if γ < 1.

Also note that the first term in the learning rate equation (4.10) corresponds well with
the empirical observation that the learning rate can be scaled linearly with the number of
workers as long as the noise ζ dominates the smoothness constant L.

36

4.5. Theoretical analysis

5 10 15 20 25 30
0.000

0.001

0.002

0.003

0.004

0.005

↑ Learning rate given by Theorem 1 (L = 1.0, ζ = 2000)

Effective number of neighbors nW(γ)→
5 10 15 20 25 30

0.000

0.002

0.004

0.006

0.008

0.010

Effective number of neighbors nW(γ)→

Ring

Torus (4x8)

Hypercube

Restricted by noise Restricted by consensus

M

Figure 4.3: Maximum learning rates prescribed by theorem III, varying the parameter γ
that implies an effective neighborhood size (x-axis) and an averaging matrix M (drawn as
heatmaps). On the left, we show the details for a 32-worker ring topology, and on the right,
we compare it to more connected topologies. Increasing γ (and with it nW(γ)) initially leads
to larger learning rates thanks to noise reduction. At the optimum, the cost of consensus
exceeds the benefit of further reduced noise.

Theorem III gives a rate for each parameter γ that controls the local neighborhood size.
The task that remains is to find the γ parameter that gives the best convergence guarantees
(the largest learning rate). As explained before, one should never reduce the learning rate
in order to be close to others, because the goal of collaboration is to increase the learning
rate. We should therefore pick γ such that the first term in Equation (4.10) dominates. This
intuition is summarized in Corollary IV, which compares the performance of D-SGD with
centralized SGD with fewer workers.

Corollary IV D-SGD is as fast as centralized mini-batch SGD with O(nW(γ)) workers, assum-
ing that ζ ≥ nL, and that the parameter γ is the highest γ such that 2nW(γ)2

1−γλ2(W) ≤ 32 ζ
L . This

corresponds to a learning rate η = nW(γ)/16ζ.
The typical D-SGD learning rates [Koloskova et al., 2020] are of order O(min(1/T, 1 −

λ2(W))), which are much smaller than the learning rate of Corollary IV when λ2(W) is large
or the number of iterations large. We use the condition ζ ≥ nL only to present results in
a simpler way. The condition 2nW(γ)2

1−γλ2(W) only depends on the size and topology of the graph,
and can easily be computed in many cases. Thus, to obtain the best guarantees, we start
from γ = 0 and then increase it until either nW(γ) ≈ n, the total size of the graph, or the
two terms in the minimum match. This is how we obtain fig. 4.3.

Proof sketch (Theorem III). The proof relies on a simple argument: rather than bounding
∥x(t) − x⋆∥2 or ∥ 1n11⊤x(t) − x⋆∥2, we analyze ∥x(t) − x⋆∥2M. This term better captures the
benefit of averaging than ∥x(t)−x⋆∥2, thus leading to better smoothness constants, as long as
∥x(t)∥2I−M is not too large. This yields fast rates without the need to guarantee that iterates
between very distant workers remain close, which would be prohibitively expensive.

37

Chapter 4. The topology in decentralized learning

2.3

0.2

1.55

1.15

0.5

0.001 0.01 0.1

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

Learning rate→

Binary tree

Fully connected
Hypercube

Ring

Social network

Solo

Star

Time-varying exponential
Torus (4x8)

Two cliques

Figure 4.4: Training loss reached after 2.5k SGD steps with a variety of graph topologies.
In all cases, averaging yields a small increase in speed for small learning rates, but a large
gain over training alone comes from being able to increase the learning rate. While the star
has a better spectral gap (0.031) than the ring (0.013), it performs worse, and does not allow
large learning rates. For reference, similar curves for fully-connected graphs of varying sizes
are in appendix C.6.

Theorem III is a special case of a more general theorem in Appendix C.4. That version
covers, among other things, different choices of parameters, unbalanced communication and
computation probabilities (thus allowing for local steps), and the convex (µ = 0) case.

4.6 Experimental analysis

While in the previous sections we have discussed isotropic quadratics or convex and smooth
functions, the initial motivation for this work comes from observations in deep learning. First,
it is crucial in deep learning to use a large learning rate in the initial phase of training [Li
et al., 2019]. Contrary to what current theory prescribes, we do not use smaller learning rates
in decentralized optimization than when training alone (even when data is heterogeneous.)
And second, we find that the spectral gap of a topology is not predictive of the performance
of that topology in deep learning experiments.

In this section, we experiment with several 32-worker topologies on Cifar-10 [Krizhevsky
et al.] with VGG-11 [Simonyan and Zisserman, 2015]. Like other recent works [Lin et al., 2021,
Vogels et al., 2021], we opt for this older model, because it does not include BatchNorm [Ioffe
and Szegedy, 2015] which forms an orthogonal challenge for decentralized SGD. Please refer to
appendix C.5 for full details on the experimental setup. Our set of topologies (appendix C.2)
includes regular graphs like rings and toruses, but also irregular graphs such as a binary
tree [Vogels et al., 2021] (chapter 5) and social network [Davis et al., 1930], and a time-
varying exponential scheme [Assran et al., 2019]. We focus on the initial phase of training, 25
k steps in our case, where both train and test loss converge close-to linearly. A large learning
rate in this phase is found to be important for generalization [Li et al., 2019].

Figure 4.4 shows the loss reached after the first 2.5k SGD steps for all topologies and for a
dense grid of learning rates. The curves have the same global structure as those for isotropic

38

4.6. Experimental analysis
Go

ss
ip

m
at
rix

M
ea

su
re
d
co

v.
on

Ci
fa
r-1

0
Co

va
ria

nc
e
in

ra
nd

om
w
al
k

Two cliques

nW(γ := 0.948)
= 17.8

Torus (4x8)

nW(γ := 0.993)
= 29.4

Star

nW(γ := 0.986)
= 5.1

Social network

nW(γ := 0.992)
= 27.3

Ring

nW(γ := 0.983)
= 13.9

Hypercube

nW(γ := 0.997)
= 31.3

Binary tree

nW(γ := 0.984)
= 12.3

Figure 4.5: Measured covariance in Cifar-10 (second row) between workers using various
graphs (top row). After 10 epochs, we store a checkpoint of the model and train repeatedly
for 100 SGD steps, yielding 100 models for 32 workers. We show normalized covariance
matrices between the workers. These are very well approximated by the covariance in the
random walk process of section 4.4 (third row). We print the fitted decay parameters and
corresponding ‘effective number of neighbors’.

quadratics fig. 4.1: (sparse) averaging yields a small increase in speed for small learning rates,
but a large gain over training alone comes from being able to increase the learning rate. The
best schemes support almost the same learning rate as 32 fully-connected workers, and get
close in performance.

We also find that the random walks introduced in section 4.4 are a good model for variance
between workers in deep learning. Figure 4.5 shows the empirical covariance between the
workers after 100 SGD steps. Just like for isotropic quadratics, the covariance is accurately
modeled by the covariance in the random walk process for a certain decay rate γ.

Finally, we observe that the effective number of neighbors computed by the variance
reduction in a random walk (section 4.4) accurately describes the relative performance under
tuned learning rates of graph topologies on our task, including for irregular and time-varying
topologies. This is in contrast to the topology’s spectral gaps, which we find to be not
predictive. We fit a decay rate γ = 0.951 that seems to capture the specifics of our problem,
and show the correlation in fig. 4.6.

In Appendix C.6.1, we replicate the same experiments in a different setting. There,
we use larger graphs (of 64 workers), a different model and data set (an MLP on Fashion
MNIST [Xiao et al., 2017]), and no momentum or weight decay. The results in this setting
are qualitatively comparable to the ones presented above.

39

Chapter 4. The topology in decentralized learning

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spectral gap→

×

×

×
×
×0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32

Effective num. neighbors (γ = 0.951, tuned)→

×

×

×
×

×

Figure 4.6: Cifar-10 training loss after 2.5k steps for all studied topologies with their optimal
learning rates. Colors match fig. 4.4, and × indicates fully-connected graphs with varying
number of workers. After fitting a decay parameter γ = 0.951 that captures problem specifics,
the effective number of neighbors (left) as measured by variance reduction in a random walk
(like in section 4.4) explains the relative performance of these graphs much better than the
spectral gap of these topologies (right).

4.7 Conclusion

We have shown that the sparse averaging in decentralized learning allows larger learning
rates to be used, and that it speeds up training. With the optimal large learning rate, the
workers’ models are not guaranteed to remain close to their global average. Enforcing global
consensus is unnecessary in the i.i.d. setting and the small learning rates it would require are
counter-productive. With the optimal learning rate, models do remain close to some local
average in a weighted neighborhood around them. The workers benefit from a number of
‘effective neighbors’, smaller than the whole graph, that allow them to use a large learning
rate while retaining sufficient consensus within the ‘local neighborhood’.

Based on our insights, we encourage practitioners of sparse distributed learning to look
beyond the spectral gap of graph topologies, and to investigate the actual ‘effective number of
neighbors’ that is used. We also hope that our insights motivate theoreticians to be mindful
of assumptions that artificially limit the learning rate.

We show experimentally that our conclusions hold in deep learning, but extending our
theory to the non-convex setting is an important open direction that could reveal interesting
new phenomena. Furthermore, an extension of our semi-local analysis to the heterogeneous
setting where workers optimize different objectives could shed further light on the practical
performance of D-SGD.

4.8 Acknowledgements

This project was supported by SNSF grant 200020_200342.
We thank Lie He for valuable conversations and for identifying the discrepancy between

a topology’s spectral gap and its empirical performance. We also thank Raphaël Berthier,
Aditya Vardhan Varre and Yatin Dandi for their feedback on the manuscript.

40

Chapter 5

A relay mechanism for decentralized
learning with heterogeneous data

5.1 Preface

This chapter follows [Vogels et al., 2021], with minor edits. We removed statements about
the privacy benefits of decentralized learning, because such claims are difficult to substanti-
ate [Pasquini et al., 2022] and unrelated to the topic of this thesis—communication efficiency.

Summary In decentralized machine learning, workers compute model updates on their local
data. Because the workers only communicate with few neighbors without central coordination,
these updates propagate progressively over the network. This paradigm enables distributed
training on networks without all-to-all connectivity, helping to reduce the communication cost
of distributed training. A key challenge, primarily in decentralized deep learning, remains
the handling of differences between the workers’ local data distributions. To tackle this
challenge, we study the RelaySum mechanism for information propagation in decentralized
learning. RelaySum uses spanning trees to distribute information exactly uniformly across all
workers with finite delays depending on the distance between nodes. In contrast, the typical
gossip averaging mechanism only distributes data uniformly asymptotically while using the
same communication volume per step as RelaySum. We prove that RelaySGD, based on this
mechanism, is independent of data heterogeneity and scales to many workers, enabling highly
accurate decentralized deep learning on heterogeneous data.

Code http://github.com/epfml/relaysgd.

Co-authors Lie He, Anastasia Koloskova, Tao Lin, Sai Praneeth Karimireddy, Sebastian U.
Stich, Margin Jaggi.

Contributions
T. Vogels: methodology (60%), software (80%), visualization, writing (50%).
L. He: formal analysis (70%), methodology (40%), writing (50%).
A. Koloskova: formal analysis.
T. Lin: software.
S.P. Karimireddy: formal analysis.
S.U. Stich: formal analysis, writing – review and editing.
M. Jaggi: writing – review and editing, project administration, supervision.

41

http://github.com/epfml/relaysgd

Chapter 5. A relay mechanism for decentralized learning

5.2 Introduction

Ever-growing datasets lay at the foundation of the recent breakthroughs in machine learning.
Learning algorithms therefore must be able to leverage data distributed over multiple devices.
There are various paradigms for distributed learning, and they differ mainly in how the devices
collaborate in communicating model updates with each other. In the all-reduce paradigm,
workers average model updates with all other workers at every training step. In federated
learning [McMahan et al., 2017], workers perform local updates before sending them to a
central server that returns their global average to the workers. Finally, decentralized learning
significantly generalizes the two previous scenarios. Here, workers communicate their updates
with only few directly-connected neighbors in a network, without the help of a server.

Decentralized learning offers strong promise for new applications, allowing any group of
agents to collaboratively train a model while respecting the data locality of each contrib-
utor [Nedic, 2020]. At the same time, it removes the single point of failure in centralized
systems such as in federated learning [Kairouz et al., 2019], with the potential to improving
robustness, security, and perhaps privacy. Even from a pure efficiency standpoint, decentral-
ized communication patterns can speed up training in data centers [Assran et al., 2019].

In decentralized learning, workers share their local stochastic gradient updates with the
others through gossip communication [Xiao and Boyd, 2004]. They send their updates to their
neighbors, which iteratively propagate the updates further into the network. The workers
typically use iterative gossip averaging of their models with their neighbors, using averaging
weights chosen to ensure asymptotic uniform distribution of each update across the network.
It will take τ rounds of communication for an update from worker i to reach a worker j that
is τ hops away, and when it first arrives, the update is exponentially weakened by repeated
averaging with weights < 1. In general networks, worker j will never exactly, but only
asymptotically receive its uniform share of the update. The slow distribution of updates not
only slows down training, but also makes decentralized learning sensitive to heterogeneity in
workers’ data distributions.

We study an alternative mechanism to gossip averaging, which we call RelaySum. Relay-
Sum operates on spanning trees of the network, and distributes information exactly uniformly
within a finite number of gossip steps equal to the diameter of the network. Rather than
iteratively averaging models, each node acts as a ‘router’ that relays messages through the
whole network without decaying their weight at every hop. While naive all-to-all routing
requires n2 messages to be transmitted at each step, we show that on trees, only n messages
(one per edge) are sufficient. This is enabled by the key observation that the routers can
merge messages by summation to avoid any extra communication compared to gossip aver-
aging. RelaySum achieves this using additional memory linear in the number of edges, and
by tailoring the messages sent to different neighbors. At each time step, RelaySum workers
receive a uniform average of exactly one message from each worker. Those messages just orig-
inate from different time delays depending on how many hops they travelled. The difference
between gossip averaging and RelaySum is illustrated in fig. 5.1.

The RelaySum mechanism is structurally similar to Belief Propagation algorithms for
inference in graphical models. This link was made by Zhang et al. [2019], who used the same
mechanism for decentralized weighted average consensus in control.

We use RelaySum in the RelaySGD learning algorithm. We theoretically show that this
algorithm is not affected by differences in workers’ data distributions. Compared to other
algorithms that have this property [Tang et al., 2018b, Pu and Nedic, 2018], RelaySGD does

42

5.3. Related work

Figure 5.1: To spread information across a decentralized network, classical gossip averaging
diffuses information slowly through the network. The left figure illustrates the spread of
information originating from the fourth worker in a chain network. In RelaySum, the messages
are relayed without reweighting, resulting in uniform delivery of the information to every
worker. When multiple workers broadcast simultaneously (not pictured), RelaySum can sum
their messages and use the same bandwidth as gossip averaging.

not require the selection of averaging weights, and its convergence does not depend on the
spectral gap of the averaging matrix, but instead on the network diameter.

While RelaySum is formulated for trees, it can be used in any decentralized network. We
use the Spanning Tree Protocol [Perlman, 1985] to construct spanning trees of any network
in a decentralized fashion. RelaySGD often performs better on any such spanning tree than
gossip-based methods on the original graph. When the communication network can be chosen
freely, the algorithm can use double binary trees [Sanders et al., 2009]. While these trees have
logarithmic diameter and scale to many workers, RelaySGD in this setup uses only constant
memory equivalent to two extra copies of the model parameters and sends and receives only
two models per iteration.

Surprisingly, in deep learning with highly heterogeneous data, prior methods that are
theoretically independent of data heterogeneity [Tang et al., 2018b, Pu and Nedic, 2018],
perform worse than heuristic methods that do not have this property, but use cleverly designed
time-varying communication topologies [Assran et al., 2019]. In extensive tests on image-
and text classification, RelaySGD performs better than both kinds of baselines at equal
communication budget.

5.3 Related work

Out of the multitude of decentralized optimization methods, first-order algorithms that in-
terleave local gradient updates with a form of gossip averaging [Nedic et al., 2017, Johansson
et al., 2009] show most promise for deep learning. Such algorithms are theoretically analyzed
for convex and non-convex objectives in [Nedic and Ozdaglar, 2009, Johansson et al., 2009,
Nedic et al., 2017], and Lian et al. [2017], Tang et al. [2018b], Assran et al. [2019], Lin et al.
[2021] demonstrate that gossip-based methods can perform well in deep learning.

In a gossip averaging step, workers average their local models with the models of their
direct neighbors. The corresponding ‘mixing matrix’ is a central object of study. The matrix
can be doubly-stochastic [Nedic et al., 2017, Lian et al., 2017, Koloskova et al., 2020], column-
stochastic [Tsianos et al., 2012, Nedic and Olshevsky, 2016, Xi and Khan, 2017, Assran
et al., 2019], row-stochastic [Xi et al., 2018, Xin et al., 2019], or a combination [Xin and
Khan, 2018, 2020, Pu et al., 2021]. Column-stochastic methods use the push-sum consensus
mechanism [Kempe et al., 2003] and can be used on directed graphs. Our analysis borrows

43

Chapter 5. A relay mechanism for decentralized learning

from the theory developed for those methods.
While gossip averages in general requires an infinite number of steps to reach exact con-

sensus, another line of work identifies mixing schemes that yield exact consensus in finite
steps [Sundaram and Hadjicostis, 2007, Sandryhaila et al., 2014, Charalambous et al., 2015].
For some graphs, this is possible with time-independent averaging weights [Ko and Gao, 2009,
Georgopoulos, 2011]. One can also achieve finite-time consensus with time-varying mixing
matrices. On trees, for instance, exact consensus can be achieved by routing updates to a
root node and back, in exactly diameter number of steps [Ko and Gao, 2009, Georgopoulos,
2011]. On some graphs, tighter bounds can be established [Hendrickx et al., 2014]. For
fully-connected networks with n workers, Assran et al. [2019] design a sparse time-varying
communication scheme that yields exact consensus in a cycle of logn averaging steps and
performs well in deep learning.

The ‘relay’ mechanism of RelaySGD was previously used by Zhang et al. [2019] in the
control community for the decentralized weighted average consensus problem, but they do not
use it in the context of optimization. Zhang et al. also introduce a modified algorithm for loopy
graphs, but this modification makes the achieved consensus inexact. The ‘relay’ mechanism
effectively turns a sparse graph into a fully-connected graph with communication delays.
Work on delayed consensus [Nedic and Ozdaglar, 2010] and optimization [Tsianos and Rabbat,
2011, Agarwal and Duchi, 2012] analyzes such schemes for centralized distributed algorithms.
Those schemes are, however, not directly applicable to decentralized optimization.

A fundamental challenge in decentralized learning is dealing with data that is not iden-
tically distributed among workers. Because, in this case, workers pursue different optima,
workers may drift [Nedic et al., 2017] and this can harm convergence. There is a large family
of algorithms that use update corrections to provably mitigate such data heterogeneity. Ex-
amples applicable to non-convex problems are exact diffusion [Yuan et al., 2019], Gradient
Tracking [Lorenzo and Scutari, 2016, Pu and Nedic, 2018, Zhang and You, 2019], D2 [Tang
et al., 2018b], PushPull [Pu et al., 2021]. To tackle the same challenge, Lin et al. [2021], Yuan
et al. [2021] propose modifications to local momentum to empirically improve performance
in deep learning, but without provable guarantees. Lu and De Sa [2021] propose DeTAG
which overlaps multiple consecutive gossip steps and gradient computations to accelerate
information diffusion. This technique could be applied to the RelaySum mechanism, too.

5.4 Method

Setup We consider standard decentralized optimization with data on n ≥ 1 nodes:

f⋆ := minx∈Rd

[
f(x) = 1

n

∑n
i=1 [fi(x) := Eξ∼Di

Fi(x, ξi)]
]
.

Here Di denotes the distribution of the data on node i and fi : Rd → R the local optimization
objectives. Workers are connected by a network respecting a graph topology G = (V, E),
where V = {1, . . . , n} denotes the set of workers, and E the set of undirected communication
links between them (without self loops). Each worker i can only directly communicate with
its neighbors Ni ⊂ V .

Decentralized learning with gossip We consider synchronous first-order algorithms that inter-
leave local gradient-based updates

x(t+1/2)
i = x(t)

i + u(t)
i

44

5.4. Method

with message exchange between connected workers. For SGD with typical gossip averaging
(D-SGD [Lian et al., 2017]), the local updates can be written as u(t)

i = −γ∇fi(x(t)
i , ξ

(t)
i), and

the messages exchanged between pairs of connected workers (i, j) are m(t)
i→j = x(t+1/2)

i ∈ Rd.
Each time step, the workers average their model with received messages,

x(t+1)
i = Wiix(t+1/2)

i +
∑

j∈Ni
Wijm(t)

j→i, (DP-SGD)

using averaging weights defined by a gossip matrix W ∈ Rn×n.
In this scheme, an update u(t1)

i from any worker i will be linearly incorporated into the
model x(t2)

j at a later time step t2 with weight (Wt2−t1)ij . The gossip matrix must be chosen
such that these weights asymptotically converge to 1

n , distributing all updates uniformly over
the workers. This setup appears in, for example, [Lian et al., 2017, Koloskova et al., 2020].

Uniformmodel averaging If the graph topology is fully-connected, any worker can communi-
cate with any other worker, and it is ideal to use ‘all-reduce averaging’,

x(t+1)
i = 1

n

∑n
j=1 x(t+1/2)

j .

Contrary to the decentralized scheme (DP-SGD), this algorithm does not degrade in perfor-
mance if data is distributed heterogeneously across workers. In sparsely connected networks,
however, all-reduce averaging requires routing messages through the network. On arbitrary
networks, such a routing protocol requires at least a number of communication steps equal
to the network diameter τmax—the minimum number of hops some messages have to travel.

RelaySGD In this paper, we approximate the all-reduce averaging update as

x(t+1)
i = 1

n

∑n
j=1 x(t−τij+1/2)

j , (RelaySGD)

where τij is minimum number of network hops between workers i and j (and τii = 0). Since
it takes τij steps to route a message from worker i to j, this scheme could be implemented
using a peer-to-peer routing protocol like Ethernet. Of course, this naive implementation
drastically increases the bandwidth used compared to gossip averaging. The key insight of
this paper is that, on tree networks, the RelaySGD update rule can be implemented while
using the same communication volume per step as gossip averaging, using additional memory
linear in the number of a worker’s direct neighbors.

RelaySum To implement RelaySGD, we require a communication mechanism that delivers
sums of delayed ‘parcels’ s(t)w =

∑n
j=1 p

(t−τwj)
j to each worker w in a tree network, where the

parcel p(t)j is created by worker j at time t. To simplify the exposition, let us first consider
the simplest type of tree network: a chain. In a chain, a worker w is connected to workers
w − 1 and w + 1, if those exist, and the delays are τij = |i− j|. We can then decompose

s(t)w =

n∑
j=1

p
(t−τwj)
j = p(t)w +

w−1∑
j=1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘left’

+

n∑
j=w+1

p
(t−τwj)
j︸ ︷︷ ︸

parcels from the ‘right’

.

The sum of parcels from the ‘left’ will be sent as one message m(w−1)→w from worker w−1 to
w, and the sum of data from the ‘right’ will be sent as one message m(w+1)→w from w+1 to

45

Chapter 5. A relay mechanism for decentralized learning

Algorithm 5 RelaySGD

Input: ∀ i, x(0)
i = x(0); ∀ i, j,m(−1)

i→j = 0, counts c
(−1)
i→j = 0, learning rate γ, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x(t+1/2)

i = x(t)
i −γ∇fi(x

(t)
i) (or Adam/momentum)

4: for each neighbor j ∈ Ni do
5: Send m(t)

i→j = x(t+1/2)
i +

∑
k∈Ni\j m(t−1)

k→i (relay messages from other neighbors)
6: Send corresponding counters c

(t)
i→j = 1 +

∑
k∈Ni\j c

(t−1)
k→i

7: Receive (m(t)
j→i, c

(t)
j→i) from node j

8: end for
9: n̄

(t+1)
i = 1 +

∑
j∈Ni

c
(t)
j→i (n̄ converges to the total number of workers)

10: xt+1
i = 1

n̄
(t+1)
i

(
x(t+1/2)
i +

∑
j∈Ni

m(t)
j→i

) (
= 1

n

∑n
j=1 x(t−τij+1/2)

j

)
11: end for
12: end for

w. Neighboring workers can compute these messages from the messages they received from
their neighbors in the previous time step. Compared to typical gossip averaging, RelaySum
requires additional memory linear in the number of neighbors, but it uses the same volume
of communication.

Algorithm 5 shows how this scheme is generalized to general tree networks and incorpo-
rated into RelaySGD. Along with the model parameters, we send scalar counters that are
used in the first few iterations of the algorithm t ≤ τmax to correct for messages that have
not yet arrived.

Spanning trees RelaySGD is formulated on tree networks, but it can be used on any com-
munication graph by constructing a spanning tree. In a truly decentralized setting, we can
use the Spanning Tree Protocol [Perlman, 1985] used in Ethernet to find such trees in a
decentralized fashion. The protocol elects a leader as the root of the tree, after which every
other node finds the fastest path to this leader.

On the other hand, when the decentralized paradigm is used in a data center to reduce
communication, RelaySGD can run on double binary trees [Sanders et al., 2009] used in
MPI and NCCL [Jeaugey, 2019]. The key idea of double binary trees is to use two different
communication topologies for different parts of the model. We communicate odd coordinates
using a balanced binary tree A, and communicate the even coordinates with a complimentary
tree B. The trees A and B are chosen such that internal nodes (with 3 edges) in one tree
are leaves (with only 1 edge) in the other. Using the combination of two trees, RelaySGD
requires only constant extra memory equivalent to at most 2 model copies (just like the Adam
optimizer [Kingma and Ba, 2015]), and it sends and receives the equivalent of 2 models (just
like on a ring).

5.5 Theoretical analysis

Since RelaySGD updates worker’s models at time step t+1 using models from (at most) the
past τmax steps, we conveniently reformulate RelaySGD in the following way: Let Y(t),G(t) ∈

46

5.5. Theoretical analysis

Rn(τmax+1)×d denote stacked models and gradients across workers. Their row vectors at index
n·τ + i represent

[
Y(t)

]⊤
nτ+i

=

{
x(t−τ)
i t ≥ τ

x(0) otherwise
,

[
G(t)

]⊤
nτ+i

=

{
∇Fi(x(t−τ)

i ; ξ
(t−τ)
i) t ≥ τ

x(0) otherwise

for all t ≥ 0, delay τ ∈ [0, τmax] and workers i ∈ [n]. Then (RelaySGD) can be written as

Y(t+1) = WY(t) − γW̃G(t)

where W, W̃ ∈ Rn(τmax+1)×n(τmax+1) are non-negative matrices whose elements are

[W]nτ+i,nτ ′+j =

1
n τ = 0 and τ ′ = τij

1 i = j and τ = τ ′ + 1

0 otherwise
,

[
W̃
]
nτ+i,nτ ′+j

=

{
1
n τ = 0 and τ ′ = τij

0 otherwise

for all τ, τ ′ ∈ [0, τmax] and i, j ∈ [n]. W can be interpreted as the mixing matrix of an
‘augmented graph’ [Nedic and Ozdaglar, 2010] with additional virtual ‘forwarding nodes’. W
is row stochastic with largest eigenvalue 1. The all-ones vector 1n(τmax+1) ∈ Rn(τmax+1) is a
right eigenvector of W and π ∈ Rn(τmax+1) is the left eigenvector for which π⊤1n(τmax+1) = 1.

We characterize the convergence rate of the consensus distance in the following key lemma:

Lemma 1 (Key lemma) There exists an integer m = m(W) > 0 such that for any X ∈
Rn(τmax+1)×d we have

∥WmX− 1π⊤X∥2 ≤ (1− p)2m∥X− 1π⊤X∥2,

where p = 1
2(1− |λ2(W)|) is a constant.

All the following optimization convergence results will only depend on the effective spectral
gap ρ := p

m of W. We empirically observe that ρ = Θ(1/n) for a variety of network topologies
(see fig. D.1 in Appendix D.1).

Remark2 The above key lemma is similar to [Koloskova et al., 2020, Assumption 4] for gossip-
type averaging with symmetric matrices. However, in our case W is just a row stochastic
matrix, and its spectral norm ∥W∥2 > 1. In general, the consensus distance can increase
after just one single communication step (multiplication by W). That is why we need m > 1.
The proof of the Lemma relies on a Perron-Frobenius type theorem, and holds over several
steps m instead of a single iteration. It means RelaySum defines a consensus algorithm with
linear convergence rate which pulls models closer.

Our main convergence results make the following assumptions [Koloskova et al., 2020].

Assumption C (L-smoothness) For each i ∈ [n], Fi(x, ξ) : RD×Ωi → R is differentiable for each
ξ ∈ supp(Di) and there exists a constant L ≥ 0 such that for each x, y ∈ Rd, ξ ∈ supp(Di):

∥∇Fi(x, ξ)−∇Fi(y, ξ)∥ ≤ L∥x− y∥ .

Assumption D (uniform bounded noise) There exists constant σ̄, such that for all x ∈ Rd and
i ∈ [n],

Eξ ∥∇Fi(x, ξ)−∇fi(x)∥2 ≤ σ̄2.

47

Chapter 5. A relay mechanism for decentralized learning

Assumption E (µ-convexity) For i ∈ [n], each function fi : Rd → R is µ-(strongly) convex for
constant µ ≥ 0. That is, ∀ x, y ∈ Rd

fi(x)− fj(y) + µ
2∥x− y∥22 ≤ ∇fi(x)⊤(x− y) .

Theorem V (RelaySGD) For any target accuracy ϵ > 0 and an optimal solution x⋆,

• Convex Under Assumptions C, D and E with µ ≥ 0, it holds that the average subopti-
mality 1

T+1

∑T
t=0

(
f(x(t))−f(x⋆)

)
≤ ϵ after

O
(

σ̄2

nϵ2
+ C

√
Lσ̄

ϵ3/2
+ CL

ϵ

)
R2

0

iterations. Here x(t) :=π⊤Y(t) averages past models, the constant R2
0=∥x0 − x⋆∥2, and

the constant C=O(1ρτ
3/2
max).

• Non-convex Under Assumptions C and D, it holds that 1
T+1

∑T
t=0 ∥∇f(x(t))∥2 ≤ ϵ after

O
(

σ̄2

nϵ2
+ Cσ̄

ϵ3/2
+ C

ϵ

)
LF0

iterations, where F0 := f(x(0))− f(x⋆).

The dominant term in our convergence result, O
(
σ̄2

nϵ2

)
matches with the dominant term

in the convergence rate of centralized (‘all-reduce’) SGD, and thus cannot be improved. In
contrast to other methods, the presented convergence result of RelaySGD is independent of
the data heterogeneity ζ2 in [Koloskova et al., 2020, Assumption 3b].

Definition F (data heterogeneity) There exists a constant ζ2 such that ∀ i ∈ [n], x ∈ Rd

∥∇fi(x)−∇f(x)∥22 ≤ ζ2 .

Remark 3 For convex objectives, Assumptions D and F can be relaxed to only hold at the
optimum x⋆. A weaker variant of assumption C only uses L-smoothness of fi [Koloskova
et al., 2020, Assumption 1b].

Comparing to gossip averaging for convex fi which has complexity O(σ̄2

nϵ2
+(ζρ +

σ̄√
ρ)

√
L

ϵ3/2
+

L
ρϵ)R

2
0, our rate for RelaySGD is independent of ζ2 and has same leading term O(σ̄2

nϵ2
) as D2.

5.6 Experimental analysis and practical properties

5.6.1 Effect of network topology

Randomquadratics To efficiently investigate the scalability of RelaySGD with respect to the
number of workers, and to study the benefits of binary tree topologies over chains, we intro-
duce a family of synthetic functions. We study random quadratics with local cost functions
fi(x) = ∥Aix−b⊤

i x∥2 to precisely control all constants that appear in our theoretical analysis.
The Hessians Ai are initialized randomly, and their spectrum is scaled to achieve a desired
smoothness L and strong convexity µ. The offsets bi ensure a desired level of heterogene-
ity ζ2 and distance between optimum and initialization r0. Appendix D.2.4 describes the
generation of these quadratics in detail.

48

5.6. Experimental analysis and practical properties

Scalability on rings and trees Using these quadratics, fig. 5.2 studies the number of steps re-
quired to reach a suboptimality f(x̄) − f(x⋆) ≤ ϵ with tuned constant learning rates. On
ring topologies with uniform (1/3) gossip weights (and chains for RelaySum), all compared
methods require steps at least linear in the number of workers to reach the target quality. Re-
laySGD and D2 empirically scale significantly better than Gradient Tracking, these methods
are all independent of data heterogeneity. On a balanced binary tree network with Metropolis-
Hastings weights [Xiao and Boyd, 2004], both D2 and Gradient Tracking notably do not scale
better than on a ring, while RelaySGD on these trees requires only a number of steps loga-
rithmic in the number of workers. SGP with their time-varying exponential topology scales
well, too, but it requires more steps on more heterogeneously distributed data.

0 20 40 60 80 100
Number of workers (n)

0

100

200

300

400

500

#
st

ep
s

to
f(x̄
)−

f(x
?
)≤

10
−6

ζ2 = 0.01 (a little heterogeneous)

0 20 40 60 80 100
Number of workers (n)

ζ2 = 1.0 (very heterogeneous)

Algorithm
Gradient tracking
SGP
RelaySGD
D2

Topology
Balanced binary tree
Ring / chain
Time-varying exponential

Figure 5.2: Time required to optimize random quadratics (σ2 = 0, r0 = 10, L = 1, µ = 0.5)
to suboptimality ≤ 10−6 with varying numbers of workers with tuned constant learning rates.
On a ring (), D2 and RelaySGD require steps linear in the number of workers, and
this number is independent of the data heterogeneity. RelaySGD reduces this to logn on
a balanced tree topology (), but trees do not improve D2 or Gradient Tracking. For

SGP with time-varying exponential topology (), the number of steps does not consistently
grow with more workers, but it increases with more heterogeneity (left v.s. right plot).

5.6.2 Spanning trees compared to other topologies

RelaySGD cannot utilize all available edges in arbitrary networks to communicate, but is
restricted to a spanning tree of the graph. We empirically find that this restriction is not
limiting. In fig. 5.3, we take an organic social network topology based on the Davis Southern
Women graph [Davis et al., 1930] from NetworkX [Hagberg et al., 2008], and construct random
spanning trees found by the Spanning Tree Protocol [Perlman, 1985]. On any such spanning
tree, RelaySGD optimizes random heterogeneous quadratics as fast as D2 on the full graph
with Metropolis-Hastings weights [Xiao and Boyd, 2004], significantly faster than D-SGD.

For decentralized learning used in a fully-connected data center for communication ef-
ficiency, the deep learning experiments below show that RelaySGD on double binary trees
outperforms the most popular non-tree-based communication scheme used in decentralized
deep learning [Assran et al., 2019].

5.6.3 Effect of data heterogeneity in decentralized deep learning

We study the performance of RelaySGD in deep-learning based image- and text classification.
While the algorithm is theoretically independent of dissimilarities in training data, other

49

Chapter 5. A relay mechanism for decentralized learning

0 100 200 300 400 500
Steps

10−6

10−5

10−4

10−3

10−2

10−1

100

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

0 20000 40000 60000 80000
parameter vectors sent and received

Figure 5.3: Performance of RelaySGD on spanning trees of the Social Network graph (32
nodes) found using Spanning Tree Protocol, compared to D-SGD and D2 on the full
network. Solid lines () indicate spanning trees while dashed lines () indicate the full
graph. The right figure shows one spanning tree on top of the original network. Learning
rates are tuned to reach suboptimality ≤ 10−5 on random quadratics (ζ2 = 0.1, σ2 = 0.1, r0 =
1, L = 1, µ = 0.5). RelaySGD on spanning trees converges as fast as D2 on the full network,
while the total communication on spanning trees is smaller than on the full graph.

methods (D2, RelaySGD/Grad) that have the same property often lose accuracy in the pres-
ence of high data heterogeneity [Lin et al., 2021]. To study the dependence of RelaySGD in
practical deep learning, we partition training data strictly across 16 workers and distribute
the classes using a Dirichlet process [Yurochkin et al., 2019, Lin et al., 2021]. The Dirichlet
parameter α controls the heterogeneity of the data across workers.

We compare RelaySGD against a variety of other algorithms. D-SGD [Lian et al., 2017]
is the most natural combination of SGD with gossip averaging, and we chose D2 [Tang et al.,
2018b] to represent the class of previous work that is theoretically robust to heterogeneity.
We extend D2 to allow varying step sizes and local momentum, according to Appendix D.4.4,
and make it suitable for practical deep learning. Although Stochastic Gradient Push [Assran
et al., 2019] is not theoretically independent of data heterogeneity, it is a popular choice in
the data center setting, where they use a time-varying exponential scheme on 2d workers that
mixes exactly uniformly in d rounds (Appendix D.4.6). We also compare to D-SGD with
quasi-global momentum [Lin et al., 2021], a practical method recently introduced to increase
robustness to heterogeneous data.

Table 5.1 evaluates RelaySGD in the fully-connected data center setting where we limit
the communication budget per iteration to two models. We use 16-workers on Cifar-10, follow-
ing the experimental details outlined in Appendix D.2 and hyperparameter tuning procedure
from Appendix D.3. For this experiment, we consider three topologies: (1) double binary
trees as described in section 5.4, (2) rings, and (3) the time-varying exponential scheme of
Stochastic Gradient Push (SGP) [Assran et al., 2019]. Because SGP normally sends/receives
only one model per communication round, we execute two synchronous communication steps
per gradient update, increasing its latency. The various algorithms compared have different
optimal topology choices. In table 5.1 we only include the optimal choice for each algorithm.
Table 5.2 qualitatively compares the possible combinations. We opt for the VGG-11 archi-
tecture because it does not feature BatchNorm [Ioffe and Szegedy, 2015]. BatchNorm poses
particular challenges to data heterogeneity, and the search for alternatives is an active, and
orthogonal, area of research [Liu et al., 2020].

50

5.6. Experimental analysis and practical properties

Table 5.1: Cifar-10 [Krizhevsky and Hinton, 2009] test accuracy with the VGG-11 architec-
ture. We vary the data heterogeneity α [Lin et al., 2021] between 16 workers. Each method
sends/receives 2 models per iteration. We use a ring topology for D-SGD [Lian et al., 2017]
and D2 [Tang et al., 2018b] because they perform better on rings than on trees. For D-SGD,
we use the quasi-global momentum [Lin et al., 2021] to increase robustness to heterogeneous
data. RelaySum with momentum achieves the best results across all levels of data hetero-
geneity.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(optimal c.f. ta-
ble 5.2)

(most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD binary trees 87.4% 86.9% 84.6%
+local momentum 90.2% 89.5% 89.1%

D-SGD ring 87.4% 79.9% 53.9%
+quasi-global mom. 89.5% 84.8% 63.3%

D2 ring 87.2% 84.0% 38.2%
+local momentum 88.2% 88.5% 61.0%

Stochastic gradient push time-varying expo-
nential

87.4% 86.7% 86.7%

+local momentum 89.5% 89.2% 87.5%

Table 5.2: Motivation of topology choices. For each algorithm, we compare 4 topologies
configured to send/receive 2 models at each SGD iteration. The algorithms have different
optimal topologies.

Algorithm Ring Chain (= spanning tree of ring) Double binary trees Time-varying exp.

RelaySGD Unsupported Suboptimal (D.5.1) Best result Unsupported
D-SGD Best result Suboptimal Suboptimal (D.5.1) Unsupported
D2 Best result Suboptimal Suboptimal (D.5.1) Unsupported
SGP Equiv. to D-SGD Equiv. to D-SGD Equiv. to D-SGD Best result

Even though RelaySGD does not use a time-varying topology, it performs as well as
or better than SGP, and RelaySGD with momentum suffers minimal accuracy loss up to
heterogeneity α = 0.01, a level higher than considered in previous work [Lin et al., 2021].
While D2 is theoretically independent of data heterogeneity, and while some of its random
repetitions yield good results, it is unstable in the very heterogeneous setting. Moreover,
fig. 5.4 shows that workers with RelaySGD achieve high test accuracies quicker during training
than with other algorithms.

These findings are confirmed on ImageNet [Deng et al., 2009] with the ResNet-20-EvoNorm
architecture [Liu et al., 2020] in table 5.3. On the BERT fine-tuning task from [Lin et al.,
2021], table 5.4 demonstrates that RelaySGD with the Adam optimizer, customary for such
NLP tasks, outperforms all compared algorithms.

5.6.4 Robustness to unreliable communication

Peer-to-peer applications are a central use case for decentralized learning. Decentralized
learning algorithms must therefore be robust to workers joining and leaving, and to unreliable
communication between workers. Gossip averaging naturally features such robustness, but

51

Chapter 5. A relay mechanism for decentralized learning

0 150 175 200
Epochs

50%

90%

C
if

ar
-1

0
Te

st
A

cc
ur

ac
y Figure 5.4: Test accuracy during training of

16 workers with heterogeneous data (α = 0.01)
on Cifar-10. Like, with the all-reduce base-
line, all workers in RelaySGD on double bi-
nary trees quickly reach good accuracy, while
this takes longer for SGP with time-varying
exponential topology and D2 on a ring. D-
SGD does not reach good accuracy with such
heterogeneous data.

Table 5.3: Test accuracies on ImageNet, using 16 workers with heterogeneous data (α =
0.1). Even when communicating over a simple chain network, RelaySGD performs similarly
to SGP [Assran et al., 2019] with their time-varying exponential communicating scheme.
Methods use default learning rates (Appendix D.3.2).

Algorithm Topology Top-1 Accuracy

Centralized (baseline) fully-connected 69.7%
RelaySGD w/ momentum double binary trees 60.0%
D-SGD w/ quasi-global momentum ring 55.8%
D2 w/ momentum ring diverged at epoch 65, at 49.5%
SGP w/ momentum time-varying exponential 58.5%

Algorithm Topology Top-1 Accuracy

Centralized Adam fully-connected 94.2% ± 0.1%
Relay-Adam double binary trees 93.2% ± 0.6%
D-SGD Adam ring 87.3% ± 0.6%
Quasi-global Adam ring 88.3% ± 0.7%
SGP Adam time-varying exp. 88.3% ± 0.3%

Table 5.4: DistilBERT [Sanh et al.,
2019] fine-tuning on AG news
data [Zhang et al., 2015] using 16 nodes
with heterogeneous data (α = 0.1).
Transformers are usually trained with
Adam, and RelaySGD naturally sup-
ports Adam updates without the need
to synchronize local optimizer state
between workers. (Appendix D.2.3).

Table 5.5: Robustness to unreliable networks. On Cifar-10/VGG-11 with 16 workers and
heterogeneous data (α = 0.01), we compare momentum versions of the best-performing
algorithms from table 5.1. Like gossip-based algorithms, RelaySGD with the robust update
rule 5.1 can tolerate up to 10% dropped messages and converge to full test accuracy. Without
modification, D2 [Tang et al., 2018b] does not share this property.

Algorithm Topology Reliable network 1% dropped messages 10% dropped messages

RelaySGD w/ momentum trees 89.2% 89.3% 89.3%
D-SGD w/ quasi-global m. ring 78.3% 76.2% 76.9%
D2 w/ momentum ring 87.4% diverges diverges
SGP w/ momentum time-varying 88.5% 88.6% 88.1%

52

5.7. Conclusion

for methods like D2, that correct for local data biases, achieving such robustness is non-trivial.
As a proxy for these challenges, in table 5.5, we verify that RelaySGD can tolerate randomly
dropped messages. The algorithm achieves this by reliably counting the number of models
summed up in each message. For this experiment, we use an extended version of Algorithm 5,
where line 10 is replaced by

x(t+1)
i = 1

n

(
x(t+1/2)
i +

∑
j∈Ni

m(t)
j→i + (n− n̄

(t+1)
i)x(t)

i

)
. (5.1)

We count the number of models received as n̄, and substitute any missing models (< n) by the
previous state x(t)

i . RelaySGD trains reliably to good test accuracy with up to 10% deleted
messages. This behavior is on par with a similarly modified SGP [Assran et al., 2019] that
corrects for missing energy. In contrast, D2 becomes unstable with undelivered messages.

5.7 Conclusion

Decentralized learning has great promise as a building block in the democratization of deep
learning. Deep learning relies on large datasets, and while large companies can afford those,
many individuals together can, too. Of course, their data does not follow the exact same
distribution, calling for robustness of decentralized learning algorithms to data heterogeneity.
Algorithms with this property have been proposed and analyzed theoretically, but they do
not always perform well in deep learning.

In this paper, we propose RelaySGD for distributed optimization over decentralized net-
works with heterogeneous data. Unlike algorithms based on gossip averaging, RelaySGD
relays models through spanning trees of a network without decaying their magnitude. This
yields an algorithm that is both theoretically independent of data heterogeneity, but also
high performing in actual deep learning tasks. With its demonstrated robustness to unre-
liable communication, RelaySGD makes an attractive choice for peer-to-peer deep learning
and applications in large-scale data centers.

5.7.1 Applicability to data center training

This thesis focuses on communication-efficient distributed training in a data center setting.
The RelaySGD algorithm introduced in this chapter is most useful when workers have hetero-
geneous data, and it was primarily discussed in this context, but the heterogeneous setting
is probably not so relevant in data centers.

We do also observe benefits for RelaySGD in data center training, due to the potential
for fast mixing between all workers in the network. Table 5.1, for example, shows that, even
in the absence of high heterogeneity, RelaySGD can be a better choice than gossip SGD.

5.8 Acknowledgements

This project was supported by SNSF grant 200020_200342, as well as the DIGIPREDICT
project from the European Union, and a Google PhD Fellowship.

We thank Yatin Dandi and Lenka Zdeborová for pointing out the similarities between
this algorithm and Belief Propagation during a poster session. This discussion helped us find
the strongly related article by Zhang et al. [2019] that we missed initially.

We thank Renee Vogels for proofreading of the manuscript.

53

Chapter 5. A relay mechanism for decentralized learning

54

Chapter 6

Conclusion

As the success of deep learning today largely depends on the size of the models and of the
datasets on which these models are trained, training efficiently is more important than ever.
Distributed training helps to speed up the process, but communication can be a bottleneck
in the scalability of distributed learning systems. This thesis has examined solutions to
this communication bottleneck in the form of lossy communication compression and sparse
connectivity between workers.

The proposed PowerSGD algorithm for communication compression made strong com-
pression (up to ∼100×) possible in high-performance training setups based on all-reduce,
using compression operations that are efficient on GPU hardware. We then extended this
compression scheme to the decentralized learning setting, where the compression algorithm
is generalized as a way to partially synchronize models between pairs of connected work-
ers. The key selling point for this algorithm in the decentralized setting is the absence of
communication-specific hyperparameters beyond the compression rate.

Our study of the sparse communication paradigm from decentralized learning continued
by evaluating the effect of the communication topology on the convergence of the training
process. We introduced a framework to reason about the ‘effective number of neighbors’ in
a sparse topology, as an alternative to the typical ‘spectral gap’ metric. Apart from a better
explanation of the empirical merits topologies, this framework offers a natural extension to
time-varying topologies, which are popular in practice [Assran et al., 2019].

Finally, we investigated an alternative communication mechanism to gossip communica-
tion for sparsely connected (decentralized) learning. Instead of diffusing gradient updates
slowly through a graph, this mechanism relies on efficiently relaying gradients through a
spanning tree of the graph. This algorithm is mainly useful when workers have very hetero-
geneous data distributions, because it ensures that all workers have equal influence on the
updates of other workers.

6.1 Discussion and future work

Tools for communication efficiency, such as the ones discussed in this thesis, are finding their
way into the mainstream of deep learning. The PowerSGD algorithm introduced in chap-
ter 2, for example, was used to train the impressive DALL-E text-to-image model [Ramesh
et al., 2021], and sparse communication can reduce the training time in large-scale distributed
training [Assran et al., 2019]. PowerSGD is now available as a ‘communication hook’ in Py-

55

Chapter 6. Conclusion

Torch [Contributors, 2020], but these methods are far from becoming being a practical default
for distributed training. In practice, the most popular tools for communication efficiency are
low- or mixed-precision training [Micikevicius et al., 2018, Kalamkar et al., 2019]. These
methods do not reach the same levels of communication compression, but they are easy to
implement and unlikely to significantly alter the training process. To enable widespread adop-
tion of the communication-efficient training methods like the ones in this thesis, I believe the
following issues are critical to address.

Implementation efficiency If the goal of communication compression is to reduce the commu-
nication bottleneck in distributed training, it is imperative that the compression algorithm
is faster than the communication itself. The PowerSGD algorithm is fast for strong compres-
sion rates (low ranks), but the computations can become too expensive when lower compres-
sion rates are required to achieve a desired model accuracy [Agarwal et al., 2022, Markov
et al., 2021]. Ramesh et al. [2021], who used PowerSGD in production, made significant
improvements to the speed of the orthogonalization operation required in PowerSGD, and
such low-level optimizations are crucial to make any compression algorithm practical. It is
also worth exploring variations on PowerSGD that avoid using a large compression rank, such
as replacing few large messages with many small ones, or by cutting up layer gradients into
smaller blocks before compression.

Similarly, to make sparse connectivity practical as a replacement for all-reduce averaging,
these algorithms should be implemented at the same level of all-reduce primitives [NVIDIA,
2019, Markov et al., 2021] to offer competitive performance.

Adaptivity without hyperparameters While the proposed methods for communication compres-
sion were designed to require fewer hyperparameters than some baseline methods, these
methods still fundamentally require the user to choose the strength of the communication
compression. Compressing too much can result in a degradation in model accuracy, while
compressing too little can be wasteful and suboptimal in terms of speed. The use of these
methods would be much more attractive if this choice was made automatically by the algo-
rithm. There has been significant progress into adaptive communication compression [Agar-
wal et al., 2021, Alimohammadi et al., 2022], but none of these methods completely removes
the need for a user-specified compression rate.

Guaranteed accuracy preservation Tying into the previous point, training deep learning mod-
els is a process surrounded by uncertainty. In optimization research, we often train models
for which we already know what ‘good performance’ is, while in practice, we often do not
know what limits the performance. Is it the dataset, the model architecture, or the training
procedure? Using non-standard training algorithms that improve communication efficiency
would only be attractive for the majority of research and exploration in deep learning, if they
can guarantee that no model quality is lost by using the method. It should always be safe
for a user to ‘turn on’ a communication efficient training algorithm.

56

Appendix A

Appendix for PowerSGD

A.1 Discussion of convergence

The proof of convergence of EF-SGD with momentum can be derived by incorporating a few
key changes to the proof of [Karimireddy et al., 2019b]: i) we are in a multi-worker setting,
and ii) we incorporate the techniques introduced by [Ghadimi and Lan, 2016] to handle
the additional momentum. Further, ∥·∥2 unless otherwise specified is always the standard
euclidean norm for vectors, and is the Frobenius norm for matrices.

Suppose that we want to minimize a continuous and (possibly) non-convex function
f : Rd → R:

f⋆ = min
x∈Rd

f(x) .

The classic stochastic gradient algorithm (SGD) [Robbins and Monro, 1951] when adapted
to the distributed optimization setting performs iterations of the form

xt+1 := xt − γ gt , where (A.1)

gt =
1

W

W∑
w=1

gt,w and E[gt] = ∇f(xt) .

Here γ ∈ R is the step-size (or learning-rate) and gt,w is the stochastic gradient computed by
the wth worker for w ∈ {1, . . . ,W} workers.

Now EF-SGD (Algorithm 2) when run on the W workers with step-size γ and momentum
parameter λ can be rewritten making the dependence on iteration t explicit as follows:

∆′
t = Decompress(compress(gt + et)) ,

mt+1 = ∆′
t + λmt ,

xt+1 = xt − γ(∆′
t + mt+1) , and

et+1 = (gt + et)−∆′
t .

(A.2)

A.1.1 Eigen compression

Assumption G (eigen compression) Consider any matrix M = gt + et encountered during the
run of Algorithm 2 such that M is of rank R. Further, suppose that Cr(M) is the best rank-r

57

Appendix A. Appendix for PowerSGD

approximation of M i.e.,
Cr(M) = arg min

C
∥M − C∥2 .

Then we assume that there exists a δe,r > 0 such that

∥M − Cr(M)∥2 ≤ (1− δe,r)∥M∥2 a.s.

We state the below standard fact from linear algebra.

Remark 4 (best rank-r approximation) Suppose we are given a matrix M of rank n whose
singular value decomposition is

M =

n∑
i=1

σiuiv⊤
i ,

where the singular-values (σi) are sorted in descending order. Then the best rank-r approxi-
mation of M for r ≤ n is

Cr(M) = (

r∑
i=1

σiuiv⊤
t)Q ,

where Q ∈ Rr×r is an orthogonal matrix, and further the quality of its approximation is
bounded by

∥M − Cr(M)∥2 =
(
1−

∑r
i=1 σ

2
i∑n

i=1 σ
2
i

)
∥M∥2 .

Thus, if we used Algorithm 2 with exact rank-r approximation of the gradients, we would
converge at rate dictated by the eigenspectrum of the gradients. If the singular values are
‘top-heavy’, i.e., the largest r values are significantly larger than the rest, then a rank-r
approximation is quite accurate. As demonstrated in [Wang et al., 2018], the eigenspectrum
of stochastic gradients in common deep learning tasks is indeed ‘top-heavy’. Thus, we can
expect δe,r to be bounded away from 0 even for very small r (e.g., 1 or 2). Of course computing
the actual top eigenvectors of the stochastic gradients is very computationally expensive, and
more-over is not linear (and hence does not support reduce).

A.1.2 Subspace iteration

The key innovation in PowerSGD is to use only a single step of subspace (or power) iteration
to give a fast low rank approximation [Stewart and Miller, 1975] to the given matrix, which in
our case is a stochastic gradient. However, a single step of subspace iteration in general does
not result in an adequate low-rank approximation of the input matrix. To combat this, and
to at the same time reduce the variance of the stochastic gradient approximation compared
to the full (deterministic) gradient, we propose the reuse of the low-rank approximation from
the previous iteration as the starting point for the current iteration. This is in spite of
the target matrices which are trying to approximate are changing, as the parameters evolve.
Nevertheless, reuse here is justified because the full gradient does not change very fast (the
gradient is Lipschitz by assumption) and we only perform a tiny update at each step, so
can be assumed to be stationary within few steps. Intuitively, by linearity of the subspace
operation, the sequence of subspace steps with the reuse then is converging to the eigenvector
of the averaged stochastic gradients over these steps, thus having a lower variance than the
analogue without re-use, which has no such averaging effect.

58

A.1. Discussion of convergence

For simplicity, we assume all matrices to be square and symmetric in this subsection.
These insights can be generalized to arbitrary matrices but with a substantial increase in
complexity of exposition. Here, we simply note that for any non-square matrix A, we can
instead consider

Ã =

[
0 A
A⊤ 0

]
which is symmetric and has the same eigenvectors and eigenvalues as the original matrix
A—see [Stewart, 1976] for more details on handling such cases.

We can now state an informal theorem about the convergence of subspace iteration.

Theorem VI Suppose that we run subspace iteration as in (A.3) on a fixed matrix At = M .
Also let M =

∑n
i=1 σiuiu⊤

i be the eigendecomposition of M with σ1 ≥ . . . σr > σr+1 ≥ · · · ≥
σn. Then there exists an orthogonal matrix Q ∈ Rr×r such that

lim
t=∞

Xt = [u1, . . . , ur]Q .

In other words, (A.3) recovers the best rank-r approximation of M as long as there is a gap
between the σr and σr+1 eigenvalues.

Suppose that at each iteration we receive a matrix At ∈ Rn×n whose expectation is the
same fixed matrix M ∈ Rn×n. Starting from an orthonormalized X0 ∈ Rn×r, i.e., X⊤

0 X0 = Ir,
the rank-r subspace iteration algorithm performs the following update:

Xt+1 = orthogonalize(AtXt) . (A.3)

The final output of the algorithm (the matrix approximation) is (AT+1XT)X
⊤
T . This closely

resembles the method of PowerSGD as outlines in Algorithm 1. We recommend [Arbenz,
2016] for an in-depth analysis of the (non-varying) subspace iteration algorithm.

Remark 5 (orthogonalization is a linear operation) We recall some more facts from linear algebra.
For any square matrix B, there exists an orthogonal matrix Q and a triangular matrix R
such that QQ⊤ = I and B = QR. This is true, e.g., if we use Gram–Schmidt procedure
to orthonormalize B: Suppose orthogonalize(B) uses the Gram–Schmidt procedure to
orthogonalize B. Then there exists a triangular matrix R such that

orthogonalize(B) = BR−1 .

Proof. It is easy to see that for any orthogonal matrix Q, the matrix [u1, . . . , ur]Q is also
orthogonal, and further is the fixed point of (A.3). In fact all rank-r matrices which are fixed
points of (A.3) are of this form.

We will use the observation in Remark 5 to rewrite the update (A.3) in a more convenient
fashion. There exist triangular matrices R0, . . . , Rt such that

Xt+1 = orthogonalize(AtXt) = AtXtR
−1
t = (AtAt−1 · · ·A0)X0(R

−1
0 R−1

1 · · ·R
−1
t) .

Thus, Xt+1 can alternatively be written as

Xt+1 = orthogonalize((AtAt−1 · · ·A0)X0) = orthogonalize(M t+1X0) .

Here we assumed that the matrix was fixed, i.e., At = M . Let us further assume that X0 has
a non-zero support on the first r eigenvectors of M . Then, a gap in the eigenvalues σr > σr+1

implies that orthogonalize(M t+1X0) converges to [u1, . . . , ur]Q. We refer to Chapter 7.2
of [Arbenz, 2016] for the actual proof of this fact.

59

Appendix A. Appendix for PowerSGD

A.1.3 Single/multi worker equivalence

The difference between the update as written in (A.2) and Algorithm 2 is that the error
computation and compression is performed on the aggregated gradient gt instead of on the
individual workers’ gradients gt,w. While in general these are not equivalent, the linearity of
PowerSGD ensures that these are indeed equivalent. This implies that PowerSGD has the
neat property that the algorithm is equivalent if run on W workers or a single worker with
a larger batch-size. This does not hold for most other schemes (e.g., sign based compression
schemes, QSGD, etc.).

Lemma6 (equivalence of singleworker andmulti worker updates) The updates in PowerSGD (i.e.,
Algorithm 2 using Compressor 1) are equivalent to the updates (A.2).

Proof. Consider the update performed by PowerSGD for arbitrary vectors {vw}. Let C(vw)
be the compressed version of vw for w ∈ {1, . . . ,W}. Then, by design of PowerSGD, the
following holds:

Decompress(aggregate(C(v1), . . . , C(vW))) = Decompress(C(1

W

∑
w

vw)) .

This implies that running the algorithm on multiple workers, or running it on a single worker
with a larger batch-size is identical. In particular,

Decompress(aggregate(C(gt,1 + et,1), . . . , C(gt,W + et,W)))

= Decompress(C(1

W

∑
w

gt,w + et,w))

= Decompress(1

W
C(gt + et)) .

60

A.2. Cluster specifications

A.2 Cluster specifications

• 8 nodes

• GPUs: 2× Nvidia GeForce GTX Titan X with 12 GB memory per node

• GPU connection: traversing PCIe and the SMP interconnect between NUMA nodes

• CPU: Intel Xeon E5-2680 v3 @ 2.50Ghz, 48 cores

• System memory: 251 GiB

• Ethernet: 10Gbit/s SFI/SFP+

• Fat tree network topology

• Running PyTorch 1.1 on Anaconda Python 3.7

Timings of collective communication operations The figure below shows timings for the NCCL
backend, which is the default in our experiments, and the GLOO backend. Note that NCCL
does not support the ‘gather’ operation in PyTorchat the time of writing.

1B 1KB 1MB 1GB

Message size

10µs

0.1ms

1ms

10ms

0.1s

1s

10s

A
ve

ra
ge

d
u

ra
ti

on

16 workers - NCCL

all gather

all reduce

broadcast

1B 1KB 1MB 1GB

Message size

10µs

0.1ms

1ms

10ms

0.1s

1s

10s

A
ve

ra
ge

d
u

ra
ti

on

16 workers - GLOO

all gather

all reduce

broadcast

gather

61

Appendix A. Appendix for PowerSGD

A.3 Convergence curves

Image classification on Cifar-10

0 15m 30m 37m 45m

Training time

85.0

90.0

93.6
94.4

T
es

t
ac

cu
ra

cy

Rank 1

Rank 2

Rank 4

SGD

Language modeling with Wikitext-2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Training time (hours)

50

100

150

200

250

300

T
es

t
p

er
p

le
xi

ty

Rank 1

Rank 2

Rank 4

SGD

Image classification on Cifar-10

0 150 250 300

Epochs

85.0

90.0

93.6
94.4

T
es

t
ac

cu
ra

cy

Rank 1

Rank 2

Rank 4

SGD

Language modeling with Wikitext-2

0 60 80 90

Epochs

50

100

150

200

250

300
T

es
t

p
er

p
le

xi
ty

Rank 1

Rank 2

Rank 4

SGD

Figure A.1: Convergence curves of PowerSGD with varying rank. This figure is meant to
give context to the final results and timings presented in Table 2.3. In two different tasks,
PowerSGD with high enough rank can achieve the test quality of full-precision SGD with
lower wall-clock duration. Contrary to Table 2.3, these timings include testing overhead
at the end of each epoch, checkpointing, and other bookkeeping. Shaded areas show the
min—max values over 3 replications of the experiments.

62

A.3. Convergence curves

Image classification on Cifar-10

0 15m 30m 37m 45m

Training time

85.0

90.0

93.6
94.4

T
es

t
ac

cu
ra

cy

SGD

PowerSGD

Signum

Language modeling with Wikitext-2

0.0 0.2 0.4 0.6 0.8

Training time (hours)

50

100

150

200

250

300

T
es

t
p

er
p

le
xi

ty

SGD

PowerSGD

Signum

Image classification on Cifar-10

0 150 250 300

Epochs

85.0

90.0

93.6
94.4

T
es

t
ac

cu
ra

cy

SGD

PowerSGD

Signum

Language modeling with Wikitext-2

0 60 80 90

Epochs

50

100

150

200

250

300

T
es

t
p

er
p

le
xi

ty

SGD

PowerSGD

Signum

Figure A.2: Convergence curves comparing PowerSGD to the Signum optimizer Bernstein
et al. [2019] (with tuned learning rate). Out of the compared methods, Signum came out as
the most competitive. This figure is meant to give context to the final results and timings
presented in Table 2.6. Contrary to Table 2.3, these timings include testing overhead at the
end of each epoch, checkpointing, and other bookkeeping. Shaded areas show the min—max
values over 3 replications of the experiments.

63

Appendix A. Appendix for PowerSGD

A.4 Language modeling with transformers

In this case study, we assess PowerSGD’s universality and ease of tuning. We implemented
PowerSGD communication in Facebook AI Research’s fairseq library [Ott et al., 2019]. We
trained fairseq’s language modeling example1 with transformers [Baevski and Auli, 2019] on
Google’s public cloud. The communication infrastructure, hardware, number of workers (32),
and model architecture are all different from any experiments we have conducted before. See
Table A.1 for details.

The results of our experiments for various ranks are shown in fig. A.3 and Table A.2.
For this task, we need a higher rank than previously (32 vs 4) to achieve a validation loss
competitive to uncompressed SGD. We hypothesize this may be due differences in architecture
to the cosine learning rate schedule. Nevertheless, even at this higher rank, we achieve a time-
to-accuracy (to loss = 5) of around 1.5× and a compression ratio of 14×. These numbers
could probably be further improved by re-tuning learning-rate-related hyperparameters.

Table A.1: Experimental setting for the experiments in Appendix A.4

Dataset WikiText-103
Architecture Transformer-based [Baevski and Auli, 2019]
Framework & defaults https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/

examples/language_model

Number of workers 32
Backend NCCL (fastest in PyTorch)
Hardware n1-standard-8 nodes on Google Cloud with 1 Nvidia Tesla K80 GPU

Hyperparameters Taken from the example, not re-tuned,
with minor changes for the higher number of workers and different GPU memory:

lr period updates 16875
max update 17875
max tokens (valid) 1536 (to fit on a K80 GPU)
tokens per sample 1536 (to fit on a K80 GPU)
warm-up updates 1000
update freq [1] — don’t aggregate multiple mini-batches locally

Optimizer original: Nesterov accelerated gradient, we just added PowerSGD for communication
Learning rate original cosine schedule from the example

Float precision 32-bit (16-bit is unavailable on the K80)

Repetitions 1

1https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/
language_model

64

https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/language_model
https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/language_model
https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/language_model
https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/language_model

A.4. Language modeling with transformers

Wall-clock time

5 10 15 20

Training time (hours)

4

5

6

7

8

9

10

V
al

id
at

io
n

lo
ss

Uncompressed

Rank 4

Rank 8

Rank 16

Update steps

2500 5000 7500 10000 12500 15000 17500

model updates

4

5

6

7

8

9

10

V
al

id
at

io
n

lo
ss

Uncompressed

Rank 4

Rank 8

Rank 16

Rank 32

Figure A.3: Language Modeling on Wikitext-2 with Transformers. With a large enough rank,
PowerSGD can roughly match the validation loss of full-precision SGD in the same number
of iterations. A speedup of 1.5× in time-to-accuracy (loss=5) is achieved with a rank of 16.

Table A.2: PowerSGD for Language Modeling with Transformers. With rank 32, PowerSGD
achieves similar validation loss to uncompressed SGD in the same number of update steps.
At this rank, the compression ratio is 14×, and we can train the model in 12h compared to
20h for the baseline.

Compression Total training time Compression ratio Validation loss
for 17875 updates at 17875 updates

Uncompressed 20h 1× 4.92
Rank 4 11h 105× 5.58
Rank 8 11h 55× 5.19
Rank 16 12h 28× 5.03
Rank 32 13h 14× 4.97

4h 8h 12h 16h 20h

Forward pass Backward pass Gradient exchange including computation

65

Appendix A. Appendix for PowerSGD

A.5 The need for error feedback

ResNet-18 on Cifar-10

0 150 250 300

Epochs

70.0

86.0

88.5

94.4

T
es

t
ac

cu
ra

cy

Rank-4 w/ error feedback

Rank-4 w/o error feedback

Figure A.4: PowerSGD with and without error feedback compared. While rank-4 PowerSGD
achieves the same test accuracy as full-precision SGD, the same method without error feed-
back does not converge to a good accuracy at all. Both experiments use the same learning
rate that was tuned for full-precision SGD.

66

A.6. Network parameters

A.6 Network parameters

See Table A.3 and Table A.4 for an overview of parameters in the models used.

Table A.3: Parameters in the ResNet-18architecture and their shapes. The table shows the
per-tensor compression ratio achieved by rank-r PowerSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

layer4.1.conv2 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.0.conv2 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.1.conv1 512× 512× 3× 3 512× 4608 9216 KB 461/r ×
layer4.0.conv1 512× 256× 3× 3 512× 2304 4608 KB 419/r ×
layer3.1.conv2 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.1.conv1 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.0.conv2 256× 256× 3× 3 256× 2304 2304 KB 230/r ×
layer3.0.conv1 256× 128× 3× 3 256× 1152 1152 KB 209/r ×
layer2.1.conv2 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer2.1.conv1 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer2.0.conv2 128× 128× 3× 3 128× 1152 576 KB 115/r ×
layer4.0.shortcut.0 512× 256× 1× 1 512× 256 512 KB 171/r ×
layer2.0.conv1 128× 64× 3× 3 128× 576 288 KB 105/r ×
layer1.1.conv1 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.1.conv2 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.0.conv2 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer1.0.conv1 64× 64× 3× 3 64× 576 144 KB 58/r ×
layer3.0.shortcut.0 256× 128× 1× 1 256× 128 128 KB 85/r ×
layer2.0.shortcut.0 128× 64× 1× 1 128× 64 32 KB 43/r ×
linear 10× 512 10× 512 20 KB 10/r ×
conv1 64× 3× 3× 3 64× 27 7 KB 19/r ×
Bias vectors (total) 38 KB None

Total 43 MB 243/r ×

Table A.4: Parameters in the LSTM architecture and their shapes. The table shows the
per-tensor compression ratio achieved by rank-r PowerSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

encoder 28869× 650 28869× 650 73300 KB 636/r ×
rnn-ih-l0 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l0 2600× 650 2600× 650 6602 KB 520/r ×
rnn-ih-l1 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l1 2600× 650 2600× 650 6602 KB 520/r ×
rnn-ih-l2 2600× 650 2600× 650 6602 KB 520/r ×
rnn-hh-l2 2600× 650 2600× 650 6602 KB 520/r ×
Bias vectors (total) 174 KB None

Total 110 MB 310/r ×

67

Appendix A. Appendix for PowerSGD

A.7 Compressor implementation details

A.7.1 Random Block

This implements compression for error feedback with momentum (Algorithm 2).

Algorithm 6 Random Block compression
1: function compress(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: Sample an index s uniformly between 0 and nm−1, using the same seed on all workers.
4: The block length b is set to (m+ n)r to match rank-r PowerSGD.
5: return A consecutive memory slice S = M(s : s+ b).
6: end function
7: function aggregate+decompress(worker’s slices S1 . . . SW)
8: M̂ ← 0 ∈ Rn×m

9: M̂(s : s+ b)← 1
W

∑W
i=1 Si ▷ using all-reduce

10: return M̂
11: end function

A.7.2 Random K

This implements compression for error feedback with momentum (Algorithm 2).

Algorithm 7 Random K compression
1: function compress(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to (m+ n)r to match rank-r PowerSGD.
4: Sample a set of b indices I without replacement, using the same seed on all workers.
5: return Looked up values S = M(I).
6: end function
7: function aggregate+decompress(worker’s values S1 . . . SW)
8: M̂ ← 0 ∈ Rn×m

9: M̂(I)← 1
W

∑W
i=1 Si ▷ using all-reduce

10: return M̂
11: end function

Sampling of indices We sample random indices on the CPU using NumPy. This operation
is relatively expensive. Together with the many random lookups, this explains why Random
K compression is significantly slower than Random Block compression.

68

A.7. Compressor implementation details

A.7.3 Sign+Norm

This implements compression for error feedback with momentum (Algorithm 2).

Algorithm 8 Sign+Norm compression
1: function compress(update matrix M ∈ Rn×m)
2: Compute the signs S ∈ {−1, 1}n×m of M
3: Compute the L1 norm ℓ of M .
4: return (ℓ, S)
5: end function
6: function aggregate+decompress(worker’s norms ℓ1 . . . ℓW and signs S1 . . . SW)
7: return 1

W

∑W
i=1

ℓi
nmSi ▷ Executed on all workers using NCCL’s all-gather

8: end function

Because PyTorch does not natively support data types smaller than 8 bits per scalar, we use
a C++ extension [Bernstein et al., 2019] to actually send single bits to other workers. The
employed all-gather operation from NCCL is faster than aggregation using a parameter server
using GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’
operation.

A.7.4 Top K

This implements compression for error feedback with momentum (Algorithm 2).

Algorithm 9 Top K compression
1: function compress(update matrix M ∈ Rn×m)
2: Treat M as a vector of length nm.
3: The number of samples b is set to (m+ n)r to match rank-r PowerSGD.
4: Construct a list of b indices I corresponding to the top absolute values in M .
5: return Looked up values S = M(I) and indices I.
6: end function
7: function aggregate+decompress(worker’s values S1 . . . SW and indices I1 . . . IW)
8: M̂ ← 0 ∈ Rn×m

9: for worker index i in 1, . . . ,W do
10: M̂(Ii)← 1

W Si ▷ using all-gather in NCCL
11: end for
12: return M̂
13: end function

The employed all-gather operation from NCCL is faster than aggregation using a parameter
server using GLOO. We cannot implement a parameter server in NCCL due to lack of a
‘gather’ operation.

69

Appendix A. Appendix for PowerSGD

A.7.5 Signum

This is our implementation of the Signum compression algorithm by Bernstein et al. [2019].
We run it in its original form, without error feedback, with momentum of 0.9, and a learning
rate tuned based on 5 experiments in the 16-worker setting.

Algorithm 10 Signum compression
1: function compress(update matrix M ∈ Rn×m)
2: Compute the signs S ∈ {−1, 1}n×m of M
3: return S
4: end function
5: function aggregate+decompress(worker’s signs S1 . . . SW)
6: return sign(

∑W
i=1 Si) ▷ Majority vote, on all workers using NCCL’s all-gather

7: end function

Because PyTorch does not natively support data types smaller than 8 bits per number, we
use a C++ extension [Zhao, 2019] to actually send single bits to other workers. The employed
all-gather operation from NCCL is faster than aggregation using a parameter server using
GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’ operation.

A.7.6 Atomo

This is our implementation of the Spectral Atomo algorithm presented by Wang et al. [2018].
We run it in its original form, without error feedback, with momentum of 0.9, and a learning
rate tuned based on 4 experiments in the 16-worker setting.

Matrix shape Atomo differs from PowerSGD in how it treats tensors as matrices. This results
in lower compression at the same rank.

Number of sampled components Atomo decomposes gradient matrices M using a Singular
Value Decomposition into M ∼

∑
i Ui:SiiV

⊤
i: and importance-samples components from this

summation based on probabilities derived from the absolute singular values Sii. The proba-
bilities are such, that the expected number of samples components is equal to the target rank
r, but there is no guarantee. We modify the algorithm to always use exactly r components,
to allow for faster communication. We achieve this by repeating the sampling procedure
until the number of selected components is r. This has no significant impact on the runtime
performance.

70

A.7. Compressor implementation details

Algorithm 11 Rank-r Spectral-Atomo compression
1: function compress(update matrix M ∈ Rn×m)
2: U, S, V ← svd(M). ▷ on CPU using NumPy, faster than PyTorch
3: Compute Atomo probabilities p1 . . . pk from S11, . . . Skk. ▷ see [Wang et al., 2018].
4: Sampling: include index i independently with probability pi.
5: Repeat sampling until a set of r indices C is selected. ▷ our modification (see above)
6: return {(Ui: · Sii/pi, Vi:) | i ∈ C} as two matrices U ′ ∈ Rn×r and V ′ ∈ Rm×r.
7: end function
8: function aggregate+decompress(rank-r approximations (U ′

1, V
′
1) . . . (U

′
W , V ′

W) for
each worker)

9: return
∑W

i=1 U
′
iV

′⊤
i ▷ using all-gather in NCCL

10: end function

The employed all-gather operation from NCCL is faster than aggregation using a parameter
server using GLOO. We cannot implement a parameter server in NCCL due to lack of a
‘gather’ operation.

A.7.7 Best-approximation PowerSGD

This variant is the same as PowerSGD (Algorithm 1), but with more steps of subspace
iteration, and without reuse of previous steps. We find that 4 steps of subspace iterations (8
matrix multiplications) is enough to converge to the best low-rank approximation of gradient
matrices, when measuring final test accuracy achieved by PowerSGD.

71

Appendix A. Appendix for PowerSGD

A.8 Performance optimizations

Because we compare timings, we have aimed to optimize all compared optimizers to a similar
level. For sign-based methods, we used a publicly available C++ library by Bernstein et al.
[2019] to efficiently pack the signs into bitmaps, an operation which is not supported by
PyTorch natively. For Atomo, we have benchmarked the SVD operation on the GPU and
CPU, and chose the faster CPU implementation. For all methods, we pack all gradient
tensors into one flat buffer to reduce the number of communications. Where possible, we
overlay communication with computation. Algorithms that do not support all-reduce are
implemented using NCCL’s all-gather, which is faster than a parameter server with GLOO.2

A.9 Learning rate tuning

For each task and each optimization algorithm without error feedback, learning rates were
tuned separately. For algorithms based on error feedback with momentum, we use the learning
rate tuned for SGD.

Learning rates are defined as rates for 1 worker, and scaled linearly with 5-epoch warm-up
to the number of workers (16 by default). We tune them in the 16-worker setting.

We determine the best learning rate by comparing test accuracy of one replication after
running the full number of epochs. We start training with 3 different learning rates, a factor
2 apart, based on commonly used rates for the optimizer, and if the best learning rate is
either the lower or higher end, we extended the range.

For Cifar-10, the rates considered for SGD were [0.05, 0.1, 0.2], we chose 0.1. For rank-2
Spectral Atomo, we considered [0.025, 0.05, 0.1, 0.2] and chose 0.1. For Signum, we considered
[2e-5, 5e-5, 1e-4, 2e-4] and chose 5e-5.

For Wikitext-2, the rates considered for SGD were [0.6, 1.25, 2.5, 5, 10], we chose 1.25.
For Signum, we considered [2e-4, 1e-1, 5e-5, 1e-5, 1e-6], and chose 1e-5.

We have not tuned the momentum parameter or L2, weight decay parameters or learning
rate schedule for any experiment.

2‘reduce’+‘gather’ (parameter server communication) with GLOO takes longer than all-gather with NCCL,
as shown in Appendix A.2. NCCL in PyTorch currently lacks support for a ‘gather’ operator.

72

Appendix B

Appendix for PowerGossip

B.1 Compressed Consensus

(Proof of Theorem I) Recall that the consensus update for each node i performs (3.4):

X(t)
i = X(t−1)

i +
∑
j∈Ni

Wij(Cijt(X(t−1)
j)− Cijt(X(t−1)

i)) .

Lemma 7 (preserves average) For every step of (3.4), X̄(t) = X̄(0).

Proof. Note that for every edge (i, j) ∈ E, we add to node i exactly what is subtracted from
node j. This preserves the average:

X̄(t) =
1

n

n∑
i=1

X(t−1)
i +

∑
j∈Ni

Wij(Cijt(X(t−1)
j)− Cijt(X(t−1)

i))

= X̄(t−1) +

1

n

∑
(i,j)∈E

(
Wij(Cijt(X(t−1)

j)− Cijt(X(t−1)
i)) +Wji(Cjit(X(t−1)

i)− Cjit(X(t−1)
j))

)
= X̄(t−1) .

The last equality follows because Wij = Wji and Cijt = Cjit.

Lemma 8 (effect of compression) Assuming (A4) and (A5) hold, the iteration (3.4) satisfies

∥∆(t)
i ∥

2
F ≤ (1− δ)∥∆(t−1)

i ∥2F + δ∥
∑
j∈[N]

Wij∆
(t−1)
j ∥2F ,

where we define ∆
(t)
i := X(t)

i − X̄(0).

Proof. Starting from the consensus update and the fact that
∑

j Wij = 1, we have

X(t)
i = X(t−1)

i +
∑
j∈Ni

Wij(Cijt(X(t−1)
j)− Cijt(X(t−1)

i))

= X(t−1)
i +

∑
j∈[N]

Wij(Cijt(X(t−1)
j −X(t−1)

i))

= X(t−1)
i +

∑
j∈[N]

WijΠijt(X(t−1)
j −X(t−1)

i) .

73

Appendix B. Appendix for PowerGossip

The second equality used Wij ̸= 0 only if (i, j) ∈ E and the linearity of the compressor.
Finally, since Cijt is a linear projection, we can replace it by a projection matrix Πijt. Recall
that Cijt is a δ-approximate linear projection which implies that Πijt satisfies

E[Πijt] = E[Π⊤
ijt] = E[Π⊤

ijtΠijt] = δI . (B.1)

Further, since Πijt is a projection matrix, we have for any i, j

Π⊤
ijt ⪯ I

⇒Π⊤
ijtΠikt ⪯ Πikt

⇒E[Π⊤
ijtΠikt] ⪯ E[Πikt] = δI .

Note that we did not require any sort of independence between the projections Π⊤
ijtΠikt in

the above derivation. Armed with these properties of the projection matrices, we turn our
attention to the error term defined as ∆

(t)
i := X(t)

i − X̄(0). Our previous expression for X(t)
i

implies that
∆

(t)
i = ∆

(t−1)
i +

∑
j∈[n]

WijΠijt(∆
(t−1)
j −∆

(t−1)
i) .

Expanding ∆
(t)
i

⊤
∆

(t)
i and taking expectations on both sides gives

E[∆(t)
i

⊤
∆

(t)
i] = ∆

(t−1)
i

⊤
∆

(t−1)
i +

∑
j∈[n]

Wij∆
(t−1)
i

⊤
E[Πijt](∆

(t−1)
j −∆

(t−1)
i)

+
∑
j∈[n]

Wij(∆
(t−1)
j −∆

(t−1)
i)

⊤
E[Π⊤

ijt]∆
(t−1)
i

+
∑

j,k∈[n]

WijWik(∆
(t−1)
j −∆

(t−1)
i)

⊤
E[Π⊤

ijtΠikt](∆
(t−1)
k −∆

(t−1)
i)

⪯∆
(t−1)
i

⊤
∆

(t−1)
i +

∑
j∈[n]

δWij∆
(t−1)
i

⊤
(∆

(t−1)
j −∆

(t−1)
i)

+
∑
j∈[n]

δWij(∆
(t−1)
j −∆

(t−1)
i)

⊤
∆

(t−1)
i

+
∑

j,k∈[n]

δWijWik(∆
(t−1)
j −∆

(t−1)
i)

⊤
(∆

(t−1)
k −∆

(t−1)
i)

= ∆
(t−1)
i

⊤
∆

(t−1)
i − δ∆

(t−1)
i ∆

(t−1)
i

⊤
+
∑

j,k∈[n]

δWijWjk∆
(t−1)
j

⊤
∆

(t−1)
k .

The second matrix inequality used the fact that if A ⪯ B then C⊤AC ⪯ C⊤BC for any
C. The equality in the third step pulled out the terms which only depend on i from the
expressions and used our assumption (A4) that

∑
j Wij =

∑
iWij = 1. Taking trace on both

sides and using Tr(AB) = Tr(BA) we can simplify the expression as

E[Tr(∆(t)
i

⊤
∆

(t)
i)] ≤ (1− δ)Tr(∆(t−1)

i

⊤
∆

(t−1)
i) + δ Tr((

∑
j∈[n]

Wij∆j)
⊤(
∑
j∈[n]

Wij∆j))

The lemma now follows by the definition of Frobenius norm ∥Z∥2F = Tr(Z⊤Z).

74

B.2. Compressed optimization

Lemma 9 (effect of mixing) Assuming that W has a spectral gap ρ as in (A4) and ∆
(t)
i :=

X(t)
i − X̄(0), we have

1

n

∑
i∈[n]

∥∥∥∑
j∈[n]

Wij∆
(t−1)
j

∥∥∥2
F
≤ (1− ρ)

1

n

∑
i∈[n]

∥∆(t−1)
i ∥2F .

Proof. Follows from standard mixing arguments such as in [Xiao and Boyd, 2004].

Averaging lemma 8 over the nodes i and then applying Lemma 9 gives

1

n

∑
i∈[n]

∥∆(t)
i ∥

2
F ≤ (1− δ)

1

n

∑
i∈[n]

∥∆(t−1)
i ∥2F + δ

1

n

∑
i∈[n]

∥∥∥∑
j∈[n]

Wij∆
(t−1)
j

∥∥∥2
F

≤ (1− δ + δ(1− ρ))
1

n

∑
i∈[n]

∥∆(t−1)
i ∥2F

= (1− ρδ)
1

n

∑
i∈[n]

∥∆(t−1)
i ∥2F .

This proves the statement of Theorem I.

B.2 Compressed optimization

(Proof of Theorem II) We will use two main results proved in the previous section about
our consensus step: that the average is preserved (Lemma 7), and that every step is a
contraction in expectation (Theorem I). Any consensus operator which satisfies these two
properties directly ensures convergence of the stochastic optimization method by the proof
technique of [Koloskova et al., 2020]. In particular, this shows that we satisfy Assumption 4
of [Koloskova et al., 2020] with p = ρδ. Replacing p with ρδ in their Theorem 2 yields the
desired rates.

B.3 Experimental settings

Tables B.1, B.2 and B.3 describe the implementation details of our experiments.

B.4 Convergence curves

Below, we plot the convergence curves in terms of test accuracy, as a function of either
gradient updates (epochs) or bits sent per worker. In all our experiments, we have used
a fixed number of epochs and a learning rate schedule that is common for full precision
centralized training. It is possible that experiments with high communication compression
would benefit from more epochs or a slightly different learning rate schedule.

75

Appendix B. Appendix for PowerGossip

Table B.1: Default experimental settings for Cifar-10/ResNet-20 [based on Koloskova et al.,
2019a]

Dataset Cifar-10
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture ResNet-20
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 8
Topology ring
Network Wij 0.436 for neighbors i, j, 0.128 if i = j, 0 otherwise

(optimized for largest spectral gap)
Data reshuffled between workers every epoch

Batch size 128× number of workers
Momentum 0.9
Learning rate Tuned. PowerGossip uses the same as uncompressed centralized all-reduce.
LR decay /10 at epoch 150 and 250
LR warm-up Step-wise linearly within 5 epochs, starting from 0.1
Epochs 300
Weight decay 10−4, 0 for BatchNorm parameters

Repetitions 6, with varying seeds
Reported metric Worst result of any worker of the worker’s mean test accuracy over the last 5 epochs

B.4.1 ResNet-20 on Cifar-10

0.0 0.5 1.0 1.5

Bits sent ×1010

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

ac
cu

ra
cy

0 100 200 300

Epochs

All-reduce (baseline)
Uncompressed (DP-SGD)
Choco (top-1%)
Choco (Sign+Norm)
Moniqua (2-bit)
DeepSqueeze (Sign+Norm)
PowerGossip (1 iterations)
PowerGossip (2 iterations)

B.4.2 LSTM on WikiText-2

0 1 2 3 4

Bits sent ×1011

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Te
st

lo
ss

(c
ro

ss
en

tr
op

y)

0 25 50 75

Epochs

All-reduce (baseline)
Uncompressed (DP-SGD)
PowerGossip (8 iterations)
PowerGossip (16 iterations)
PowerGossip (32 iterations)
Choco (Sign+Norm)
Choco (top-1%)

76

B.5. The power spectrum of parameter differences

Table B.2: Default experimental settings for WikiText-2 [based on Vogels et al., 2019]

Dataset Word-level WikiText-2
Tokenizer Spacy
Architecture 3-layer LSTM
Training objective cross entropy
Evaluation objective cross entropy / perplexity

Number of workers 16
Topology ring
Network Wij

1
3

for neighbors i, j, 1
3

if i = j, 0 otherwise
(common settings, worked better for DPSGD than weights used for Cifar-10)

Data Source text strictly divided into 16 equal chunks, always remain on worker

Batch size 64× number of workers
Momentum 0.0
Learning rate Tuned. PowerGossip uses the same as uncompressed centralized all-reduce.
LR decay /10 at epoch 60 and 80
LR warm-up Step-wise linearly within 5 epochs, starting from 1.25
Epochs 90
Weight decay 0.0

Repetitions 2
Reported metric Worst result of any worker of the worker’s mean test cross entropy over the last 5 epochs

Table B.3: Experimental settings for Consensus

Number of workers 8
Topology ring
Network Wij 0.436 for neighbors i, j, 0.128 if i = j, 0 otherwise

(optimized for largest spectral gap)

Data 100× 100 random normal data
or 8 randomly selected 64× 64 faces from [AT&T Laboratories Cambridge]

Objective minimize 1
8

∑8
i=1

(
X(t)

i − X̄(0)
)2

B.5 The power spectrum of parameter differences

B.5.1 LSTM Training

The plots below show the power spectra of parameter differences observed while training the
LSTM (Appendix B.9). We train with 16 workers connected in a ring, using PowerGossip
with 32 power iterations per gradient update. During training, we record the power spectra
of the differences between the parameters of connected workers 0-1, 4-5 and 8-9 at 4 different
training stages. Lines are averages of the spectra observed between the three worker pairs.

The power spectra change significantly over time, but at most stages, they show that a
few singular vectors carry more weight than others. This structure can be exploited by Power-
Gossip with power iterations. Especially in early training, the power spectra are peaky. This
phase has been observed to be critical for successful training of non-convex models [Frankle
et al., 2020].

77

Appendix B. Appendix for PowerGossip

0 200 400 600

0

1

2

3

4

Si
ng

ul
ar

va
lu

es
(s

or
te

d)

Epoch 1 (early training)

0 200 400 600

0.02

0.04

0.06

0.08

0.10

Epoch 89 (at the end of training)

0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0

Epoch 65 (just after l.r. dropped)

0 200 400 600

2

4

6 param
eter=

encoder.w
eight

Epoch 50 (in the middle)

0 200 400 600

Singular value index

0.00

0.02

0.04

0.06

Si
ng

ul
ar

va
lu

es
(s

or
te

d)

0 200 400 600

Singular value index

0.005

0.010

0.015

0.020

0.025

0 200 400 600

Singular value index

0.1

0.2

0.3

0 200 400 600

Singular value index

0.5

1.0

1.5

2.0

2.5

param
eter=

rnn.w
eight

ih
l1

B.5.2 Consensus

The effect of a peaky spectrum on PowerGossip shows in our consensus experiments. When
we plot the spectra of parameter differences between neighboring workers at initialization, we
see that faces from the Faces Database [AT&T Laboratories Cambridge] can be approximated
better with a low-rank approximation than random normal matrices. This is the reason why,
in fig. 3.1, PowerGossip with power iterations is more efficient per-bit than uncompressed
gossip for this dataset.

0 20 40 60 80 100

Singular value index

0

10

20

Si
ng

ul
ar

va
lu

es
(s

or
te

d)

dataset = Random Normal Matrices

0 20 40 60

Singular value index

0

2

4

6

8

dataset = AT&T Faces Database

B.6 Changing rank vs changing # power iterations

PowerSGD [Vogels et al., 2019] (chapter 2), the algorithm on which PowerGossip is inspired,
control their compression rate by varying the rank of the low-rank approximations. While
this strategy is effective in terms of quality, it requires their projection matrices to be orthog-
onalized at every step of power iteration, rather than normalized. This operation scales as
the square of the approximation rank, and is reported to be the most expensive step of the

78

B.7. Hyperparameters

algorithm. A second disadvantage of using a high rank is that the memory required to store
previous low-rank approximations scales linearly with the rank as well.

In PowerGossip, we adopt an alternative approach where we use multiple rank-1 power
iteration steps per gradient update instead of one step with higher accuracy. In the table
below, we show that this alteration has no impact on the performance of our method, evalu-
ated with a fixed budget of 90 epochs on WikiText-2 language modeling. For the same total
communication budget, we reach similar test loss.

Sent/epoch PowerGossip rank Num. power iterations WikiText-2 test loss

127 MB 1 8 4.73
230 MB 1 16 4.63
437 MB 1 32 4.58

2 16 4.58
4 8 4.58
8 4 4.58

B.7 Hyperparameters

B.7.1 Consensus

In fig. 3.1, we plot results obtained with two compressors in ChocoGossip [Koloskova et al.,
2019b], using 20 consensus step size parameters γ ranging from 7.6 × 10−5 to 1 on an expo-
nential grid. The optimal hyperparameter depends on the compressor used.

B.7.2 ResNet-20 on Cifar-10

The table below specifies the optimizer-specific hyperparameters that we used in our ex-
periments. For our baselines DeepSqueeze and ChocoSGD, we use tuned hyperparameters
from [Koloskova et al., 2019a].

Learning rate η Consensus rate γ Modulo parameter θ

Method Tested Used Tested Used Tested Used

All-reduce (baseline) {0.8, 1.13, 1.6} 1.13
Uncompressed D-SGD {0.8, 1.13, 1.6} 1.13
Choco (top-1%) {0.96, 1.2, 1.6}⋆ 1.13 {0.025, 0.0375, 0.075, 0.15}⋆ 0.0375
Choco (Sign+Norm) {1.2, 1.6, 2.4}⋆ 1.6 {0.15, 0.2, 0.45, 1}⋆ 0.45
Moniqua (2-bit) {0.1, 0.2, 0.4, 0.8} 0.4 {0.01, 0.005, 0.0025, 0.0012}† 0.005 {0.125, 0.25, 0.5} 0.25
DeepSqueeze (Sign+Norm) {0.24, 0.48, 0.96} 0.48 {0.005, 0.01, 0.05}⋆ 0.01
PowerGossip (1 iteration) 11.3
PowerGossip (2 iterations) 11.3

⋆: based on published parameters and the tuning strategy from Koloskova et al. [2019a].
†: the consensus step size was tuned after the other parameters, not in a full grid.

79

Appendix B. Appendix for PowerGossip

B.7.3 LSTM on WikiText-2

The table below specifies the optimizer-specific hyperparameters used in our experiments.

Learning rate η Consensus rate γ Modulo parameter θ

Method Tested Used Tested Used Tested Used

All-reduce (baseline) {15, 20, 27.5, 35, 47.5} 47.5
Uncompressed D-SGD {15, 20, 27.5, 35, 47.5} 47.5
Choco (top-1%)† {47.5} {0.01, 0.1, 0.2, 0.4, 0.8}
Choco (Sign+Norm) {35, 47.5} 47.5 {0.4, 0.6, 0.8, 1.0} 0.8
PowerGossip (⋆ iterations) 47.5

†: did not converge. We did not report this result, as more tuning may help.

B.8 Compared-to algorithm implementations

In the sections below, we describe the implementation details of the algorithms we compare
to. We provide the code for our implementations on GitHub (after de-anonymization).

B.8.1 ChocoSGD

We implement Algorithm 1 of [Koloskova et al., 2019a], which differs slightly from Algorithm
2 in [Koloskova et al., 2019b], in that it executes consensus steps and gradient updates in
parallel like D-SGD.

We use three compressors in our experiments. As customary, we compress each tensor
parameter of our neural networks separately.

• Sign+Norm Q(x) = sign(x) · ∥x∥1
length(x) . We confirm the author’s observations that this

compressor gives the best and most reliable results.

• top-1% Let p99(x) represent the 99th percentile of coordinates in x by absolute value.
Here

Q(x)i = xi if xi ≥ p99(x), 0 otherwise.

To communicate the top 1% of a vector, we communicate 32-bit float values and 64-bit
integer indices, following the authors.

• SVD This low-rank compressor has not been used with ChocoSGD, but we have eval-
uated it because our proposed method is also based on low-rank compression. This
compressor represents a matrix X by (Xv)v⊤, where v is the (normalized) top right
singular vector found by a Singular Value Decomposition (SVD).

B.8.2 DeepSqueeze

We implement DeepSqueeze according to Algorithm 1 in [Tang et al., 2019], and use the same
compressors described for ChocoSGD above.

B.8.3 Moniqua

Because the 1-bit version of Moniqua [Lu and Sa, 2020] is derived from the 2-bit version
with added BZIP compression, we focus on the 2-bit version. We implement the algorithm
according to Algorithm 1 in [Lu and Sa, 2020]. We use the same step size schedule {αk}

80

B.9. Parameters in architectures

as for the optimizers we evaluated, and tune the a priori bound θ as a global constant, as
suggested by the authors. As a stochastic rounding operator Q, we quantize stochastically in
an unbiased fashion to the points {−1

2 ,−
1
6 ,

1
6 ,

1
2}. This yields δ = 1

3 . Note that the modulo
operator ‘mod Bθ’ in the algorithm yields values between −1

2Bθ and 1
2Bθ.

B.9 Parameters in architectures

See Table B.4 and Table B.5 for an overview of parameters in the models used.

Table B.4: Parameters in the ResNet20 architecture and their shapes. The table shows the
per-tensor compression ratio achieved by rank-1 PowerGossip with r iterations.

Parameter Parameter shape Matrix shape Uncompressed Compression

layer3.1.conv1 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.2.conv1 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.0.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.1.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.2.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.0.conv1 64× 32× 3× 3 64× 288 72 KB 105/r ×
layer2.2.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.1.conv1 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.0.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.1.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.2.conv1 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.0.conv1 32× 16× 3× 3 32× 144 18 KB 52/r ×
layer1.1.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.1.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.0.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.2.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.0.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.2.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer3.0.downsample.0 64× 32× 1× 1 64× 32 8 KB 43/r ×
fc 10× 64 10× 64 2 KB 17/r ×
layer2.0.downsample.0 32× 16× 1× 1 32× 16 2 KB 21/r ×
conv1 16× 3× 3× 3 16× 27 2 KB 20/r ×
Bias vectors (total) 6 KB None

Table B.5: Parameters in the LSTM architecture and their shapes. The table shows the
per-tensor compression ratio achieved by rank-1 PowerGossip with r iterations.

Parameter Parameter shape Matrix shape Uncompressed Compression

encoder 28869× 650 28869× 650 73300 KB 1271/r ×
rnn-ih-l0 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l0 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-ih-l1 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l1 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-ih-l2 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l2 2600× 650 2600× 650 6602 KB 1040/r ×
Bias vectors (total) 174 KB None

81

Appendix B. Appendix for PowerGossip

B.10 Experiment runtime and compute infrastructure

We have executed our deep learning experiments on Nvidia Tesla K80 GPUs on n1-series
virtual machines on Google Cloud. The algorithms were implemented in PyTorch, and run
using a custom build that includes MPI for decentralized communication. We refer to the
supplemental code for additional details on our runtime environment.

For our LSTM experiments with 16 workers, we use 4 GPUs with 4 processes per GPU.
The experiments took approximately 4 hours in this setup.

For our Cifar-10 experiments with 8 workers, use 2 GPUs with 4 processes each. Those
experiments took around 1.5 hours.

82

Appendix C

Appendix for Beyond Spectral gap

C.1 Notation

Table C.1 defines some notation and conventions used throughout this paper and in the
appendix.

Table C.1: Notation

Bold symbol v Vector
Bold uppercase M Matrix
N d(0, 1) Standard normal distribution

with d independent dimensions
⟨x, y⟩ Inner product x⊤y
∥T∥2 Spectral norm
∥T∥F Frobenius norm
P⊗Q Kronecker product
1 Vector of all ones

83

Appendix C. Appendix for Beyond Spectral gap

C.2 Topologies

The static topologies that we consider in this work are drawn in fig. C.1. Figures C.2 and
C.3 show the gossip matrices we use in detail.

Fully connected Two cliques Hypercube

Torus (4x8) Social network Ring

Binary tree Star Solo

Figure C.1: Spring-layout drawings of the static graph topologies considered used this pa-
per. The nodes represent workers, and an edge between two workers indicates that they are
connected. The thickness of an edge is proportional to its averaging weight.

84

C.2. Topologies

Fully connected
Weights: 0, 1/32

Two cliques
Weights: 0, 1/15.11, 1/16, 1/17

Hypercube
Weights: 0, 1/6

Torus (4x8)
Weights: 0, 1/5

Social network Ring
Weights: 0, 1/3

Binary tree
Weights: 0, 1/1.33, 1/4

Star
Weights: 0, 1/1.03, 1/32

Solo
Weights: 0, 1/1

Figure C.2: Gossip matrices corresponding to the graph topologies drawn in fig. C.1. x and
y axes represent workers, and the color of each coordinate in the plots indicates the gossip
weight between each pair of workers. The brighter, the higher the weight.

Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2

Figure C.3: Gossip matrices for the time-varying exponential graph [Assran et al., 2019, Ying
et al., 2021]. The product of logn consecutive gossip matrices equals to the fully-connected
averaging matrix with wij = 1/n ∀i, j.

85

Appendix C. Appendix for Beyond Spectral gap

C.3 Random quadratics

C.3.1 Objective

We study the simple problem of minimizing an isotropic d-dimensional quadratic,

x⋆ = arg min
x∈Rd

f(x)

where the objective function f(x) = 1
2∥x∥2 is considered to be the expectation over an infinite

dataset with random normal features and labels 0:

f(x) = Ed∼N d(0,1)

1

2
⟨d, x⟩2 . (C.1)

The optimum of this objective is at x⋆ = 0 without loss of generality, because any shifted
quadratic would behave the same in the algorithm studied. We will access this objective
function through stochastic gradients of the form g(x) = dd⊤x. The stochasticity of these
gradients disappears at the optimum, like in an over-parameterized model.

The difficulty of this problem depends on the dimensionality d. For a lower-dimensional
problem, the ‘stochastic Hessian’ dd⊤ is closer to the true hessian I than for a high dimensional
one. This level of stochasticity is captured by the following quantity:

Definition H (noise level) ζ = supx
Ed∥dd⊤x∥2

∥x∥2 .
For our random normal data with batch size 1, this notion of noise level corresponds

directly to the dimensionality of the data as ζ = d+ 2.

C.3.2 Algorithm

The objective (C.1) is collaboratively optimized by n workers. At every time step t, each
worker i has its own copy of the ‘model’ x(t)

i ∈ Rd. In the D-SGD algorithm, workers iteratively
compute stochastic gradient estimates g(t)i = d(t)

i d(t)
i

⊤
x(t)
i , where d(t)

i are i.i.d. from N d(0, 1).
The stochastic gradients are unbiased: E g(t)i = ∇f(x(t)

i) = x(t)
i .

Workers interleave stochastic gradient updates with gossip averaging:

x(0)
i = x(0) ∀i

x(t+1)
i = W(x(t)

i − ηg(t)i),

where η is the learning rate and

W(xi) =

n∑
j=1

wijxj .

This linear operation can be interpreted as matrix multiplication, but one operating on each
coordinate of the model independently. W is an n × n matrix, and not a d × d matrix
as the notation may suggest. The averaging weights wij encode the connectivity of the
communication topology: non-zero wij implies that workers i and j are directly connected.
We make several assumptions about the gossip weights in this analysis:

Assumption I Constant gossip weights: The weights wij are constent between D-SGD steps.

86

C.3. Random quadratics

Assumption J Symmetric gossip weights: wij = wji.

Assumption K Doubly stochastic gossip weights: wij ≥ 0 ∀i, j,
∑

j wij = 1 ∀i,
∑

iwij = 1 ∀j.

Assumption L Regular topology: all workers have k directly-connected neighbors, and wij = c
for some constant c, and for each edge where i ̸= j.

Definition M Spectrum of W. Let the eigenvalues of W be λ1 ≥ λ2 ≥ . . . ≥ λn. We call the
corresponding eigenvectors v1, . . . , vn. Under assumption K, λ1 = 1, and we call 1 − λ2 the
spectral gap of W.

The assumptions on constant gossip weights and regular topologies are mainly here to ease
the analysis. We experimentally observe that our findings hold for time-varying topologies
and infinite graphs, too, and that they approximately hold for irregular graphs.

C.3.3 Linear convergence of an unrolled error vector

We will study the convergence of the algorithm by tracking the error matrix E ∈ Rn×n. The
coordinates of this matrix are the expected covariance between each pair of workers.

E(t)
ij = E

〈
x(t)
i , x(t)

j

〉
.

We sometimes flatten the error matrix into a vector e ∈ Rn2 , such that eni+j = Eij . The
diagonal entries of this matrix describe the worker’s error on the objective, and as all workers
converge to the optimum at zero, each entry of the matrix will converge to zero. Our analysis
of E quantity starts with a key observation:

Lemma 10 There exists an n2 × n2 ‘transition’ matrix T such that e(t+1) = Te(t) ∀t.

Proof. Because both gossip averaging and the gradient updates are linear, this follows from
expanding the inner product.

The transition matrix T depends on the gossip matrix W and on the learning rate η. Its
spectral gap describes the convergence of the algorithm. D-SGD converges linearly if the
norm ∥T∥2 < 1.

We separate T into a product T = TgossipTgrad, where Tgrad and Tgossip respectively
capture the gradient update and gossip steps of the algorithm. We find that

Tgossip = W⊗W

and that Tgrad is diagonal. It only operates element-wise, such that

[
Tgrade

]
ni+j

=

{
(1− η)2eni+j + (ζ − 1)η2eni+j i = j (same worker),
(1− η)2eni+j i ̸= j (different workers).

(C.2)

This follows directly from expanding the inner product ⟨xi − ηgi, xj − ηgj⟩. The terms with
i = j behave differently than the ones where i ̸= j, because the noise cancels if i ̸= j.

87

Appendix C. Appendix for Beyond Spectral gap

C.3.4 Random walks with gossip averaging

Before we study the convergence of D-SGD on the random quadratic objective, we first take a
step back and inspect a particular random walk process, where workers average their random
walk iterates through gossip averaging.

Let z(t) ∈ Rn be a vector containing (scalar) iterates of n workers in the following process:

z(0) = 0, (C.3)

z(t+1) = W
(√

γz(t) + ξ(t)
)

where ξ(t) ∼ N n(0, 1). (C.4)

We call the parameter 0 < γ ≤ 1 the ‘decay rate’. Note that the name random walk refers
to iterative addition of random noise to the workers iterates, and not to a ‘random walk’
between nodes of the graph.

For this random walk, we will track the covariance matrix C ∈ Rn×n across workers (and
its flattened version c ∈ Rn2). Its coordinates are

C(t)
ij = E[z(t)i z(t)j].

Lemma11 For static, symmetric and doubly-stochastic topologies (Assumptions I, J and K),
the Eigen decomposition of the covariance is

C(t) =

n∑
i=1

c
(t)
i viv⊤

i ,

with 0 ≤ c
(t)
i ≤

λ2
i

1−γλ2
i
. Here (λi, vi) are the eigenvalue/eigenvector pairs of W. As t → ∞,

c
(t)
i =

λ2
i

1−γλ2
i

with equality.

Proof. We can unroll the iterations:

z(t) =
t∑

k=1

Wkγ(k−1)/2ξ(t−k)

and use the temporal independence of ξ(t) to write

C(t) = E[z(t)z(t)⊤] =
t∑

k=1

γkW2k E[ξ(t−k)ξ(t−k)⊤] =
t∑

k=1

γkW2k.

Using commutativity of W and its Eigen decomposition (Assumptions J, K), we can decom-
pose it as

C(t) =
n∑

i=1

viv⊤
i

(
t∑

k=1

γk−1λ2k
i

)
︸ ︷︷ ︸

c
(t)
i

Because all terms of parenthesized expression are non-negative, and its limit equals λ2
i

1−γλ2
i
,

this proves the Lemma.

88

C.3. Random quadratics

Lemma 12 When the topology is regular (Assumption L) in addition to the assumptions of
Lemma 11, workers in the random walk process have equal variance:

Var[z(t)i] =
1

n
Tr[C(t)] =

1

n

n∑
i=1

c
(t)
i .

Proof. The variances of zi are the diagonal entries of the covariance matrix. By regularity, and
because workers are initialized equally, all workers should have the same variance. Var[z(t)i]

is therefore equal to the average diagonal entry of C(t)
i . The second equality is a standard

property of the trace.

Lemma 13 Under the assumptions of Lemma 12, the variance Var[z(t)i] increases over time:

Var[z(t)i] ≤ Var[z(t+1)
i] ≤ lim

t′→∞
Var[z(t

′)
i] ∀t.

Proof. If we write Var[z(t)i] as 1
n

∑n
i=1 c

(t)
i using Lemma 12, the statement of this Lemma

follows from the realization in Lemma 11 that c
(t)
i increases over time to the limit λ2

i

1−γλ2
i

for
all i.

Note that while the results above are for static gossip matrices, random walks and these
variance quantities can be analogously defined time-varying topologies. Those just lack a
simple exact form. The stronger the averaging of the gossip process, the lower the variance.
We capture this in the following quantity:

Definition N (effective number of neighbors)

nW(γ) =

1
1−γ

limt→∞
1
n

∑n
i=1 Var[z(t)i]

,

where z are the iterates from a random walk with gossip averaging, with decay parameter
γ. The numerator is the variance of the random walk process without any gossip averaging
(W = I).

C.3.5 Converging random walk

The covariance of the random walk process C and the error matrix of D-SGD iterates E share
clear similarities. The quantities are both iteratively updated by an affine transformation.
The main difference between them, however, is that C converges to a non-zero constant while
E converges linearly to zero (or it diverges.)

In the next section, we draw a clear connection between the two processes, but first, we
define a modified version of the random walk process that further highlights their similarity.

Definition O (scaled random walk) Let 0 < r < 1 be a scalar. We define a scaled version of the
random walk iterates, such that

y(t) = (1− r)t/2z(t),
B(t) = (1− r)tC(t), and

Var[y(t)
i] = (1− r)t Var[z(t)i]

89

Appendix C. Appendix for Beyond Spectral gap

Because the sequence z(t) converges to a non-zero stationary point, the scaled sequence
y(t) converges to zero with a linear rate r.

Lemma 14 Under the assumptions of Lemma 12, the variance Var[y(t)
i] is bounded as

Var[y(t)
i] ≤ (1− r)t

(1− γ)nW(γ)
,

with equality as t→∞.

Proof. From Lemma 13, we know that (1 − r)t Var[z(t)i] ≤ (1 − r)t limt′→∞ Var[z(t
′)

i], with
equality as t→∞. Because the variance Var[z(t)i] is equal across workers i (Lemma 12), the
Lemma follows from rearranging Definition N.

Lemma 15 The covariance vector b (the flattened version of B) of this scaled random walk
process follows the recursion b(t+1) = Tgossiput(b(t)), where

ut(b(t))ni+j =

{
γ(1− r) b(t)

ni+j + (1− r)t+1 i = j (same worker),
γ(1− r) b(t)

ni+j i ̸= j (different workers).

Proof. The entries ut(b(t))ni+j are inner products:

ut(b(t))ni+j = (1− r)t+1
〈√

γy(t)
i + ξ

(t)
i ,
√
γy(t)

j + ξ
(t)
j

〉
= γ(1− r)b(t)

ni+j + (1− r)t+1 E
〈
ξ
(t)
i , ξ

(t)
j

〉
.

The inner product between noise contributions ξ(t)i and ξ
(t)
j are 1 if i = j and 0 otherwise.

Lemma 16 The covariance b follows the recursion b(t+1) ≥ TgossipTr.w.b(t) (element-wise),
where

[Tr.w.b(t)]ni+j =

{
γ(1− r) b(t)

ni+j + (1− r)(1− γ)nW(γ)b(t)
ni+j i = j,

γ(1− r) b(t)
ni+j i ̸= j.

(C.5)

In the limit of t→∞, this is true with equality.

Proof. From Lemma 14, we have that b(t)
ni+i = Var[y(t)

i] ≤ (1−r)t

(1−γ)nW(γ) , with equality as t→∞.
The entries of Tr.w.b(t) are therefore all smaller than or equal to the entries of ut(b(t)) from
Lemma 15, which proves the Lemma.

90

C.4. (Strongly)-Convex case, missing proofs and additional results

C.3.6 The rate for D-SGD

Theorem VII (D-SGD on random quadratics) Under assumptions I, J, K, and L, if the pair of the
learning rate η and r satisfy

r = 1− (1− η)2 − (ζ − 1)η2

nW
(
(1−η)2

1−r

) , (C.6)

the error of D-SGD with learning rate η on the random quadratic objective with noise pa-
rameter ζ converges with rate r:

n∑
i=1

E∥x(t)
i ∥

2 ≤ (1− r)t
n∑

i=1

E∥x(0)
i ∥

2.

This rate becomes exact as t→∞.

Proof. If the condition (C.6) is satisfied, the expected error iterates E (Equation C.2) of the D-
SGD algorithm follow the transition matrix (C.5) of Lemma 16 with γ = (1−η)2

1−r . The choice of
γ ensures that γ(1−r) = (1−η)2, and the condition (C.6) that (ζ−1)η2 = (1−r)(1−γ)nW(γ).

From Lemma 16, we know that a sequence that has this transition matrix TgossipTr.w.b(t)

(C.5) converges at least as fast as the iterates of the corresponding scaled random walk process
B, with equality in the limit as t→∞.

Since B converges to zero with a rate r, this now implies the same rate for the error matrix
E. The sum

∑n
i=1 E∥x

(t)
i ∥2 in the statement of this theorem is the trace of the matrix E(t),

and therefore it converges to zero with the same rate. This completes the proof.

C.4 (Strongly)-Convex case, missing proofs and additional results

C.4.1 Preliminaries on Bregman divergences

Throughout this section, we will use Bregman divergences, which are defined for a differen-
tiable function h and two points x, y ∈ Rd as:

Dh(x, y) = h(x)− h(y)−∇h(y)⊤(x− y). (C.7)

We assume throughout this paper that the functions we consider are twice continuously
differentiable and strictly convex on dom h, and that ∇h(x) = miny h(y) − x⊤y is uniquely
defined (although milder assumptions could be used). Among the many properties of these
divergences, an important one is that if h is L smooth and µ strongly-convex, then

µ

2
∥x− y∥2 ≤ Dh(x, y) ≤

L

2
∥x− y∥2 (C.8)

Another important property is called duality, which states that:

Dh(x, y) = Dh∗(∇h(y),∇h(x)), (C.9)

where h∗ is the convex conjugate of h.

91

Appendix C. Appendix for Beyond Spectral gap

C.4.2 Main result

This section is devoted to proving Theorem VIII, from which Theorem III can be deduced
directly by taking ω = M0 and p = 1/2. We recall Assumption B, which is at the heart of
Theorem VIII.

Assumption B The stochastic gradients are such that: (i) ξ
(t)
i and ξ

(ℓ)
j are independent for

all t, ℓ and i ̸= j. (ii) E [f
ξ
(t)
i

] = f for all t, i (iii) E ∥∇f
ξ
(t)
i

(x⋆)∥2 ≤ σ2 for all t, i, where x⋆ is
a minimizer of f . (iv) f

ξ
(t)
i

is convex and ζ-smooth for all t, i. (v) f is µ-strongly-convex for
µ ≥ 0 and L-smooth.

Note that Assumption B (IV) is stated in this form for simplicity, but it can be relaxed
by asking directly that E

[
∥∇fξ,i(x(t))−∇fξ,i(x⋆)∥2

]
≤ 2ζDf (x

⋆, x(t)), which can also be
implied by assuming that each fξ is ζξ-smooth, with E

[
ζξDfξ(x

⋆, x(t))
]
≤ ζDf (x

⋆, x(t)) (see
Equation (C.17)). These weaker forms would be satisfied by the toy problem of Section 4.4.

Theorem VIII Denote x(t) the iterates obtained by D-SGD, LM = I−M, and p the probability
to perform a communication step (xt+1 = Wxt). Parameter β is such that I−W ≽ βLM. For
some ω > 0, denote:

Lt = ∥x(t) − x⋆∥2M + ω∥x(t)∥2LM . (C.10)
Then, if η is such that:

η ≤ M0β

L

p

1− p
, (C.11)

η ≤ 1

4 (M0ζ + L)
(C.12)

we have that:
Lt ≤ [1− (1− p)ηµ]tL0 +

ησ̃2

µ
, (C.13)

with σ̃2 = σ2
M + ωσ2

LM
, where E ∥∇f

ξ
(t)
i

(x⋆)∥2M ≤ σ2
M (and similarly for LM).

In the convex case (µ = 0), we have:

E

[
1

T

T−1∑
t=0

Df (Mx(t), x⋆)

]
≤ 1

1− p

L0
ηT

+ ησ̃2 (C.14)

Note that the factors 2 in Equation (C.12) are simplifications to make the result more
readable but could be improved.

Proof. We now proceed to the proof of the theorem. To show that the Lyapunov Lt decreases
over iterations, we will study how each quantity ∥x(t) − x⋆∥2M and ∥x(t)∥2LM

evolves through
time. In particular, we will first consider the case of computation updates (so, local gradient
updates), and then the case of gossip updates.
1 - Computation updates In this case, we assume that the update is of the form

x(t+1) = x(t) − η∇fξt(x(t)). (C.15)

This happens with probability 1 − p, and expectations are taken with respect to ξt. To
avoid notation clutter, we use notations ∇fξ and ∇fξ,i, which are such that ∇fξ,i(x(t)) =

(∇fξ(x(t)))i = ∇fξ(t)i

(x(t)
i).

92

C.4. (Strongly)-Convex case, missing proofs and additional results

Distance to optimum We bound the distance to optimum as follows, using that Mx⋆ = x⋆,
and E

[
∇fξ(x(t))

]
= ∇f(x(t)):

E
[
∥x(t+1) − x⋆∥2M

]
= ∥x(t) − x⋆∥2M − 2η E

[
(x(t) − x⋆)⊤M∇fξ(x(t))

]
+ η2∥∇fξ(x(t))∥2M

= ∥x(t) − x⋆∥2M − 2η(Mx(t) − x⋆)⊤∇f(x(t)) + η2 E
[
∥∇fξ(x(t))∥2M

]
.

Then, we expand the middle term in the following way:

−∇f(x(t))⊤(Mx(t) − x⋆) = −∇f(x(t))⊤(x(t) − x⋆)−∇f(x(t))⊤(Mx(t) − x(t))

= −Df (x(t), x⋆)−Df (x⋆, x(t)) +Df (Mx(t), x(t))− f(Mx(t)) + f(x(t))

= −Df (Mx(t), x⋆)−Df (x⋆, x(t)) +Df (Mx(t), x(t))

≤ −µ

2
∥x(t) − x⋆∥2M2 −Df (x⋆, x(t)) +

L

2
∥Mx(t) − x(t)∥2, (C.16)

where in the last time we used the µ-strong convexity and L-smoothness of f . For the noise
term, we use that fact that (∇fξ(x(t)))i and (∇fξ(x(t)))j are independent for i ̸= j, so that

1

2
E
[
∥∇fξ(x(t))∥2M

]
= E

[
∥∇fξ(x(t))−∇fξ(x⋆)∥2M

]
+ E

[
∥∇fξ(x⋆)∥2M

]
=

n∑
i=1

Mii E
[
∥∇fξ,i(x(t))−∇fξ,i(x⋆)∥2

]
+ E

[
∥∇fξ(x⋆)∥2M

]
+

n∑
i=1

∑
j ̸=i

Mij E
[
[∇fξ,i(x(t))−∇fξ,i(x⋆)]⊤[∇fξ,j(x(t))−∇fξ,j(x⋆)]

]
=

n∑
i=1

Mii E
[
∥∇fξ,i(x(t))−∇fξ,i(x⋆)∥2

]
+ ∥∇f(x(t))∥2M + E

[
∥∇fξ(x⋆)∥2M

]
.

We now use for all i ∈ {1, . . . , n} the ζ-smoothness of fξ,i, which implies the ζ−1-strong
convexity of f∗

ξ,i [Kakade et al., 2009], so that:

E
[
∥∇fξ,i(x(t))−∇fξ,i(x⋆)∥2

]
= 2E

[
D 1

2
∥·∥2(∇fξ,i(x

(t)),∇fξ,i(x⋆))
]

≤ 2

ζ−1
E
[
Df∗

ξ,i
(∇fξ,i(x(t)),∇fξ,i(x⋆))

]
≤ 2ζ E

[
Dfξ,i(x⋆, x(t))

]
(C.17)

= 2ζDf (x⋆, x(t))

For the expected gradient term, we can use that:

∥∇f(x(t))∥2M ≤ ∥∇f(x(t))−∇f(x⋆)∥2 ≤ 2LDf (x⋆, x(t)),

so that in the end,

E
[
∥∇fξ(x(t))∥2M

]
≤ 4(ζM0 + L)Df (x⋆, x(t)) + 2σ2

M, (C.18)

93

Appendix C. Appendix for Beyond Spectral gap

where M0 = maxi Mii, and E
[
∥∇fξ(x⋆)∥2M

]
≤ σ2

M, the locally averaged variance at optimum.
Plugging this into the main equation, we obtain that:

E
[
∥x(t+1) − x⋆∥2M

]
≤ ∥x(t) − x⋆∥2M − ηµ∥x(t) − x⋆∥2M2 + 2η2σ2

M

− 2η (1− 2η [ζM0 + L])Df (x⋆, x(t)) +
L

2
∥Mx(t) − x(t)∥2

The last step is to write that M2 = M−MLM, so that:

E
[
∥x(t+1) − x⋆∥2M

]
≤ (1− ηµ)∥x(t) − x⋆∥2M + ηµ∥x(t) − x⋆∥2MLM + 2η2σ2

M

− 2η (1− 2η [ζM0 + L])Df (x⋆, x(t)) + ηL∥Mx(t) − x(t)∥2

At this point, we can use that MLM ≤ I/4,

µ∥x(t) − x⋆∥2MLM ≤
µ

4
∥x(t) − x⋆∥2 ≤ 1

2
Df (x⋆, x(t)), (C.19)

so that

E
[
∥x(t+1) − x⋆∥2M

]
≤ (1− ηµ)∥x(t) − x⋆∥2M + ηL∥Mx(t) − x(t)∥2

− 2η (3/4− 2η [ζM0 + L])Df (x⋆, x(t)) + 2η2σ2
M.

(C.20)

Distance to consensus We now bound the distance to consensus in the case of a communica-
tion update. More specifically, we write that:

E
[
∥x(t+1)∥2LM

]
= ∥x(t)∥2LM − 2η∇f(x(t))⊤LMx(t) + η2 E

[
∥∇fξt(x(t))∥2LM

]
Then, we develop the middle term as:

−∇f(x(t))⊤LMx(t) = −∇f(x(t))⊤(I−M)x(t)

= ∇f(x(t))⊤(Mx(t) − x(t))

= −Df (Mx(t), x(t)) + f(Mx(t))− f(x(t))

≤ −µ

2
∥Mx(t) − x(t)∥2 + f(Mx(t))− f(x(t))

By convexity of f (since the expected function is the same for all workers), we have that

f(Mx(t)) ≤ f(x(t)). (C.21)

We finally decompose LM
2 = LM(I−M), so that:

−2η∇f(x(t))⊤LMx(t) ≤ −ηµ∥x(t) − x⋆∥2LM + ηµ∥x(t)∥2MLM

For the noise term, we obtain exactly the same derivations as in the previous setting, but
this time with matrix LM = I−M instead. Using the same bounding, and Mmin = mini(M)ii,
we thus obtain:

E
[
∥∇fξ(x(t))∥2LM

]
≤ 4(ζ(1−Mmin) + L)Df (x⋆, x(t)) + 2σ2

LM . (C.22)

94

C.4. (Strongly)-Convex case, missing proofs and additional results

In particular, we have that:

E
[
∥x(t+1) − x⋆∥2LM

]
≤ (1− ηµ)∥x(t) − x⋆∥2LM + ηµ∥x(t)∥2MLM + 2η2σ2

LM

+ 4η2(ζ(1−Mmin) + L)Df (x⋆, x(t)).

Similarly to before, we use that

µ∥x(t)∥2MLM = µ∥x(t) − x⋆∥2MLM ≤
µ

4
∥x(t) − x⋆∥2 ≤ 1

2
Df (x⋆, x(t)), (C.23)

so that for computation updates, the distance to consensus evolves as:

E
[
∥x(t+1) − x⋆∥2LM

]
≤ (1−ηµ)∥x(t)−x⋆∥2LM+2η

[
1

4
+ 2η(ζ(1−Mmin) + L)

]
Df (x⋆, x(t))+2η2σ2

LM

(C.24)
Combining Equation (C.24) with Equation (C.20) leads to:

L(t+1) ≤ (1− ηµ)Lt + ηL∥Mx(t) − x(t)∥2 + 2η2σ̃2

− η (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x⋆, x(t)),
(C.25)

with σ̃2 = σ2
M + ωσ2

LM
.

2 - Communication updates We write:

∥x(t+1) − x⋆∥2LM = ∥x(t) − x⋆∥2WLMW

≤ ∥x(t) − x⋆∥2WLM

= ∥x(t) − x⋆∥2LM − ∥x
(t) − x⋆∥2LWLM

For distance to optimum part in communication update, we obtain:

∥x(t+1) − x⋆∥2M = ∥x(t) − x⋆∥2WMW ≤ ∥x(t) − x⋆∥2M (C.26)

We now introduce β, the strong convexity of LW = I−W relative to LM:

LW ≥ βLM. (C.27)

Therefore, we obtain that for communication updates,

L(t+1) ≤ Lt − ωβ∥x(t) − x⋆∥2LM
2 . (C.28)

Putting terms back together We now put everything together, assuming that communication
steps happen with probability p (and so computations steps with probability 1 − p). Thus,
we mix Equations (C.25) and (C.28) to obtain:

E
[
L(t+1)

]
≤ (1− (1− p)ηµ)Lt + 2(1− p)η2σ̃2

+ [(1− p)ηL− ωpβ] ∥x(t)∥2LM
2

− η(1− p) (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x⋆, x(t)).

95

Appendix C. Appendix for Beyond Spectral gap

In particular, we obtain the linear decrease of the Lyapunov Lt under the following con-
ditions:

η ≤ ωβ

L

p

1− p

η ≤ 1

4 (ζ [M0 + ω(1−Mmin)] + (1 + ω)L)

Under these conditions, we have that

E
[
L(t+1)

]
≤ (1− (1− p)ηµ)Lt + (1− p)η2σ̃2, (C.29)

and we can simply chain this relation to finish the proof of the theorem.

Convex case In the convex case (µ = 0), the proof is very similar, except that we keep the
Df (Mx(t), x⋆) term from Equation (C.16). In particular, under the same step-size conditions
as the strongly convex case, this leads to:

E
[
L(t+1)

]
≤ Lt + 2(1− p)η2σ̃2 − η(1− p)Df (Mx(t), x⋆). (C.30)

This leads to:

E

[
1

T

T−1∑
t=0

Df (Mx(t), x⋆)

]
≤ 1

1− p

L0
ηT

+ 2ησ̃2, (C.31)

which finishes the proof of the theorem.

Evaluating β There are two important graph quantities: M0 and β. If we choose M as in
Equation (4.9), then its eigenvalues are equal to (1−γ)λ2

i

1−γλ2
i

, where λi is the i-th eigenvalue of
W. Therefore,

λLM
i =

1− λ2
i

1− γλ2
i

. (C.32)

In particular, we have that for all i,

1− λi ≥ β
1− λ2

i

1− γλ2
i

, (C.33)

so that we can take
β =

1− γλ2
2

1 + λ2
≥ 1− γλ2

2
, (C.34)

where we use λ2 ≤ 1 to simplify the results. In particular, β does not depend on the spectral
gap of W (which is equal to 1 − λ2) as long as γ is not too large. Yet, an interesting
phenomenon happens: a larger graph also implies more effective neighbors for a given γ.

Choice of ω A reasonable value for ω is to simply take it as ω = M0. Indeed,

• The second condition almost does not benefit from ω ≤M0 (factor 2 at most).

• If the first condition dominates, such that taking ω ≥M0 would loosen it, then instead
one can reduce γ. This will lead to a higher value for both M0 (and so for ω) and β.
Note that, again, increasing M0 does not make the second condition stronger than what
it would have been with just increasing ω by more than a factor 2.

96

C.4. (Strongly)-Convex case, missing proofs and additional results

With this choice, we thus obtain that:

η ≤ min
(
M0β

L

p

1− p
,

1

4 (M0ζ(2−Mmin) + (1 +M0)L)

)
, (C.35)

and Theorem VIII is obtained by taking M0 ≤ 1 and Mmin ≥ 0.

C.4.3 Obtaining Corollary IV

In this section, we discuss the derivations leading to Corollary IV. To do so, we start by
making the simplifying assumption that

ζ

n
≥ L. (C.36)

Using this, and writing nW(γ) = 1/M0, the condition from Equation (C.12) simplifies to:

η ≤ LnW(γ)

16ζ
. (C.37)

We always want this condition to be tight, and not Equation (C.11) the communication one,
which is only there to allow us to use larger values of nW(γ). In particular, we want that:

LnW(γ)

16ζ
≤ β

nW(γ)L
. (C.38)

When we increase γ, nW(γ) increases and β decreases. We thus want to take the highest γ
such that (C.38) is verified (potentially with an equality if nW(γ) < n).

C.4.4 Deterministic algorithm

So far, we have analyzed the randomized variant of D-SGD, in which at each step, there is a
coin flip to decide whether to perform a communication or computation step. We now show
how to extend the analysis to the case in which:

x(t+1) = Wx(t) − η∇fξ(Wx(t)) (C.39)

Note that D-SGD is often presented as xt+1 = W(xt − η∇fξ(xt)), but it turns out that the
analysis is easier when considering it in the form of Equation (C.39). Yet, it comes down to
the same algorithm (alternating communication and computation steps), and the difference
simply is whether the error is evaluated after a communication step or a local gradient step.
The results in the previous section did not depend on the value of xt, so we can perform the
same derivations with Wxt instead of xt, so that Equation (C.25) now writes:

L(x(t+1)) = (1− ηµ)L(Wx(t)) + ηL∥MWx(t) −Wx(t)∥2 + 2η2σ̃2

− η (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x⋆,Wx(t)),
(C.40)

where L(x) = ∥x−x⋆∥2M +ω∥x∥2LM
, so that L(t) = L(x(t)). In particular, choosing η such that

the second line is always negative (as before) leads to:

L(x(t+1)) = (1− ηµ)L(Wx(t)) + ηL∥x(t)∥2WLM
2W + 2η2σ̃2. (C.41)

97

Appendix C. Appendix for Beyond Spectral gap

Similarly, using Equation (C.28), we obtain that

L(Wx(t)) ≤ L(x(t))− ωβ∥x(t) − x⋆∥2LM
2 . (C.42)

Combining Equations (C.41) and (C.42) and using that WLM
2W ≼ LM

2, we obtain:

L(t+1) ≤ (1− ηµ)L(t) + (ηL− (1− ηµ)ωβ)∥x(t)∥2LM
2 + 2η2σ̃2. (C.43)

Thus, we obtain similar guarantees (up to a factor 1−ηµ which is small) for the deterministic
and randomized algorithms. Note that in this case, constant β can be replaced by a slightly
better constant β̃ which would be such that:

LMLW ≥ β̃ WLM
2W. (C.44)

98

C.5. Cifar-10 experimental setup

C.5 Cifar-10 experimental setup

Table C.2 describes the details of our experiments with D-SGD with VGG-11 on Cifar-10.

Table C.2: Default experimental settings for Cifar-10/VGG-11

Dataset Cifar-10 [Krizhevsky et al.]
Data augmentation Random horizontal flip and random 32× 32 cropping
Data normalization Subtract mean (0.4914, 0.4822, 0.4465) and divide standard deviation

(0.2023, 0.1994, 0.2010)
Architecture VGG-11 [Simonyan and Zisserman, 2015]
Training objective Cross entropy
Evaluation objective Top-1 accuracy

Number of workers 32 (unless otherwise specified)
Topology Ring (unless otherwise specified)
Gossip weights Metropolis-Hastings (1/3 for ring, wij = 1/(max(ni, nj) + 1), worker i has ni direct

neighbors)
Data distribution Identical: workers can sample from the whole dataset
Sampling With replacement (i.i.d.), no shuffled passes

Batch size 16 patches per worker
Momentum 0.9 (heavy ball / PyTorch default)
Learning rate Exponential grid or tuned for lowest training loss after 25 epochs
LR decay Step-wise, ×0.1 at epoch 75% and 90% of training
LR warm-up None
Epochs 100 (full training) or only 25 (initial phase), based on total number of gradient ac-

cesses across workers
Weight decay 10−4

Normalization scheme no normalization layers
Exponential moving average x(t)ema = 0.95x(t−1)

ema + 0.05x(t). This influences evaluation, not training

Repetitions per training Just 1 per learning rate, but experiments are very consistent across similar learning
rates

Reported metrics Loss after 2.5k steps: to reduce noise, we take two measures: (i) we use exponential
moving average of the model parameters, and (ii) we fit a parametric model log(l) =
at + b to the 25 loss evaluations (t, l) closest to t = 2500. We then evaluate this
function at t = 2500.

99

Appendix C. Appendix for Beyond Spectral gap

C.6 Additional experiments

In the main paper, we have focussed on the training loss in the initial phase of training of
Cifar-10. We do find that our findings there do correlate with test accuracy after a complete
training with 100 epochs. Figure C.4 shows the test accuracy as training progresses, for plots
ordered by improving training loss after 2.5k steps.

Alone

0k 5k 10k 15k 20k
0.6

0.7

0.8

0.9

1.0
↑ Test accuracy

SGD Steps →

Star

0k 5k 10k 15k 20k
SGD Steps →

Binary tree

0k 5k 10k 15k 20k
SGD Steps →

Ring

0k 5k 10k 15k 20k
0.6

0.7

0.8

0.9

1.0
↑ Test accuracy

SGD Steps →

Social network

0k 5k 10k 15k 20k
SGD Steps →

Time-varying exponential

0k 5k 10k 15k 20k
SGD Steps →

Torus (4x8)

0k 5k 10k 15k 20k
0.6

0.7

0.8

0.9

1.0
↑ Test accuracy

SGD Steps →

Two cliques

0k 5k 10k 15k 20k
SGD Steps →

Hypercube

0k 5k 10k 15k 20k
SGD Steps →

Fully connected

0k 5k 10k 15k 20k
0.6

0.7

0.8

0.9

1.0
↑ Test acc.

SGD Steps →

Figure C.4: Test accuracy over the course of training a VGG-11 network on Cifar-10. See
appendix C.5 for all details on the experimental setup. The plots are ordered by improving
training loss after 2.5k SGD steps. This ordering correlates well with the speed of improve-
ments in test accuracy.

100

C.6. Additional experiments

2.3

0.2

1.55

1.15

0.5

0.001 0.01 0.1

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

Learning rate→

2 workers

4 workers

8 workers

16 workers

32 workers

Alone

Figure C.5: Training loss reached after 2.5k SGD steps with fully-connected topologies of
varying size. Averaging with more workers speeds up convergence for fixed learning rates, but
also allows larger learning rates to be used. This plot serves as a reference for fig. 4.4, which
shows similar plots for a variety of graph topologies.

C.6.1 Results on Fashion MNIST

We replicated our main experiments (Cifar-10/VGG) on another dataset and another network
architecture. We chose for the Fashion MNIST dataset [Xiao et al., 2017] and a simple multi-
layer perceptron architecture with one hidden layer of 5000 neurons and ReLU activations.
We list the details of our experimental setup in table C.3. We varied two key parameters
compared to our Cifar-10 results: we used 64 workers instead of 32, and used SGD without
momentum and without weight decay. Because this task is easier than Cifar-10, the initial
phase where both training and test loss converge at similar rates is shorter. We therefore
consider the first 500 steps as the ‘initial phase’, as opposed to 2500.

Figures C.6 and C.7 correspond to figures 4.4 and 4.6 from the main paper. We find that
the conclusions from the paper also hold in this different experimental setting.

C.6.2 Heterogeneous data

While our experimental and theoretical data only describe the setting in which workers op-
timize objectives with a shared optimum, we believe that our insights are meaningful for
heterogeneous settings as well. With heterogeneous data, we observe two regimes: in the
beginning of training, when the worker’s distant optima are in a similar direction, everything
behaves identical to the homogeneous setting. In this regime, our insights seem to apply di-
rectly. Heterogeneity only plays a role later during the training, when it leads to conflicting
gradient directions. This behavior is illustrated on a toy problem in fig. C.8. We run D-SGD
on our isotropic quadratic toy problem (d = 100, n = 32), but where the optima are removed
from zero as a normal distribution with standard deviations 0, 10−7, and 10−3 respectively.
The (constant) learning rates are tuned for each topology in the homogeneous setting.

101

Appendix C. Appendix for Beyond Spectral gap

Table C.3: Experimental settings for Fashion MNIST. Differences with Cifar-10 in red.

Dataset Fashion MNIST [Xiao et al., 2017]
Data augmentation None
Data normalization Subtract mean 0.2860 and divide standard deviation 0.3530
Architecture MLP (28× 28 → ReLU → 5000 → ReLU → 10)
Training objective Cross entropy
Evaluation objective Top-1 accuracy

Number of workers 64 (unless otherwise specified)
Topology Ring (unless otherwise specified)
Gossip weights Metropolis-Hastings (1/3 for ring, wij = 1/(max(ni, nj) + 1), worker i has ni direct

neighbors)
Data distribution Identical: workers can sample from the whole dataset
Sampling With replacement (i.i.d.), no shuffled passes

Batch size 16 patches per worker
Momentum 0.0
Learning rate Exponential grid or tuned for lowest training loss after 500 steps
LR decay None, in the initial phase of training
LR warm-up None
Epochs 500 steps
Weight decay 0
Normalization scheme no normalization layers
Exponential moving average x(t)ema = 0.95x(t−1)

ema + 0.05x(t). This influences evaluation, not training

Repetitions per training Just 1 per learning rate, but experiments are very consistent across similar learning
rates

Reported metrics Loss after 500 steps: to reduce noise, we take two measures: (i) we use exponential
moving average of the model parameters, and (ii) we fit a parametric model log(l) =
at + b to the 25 loss evaluations (t, l) closest to t = 500. We then evaluate this
function at t = 500.

C.6.3 The role of γ in the experiments

In fig. 4.5, we optimize γ independently for each topology, minimizing the Mean Squared Error
between the normalized covariance matrix measured from checkpoints of Cifar-10 training
and the covariance in a random walk with the decay parameter γ. The bottom two rows of
fig. C.10 below show how fig. 4.5 would change, if you used a γ that is either much too low,
or too high.

In fig. 4.6, we choose a value of γ (shared between all topologies) that yields a good
correspondence between the performance of fully connected topologies (with 2, 4, 8, 16 and
32 workers) and the other topologies. We opt for sharing a single γ here, to test whether this
metric could have predictive power for the quality of graphs. Figure C.9 below shows how
the figure changes if you use a value of γ that is either much too low, or much too high.

102

C.6. Additional experiments

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.01 0.1 1

↑ MLP training loss on FashionMNIST training loss after 500 steps

Learning rate →

Binary tree

Fully connected

Hypercube

Ring

Solo

Star

Time-varying exponential
Torus (8x8)

Two cliques

Figure C.6: Training loss reached after 500 SGD steps with a variety of 64-worker graph
topologies. In all cases, averaging yields a small increase in speed for small learning rates, but
a large gain over training alone comes from being able to increase the learning rate. While
the star has a better spectral gap (0.0156) than the ring (0.0032), it performs worse, and
does not allow large learning rates.

↑MLP training loss on FashionMNIST after 500 steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spectral gap→

×
×
×
×
××

0.20

0.25

0.30

0.35

0.40

0.45

0.50

12 4 8 16 32 64

Effective num. neighbors (γ = 0.902, tuned)→

×
×
×

×
× ×

Figure C.7: Fashion MNIST training loss after 500 steps for all studied topologies with their
optimal learning rates. Colors match fig. C.6, and × indicates fully-connected graphs with
varying number of workers. After fitting a decay parameter γ = 0.902 that captures problem
specifics, the effective number of neighbors (left) as measured by variance reduction in a
random walk (like in section 4.4) explains the relative performance of these graphs much
better than the spectral gap of these topologies (right).

103

Appendix C. Appendix for Beyond Spectral gap

D-SGD on random quadratics, with varying target heterogeneity

Homogeneous targets (i.i.d.)

0 50 100 150 200 250 300 350 400
1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

↑ Avg. square distance to optimum

Steps →

Slightly heterogeneous targets

0 50 100 150 200 250 300 350 400

Steps →

Very heterogeneous targets

0 50 100 150 200 250 300 350 400

Steps →

Fully connected

Ring

Solo

Time-var. exp.

Figure C.8: Convergence curves on our isotropic random quadratics problem (section 4.4,
with d = 100, n = 32), but where the optima are removed from zero as a zero-mean normal
distribution with standard deviations 0, 10−7, and 10−3 respectively. Constant learning rates
are tuned independently for each topology in the homogeneous setting. Heterogeneity does
not affect the initial phase of training, and our insights about maximum learning rates and
the quality of communication topologies hold in this regime.

Too low

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32

Effective num. neighbors (γ = 0.800)→

×

×
×

×
×

About right

1 2 4 8 16 32

Effective num. neighbors (γ = 0.950)→

×

×
×

×
×

Too high

1 2 4 8 16 32

Effective num. neighbors (γ = 0.995)→

×

×
×

×
×

Figure C.9: Extension of fig. 4.6, demonstrating how the fit changes if you use a value of γ
that is either too low (left) or too high (right).

104

C.6. Additional experiments

Go
ss

ip
m
at
rix

M
ea

su
re
d
co

v.
on

Ci
fa
r-1

0
Co

va
ria

nc
e
in

ra
nd

om
w
al
k

(fi
tte

d)

Co
va

ria
nc

e
in

ra
nd

om
w
al
k

(to
o
lo
w
)

Co
va

ria
nc

e
in

ra
nd

om
w
al
k

(to
o
hi
gh

)

Two cliques

nW(γ := 0.948)

= 17.8

nW(γ := 0.800)
= 16.5

nW(γ := 0.995)

= 25.1

Torus (4x8)

nW(γ := 0.993)

= 29.4

nW(γ := 0.800)
= 11.4

nW(γ := 0.995)

= 30.2

Star

nW(γ := 0.986)

= 5.1

nW(γ := 0.800)
= 1.4

nW(γ := 0.995)

= 10.2

Social network

nW(γ := 0.992)

= 27.3

nW(γ := 0.800)
= 7.9

nW(γ := 0.995)

= 28.9

Ring

nW(γ := 0.983)

= 13.9

nW(γ := 0.800)
= 5.1

nW(γ := 0.995)

= 21.5

Hypercube

nW(γ := 0.997)

= 31.3

nW(γ := 0.800)
= 14.6

nW(γ := 0.995)

= 31.0

Binary tree

nW(γ := 0.984)

= 12.3

nW(γ := 0.800)
= 3.8

nW(γ := 0.995)

= 20.1

Figure C.10: Extension of fig. 4.5. Measured covariance in Cifar-10 (second row) between
workers using various graphs (top row). After 10 epochs, we store a checkpoint of the model
and train repeatedly for 100 SGD steps, yielding 100 models for 32 workers. We show nor-
malized covariance matrices between the workers. These are very well approximated by the
covariance in the random walk process of section 4.4 (third row). We print the fitted decay
parameters and corresponding ‘effective number of neighbors’. The bottom two rows show
how fig. 4.5 would change, if you used a γ that is either much too low, or too high.

105

Appendix C. Appendix for Beyond Spectral gap

106

Appendix D

Appendix for RelaySGD

D.1 Convergence Analysis of RelaySGD

Please refer to [Vogels et al., 2021] for the convergence analysis of RelaySGD.

D.2 Detailed experimental setup

D.2.1 Cifar-10

See table D.1.

Table D.1: Default experimental settings for Cifar-10/VGG-11

Dataset Cifar-10 [Krizhevsky et al.]
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture VGG-11 [Krizhevsky and Hinton, 2009]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or

double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate Tuned c.f. appendix D.3.1
LR decay /10 at epoch 150 and 180
LR warm-up Step-wise linearly within 5 epochs, starting from 0
Epochs 200
Weight decay 10−4

Normalization scheme no normalization layer

Repetitions 3, with varying seeds
Reported metric Worst result of any worker of the worker’s mean test accuracy over the last 5 epochs

D.2.2 ImageNet

See table D.2.

107

Appendix D. Appendix for RelaySGD

5 10 15 20 25 30
Number of workers

0

50

100

150

200

250

300

Sm
al

le
st

1 ρ
=

m p
th

at
sa

tis
fie

s
th

e
L

em
m

a tree
chain
star

Figure D.1: Optimal ratios for ρ = p/m for Lemma 1 computed empirically for three common
types of graph topologies.

D.2.3 BERT finetuning

See table D.3.

D.2.4 Random quadratics

We generate quadratics 1
n

∑n
i=1 fi(x) of x ∈ Rd where

fi(x) = ∥Aix + bi∥22.

Here the local Hessian Ai ∈ Rd×d control the shape of worker i’s local objective functions
and the offset bi ∈ Rd allows for shifting the worker’s optimum. The generation procedure is
as follows:

1. Sample Ai ∈ Rd×d from an i.i.d. element-wise standard normal distribution, indepen-
dently for each worker.

2. Control the smoothness L and strong-convexity constant µ. Decompose Ai = UiSiV⊤
i

using Singular Value Decomposition, and replace Ai with Ai ← UiS̃iV⊤
i , where S̃i ∈

Rd×d is a diagonal matrix with diagonal entries [µ, d−2
d−1µ+ 1

d−1L, . . . , L].

3. Control the heterogeneity ζ2 by shifting worker’s optima into random directions.

(a) Sample random directions di ∈ Rd from an i.i.d. element-wise standard normal
distributions, independently for each worker.

(b) Instantiate a scalar s← 1 and optimize it using binary search:
(c) Move local optima by sdi by setting bi ← Aisdi.
(d) Move all optima bi ← bi −Aix⋆ such that the global optimum x⋆ remains at zero.

108

D.3. Hyperparameters and tuning details

Table D.2: Default experimental settings for ImageNet

Dataset ImageNet [Deng et al., 2009]
Data augmentation random resized crop (224× 224), random horizontal flip
Architecture ResNet-20-EvoNorm [Liu et al., 2020, Lin et al., 2021]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology SGP: time-varying exponential, RelaySGD: double binary trees, baselines: best of ring or

double binary trees
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021]

Batch size 32 patches per worker
Momentum 0.9 (Nesterov)
Learning rate based on centralized training (scaled to 0.1× 32∗16

256
)

LR decay /10 at epoch 30, 60, 80
LR warm-up Step-wise linearly within 5 epochs, starting from 0.1
Epochs 90
Weight decay 10−4

Normalization layer EvoNorm [Liu et al., 2020]

Repetitions Just one
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

(e) Evaluate ζ2 = 1
n

∑n
i=1∥∇fi(x⋆)∥22 and adjust the scale factor s until ζ2 is as desired.

Repeat from step (c).

4. Control the initial distance to the optimum r0. Sample a random vector for the optimum
x⋆ from an i.i.d. element-wise normal distribution and scale it to have norm r0. Shift
all worker’s optima in this direction by updating bi ← bi + Aix⋆.

D.3 Hyperparameters and tuning details

D.3.1 Cifar-10

For our image classification experiments on Cifar-10, we have independently tuned learning
rates for each algorithm, at each data heterogeneity level α, and separately for SGD with
and without momentum. We followed the following procedure:

1. We found an appropriate learning rate for centralized (all-reduce) training (by using
the procedure below)

2. Start the search from this learning rate. For RelaySGD, we apply a correction computed
as in appendix D.4.1.

3. Grid-search the learning rate by multiplying and dividing by powers of two. Try larger
and smaller learning rates, until the best result found so far is sandwiched between two
learning rates that gave worse results.

4. Repeat the experiment with 3 random seeds.

5. If any of those replicas diverged, reduce the learning rate by a factor two until it does.

For the experiments in table 5.1, we used the learning rates listed in table D.4.

109

Appendix D. Appendix for RelaySGD

Table D.3: Default experimental settings for BERT fine-tuning

Dataset AG News [Zhang et al., 2015]
Data augmentation none
Architecture DistilBERT [Sanh et al., 2019]
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 16
Topology restricted to a ring (chain for RelaySGD)
Gossip weights Metropolis-Hastings (1/3 for ring)
Data distribution Heterogeneous, not shuffled, according to Dirichlet sampling procedure from Lin et al. [2021]

Batch size 32 patches per worker
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

Learning rate Tuned c.f. appendix D.3.3
LR decay constant learning rate
LR warm-up no warm-up
Epochs 5
Weight decay 0
Normalization layer LayerNorm [Ba et al., 2016]

Repetitions 3, with varying seeds
Reported metric Mean of all worker’s test accuracies over the last 5 epochs

Table D.4: Learning rates used for Cifar-10/ VGG-11. Numbers between parentheses indicate
the number of converged replications with this learning rate.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce fully connected 0.100 (3) 0.100 (3) 0.100 (3)
+momentum 0.100 (3) 0.100 (3) 0.100 (3)

RelaySGD binary trees 1.200 (3) 0.600 (3) 0.300 (3)
+local momentum 0.600 (3) 0.300 (3) 0.150 (3)

D-SGD ring 0.400 (3) 0.100 (3) 0.200 (3)
+quasi-global mom. 0.100 (3) 0.025 (3) 0.050 (3)

D2 [Tang et al., 2018b] ring 0.200 (3) 0.200 (3) 0.100 (3)
+local momentum 0.050 (3) 0.050 (3) 0.013 (3)

Stochastic gradient push time-varying exponential 0.400 (3) 0.200 (3) 0.200 (3)
+local momentum 0.100 (3) 0.100 (3) 0.025 (3)

D.3.2 ImageNet

Due to the high resource requirements, we did not tune the learning rate for our ImageNet
experiments. We identified a suitable learning rate based on prior work, and used this for
all experiments. For RelaySGD, we used the analytically computed learning rate correction
from appendix D.4.1.

D.3.3 BERT finetuning

For DistilBERT fine-tuning experiments on AG News, we have independently tuned learning
rate for each algorithm. We search the learning rate in the grid of {1e− 5, 3e− 5, 5e− 5, 7e−
5, 9e− 5}, and we extend the grid to ensure that the best hyperparameter lies in the middle
of our search grids, otherwise we extend our search grid.

For the experiments in table 5.4, we used the learning rates listed in table D.5.

110

D.4. Algorithmic details

Table D.5: Tuned learning rates used for AG News / DistilBERT (table 5.4)

Algorithm Topology Learning rate

Centralized Adam fully-connected 3e-5
Relay-Adam chain 9e-4
D-SGD Adam ring 1e-6
Quasi-global Adam [Lin et al., 2021] ring 1e-6

D.3.4 Random quadratics

For Figures 5.2 and 5.3, we tuned the learning rate for each compared method to reach
a desired quality level as quickly as possible, using binary search. We made a distinction
between methods that are expected to converge linearly, and methods that are expected to
reach a plateau. For experiments with stochastic noise, we tuned a learning rate without
noise first, and then lowered the learning rate if needed to reach a desirable plateau. Please
see the supplied code for implementation details.

D.4 Algorithmic details

D.4.1 Learning-rate correction for RelaySGD

In D-SGD as well as all other algorithms we compared to, a gradient-based update u(t)
i from

worker i at time t will eventually, as t → ∞ distribute uniformly with weights 1
n over all

workers. In RelaySGD, the update also distributes uniformly (typically much quicker), but
it will converge to a weight α ≤ 1

n . The constant α is fixed throughout training and depends
only on the network topology used. To correct for this loss in energy, you can scale the
learning rate by a factor 1

αn .
Experimentally, we pre-compute α for each architecture by initialing a scalar model for

each worker to zero, updating the models to 1, and running RelaySGD until convergence with
no further model updates. The worker will converge to the value α. The correction factors
that result from this procedure are illustrated in fig. D.2.

In our deep learning experiments, we find that for each learning rate were centralized
SGD converges, RelaySGD with the corrected learning rate converges too. Note that this
learning rate correction is only useful if you already have a tuned learning rate from centralized
experiments, or experiments with algorithms such as D-SGD. If you start from scratch, tuning
the learning rate for RelaySGD is no different form tuning the learning rate for any of the
other algorithms.

D.4.2 RelaySGD with momentum

RelaySGD follows Algorithm 5, but replaces the local update in line 3 with a local momentum.
For Nesterov momentum with momentum-parameter α, this is:

m(t)
i = αm(t−1)

i +∇fi(x(t)
i) (initialize m0

i = 0)

x(t+1/2)
i = x(t)

i − γ
(
∇fi(x(t)

i) + αm(t)
i

)
.

111

Appendix D. Appendix for RelaySGD

0 10 20 30 40 50 60 70 80
n

0

5

10

15

20

25

30

35

40

C
or

re
ct

io
n

fa
ct

or

RelaySum/Model learning rate correction for common topologies

Binary trees
Chain topology
approximation
approximation

Figure D.2: This network-topology-dependent correction factor is computed as follows: Each
worker initializes a scalar model to 0 and sends a single fixed value 1 as gradient update
through the RelaySGD algorithm. For D-SGD and all-reduce, workers would converge to 1,
but for RelaySGD, we lose some of this energy. If the workers converge to a value α, we will
scale the learning rate with 1/α for RelaySGD compared to all-reduce.

D.4.3 RelaySGD with Adam

Modifying RelaySGD (Algorithm 5) to use Adam is analogous to RelaySGD with momentum
(appendix D.4.2). All Adam state is updated locally. We use the standard Adam implemen-
tation of PyTorch 1.18.

D.4.4 D2 with momentum

We made slight modifications to the D2 algorithm from Tang et al. [2018b] to allow time-
varying learning rates and local momentum. The version we use is listed as Algorithm 12.
Note that D2 requires the smallest eigenvalue of the gossip matrix W to be ≥ −1/3. This
property is satisfied for Metropolis-Hasting matrices used on rings and double binary trees,
but it was not in our Social Network Graph experiment (fig. 5.3). For this reason, we used
the gossip matrix (W+ I)/2, from the otherwise-equivalent Exact Diffusion algorithm [Yuan
et al., 2019] on the social network graph.

D.4.5 Gradient Tracking

Algorithm 13 lists our implementation of Gradient Tracking from Lorenzo and Scutari [2016].

D.4.6 Stochastic Gradient Push with the time-varying exponential topology

Stochastic Gradient Push with the time-varying exponential topology from [Assran et al.,
2019] demonstrates that decentralized learning algorithms can reduce communication in a
data center setting where each node could talk to each other node. Algorithm 14 lists our
implementation of this algorithm.

112

D.5. Additional experiments on RelaySGD

Algorithm 12 D2 [Tang et al., 2018b] with momentum

Input: ∀ i, x(0)
i = x(0), learning rate γ, momentum α, gossip matrix W ∈ Rn×n, c(0)i = 0 ∈

Rd.
1: for t = 0, 1, . . . do
2: for node i in parallel
3: Update the local momentum buffer m(t)

i = αm(t−1)
i +∇fi(x(t)

i).
4: Compute a local update u(t)

i = −γ(∇fi(x(t)
i) + αm(t)

i).
5: Update the local model x(t+1/2)

i = x(t)
i + u(t)

i + c(t)i .
6: Average with neighbors: x(t+1)

i =
∑

j∈Ni
Wijx(t+1/2)

j .
7: Update the local correction c(t+1)

i = x(t+1)
i − x(t)

i − u(t)
i .

8: end for
9: end for

Algorithm 13 Gradient Tracking [Lorenzo and Scutari, 2016]

Input: ∀ i, x(0)
i = x(0), learning rate γ, gossip matrix W ∈ Rn×n, c(0)i = 0 ∈ Rd.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: Compute a local update u(t)

i = −γ∇fi(x(t)
i).

4: Update the local model x(t+1/2)
i = x(t)

i + u(t)
i + c(t)i .

5: Average with neighbors: x(t+1)
i =

∑
j∈Ni

Wijx(t+1/2)
j .

6: Update the correction and average: c(t+1)
i =

∑
j∈Ni

Wij

(
c(t)i − u(t)

i

)
.

7: end for
8: end for

D.5 Additional experiments on RelaySGD

D.5.1 Rings vs double binary trees on Cifar-10

In our experiments that target data-center inspired scenarios where the network topology is
arbitrarily selected by the user to save bandwidth, RelaySGD uses double binary trees to
communicate. They use the same memory and bandwidth as rings (2 models sent/received
per iteration) but their delays only scale with logn, enabling RelaySGD, in theory, to run
with very large numbers of workers n. Table D.6 shows that in our Cifar-10experiments with
16 there are minor improvements from using double binary trees over rings. Our baselines
D-SGD and D2, however, perform significantly better on rings than on trees, so we use those
results in the main paper.

D.5.2 Scaling the number of workers on Cifar-10

In this experiment (table D.7), use momentum-SGD on 16, 32 and 64 workers compare the
scaling of RelaySGD to SGP [Assran et al., 2019]. We fix the parameter α that determines
the level of data heterogeneity to α = 0.01. Note that this level of α could lead to more
challenging heterogeneity when there are many workers (and hence many smaller local subsets
of the data), compared to when there are few workers.

113

Appendix D. Appendix for RelaySGD

Algorithm 14 Stochastic Gradient Push with time-varying exponential topology [Assran
et al., 2019]

Input: ∀ i, x(0)
i = x(0), learning rate γ, n = 2k workers, t′ = 0.

1: for t = 0, 1, . . . do
2: for node i in parallel
3: x(t+1/2)

i = x(t)
i + u(t)

i −γ∇fi(x
(t)
i). (or momentum/Adam, like RelaySGD)

4: for 2 communication steps to equalize bandwidth with RelaySGD do
5: Compute an offset o = 2t

′ mod k.
6: Send x(t+1/2)

i to worker i− o.
7: Receive and overwrite x(t+1/2)

i ← 1
2

(
x(t+1/2)
i + x(t+1/2)

i+o

)
.

8: t′ ← t′ + 1.
9: end for

10: Set x(t+1)
i = x(t+1/2)

i .
11: end for
12: end for

Table D.6: Comparing the performance of the algorithms in table 5.1 on rings and double
binary trees in the high-heterogeneity setting α = 0.01. In both topologies, workers send and
receive two full models per update step. With 16 workers, RelaySGD with momentum seems
to benefit from double binary trees, RelaySGD has more consistently good results on a chain.
We still opt for double binary trees based on their promise to scale to many workers. Other
methods do not benefit from double binary trees over rings.

Algorithm Ring (Chain for RelaySGD) Double binary trees

RelaySGD 86.5% 84.6%
+local momentum 88.4% 89.1%

D-SGD 53.9% 36.0%
+quasi-global mom. 63.3% 57.5%

D2 38.2% did not converge
+local momentum 61.0% did not converge

D.5.3 Independence of heterogeneity

The benefits of RelaySGD over some other methods shows most when workers have hetero-
geneous training objectives. Figure D.3 compares several algorithms with varying levels of
data heterogeneity on synthetic quadratics on a ring topology with 32 workers. Like D2,
RelaySGD converges linearly, and does not require more steps when the data becomes more
heterogeneous. Note that, even though RelaySGD operates on a chain network instead of a
ring, it is as fast as D2. On other topologies, such as a star topology, or on trees, RelaySGD
can even be faster than D2 (see Appendix D.5.4), while maintaining the same independence
of heterogeneity.

D.5.4 Star topology

On star-topologies, the set of neighbors of worker 0 is {1, 2, . . . , n} and the set of neighbors
for every other worker is just {0}. While D2 and RelaySGD are equally fast in the synthetic
experiments on ring topologies in appendix D.5.3, RelaySGD is significantly faster on star

114

D.6. RelaySum for distributed mean estimation

Table D.7: Scaling the number of workers in heterogeneous Cifar-10. The heterogeneity
level α = 0.01 is kept constant, although it does change its meaning when the number of
workers changes. RelaySGD scales at least well as Stochastic Gradient Push [Assran et al.,
2019] (with equal communication budget). It is surprising that RelaySGD with 64 workers
performs significantly better on a chain topology than on the double binary trees. This
behavior does not match what our observations on quadratic toy-problems.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 89.5% 88.9% 87.2%
RelaySGD binary trees 89.3% 86.1% 63.7%

chain 88.4% 86.6% 83.1%
Stochastic gradient push time-varying exponential 87.0% 68.9% 62.4%

Table D.8: Tuned learning rates for table D.7. We tuned the learning rate for each setting on
a multiplicative grid with spacing

√
2, and then repeated each experiment 3 times. If both

repetitions diverged, we would change to a smaller learning rate in the grid. Numbers in
parentheses are the ‘effective’ learning rates corrected according to appendix D.4.1.

Algorithm Topology 16 workers 32 workers 64 workers

All-reduce (baseline) fully connected 0.1 (0.100) 0.05 (0.050) 0.05 (0.050)
RelaySGD binary trees 0.282 (0.066) 0.2 (0.035) 0.2 (0.027)

chain 0.2 (0.047) 0.4 (0.070) 0.8 (0.108)
Stochastic gradient push time-varying exp. 0.025 (0.025) 0.025 (0.025) 0.0125 (0.013)

topologies as illustrates by fig. D.4.

D.6 RelaySum for distributed mean estimation

We conceptually separate the optimization algorithm RelaySGD from the communication
mechanism RelaySum that uniformly distributes updates across a peer-to-peer network. We
made this choice because we envision other applications of the RelaySum mechanism out-
side of optimization for machine learning. To illustrate this point, this section introduces
RelaySum for Distributed Mean Estimation (Algorithm 15).

In distributed mean estimation, workers are connected in a network just as in our optimiza-
tion setup, but instead of models gradients, they receive samples d̂(t) ∼ D of the distribution
D at time step t. The workers estimate the mean d̄ the mean of D, and we measure their
average squared error to the true mean.

In algorithm 15, the output estimates x(t)
i of a worker i is a uniform average of all samples

that can reach a worker i at that time step. This algorithm enjoys variance reduction of
O
(

1
nT

)
, a desirable property that is in general not shared by gossip-averaging-based algo-

rithms on arbitrary graphs.
In fig. D.5, we compare this algorithm to a simple gossip-based baseline.

D.7 Alternative optimizer based on RelaySum

Apart from RelaySGD presented in the main paper, there are other ways to build optimization
algorithms based on the RelaySum communication mechanism. In this section, we describe

115

Appendix D. Appendix for RelaySGD

0 1000 2000
Steps

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 1000 2000
Steps

ζ2 = 0.1 (heterogeneous)

0 1000 2000
Steps

ζ2 = 10 (very heterogeneous)

Gossip
Gradient tracking
D2

RelaySGD

Figure D.3: Random quadratics on ring networks of size 32 with varying data heterogeneity
ζ2 and all other theoretical quantities fixed. To simulate stochastic noise, we add random
normal noise to each gradient update. For each method, the learning rate is tuned to reach
suboptimality ≤ 10−6 the fastest. RelaySGD operates on a chain network instead of a ring.
Like D2, it does not require more steps when the worker’s objectives are more heterogeneous.

0 50 100
Steps

10−9

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 200 400
Steps

ζ2 = 0.01 (heterogeneous)

0 500 1000
Steps

ζ2 = 0.1 (very heterogeneous)

Gossip
D2

RelaySGD
Gradient tracking

Figure D.4: Random quadratics on star networks of size 32 with varying data heterogeneity
ζ2 and all other theoretical quantities fixed. For each method, the learning rate is tuned
to reach suboptimality ≤ 10−6 the fastest. Like D2, RelaySGD does not require more steps
when the worker’s objectives are more heterogeneous. Note that for ζ2 = 0 (left figure), our
tuning procedure found a learning rate where Gradient Tracking does converge to <≤ 10−6,
but does not converge linearly. It would with a lower learning rate.

RelaySGD/Grad (Algorithm 16), an alternative to RelaySGD that does use the RelaySum
mechanism on gradient updates rather than on models.

RelaySGD/Grad distributes each update uniformly over all workers in a finite number
of steps. This means that worker’s models differ by only a finite number of O(τmaxmaxn)
that are scaled as 1

n . With this property, it achieves tighter consensus than typical gossip
averaging, and it also works well in deep learning. Contrary to RelaySGD, however, this
algorithm is not fully independent of data heterogeneity, due to the delay in the updates.
When the data heterogeneity ζ2 > 0, RelaySGD/Grad does not converge linearly, but its
suboptimality saturates at a level that depends on ζ2.

The sections below study this alternative algorithm in detail, both theoretically and ex-
perimentally. The key differences between RelaySGD and RelaySGD/Grad are:

116

D.7. Alternative optimizer based on RelaySum

Algorithm 15 RelaySum for Distributed Mean Estimation

Input: ∀ i, x(0)
i = 0, y(0)

i = 0, s(0)i = 0; ∀ i, j,m(−1)
i→j = 0, tree network

1: for t = 0, 1, . . . do
2: for node i in parallel
3: for each neighbor j ∈ Ni do
4: Get a sample d̂(t)

i ∼ D.
5: Send m(t)

i→j = d̂(t)
i +

∑
k∈Ni\j m(t−1)

k→i .
6: Send c

(t)
i→j = 1 +

∑
k∈Ni\j c

(t−1)
k→i .

7: Receive m(t)
j→i and c

(t)
j→i from node j.

8: end for
9: Update the sum of samples y(t+1)

i = y(t)
i + d̂(t)

i +
∑

j∈Ni
m(t)

j→i.
10: Update the sum of counts s

(t+1)
i = s

(t)
i + 1 +

∑
j∈Ni

c
(t)
j→i.

11: Output average estimate x(t)
i = y(t)

i /s
(t)
i .

12: end for
13: end for

0 100 200 300 400
Steps

10−5

10−4

10−3

10−2

10−1

100

M
ea

n
sq

ua
re

d
er

ro
r

method = 1 / nT

0 100 200 300 400
Steps

method = RelaySum

0 100 200 300 400
Steps

method = Gossip

n
8
16
32
64
128

Figure D.5: RelaySum for Distributed Mean Estimation compared to a gossip-based baseline,
on a ring topology (chain for RelaySGD). Workers receive samples from a normal distribution
N (1, 1) with mean 1. RelaySum, using Algorithm 15 achieves a variance reduction of O

(
1
nT

)
.

RelaySGD RelaySGD/Grad

Provably independent of data heterogeneity ζ2 yes no
Distributes updates exactly uniform in finite steps no yes
Loses energy of gradient updates (appendix D.4.1) yes no
Works experimentally with momentum / Adam yes no
Robust to lost messages + can support workers joining/leaving yes no

117

Appendix D. Appendix for RelaySGD

Algorithm 16 RelaySGD/Grad

Input: ∀ i, x(0)
i = x(0); ∀ i, j,m(−1)

i→j = 0, learning rate γ, tree network
1: for t = 0, 1, . . . do
2: for node i in parallel
3: u(t)

i = −γ∇fi(x(t)
i , ξ

(t)
i)

4: for each neighbor j ∈ Ni do
5: Send m(t)

i→j = u(t)
i +

∑
k∈Ni\j m(t−1)

k→i .
6: Receive m(t)

j→i from node j.
7: end for
8: x(t+1)

i = x(t)
i + 1

n

(
u(t)
i +

∑
j∈Ni

m(t)
j→i

)
9: end for

10: end for

118

D.7. Alternative optimizer based on RelaySum

D.7.1 Empirical analysis of RelaySGD/Grad

In table D.9, we compare RelaySGD/Grad to RelaySGD on deep-learning based image classi-
fication on Cifar-10with VGG-11. Without momentum, and with low levels of heterogeneity,
RelaySGD/Grad sometimes outperforms RelaySGD.

Figure D.6 illustrates a key difference between RelaySGD/Grad and RelaySGD. While
RelaySGD behaves independently of heterogeneity, and converges linearly with a fixed step
size, RelaySGD/Grad reaches a plateau based on the learning rate and level of heterogeneity.

Table D.9: Comparing RelaySGD/Grad with RelaySGD on Cifar-10 [Krizhevsky and Hinton,
2009] with the VGG-11 architecture. We vary the data heterogeneity α [Lin et al., 2021]
between 16 workers. For low-heterogeneity cases and without momentum, RelaySGD/Grad
sometimes performs better than RelaySGD.

Algorithm Topology α = 1.00 α = 0.1 α = .01
(most homogeneous) (most heterogeneous)

All-reduce (baseline) fully connected 87.0% 87.0% 87.0%
+momentum 90.2% 90.2% 90.2%

RelaySGD chain 87.3% 87.2% 86.5%
+local momentum 89.5% 89.2% 88.4%

RelaySGD/Grad chain 88.8% 88.5% 83.5%
+local momentum 86.9% 87.8% 68.6%

0 100 200
Steps

10−9

10−7

10−5

10−3

10−1

Su
bo

pt
im

al
ity

f(x̄
)−

f(x
?
)

ζ2 = 0 (equal optimum)

0 200 400
Steps

ζ2 = 0.01 (heterogeneous)

0 1000 2000
Steps

ζ2 = 1 (very heterogeneous)

Gossip
RelaySGD/Grad
RelaySGD

Figure D.6: Comparing RelaySGD/Grad against RelaySGD on random quadratics with vary-
ing levels of heterogeneity ζ2, without stochastic noise, on a ring/chain of 32 nodes. Learning
rates are tuned to reach suboptimality ≤ 10−6 as quickly as possible. In contrast to Re-
laySGD, RelaySGD/Grad with a fixed learning rate does not converge linearly. Compared
to D-SGD (Gossip), RelaySGD/Grad is still less sensitive to data heterogeneity.

119

Appendix D. Appendix for RelaySGD

120

Bibliography

Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Proc.
CDC, pages 5451–5452, 2012.

Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and Dimitris S.
Papailiopoulos. Adaptive gradient communication via critical learning regime identification.
In Proc. MLSys, 2021.

Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris S. Papailiopoulos.
On the utility of gradient compression in distributed training systems. In Proc. MLSys,
2022.

Mohammadreza Alimohammadi, Ilia Markov, Elias Frantar, and Dan Alistarh. L-greco:
An efficient and general framework for layerwise-adaptive gradient compression. CoRR,
abs/2210.17357, 2022.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
communication-efficient SGD via gradient quantization and encoding. In Proc. NeurIPS,
pages 1709–1720, 2017.

Peter Arbenz. Lecture notes on solving large scale eigenvalue problems. D-MATH, ETH
Zürich, 2, 2016.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds
for deep nets via a compression approach. In Proc. ICML, volume 80, pages 254–263, 2018.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael G. Rabbat. Stochastic gradient
push for distributed deep learning. In Proc. ICML, volume 97, pages 344–353, 2019.

AT&T Laboratories Cambridge. AT&T database of faces. URL https://scikit-learn.org/
0.19/datasets/olivetti_faces.html.

Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K. Panda.
Optimized broadcast for deep learning workloads on dense-gpu infiniband clusters: MPI
or nccl? In Proc. EuroMPI, pages 2:1–2:9, 2018.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language model-
ing. In Proc. ICLR, 2019.

121

https://scikit-learn.org/0.19/datasets/olivetti_faces.html
https://scikit-learn.org/0.19/datasets/olivetti_faces.html

Bibliography

B. Le Bars, Aurélien Bellet, Marc Tommasi, and Anne-Marie Kermarrec. Yes, topology
matters in decentralized optimization: Refined convergence and topology learning under
heterogeneous data. CoRR, abs/2204.04452, 2022.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
SIGNSGD: compressed optimisation for non-convex problems. In Proc. ICML, volume 80,
pages 559–568, 2018.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. In Proc. ICLR, 2019.

Raphaël Berthier, Francis R. Bach, and Pierre Gaillard. Accelerated gossip in networks of
given dimension using jacobi polynomial iterations. SIAM J. Math. Data Sci., 2(1):24–47,
2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Proc. NeurIPS, 2020.

Sebastian Caldas, Jakub Konečný, H. Brendan McMahan, and Ameet Talwalkar. Expand-
ing the reach of federated learning by reducing client resource requirements. CoRR,
abs/1812.07210, 2018.

David E. Carlson, Volkan Cevher, and Lawrence Carin. Stochastic spectral descent for
restricted boltzmann machines. In Proc. AISTATS, volume 38, 2015.

Themistoklis Charalambous, Ye Yuan, Tao Yang, Wei Pan, Christoforos N. Hadjicostis, and
Mikael Johansson. Distributed finite-time average consensus in digraphs in the presence of
time delays. IEEE Trans. Control. Netw. Syst., 2(4):370–381, 2015.

Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang,
Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Zhang, and Kailash Gopalakrish-
nan. Scalecom: Scalable sparsified gradient compression for communication-efficient dis-
tributed training. In Proc. NeurIPS, 2020.

Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir Puri. GradZip: Gradient com-
pression using alternating matrix factorization for large-scale deep learning, 2019.

Edo Collins, Siavash Arjomand Bigdeli, and Sabine Süsstrunk. Detecting memorization in
relu networks. CoRR, abs/1810.03372, 2018.

PyTorch Contributors. DDP communication hooks, 2020. URL https://pytorch.org/docs/
stable/ddp_comm_hooks.html.

Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent
with memory. Technical report, 2018.

122

https://pytorch.org/docs/stable/ddp_comm_hooks.html
https://pytorch.org/docs/stable/ddp_comm_hooks.html

Bibliography

Yatin Dandi, Anastasia Koloskova, Martin Jaggi, and Sebastian U. Stich. Data-heterogeneity-
aware mixing for decentralized learning. CoRR, abs/2204.06477, 2022.

Allison Davis, Burleigh Bradford Gardner, and Mary R Gardner. Deep South: A social
anthropological study of caste and class. Univ of South Carolina Press, 1930.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, and Andrew Y.
Ng. Large scale distributed deep networks. In Proc. NeurIPS, pages 1232–1240, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR, pages 248–255, 2009.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network
training. In Proc. ICLR, 2020.

Keshi Ge, Yongquan Fu, Yiming Zhang, Zhiquan Lai, Xiaoge Deng, and Dongsheng Li. S2
reducer: High-performance sparse communication to accelerate distributed deep learning.
In Proc. ICASSP, pages 5233–5237, 2022.

Leonidas Georgopoulos. Definitive Consensus for Distributed Data Inference. PhD thesis,
EPFL, Switzerland, 2011. URL https://doi.org/10.5075/epfl-thesis-5026.

Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear
and stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

Suriya Gunasekar, Jason D. Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit
bias in terms of optimization geometry. In Proc. ICML, volume 80, pages 1827–1836, 2018.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

Julien M. Hendrickx, Raphaël M. Jungers, Alexander Olshevsky, and Guillaume Vankeer-
berghen. Graph diameter, eigenvalues, and minimum-time consensus. Automatica, 50(2):
635–640, 2014.

Samuel Horváth and Peter Richtárik. A better alternative to error feedback for
communication-efficient distributed learning. In Proc. ICLR, 2021.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, and Kurt Keutzer. Firecaffe:
Near-linear acceleration of deep neural network training on compute clusters. In Proc.
CVPR, pages 2592–2600, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proc. ICML, volume 37, pages 448–456, 2015.

123

https://doi.org/10.5075/epfl-thesis-5026

Bibliography

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman
Arora. Communication-efficient distributed SGD with sketching. In Proc. NeurIPS, pages
13144–13154, 2019.

Sylvain Jeaugey. Massively scale your deep learning training with NCCL 2.4. https:
//devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/, 2019.
[Online; accessed 21-May-2019].

Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM J. Optim., 20(3):1157–
1170, 2009.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie,
Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back,
Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, An-
drew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accu-
rate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary
Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushan-
far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh
Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated
learning. CoRR, abs/1912.04977, 2019.

Sham Kakade, Shai Shalev-Shwartz, Ambuj Tewari, et al. On the duality of strong convexity
and strong smoothness: Learning applications and matrix regularization. Unpublished
Manuscript, 2(1):35, 2009.

Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Baner-
jee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang,
Hector Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudar-
shan Srinivasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey.
A study of BFLOAT16 for deep learning training. CoRR, abs/1905.12322, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U.
Stich, and Ananda Theertha Suresh. SCAFFOLD: stochastic controlled averaging for on-
device federated learning. CoRR, abs/1910.06378, 2019a.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error
feedback fixes signsgd and other gradient compression schemes. In Proc. ICML, volume 97,
pages 3252–3261, 2019b.

124

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

Bibliography

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In Proc. FOCS, pages 482–491, 2003.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc.
ICLR, 2015.

Chih-Kai Ko and Xiaojie Gao. On matrix factorization and finite-time average-consensus. In
Proc. CDC, pages 5798–5803, 2009.

Anastasia Koloskova, Tao Lin, Sebastian U. Stich, and Martin Jaggi. Decentralized deep
learning with arbitrary communication compression. CoRR, abs/1907.09356, 2019a.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication. In Proc. ICML, volume 97,
pages 3478–3487, 2019b.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A
unified theory of decentralized SGD with changing topology and local updates. In Proc.
ICML, volume 119, pages 5381–5393, 2020.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. CoRR, abs/1610.05492, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (Canadian Institute for Ad-
vanced Research).

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Proc.
COLT, volume 75, pages 2–47, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In Proc. NeurIPS, pages 11669–11680, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentral-
ized algorithms outperform centralized algorithms? A case study for decentralized parallel
stochastic gradient descent. In Proc. NeurIPS, pages 5330–5340, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochas-
tic gradient descent. In Proc. ICML, volume 80, pages 3049–3058, 2018.

Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous data. CoRR,
abs/2102.04761, 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. In Proc. ICLR, 2018.

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le. Evolving normalization-activation
layers. In Proc. NeurIPS, 2020.

125

Bibliography

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In Proc.
ICML, volume 139, pages 7111–7123, 18–24 Jul 2021.

Yucheng Lu and Christopher De Sa. Moniqua: Modulo quantized communication in decen-
tralized SGD. CoRR, abs/2002.11787, 2020.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In Proc.
ICML, volume 139, pages 7111–7123, 2021.

Ilia Markov, Hamidreza Ramezani-Kebrya, and Dan Alistarh. Project CGX: scalable deep
learning on commodity gpus. CoRR, abs/2111.08617, 2021.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural
networks: Evidence from random matrix theory and implications for learning. CoRR,
abs/1810.01075, 2018.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms
for learning large incomplete matrices. J. Mach. Learn. Res., 11:2287–2322, 2010.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Proc.
ICOAI, volume 54, pages 1273–1282, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. In Proc. ICLR, 2018.

Angelia Nedic. Distributed gradient methods for convex machine learning problems in net-
works: Distributed optimization. IEEE Signal Process. Mag., 37(3):92–101, 2020.

Angelia Nedic and Alex Olshevsky. Stochastic gradient-push for strongly convex functions
on time-varying directed graphs. IEEE Trans. Autom. Control., 61(12):3936–3947, 2016.

Angelia Nedic and Asuman E. Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Trans. Automat. Contr., 54(1):48–61, 2009.

Angelia Nedic and Asuman E. Ozdaglar. Convergence rate for consensus with delays. J. Glob.
Optim., 47(3):437–456, 2010.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM J. Optim., 27(4):2597–2633, 2017.

Giovanni Neglia, Chuan Xu, Don Towsley, and Gianmarco Calbi. Decentralized gradient
methods: does topology matter? In Proc. AISTATS,, volume 108, pages 2348–2358, 2020.

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, volume 87
of Applied Optimization. Springer, 2004. ISBN 978-1-4613-4691-3. URL https://doi.org/
10.1007/978-1-4419-8853-9.

126

https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9

Bibliography

NVIDIA. NVIDIA collective communications library (NCCL). https://
developer.nvidia.com/nccl, 2019. [Online; accessed 21-May-2019].

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathe-
matical Biology, 15(3):267–273, 1982.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grang-
ier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proc.
NAACL-HLT, pages 48–53, 2019.

Dhabaleswar K. Panda, Ammar Ahmad Awan, and Hari Subramoni. High performance
distributed deep learning: a beginner’s guide. In Proc. SIGPLAN, pages 452–454, 2019.

Dario Pasquini, Mathilde Raynal, and Carmela Troncoso. On the privacy of decentralized
machine learning. CoRR, abs/2205.08443, 2022.

Radia J. Perlman. An algorithm for distributed computation of a spanningtree in an extended
LAN. In Proc. SIGCOMM, pages 44–53, 1985.

Shi Pu and Angelia Nedic. Distributed stochastic gradient tracking methods. CoRR,
abs/1805.11454, 2018.

Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedic. Push-pull gradient methods for distributed
optimization in networks. IEEE Trans. Autom. Control., 66(1):1–16, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mization towards training A trillion parameter models. CoRR, abs/1910.02054, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Proc. ICML, volume 139,
pages 8821–8831, 2021.

Dominic Richards and Patrick Rebeschini. Optimal statistical rates for decentralised non-
parametric regression with linear speed-up. In Proc. NeurIPS, pages 1214–1225, 2019.

Dominic Richards and Patrick Rebeschini. Graph-dependent implicit regularisation for dis-
tributed stochastic subgradient descent. J. Mach. Learn. Res., 21:34:1–34:44, 2020.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically
better, and practically faster error feedback. In Proc. NeurIPS, pages 4384–4396, 2021.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

Peter Sanders, Jochen Speck, and Jesper Larsson Träff. Two-tree algorithms for full band-
width broadcast, reduction and scan. Parallel Comput., 35(12):581–594, 2009.

Aliaksei Sandryhaila, Soummya Kar, and José M. F. Moura. Finite-time distributed consen-
sus through graph filters. In Proc. ICASSP, pages 1080–1084, 2014.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

127

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

Bibliography

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient de-
scent and its application to data-parallel distributed training of speech dnns. In Proc.
INTERSPEECH, pages 1058–1062, 2014.

Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E. Dahl. Measuring the effects of data parallelism on neural network
training. J. Mach. Learn. Res., 20:112:1–112:49, 2019.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan
Jiang, Feihu Zhou, Zhenyu Guo, Liqiang Xie, Rui Lan, Xianbin Ouyang, Yan Zhang,
Jieqian Wei, Jing Gong, Weiliang Lin, Ping Gao, Peng Meng, Xiaomin Xu, Chenyang
Guo, Bo Yang, Zhibo Chen, Yongjian Wu, and Xiaowen Chu. Towards scalable distributed
training of deep learning on public cloud clusters. In Proc. MLSys, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proc. ICLR, 2015.

Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret.
Optimizer benchmarking needs to account for hyperparameter tuning. In Proc. ICML,
volume 119, pages 9036–9045, 2020.

GW Stewart. Simultaneous iteration for computing invariant subspaces of non-Hermitian
matrices. Numerische Mathematik, 25(2):123–136, 1976.

GW Stewart and JH Miller. Methods of simultaneous iteration for calculating eigenvectors
of matrices. Topics in Numerical Analysis II, pages 169–185, 1975.

Sebastian U. Stich. Local SGD converges fast and communicates little. In Proc. ICLR, 2019.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Bet-
ter rates for SGD with delayed gradients and compressed communication. CoRR,
abs/1909.05350, 2019.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with mem-
ory. In Proc. NeurIPS, pages 4452–4463, 2018.

Shreyas Sundaram and Christoforos N. Hadjicostis. Finite-time distributed consensus in
graphs with time-invariant topologies. In Proc. ACC, pages 711–716, 2007.

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Proc. NeurIPS, pages 7663–7673, 2018a.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training
over decentralized data. In Proc. ICML, volume 80, pages 4855–4863, 2018b.

Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu. Deep-
squeeze: Parallel stochastic gradient descent with double-pass error-compensated compres-
sion. CoRR, abs/1907.07346, 2019.

Cécile Trottet, Thijs Vogels, Martin Jaggi, and Mary-Anne Hartley. Modular clinical decision
support networks (modn) - updatable, interpretable, and portable predictions for evolving
clinical environments. CoRR, abs/2211.06637, 2022.

128

Bibliography

Konstantinos I. Tsianos and Michael G. Rabbat. Distributed consensus and optimization
under communication delays. In Proc. Allerton, pages 974–982, 2011.

Konstantinos I. Tsianos, Sean F. Lawlor, and Michael G. Rabbat. Push-sum distributed dual
averaging for convex optimization. In Proc. CDC, pages 5453–5458, 2012.

John N. Tsitsiklis. Problems in decentralized decision making and computation. PhD the-
sis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1984. URL http:
//hdl.handle.net/1721.1/15254.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank
gradient compression for distributed optimization. In Proc. NeurIPS, pages 14236–14245,
2019.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Practical low-rank communication
compression in decentralized deep learning. In Proc. NeurIPS, 2020.

Thijs Vogels, Lie He, Anastasia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U.
Stich, and Martin Jaggi. Relaysum for decentralized deep learning on heterogeneous data.
In Proc. NeurIPS, pages 28004–28015, 2021.

Thijs Vogels, Hadrien Hendrikx, and Martin Jaggi. Beyond spectral gap: the role of topology
in decentralized learning. In Proc. NeurIPS, 2022.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris S. Papailiopoulos, and
Stephen J. Wright. ATOMO: communication-efficient learning via atomic sparsification. In
Proc. NeurIPS, pages 9872–9883, 2018.

Hongyi Wang, Saurabh Agarwal, and Dimitris S. Papailiopoulos. Pufferfish: Communication-
efficient models at no extra cost. In Proc. MLSys, 2021a.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar.
MATCHA: speeding up decentralized SGD via matching decomposition sampling. CoRR,
abs/1905.09435, 2019.

Yi Wang, Alex Iankoulski, Pritam Damania, and Sundar Ranganathan. Accelerating py-
torch ddp by 10x with powersgd, Nov 2021b. URL https://medium.com/pytorch/
accelerating-pytorch-ddp-by-10x-with-powersgd-585aef12881d.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. In Proc. NeurIPS, pages 1306–1316,
2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Terngrad: Ternary gradients to reduce communication in distributed deep learning. In
Proc. NeurIPS, pages 1509–1519, 2017.

Chenguang Xi and Usman A. Khan. DEXTRA: A fast algorithm for optimization over
directed graphs. IEEE Trans. Automat. Contr., 62(10):4980–4993, 2017.

Chenguang Xi, Van Sy Mai, Ran Xin, Eyad H. Abed, and Usman A. Khan. Linear con-
vergence in optimization over directed graphs with row-stochastic matrices. IEEE Trans.
Autom. Control., 63(10):3558–3565, 2018.

129

http://hdl.handle.net/1721.1/15254
http://hdl.handle.net/1721.1/15254
https://medium.com/pytorch/accelerating-pytorch-ddp-by-10x-with-powersgd-585aef12881d
https://medium.com/pytorch/accelerating-pytorch-ddp-by-10x-with-powersgd-585aef12881d

Bibliography

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

Lin Xiao and Stephen P. Boyd. Fast linear iterations for distributed averaging. Syst. Control.
Lett., 53(1):65–78, 2004.

Cong Xie, Shuai Zheng, Oluwasanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
communication-efficient SGD with error reset. In Proc. NeurIPS, 2020.

Ran Xin and Usman A. Khan. A linear algorithm for optimization over directed graphs with
geometric convergence. IEEE Control. Syst. Lett., 2(3):315–320, 2018.

Ran Xin and Usman A. Khan. Distributed heavy-ball: A generalization and acceleration of
first-order methods with gradient tracking. IEEE Trans. Autom. Control., 65(6):2627–2633,
2020.

Ran Xin, Chenguang Xi, and Usman A. Khan. FROST - fast row-stochastic optimization
with uncoordinated step-sizes. EURASIP J. Adv. Signal Process., 2019:1, 2019.

An Xu and Heng Huang. Detached error feedback for distributed SGD with random sparsi-
fication. In Proc. ICML, volume 162, pages 24550–24575, 2022.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Kon-
stantinos Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for
distributed deep learning: Survey and quantitative evaluation. Technical report, 2020.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Kon-
stantinos Karatsenidis, Marco Canini, and Panos Kalnis. GRACE: A compressed com-
munication framework for distributed machine learning. In Proc. ICDCS, pages 561–572,
2021.

Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential
graph is provably efficient for decentralized deep training. In Proc. NeurIPS, pages 13975–
13987, 2021.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the general-
izability of deep learning. CoRR, abs/1705.10941, 2017.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large scale private learning
via low-rank reparametrization. In Proc. ICML, volume 139, pages 12208–12218, 2021.

Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander G.
Schwing, Murali Annavaram, and Salman Avestimehr. Gradiveq: Vector quantization for
bandwidth-efficient gradient aggregation in distributed CNN training. In Proc. NeurIPS,
pages 5129–5139, 2018.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. Exact diffusion for distributed
optimization and learning - part I: algorithm development. IEEE Trans. Signal Process.,
67(3):708–723, 2019.

Kun Yuan, Yiming Chen, Xinmeng Huang, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao
Yin. Decentlam: Decentralized momentum SGD for large-batch deep training. CoRR,
abs/2104.11981, 2021.

130

Bibliography

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan H. Greenewald, Trong Nghia
Hoang, and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural net-
works. In Proc. ICML, volume 97, pages 7252–7261, 2019.

Alp Yurtsever, Madeleine Udell, Joel A. Tropp, and Volkan Cevher. Sketchy decisions: Con-
vex low-rank matrix optimization with optimal storage. In Proc. ICOAI, volume 54, pages
1188–1196, 2017.

Jiaqi Zhang and Keyou You. Decentralized stochastic gradient tracking for empirical risk
minimization. CoRR, abs/1909.02712, 2019.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Proc. NeurIPS, pages 649–657, 2015.

Xianyao Zhang, Marco Manzi, Thijs Vogels, Henrik Dahlberg, Markus H. Gross, and Marios
Papas. Deep compositional denoising for high-quality monte carlo rendering. Comput.
Graph. Forum, 40(4):1–13, 2021.

Zhaorong Zhang, Kan Xie, Qianqian Cai, and Minyue Fu. A bp-like distributed algorithm
for weighted average consensus. In Proc. ASCC, pages 728–733, 2019.

Jiawei Zhao. signSGD with majority vote. github.com/PermiJW/signSGD-with-Majority-
Vote, 2019. [Online; accessed 12-May-2019].

131

github.com/PermiJW/signSGD-with-Majority-Vote
github.com/PermiJW/signSGD-with-Majority-Vote

Cirriculum VCirriculum Vitaeitae

EDUEDUCCAATIONTION

EPFL — Optimization & Machine Learning, PhD
PhD in distributed learning under Prof. Martin Jaggi.

2018 – Current

ETH Zürich — Computational Science & Engineering Master
Courses in numerical methods, statistics, machine learning, and high perfor-
mance computing. Thesis: “Kernel-predicting convolutional networks for Monte
Carlo Rendering” in collaboration with Disney Research, under Prof. Andreas
Krause.

2014 – 2016

University College Roosevelt — Liberal Arts & Sciences Bachelor
International Honours College of Utrecht University. Major mathematics, com-
puter science and physics. Thesis: “Dynamic Path Planning for a Basic Robot”,
under Prof. Henk Meijer, graded A+. GPA 4.0/4.0.

2011 – 2014

WWORK EXPERIENCEORK EXPERIENCE

Google Research
Research intern in federated learning.

Aug. 2022
– Dec. 2022

Nvidia Research
Research intern in machine learning for graphics.

Summer 2020

Disney Research
Consultant, advising on deep learning applications in Monte Carlo path tracing.

2018 – 2022

Disney Research
Lab associate. Bringing my Master’s thesis research into production.

2017 – 2018

Bloomberg LP
Industrial placement. Gained practical experience in writing resilient C++ and
JavaScript code in a large organization.

Oct. 2016
– Mar. 2017

Thijs Vogels Internet Applications
Owner. Development of websites and web-based software. Responsible for

2009 – 2018

programming, graphic design, communication with clients and business admin-
istration.

ETH Zürich, University College Roosevelt, TNO, HZ University of Applied Sciences
Research assistant. During my studies, I worked in several different academic
labs on (1) cleaning web pages for information retrieval tasks (2) data collection
for burglary risk models, (3) search algorithms on knowledge graphs, (4) a
statistical measure and web tool to measure vaccine protection and (5) data
analysis in a medical study on health related quality of life of very preterm and
very low birth weight children.

Dec. 2014
– Mar. 2015

PUBLICPUBLICAATIONSTIONS

Beyond spectral gap: the role of the topology in decentralized learning
Vogels, T.*, Hendrikx, H.*, Jaggi, M. NeurIPS 2022.

2022

RelaySum for Decentralized Deep Learning on Heterogeneous Data
Vogels, T.*, He, L.*, Koloskova, A., Lin, T., Karimireddy, S., Stich, S., Jaggi,
M. NeurIPS 2021.

2021

Deep Compositional Denoising for High-quality Monte Carlo Rendering
Zhang, X., Manzi, M., Vogels, T., Dahlberg, H., Gross, M., Papas, M. EGSR
2021

2021

Practical Low-Rank Communication Compression in Decentralized Deep Learning
Vogels, T., Karimireddy, S.P., Jaggi, M. NeurIPS 2020.

2020

Optimizer Benchmarking Needs to Account for Hyperparameter Tuning
Sivaprasad, P.T., Mai, F., Vogels, T., Jaggi, M., Fleuret, F. ICML 2020.

2020

PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Vogels, T., Karimireddy, S.P., Jaggi, M. NeurIPS 2019.

2019

Denoising with Kernel Prediction and Asymmetric Loss Functions
Vogels, T., Rousselle, F., McWillams, B., Göthlin, G., Harvill, A., Adler, D.,
Meyer, M., Novák, J. SIGGRAPH 2018.

2018

Web2Text: Deep Structured Boilerplate Removal
Vogels, T., Ganea, O., Eickhoff, C. ECIR 2018.

2018

Kernel-predicting Convolutional Networks for Monte Carlo Rendering
Bako, S.*, Vogels, T.*, McWilliams, B., Meyer, M., Novák, J., Harvill, A., Sen,
P., DeRose, T., Rousselle, F. SIGGRAPH 2017.

2017

HONORS & AHONORS & AWWARDARDSS

EDIC PhD Fellowship
One year of research funding from the Computer Science department at EPFL.

2017

Fritz Kutter Award
Awarded to the best thesis in computer science (diploma, master, doctoral) at
a Swiss university (July 2016 – September 2017.)

2017

Willi Studer Prize
Awarded to the best student in each ETH Zurich Master’s degree programme.

2017

ETH Excellence Scholarship & Opportunity Award
Merit-based scholarship of ETH Zürich. Covered study- and living expenses for
my master.

2014

Dutch Mathematical Olympiad: 4th place
4th place out of 4150 participants.

2010

	Acknowledgements
	Abstract (English / Français)
	Introduction
	Outline of the thesis
	Contributions beyond this thesis

	Practical low-rank gradient compression
	Preface
	Introduction
	Related work
	Follow-up work
	Method
	Analysis of PowerSGD
	Effect of error feedback
	Effect of warm-start
	Effect of varying the rank

	Results
	Comparison with other compressors
	Scalability of PowerSGD
	Beneficial regularization
	Other tasks and methods

	Conclusion
	Acknowledgements

	Low-rank gradient compression for decentralized learning
	Preface
	Introduction
	Related work
	Decentralized machine learning
	Algorithm
	Properties

	Theoretical analysis
	Assumptions and setup
	Convergence rates

	Experimental analysis
	Conclusion
	Acknowledgements

	The role of the topology in decentralized learning
	Preface
	Introduction
	Related work
	A toy problem: D-SGD on isotropic random quadratics
	Theoretical analysis
	Experimental analysis
	Conclusion
	Acknowledgements

	A relay mechanism for decentralized learning with heterogeneous data
	Preface
	Introduction
	Related work
	Method
	Theoretical analysis
	Experimental analysis and practical properties
	Effect of network topology
	Spanning trees compared to other topologies
	Effect of data heterogeneity in decentralized deep learning
	Robustness to unreliable communication

	Conclusion
	Applicability to data center training

	Acknowledgements

	Conclusion
	Discussion and future work

	Appendix for PowerSGD
	Discussion of convergence
	Eigen compression
	Subspace iteration
	Single/multi worker equivalence

	Cluster specifications
	Convergence curves
	Language modeling with transformers
	The need for error feedback
	Network parameters
	Compressor implementation details
	Random Block
	Random K
	Sign+Norm
	Top K
	Signum
	Atomo
	Best-approximation PowerSGD

	Performance optimizations
	Learning rate tuning

	Appendix for PowerGossip
	Compressed Consensus
	Compressed optimization
	Experimental settings
	Convergence curves
	ResNet-20 on Cifar-10
	LSTM on WikiText-2

	The power spectrum of parameter differences
	LSTM Training
	Consensus

	Changing rank vs changing # power iterations
	Hyperparameters
	Consensus
	ResNet-20 on Cifar-10
	LSTM on WikiText-2

	Compared-to algorithm implementations
	ChocoSGD
	DeepSqueeze
	Moniqua

	Parameters in architectures
	Experiment runtime and compute infrastructure

	Appendix for Beyond Spectral gap
	Notation
	Topologies
	Random quadratics
	Objective
	Algorithm
	Linear convergence of an unrolled error vector
	Random walks with gossip averaging
	Converging random walk
	The rate for D-SGD

	(Strongly)-Convex case, missing proofs and additional results
	Preliminaries on Bregman divergences
	Main result
	Obtaining Corollary IV
	Deterministic algorithm

	Cifar-10 experimental setup
	Additional experiments
	Results on Fashion MNIST
	Heterogeneous data
	The role of in the experiments

	Appendix for RelaySGD
	Convergence Analysis of RelaySGD
	Detailed experimental setup
	Cifar-10
	ImageNet
	BERT finetuning
	Random quadratics

	Hyperparameters and tuning details
	Cifar-10
	ImageNet
	BERT finetuning
	Random quadratics

	Algorithmic details
	Learning-rate correction for RelaySGD
	RelaySGD with momentum
	RelaySGD with Adam
	D2 with momentum
	Gradient Tracking
	Stochastic Gradient Push with the time-varying exponential topology

	Additional experiments on RelaySGD
	Rings vs double binary trees on Cifar-10
	Scaling the number of workers on Cifar-10
	Independence of heterogeneity
	Star topology

	RelaySum for distributed mean estimation
	Alternative optimizer based on RelaySum
	Empirical analysis of RelaySGD/Grad

	Bibliography
	Curriculum Vitae

