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Abstract: Two related methods for inverting line integrated measurements are presented in this 

research note in the context of the recent Deuterium-Tritium experiments in the JET tokamak. 

Unlike traditional methods of tomography, these methods rely on making use of a family of model 

distributions defining a functional space within which a solution of the inversion problem is 

expected to exist. This is a stronger assumption than that underlying traditional methods of 

tomography and requires that suitable models for the expected distribution are available. In return, 

the methods offer computationally efficient and  robust reconstructions. Regressive tomography, 

as applied to the data from the JET neutron cameras, involves calculating a set of 100 or more 2D 

neutron emission distributions in a representative variety of conditions using the ASCOT and AFSI 

Monte Carlo fast ion orbit and fusion reaction codes. The distributions are line-integrated to 

represent synthetic measurements from the 19 channels of this two camera system. An inversion 

matrix is then obtained by regressing the 2D distributions corresponding to each of the voxels 

against these line integrals. The second method, direct regressive reconstruction, bypasses the 

calculation of line integrals altogether by regressing experimental camera data against calculated 

neutron emission distributions.  This method does not require the cameras to be calibrated, not even 

relatively between channels. The inversion matrices obtained by any of the two methods can then 
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be used to provide neutron emission profiles for which ASCOT/AFSI calculations are not available.  

I. Introduction 

 

A major motivation for inferring the neutron emission distribution is the fact that it coincides with 

the alpha particle source distribution from deuterium-tritium (DT) fusion reactions. Alpha particles 

will play many roles in future burning plasma devices, such as plasma self-heating,  driving 

potentially deleterious energetic particle instabilities1, as well as reducing heat transport by 

stabilising ion temperature gradient turbulence2. JET is equipped with a horizontal and a vertical 

neutron camera3,4 and three fission chambers for monitoring the total neutron rate5,6. The cameras 

consist of two fan-shaped arrays of detectors, as shown in fig. 1, with ten horizontal and nine 

vertical lines of sight for a total of 19 channels, which are enough to perform tomographic inversion 

and therefore to derive information about the spatial distribution of the neutron emission7-12. 
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Fig.1. Geometry of viewing lines of the JET neutron cameras. The contour lines correspond to the 

DT neutron emission distribution from an ASCOT/AFSI simulation of DT pulse number 99527. 

 

Each line of sight is equipped with two detectors: a NE213 detector which can measure both the 

2.45 and the 14 MeV neutrons and a Bicron detector for the 14 MeV neutrons. The energy selection 

is performed using threshold discrimination. The neutron emission by JET plasmas has been 

extensively modelled using the ASCOT code13,14 and the AFSI (ASCOT Neutron Source 

Integrator) code15-17, which uses ASCOT output particle velocity distributions to calculate the 

nuclear reactions between ion species, i.e. the local DT neutron rates for the case of this study.  

Tokamak plasmas are close to axi-symmetrical around the toroidal (vertical) axis. The ASCOT and 

AFSI codes, as applied to tokamaks, assume axi-symmetric distributions of plasma parameters such 

as temperatures and densities and provide neutron emissivities in neutrons/m3/s as function of the 
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horizontal and vertical coordinates R and Z. Even though only 1000 tracer particles were used for 

the ASCOT calculations, it took about 10 minutes on the JET computers to produce each of the 

neutron emission distributions used in this study. For systematic evaluations of the neutron 

emissivity this is unpractically slow, motivating the usage of faster methods. 

II. Regressive tomography (RT) 

The dataset used here is a set of 1563 ASCOT/AFSI calculations in Deuterium-Tritium (DT) 

plasmas. These were not specifically created for the purpose of creating the set used to develop the 

methods presented here. Part of the set was produced with the aim of extrapolating from deuterium 

plasmas to DT plasmas18, another part was produced in investigations of the D minority fraction in 

dominantly Tritium or Tritium-Hydrogen plasmas and part was produced for modelling DT 

plasmas produced during the DTE2 Deuterium-Tritium campaign (August-December 2022). The 

results of these DT ASCOT calculations are part of ~7000 ASCOT calculations so far produced 

and part of the previously described JETPEAK database and analysis environment17,19. These DT 

neutron emission profiles  E(R,Z) are provided by AFSI on a 26x51 R-Z grid (major radius - 

elevation, 1.66m≤R≤4.04 m, -1.89≤Z≤2.14m), defining 25x50 voxels (toroidal volume elements 

of volume 2𝜋R𝛥R𝛥Z, where 𝛥R and 𝛥Z are the horizontal and vertical grid spacings). The lines of 

sight of the neutron cameras shown in fig.1. The line integrals of these distributions were evaluated 

along the camera lines of sight, yielding the neutron fluxes (neutrons/m2/s) expected for the 

different channels, 𝐼𝑘 = ∫ 𝐸𝑘(𝑙𝑘)𝑑𝑙
 

 
. The line integrals extend over the viewing lines corresponding 

to the channels indexed by k. Ek(lk) was obtained by a 2D interpolation of the discrete local 

emissivities Eij onto the lines of sight. Here, i indexes the radial coordinate and j the vertical one. 

The next step consisted in producing linear regressions20 for the local emissivity Eij. The standard 

Matlab21 regression function “regress.m” was then used without an additive constant to produce a 

matrix of regression coefficients bijk such that 

            𝐹𝑖𝑗 = ∑ 𝑏𝑖𝑗𝑘
𝑛
𝑘=1 𝐼𝑘                                                                                    eq.1 

where Fij are the reconstructed emissivities, k indexes the n=19 detector channels, bijk being the 

regression coefficient obtained for channel k and the spatial position indexed by ij. In the example 
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shown in fig.2, 147 randomly selected samples were selected for creating the matrix bijk and the 

remaining 1416 for testing the quality of the regression on a set different from the input set. (In 

practice, the dimensions corresponding to i and j are reshaped into a single one, yielding a 2D 

matrix). It is worthwhile stressing that emissivities at all positions are independently reconstructed. 

No smoothing or regularisation is applied. 

The method described here is similar to the practice of using different training and prediction sets 

for neural network based reconstructions22-24. The difference is that we are using a standard linear 

algebra tool for what might be termed ‘linear training’, which is appropriate here, as the 

tomography problem is linear. Neural networks are widely used together with linear methods for a 

great variety of inverse problems25-27. When inverse problems are amenable to linear 

reconstruction, linear methods, such as regressions, offer convenient benchmarks for the far more 

complex machine learning methods. In most cases the training is performed on available data in 

order to provide predictions for cases for which data are not available. The method described here 

for neutron tomography in a fusion plasma is a case where instead of available experimental data, 

we use modelled data. Indeed, there exists no possibility for creating an experimental dataset of 

locally measured neutron birth rates in the hot interior of a fusion plasma. 

 

The regressed emissivities Fij are shown in fig.2, a-d, for 4 positions along a vertical line near the 

middle of the vessel (R=3.07) versus the original local emissivities Eij. The standard deviations of 

Fij from Eij are typically a few percent of the mean values of Eij, which can be considered as 

satisfactory. Fig.2e shows the 1416 reconstructions plotted on top of each other and fig.2f depicts 

the 147 ‘linear training’ distributions having served to obtain the matrix bijk. A similar quality of 

reconstruction is obtained for all voxels. 

 

 



6 

 

 

Fig.2. a-d) Regressed vs original emissivities from ASCOT/AFSI for 4 voxels along a vertical line 

through the middle of the JET vessel. 𝛔 is the standard deviation of Fij - Eij. e) vertical cut at R= 

3.04m in normalised vertical coordinates for all reconstructed emissivities f)  vertical cut for all 

emissivity distributions having been used to create the inversion matrix. 
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Fig.3. Relative residuals for all of the reconstruction and all of the 19 channels, superimposed. The 

horizontal axis refers to the sample number. 

 

Fig.3 shows the relative residuals of the 1416 reconstructions for all channels, plotted on top of 

each other. It is immediately apparent that the residuals are typically of order 1% with exceptions 

in a handful of cases where residuals exceed 5%. In the first attempts these cases were more 

numerous and were even larger. We found that they correspond to cases with emissivities as low 

as 1-3% which were obtained when simulating neutron emission in T plasmas with 1% of residual 

deuterium. These appear to have had profile shapes differing somewhat from the higher emission 

cases obtained assuming 50/50 D-T mixtures. At these low levels they had negligible weight in the 

regression and hence suffered ‘regressive neglect’. This effect was mitigated by including copies 

of these cases simply  scaled up linearly to the average emissivity. 

 

The count rates from the bicron detectors, which are best suited for DT neutrons, were used for this 

study. We limited these to 420 cases obtained during the DT campaign with total neutron rates 

above ~2x1016 n/s. Following the production of the inversion matrix bijk the first attempts to 

reconstruct experimental neutron emission profiles based on experimental count rates Jk from the 

JET neutron cameras faced the difficulty that the system was uncalibrated. An independent 
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calibration would require modelling the entire JET vessel together with the neutron camera 

hardware and detectors using a neutron transport code such as MCNP [Ref. 28] and a detector 

description and simulation tool such as GEANT [Ref. 29]. Such an undertaking is beyond the scope 

of this research note. The absence of a channel-to-channel relative calibration was immediately 

apparent from plotting the ratio Ik/Jk of the expected line integral Ik to the measured one Jk, as well 

as from the rugged appearance of the reconstructions. As a result Ik/Jk averaged over a large number 

of samples, was used to create an ad hoc calibration function shown in fig.4.  

 

Using this calibration acceptable reconstructions were obtained, as seen in fig.5. Some artefacts 

likely due to an imperfect ad-hoc calibration appear to persist in the vertical slice shown in fig.5a. 

As the reconstructions were produced directly from the measured count rates, the vertical axes in 

fig.5  do not have the meaning of neutron emissivities in n/s/m3. Local emissivities however can 

be obtained by scaling the reconstructions such that the volume integral for each sample matches 

the total neutron rate provided by the fission chambers, amounting to a calibration of the camera 

system by the fission chambers. 

 

Fig.4. Correction factor applied 

to the experimental neutron 

camera count rates as an ad-hoc 

calibration. 

 

At total DT neutron rates rates 

above 1018 n/s pile-up 

corrections for the measured 

count rates were clearly 

required. Pulse pile-up corrections factors are provided as part of the publication of the neutron 

camera data in the JET processed pulse files. These too have an important effect, as errors in the 

treatment of pile-up would also lead to reconstruction errors, although to the extent of the above 
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lack of calibration. We also devised and applied an empirical pile-up correction obtained from 

scaling of the raw count rates with the total neutron rate. The empirical  pile-up leads to 

reconstructions with marginally lower residuals. The relative residuals for the camera channels 

with the highest count rates (3-6 and 13-17) have residuals in the range 1-3%, except for a handful 

of outliers.  

 

 

Fig.5. Regressive tomographic reconstructions obtained with an empirical calibration of the 

channel-to-channel count rates. left: vertical slice, right: horizontal slice 

Peripheral channels have residuals of order 5% and higher. For some channels residuals are biassed 

towards positive or negative values, suggesting the channel-to-channel calibration still needs 

improving. This observation suggests that channel-to-channel calibration may be improved 

iteratively with the aim of removing bias in the residuals. 

III. Direct regressive reconstruction (DRR) 

The necessity of an ad hoc calibration using modelled data may seem disappointing, but also 

suggests a one-step reconstruction method that does not require a relative calibration in the first 

place. This method is already in use at JET for 1D profile data, such as ion temperature and 

rotation profiles when only sparse measurements are available and is here extended to 2D 

reconstructions. To this effect a sufficient number of modelled cases need to be available together 

with experimental measurements. The modelled 2D distributions  Eij are regressed directly 

against the measured count rates 𝐽𝑘 , producing a matrix of coefficients cijk such that 
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        𝐹𝑖𝑗 = ∑ 𝑐𝑖𝑗𝑘
𝑛
𝑘=1 𝐽𝑘       eq.2 

where Fij is the reconstructed emission at voxel i,j.  
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Fig.6. a-d) Direct regressive reconstructions of emissivity profiles versus the original emissivities 

calculated by ASCOT (horizontal slice at Z=0.4 m ). e) full reconstructed distributions f) original 

distributions. In e) and f) the horizontal axis is in normalised vertical coordinates. 
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As this method does not involve the calculation of any line integrals, nor the availability of a 

calibration, we cannot call this method ‘tomography’. Fig.6 shows for 76 cases from the DT 

campaign how well reconstructions using this method, direct regressive reconstruction (DRR), 

match the modelled originals. The model profiles were normalised to the total neutron rate. 

Differences are typically 5% of the mean values and residuals, with a few exceptions, are below 

10%. While residuals are higher than with regressive tomography, this method has the advantage 

that relative calibration errors have no influence and hence cannot introduce artefacts due to 

calibration errors. Another advantage may be that this method is also insensitive to the influence 

of back-scattered neutrons, as their contribution to the detected count rates is also linearly related 

to the plasma emissivity. We speculate that the DRR method may be more sensitive than RT to a 

mismatch between the experimental training set and the corresponding model set, as it lacks the 

explicit relationship imposed by the line integrals, between the local emissivities and the detector 

signals.  

IV.  Discussion 

 

While both the relative calibration and the processing of pulse pile-up of the JET neutron cameras 

deserve further attention, the two methods presented clearly possess potential for applications to 

2D reconstructions. In comparison with ASCOT calculations they are considerably faster, as they 

rely on matrix multiplications which take milliseconds to perform rather than minutes. These are 

“forward” methods, rather than “inverse” methods, as are the traditional tomographic methods5-10. 

Unlike inverse methods, the two linear regressive methods presented rely on the adequacy and 

quality of the forward model used to generate the regressions. The advantage is that adopting a 

forward method greatly reduces the space of possible solutions to those which are allowed by the 

training set used, thereby reducing the likelihood for artefacts in the reconstructions. In the case of 

neutron tomography, as can easily be seen in figures 2.f) and 6.f), the solutions are fairly featureless 

and characterised by distributions that are peaked in the plasma core. This is appropriate, as fusion 

reactivities drop sharply with plasma temperature, leading to neutron emissivities decreasing 
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sharply with distance from the plasma centre. There is generally no need to allow for flat or hollow 

profiles or for isolated emissive regions, as in the case of electromagnetic radiation measured using 

bolometer cameras22-24. It remains to be seen how tolerant the methods are to using different sets 

of distributions, e.g. ad hoc sets not produced by ASCOT/AFSI. A set not representative of the 

physical reality in the plasma is likely to lead to incorrect and biassed reconstructions. These would 

probably be recognisable by large residuals, triggering a search for a more suitable training set, or 

the adoption of a different method. Further work, which is beyond the scope of this research note, 

should aim at exploring the tolerance to less than adequate forward models, as well as to comparing 

them with other reconstruction methods. 
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Figure captions 

Fig.1. Geometry of viewing lines of the JET neutron cameras. The contour lines correspond to 

the DT neutron emission distribution from an ASCOT/AFSI simulation of DT pulse number 

99527. 

Fig.2. a-d) Regressed vs original emissivities from ASCOT/AFSI for 4 voxels along a vertical line 

through the middle of the JET vessel. 𝛔 is the standard deviation of Fij - Eij. e) vertical cut at R= 

3.04m in normalised vertical coordinates for all reconstructed emissivities f)  vertical cut for all 

emissivity distributions having been used to create the inversion matrix. 

Fig.3. Relative residuals for all of the reconstruction and all of the 19 channels, superimposed. The 

horizontal axis refers to the sample number. 

Fig.4. Correction factor applied to the experimental neutron camera count rates as an ad-hoc 

calibration. 

Fig.5. Regressive tomographic reconstructions obtained with an empirical calibration of the 

channel-to-channel count rates. left: vertical slice, right: horizontal slice 

Fig.6. a-d) Direct regressive reconstructions of emissivity profiles versus the original emissivities 

calculated by ASCOT (horizontal slice at Z=0.4 m ). e) full reconstructed distributions f) original 

distributions. In e) and f) the horizontal axis is in normalised vertical coordinates. 
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