Abstract

Motor skill learning is a crucial process at all ages. However, healthy aging is often accompanied by a reduction in motor learning capabilities. This study characterized the brain dynamics of healthy older adults during motor skill acquisition and identified brain regions associated with changes in different components of performance. Forty-three subjects participated in a functional magnetic resonance imaging study during which they learned a sequential grip force modulation task. We evaluated the continuous changes in brain activation during practice as well as the continuous performance-related changes in brain activation. Practice of the motor skill was accompanied by increased activation in secondary motor and associative areas. In contrast, visual and frontal areas were less recruited as task execution progressed. Subjects showed significant improvements on the motor skill. While faster execution relied on parietal areas and was inversely associated with frontal activation, accuracy was related to activation in primary and secondary motor areas. Better performance was achieved by the contribution of parietal regions responsible for efficient visuomotor processing and cortical motor regions involved in the correct action selection. The results add to the understanding of online motor learning in healthy older adults, showing complementary roles of specific networks for implementing changes in precision and speed.

Details