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Abstract—When spatially shared among multiple tenants, field-
programmable gate arrays (FPGAs) are vulnerable to remote
power side-channel analysis attacks. Using carefully crafted on-
chip voltage sensors, adversaries can extract secrets (e.g., en-
cryption keys or the architectural parameters of neural network
accelerators) from collocated tenants. A common countermeasure
against power side-channel attacks is hiding; in hiding, the
goal is to introduce noise and worsen the signal-to-noise ratio
visible to the attacker. In a multitenant FPGA setting, hiding
countermeasures can be implemented with an active fence placed
between tenants. Previous work demonstrated the effectiveness
of active fences built using NAND-based ROs. We enhance the
state-of-the-art active fence implementation with novel wire-based
power wasters, at no increase in resource overhead. Compared to
an RO-based fence, our active wire fence makes the side-channel
attack considerably more difficult. When using the RO fence to
protect an AES-128 cryptographic module, we recovered all the
bytes of the secret key with one million sensor traces, on average.
In comparison, when using our novel wire fence, more than six
million traces (an improvement of at least 6×) were required to
recover all the bits of the secret key.

Index Terms—FPGA, multitenancy, on-chip sensors, power
side-channel attacks, protection

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have a highly
parallel, programmable hardware architecture that can imple-
ment and accelerate various applications. In recent years, the
flexibility and energy efficiency of FPGAs has led to their
integration into embedded devices, datacenters, and the public
cloud. Today, many cloud-service providers (e.g., Amazon
AWS, Microsoft Azure, Alibaba) offer FPGAs as remotely-
accessible hardware acceleration instances [1]–[4]. Sharing
of computational resources among multiple remote users,
i.e., multitenancy, is a common approach for improving the
efficiency of datacenter resource provisioning. With FPGAs in
the cloud, considerable research efforts are put into extending
multitenancy to FPGAs as well [5], [6].

Multitenancy on FPGAs presents a unique set of secu-
rity challenges that cannot be fully addressed with solutions
involving physical or logical isolation between tenants [7].
In spatially shared FPGAs, the tenants inevitably share the
power distribution network (PDN), which enables a variety
of electrical-level exploits: power side-channel attacks, denial-
of-service attacks, fault-injection attacks, and covert commu-
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nication [8]. In addition, the fine and low-level hardware
control over the FPGA logic and wiring enables crafting
malicious circuits (e.g., on-chip sensors for measuring shared
supply voltage fluctuations [9]) that allow adversaries to
execute attacks remotely. Recent work demonstrated remote
power side-channel analysis (SCA) attacks on shared FPGA
systems, including correlation power analysis (CPA) attacks
on the Advanced Encryption Standard (AES) cryptographic
modules [10]–[12], and power SCA attacks on neural network
accelerators [13]–[17]. These attacks highlight the need for
protecting FPGA users in a multitenant setting.

To protect against power SCA attacks on shared FPGAs, re-
searchers proposed hiding techniques (i.e., reducing the signal-
to-noise ratio), masking of victim operations, and detecting
and preventing the deployment of voltage-sensing circuits [18],
[19]. To implement hiding, Krautter et al. designed an active
fence [20] consisting of ring oscillators (ROs), and placed it
between the victim (in their case, an AES module) and the
rest of the FPGA. The advantage of active fences is that they
are independent of the victim’s application and do not require
modifications to the victim’s design. Krautter et al. showed that
the RO fence, of approximately the same size as the victim
AES circuit, when activated with a pseudo-random number
generator (PRNG), leads to a considerably higher attack effort:
the number of traces needed to break a byte of the secret key
using CPA increased by approx. 60×.

On FPGAs, noise can be generated in many ways. Here,
we present a novel active fence design, offering better area
efficiency and power side-channel security than the RO-based
fence. We construct wire-based power wasters which are easy
to replicate to build an active wire fence of arbitrary size.
Similarly to previous work, we used a PRNG to activate
the fence. To evaluate the effectiveness of the fence against
a power side-channel attack, we collected millions of side-
channel traces while an AES-128 cryptographic core was
performing encryption. Our results show that, without any
fence, the entire 128-bit key could be broken with approx.
30 thousand traces. With an RO fence, that number increased
to one million traces, on average. Finally, with our novel active
wire fence, more than six million traces (an improvement
of 6×) were required to recover all the bits of the secret
key. These results highlight the importance of developing
alternative power wasters for building effective active fences.
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II. BACKGROUND AND RELATED WORK

A. Power Side-Channel Attacks on Shared FPGAs
In remote power SCA attacks on FPGAs, the two most

commonly used on-chip voltage-fluctuation sensors are time-
to-digital converters (TDCs) and frequency counters. Unlike
hardened FPGA system monitors, these sensors measure volt-
age fluctuations indirectly, through logic delay changes. The
primary component of a TDC is a tapped delay line, commonly
implemented as a fine-delay chain of CARRY elements. In
frequency counters, the basic element is a ring oscillator.
As the signal propagation delay changes with the supply
voltage, the readings of the TDC and RO-based sensors also
change. Reading the sensor output at a constant rate allows for
reconstructing power side-channel traces, the starting point of
a power SCA attack. RO-based sensors require few resources
but a relatively long time to make a single measurement [21].
In comparison, TDC sensors can detect voltage variations in
intervals as short as a few nanoseconds [9]; hence, TDCs are
more suitable for remote power SCA attacks where a high
sampling rate is needed.

Zhao et al. successfully used RO sensors for a simple power
analysis (SPA) attack against an RSA cryptomodule [22]. The
same year, Schellenberg et al. demonstrated a successful CPA
attack on an AES cryptographic module using traces from
a TDC sensor [23]. Glamočanin et al. refined and ported the
TDC sensor to an Amazon EC2 F1 cloud instance to showcase
a successful CPA attack against an AES core [12]. Gravellier
et al. used TDC sensors to execute a CPA attack against an
AES bare-metal code running on the ARM CPU of an AMD
Zynq-7000 SoC [11]. More recently, several research groups
demonstrated successful reverse-engineering attacks against
machine learning accelerators [13]–[17], showing that shared
FPGAs are vulnerable to more than one type of power SCA
attacks and, consequently, require proper mitigation techniques
to enhance side-channel security.

B. Power Wasters
As another security vulnerability in shared FPGAs, re-

searchers investigated the consequences of excessive power
wasting. Gnad et al. [24] demonstrated that a large number
of ROs activated in a repetitive pattern could reset the FPGA,
resulting in a denial-of-service (DoS) attack. Mahmoud and
Stojilović [25] showed that careful activation of ROs could
introduce faults in neighboring circuits. Consequently, some
cloud service providers, such as Amazon AWS, do not allow
combinational loops in FPGA designs. As an alternative,
researchers investigated power wasters free of combinational
loops [26]–[28], typically less effective than ROs. In the
active fence scenario, power wasters generate noise to re-
duce the signal-to-noise ratio (SNR); the noise must not be
excessive, as the victim needs to operate correctly in its
presence. If the fence is deployed by cloud service providers,
both synchronous and combinational power wasters can be
considered [20], and their number must be limited.

The most relevant power wasters to our work are the
NAND-based ROs, used to build and evaluate an active fence

in previous work [20]. The NAND-based ROs consist of a
single look-up table (LUT), programmed as a NAND gate,
where the output is connected back to one of the two inputs,
while the free input acts as an enable signal. When the enable
signal is active, the RO oscillates at a high frequency and
draws current. An enhanced version of a NAND-based RO,
ERO, was later proposed by La et al. and used to perform
a remote DoS attack [28]. In the case of EROs, the output
of one RO is connected to an unused LUT input of another
nearby RO, thereby enhancing the effects of the switching
activity thanks to the capacitance of the local interconnect.
As we will later show, unlike EROs, our wire-based wasters
primarily use longer, global wiring to enhance the effects of
the RO switching.

C. Active Fences

Following the discovery of remote power SCA attacks in
multitenant FPGAs, Krautter et al. [20] presented a new mit-
igation technique: active fencing. This hiding countermeasure
employs ROs to generate noise in the PDN and, consequently,
reduce the SNR measured by the attacker. The fence was
designed as a set of RO banks (where each contains an equal
number of ROs and can be independently enabled) placed
between the victim and the attacker. The output signals of a
PRNG or a TDC were used to control the fence activation. The
result was a significant increase in the number of traces needed
for a successful attack. Such a fence is easily portable and
does not depend on the underlying victim design. However, the
increased security comes at the cost of FPGA resources used
by the fence. In previous work, the fence was dimensioned to
occupy approximately the same number of slices as the victim
(i.e., incurring 100% area overhead) [20]. We adopt a similar
approach when comparing the efficiency of the wire fence to
previous work: we implement a fence having the same type
of ROs (NAND-based), use a PRNG to independently enable
parts of the fence, and size the fence to occupy approximately
the same number of resources as the victim to be protected.

III. THREAT MODEL

Our work adopts the threat model commonly used in the
literature on attacks in shared FPGAs [10], [12], [20], [22].
For security reasons, the users of the multitenant FPGA are
physically and logically separated [29]. We assume an attacker
attempting to impact the system’s confidentiality by extracting
secret information through the power side channel enabled by
the shared PDN. In this threat model, the adversary can use a
region of the FPGA to instantiate TDC sensors and measure
the voltage changes caused by the victim, where the victim
performs AES encryption with a secret key. The ciphertext is
sent over a public channel accessible to the attacker, allowing
them to execute a power analysis attack using the sensor traces
and the ciphertext. Finally, the fence is implemented by the
cloud service provider; therefore, the power wasters do not
have to conform to security checks such as combinational loop
detection.



IV. ACTIVE WIRE FENCE

In this section, we present our design of a wire-based power
waster and the architecture of the active wire fence.

A. Wire-Based Power Waster

Our unit wire-based power waster consists of three com-
ponents: a driver, a wire, and a sink. The driver acts as a
source: it creates a high-frequency signal to drive the wire.
What we refer to as the wire is, in fact, a connected sequence
of FPGA routing resources (i.e., local and global wires, and
routing multiplexers); when driven by the toggling signal, the
wire consumes power and introduces noise. Finally, the sink
is a termination point of the wire waster needed to prevent the
FPGA compilation tool from optimizing it away.

To implement the source, we opt for a high-frequency signal
generator: an RO implemented as a two-input NAND gate
(occupying one LUT). Other pulse generators available in the
literature, such as glitch generators [27], require considerably
more resources than one LUT, thus negatively impacting the
area overhead of the entire fence. When enabled to generate a
high-frequency signal, the sources of the wire fence contribute
to the overall noise [24]. In our wire waster, the sink is
implemented as a buffer (one LUT). It, too, contributes to
the overall power consumption of the wire waster, because
its input is driven by a toggling signal. It can be noted that
we do not attempt to maximize the contribution of the source
or the sink, as we opt for the simple and resource-efficient
implementations of the two terminal points of our wire waster.
This approach facilitates the comparison with the RO-based
fence and allows us to better estimate the impact of wires on
the fence performance.

To ensure the use of global routing resources (i.e., wires
spanning one or more FPGA slices), we place the sources and
sinks sufficiently apart, and constrain them to the same FPGA
column. After placing the source and sink of a power waster,
we let the FPGA compilation tool complete the routing. To
minimize the number of FPGA logic resources used by the
fence, we do not impose any constraints on the signal routes
(e.g., we do not force the routes to pass through LUTs or
transparent latches at specific locations [27], [30]).

B. Building a Wire Fence

Before explaining the implementation of the wire fence, let
us look at Fig. 1, illustrating a fence built solely from ring
oscillators [20]. The ROs are organized in groups referred to
as banks, which, in our implementation, have two configurable
parameters: density (the number of ROs per FPGA slice) and
size (the total number of slices occupied by the ROs). Hence,
the total number of ROs in the fence equals the number of
banks times the size and density. All ROs in the bank are
controlled by the same enable signal, whereas each bank can
be controlled independently from another. The fence is built
by tiling multiple banks. As shown in Fig. 1, for the given
area budget of the fence, we place the banks in column-major
order, connecting one enable signal to each bank.
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Fig. 1. RO fence occupying 32×16 FPGA slices; four LUTs are used per
slice. Four vertically neighboring slices form a bank. In gray, bank with index
zero. Each bank is controlled by a dedicated enable signal.
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Fig. 2. Wire fence of 32×16 FPGA slices; four LUTs are used per slice.
The top region is occupied by sources (ROs). The bottom region is reserved
for sinks (buffers). The distance between the two regions is adjustable. Two
vertically-neighboring slices form a bank. Each bank is controlled by a
dedicated enable signal.

Our wire fence is shown in Fig. 2. The sources (ROs) are
placed at the top; the sinks (buffers) are at the bottom. The



distance parameter D corresponds to the number of unused
slices between the regions occupied by the sources and the
sinks. Similarly to the RO fence, the sources are organized in
banks, characterized by their density and size, and placed in
column-major order. The sources are enabled the same way
as the blocks in the RO-fence (Fig. 1), with one enable signal
per bank. To ensure the distance between a source and its
corresponding sink (in terms of the number of slices vertically
between them) is constant, we order the banks of sinks in the
same way as their corresponding sources.

In the experimental evaluation (detailed in the next section),
similar to Krautter et al. [20], we set the size of the fences to
match the resource utilization of the design under protection.
In our case, that value amounts to 2048 LUTs. Hence, the
wire fence has, in total, 32 rows (16 for the sources and 16
for the sinks) and 16 columns of slices. Four LUTs are used
per slice. Sources are grouped in 128 banks, each containing
two slices (i.e., eight LUTs) and enabled independently. For
a fair comparison, we implement the RO fence with the same
resource utilization, resulting in twice as many ROs than in
the wire fence. Fig. 1 illustrates the RO-fence implementation:
128 banks, each having four slices with four LUTs, organized
in 32 rows and 16 columns.

V. EXPERIMENTAL SETUP

For evaluating the fences, we choose Sakura-X [31], a board
specially designed for power SCA evaluation and commonly
used in research on attacks in both standalone and multitenant
FPGAs [10], [15], [23]. It has two AMD FPGAs: Kintex-7 and
Spartan-6. The former, also referred to as the target FPGA,
houses the adversary and the victim. The latter, referred to as
the control FPGA, aids in reducing unwanted noise by running
the communication protocol between the target FPGA and the
host machine. For the FPGA design compilation, we use AMD
Vivado 2018.3.

Fig. 3 gives an overview of the system architecture, con-
sisting of four main components. The open-source AES-128
running at 20 MHz is the victim design requiring protec-
tion [32]. The attacker’s TDC sensor and FIFO, both running
at 200 MHz, serve to record the side-channel traces. The
attacker and the victim are physically and logically separated,
according to the threat model. The fence is placed between
the victim and the adversary. It is directly controlled with a
128-bit PRNG, implemented using a 7-bit Fibonacci linear-
feedback shift register (LFSR) [33]. The LFSR generates a
pseudorandom value from zero to 127, which is then decoded
in hardware, and enables the corresponding number of fence
banks. Finally, the controller is in charge of sending the
plaintext and receiving the ciphertext, enabling or disabling
the fence, calibrating the sensor, triggering the trace recording,
and offloading the traces to the host machine.

The design floorplan is shown in Fig. 4. The attacker and
the victim reside in separate FPGA regions. The sensor is
placed at the edge of the attacker’s region (top right), close to
the victim, simulating a worst-case attack scenario. The active
fence is located towards the edge of the victim’s region (top
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Fig. 3. System block diagram.
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Fig. 4. Design floorplan, as seen from AMD Vivado.

left). The controller is placed away from the remaining logic,
to minimize the noise.

To evaluate the efficiency of our active wire fence, we record
sensor traces for three designs: (1) RO fence disabled, (2) RO
fence enabled, and (3) wire fence enabled in place of the RO
fence (using a different bitstream). For all three designs, we
collect traces with a fixed key and chained plaintext: starting
with an initial plaintext, we use the resulting ciphertext as the
next plaintext. With the obtained traces, we run the CPA attack
on the ninth AES round in steps and compute two metrics: the
key rank metric of each byte of the 128-bit secret key [34],
and the key rank estimation metric [35].

Using the key ranks obtained for all 16 bytes of the key,
we compute the following additional metrics. First, we find
the number of bytes broken when using all traces; this metric



shows how successful an attack is in terms of broken bytes.
Second, with all traces, we find the number of bytes for which
the key rank is below or equal to 25, 50, and 100; this metric
shows the key rank trends and how many bytes the attacker
was close to or managed to break. Finally, we find the number
of sensor traces for which the rank of (at least) one of the
key bytes drops to zero and stays at zero for at least 10k
traces (Metric-10k) and 30k traces (Metric-30k). These last
two values will tell us how many traces are required to break
at least one byte of the secret key.

However, evaluating the security of the individual key bytes
does not necessarily reflect the security of the entire key.
Therefore, especially when the key is not entirely broken,
we use the key rank estimation metric and the CPA attack
to estimate the remaining attack effort to break the entire key.
For example, without side-channel information, the key rank
estimation equals the entire key space, i.e., 2128 for AES-128.
Alternatively, when the entire key is recovered, the key rank
estimation drops to zero. In this paper, we use the histogram-
convolution-based algorithm of Glowacz et al. [35] where the
key rank is upper and lower bounded.

VI. RESULTS AND DISCUSSION

A. Voltage Drop Comparison

In our first experiment, we compare the voltage drops
caused by the following three types of power wasters: ROs,
EROs, and the wire wasters described in Section IV. We build
the RO fence from Fig. 1 (twice: once with ROs, once with
EROs) and the wire fence from Fig. 2 (setting the distance
parameter to zero). At the beginning of the trace recording, we
disable the fence. Then, we enable all wasters in the RO (ERO,
resp.) fence. In the case of the wire fence, we ran multiple
experiments: with 25%, 50%, 75%, and 100% of the wasters
enabled (by adjusting the number of active fence columns).
Results, visualized in Fig. 5, show that, for the same amount
of FPGA resources, EROs and wire wasters create significantly
more pronounced voltage drops than ROs. In fact, with only
50% of the resources of the RO fence, the wire fence can
create a voltage drop similar to that obtained with the fully
utilized RO fence. Additionally, we observe that EROs and
wire wasters create a similar voltage drop, even though the
ERO fence has twice the number of ROs. From this, we can
conclude that the long interconnects and the sinks used in our
wire fence compensate for the smaller number of ROs.

B. Varying Distance D

To evaluate the impact of the distance D (between the
source and sink regions in Fig. 2) on the voltage drop, we vary
D from 0 to 150 and record the sensor output once the fence
is enabled. In these experiments, the location of the sensor and
the sources remains fixed. Fig. 6 shows the results, together
with the RO-fence baseline from the previous experiment.

We can observe that as the distance D increases, the overall
voltage drop does change, but not as much as one would
expect. This result is rather unexpected because, if the distance
is significantly larger, the wires connecting the sources and
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Fig. 5. Sensor readings drop (i.e., voltage drop) caused by the activation of
RO/ERO wasters (dashed lines) compared to wire-based wasters (solid lines).
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Fig. 6. Voltage drop for different distances D (in slices) with wire-based
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Fig. 7. Wire delay from source to sink of a wire-based waster extracted using
Vivado 2018.3 static timing analysis, in the function of distance parameter D.

the sinks should intuitively be much longer. Thus, the voltage
drop should be proportionally more pronounced. To investigate
why this is not the case, we extract the routing delays from
the fence sources to the sinks using Vivado static timing
analysis, for each considered value of D. Fig. 7 shows the
average delays and their standard deviations. We observe that
the wire length, on average, increases proportionally with the
parameter D. However, for the fixed location of the attacker
sensor, higher D results in a greater distance between the
sensor and the sinks, reducing the effect of the noise generated
by a considerable part of the fence (the sinks and long
wire segments close to them). Given the limited impact of
increasing D on the voltage drop, and to minimize the area
occupied by the fence, we set D to zero in the remaining
experiments.

C. Power Side-Channel Attack Success

In our third and last set of experiments, we evaluate the
effectiveness of the wire fence against a power side-channel



attack in a multitenant FPGA setting. To that end, we collect
power side-channel traces for the following scenarios: (1) RO
fence disabled (three runs with 0.5 million traces), (2) RO
fence controlled by the PRNG (three runs with 0.5 million
and three runs with three million traces), and (3) wire fence
controlled by the PRNG (three runs with 0.5 million, three runs
with three million, and one run with eight million traces).

1) Three runs with half a million traces: The results of the
CPA attack with 0.5M traces are summarized in Table I. The
two central columns of the table show the number of traces
needed to break one byte of the secret key. Metric-10k (Metric-
30k, resp.) considers the byte broken when its key rank drops
to zero and stays at zero for at least 10k traces (30k traces,
resp.). The four right-most columns show the total number of
key bytes for which the rank is below a certain threshold (100,
50, 25, and 0) at the end of the attack.

From Table I, we can observe that without any fence, it
takes fewer than 10k traces to break the first byte of the key.
Moreover, a CPA attack with 0.5 million traces can break all
key bytes. With the RO fence, the number of traces needed
to break the first byte according to Metric-10k increases by
approximately 20×: 81–96k traces. According to Metric-30k,
which requires the key rank to be stable for an even longer
period of time, the number of traces to break a key byte
increased even further (at least 100k). Between six and nine
bytes were broken by the end of the attack. At the same time,
all but one key byte had a rank lower than 100, showing that
even though not all bytes were broken, their rank decreased

TABLE I
CPA ATTACK RESULTS WITH 0.5M TRACES.

Setup Run
Number of traces (103) Bytes with key rank ≤

Metric-10k Metric-30k 0 25 50 100

No fence
1 4 4 16 16 16 16
2 3 3 16 16 16 16
3 5 5 16 16 16 16

RO fence
1 89 115 9 14 15 15
2 81 100 7 11 13 15
3 96 190 6 15 15 15

Wire fence
1 N/A N/A 0 0 1 9
2 449 N/A 0 2 3 4
3 N/A N/A 0 0 1 5
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Fig. 8. Key rank estimation with 0.5M traces.

considerably. Looking at the wire-fence results at the end of
the attack, only four to nine key bytes had rank ≤100.

Next, we compute the key rank estimation metric [35].
The results for the three runs are aggregated and shown in
Fig. 8. Because the key rank estimation is upper and lower
bounded, we plot a shaded area indicating the entire range of
the key rank estimation (min, max) observed across the runs.
Additionally, the dashed and dotted lines correspond to the
average lower and upper bounds across the runs. From Fig. 8,
we see that, without a fence, the key is broken rather quickly:
after approx. 30k traces. With the RO fence, the log key rank
estimate drops to approx. 63, on average. With the wire fence,
the key rank estimation remains very close to its maximum
value. These results agree with those listed in Table I and
show that the wire fence achieves higher power side-channel
security than the RO fence when attacking with 0.5M traces.

2) Three runs with three million traces: Next, we repeat
the experiments, this time to collect 3M traces. The results
of the CPA attack are summarized in Table II. According to
Metric-30k, to break the first key byte with the wire fence,
approx. 2–10× more traces are required than with the RO
fence. Moreover, with 3M traces, all key bytes are broken
with the RO fence, while only seven to nine are broken with
the wire fence.

Fig. 9 visualizes the log key rank estimation metric. Ana-
lyzing the results with the wire fence, we find that the key
rank estimation dropped to 58 bits after 3M traces. With the
RO fence, this level was reached after approx. 0.4M traces
(7.5× faster). Lastly, with the RO fence, all key bytes were
broken after approx. 1M traces, showing again that the wire
fence provides superior power side-channel security.

TABLE II
CPA ATTACK RESULTS WITH 3M TRACES.

Setup Run
Number of traces (103) Bytes with key rank ≤

Metric-10k Metric-30k 0 25 50 100

RO fence
4 115 136 16 16 16 16
5 170 170 16 16 16 16
6 37 37 16 16 16 16

Wire fence
4 759 864 8 14 16 16
5 318 345 7 14 15 16
6 148 394 9 13 14 14
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Number of traces (×106)
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Fig. 9. Key rank estimation with 3M traces.
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Fig. 10. Key rank estimation for the wire fence with 8M traces.

3) One run with eight million traces: In our last experi-
ment, we collect 8M traces with the wire fence and plot the
key rank estimation results in Fig. 10. The key rank drops
to a value below three at approx. 6M traces and stays within
the [0, 6) bound for the subsequent 2M traces. Even though
not all 128 bits of the key are broken with 8M traces, the
key rank estimation stays sufficiently low for an attacker to
guess the remaining key bits with a limited effort. Therefore,
we can conclude that with the wire fence, at least 6M traces
were required to break the key: an improvement of at least 6×
compared to the RO fence.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a design of an active wire
fence and demonstrated its ability to provide protection against
remote power side-channel attacks in multitenant FPGAs. Our
wire fence uses FPGA routing resources to draw more current
and generate more noise than a fence built solely with ROs.
Comparing the voltage drop resulting from the activation of
the wire fence and the RO fence, we found that the RO
fence compares to the wire fence of approximately half the
logic resources. Therefore, when the space is limited, active
wire fences are a better alternative to their RO counterparts.
Comparing the side-channel attack effort to break a 128-
bit AES key, we found that at least 6× more traces were
required in a setup with a wire fence than with an RO fence.
Future work will investigate combining enhanced ROs with
the wire wasters, to further improve the efficiency and reduce
the resource overhead of the active wire fence.
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