
Regularization of polynomial networks for image recognition

Grigorios G Chrysos 1 Bohan Wang 1 Jiankang Deng 2 Volkan Cevher1

1LIONS, EPFL, Lausanne, Switzerland 2Huawei UKRD
[name.surname]@epfl.ch, jiankangdeng@gmail.com

Abstract

Deep Neural Networks (DNNs) have obtained impres-
sive performance across tasks, however they still remain
as black boxes, e.g., hard to theoretically analyze. At the
same time, Polynomial Networks (PNs) have emerged as
an alternative method with a promising performance and
improved interpretability but have yet to reach the per-
formance of the powerful DNN baselines. In this work,
we aim to close this performance gap. We introduce a
class of PNs, which are able to reach the performance of
ResNet across a range of six benchmarks. We demonstrate
that strong regularization is critical and conduct an exten-
sive study of the exact regularization schemes required to
match performance. To further motivate the regularization
schemes, we introduce D-PolyNets that achieve a higher-
degree of expansion than previously proposed polynomial
networks. D-PolyNets are more parameter-efficient while
achieving a similar performance as other polynomial net-
works. We expect that our new models can lead to an
understanding of the role of elementwise activation func-
tions (which are no longer required for training PNs). The
source code is available at https://github.com/
grigorisg9gr/regularized_polynomials.

1. Introduction
Deep neural networks (DNNs) are dominating the re-

search agenda in computer vision since the previous decade
owing to their stellar performance in image recognition [17,
24] and object detection [27, 28]. The design of tailored
normalization schemes [21], data augmentation [11] and
specific architectural blocks [19, 42] have further fostered
this trend. However, our theoretical understanding of DNNs
pales in comparison. There is little progress in making
DNNs interpretable, or a principled understanding of the
training dynamics or the role of the network depth.

So far, a handful of works have attempted to mitigate
that lack of understanding by designing principled archi-
tectures. Combining neural networks with the research on
kernel methods has emerged for designing principled archi-

Cifar-10 Cifar-100 STL-10 Tiny ImageNet ImageNet
Datasets

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Ac
cu

ra
cy

 (
%

)

ResNet18
Net

-PolyNets
D-PolyNets

10 100 10 200 1000
Class

32 * 32 32 * 32 96 * 96 64 * 64 224 * 224
Resolution

Figure 1. The proposed networks (R-PolyNets, D-PolyNets) en-
able polynomial networks to reach the performance of the power-
ful neural networks across a range of tasks.

tectures with guarantees. In [30], the kernel feature map of
the training data is used for achieving invariance to certain
transformations. Recently, high-performing kernels were
used for defining a principled architecture [40]. Using fixed
components such as wavelets has been considered for re-
placing the learnable convolutions [33]. Another approach
approximates the target function with a polynomial expan-
sion. Polynomial Nets (PNs) rely on capturing higher-order
correlations of the input data for expressing the output with-
out the use of elementwise activation functions [37]. De-
spite the progress in the principled design of networks, the
aforementioned works have yet to achieve a performance
comparable to standard baselines, such as the performance
of the seminal residual neural networks (ResNet) [17].

In this work, we aim to close the gap between well-
established neural network architectures and principled ar-

1

ar
X

iv
:2

30
3.

13
89

6v
1

 [
cs

.C
V

]
 2

4
M

ar
 2

02
3

https://github.com/grigorisg9gr/regularized_polynomials
https://github.com/grigorisg9gr/regularized_polynomials

chitectures by focusing on the PNs. In particular, we con-
centrate on the recent parametrization of Π-Nets [5] that
has outperformed the aforementioned principled methods.
We validate our hypothesis that the performance of PNs
can be significantly improved through strong regularization
schemes. To this end, we introduce a class of polynomial
networks, called R-PolyNets. In our study, we explore
which regularization schemes can improve the performance
of PNs. For instance, we find that initializations proposed
for neural networks [15, 36] are not optimal for PNs. Over-
all, our exploration enables R-PolyNets to achieve perfor-
mance on par with the (unregularized) ResNet, which is the
de facto neural network baseline.

To further motivate our regularization schemes, we
design a new class of polynomial expansions achieving a
higher total degree of expansion than previous PNs. In
R-PolyNets, the final degree of expansion is obtained by a
sequential concatenation of a series of lower-degree polyno-
mial expansions. That is, R-PolyNets concatenate N poly-
nomials of second-degree to obtain a 2N polynomial expan-
sion. Instead, we use outputs from previous polynomials in
the current expansion, increasing the previous total degree.
Our goals are twofold: a) transfer representations from
earlier polynomials, b) increase the total degree of poly-
nomial expansion. The proposed regularization schemes
are critical for training these dense polynomials, named
D-PolyNets. We showcase that D-PolyNets are more ex-
pressive than previously proposed polynomial expansions.
Overall, our contributions can be summarized as follows:

• We introduce a class of regularized polynomial net-
works, calledR-PolyNets, in sec. 3.

• We propose densely connected polynomials, called D-
PolyNets. D-PolyNets use multiple terms from a pre-
vious polynomial as input to the current polynomial re-
sulting in a higher-degree of expansion than previous
PNs (sec. 4).

• Our thorough validation in both image and audio
recognition illustrates the critical components for
achieving performance equivalent to vanilla DNNs.

2. Related work
2.1. Polynomial networks

Polynomial networks (PNs) capture higher-order inter-
actions between the input elements using high-degree poly-
nomial expansions. PNs have demonstrated a promis-
ing performance in standard benchmarks in image gener-
ation [5] and image recognition [4]. Beyond the empirical
progress, various (theoretical) properties of PNs have been
recently explored [34, 53]. In particular, PNs augment the
expressivity of DNNs [13], while they offer benefits in the

extrapolation or learning high-frequency functions [3, 47].
More importantly, the recent work of [12] highlights how
PNs can learn powerful interpretable models.

When PNs are combined with element-wise activation
functions, they can achieve state-of-the-art performance as
demonstrated in [1, 5, 18, 26, 44, 49, 50]. However, many of
the beneficial properties, such as the interpretability are not
applicable for these models. Therefore, the hybrid models
combining polynomial expansions with activation functions
are not the focus of our work, since they share similar draw-
backs to DNNs.

2.2. Regularization of neural networks

Deep neural networks (DNNs) can be prone to over-
fitting and regularization methods are widely used to mit-
igate this issue. Hence, we summarize below three cate-
gories of regularization techniques: a) data augmentation,
b) intermediate learned features and c) auxiliary loss terms.

Data augmentation: Data augmentation techniques are
often used in image recognition pipelines [11, 51, 52].
Mixup [52] uses a linear interpolation between two training
samples to improve generalization based on empirical vici-
nal risk minimization [2]. Cutout [11] removes contiguous
regions from the input images, generating augmented train-
ing dataset with partially occluded versions of existing sam-
ples. This enables the network to focus on non-dominant
part of the training sample. CutMix [51] combines the pre-
vious two augmentation methods by replacing a patch of the
image with a patch from another training image.

Feature normalization: Apart from the data augmenta-
tion, feature normalization enables deeper neural networks
to be trained. Dropout [41] is a prominent example of such
feature normalization techniques. Dropout randomly drops
units (and the corresponding connections) during training
to avoid co-adaptation of units. Despite its initial success,
dropout has not been widely used with convolutional neural
nets. Instead, dropblock [14] randomly drops a contiguous
region of a feature map. Additional regularization schemes,
such as average or max pooling, rely on the idea of aggre-
gating features from a local region of the feature map to
avoid the sensitivity to small spatial distortions [6].

Auxiliary loss terms: In addition to the classification
losses, additional loss terms, such as Tikhonov regulariza-
tion, can result in more stable learning and can avoid overfit-
ting [39] [Chapter 13]. Weight decay forces sparsity on the
weights by penalizing their norm. [8] proposes to decorre-
late the different units by encouraging the covariance matrix
of the features to be close to the identity matrix. For classifi-
cation problems, label smoothing can prevent the networks
from predicting the training examples over-confidently [31].

Despite the progress in regularization schemes and the
various theoretical connections, no consensus has been
reached over a single regularization scheme that performs

2

Table 1. Nomenclature on the symbols used in this work

Symbol Dimension(s) Definition
n,N N Polynomial term degree, total approximation degree.
r N Rank of the decomposition.
z Rd Input to polynomial expansion.
B, θ Ro×r,Ro Parameters in the decomposition.

H[n],J[n],K[n] Rd×r,Rk×r,Rω×r Parameters in the hierarchical decomposition.
Φ,Ψ Rr×r,Rr×r Regularization matrices.
∗ − Hadamard (element-wise) product.

well in all cases, so often a combination of regularization
schemes are used in modern image recognition pipelines.

3. Regularizing polynomial networks
In this section, we introduce R-PolyNets in sec. 3.1,

while we refer to the training techniques used in sec. 3.2.
Notation: Vectors (or matrices) are indicated with low-

ercase boldface letters e.g., x (orX). Tensors are identified
by calligraphic letters, e.g., X . The main symbols along
with their dimensions are summarized in Table 1.

3.1. Proposed model

One critical component for learning PNs is their regular-
ization [45]. To this end, we introduce a class of PNs, called
R-PolyNets. R-PolyNets include two regularization matri-
ces Φ,Ψ that can result in different normalization schemes
as we indicate below. We express an N th degree polyno-
mial expansion of the input vector z with a simple recursive
equation as follows:

yn =
(
ΦHT

[n]z
)
∗
(
ΨJT[n]yn−1 +KT

[n]k[n]

)
+ yn−1,

(1)

where
{
H[n],J[n],K[n],k[n]

}N
n=2

are trainable parame-
ters. Eq. (1) can be recursively applied for n = 2, . . . , N for
anN th degree polynomial expansion with y1 := z and y :=
ByN+θ. The output y captures high-order correlations be-
tween the input elements of z. Eq. (1) enables us to build a
polynomial expansion of arbitrary degree; we demonstrate
in Fig. 2 how this can be implemented for 3rd degree ex-
pansion. Each term in Eq. (1) has a specific purpose: a)
H[n]

T
z performs a linear transformation of the input, b)

J [n]
T
yn−1 + KT

[n]k[n] performs a linear transformation
of the output of the previous layer, as performed in regular
neural networks. The resulting two representations are then
multiplied element-wise, and a skip connection is added.

Our method allows for a variety of normalization
schemes through the matrices Φ and Ψ. For example, we
can use the matrix I −

−→
1
h (where I is the identity matrix,

h is the dimensionality of the vector being multiplied, and
−→
1 is a matrix of ones) to subtract the mean from each ele-

M
ul

M
ul

M
ul

Figure 2. Schematic illustration of the R-PolyNets for third-
degree expansion with respect to the input z (sec. 3.1). The ‘Mul’
abbreviates the Hadamard product.

ment, effectively creating a zero-mean vector. This extends
the previously proposed Π-Nets and can recover it as a spe-
cial case when Φ and Ψ are both identity transformations.
However, we emphasize that normalization is necessary in
our experimentation, making our method a significant ex-
tension of the previously proposed PNs in achieving perfor-
mance on par with DNNs. We develop the details of the
normalization schemes used in practice in the next section.

We provide an additional model for our new method
in case a different underlying tensor decomposition is se-
lected, which is discussed in sec.B. It is worth noting that,
in practice, convolutions are often used instead of the full
matrices in Eq. (1). This aligns with the implementation
choices of our prior works [4, 5].

3.2. Training Configuration

We propose a number of techniques that enforce stronger
regularization of the PNs. The regularization schemes are
divided into three categories: initialization (sec. 3.2.1),
normalization (sec. 3.2.2) and auxiliary regularization
(sec. 3.2.3). The precise details of each training configu-
ration are offered in the supplementary, e.g., in Table 9.

3.2.1 Initialization scheme

The initialization of the weights is a critical topic in deep
(convolutional) neural networks [16]. The proposed ini-
tialization schemes are developed either for fully-connected
neural networks [15] or for convolutional neural net-
works [16]. However, PNs do not belong in the aforemen-
tioned classes of neural networks, thus we need a new ini-

3

tialization scheme. In our preliminary experiments, we no-
ticed that the high-degree polynomial expansions are sensi-
tive to the initialization scheme, and values closer to zero
work better. We propose a simple initialization scheme be-
low and defer the theoretical analysis on the initialization
schemes of PNs to a future work.

Technique 1 Let

H[n],J[n],K[n] ∼ N
(
0, σ2I

)
with σ =

√
D

Mn
, (2)

for n = 1, . . . , N with Mn the total number of polynomial
parameters of nth order. In other words, we initialize poly-
nomial parameters with zero-mean gaussian distribution. In
practice, we choose D = 16.

3.2.2 Normalization scheme

Normalization is a core component for training of DNNs,
while we expect normalization to have a significant role in
enabling training PNs. Despite the popularity of batch nor-
malization (BN) [21], BN normalizes the features across a
batch of samples, which might not be ideal for high-degree
expansions. Instead, instance normalization (IN) [43] com-
putes the mean and variance for each sample and each chan-
nel to normalize the features. However, a combination of
both can be beneficial for our goal.

Technique 2 We adopt the normalization scheme IBN,
which combines instance normalization (IN) and batch nor-
malization (BN) for PNs [35]. For each block in the first
three layers, we apply IN for 0.8 · C (number of chan-
nels produced by the convolution) channels, and BN for
the other channels, after the first convolution. In the final
layer, we only implement batch normalization to preserve
discrimination between individual representations in the la-
tent space. Note that the parameters Φ,Ψ of Eq. (1) are
implemented using these normalization schemes.

3.2.3 Auxiliary regularization schemes

Three auxiliary regularization schemes are used: one auxil-
iary loss, one feature augmentation, and one feature regular-
ization. Following the convention of Π-Nets, the network
consists of product of polynomials of the form of Eq. (1).
That is, the output of each polynomial is used as the input to
the next polynomial, which results in a higher degree poly-
nomial expansion, increasing the significance of regulariza-
tion. We utilize Label smoothing [31], DropBlock [14] and
max pooling. Max pooling is applied after each polynomial
expansion except the final one.

Technique 3 We adopt Label smoothing [31], Drop-
Block [14] and max pooling in the proposed framework.
Label smoothing is applied on the labels and Dropblock on

Mul

Mul

Mul

Mul

Previous polynomials

Figure 3. Schematic illustration of D-PolyNets. On the left the
overall structure is presented, while on the right a single third-
degree polynomial using the structure ofD-PolyNets is visualized.
The red arrows depict the newly added connections with respect to
previous polynomial expansions.

the feature maps. We add max pooling layer after each in-
dividual polynomial expansion (of the form of Eq. (1)) in
R-PolyNets.

4. Dense connections across polynomials

To showcase the representative power of the regular-
ized polynomial expansion, we propose a new type of PNs,
called D-PolyNets. In the polynomial networks proposed
above (or in the literature), a sequence of polynomial ex-
pansions is used with the output of ith polynomial being
used as the input of (i + 1)th polynomial. Adding N such
second-degree polynomials results in an overall polynomial
expansion of degree 2N .

In D-PolyNets, we enable additional connections across
polynomials which results in a higher degree of expansion.
To achieve that we enable outputs from the ith polynomial
being used as a) input to the next polynomial, b) as a term
in the Hadamard products of a next polynomial. Let us as-
sume that each polynomial includes a single recursive step
with potentially multiple terms. In Eq. (1), taking a single
recursive step (i.e., n = 2) includes a Hadamard product
between a filtered version of the input z and a filtered ver-
sion of the previous recursive term y1. On the contrary,
in D-PolyNets, a single recursive term includes both of the
aforementioned terms along with the outputs from previous
polynomials. The schematic in Fig. 3 depicts D-PolyNets
assuming each polynomial includes a single recursive step.
This can be trivially extended to any number of recursive
steps, while each polynomial can also rely on a different
tensor decomposition.

If we denote as y[i] the output of the ith polynomial, then

4

the recursive formulation of D-PolyNets based on (1) is the
following expressions:

y[i]
n = y

[i]
n−1+(

ΦHT
[n]z

)
∗
(
ΨJT[n]yn−1 +KT

[n]k[n]

)
∗i−1τ=1 y

[τ].
(3)

The total degree of expansion in Eq. (3) is higher than
the corresponding one in R-PolyNets or Π-Nets. This
makes the requirement for strong regularization imperative
to avoid exploding gradients.

Equation (1) enables us to build a regularized polynomial
expansion of arbitrary degree, yn. Apart from the training
techniques in sec 3.2, we propose below specific techniques
to enforce a strong regularization of D-PolyNets.

Training Configuration of D-PolyNets: Our prelimi-
nary experiments indicate that iterative normalization [20]
is beneficial in this case. Additionally, we include a learn-
able parameter ρτ which regularizes the contribution of
each previous polynomial in the current Hadamard product.

5. Experiments
In this section, we evaluate the proposed models across

a range of six in image recognition and one standard dataset
in audio recognition. We describe below the datasets, and
the setup, then we conduct an ablation study to evaluate
the contribution of different techniques in sec. 5.1. Sequen-
tially, we conduct the main body of the experiments in vari-
ous widely-used datasets in sec. 5.2 and sec. 5.3. We extend
beyond the standard image classification tasks, with audio
classification and fine-grained classification in sec. 5.4 and
sec. 5.5 respectively. Details on the datasets along with ad-
ditional experiments (including an experiment with deeper
networks and the runtime comparison in FLOPs) are de-
veloped in sec. D. The results in the supplementary verify
the empirical findings below, while the the proposed R-
PolyNets has a similar number of FLOPs as the Π-Nets,
e.g., in Table 21.

Training details: Each model is trained for 120 epochs
with batch size 128. The SGD optimizer is used with initial
learning rate of 0.1. The learning rate is multiplied with a
factor of 0.1 in epochs 40, 60, 80, 100. For Tiny ImageNet,
the learning rates of R-PolyNets and D-PolyNets are
multiplied by 0.92 every epoch. For data augmentation we
adopt random cropping with 4-pixel padding and horizontal
flipping. Unless mentioned otherwise, each experiment
is conducted 5 times and the average and the standard
deviations are also reported.

Compared methods: The family of Π-Nets is the main
baseline we use in our comparisons. Namely, the Π-Nets
use the structure of ResNet18, where each block from the
original ResNet is converted into a second-degree polyno-
mial expansion. As a reminder, Π-Nets do not use element-

50.0 55.0 60.0 65.0 70.0 75.0
Accuracy

V3

V2

V1

V0

Net

76.9

75.5

74.3

72.3

68.4

-PolyNets

Figure 4. Accuracy on Cifar-100. The symbols ‘V0’, ‘V1’, ‘V2’
and ‘V3’ denote R-PolyNets (IBN), R-PolyNets (IBN + max
pooling), R-PolyNets (IBN + max pooling + Dropblock) and R-
PolyNets (IBN + max pooling + Dropblock + Label smoothing)
respectively. Note that the normalization scheme adds a signifi-
cant improvement, and similarly the regularized loss (i.e., Label
smoothing) has also a considerable effect. Overall, training tech-
niques such as Dropblock and Label smoothing improve the test-
ing performance and obtain a result comparable to the baseline
model (vanilla ResNet18).

wise activation functions, and result in a high-degree poly-
nomial expansion. The recent PDC [4] is also added as a
baseline with many of its properties shared with Π-Nets.
We also report the accuracy of two further methods: (a) the
popular ResNet18, which is the de facto baseline in image
recognition, (b) hybrid Π-Nets, i.e., polynomial expansions
with element-wise activation functions. The last two meth-
ods are added as a reference (thus added with grayscale
color). Outperforming the vanilla ResNet18 or the hybrid
Π-Nets is not our goal in this work. We aim at demonstrat-
ing for the first time that polynomial expansions can be on
par with feed-forward neural networks.

5.1. Ablation study

Below, we conduct three ablation experiments. In the
first experiment, we showcase how the different compo-
nents proposed in sec. 3 can decrease the error in image
recognition. We choose Cifar-100 for this experiment. To
facilitate the presentation, we gradually insert different reg-
ularization components on Π-Nets to advocate for stronger
regularization techniques and highlight their benefit in the
final accuracy.

Fig. 4 summarizes the results of the experiment. No-
tice that the initialization plus the normalization scheme al-
ready makes a significant impact on the accuracy. Then,
max pooling, the feature augmentation and regularized loss
contribute to reduce overfitting and to achieve the final per-
formance. In the next experiments, we consider the last row
of Fig. 4 as the model that is used for the main comparisons.

5

Table 2. Accuracy of R-PolyNets (IBN + max pooling + Drop-
block + Label smoothing) and D-PolyNets (IBN + max pool-
ing + Dropblock + Label smoothing) with different initialization
schemes on Cifar-100. Note that D-PolyNets contains 7M param-
eters (down from the 11M ofR-PolyNets) and one block less than
R-PolyNets.

Model Initialization Accuracy

R-PolyNets
Xavier 0.765± 0.002
Orthogonal 0.765± 0.001
Kaiming normal 0.767± 0.003
Kaiming uniform 0.767± 0.004
zero-mean 0.769 ± 0.002

D-PolyNets
Xavier 0.761± 0.004
Orthogonal 0.764± 0.001
Kaiming normal 0.764± 0.002
Kaiming uniform 0.760± 0.004
zero-mean 0.767 ± 0.003

In the second experiment, we utilize well-established
initialization schemes, i.e., Xavier initialization [15], or-
thogonal matrix initialization [36], Kaiming initializa-
tion [16], and evaluate their performances on the proposed
R-PolyNets. The results in Table 2 indicate that previously
proposed initializations cannot perform as well in the R-
PolyNets. This is not contradictory to the studies of those
initialization schemes, since they were derived for the neu-
ral network structure, which differs substantially from the
structure of PNs.

In the third experiment, we vary the degree of polyno-
mials applied in R-PolyNets. The results in Fig. 5 indicate
that an increasing degree of polynomial expansion can in-
crease the accuracy. Given the correspondence between the
standard ResNet18 with 8 residual blocks and the 28 degree
polynomial, we use this 28 degree in the rest of the experi-
ments unless explicitly stated otherwise.

5.2. Image classification on smaller datasets

We conduct our main experimentation in the follow-
ing four datasets: Cifar-10, Cifar-100, STL-10, Tiny Im-
ageNet. Table 3 exhibits the accuracy of each compared
method across all datasets. The results indicate that the R-
PolyNets consistently outperform the baseline Π-Nets by a
large margin. In STL-10 the accuracy increases from 56.3%
to 82.8%, which is a 47.1% relative increase in the perfor-
mance. In Fig. 6 the test accuracy per epoch is depicted;
notice that the proposed method has a consistently higher
accuracy over the Π-Nets throughout the training. This con-
sistent improvement demonstrates the efficacy of the pro-
posed method. In Table 3, ResNet18 and hybrid Π-Nets
are added. R-PolyNets achieve a higher performance than
ResNet18 and hybrid Π-Nets on the three benchmarks of
Cifar-10, Cifar-100 and STL-10, while the three methods

22 24 26 28 210

Degree expansion

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

Ac
cu

ra
cy

 (
%

)

Cifar-10
Cifar-100

Figure 5. Accuracy ofR-PolyNets with varying degree polynomi-
als on Cifar-10 and Cifar-100.

perform on par on Tiny ImageNet. These observations ver-
ify our proposal that regularized polynomials can achieve
a similar performance with the standard baselines of neural
networks or hybrid Π-Nets.

Discussion on R-PolyNets: A reasonable question
would be whether the studied training techniques are unique
in enabling the training of R-PolyNets. Our preliminary
experiments with alternative methods indicate that differ-
ent combinations of training techniques can indeed perform
well. However, the proposed techniques are the only ones
we found that perform well in a range of datasets. To ver-
ify this, we conducted two experiments to assess alternative
training techniques ofR-PolyNets.

In the first experiment, we increase the weight decay to
trainR-PolyNets on Cifar-100. We notice that max pooling
and Label smoothing can preventR-PolyNets from overfit-
ting the train samples. However, the alternative regulariza-
tion schemes may also helpR-PolyNets achieve the similar
final performance. To verify this, we conduct another exper-
iment of training R-PolyNets with different regularization
techniques. The result is presented in Table 6.

As the results in Table 5 and Table 6 illustrate, differ-
ent combinations of regularization techniques can indeed
improve the test performance of R-PolyNets. Notice that
the CutMix and Stochastic depth can also help PN without
element-wise activation functions perform on par with es-
tablished DNNs. However, we find their behavior is dataset-
dependent, so we do not include them in our final scheme.

Discussion on D-PolyNets: The results in Table 3
demonstrate that D-PolyNets can match the test perfor-
mance of R-PolyNets, which both outperform the baseline
Π-Nets. However, D-PolyNets have 41.7% fewer parame-
ters. The representation power of D-PolyNets is improved,
because the total degree of polynomial expansion output

6

0 20 40 60 80 100 120
Epochs

0.0

20.0

40.0

60.0

80.0

100.0

Ac
cu

ra
cy

 (
%

)

ResNet18
Hybrid Net

Net
-PolyNets

D-PolyNets

(a) Cifar-10

0 20 40 60 80 100 120
Epochs

0.0

20.0

40.0

60.0

80.0

100.0

Ac
cu

ra
cy

 (
%

)

ResNet18
Hybrid Net

Net
-PolyNets

D-PolyNets

(b) Cifar-100

0 20 40 60 80 100 120
Epochs

0.0

20.0

40.0

60.0

80.0

100.0

Ac
cu

ra
cy

 (
%

)

ResNet18
Hybrid Net

Net
-PolyNets

D-PolyNets

(c) STL-10

Figure 6. Test error on (a) Cifar-10, (b) Cifar-100 and (c) STL-10. The highlighted region depicts the variance in the accuracy. Interestingly,
the proposed R-PolyNets and D-PolyNets outperform the Π-Nets from the first few epochs, while the absolute difference in the error is
not decreasing as the training progresses. Notice that the proposed training techniques enable R-PolyNets and D-PolyNets to be on par
with the ResNet18 baseline in STL-10 and even outperform the baselines in Cifar-100.

Table 3. Accuracy on Cifar-10, Cifar-100, STL-10 and Tiny Ima-
geNet. The symbol ‘# par’ abbreviates the number of parameters.
D-PolyNets containing 7M parameters. Note that R-PolyNets
and D-PolyNets without activation functions can outperform Π-
Nets without activation functions significantly on Cifar-10, Cifar-
100, STL-10 and Tiny ImageNet. Moreover, R-PolyNets and D-
PolyNets can match the performances of baseline models (e.g. Π-
Nets with activation functions and ResNet18) on Cifar-10, Cifar-
100 and STL-10.

Dataset Model # par Accuracy

Cifar-10
ResNet18 11.2M 0.944± 0.001
Hybrid Π-Nets 6.0M 0.944± 0.002
PDC 5.4M 0.909± 0.002
Π-Nets 11.9M 0.907± 0.003
R-PolyNets 11.9M 0.945± 0.000
D-PolyNets 7.1M 0.947± 0.002

Cifar-100
ResNet18 11.2M 0.760± 0.003
Hybrid Π-Nets 6.1M 0.765± 0.004
PDC 5.5M 0.689± 0.002
Π-Nets 11.9M 0.677± 0.006
R-PolyNets 11.9M 0.769± 0.002
D-PolyNets 7.2M 0.767± 0.003

STL-10
ResNet18 11.2M 0.741± 0.016
Hybrid Π-Nets 6.0M 0.775± 0.006
PDC 5.4M 0.681± 0.006
Π-Nets 11.9M 0.563± 0.008
R-PolyNets 11.9M 0.828± 0.003
D-PolyNets 7.1M 0.834± 0.006

Tiny ImageNet
ResNet18 11.3M 0.615± 0.002
Hybrid Π-Nets 6.1M 0.611± 0.004
PDC 5.5M 0.452± 0.002
Π-Nets 12.0M 0.502± 0.007
R-PolyNets 12.0M 0.615± 0.004
D-PolyNets 7.2M 0.618± 0.001

by D-PolyNets can reach z588 higher than that of Π-Nets
(z256) when they use at most 8 blocks each. The results val-

idate our assumption that D-PolyNets are more expressive.

5.3. ImageNet Classification

We conduct a large-scale classification experiment on
ImageNet [10]. We employ the mmclassification toolkit [9]
to train networks on the training set and report the 224×224
single-crop top-1 and the top-5 errors on the validation set.
Our pre-processing and augmentation strategy follows the
settings of the baseline (i.e., ResNet18). All models are
trained for 100 epochs on 8 GPUs with 32 images per GPU
(effective batch size of 256) with synchronous SGD of mo-
mentum 0.9. The learning rate is initialized to 0.1, and de-
cays by a factor of 10 at the 30th, 60th, and 90th epochs.
The results in Table 4 validate our findings on the rest of
the datasets and confirm that R-PolyNets are able to reach
the performance of standard neural network baselines. D-
PolyNets perform on par with R-PolyNets, while having a
slightly reduced number of parameters. The reduction in pa-
rameters is smaller than the respective numbers with smaller
scale datasets (e.g., Table 3) , which might indicate that fur-
ther regularization is required for D-PolyNets when scaled
to more complex datasets.

5.4. Audio classification

We perform an experiment on the Speech Commands
dataset to evaluateR-PolyNets and D-PolyNets on a distri-
bution that differs from that of natural images. The accuracy
for each model is reported in Table 7. Noticeably, hybrid Π-
Nets, R-PolyNets, D-PolyNets and ResNet18 can achieve
the accuracy over 0.975, which showcases the representa-
tive power of R-PolyNets and D-PolyNets on audio clas-
sification. By comparison, Π-Nets and PDC has accuracy
below 0.975.

7

Table 4. ImageNet classification results. We compare our models with state-of-the-art deep convolutional neural networks, Π-Nets and
hybrid Π-Nets. We report the top-1 and top-5 accuracy on the validation set of ImageNet as well as the number of parameters. Our models
are highlighted in gray. The symbol ‘# par’ abbreviates the number of parameters.

Model Image Size # par (M) Top-1 Acc. (%) Top-5 Acc. (%)

ImageNet-1K trained models
ResNet18 2242 11.69 69.758 89.078
ResNet18 without activations 2242 11.69 20.536 39.986
Hybrid Π-Nets 2242 11.96 70.740 89.548
Π-Nets 2242 12.38 65.280 85.958
R-PolyNets 2242 12.38 70.228 89.390
D-PolyNets 2242 11.36 70.090 89.424

Table 5. The impact of weight decay changes onR-PolyNets (IBN
+ max pooling + Dropblock + Label smoothing) trained on Cifar-
100.

Weight decay Accuracy
5e−4 0.766± 0.002
6e−4 0.768± 0.004
7e−4 0.768 ± 0.002

Table 6. Accuracy on Cifar-100. Note that Data aumentation (i.e.
Cutmix) can achieve the best test performance. Overall, these al-
ternative training techniques obtain a state-of-the-art result with
respect to the baseline model (ResNet18).

Models Accuracy
R-PolyNets (IBN + maxpooling + Dropblock + Label smoothing) 0.766± 0.002
R-PolyNets (IBN + maxpooling + Dropblock + CutMix) 0.771 ± 0.002
R-PolyNets (IBN + maxpooling + Stochastic depth + Label smoothing) 0.769± 0.002

Table 7. Accuracy on Speech Command. Note the Hybrid Π-Nets,
R-PolyNets, D-PolyNets and ResNet18 can achieve the same test
performance.

Dataset Model # par Accuracy

Speech command

ResNet18 11.2M 0.977
Hybrid Π-Nets 6.0M 0.977
PDC 5.4M 0.972
Π-Nets 11.9M 0.972
R-PolyNets 11.9M 0.977
D-PolyNets 7.2M 0.977

5.5. Fine-grained classification

We conduct one last experiment on fine-grained classi-
fication to validate further the regularization scheme of R-
PolyNets. We select the Oxford 102 Flowers dataset [32],
which contains 102 flower categories with 10 training im-
ages and 10 validation images annotated per class. The ac-
curacy for each model is exhibited in Table 8, where R-
PolyNets performs favorably to the vanilla ResNet18. As a
reminder, the goal of our experiments is not to demonstrate

state-of-the-art behavior, but rather to focus on achieving
performance at least comparable to the existing DNNs.

Table 8. Accuracy on Oxford 102 Flowers. NoteR-PolyNets and
D-PolyNets perform favorably to the vanilla ResNet18.

Dataset Model # par Accuracy

Oxford Flower

ResNet18 11.2M 0.877
Hybrid Π-Nets 6.1M 0.889
PDC 5.5M 0.885
Π-Nets 11.9M 0.826
R-PolyNets 11.9M 0.949
D-PolyNets 7.2M 0.941

6. Conclusion
In this work, we focus on Polynomial Nets (PNs) for im-

age recognition. We propose a new parametrization of PNs
that enables them to avoid reported overfitting issues using
custom initialization and normalization schemes. We show-
case how the proposed model, called R-PolyNets, extends
previously proposed PN models. Our thorough evaluation
with six datasets exhibits a significant improvement over
previously proposed PN models and establish R-PolyNets
as an alternative to existing DNNs. Furthermore, we in-
troduce D-PolyNets that leverage dense connections across
sequential polynomials to capture higher-order correlations.
Experimentally, D-PolyNets verify their expressivity over
alternative PNs. We believe that our work can encourage
further research in alternative models for image recognition.
Limitations: A deeper theoretical understanding of PNs is
needed, particularly regarding the link between the degree,
the regularization requirements and the generalization er-
ror. Concretely, each block of polynomials we are using is
composed of lower-degree polynomial expansions. We hy-
pothesize that the high-degree obtained from the sequential
polynomial blocks might be sufficient for image recognition
tasks, but might not suffice for harder tasks. In addition, the
theoretical study of the initialization or the regularization
requirements on PNs remains elusive.

8

Acknowledgements
We are thankful to the reviewers for their feedback

and constructive comments. This work was supported
by Hasler Foundation Program: Hasler Responsible AI
(project number 21043). This project has received fund-
ing from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement n° 725594 - time-
data).

References
[1] Francesca Babiloni, Ioannis Marras, Filippos Kokki-

nos, Jiankang Deng, Grigorios G Chrysos, and Stefanos
Zafeiriou. Poly-nl: Linear complexity non-local layers with
polynomials. In International Conference on Computer Vi-
sion (ICCV), 2021. 2

[2] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir
Vapnik. Vicinal risk minimization. In Advances in neural
information processing systems (NeurIPS), pages 416–422,
2001. 2

[3] Moulik Choraria, Leello Tadesse Dadi, Grigorios G Chrysos,
Julien Mairal, and Volkan Cevher. The spectral bias of poly-
nomial neural networks. In International Conference on
Learning Representations (ICLR), 2022. 2

[4] Grigorios G Chrysos, Markos Georgopoulos, Jiankang
Deng, Jean Kossaifi, Yannis Panagakis, and Anima Anand-
kumar. Augmenting deep classifiers with polynomial neu-
ral networks. In European Conference on Computer Vision
(ECCV), 2022. 2, 3, 5, 13

[5] Grigorios G Chrysos, Stylianos Moschoglou, Giorgos
Bouritsas, Yannis Panagakis, Jiankang Deng, and Stefanos
Zafeiriou. π−nets: Deep polynomial neural networks. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2, 3, 11

[6] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-
column deep neural networks for image classification. In
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3642–3649. IEEE, 2012. 2

[7] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011. 12

[8] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zit-
nick, and Dhruv Batra. Reducing overfitting in deep net-
works by decorrelating representations. In International
Conference on Learning Representations (ICLR), 2016. 2

[9] MMClassification Contributors. Openmmlab’s image clas-
sification toolbox and benchmark. https://github.
com/open-mmlab/mmclassification, 2020. 7

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255, 2009. 7, 12

[11] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 1, 2

[12] Abhimanyu Dubey, Filip Radenovic, and Dhruv Mahajan.
Scalable interpretability via polynomials. In Advances in
neural information processing systems (NeurIPS), 2022. 2

[13] Feng-Lei Fan, Mengzhou Li, Fei Wang, Rongjie Lai, and Ge
Wang. Expressivity and trainability of quadratic networks.
arXiv preprint arXiv:2110.06081, 2021. 2

[14] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:
A regularization method for convolutional networks. arXiv
preprint arXiv:1810.12890, 2018. 2, 4

[15] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), pages 249–256, 2010. 2, 3, 6

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In International Confer-
ence on Computer Vision (ICCV), pages 1026–1034, 2015.
3, 6

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4700–4708, 2017. 1

[20] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Itera-
tive normalization: Beyond standardization towards efficient
whitening. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4874–4883, 2019. 5

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 1, 4

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 11

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-
100 (canadian institute for advanced research). 11

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems (NeurIPS), pages 1097–1105, 2012. 1

[25] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7:7, 2015. 12, 13

[26] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-
tive kernel networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 510–519, 2019. 2

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2117–2125,
2017. 1

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In In-

9

https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmclassification

ternational Conference on Computer Vision (ICCV), pages
2980–2988, 2017. 1

[29] Julien Mairal. End-to-end kernel learning with supervised
convolutional kernel networks. Advances in neural informa-
tion processing systems (NeurIPS), 29, 2016. 13

[30] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia
Schmid. Convolutional kernel networks. Advances in neural
information processing systems (NeurIPS), 27, 2014. 1

[31] Rafael Müller, Simon Kornblith, and Geoffrey Hinton.
When does label smoothing help? arXiv preprint
arXiv:1906.02629, 2019. 2, 4

[32] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 8

[33] Edouard Oyallon, Stéphane Mallat, and Laurent Sifre.
Generic deep networks with wavelet scattering. arXiv
preprint arXiv:1312.5940, 2013. 1

[34] Chao Pan and Chuanyi Zhang. On the study of sample
complexity for polynomial neural networks. arXiv preprint
arXiv:2207.08896, 2022. 2

[35] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464–479, 2018. 4

[36] Andrew M Saxe, James L McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks. In International Conference on
Learning Representations (ICLR), 2014. 2, 6

[37] Terrence J Sejnowski. Higher-order boltzmann machines. In
AIP Conference Proceedings, volume 151, pages 398–403.
American Institute of Physics, 1986. 1

[38] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In International Conference on
Computer Vision (ICCV), pages 618–626, 2017. 13

[39] Shai Shalev-Shwartz and Shai Ben-David. Understanding
machine learning: From theory to algorithms. Cambridge
university press, 2014. 2

[40] James Benjamin Simon, Sajant Anand, and Mike Deweese.
Reverse engineering the neural tangent kernel. In Inter-
national Conference on Machine Learning (ICML), pages
20215–20231, 2022. 1

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 2

[42] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–2826,
2016. 1

[43] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 4

[44] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7794–
7803, 2018. 2

[45] Yan Wang, Lingxi Xie, Chenxi Liu, Siyuan Qiao, Ya Zhang,
Wenjun Zhang, Qi Tian, and Alan Yuille. Sort: Second-order
response transform for visual recognition. In International
Conference on Computer Vision (ICCV), pages 1359–1368,
2017. 3

[46] Pete Warden. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018. 12

[47] Yongtao Wu, Zhenyu Zhu, Fanghui Liu, Grigorios G
Chrysos, and Volkan Cevher. Extrapolation and spectral
bias of neural nets with hadamard product: a polynomial net
study. In Advances in neural information processing systems
(NeurIPS), 2022. 2

[48] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1492–1500, 2017. 13, 15

[49] Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova,
Jonathan T Barron, Thomas Funkhouser, Bharath Hariharan,
and Serge Belongie. Polynomial neural fields for subband
decomposition and manipulation. In Advances in neural in-
formation processing systems (NeurIPS), 2022. 2

[50] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,
Stephen Lin, and Han Hu. Disentangled non-local neu-
ral networks. In European Conference on Computer Vision
(ECCV), pages 191–207. Springer, 2020. 2

[51] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In International Conference on Computer Vision
(ICCV), pages 6023–6032, 2019. 2

[52] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions (ICLR), 2018. 2

[53] Zhenyu Zhu, Fabian Latorre, Grigorios G Chrysos, and
Volkan Cevher. Controlling the complexity and lipschitz
constant improves polynomial nets. In International Con-
ference on Learning Representations (ICLR), 2022. 2

10

Contents of the Appendix
The following sections are included in the appendix:

• A review of the Π-Nets is in sec. A.

• An alternative parameterization to R-PolyNets is in-
troduced in sec. B.

• A number of auxiliary tables and visualizations that
could not fit in the main paper are in sec. C.

• Lastly, a number of additional experiments are con-
ducted in sec. D.

A. Background: Π-Nets
Π-Nets is a family of architectures that are high-degree

polynomial expansions [5]. To reduce the parameters and
enable the implementation of the polynomial expansion,
coupled tensor decompositions are utilized. This results in
a simple recursive formulation that enables an arbitrary de-
gree of expansion. For instance, the N th degree polynomial
used for image recognition is expressed as:

y1 =
(
HT

[1]z
)
∗
(
KT

[1]k[1]

)
, (4)

yn =
(
HT

[n]z
)
∗
(
JT[n]yn−1 +KT

[n]k[n]

)
+ yn−1, (5)

y = ByN + θ, (6)

for n = 2, . . . , N . The symbol z is the input vec-
tor of the polynomial, y is the output. The parameters
B,θ, {H[n],J[n],K[n],k[n]}Nn=1 are trainable. The afore-
mentioned models can be used both in a hybrid setting (i.e.,
using polynomial expansion with element-wise activation)
functions or as polynomial expansions. In the latter case,
it was reported that despite the training accuracy reaching
100%, the testing accuracy was reduced when compared to
DNNs.

B. CCP-equivalent for the regularized model
Beyond the aforementioned model of sec. 3.1, by chang-

ing the assumptions behind the tensor decomposition, one
could retrieve another architecture. In this section, we
demonstrate how an alternative parametrization, called CCP
in [5] can be reformulated in our context. A coupled CP
decomposition (CCP) can be used for tensor parameters of
PNs. The recursive equation of CCP can be expressed as:

y1 = HT
[1]z,

yn =
(
HT

[n]z
)
∗ yn−1 + yn−1,

y = ByN + θ,

for n = 1, . . . , N , the parametersB ∈ Ro×r,H[n] ∈ Rd×r
for n = 1, . . . , N are trainable.

After introducing regularization matrix, Φ ∈ Rr×r, the
modified recursive relationships for n = 2, . . . , N can be
expressed as follows:

xn =
(
ΦHT

[n]z
)
∗ yn−1 + yn−1.

A schematic assuming a third order expansion (N = 3) is
illustrated in Fig. 7.

M
ul

M
ul

Figure 7. Schematic illustration of the regularized CCP (for third
degree approximation). Symbol ∗ refers to the Hadamard product.

C. Auxiliary tables and visualizations for ex-
periments on the main paper

Below we list the settings for experiments on the main
paper in the Table 9, Table 10 and Table 11. The Table 12
ablates the accuracy for different degree polynomials on
Cifar-10 and Cifar-100.

D. Additional experimental results
The following additional experimental results are added

below:

1. We evaluate the classification under limited training
data in sec. D.1.

2. We conduct an error analysis for best and worst per-
forming classes in sec. D.2.

3. In sec. D.3, an comparison with convolutional kernel
networks is conducted.

Below, we also add details on the datasets used in this
paper:

Datasets: The following datasets are used in our evalua-
tion:

1. Cifar-10 [22] is a popular image recognition dataset
consisting of 50, 000 training and 10, 000 testing im-
ages evenly distributed across 10 classes. Each image
is of resolution 32× 32.

2. Cifar-100 [23] includes images similar to Cifar-10.
Cifar-100 contains 100 object classes with 600 (500 for
training, 100 for testing) images annotated per class.

11

Table 9. Experimental settings in sec 5.2 and sec 5.3. Note the hyper-parameters of label smoothing are selected on the validation sets of
Cifar-10 and Cifar-100.

Cifar-10/Cifar-100/STL-10/Tiny ImageNet ImageNet
optimizer SGD SGD
base learning rate 1e− 1 1e− 1
weight decay 5e− 4 1e− 4
optimizer momentum 0.9 0.9
batch size 128 (64: Tiny ImageNet) 256
training epochs 120 100
learning rate schedule multi-step decay multi-step decay

exponential decay: R-PolyNets/ D-PolyNets (Tiny ImageNet)
label smoothing: R-PolyNets/D-PolyNets 0.1: (Cifar-10 and STL-10) 0.1

0.4: (Cifar-100)
0.6: (Tiny ImageNet)

Table 10. Experimental setting in sec 5.4.

Speech Command
optimizer SGD
base learning rate 1e− 1
weight decay 5e− 4
optimizer momentum 0.9
batch size 128
training epochs 120
learning rate schedule multi-step decay
label smoothing: R-PolyNets/D-PolyNets 0.1

Table 11. Experimental setting in sec 5.5.

Oxford 102 Flowers
optimizer SGD
base learning rate 1e− 1
weight decay 5e− 4
optimizer momentum 0.9
batch size 64
training epochs 120
learning rate schedule multi-step decay
label smoothing: R-PolyNets/D-PolyNets 0.4

3. STL-10 [7] contains 10 object classes that are similar
to Cifar-10. Each image is of resolution 96×96, while
the dataset contains 5, 000 images. This dataset is used
to evaluate the performance on images of higher reso-
lution, while using limited data.

4. Tiny ImageNet [25] contains 200 object classes, where
each image is of resolution 64 × 64. There are 500
images annotated per class, while the object classes
demonstrate a larger variance than the aforementioned
datasets.

5. Speech Commands dataset [46] includes 60, 000 audio
files; each audio contains a single word of a duration
of one second. There are 35 different words (classes)

Table 12. Accuracy of R-PolyNets with varying degree polyno-
mials on Cifar-10 and Cifar-100. Each block is a degree 2 polyno-
mial expansion, which results in the 26 expansion if we add 6 such
blocks. Blocks with higher-degree can also be used, however we
note that training those has not been as stable in our experience.

Dataset Degree polynomials Accuracy

Cifar-10

22 degree expansion 0.880± 0.003
24 degree expansion 0.924± 0.003
26 degree expansion 0.931± 0.001
28 degree expansion 0.945± 0.000
210 degree expansion 0.950 ± 0.002

Cifar-100

22 degree expansion 0.671± 0.003
24 degree expansion 0.732± 0.002
26 degree expansion 0.738± 0.002
28 degree expansion 0.769± 0.002
210 degree expansion 0.775 ± 0.002

with each word having 1, 500− 4, 100 recordings. Ev-
ery audio file is converted into a mel-spectrogram of
resolution 32× 32.

6. ImageNet Large Scale Visual Recognition Challenge
2012 (ILSVRC2012) [10] contains over one million
training images and 50, 000 validation images from
1, 000 object classes. Each image depicts natural
scenes and is annotated with a single object per image.

D.1. Image classification with limited data

We conduct an experiment on Cifar-10 in the presence
of limited data. The hyper-parameters in sec. 5.2 are used
unchanged, while only the number of training samples of
each class is reduced. The results in Table 13 exhibit that
R-PolyNets outperform Π-Nets in the presence of limited
training data. Notice that in the extreme case of only 50
samples per class, there is a relative increase of 50% from
the accuracy of Π-Nets. The goal of this experiment is to ex-
plore how Π-Nets and D-PolyNets perform in the presence

12

50 100 150 250 500 1000 2000 5000
Training examples

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Ac
cu

ra
cy

 (
%

)

-PolyNets
D-PolyNets

Figure 8. Image classification with limited data on Cifar-10. The
x-axis declares the number of training samples per class (log-axis).

of limited data. Indeed, Fig. 8 confirms that both networks
perform reasonably in the case of limited data.

Table 13. Accuracy of image classification with limited data on
Cifar-10. Note that R-PolyNets without activation functions can
outperform Π-Nets without activation functions significantly on
limited data of Cifar-10.

Training samples per class Π-Nets R-PolyNets
50 0.314± 0.005 0.484± 0.004

100 0.355± 0.010 0.583± 0.003

150 0.396± 0.010 0.640± 0.006

D.2. Error Analysis

We use our best-performing R-PolyNets to calculate
per-class error rates for all 200 classes on the validation
dataset of a large-scale classification dataset, Tiny Ima-
geNet [25]. We report the top-5 accurate and misclassi-
fied classes in Table 14. Also, we present the images of
the most accurate class (king penguin) and the most mis-
classified class (umbrella) in Fig. 9.

Remarkably, R-PolyNets achieve above 85% validation
accuracy for the top-5 accurate classes. We analyse the im-
ages of the most accurate class and misclassified class. As
shown in Fig. 9, the king penguins occupy most regions in
the images. Also, they have similar shape, color and texture.
On the other side, the umbrellas in Fig. 9 have different col-
ors and shapes. Furthermore, the images are dominated by
the other objects such as human beings and landscape. The
saliency maps in Fig. 10 computed by GradCAM [38] indi-
cate R-PolyNets can concentrate on the main object in an
image. By comparison, Π-Nets recognize the lesser panda

at 92.7% accuracy, but the saliency maps in Fig. 10 show
Π-Nets do not concentrate on the main object in an image.

Table 14. Top-5 Accurate/Misclassified Classes on Tiny Ima-
geNet. Note that R-PolyNets can achieve above 85% validation
accuracy for the top-5 accurate classes.

Class Name Accuracy Class Name Accuracy
king penguin 0.902 backpack 0.358

lesser panda 0.900 bucket 0.327

sea slug 0.895 plunger 0.296

bullet train 0.882 wooden spoon 0.278

Persian cat 0.879 umbrella 0.243

(a) Most accurate class (90.2%
accuracy)

(b) Most misclassified class
(24.3% accuracy)

Figure 9. Images of the Most Accurate/Misclassified Class recog-
nized by R-PolyNets. As in Fig 9, the king penguins in (a) have
similar characteristics, and occupy most regions in the images. On
the other side, the images in (b) are dominated by other objects
such as persons and landscape.

D.3. Comparison with convolutional kernel net-
works

We conduct experiments to compare R-PolyNets and
D-PolyNets with supervised convolutional kernel networks
(SCKNs) [29], which is among the principled design
choices. The results of R-PolyNets and D-PolyNets are
the same as those in the main paper, i.e., in Table 3. The
accuracy for each model is reported in Table 15. Notice
that the proposed R-PolyNets and D-PolyNets outpuper-
form the newly added baseline.

D.4. Regularized PDC, ResNext and dense connec-
tions for PDC

To showcase the representative power of the regularized
polynomial expansion and dense connections across differ-
ent polynomial nets, we firstly apply the proposed regular-
ization schemes (IBN + max pooling + Dropblock + Label
smoothing) in the influential ResNext [48] and the recent
PDC [4]. The regularized ResNext is called R-PolyNeXt,

13

(a) Lesser panda (Π-Nets: 92.7%
accuracy)

(b) saliency maps of Π-Nets

(c) Lesser panda (R-PolyNets:
90.0% accuracy)

(d) saliency maps ofR-PolyNets

Figure 10. Saliency maps of Π-Nets and R-PolyNets. As in
Fig 10, Π-Nets can recognize the lesser panda in (a) at 93% ac-
curacy, but the saliency maps in (b) indicate Π-Nets can not con-
centrate on the main object in an image. The saliency maps in
(d) indicate R-PolyNets can concentrate on the main object in an
image.

Table 15. Accuracy on Cifar-10, Cifar-100, STL-10 and Tiny Ima-
geNet. The symbol ‘# par’ abbreviates the number of parameters.
D-PolyNets containing 7M parameters. Note thatR-PolyNets and
D-PolyNets without activation functions can outperform SCKNs
on Cifar-10, Cifar-100, STL-10 and Tiny ImageNet by a large mar-
gin.

Dataset Model # par Accuracy

Cifar-10
SCKNs 3.4M 0.895± 0.002
R-PolyNets 11.9M 0.945± 0.000
D-PolyNets 7.1M 0.947± 0.002

Cifar-100
SCKNs 3.5M 0.610± 0.003
R-PolyNets 11.9M 0.769± 0.002
D-PolyNets 7.2M 0.767± 0.003

STL-10
SCKNs 3.4M 0.527± 0.012
R-PolyNets 11.9M 0.828± 0.003
D-PolyNets 7.1M 0.834± 0.006

Tiny ImageNet
SCKNs 4.2M 0.409± 0.001
R-PolyNets 12.0M 0.615± 0.004
D-PolyNets 7.2M 0.618± 0.001

while the regularized PDC is called R-PDC. The results

Mul

Mul

Previous polynomials

Figure 11. Schematic illustration of D-PDC. On the left the over-
all structure is presented, while on the right a single second-degree
polynomial using the structure ofD-PDC is visualized. The red ar-
rows depict the newly added connections with respect to previous
polynomial expansions.

for ResNext are reported in Table 18. Even though R-
PolyNeXt performs on par with ResNext, we notice that
there is some training instability that did not emerge in reg-
ularizing PDC or Π-Nets. It is possible that further tuning
is required for converting more complex models, such as
ResNext, into polynomial expansions.

Furthermore, we also enable additional skip connections
across polynomials for PDC. The new type of PDC is called
D-PDC. The schematic in Fig. 11 depicts D-PDC assum-
ing each polynomial includes a single recursive step. This
can be trivially extended to any number of recursive steps,
while each polynomial can also rely on a different tensor de-
composition. The same regularization scheme (IBN + max
pooling + Dropblock + Label smoothing) in D-PolyNets is
used in D-PDC. The accuracy for each model is reported in
Table 16. Notice that the R-PDC and D-PDC both outper-
form the PDC. The rest of the patterns, e.g., D-PDC versus
R-PDC, are similar to the experiments in the main paper.

D.5. Comparison with deeper ResNets

We conduct experiments to compare deeperR-PolyNets
and D-PolyNets with deeper ResNets. The experimental
settings described in sec. 5.2 remain unchanged for these
comparisons. The accuracy for each model is reported in
Table 19. It is noteworthy that the proposed R-PolyNets
and D-PolyNets outperform ResNets when their architec-
tures are deeper.

D.6. FLOPs

We compute the floating-point operations per sec-
ond (FLOPs) for R-PolyNets, D-PolyNets, Π-Nets, and
ResNet18 on both small datasets and ImageNet. The re-

14

Table 16. Accuracy on Cifar-10, Cifar-100, STL-10 and Tiny Im-
ageNet. The symbol ‘# par’ abbreviates the number of parame-
ters. Note that R-PDC and D-PDC without activation functions
can outperform PDC without activation functions significantly on
Cifar-10, Cifar-100, STL-10 and Tiny ImageNet.

Dataset Model # par Accuracy

Cifar-10
PDC 5.4M 0.909± 0.002
R-PDC 7.3M 0.947± 0.001
D-PDC 6.0M 0.949± 0.002

Cifar-100
PDC 5.5M 0.689± 0.002
R-PDC 7.4M 0.757± 0.003
D-PDC 6.0M 0.762± 0.001

STL-10
PDC 5.4M 0.681± 0.006
R-PDC 7.3M 0.833± 0.007
D-PDC 6.0M 0.855± 0.003

Tiny ImageNet
PDC 5.5M 0.452± 0.002
R-PDC 7.4M 0.560± 0.005
D-PDC 6.0M 0.569± 0.002

Table 17. Accuracy of D-PolyNets without IBN and without la-
bel smoothing (mentioned as ‘D-PolyNets without reg’ below) on
Cifar-10 and Cifar-100. The symbol ‘# par’ abbreviates the num-
ber of parameters.

Dataset Model # par Accuracy

Cifar-10
Π-Nets 11.9M 0.907± 0.003
D-PolyNets without reg 7.1M 0.934± 0.002

Cifar-100
Π-Nets 11.9M 0.677± 0.006
D-PolyNets without reg 7.2M 0.726± 0.006

Table 18. Accuracy of ResNext [48] and the corresponding R-
PolyNeXt on Cifar-10 and Cifar-100.

Dataset Model # par Accuracy

Cifar-10
ResNeXt-29, 8× 64d 34.4M 0.964
R-PolyNeXt-29, 8× 64d 38.6M 0.965

Cifar-100
ResNeXt-29, 8× 64d 34.4M 0.822
R-PolyNeXt-29, 8× 64d 38.7M 0.824

sults of these computations are presented in Table 20 and
Table 21. Notice that the proposed R-PolyNets has a sim-
ilar FLOP as the previously proposed Π-Nets, while D-
PolyNets has only a marginal increase in the FLOPs.

Table 19. Accuracy on Cifar-10 and Cifar-100. The symbol ‘#
par’ abbreviates the number of parameters. Note that deeper R-
PolyNets and D-PolyNets without activation functions can out-
perform deeper ResNets on Cifar-10, and Cifar-100.

Dataset Model # par Accuracy

Cifar-10
ResNet34 21.3M 0.947± 0.002
R-PolyNets34 22.5M 0.950± 0.001
D-PolyNets34 13.5M 0.951± 0.002
ResNet152 58.2M 0.943± 0.003
R-PolyNets152 58.5M 0.952± 0.001
D-PolyNets152 54.2M 0.953± 0.002

Cifar-100
ResNet34 21.3M 0.762± 0.004
R-PolyNets34 22.6M 0.788± 0.002
D-PolyNets34 13.5M 0.787± 0.001
ResNet152 58.3M 0.768± 0.005
R-PolyNets152 58.5M 0.793± 0.004
D-PolyNets152 54.2M 0.791± 0.001

Table 20. FLOPs on Cifar-10, Cifar-100, STL-10 and Tiny Ima-
geNet.

Dataset Model GFLOPs

Cifar-10
ResNet18 0.56
Hybrid Π-Nets 0.46
Π-Nets 0.59
R-PolyNets 0.59
D-PolyNets 0.55

Cifar-100
ResNet18 0.56
Hybrid Π-Nets 0.46
Π-Nets 0.59
R-PolyNets 0.59
D-PolyNets 0.55

STL-10
ResNet18 5.01
Hybrid Π-Nets 4.11
Π-Nets 5.31
R-PolyNets 5.31
D-PolyNets 4.94

Tiny ImageNet
ResNet18 2.23
Hybrid Π-Nets 1.83
Π-Nets 2.36
R-PolyNets 2.36
D-PolyNets 2.19

Table 21. FLOPs on ImageNet. Notice that the proposed R-
PolyNets has a similar FLOP as the previously proposed Π-Nets.

Model GFLOPs
ImageNet-1K trained models
ResNet18 1.82
ResNet18 without activations 1.82
Hybrid Π-Nets 1.92
Π-Nets 1.92
R-PolyNets 1.92
D-PolyNets 1.98

15

	1 . Introduction
	2 . Related work
	2.1 . Polynomial networks
	2.2 . Regularization of neural networks

	3 . Regularizing polynomial networks
	3.1 . Proposed model
	3.2 . Training Configuration
	3.2.1 Initialization scheme
	3.2.2 Normalization scheme
	3.2.3 Auxiliary regularization schemes

	4 . Dense connections across polynomials
	5 . Experiments
	5.1 . Ablation study
	5.2 . Image classification on smaller datasets
	5.3 . ImageNet Classification
	5.4 . Audio classification
	5.5 . Fine-grained classification

	6 . Conclusion
	A . Background: -Nets
	B . CCP-equivalent for the regularized model
	C . Auxiliary tables and visualizations for experiments on the main paper
	D . Additional experimental results
	D.1 . Image classification with limited data
	D.2 . Error Analysis
	D.3 . Comparison with convolutional kernel networks
	D.4 . Regularized PDC, ResNext and dense connections for PDC
	D.5 . Comparison with deeper ResNets
	D.6 . FLOPs

