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A B S T R A C T

Through stochastic-numerical microstructure-based experiments, the plastic consolidation under compression
of porous brittle solids, with porosities from 0.25 to 0.75 and a large variety of microstructural characteristics,
has been investigated. This was made possible by generating microstructures from Gaussian random fields in
order to obtain stochastic ensembles of structures with prescribed properties, which are then simulated within
the material point method. Below a critical imposed strain rate, the consolidation behavior is found to be very
weakly affected by the degree of heterogeneity and anisotropy. Structures where the solid phase takes up more
space than the void phase have a consolidation response approximately independent of the structural geometry
and dimensionality (comparing two- and three-dimensional structures). Finally, we show that the consolidation
of two-dimensional structures collapses on a single master curve that can be described by a simple function
similar to one presented for a completely different system, namely a system of interacting discrete cohesive
disks. In this function, we report a universal parameter largely independent of material specifications.
1. Introduction

The complex mechanics of porous (quasi-)brittle solids, such as
various types of rocks, snow, ceramics, wood and bone, is crucial to the
understanding of, for example, earthquakes [1], avalanches [2], design
of functional materials [3,4] and in orthopedics [5]. The mechanical
behavior of these solids depends on their microstructure. In the past,
elastic and yield properties have been well studied through various
microstructure-based models. With simplifying material assumptions or
geometries, analytical considerations for such small strain behavior are
possible, including the well known results by Hashin and Shtrikman
[6], Gurson [7], Gibson and Ashby [8], Castañeda [9]. Later, various
researchers have relied on microstructures obtained from X-ray tomog-
raphy or from artificial approaches simulated with numerical schemes
such as the finite element method (FEM) [10–14], the discrete element
method (DEM) [15,16], the material point method (MPM) [17], or
even a double-scale DEM-FEM coupling [18,19], to uncover more
accurate mechanical relationships with the microstructural proper-
ties. However, their results are usually only related to the material’s
porosity, not accounting for the vast morphological variability the
microstructure can display for the same porosity value. Furthermore,
these approaches have been mostly limited to small strain mechanics,
rarely going beyond failure or closer to the densification phase.
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When compressing further after failure, porous materials display
a mechanical regime generally characterized by an overall slowly in-
creasing stress state until densification, at which point the stress in-
creases drastically due to no available void space which the material
can occupy. For soils, this consolidation phase has been well studied,
where the so-called normal compression line gives a linear relationship
between the specific volume (i.e., the inverse solid volume fraction)
and the logarithm of the pressure [20,21]. In this linear relationship,
the proportionality factor is coined the (plastic) compressibility or,
compression index, with a numerical value depending on the type of
soil. In fact, such relationship was found already in the first quarter of
the last century from compaction experiments of powder samples [22].
For loose and cohesive granular systems such as powders, this index has
been studied experimentally and computationally. For example, exper-
iments on iron powders showed that the index depends on the initial
solid fraction and yield stress [23], and experiments on different toners
revealed it increases with the cohesion between the particles [24].
Moreover, recent numerical experiments of systems of randomly dis-
tributed sticky spheres found no effect by the solid volume fraction and
stickiness of the granules on the compression index [16]. On the other
hand, for cellular solids (with solid fractions less than 0.3), the pore
collapse region between yield and densification is generally associated
with a constant stress plateau, and the experimentally observed stress
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Fig. 1. Various microstructure geometries generated with Eq. (1) in the top row (a–d) and Eq. (2) in the bottom row (e–h). From left to right, the microstructures are isotropic
and homogeneous (a, e), isotropic and heterogeneous (b, f) and anisotropic and homogeneous (c, d, g, h). The latter case is either with a vertically (marked 𝑣) or horizontally
(marked ℎ) preferred orientation.
increase is sometimes considered a result of the trapped pore gas
pressure [25].

The question remains to what extent these previous results for
soils, granular systems and highly porous cellular solids are also valid
for generic porous brittle solids. In this work, the (post-failure, pre-
densification) consolidation region is investigated for such materials
with solid fractions between 0.25 and 0.75. While experimental inves-
tigations are possible, they are usually material-specific and become
time-consuming when a significant number of samples are to be tested.
On the other hand, numerical investigations allow for a systematic
analysis of many possible geometries and material properties. Here,
stochastic microstructures are generated from Gaussian random fields,
allowing the control of a variety of structural properties indepen-
dently. Combined with the material point method (MPM), we are
able to simulate the complete compression of these continuous (non-
particulate) structures while avoiding mesh distortion issues of classical
finite elements. This combination represents an appropriate frame-
work for probing the influence of the microstructural geometry on the
mechanical properties under large, plastic, deformations.

2. Methods

2.1. Gaussian random field microstructures

Two-phase (binary) microstructures can be obtained efficiently by
level-cutting Gaussian random fields (GRF) constructed to provide cer-
tain prescribed structural properties. Dating back to Cahn [26], this
approach has been used in several studies of both electromagnetic and
2

Fig. 2. Normalized two-point correlation function for a real snow microstructure
obtained with XRCT and different GRF-structures of varying heterogeneity 𝑏. The
correlation function is plotted as a function of distance 𝑟 relative to the side length 𝑙
of the cubic structures.

elastic properties of porous structures [17,27–30]. Given a Gaussian
random field 𝐺(𝒓), a single-cut microstructure 𝑀(𝒓) is obtained by
level-cutting 𝐺(𝒓) to the desired solid volume fraction 𝜙,

𝑀(𝒓) =

{

1, if 𝐺(𝒓) > erf−1(1 − 2𝜙)
0, otherwise

(1)

such that 𝑀(𝒓) = 1 means 𝒓 is in the solid phase and 𝑀(𝒓) = 0 means it
is in the void phase. A double-cut structure can be obtained in a similar
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Fig. 3. Visualization of GRF-structures with varying degree of heterogeneity and a real snow microstructure obtained with XRCT.
way,

𝑀(𝒓) =

{

1, if erf−1(−𝜙) < 𝐺(𝒓) < erf−1(𝜙)
0, otherwise

(2)

In both cases, erf−1(⋅) denotes the inverse error function and 𝐺(𝒓) is
created as a superposition of 𝑁𝑐 ≫ 1 sinusoidal waves,

𝐺(𝒓) = 1
√

𝑁𝑐

𝑁𝑐
∑

𝑛=1
cos(𝜼𝑛 ⋅ 𝒓 + 𝜑𝑛) (3)

where the 𝜑𝑛 are independent, identically distributed random variables
in [0, 2𝜋] and 𝜼𝑛 are the wave vectors. Single-cut structures are charac-
terized by thick grains connected by neck regions of smaller thickness,
while double-cut structures form snaky paths with roughly the same
thickness throughout which meet at several denser intersection points.
Double-cut structures are always guaranteed to percolate while single-
cut structures have a percolation threshold around 𝜙 = 0.15 in three
dimensions, and around 𝜙 = 0.5 in two dimensions.

The magnitude and direction of the wave vectors 𝜼𝑛 must be sam-
pled according to the desired heterogeneity and anisotropy, respec-
tively, of the microstructure. Following Ding et al. [27], the wave vec-
tor’s magnitude 𝜂 ≡ 2𝜋∕𝜔 can be sampled from the gamma distribution
function

𝑃 (𝜂) =
(𝑏 + 1)(𝑏+1)

⟨𝜂⟩𝛤 (𝑏 + 1)

(

𝜂
⟨𝜂⟩

)𝑏
𝑒−(𝑏+1)

𝜂
⟨𝜂⟩ (4)

where ⟨𝜂⟩ is a prescribed mean wave vector magnitude and the parame-
ter 𝑏 ∈ (0,∞) controls the width of the distribution, in other words, the
heterogeneity of the structure. A large value 𝑏 ≫ 1 results in an approx-
imately homogeneous structure. To obtain isotropic microstructures,
the wave vector directions are sampled uniformly over the unit sphere.
For anisotropic structure, the sampling can be restricted to a subset
of the unit sphere [28]. Here, we consider only structures with either
horizontally or vertically preferred directions. To this end, we introduce
an anisotropy parameter 𝑎 ∈ (0, 1] that quantifies the fraction of the
unit sphere being sampled from. In particular, for two-dimensional
vertically-aligned structures, we sample the polar angle uniformly from
[−𝑎𝜋∕2, 𝑎𝜋∕2] ∪ [𝜋(1 − 𝑎∕2), 𝜋(1 + 𝑎∕2)]. Fig. 1 illustrates various types
of structures that can be generated in two dimensions.

2.2. Comparison to a real microstructure

It is instructive to consider if the artificial GRF-structures can re-
produce real microstructures. To this end, a real snow microstructure
has been obtained from X-ray micro-computed tomography (XRCT).
This snow sample has a solid fraction of 𝜙 = 0.42 and is nearly
isotropic. By generating equally porous and isotropic single-cut GRF-
microstructures of varying heterogeneity, we compare their two-point
correlation function with that of the snow sample. This is presented in
Fig. 2 from which it can be observed that a structure with heterogeneity
parameter 𝑏 = 3 provides a similar two-point correlation as the real
snow structure. The various structures are visualized in Fig. 3.
3

2.3. Constitutive model of the solid phase

We consider the solid phase material as elastoplastic, i.e., with
reversible deformations until the stress state reaches a yield criterion
marking the onset of permanent, irreversible, deformations. A multi-
plicative decomposition of the deformation gradient tensor is assumed,
i.e.,

𝑭 = 𝜕𝒙
𝜕𝑿

= 𝑭𝐸𝑭 𝑃 (5)

where 𝑭𝐸 refers to the deformation arising from the elastic forces,
while 𝑭 𝑃 is the irreversible, plastic, component. Here, 𝑿 denotes the
coordinate in the initial configuration, and 𝒙 is the deformed coordi-
nate. As a convenient measure of strain, we will in this work rely on
the Hencky strain,

𝜺 = 1
2
ln
(

𝑭𝑭 𝑇 ) = 1
2

𝑑
∑

𝑖=1
ln𝛬2

𝑖 𝒏𝑖 ⊗ 𝒏𝑖 =
𝑑
∑

𝑖=1
ln𝛬𝑖 𝒏𝑖 ⊗ 𝒏𝑖 (6)

where 𝛬𝑖 and 𝒏𝑖 are the principle stretches and (Eulerian) directions, re-
spectively, in 𝑑 dimensions. We require a constitutive relation between
the stress and the elastic part of the deformation. In this work, we adopt
an isotropic model known as the Hencky model, which results in the
Kirchhoff stress 𝝉 being related to the Hencky strain through

𝝉 = 𝐿 tr(𝜺𝐸 )𝑰 + 2𝐺𝜺𝐸 (7)

where 𝐿 = 𝐸𝜈
(1+𝜈)(1−2𝜈) and 𝐺 = 𝐸

2(1+𝜈) are the two Lamé parameters
related to the Young’s modulus 𝐸 and Poisson’s ratio 𝜈. Note the elastic
part of the Hencky strain is defined as 𝜺𝐸 = 1

2 ln
(

𝑭𝐸 (𝑭𝐸 )𝑇
)

. As shown
by Xiao and Chen [31], the model given by Eq. (7) is hyperelastic,
and the Kirchhoff stress and the Hencky strain constitute a work-
conjugate pair. It is a model which has been successfully used in various
studies [17,32–34] of large deformation modeling with MPM.

A yield criterion should reflect at least three common properties of
porous brittle (geo)materials: (1) they usually consist of a solid phase
that is pressure-dependent, (2) the solid phase typically displays an
asymmetry in tensile and compressive strengths, and finally (3) they
exhibit strong post-failure softening. In order to satisfy these properties
in a simple manner, we make use of a strain-softening Drucker–Prager
yield criterion for the solid phase of the microstructures, given by

𝑦(𝑝, 𝑞) = 𝑞 − 𝛾
(

𝑝 + 𝑐𝑒−𝜉𝜀
𝑃
𝑆
)

≤ 0, (8)

expressed in the space of the mean stress 𝑝 = − 1
𝑑 tr𝝉 and the von

Mises equivalent stress 𝑞 =
√

3
2dev 𝝉 ∶ dev 𝝉 which are stress invariants.

Here, we introduced the deviatoric operator dev(⋅) = (⋅) − 1
𝑑 tr(⋅)𝑰 . The

three parameters of the yield criterion are 𝑐 ≥ 0 which characterizes
the initial cohesion, 𝛾 > 0 which controls the friction and 𝜉 ≥ 0
giving the degree of post-yield softening. Note that softening is here
controlled by the accumulated amount of deviatoric plastic Hencky
strain 𝜀𝑃𝑆 ≡

√

dev(𝜺𝑃 ) ∶ dev(𝜺𝑃 ). The friction 𝛾 can be related to the
material’s so-called friction angle 𝜑𝑓 ,

𝛾 =
2𝑑 sin𝜑𝑓

3 − sin𝜑𝑓
(9)

Assuming the rate of work per unit undeformed volume can be
additively decomposed into an elastic and plastic part, we have
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Fig. 4. Representative volume element analysis of a two-dimensional double-cut structure with 𝜙0 = 0.35, 𝑏 = 50 and 𝑎 = 1. In (a), one simulation for each size 𝑙∕⟨𝜔⟩ is
shown, highlighting the region in which we fit a linear consolidation slope 𝜆. In (b), the evolution of 𝜆 with increasing system size is shown. The stapled line is the mean of the
individual simulation results represented by black dots.
𝝉 ∶ 𝒍 = 𝝉 ∶ 𝒍𝐸 + 𝝉 ∶ 𝒍𝑃 , where we defined an elastic and plastic part of
the velocity gradient 𝒍. The latter, 𝒍𝑃 is chosen through a plastic flow
rule, in particular here given by a von Mises plastic potential, i.e.,

𝒍𝑃 = �̇�
𝜕𝑞
𝜕𝝉

(10)

where we introduced the plastic multiplier �̇�. As such, this is a non-
associative plastic flow rule similar to the one presented in Blatny et al.
[17] and induces no plastic volumetric deformation. However, stress
states 𝑝 < −𝑐𝑒−𝜉𝜀

𝑃
𝑆 require a special treatment, and are in this work

projected to the tip of the Drucker–Prager cone. More details on this are
presented in Appendix A. In addition to the previously stated condition
𝑦 ≤ 0, we must also require �̇� ≥ 0 and �̇�𝑦 = 0, together constituting the
so-called Kuhn–Tucker conditions.

2.4. Numerical scheme and simulation setup

Simulating microstructures under large deformations requires a nu-
merical scheme capable of handling the topological changes that the
microstructures undergo. Due to mesh distortion issues, this makes the
classical FEM not suitable for such simulations. DEM has successfully
been used to study large deformation granular compaction. However,
not all porous solids can be accurately approximated as granular as
their microstructure is better described as a (semi-)continuous matrix
of solid. Therefore, we perform numerical loading experiments of mi-
crostructures using the material point method (MPM). Similar to the
finite element method (FEM), it is a numerical scheme to approximate
solutions to the (weak forms of the) mass and momentum conservation
equations of continuum mechanics. Dating back to Sulsky et al. [35],
it can be considered an extension of particle-in-cell (PIC) methods,
notably the fluid-implicit particle method (FLIP) [36]. It has since
gained attention for being particularly suitable for large deformation
modeling of solids. Although there exist several variations of MPM,
we have resorted to symplectic time integration, a weighted PIC-FLIP
combination for grid-particle interpolation [37] with quadratic B-spline
interpolation function [38], as presented and used by, e.g., Klár et al.
[33], Gaume et al. [34], Blatny et al. [17], Blatny et al. [39]. The full
MPM algorithm used in this study is outlined in Appendix A.

A common challenge in elastoplastic modeling of strain-softening
materials is the lack of uniqueness of solutions to the governing con-
tinuum equations, potentially leading to post-yield mesh-dependent
results. As a remedy, rigorous regularizing techniques introduce a
characteristic length scale in the governing equations, e.g., through
higher-order gradient methods [40,41]. However, in microstructure-
based modeling, this length scale is already given by the microstruc-
tural geometry, and such schemes are often not employed [18,42–45].
Nevertheless, we address the issue of mesh dependency by taking the
mesh size into the plasticity criterion with the approach of Blatny et al.
4

[17] as this is a simple approach to mitigate the influence of the mesh
in the numerical solution.

Uniaxial confined compression are performed on microstructures
twice as long in the vertical direction as in the horizontal direction(s).
A compressive plate on the top is imposed with a constant strain
rate �̇�, with perfectly frictionless boundaries on all sides.1 The volume-
averaged Kirchhoff stress tensor ⟨𝝉⟩ is computed, from which the
volume-averaged mean stress ⟨𝑝⟩ can be deduced. Moreover, both the
plastic and elastic volumetric deformation of the microstructures’ solid
phase are computed. With the volume change factor of the solid phase
defined as 𝐽 = det(𝑭 ) = det(𝑭𝐸 ) det(𝑭 𝑃 ) = 𝐽𝐸𝐽𝑃 , this allows the
investigation of the material’s solid fraction evolution,

𝜙(𝑡) = 𝜙0
𝐽 (𝑡)
1 − �̇�𝑡

(11)

accounting for both the elastic and plastic expansion and reduction
of the solid phase volume of the microstructure, Here, 𝜙0 denotes the
initial solid volume fraction at time 𝑡 = 0.

In analogy with previous studies in soil and granular mechanics
mentioned in the introduction, we investigate here the relation between
inverse solid volume fraction 1∕𝜙 as a function of the mean stress ⟨𝑝⟩ in
the microstructure. We will initially assume the solid phase has elastic
and plastic parameters representative of ice with 𝐸 = 1 GPa, 𝜈 = 0.3,
𝑐 = 2.5 MPa, 𝜑𝑓 = 30◦, 𝜌 = 104 kg/m𝑑 and 𝜉 = 106 such that the porous
material can be considered as snow or firn.2 The effect of different
constitutive model parameters will be presented later in this article.

2.5. Representative volume element

In order to assess the minimum microstructure size which is repre-
sentative of the macroscopic behavior, several simulations of various
sizes were performed. Fig. 4 shows the result of such analysis for two-
dimensional double-cut structures, where the quantity of interest is the
fitted slope 𝜆 of the consolidation phase, 1∕𝜙 ∝ 𝜆 ⋅ log⟨𝑝⟩ in the approx-
imately linear region. For each size of the microstructure, measured in
the number of mean wavelengths ⟨𝜔⟩ per shortest side length 𝑙, seven
stochastically identical structures were simulated. The analysis suggests
a microstructure size of at least nine wavelengths, after which the mean
slope fluctuates around a constant value and the deviations do not
shrink significantly. This size is in agreement with previously reported

1 Note the symbolic distinction between the Hencky strain 𝜀 on the mi-
croscale and the macroscopically imposed strain 𝜖 = 𝑉 𝑡∕𝑙, where 𝑉 is the
speed of the compressive plate and 𝑙 is the side length of the microstructure.

2 The density 𝜌 was scaled by a factor 10 compared to the actual density of
ice in order to speed up the computations which are limited by the elastic wave
speed, knowing that this does not influence the response, similar to previous
studies [17,46]. This will also be validated in Fig. 8d and Fig. 9d.
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Fig. 5. Compression simulations of 24 random realizations of the microstructure from Fig. 1a (with 𝜙0 = 0.63). The gray lines represent individual simulations while the black line
is the mean response. In (a), the inverse solid area fraction 1∕𝜙 is plotted against the mean stress ⟨𝑝⟩, while in (b), the mean stress is plotted against the imposed compressive
strain 𝜖.
Fig. 6. Snapshots of the plastic Hencky strain rate �̇�𝑃𝑆 in one of the microstructure from the compression simulations in Fig. 5 at different imposed compressive strains 𝜖.
Fig. 7. Snapshots of the plastic Hencky strain rate �̇�𝑃𝑆 in a three-dimensional equivalent microstructure of the two-dimensional microstructure presented in Fig. 6 under compression.
sizes for three-dimensional single-cut structures [17] and other previ-
ous findings [29,47] studying the convergence of the elastic modulus
and failure strength with size.

3. Results

3.1. Demonstration

The GRF-MPM framework allows simulating the full deformation
of microstructures that are geometrically different yet potentially hav-
ing identical structural parameters. Fig. 5a shows the relation be-
tween the inverse solid fraction and mean stress from simulations
of an ensemble of 24 stochastically identical isotropic (𝑎 = 1) and
nearly-homogeneous (𝑏 = 50) two-dimensional microstructures with a
solid fraction of 𝜙 = 0.63 compressed with an imposed strain rate
of �̇� = 0.1 s−1. Snapshots of an individual simulation/microstructure
at different levels of compression are shown in Fig. 6. In addition, Fig. 7
presents the same snapshots for the equivalent three-dimensional struc-
ture. Colored in terms of the plastic strain rate, these snapshots high-
light the evolution of the failure regions in the structure. From the
5

same set of simulations, Fig. 5b shows the mean stress as a function
of imposed compressive strain. While individual simulations are as-
sociated with stress surges resulting in an erratic stress response, in
the stochastic view the stress response can be considered to follow a
mean path with certain upper and lower bounds on the fluctuations.
These bounds, given by the ‘‘cloud’’ of the many simulations, permit a
proper comparison of the mechanical response of samples with different
structural properties.

3.2. Structures with high solid fraction

Figs. 8 and 9 show the evolution of the inverse solid fraction
from a plethora of simulations, changing various properties of the
microstructures as well as the imposed strain rate and dimensionality
of the problem. Fig. 8 shows the result from a ‘‘dense’’ structure with
𝜙0 ≈ 0.7. In this case, it can be seen from Figs. 8a and b that the
structures’ level of heterogeneity and anisotropy, respectively, very
weakly affect the consolidation response unless they are extremely
anisotropic (𝑎 ≤ 0.4). Specifically, there appears to be a slight trend
of decreasing consolidation slope with both increasing heterogeneity
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Fig. 8. Compression of single-cut two-dimensional GRF-structures of initial solid fraction 𝜙0 ≈ 0.7 with varying (a) the structures’ heterogeneity, (b) the structures’ anisotropy,
(c) the imposed strain rate, (d) the solid phase density and Poisson’s ratio. In (e), a single-cut, double-cut and grid-like structure are compared (note that here 𝜙0 = 0.67 due to
generation of comparable structures of same level of discretization). In (f), a two- and three-dimensional structure are compared, using 𝛾 = 1.2 such that the friction angle (Eq. (9))
with 𝑑 = 3 is 30◦. The ‘‘default’’ properties are those of an isotropic (𝑎 = 1) and nearly-homogeneous (𝑏 = 50) microstructure with �̇� = 0.1 s−1, 𝜈 = 0.3 and 𝜌 = 104 kg/m𝑑 .
and anisotropy. However, comparing to an ensemble of 20 stochastic
isotropic and nearly-homogeneous structures (colored light gray in the
plots), this is still within the error bounds. Moreover, the imposed
strain rate (i.e., the velocity of the compressive top plate) has no
impact unless it is so high that we create a propagation of a front
of progressively compacted material, which is further analyzed in Ap-
pendix B. The consolidation curves for different imposed strain rates are
plotted in Fig. 8c, which also indicate that stress fluctuations decrease
with increasing plate speed. These stress fluctuations also tend to be
suppressed with increasing sample width which averages out the erratic
stress behavior, as seen in Fig. 4a. Furthermore, Fig. 8d shows that
the density and Poisson’s ratio of the solid phase do not influence the
consolidation curve. The type of GRF-microstructure, whether single-
cut or double-cut, does not affect the consolidation region, as shown
in Fig. 8e. In this figure, the inverse solid fraction of a corresponding
simulation of a grid-like structure (i.e., structure perforated with square
holes as in Blatny et al. [39]) is also plotted, showing similar behavior.
Finally, the dimensionality of the problem, i.e., whether we study
6

microstructures in two or three spatial dimensions, does not affect the
consolidation region. This is presented in Fig. 8f, where the difference
between the solid volume fraction in three spatial dimensions and
solid area fraction in two spatial dimensions should be noted.

3.3. Structures with low solid fraction

The above conclusions about the (non-)influence of heterogeneity,
anisotropy, solid phase density, solid phase Poisson’s ratio and imposed
strain rate remain valid also for lower solid fractions. This is shown in
Fig. 9a–d for an initial solid fraction 𝜙0 ≈ 0.35. However, the particular
type and dimensionality of the microstructure become relevant for the
consolidation at low solid fractions. In Fig. 9e, it can be seen that
a GRF-structure and grid-like structure do not provide an identical
consolidation response when the initial solid fraction is low.

While in two spatial dimensions it is not possible to compare single-
cut and double-cut structures for lower solid fractions due to the high
percolation threshold for single-cut structures (at 𝜙0 ≈ 0.5), this is
not a problem in three dimensions where percolation occurs at 𝜙0 ≈
0.15. From such three-dimensional investigations, it was found that the
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c
a
c
p

Fig. 9. Compression of double-cut two-dimensional GRF-structures of initial solid fraction 𝜙0 ≈ 0.35 with varying (a) the structures’ heterogeneity, (b) the structures’ anisotropy,
(c) the imposed strain rate, (d) the solid phase density and Poisson’s ratio. In (e), a double-cut and grid-like structure are compared (note that here 𝜙0 = 0.32 due to generation of
comparable structures of same level of discretization). In (f), a two- and three-dimensional structure are compared, using 𝛾 = 1.2 such that the friction angle (Eq. (9)) with 𝑑 = 3
is 30◦. The ‘‘default’’ properties are those of an isotropic (𝑎 = 1) and nearly-homogeneous (𝑏 = 50) microstructure with �̇� = 0.1 s−1, 𝜈 = 0.3 and 𝜌 = 104 kg/m𝑑 .
onsolidation behavior is identical for 𝜙0 ⪆ 0.5. Comparing two-
nd three-dimensional double-cut structures, Fig. 9f suggests that the
onsolidation response is different when the solid fraction is low. In
articular, 𝜙0 ≈ 0.5 is (again) the critical solid fraction above which

the collapse becomes independent of the dimensionality.
This deviating response for low solid fractions can be related to how

failure occurs on the microscale. While all structures display localiza-
tion of strain in certain regions of the material, this localization appears
more spatially scattered and temporally erratic in two-dimensional
structures than in three-dimensional structures. In the latter case, unless
the solid volume fraction is sufficiently large, the localization is not
very erratic, and failure is mostly localized in one or more distinct
compaction bands which to varying degree can propagate spatially
within the sample. An increase in the initial solid volume fraction or a
reduction of spatial dimension both imply a restriction of the possible
movements of the individual strands of the microstructure. Such restric-
tions on the rearrangement possibilities increase the spatial extent of
the failure zones. Thus, during the consolidation phase, the measured
stress of a highly porous three-dimensional structure does not increase
as much as the corresponding porous two-dimensional structure.
7

3.4. Universality in two-dimensional plastic consolidation

The end of the consolidation region, i.e., when the pores are closing,
is marked by an exponential increase in the stress. While there is
essentially no volume change due to elastic deformation during the
consolidation, at the onset of densification there is a significant elastic
volumetric compaction. Complete pore closure means 𝜙 = 1, how-
ever, structures of smaller initial solid fraction reach densification at
a smaller solid fraction than those with higher initial solid fraction,
a result which is also observed for cellular materials in general [25].
This motivates the introduction of the solid fraction at densification, 𝜙𝑑 ,
defined as where the elastic deformation starts to significantly decrease
the solid area/volume. In particular, it can be defined by a (rather
insensitive) threshold on 𝐽𝐸 falling below unity.

In compression simulations of two-dimensional periodic systems of
discrete cohesive disks, Gilabert et al. [48] also considered compaction
until densification and suggested a correction to the well-established
linear relationship 1∕𝜙 ∝ 𝜆 log(𝑝) when reaching this large compaction.
In particular, they suggested that the linear relationship with log(𝑝)
transitions to a linear relationship with 𝑝−𝛼 where they report values
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Fig. 10. The proposed relation of Gilabert et al. [48], Eq. (12), with 𝜆 fitted to the two-dimensional GRF-structures with (a) 𝜙0 = 0.25 (giving 𝜆 = 1.80), (b) 𝜙0 = 0.35 (giving
𝜆 = 1.06) and (c) 𝜙0 = 0.55 (giving 𝜆 = 0.62). Note the data is colored similarly as in Fig. 11.
Fig. 11. Compression of two-dimensional GRF-structures of various initial solid volume
fractions. The fit of Eq. (13) is included as the black solid line with 𝜆 = 1.99
and 𝑝𝑑 = 27.7 kPa.

of 𝛼 close to unity. Using 𝛼 = 1, their expression for the consolidation
can be written
1
𝜙

= 1
𝜙0

− 𝜆 log
(

𝑝
𝑝0

(

1 − 𝑒−𝑝𝑑∕𝑝
)

)

(12)

where 𝑝0 is the pressure at 𝜙0, and 𝑝𝑑 is defined through 1∕𝜙0−1∕𝜙𝑑 =
𝜆 log(𝑝𝑑∕𝑝0). Here, log denotes the base-10 logarithm. In Fig. 10, we
fitted Eq. (12) to our data from two-dimensional structures of various
initial solid fractions. With 𝜙𝑑 defined here as where 𝐽𝐸 < 0.995,
leaving 𝜆 the only fitting parameter, we obtain excellent fits with this
function. We further note that in these fits 𝜆 decreases with 𝜙0.

Using the relation between 𝑝0 and 𝑝𝑑 , Eq. (12) can be written

1
𝜙

− 1
𝜙𝑑

= 𝜆 log
(

𝑝𝑑∕𝑝
1 − 𝑒−𝑝𝑑∕𝑝

)

(13)

Remarkably, when interpreting the pair (𝜆, 𝑝𝑑 ) as fitting parameters,
we find that the consolidation data from all experiments of two-
dimensional homogeneous and isotropic GRF-structures collapse on a
curve described by Eq. (13). Fig. 11 illustrates this fit together with
the simulation results, where the fit excludes the initial elastic and
post-peak softening region for each simulation, yielding 𝜆 = 1.99 and
𝑝𝑑 = 27.7 kPa. As mentioned earlier, there is a slight trend of a smaller
consolidation slope for increasing heterogeneity and anisotropy. Sets
of simulations performed for very heterogeneous structures (𝑏 = 2) and
moderate level of anisotropy (𝑎 = 0.6) confirmed that, while leaving
Eq. (13) an excellent fit, the fitted 𝜆 was found to be 1.55, thus lower
than the one reported for homogeneous isotropic structures.

With the exception of Poisson’s ratio (as seen in Figs. 8d and 9d), the
consolidation curve does not remain invariant to the elastic modulus
and plastic constitutive parameters on the solid phase (see Appendix C).
This is because the stress at the onset of failure will be different
when these parameters are changed. However, scaling for the stress at
8

failure, the consolidation curves remain similar across different values
for Young’s modulus 𝐸, cohesion 𝑐, friction 𝛾 and softening factor 𝜉. In
the view of Eq. (13), these parameters only result in a shift of 𝑝𝑑 , leav-
ing 𝜆 a universal constant for the investigated microstructures across
material parameters. In particular, 𝑝𝑑 increases with 𝑐 and 𝛾 and de-
creases with 𝐸 and 𝜉. Further details on constitutive model/parameter
dependencies are presented in Appendix C.

4. Discussion

It is instructive to compare the quantitative results of this study
to that of similar studies from soil and granular mechanics. Using
the linear relationship 1∕𝜙 ∝ 𝜆 ⋅ log(𝑝), Wood [21] reports an index 𝜆
between roughly 0.2 and 1.2 for different soil types from around
the world. From three-dimensional simulations of cohesive granular
systems, Gaume et al. [16] finds 𝜆 ≈ 1.2 when studying initial solid frac-
tions 𝜙0 between 0.2 and 0.35. For 𝜙0 between 0.38 and 0.52, Gilabert
et al. [48] reports 𝜆 between 0.45 and 0.8. These values are smaller
than, but close to, the values we obtained in this region with isotropic
structures. However, with increasing heterogeneity and anisotropy we
also witnessed a smaller 𝜆. Using the linear relationship, Poquillon et al.
[23] proposes, based on compaction experiments of iron powders with
𝜙0 below 0.2, an expression for 𝜆 that depends on 𝜙0 and yield pressure.
In particular, they report a decreasing 𝜆 with increasing 𝜙0. This is
consistent with our results as reported in Fig. 10. We finally note that
our fit and corresponding plastic index 𝜆 were a result of data from a
larger range of initial porosities (𝜙0 between 0.25 and 0.75) than in
any of these previous studies.

Moreover, similar to the idealized granular sphere system study
by Gaume et al. [16], we found no influence of the cohesion on the
consolidation slope. In their study, the spheres were connected by
bonds which could not heal after breakage, analogous to the brittle
assumption of the solid phase in our study. This is in contrast to the
experiments of Castellanos [24] on toners having attractive inter-grain
forces. In particular, assuming the attraction arises from van der Waals
forces, they found a power law of 𝜆 with the granular Bond number.
This number gives the ratio between the inter-grain attractive force and
grain mass.

In the more porous three-dimensional structures (Fig. 9f), the stress
does not display the gradual increase observed in the other structures.
This is similar to the constant stress plateau observed in highly porous
elastic-brittle cellular solids (𝜙 < 0.3) [25]. The absence of a stress
plateau in two-dimensional structures is related to the absence of a
compaction band, which we attributed to different type of deforma-
tion mechanism on the microscale. The (dynamic) compaction bands
emerging in our numerical three-dimensional simulations have been
observed experimentally in snow [49,50], porous rocks [51] and gran-
ular packs [52,53], and their occurrence generally depend on the bulk
material properties and strain rate [39].

While the numerical experiments presented in this study did not
expose a significant difference of the consolidation response depend-
ing on the degree of anisotropy, the anisotropy did affect the (small
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strain) yield strength. In particular, the more horizontally aligned the
structure is, the smaller the yield stress. This observation is consis-
tent with Mangipudi and Onck [11] where a finite element beam
network was employed to simulate cellular solids. Studying the effect
of anisotropy on large deformation of polyurethane foam, Tu et al.
[54] performed experimental compression tests that unveiled differ-
ent plastic consolidation responses. For vertically aligned structures,
they observed post-yielding compaction bands propagating down the
structure at constant stress level until densification. On the other hand,
for horizontally aligned structures, they observed uniformly distributed
deformation causing a linearly increasing stress between yield and
densification. This is reminiscent of the difference between highly
porous two- and three-dimensional structures presented in Fig. 9f and
as discussed in the previous paragraph. The difference in deformation
mechanism due to degree of anisotropy could be a result of their
polyurethane foam being much more porous than studied in this work.
In the GRF-MPM framework of this article, lower solid fractions cannot
currently be studied due to the extremely fine discretization needed for
such structures (and single-cut structures cannot be used due to lack of
percolation). Nevertheless, our results are consistent with Tu et al. [54]
in that the same type of deformation mode on the microscale causes the
same (increasing) stress evolution until densification.

We have not introduced any specific self-contact treatment in the
MPM scheme, implying that these events are automatically handled
through the interpolation to the background grid. To be more specific,
each particle has a local support, influencing grid nodes within a certain
distance. As such, when particles belonging to different microstructural
grains approach each other, the grid nodes located around the contact
area will be assigned velocities that are a weighted average of velocities
of all nearby particles. Effectively, this means that when these particles
are brought together, they become a part of the same continuum and
will interact with each other as dictated by the constitutive model, in
particular through the internal friction angle given by the Drucker–
Prager model. In a material like snow, this may be a decent assumption
as the constituting ice grains of the snow microstructure will, when
brought to contact, sinter together and become one grain (unless of
course the strain rate is too high for sintering to occur) [55–57]. In
many other materials, this assumption may not adequately represent
reality as the friction between two microstructural grains may be
different from the internal friction angle. However, the good agreement
observed with previous studies, in particular that of Gilabert et al.
[48], suggests that the assumption is acceptable for our purposes. In
the literature, different ways of treating self-contact in MPM have
been proposed, which all come with certain computational costs. In
particular, contacts can be treated by attributing a background grid for
each individual material object and then applying a Coulomb friction
law on the nodal velocities when the objects come into contact [58].
In our case, this means that different microstructural grains must be
distinguished a priori, which is not trivial as they inherently belong
to the same continuum. Moreover, neighboring grains should not be
considered having a frictional contact unless they have fractured and
been brought to contact again. Along these lines, Homel and Herbold
[59] suggested using an evolving scalar damage field in a way that
allows dynamical partitioning of the material into contact pairs along
fracture surfaces.

As the main focus of this work has been the microstructures’ mor-
phological influence on the mechanical results, we chose the Drucker–
Prager yield criterion of Eq. (8) as we argued it was the simplest model
offering three properties of porous brittle geomaterials as outlined in
Section 2.3. These three properties were pressure-dependency, strong
post-failure softening and asymmetry in tensile/compressive strength.
Modeling different materials requires, in addition to adapting the mi-
crostructural morphological parameters, the appropriate choice of elas-
tic (𝐸, 𝜈) and plastic (𝑐, 𝛾, 𝜉) parameters. For certain materials, the

rucker–Prager yield criterion could be extended to include a compres-
9

ive cap, this being particularly relevant for rocks/sandstone in order to
account for crushing by introducing a hardening cap at high pressures.
However, for many other porous materials, the solid phase material
may not be adequately described by a Drucker–Prager-like model at
all, and may also display rate- and/or temperature-dependency which
were not included in this study. Therefore, the results presented here
cannot be claimed valid for materials whose solid phase is behaves
differently from this study’s assumptions. Nevertheless, the presented
framework is adaptable to include any constitutive model for the solid
phase (Appendix C). Moreover, we have only studied porous structures
which do not contain a secondary phase (air, water, etc.) in the pores.
Future work could, for example, try to simulate air/water in the voids
with an equation of state. However, this also raises the question of the
connectivity of the voids (e.g., in Fig. 1 we see the voids are closed),
and potentially how the secondary phase may be able to drain.

With increasing progress in additive manufacturing of materials,
artificial structures can be produced where one can control morphology
and solid phase properties, potentially allowing physical experiments in
the same parameter space as our numerical study. In particular, Shen-
hav and Sherman [60] conducted compression experiments on 3D-
printed porous brittle structures to study fracture mechanisms. How-
ever, their study was limited to idealized grid-like geometries and did
not consider very large deformations. Focusing on the large plastic de-
formations, Zhang et al. [61] reviews the plastic collapse in additively
manufactured auxetic porous structures with idealized unit cells. In
the future, 3D-printing GRF microstructures with brittle plastics may
allow for physical experiments to support the numerical observations
presented here.

5. Concluding remarks

Relying on a set of artificially generated stochastic microstructures,
this study has investigated the dependence of the microstructure on
the macroscopic plastic consolidation response of porous brittle solids.
Limited to structures whose bulk material is represented by a Drucker–
Prager yield criterion and with initial solid fractions 𝜙0 ∈ [0.25, 0.75],
the results of the numerical experiments presented in this article have
shown that the solid fraction is the main relevant quantity that governs
the consolidation of the structures. In particular, while heterogeneity
and anisotropy in general only weakly influence the plastic consolida-
tion, for 𝜙0 ⪅ 0.5 the structural geometry and dimensionality of the
problem become relevant. This is a result of different failure mecha-
nisms on the microscale. Furthermore, this study has revealed that the
plastic consolidation in two-dimensional structures can be described by
a universal function and plasticity index similar to that proposed for
systems of discrete cohesive disks. The presented framework could be
adapted to study porous materials whose solid phase is rate- and/or
temperature-dependent, and additionally enhanced to simulate voids
containing a secondary phase such as air or water. While the stochastic-
numerical experiments of this work allowed several conclusions about
porous brittle solids to be made, further investigations can become ex-
cessively time-consuming, especially for three-dimensional structures,
structures of very low solid fraction and when a sufficiently large
stochastic ensemble is required. With increasing computational power
in the future, the approach presented here can provide further and more
detailed insight into the mechanics of any porous solid with continuous
microstructures.
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Fig. A.12. MPM discretization. A material domain discretized by particles on a
ackground regular grid. Note that the material boundary is not modeled explicitly and
nly drawn here with a solid curved line in order to highlight the material domain.

Fig. A.13. The quadratic B-spline of Eq. (A.2).

ppendix A. The MPM algorithm

Algorithm 1 (adapted from [17,39]) outlines the steps of the MPM
cheme to approximate solutions to the (weak form of the) momentum
onservation equation. The microstructures’ solid phase is discretized
nto 𝑁𝑝 of material particles with constant and equal mass 𝑚𝑝, initially
qual volume 𝑉𝑝 and initially zero velocity 𝒗𝑝. A fixed Eulerian grid
ith uniform grid spacing 𝛥𝑥 is used, as illustrated in Fig. A.12. We
mploy interpolation functions 𝑁𝒊(𝒙𝑝) between a grid node 𝒊 and a
article at a coordinate 𝒙𝑝 on the form

𝑖(𝒙𝑝) = 𝑁
(𝑥𝑝 − 𝑥𝑖

𝛥𝑥

)

𝑁
( 𝑦𝑝 − 𝑦𝑖

𝛥𝑥

)

𝑁
( 𝑧𝑝 − 𝑧𝑖

𝛥𝑥

)

(A.1)

with 𝑁(⋅) given by the quadratic B-spline

(𝑢) =

⎧

⎪

⎨

⎪

⎩

3
4 − |𝑢|2, if |𝑢| < 1

2
1
2 (

3
2 − |𝑢|)2, if 1

2 ≤ |𝑢| < 3
2

0, otherwise

(A.2)

as plotted in Fig. A.13. Note that mass is automatically conserved as
the total mass is the sum of particle masses which individually remain
constant in time.

The algorithm relies on an elastic predictor–plastic corrector scheme
following Simo [62], where, for each time step, it is initially assumed
the deformation is elastic and later corrected if the step resulted in a
non-admissible state outside the yield surface. We call the stress (or
10

strain) state of the initial elastic prediction the trial state. A plastic flow
rule dictates how the correction occurs, in other words, how the trial
state should be projected back to the yield surface. With the plastic rate
of deformation given by Eq. (10), we have3

𝒍𝑃 = �̇�
dev(𝝉)

‖dev(𝝉)‖
= �̇�

dev(𝜺)
‖dev(𝜺)‖

(A.3)

where we in the last equality made use of the elastic law and using
the notation ‖𝑨‖ =

√

𝑨 ∶ 𝑨. This choice induces no plastic com-
paction/dilatancy. The Drucker–Prager yield surface is a cone in prin-
ciple stress space, and trial states with 𝑝 smaller than that of the
one’s tip must be treated exceptionally. In particular, for these states,
.e., with 𝑝 < −𝑐𝑒−𝜉𝜀

𝑃
𝑆 , we make the natural choice of projecting

hem to the closest point on the yield surface, which is the state at
he tip of the Drucker–Prager cone. However, this last choice will
nduce a plastic dilatancy. An illustration of the flow rule is sketched in
ig. A.14. While the (small) plastic dilatancy induced by the flow rule
ay not necessarily represent issue in the microstructural compression

imulations, we would like to minimize this effect by using the plastic
olume correction technique by Pradhana [63]. As this very simple and
traightforward technique may not yet be familiar in the community,
e briefly outline it here: We track the plastic volumetric expansion
𝑃 ,𝑛+1
𝑉 = 𝜀𝑃 ,𝑛𝑉 + tr(𝜺trial) − tr(𝜺𝑛+1), which is initially zero. This is then

used to artificially shift the location of the cone’s tip such that the
projection in Step 11 in Algorithm 1 can instead be written

𝜺𝐸,𝑛+1
𝑝 =

⎧

⎪

⎨

⎪

⎩

𝜺𝐸,trial
𝑝 − 𝛥𝛾𝑝

dev(𝜺𝐸,trial
𝑝 )

‖dev(𝜺𝐸,trial
𝑝 )‖

+ 1
𝑑 𝜀

𝑃 ,𝑛
𝑉 ,𝑝𝑰 , if 𝑝trial

𝑝 ≥ −𝑐𝑒−𝜉𝜀
𝑃
𝑆,𝑝

𝑐
𝐾𝑑 𝑒

−𝜉𝜀𝑃𝑆,𝑝 , otherwise

where the variable 𝜀𝑃𝑉 must be reset to zero once a particle is not in a
dilating state.

In MPM, the way in which information is transferred between grid
nodes and particles significantly affects the overall dissipation of the
numerical scheme. No transfer is completely loss-free, and with these
transfers happening for every time step, this could add up to a notable
dissipation. As seen in Step 13 of the Algorithm 1, a weighted com-
bination of the particle-in-cell (PIC) and fluid-implicit-particle (FLIP)
schemes provides a trade-off between the amount of numerical dissipa-
tion and stability of the scheme [37]. While we have used a weighting
parameter 𝛼 = 0.99 in order to introduce minimal dissipation, a
sensitivity study on this parameter reveals it does not significantly
influence the plastic consolidation phase. This is presented in Fig. A.15,
where we observe that even for a rather small value 𝛼 = 0.8, we
re within the scatter of fluctuations, and the plastic consolidation is
omparable to that of 𝛼 = 0.99. We note there exist other transfer

schemes, e.g., Affine PIC [64,65] which preserves angular momentum
exactly, or perhaps even better, Polynomial PIC [66] or Power PIC [67]
which were developed very recently and can reduce the amount of
dissipation further.

We refer to the time integration as symplectic since the positions
are updated based on the current velocities, see Step 14 in Algorithm
1. It should be emphasized that this is not an implicit time integra-
tion scheme, no linear systems of equations are solved (no consistent
tangent stiffness is derived), and the time step 𝛥𝑡 is bound by the
Courant–Friedrichs–Lewy (CFL) condition. In particular, we allow for
adaptive time stepping by adhering to the CFL condition while at the
same time ensuring that elastic waves do not travel more than 𝛥𝑥
within the time 𝛥𝑡. This is described in Step 1, where we used the
onstants 𝐶CFL = 0.6 and 𝐶el = 0.5.

3 Note that since the plastic multiplier �̇� is arbitrary we absorbed other
constants into it.



Acta Materialia 250 (2023) 118861L. Blatny et al.
Fig. A.14. Flow rule. Two example trial states are projected to the yield surface, here illustrated in the space of 𝑝 and 𝑞.
Fig. A.15. Influence of the FLIP-PIC ratio 𝛼 on the plastic collapse of the two-
dimensional isotropic single-cut microstructure with 𝜙 = 0.7 used in Fig. 9 with
𝛼 = 0.99.

Appendix B. Effect of imposed strain rate

The deformation manifests itself differently on the microscale de-
pending on the imposed strain rate. At low strain rates, below �̇� =
5 s−1, the microscopic deformation is erratically scattered throughout
the structure. At higher strain rates, a structure-spanning zone of high
plastic compaction nucleates at the top and causes propagation of a
front of progressively compacted material. The propagation continues
until the bottom of the structure. Such type of compaction has been
observed in porous rocks and steel foams [68–70]. The two types
of compaction for low and high imposed strain rates are shown in
Fig. B.16 within a dense microstructure and in Fig. B.17 within a more
porous structure. Our finding of a critical strain rate above which these
dynamic compaction patterns appear is in line with the study of Blatny
et al. [39] who, using idealized two-dimensional structures with a
perfectly-plastic von Mises solid phase, found that the deformation
pattern transitions from spatially erratic to propagating compaction
bands at a material-dependent critical strain rate.

Appendix C. Effect of solid phase constitutive model

The effect of changing the plastic constitutive Drucker–Prager pa-
rameters on the solid phase on the consolidation response is shown in
Fig. C.18. The effect is equal to a shift of the stress at onset of failure,
leaving the consolidation response remains similar. Changing Young’s
modulus will have an analogous effect as this will also change the stress
at failure.
11
Algorithm 1: Elastoplastic symplectic Euler B-spline PIC-FLIP MPM
initialize 𝑚𝑝, 𝑉𝑝,𝒙𝑝, 𝒗𝑝 = 𝟎, 𝑭𝐸 = 𝑰 , 𝜀𝑃𝑆,𝑝 = 0
for 𝑛 ← 0 to max time steps do

1. adapt time step: 𝛥𝑡 = min
(

𝐶CFL
𝛥𝑥

max𝑝 |𝒗𝑛𝑝|
, 𝐶el

𝛥𝑥
√

𝐸∕𝜌

)

2. interpolate grid mass: 𝑚𝑛
𝒊 =

𝑁𝑝
∑

𝑝=1
𝑚𝑝𝑁𝒊(𝒙𝑛𝑝)

3. interpolate grid velocity: 𝒗𝑛𝒊 =
1
𝑚𝑛
𝒊

𝑁𝑝
∑

𝑝=1
𝑚𝑝𝒗𝑛𝑝𝑁𝒊(𝒙𝑛𝑝)

4. get grid force: 𝒇 𝑛
𝒊 = −

𝑁𝑝
∑

𝑝=1
𝑉 0
𝑝 𝝉(𝑭

𝐸,𝑛
𝑝 )∇𝑁𝒊(𝒙𝑛𝑝)

5. update grid velocity: 𝒗𝑛+1𝒊 = 𝒗𝑛𝒊 +
𝛥𝑡
𝑚𝑛
𝒊
𝒇 𝑛
𝒊

6. apply boundary conditions: 𝒗⟂𝒊∈𝜕𝛺 = 0

7. get trial elastic deformation gradient on the particles:

𝑭𝐸,trial
𝑝 =

(

𝑰 + 𝛥𝑡
∑

𝒊∈grid
𝒗𝑛+1𝒊

(

∇𝑁𝒊(𝒙𝑛𝑝)
)𝑇

)

𝑭𝐸,𝑛
𝑝

8. perform SVD of 𝑭𝐸,trial
𝑝 = 𝑼𝐸

𝑝 𝜮
𝐸,trial
𝑝 (𝑽 𝐸

𝑝 )
𝑇

9. get trial elastic Hencky strain: 𝜺𝐸,trial
𝑝 = ln𝜮𝐸,trial

𝑝

10. check yield criterion 𝑦(𝑝trial
𝑝 , 𝑞trial

𝑝 ) where
𝑝trial
𝑝 = −𝐾 tr(𝜺𝐸,trial

𝑝 ) and 𝑞trial
𝑝 =

√

6𝐺||dev(𝜺𝐸,trial
𝑝 )||.

If 𝑦 ≤ 0, then 𝜺𝐸,𝑛+1
𝑝 = 𝜺𝐸,trial

𝑝 and proceed to step 12
11. obtain the new strain state by projecting the trial state back

to the yield surface according to the non-associative flow

rule, 𝜺𝐸,𝑛+1
𝑝 =

⎧

⎪

⎨

⎪

⎩

𝜺𝐸,trial
𝑝 − 𝛥𝛾𝑝

dev(𝜺𝐸,trial
𝑝 )

||dev(𝜺𝐸,trial
𝑝 )||

, if 𝑝trial
𝑝 ≥ −𝑐𝑒−𝜉𝜀

𝑃
𝑆,𝑝

𝑐
𝐾𝑑 𝑒

−𝜉𝜀𝑃𝑆,𝑝 , otherwise
and update the softening variable
𝜀𝑃𝑆,𝑝 = 𝜀𝑃𝑆,𝑝 +

(

||dev(𝜺𝐸,trial
𝑝 )|| − ||dev(𝜺𝐸,𝑛+1

𝑝 )||
)

12. update elastic deformation gradient on the particles
𝑭𝐸,𝑛+1

𝑝 = 𝑼𝐸
𝑝 𝑒

𝜺𝐸,𝑛+1
𝑝 (𝑽 𝐸

𝑝 )
𝑇

13. update particle velocity: 𝒗𝑛+1𝑝 = 𝛼𝒗FLIP
𝑝 + (1 − 𝛼)𝒗PIC

𝑝 where
𝒗PIC
𝑝 =

∑

𝒊∈grid
𝒗𝑛+1𝒊 𝑁𝒊(𝒙𝑛𝑝), 𝒗FLIP

𝑝 = 𝒗𝑛𝑝 +
∑

𝒊∈grid
(𝒗𝑛+1𝒊 − 𝒗𝑛𝒊 )𝑁𝒊(𝒙𝑛𝑝)

14. update positions: 𝒙𝑛+1𝑝 = 𝒙𝑛𝑝 + 𝛥𝑡𝒗PIC
𝑝

end
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Fig. B.16. Plastic strain rate �̇�𝑃𝑆 visualized in the microstructure of Fig. 8c under slow (upper row) and fast (lower row) imposed compressive strain rate �̇�.

Fig. B.17. Plastic strain rate �̇�𝑃𝑆 visualized in the microstructure of Fig. 9c under slow (upper row) and fast (lower row) imposed compressive strain rate �̇�.

Fig. C.18. Effect of plastic constitutive parameters of the Drucker–Prager model, in particular the (a) cohesion 𝑐, (b) friction angle 𝜑𝑓 and (c) softening factor 𝜉. Here, a double-cut
structure of 𝜙0 = 0.35 was used.
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Fig. C.19. Same as Fig. 11 except here a perfectly-plastic von Mises constitutive model
was used for the solid phase of the microstructure. The black line is Eq. (13) with
𝜆 = 1.99 (as in Fig. 11) and 𝑝𝑑 = 273 kPa.

Interestingly, changing the constitutive solid phase model to a
perfectly-plastic von Mises model, still leaves Eq. (13) a decent fit. This
is illustrated in Fig. C.19, using the same 𝜆 as found for the Drucker–
Prager strain-softening model, only a shift of 𝑝𝑑 is used in the fit. The
von Mises yield criterion is given by 𝑦(𝑞) = 𝑞 − 𝑞𝑚 where 𝑞𝑚 is a chosen
‘‘shear strength’’ constant. Here, the value of 𝑞𝑚 was chosen to match
the Drucker–Prager yield criterion of Eq. (8) at vanishing mean stress.
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