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Abstract
Many real-life treatments are of limited supply and cannot be provided to all
individuals in the population. For example, patients on the liver transplant wait-
ing list usually cannot be assigned a liver transplant immediately at the time
they reach highest priority because a suitable organ is not immediately avail-
able. In settings with limited supply, investigators are often interested in the
effects of treatment strategies in which a limited proportion of patients receive
an organ at a given time, that is, treatment regimes satisfying resource con-
straints. Here, we describe an estimand that allows us to define causal effects
of treatment strategies that satisfy resource constraints: incremental propensity
score interventions (IPSIs) for limited resources. IPSIs flexibly constrain time-
varying resource utilization through proportional scaling of patients’ natural
propensities for treatment, thereby preserving existing propensity rank ordering
compared to the status quo. We derive a simple class of inverse-probability-
weighted estimators, and we apply one such estimator to evaluate the effect
of restricting or expanding utilization of “increased risk” liver organs to treat
patients with end-stage liver disease.
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1 INTRODUCTION

When first-line treatments are scarce, patients often face
decisions between waiting for a suspected superior treat-
ment or accepting the first available treatment. For exam-
ple, many patients with end-stage liver disease will reject
transplantation with “increased risk” liver grafts (Kumar
et al., 2016), which are suspected to confer a higher risk
of unintended transmission of HIV, hepatitis B, and/or
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hepatitis C (Seem et al., 2013). To evaluate the effect of
such practices, we couldmake inferences on parameters of
hypothetical randomized trials comparing survival under
transplantation with “increased risk” versus “standard
risk” liver grafts. Yet, knowledge of these average effect
parameters would be insufficient for decisions because it
is unclear whether a restrictive policy on “increased risk”
organs might adversely and surreptitiously impact overall
survival due to longerwaiting times. Similar concerns arise
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with studies that aim to assess the effects of liberal ver-
sus conservative strategies for surgical blood transfusion
(Mazer et al., 2017) or of care reception at hospitals with
high versus low procedural volume (Vemulapalli et al.,
2019).
Observational studies aiming to inform real-world poli-

cies should consider treatment strategies compatible with
real-world constraints. In limited resource settings, these
constraintswill primarily include restrictions on treatment
utilization in the population. Secondarily, policy decisions
concerning the elimination of a suspected inferior treat-
ment will leave unperturbed patients’ counterfactual rank
ordering in terms of their propensities for treatment, for
example, those determined by a transplant waiting list.
A growing literature targets the optimal dynamic treat-

ment regime (DTR) among the restricted class that respects
a resource constraint in expectation. However, meth-
ods for point treatment settings (Athey & Wager, 2021;
Luedtke & van der Laan, 2016) are of limited utility when
patients have sequential opportunities for treatment and
constraints delay, rather than prevent, treatment. Addi-
tionally, more general constrained optimization strategies
(e.g., Caniglia et al., 2021) will identify DTRs that contra-
dict extant prioritization strategies (e.g., waiting lists) that
a policy-maker wishes to preserve. In contrast, Boatman
and Vock (2018) consider estimating the value of regimes
for patients who are offered organs (lungs) on a trans-
plant waiting list where the structure of the waiting list
is left unmanipulated, but suggest intensive simulation-
based estimators with unknown statistical properties and
require that the waiting list algorithm of the observed
data-generating mechanism is precisely known to the ana-
lyst. This requirement may be reasonable in transplant
settings, where waiting list algorithms are publicly avail-
able, but will otherwise not be satisfied, as in the example
of care provision at low- versus high-procedural volume
care centers.
Motivated by the gaps in the methodological literature,

we describe a new class of estimands, which we refer to
as expected potential outcomes under incremental propen-
sity score interventions (IPSIs) for limited resource settings.
IPSIs are characterized by time-varying stochastic inter-
ventions on treatment versions that result in proportional
shifts in patients’ propensities for treatment reception.
These interventions are similar to the IPSIs of Kennedy
(2019) with the important and nontrivial exception that
they are specifically tailored for the time-varying limited-
resource setting. As in Kennedy (2019), we derive relatively
simple inverse-probability-weighted (IPW) estimators for
these estimands that are easy to implement with standard
statistical software.
We present results of a real data analysis for a setting

in which patients are waiting to receive a single dose
of one of two treatments versions and policy-makers are

considering eliminating the suspected inferior treatment
version. In line with the examples above, such settings
are common in medicine and public health when patients
are faced with decisions between scarce treatments with
uncertainwait-times. To fix ideas, we focus on themotivat-
ing example of “standard risk” versus “increased risk” liver
transplants. However, we emphasize that IPSIs may be
formulated to satisfy any investigator-specified constraints
on the marginal distribution of treatment over time and
we provide general results in the Supporting Information.
Section 2 presents an observed data structure. Section 3
provides formal definitions of IPSIs and corresponding
counterfactual variables. Section 4 provides a numerical
example illustrating the utility of IPSIs and the failure of
naive methods. Section 5 defines conditions for the iden-
tification of expected potential outcomes under IPSIs in
terms of observed data parameters and gives identification
theorems. Section 6 provides an algorithm for consistent
and asymptotically normal estimation of identified param-
eters. Section 7 provides a real data analysis using data
from the Scientific Registry of Transplant Recipients. Sec-
tion 8 provides concluding remarks. Proofs and additional
results are provided in the Supporting Information.

2 DATA STRUCTURE

Consider a study in which 𝑛 patients are followed in 𝑘 ∈
{0, … , 𝐾} discrete time intervals. Suppose that patients 𝑖 ∈
{1, … , 𝑛} represent independent and identically distributed
draws from a common law 𝑃, and thus, we omit the 𝑖
subscript on the random variables.
In each interval 𝑘, a patient is a candidate for receiving

treatment 𝐴𝑘, where 𝐴1,𝑘 ∶= 𝐼(𝐴𝑘 = 1) indicates recep-
tion of a suspected inferior treatment (e.g., an “increased
risk” organ transplant),𝐴2,𝑘 ∶= 𝐼(𝐴𝑘 = 2) indicates recep-
tion of a suspected superior treatment (e.g., a “standard
risk” organ transplant), and 𝐴𝑘 = 0 indicates no treat-
ment. Let 𝐿𝑘 be a vector of the patient’s covariates
and let 𝑌𝑘 be an indicator that an event of interest
(e.g., death) has occurred by the end of interval 𝑘.
We define a topological order within each interval as
(𝐿𝑘, 𝐴𝑘, 𝑌𝑘).
We use overlines (e.g.,𝐴𝑘) to indicate the history of vari-

ables during follow-up through 𝑘 and underlines (e.g.,𝐴
𝑘
)

to indicate their future trajectory from (and including) 𝑘.
By definition, all patients are alive and untreated at base-
line, so𝐴−1 = 𝑌−1 = 0 and patients can only receive a sin-
gle treatment such that if 𝐴𝑘 ∈ {1, 2}, then 𝐴𝑘+1 = 0. For
notational convenience, we define the indicator functions
𝑅1,𝑘 ∶= 𝐼{𝑌𝑘−1 = 𝐴𝑘−1 = 0} and 𝑅2,𝑘 ∶= 𝐼{𝐴1,𝑘 = 𝑌𝑘−1 =
𝐴𝑘−1 = 0}, which indicate eligibility for suspected inferior
and superior treatments, respectively. Unless otherwise
specified, we let𝑌𝑘−1 be a subset of the covariate vector 𝐿𝑘.
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3 INCREMENTAL PROPENSITY
SCORE INTERVENTIONS FOR LIMITED
RESOURCE SETTINGS

Here we describe the regimes 𝑔, under which the marginal
probability of suspected inferior and superior treatments
at each time point are constrained to be equal to or less
than those probabilities in the observed data. We refer to
Web Appendix A for a formulation of regimes 𝑔 that fix the
marginal utilization of treatments to any arbitrary levels.
We use superscripts to denote counterfactual variables

under a counterfactual regime. For example, 𝑌𝑔
𝑘
is the

counterfactual outcome that would occur under regime
𝑔 in interval 𝑘. Following Richardson and Robins (2013),
we use plus symbols (+) to distinguish natural values
of counterfactual intervention variables under a regime
(Robins et al., 2004) (e.g., 𝐴𝑔

1,𝑘
) from assigned values of

such variables (e.g.,𝐴𝑔+
1,𝑘
). Here, we take special care in dis-

tinguishing natural and assigned treatment values because
they play an integral part in the definition of IPSIs. The
natural value of some intervention variable in interval 𝑘
under some regime 𝑔 is a random variable correspond-
ing to the treatment value that would occur under that
regime had that regime been followed at all intervals prior
to, but not through, the moment of intervention on that
variable. For example, 𝐴𝑔

1,𝑘
indicates a patient’s inferior

treatment status in interval 𝑘, had that patient been follow-
ing regime 𝑔 through interval 𝑘 − 1 but stopped thereafter,
and subsequently that treatment is left to arise accord-
ing to status-quomechanism operating in the factual data.
For a thorough introduction to natural treatment values
in causal inference, see Richardson and Robins (2013) and
also Young et al. (2014). We will denote a patient’s eligi-
bility for a specific treatment 𝑗 under regime 𝑔 with 𝑅𝑔+

𝑗,𝑘
to emphasize that treatment eligibility is a function of a
patient’s past assigned (as opposed to natural) values of
treatment (e.g., 𝑅𝑔+

1,𝑘
∶= 𝐼{𝑌

𝑔
𝑘−1
= 𝐴

𝑔+

𝑘−1 = 0}).
We use the shorthand 𝜋𝑔

1,𝑘
(𝑎 ∣ 𝑙𝑘) to refer to the natural

probabilities of receiving the suspected inferior treatment
level 𝑎 under regime 𝑔 among treatment eligible patients
with covariate history 𝑙𝑘: 𝑃(𝐴

𝑔
1,𝑘
= 𝑎 ∣ 𝑅

𝑔+
1,𝑘
= 1, 𝐿

𝑔

𝑘 = 𝑙𝑘).
Likewise, we use 𝜋𝑔+

1,𝑘
(𝑎 ∣ 𝑙𝑘) to refer to such assigned

probabilities of receiving the suspected inferior treatment
and 𝜋1,𝑘(𝑎 ∣ 𝑙𝑘) to such probabilities in the factual data.
Similarly, we use 𝜋𝑔

2,𝑘
(𝑎 ∣ 𝑙𝑘), 𝜋

𝑔+
2,𝑘
(𝑎 ∣ 𝑙𝑘) and 𝜋2,𝑘(𝑎 ∣ 𝑙𝑘)

for suspected superior treatments, except conditioning on
𝑅
𝑔+
2,𝑘
= 1 (or 𝑅2,𝑘 = 1, for 𝜋2,𝑘(𝑎 ∣ 𝑙𝑘)), that is, conditioning

on those not selected for the inferior treatment. Finally, we
let 𝑞∗

𝑘
(𝑎𝑘 ∣ 𝑙𝑘, 𝑎𝑘−1) denote 𝑃(𝐴

𝑔+
𝑘
= 𝑎𝑘 ∣ 𝐿

𝑔

𝑘 = 𝑙𝑘, 𝐴
𝑔+

𝑘−1 =

𝑎𝑘−1) and let 𝑞𝑘(𝑎𝑘 ∣ 𝑙𝑘, 𝑎𝑘−1) denote the analogous prob-

ability in the factual data, 𝑃(𝐴𝑘 = 𝑎𝑘 ∣ 𝐿𝑘 = 𝑙𝑘, 𝐴𝑘−1 =
𝑎𝑘−1).

Definition 1 (IPSIs 𝑔 for limited resource settings). Let
𝑐𝑃,1,𝑘 and 𝑐𝑃,2,𝑘 denote investigator-specified parameters
defined as some function of 𝑃 so that, for each 𝑘, 𝑐𝑃,1,𝑘
and 𝑐𝑃,2,𝑘 are less than or equal to𝑃(𝐴1,𝑘 = 1) and𝑃(𝐴2,𝑘 =
1), respectively.
Furthermore, let 𝛾𝑔

𝑃,𝑘
and 𝛿𝑔

𝑃,𝑘
be law-dependent scaling

factors defined for each 𝑘 as:

𝛾
𝑔
𝑃,𝑘
∶=

𝑐𝑃,1,𝑘

𝑃(𝐴
𝑔
1,𝑘
= 1)

, (1)

𝛿
𝑔
𝑃,𝑘
∶=

𝑐𝑃,2,𝑘

𝑃(𝐴
𝑔
2,𝑘
= 1)

. (2)

Then, IPSIs for limited resource settings are defined as
the set of stochastic interventions on 𝐴𝑔+

𝑘
for all 𝑘 and all

𝑙𝑘, such that

𝜋
𝑔+
1,𝑘
(1 ∣ 𝑙𝑘) = 𝛾

𝑔
𝑃,𝑘
× 𝜋

𝑔
1,𝑘
(1 ∣ 𝑙𝑘), (3)

𝜋
𝑔+
2,𝑘
(1 ∣ 𝑙𝑘) = 𝛿

𝑔
𝑃,𝑘
× 𝜋

𝑔
2,𝑘
(1 ∣ 𝑙𝑘). (4)

In words, IPSIs are stochastic interventions that propor-
tionally scale treatment-eligible patient’s natural propensi-
ties for treatments by the scaling factors 𝛾𝑔

𝑃,𝑘
and 𝛿𝑔

𝑃,𝑘
, and

are specified by the investigator entirely through selection
of the parameters 𝑐𝑃,1,𝑘 and 𝑐𝑃,2,𝑘. As we state formally in
the following Theorem, 𝑐𝑃,1,𝑘 and 𝑐𝑃,2,𝑘 are interpretable as
the marginal probabilities of suspected inferior and supe-
rior treatment assignment under regime 𝑔, so that IPSIs
precisely allow control of these counterfactual parameters.

Theorem 1. For a regime 𝑔 specified according to Defini-
tion 1, then 𝑃(𝐴𝑔+

1,𝑘
= 1) = 𝑐𝑃,1,𝑘 and 𝑃(𝐴

𝑔+
2,𝑘
= 1) = 𝑐𝑃,2,𝑘 for

all 𝑘 and at all laws 𝑃.

A proof of Theorem 1 is given in Web Appendix B. By
consequence of Definition 1, then, for 𝑗 ∈ {1, 2},

𝑞∗
𝑘
(𝑗 ∣ 𝑙𝑘, 𝑎𝑘−1) =

{
𝜋
𝑔+
𝑗,𝑘
(1 ∣ 𝑙𝑘) for 𝑟𝑗,𝑘 = 1

0 for 𝑟𝑗,𝑘 = 0.
(5)

While it is not immediately obvious that 𝛾𝑔
𝑃,𝑘

and 𝛿𝑔
𝑃,𝑘

will be bounded to the unit interval, we show in Web
Appendix A that such is the case, under standard iden-
tification conditions introduced in Section 5, so that the
intervention densities defined in (5) are guaranteed to be
proper probability mass functions.
Note also that 𝛾𝑔

𝑃,𝑘
and 𝛿𝑔

𝑃,𝑘
are not functions of patient

covariates 𝐿𝑘. An immediate and important consequence
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of this property and the boundedness of the scaling fac-
tors is the following: for each 𝑘, 𝑗 ∈ {1, 2}, the map
𝜋
𝑔+
𝑗,𝑘
(1 ∣ ⋅) can be understood as a transformation of the

map 𝜋𝑔
𝑗,𝑘
(1 ∣ ⋅) that is rank-preserving in the arguments 𝑙𝑘.

In words, the rank orderings of patients’ natural propen-
sities are preserved upon intervention under regime 𝑔.
This is desirable whenever an investigator is interested
in a policy that manipulates resource utilization without
perturbing the patient prioritization mechanism, whether
that mechanism be explicit and known, as in trans-
plantation or emergency department triage, or implicit
and/or latent, as in blood transfusion or specialist care
prioritization in some settings. In our example, we con-
sider a policy that eliminates “increased risk” liver grafts
without perturbing the structure of the liver transplant
waiting list.
In summary, the class of IPSI regimes 𝑔 of Definition 1

is tailored for limited resource settings because they allow
specific investigator control of the marginal utilization of
treatments, under the regime, to levels at or below those
in the observed data. Alternatively, IPSIs can be speci-
fied to constrain the marginal resource utilization to any
arbitrary level, including levels greater than those in the
observed data, which may be of interest in some cases (see
the Real Data Analysis in Section 2 for an example). We
give flexible definitions of these regimes and generaliza-
tions of subsequent identification and estimation results in
Web Appendix A. We also show in Web Appendix C that
static regimes, under which a particular treatment level is
assigned to all patients, correspond to special, and often
unrealistic, cases of IPSIs.
In the remainder of the manuscript, we present an illus-

trative example, and identification and estimation results,
for the special case IPSI in which 𝑐𝑃,1,𝑘 is set to 0 and 𝑐𝑃,2,𝑘
is set to 𝑃(𝐴2,𝑘 = 1). In other words, we consider an IPSI in
which the suspected inferior treatment is eliminated and
utilization of the suspected superior treatment under 𝑔 is
maintained to that in the observed data. By consequence
of Theorem 1, we have that 𝛾𝑔

𝑃,𝑘
= 𝜋

𝑔+
1,𝑘
(1 ∣ 𝑙𝑘) = 0 for all 𝑙𝑘,

and

𝑃(𝐴
𝑔+
𝑘
= 1) = 0, (6)

𝑃(𝐴
𝑔+
𝑘
= 2) = 𝑃(𝐴𝑘 = 2). (7)

We consider this special IPSI to simplify notation and
also to anchor presentation in a common query exempli-
fied by our motivating example of a policy to eliminate
“increased risk” liver grafts. Furthermore, consideration of
this IPSI allows discussion of identification and estimation
in this special case, which highlights properties of practical
relevance that depart from general results.

4 ILLUSTRATIVE EXAMPLE

We present a simple numerical example illustrating the
failure of naive methods and the utility of IPSIs for sat-
isfying the characteristic constraints of limited resource
settings. Consider a population of patients with end-stage
liver disease. Suppose that based on previous random-
ized controlled trials (RCT), it is known that a patient’s
mortality under transplant with an “increased risk” organ
𝔼𝑃[𝑌

𝑎𝑘=1
𝑘

] is on average worse than under transplant with
a “standard risk” organ, 𝔼𝑃[𝑌

𝑎𝑘=2
𝑘

] < 𝔼𝑃[𝑌
𝑎𝑘=1
𝑘

]. Further,
suppose that policy-makers are interested in evaluating
the expected survival under a regime where the use of
“increased risk” liver grafts is eliminated, 𝑎1,𝑘 = 0.
Then, consider a setting with 𝐾 = 1, that is, two time

points, and suppose that the true parameter values defin-
ing the joint distribution of (𝐴1, 𝑌1) are also known. For
simplicity, suppose that all patients are alive at the end of
the first interval (𝔼𝑃[𝑌0] = 0), but not necessarily there-
after. Themarginal probabilities of receiving an “increased
risk” organ (𝐴1,𝑘 = 1) and a “standard risk” organ (𝐴2,𝑘 =
1) are each 0.2 for 𝑘 ∈ {0, 1}, representing the maximum
feasible proportion of the population that could receive
each organ type in each interval. Consistent with the hypo-
thetical RCT, the conditional probability of death through
interval 1 in the observed data is

𝔼𝑃[𝑌1 ∣ 𝐴1 = 𝑎1, 𝐴0 = 𝑎0] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for 𝑎0 = 2, 𝑎1 = 0,
0.5 for 𝑎0 = 1, 𝑎1 = 0,
0.25 for 𝑎0 = 0, 𝑎1 = 2,
0.75 for 𝑎0 = 0, 𝑎1 = 1,
1 for 𝑎0 = 0, 𝑎1 = 0,

(8)

so that, given a particular treatment history, expected sur-
vival is always better for “standard risk” organs (𝑎𝑘 = 2)
than for “increased risk” organs (𝑎𝑘 = 1) and receiving any
organ (𝑎𝑘 ∈ {1, 2}) results in better survival compared to
receiving no transplant at all (𝑎0 = 𝑎1 = 0). Marginalizing
over the specified distribution of treatment yields𝔼𝑃[𝑌1] =
0.5. Assume that organs were allocated completely at
random in the factual data so that the conditional expecta-
tions in (8) have the counterfactual interpretation 𝔼𝑃[𝑌1 ∣
𝐴1 = 𝑎1, 𝐴0 = 𝑎0] = 𝔼𝑃[𝑌

𝑎1,𝑎0
1 ] and also that 𝜋𝑔

𝑗,𝑘
= 𝜋𝑗,𝑘.

Therefore, for any regime 𝑔 defined by assigned treat-
ment densities 𝜋𝑔+

1,𝑘
and 𝜋𝑔+

2,𝑘
for “increased” and “standard

risk” organs, the g-formula of Robins (1986) identifies the
counterfactual survival under that regime 𝑔

𝔼𝑃[𝑌
𝑔
1 ] =

∑

∗

1

𝔼𝑃[𝑌1 ∣ 𝐴1 = 𝑎1]

1∏
𝑘=0

𝜋
𝑔+

2,𝑘
(𝑎2,𝑘)

𝐼(𝑟2,𝑘=1)𝜋
𝑔+

1,𝑘
(𝑎1,𝑘)

𝐼(𝑟1,𝑘=1),
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SARVET et al. 5

where we sum over the five possible treatment histories

∗

1 .
Suppose that there are two investigators who attempt

to provide evidence for the policy decision. Investigator
1 ignores the policy constraint and targets the expected
outcome under the static regime 𝑔1 that sets 𝐴

𝑔1+
1,𝑘
= 0

for all patients. Computation of the following g-formula
identifies 𝔼𝑃[𝑌

𝑔1
1 ], that is,

𝔼𝑃[𝑌
𝑔1
1 ] =

∑

∗

1

𝔼𝑃[𝑌1 ∣ 𝐴1 = 𝑎1]

1∏
𝑘=0

𝜋2,𝑘(𝑎2,𝑘)
𝐼(𝑟2,𝑘=1)𝐼(𝑎1,𝑘 = 0) ≈ 0.47.

The value of 𝔼𝑃[𝑌
𝑔1
1 ] ≈ 0.47 suggests that elimination of

“increased risk” organswouldmark an improvement com-
pared to the regime in the factual data (𝔼𝑃[𝑌1] = 0.5).
However, evaluation of other parameters of this regime
reveals possible limitations in its policy relevance. In par-
ticular, the following g-formulae identify the marginal
probabilities of “standard risk” organ utilization under
regime 𝑔1,

𝑃(𝐴
𝑔1
2,0 = 1) =𝜋2,0(1) = 0.25,

𝑃(𝐴
𝑔1
2,1 = 1) =𝜋2,1(1)𝜋2,0(0) = 0.5 × 0.75 = 0.375.

The marginal utilization of “standard risk” organs under
the naive regime 𝑔1 significantly exceeds the constraints
in the factual data 𝑃(𝐴2,0 = 1) = 𝑃(𝐴2,1 = 1) = 0.2, which
surely must also be satisfied under any realistic regime.
In contrast, suppose Investigator 2 explicitly considers

the policy constraint and evaluates an IPSI regime 𝑔2 that
sets 𝐴𝑔2+

1,𝑘
= 0 for all patients and determines 𝐴𝑔2+

2,𝑘
via the

IPSI regime described in Definition 1. Since the interven-
tion densities 𝜋𝑔2+2,0 and 𝜋𝑔2+2,1 are not immediately known,
Investigator 2 would recursively identify 𝜋𝑔2+

2,𝑘
from 𝑘 = 0

to 𝑘 = 1 with the following series of computations:

0a. 𝑃(𝐴𝑔22,0 = 1) = 𝜋2,0(1) = 0.25,

0b. 𝛿𝑔2𝑃,0 =
𝑃(𝐴2,0=1)

𝑃(𝐴
𝑔2
2,0=1)

= 0.8,

and then,

1a. 𝑃(𝐴𝑔22,1 = 1) = 𝜋2,1(1)𝜋
𝑔2+
2,0 (0) = 0.4,

1b. 𝛿𝑔2𝑃,1 =
𝑃(𝐴2,1=1)

𝑃(𝐴
𝑔2
2,1=1)

= 0.5,

1c. 𝜋𝑔+2,1(1) = 𝛿
𝑔2
𝑃,0 × 𝜋

𝑔
2,0(1) = 0.25.

Finally, Investigator 2 would evaluate the g-formula for
regime 𝑔2,

𝔼𝑃[𝑌
𝑔2
1 ] =

∑

∗

1

𝔼𝑃[𝑌1 ∣ 𝐴1 = 𝑎1]

1∏
𝑘=0

𝜋
𝑔+

2,𝑘
(𝑎2,𝑘)

𝐼(𝑟2,𝑘=1)𝐼(𝑎1,𝑘 = 0) = 0.65,

and would calculate the marginal probabilities of “stan-
dard risk” organ utilization under regime 𝑔2,

𝑃(𝐴
𝑔2+
2,0 = 1) =𝜋

𝑔2+
2,0 (1) = 0.2,

𝑃(𝐴
𝑔2+
2,1 = 1) =𝜋

𝑔2+
2,1 (1)𝜋

𝑔2+
2,0 (0) = 0.25 × 0.8 = 0.2.

The constraints are satisfied under this regime and impor-
tantly, the value of 𝔼𝑃[𝑌

𝑔2
1 ] suggests, in contradiction to

Investigator 1, that elimination of “increased risk” organs
would mark a deterioration in survival compared to the
regime in the factual data, that is, 𝔼𝑃[𝑌

𝑔2
1 ] > 𝔼𝑃[𝑌1] >

𝔼𝑃[𝑌
𝑔1
1 ].

We present a visual illustration and numerical sum-
mary of treatment assignment for this example in Figure 1.
The top third of Figure 1 illustrates treatment utilization
under the naive regime 𝑔1, in which the proportion of eli-
gible patients who receive the superior treatment version
is preserved compared to the observed data. In contrast,
the overall proportion of patients who receive the superior
treatment version is increased due to the increase in the eli-
gible patient pool elicited by the elimination of the inferior
treatment version. The bottom third of the graph illustrates
treatment under the IPSI regime 𝑔2, in which the propor-
tion of eligible patients who receive the superior treatment
version is reduced compared to the observed data, but the
overall proportion of such patients is preserved.
In the following Section 5, we present general conditions

sufficient to identify expected potential outcomes under an
IPSI regime 𝑔, 𝔼𝑃[𝑌

𝑔
𝑘
], from the distributions that gener-

ated the observed data described in Section 2.We conclude
the section with a theorem that provides an identifying
observed data parameter under these conditions.

5 IDENTIFICATION

We define the model𝐴 by the following conditions.

A1a. Exchangeability 1:
For each 𝑘, 𝐿𝑔

𝑘+1
⟂⟂𝐴

𝑔
𝑘
∣ 𝐿
𝑔

𝑘, 𝐴
𝑔

𝑘−1.
A1b. Exchangeability 2:

For each 𝑘, 𝐴𝑔
2,𝑘
⟂⟂𝐴

𝑔
1,𝑘
, 𝐴
𝑔
2,𝑘−1

∣ 𝐴
𝑔
1,𝑘−1

, 𝐿
𝑔

𝑘−1, 𝐴
𝑔

𝑘−2.
A2. Consistency For each 𝑘:

if 𝐴𝑘 = 𝐴
𝑔+

𝑘 then 𝐿𝑘+1 = 𝐿
𝑔
𝑘+1

and 𝐴1,𝑘+1 = 𝐴
𝑔
1,𝑘+1

and; if 𝐴𝑘 = 𝐴
𝑔+

𝑘 and 𝐴1,𝑘+1 = 𝐴
𝑔+

1,𝑘+1then 𝐴2,𝑘+1 =
𝐴
𝑔
2,𝑘+1

.
A3. Positivity For all

𝑘, 𝑙𝑘, 𝑓𝐿𝑔𝑘,𝑅𝑔+1,𝑘=1
(𝑙𝑘) > 0 ⇒ 𝑓𝐴1,𝑘=0,𝐿𝑘,𝑅1,𝑘=1(𝑙𝑘) > 0.

ConditionA1a is equivalent to the “no unmeasured con-
founding assumption” for future outcomes and covariates
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6 SARVET et al.

F IGURE 1 Simple numerical example illustrating the failure of naive methods to respect realistic resource constraints. The width of the
striped bars provides geometric intuition for properties of the naive (𝑔1) and IPSI (𝑔2) regimes: while the naive regime retains the conditional
probability of treatment to that in the observed data, the marginal probability of treatment is unrealistically inflated due to the increased
proportion of treatment-eligible patients. In contrast, the IPSI regime shrinks this conditional probability so that the marginal under the
regime is alternatively retained.
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SARVET et al. 7

𝐿
𝑘
commonly invoked for the identification of parame-

ters under dynamic regimes.We articulate exchangeability
conditions in terms of counterfactual variables so that they
are amenable to direct interrogation using the SingleWorld
Intervention Graphs of Richardson and Robins (2013).
WhenConditionA1a is the only exchangeability condition
assumed, average treatment effects are generally identified
by the g-formula of Robins (1986) even if an investigator
fails tomeasure all common causes of successive treatment
(𝐴𝑘,𝐴𝑘+1, … ) in the observed data, provided that these
treatments under the hypothetical regime were manipu-
lated only as a function of patient’s covariate and assigned
treatment history (𝐿

𝑔

𝑘, 𝐴
𝑔+

𝑘−1) and known parameters. Mod-
ified treatment policies (Díaz et al., 2021, 2022; Haneuse
& Rotnitzky, 2013)—and regimes (more generally) that
assign treatment as a function of the natural treatment
value (Richardson & Robins, 2013; Young et al., 2014)—
do not fall in this class and Condition A1a is not usually
sufficient for identification of causal parameters. Although
an IPSI regime 𝑔 does not directly depend on the natu-
ral value of treatment, computing the intervention density
under 𝑔 requires knowledge of the marginal distribution
of the natural value of the suspected superior treatment
𝑃(𝐴

𝑔
2,𝑘
= 1) as in expression (2) and this counterfactual

parameter is not necessarily identified under Condition
A1a alone. Therefore, we additionally consider Condi-
tion A1b, which is also implied by the “no unmeasured
confounding assumption,” for natural superior treatments
𝐴
𝑔
2,𝑘
, as in Richardson and Robins (2013) and Young et al.

(2014). To provide additional intuition for the necessity of
A1b in this context, note that an unmeasured common
cause of some treatment 𝐴𝑘 and some 𝑉𝑗 (with 𝑗 > 𝑘) will
typically preclude g-formula identification of the expected
value of 𝑉𝑗 under some intervention on 𝐴𝑘; this will be as
truewhen𝑉𝑗 ≡ 𝐴2,𝑗 , as it is for the familiar casewhen𝑉𝑗 ≡
𝑌𝑗; whereasA1a rules out unmeasured common causes of
𝐴𝑘 and𝑌𝑗 ,A1b is needed to rule out unmeasured common
causes of 𝐴𝑘 and 𝐴2,𝑗 .
For a regime 𝑔 considered here, we do not need an analo-

gous exchangeability condition for 𝐴𝑔
1,𝑘

because the inter-
vention distribution for 𝐴𝑔+

1,𝑘
is known a priori, 𝑃(𝐴𝑔+

1,𝑘
=

1) = 0. For IPSIs that arbitrarily constrain resources, addi-
tional exchangeability conditions for 𝐴𝑔

1,𝑘
may be needed,

as outlined in Web Appendix A.
Condition A2 links observed and counterfactual vari-

ables. It states that a patient with observed treatment
history consistent with regime 𝑔 will develop subsequent
clinical features and natural treatments consistent with
those that would naturally occur under regime 𝑔.
Condition A3 guarantees that the observed data param-

eter in the forthcoming theorem will be well defined. It
states that if a covariate history occurs among treatment-

eligible patients with positive probability under regime
𝑔, then there must be some positive probability of such
patients who do not receive the suspected inferior treat-
ment in the observed data. Note that the definition of IPSIs
guarantees that an analogous condition for the suspected
superior treatment version (𝐴2,𝑘) holds; we omit that con-
dition as amodel-defining assumption, similar to Kennedy
(2019), because its assertion would not exclude any laws
𝑃 ∈𝐴. Under arbitrary IPSIs that donot eliminate either
treatment, this property would extend to both treatment
levels and thus condition A3 may be omitted entirely (see
Web Appendix A).

5.1 Identification formulae

Let 𝑄𝐿𝑘 denote the density of covariates and outcomes in
interval 𝑘 conditional on themeasured past through 𝑘 − 1,
reminding the reader that 𝑌𝑘−1 ⊂ 𝐿𝑘. Then define 𝑓

𝑔
𝑉𝑘
(𝑣𝑘)

to be a general formulation of amarginal g-formula density
of an arbitrary vector𝑉𝑘 ⊆ {𝐴𝑘, 𝐿𝑘} evaluated at a 𝑣𝑘 in the
support 𝑘 of 𝑉𝑘, under regime 𝑔

𝑓
𝑔
𝑉𝑘
(𝑣𝑘) ∶=

∑
{𝑘 ,𝑘 ,𝑘}⧵𝑘

𝑘∏
𝑗=0

𝑞∗𝑗 (𝑎𝑗 ∣ 𝑙𝑗, 𝑎𝑗−1)𝑄𝐿𝑗 (𝑙𝑗 ∣ 𝑎𝑗−1, 𝑙𝑗−1). (9)

We leverage this formulation to articulate marginal
g-formula densities for various subsets of {𝐴𝑘, 𝐿𝑘}. For
example, we write the marginal g-formula density for
the outcome 𝑌𝑘−1 as in (9), except replacing the terms
(𝑉𝑘, 𝑣𝑘,𝑘)with (𝑌𝑘−1, 𝑦𝑘−1,𝑘−1)), respectively. As a sec-
ond example, we write the marginal g-formula density for
the assigned treatment 𝐴𝑘 = 2 by replacing (𝑉𝑘, 𝑣𝑘,𝑘)
with (𝐴𝑘, 2,𝑘). We also define 𝑓

𝑔

𝐴′
2,𝑘

(1) to be a marginal

g-formula density of 𝐴′
2,𝑘
= 1, where 𝐴′

2,𝑘
denotes the

unobserved natural value of the suspected superior treat-
ment, which takes a different form than 𝑓𝑔𝐴𝑘 (2) because of
its inclusion of the factual propensity 𝜋2,𝑘

𝑓
𝑔

𝐴′
2,𝑘

(1) ∶=
∑
𝑘

𝜋2,𝑘(1 ∣ 𝑙𝑘)𝑓
𝑔

𝐿𝑘,𝑅1,𝑘
(𝑙𝑘, 1). (10)

In addition, to motivate discrete-time hazards-based
estimators, we define for each 𝑘 the following set of
g-formula density hazards 𝜆𝑔

𝑘
≡ {𝜆

𝑔
𝑌,𝑘
, 𝜆
𝑔,𝑠𝑢𝑏
𝑌,𝑘

, 𝜆
𝑔
𝐴2,𝑘
, 𝜆
𝑔

𝐴′2,𝑘
}.

These g-formula density hazards are defined in terms of
densities 𝑓𝑔

𝐴′
2,𝑘

and the general densities 𝑓𝑔𝑉𝑘 , where 𝑉𝑘 is

variously instantiated

𝜆
𝑔
𝑌,𝑘
∶=

𝑓
𝑔
𝑌𝑘
(1)

𝑓
𝑔
𝑌𝑘−1
(0)
, (11)
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8 SARVET et al.

𝜆
𝑔,𝑠𝑢𝑏
𝑌,𝑘

∶=

𝑓
𝑔

𝑌𝑘,𝐴𝑘
(1, 0)

𝑓
𝑔

𝐴𝑘,𝑌𝑘−1,𝐴𝑘−1
(0, 0, 0)

, (12)

𝜆
𝑔
𝐴2,𝑘

∶=
𝑓
𝑔
𝐴𝑘
(2)

𝑓
𝑔

𝑌𝑘−1,𝐴𝑘−1
(0, 0)

, (13)

𝜆
𝑔

𝐴′2,𝑘
∶=

𝑓
𝑔

𝐴′
2,𝑘

(1)

𝑓
𝑔

𝑌𝑘−1,𝐴𝑘−1
(0, 0)

. (14)

Then let 𝜓𝑔 denote the g-formula survival function

𝜓𝑔 ∶= 1 −

𝐾∏
𝑘=0

(1 − 𝜆
𝑔
𝑌,𝑘
). (15)

The following Theorem 2 provides a g-formula identity for
the expected potential outcomes under the IPSI regime
𝑔, 𝔼𝑃[𝑌

𝑔
𝐾], following Robins (1986) and Richardson and

Robins (2013).

Theorem 2. Under𝐴, 𝔼𝑃[𝑌
𝑔
𝐾] = 𝜓

𝑔.

Theorem 2 by itself does not constitute an identifi-
cation result for 𝔼𝑃[𝑌

𝑔
𝐾] because 𝑞

∗
𝑗 , defined in (5) and

appearing in (9), is by definition a counterfactual density.
Under classical DTRs, which depend at most on a patient’s
observed covariates, this distinction is trivial because 𝑞∗𝑗
would be known a priori. Under the IPSIs of Kennedy
(2019), it is also trivial because 𝑞∗𝑗 would be defined directly
in terms of the observed propensities 𝜋2,𝑘. In contrast,
the intervention densities of the IPSIs of regime 𝑔 are
defined in terms of the parameters 𝛿𝑃,𝑘 and 𝜋

𝑔
2,𝑘
. Thus, 𝑞∗𝑗

is not immediately identified without additional assump-
tions (i.e., exchangeability condition A1b). The following
lemma identifies 𝜋𝑔+

2,𝑘
, which with Theorem 2 suffices to

identify 𝔼𝑃[𝑌
𝑔
𝐾].

Lemma 1. Under𝐴, identify for all 𝑙0

𝜋
𝑔+
2,0(1 ∣ 𝑙0) =

𝑃(𝐴2,0 = 1)∑
0

𝜋2,0(1 ∣ 𝑙0)𝑄𝐿0(𝑙0)
× 𝜋2,0(1 ∣ 𝑙0).

Then, from 𝑘 = 1,… , 𝐾, identify recursively for all 𝑙𝑘:

𝜋
𝑔+
2,𝑘
(1 ∣ 𝑙𝑘) = 𝛿

𝑔
𝑃,𝑘
× 𝜋2,𝑘(1 ∣ 𝑙𝑘),

where

𝛿
𝑔
𝑃,𝑘
=

𝑃(𝐴2,𝑘 = 1)

𝜆
𝑔

𝐴′2,𝑘

∏𝑘−1

𝑗=0 (1 − 𝜆
𝑔,𝑠𝑢𝑏
𝑌,𝑗 )(1 − 𝜆

𝑔
𝐴2,𝑗
)
.

Lemma 1 illustrates an unusual feature of IPSIs: the
intervention densities 𝑞∗𝑗 must be identified (and thus com-
puted) recursively, in terms of observed data parameters,
from the first interval to the last. In contrast, intervention
densities for Kennedy (2019) are simultaneously identified
across all time points.
We give a proof of Theorem 2 and Lemma 1 in the more

general case where treatment resources are arbitrarily
constrained in Web Appendix D.

5.1.1 Alternative representations of the
g-formula

Define 𝑊𝑔
𝑘
to be a random variable that is the product of

the ratios of a patient’s conditional likelihoods of treatment
under the counterfactual regime to that likelihood under
the factual regime,

𝑊
𝑔
𝑘
∶=

𝑘∏
𝑗=0

𝑞∗𝑗 (𝐴𝑗 ∣ 𝐿𝑗, 𝐴𝑗−1)

𝑞𝑗(𝐴𝑗 ∣ 𝐿𝑗, 𝐴𝑗−1)
. (16)

Then, Lemma 2 provides a representation of Theorem 2
that naturally motivates a class of IPW estimators easily
computed with off-the-shelf software.

Lemma 2. Under𝐴, 𝜋𝑔+2,0(1 ∣ 𝑙0) can be reformulated as

𝜋
𝑔+
2,0(1 ∣ 𝑙0) =

𝑃(𝐴2,0 = 1)

𝔼𝑃[
𝐴2,0

𝜋1,0(0∣𝐿0)
]
× 𝜋2,0(1 ∣ 𝑙0),

and for each 𝑘,𝑓𝑔𝑉𝑘 (𝑣𝑘) and𝑓
𝑔

𝐴′
2,𝑘

(1) can be reformulated as

𝑓
𝑔
𝑉𝑘
(𝑣𝑘) = 𝔼𝑃

[
𝐼(𝑉𝑘 = 𝑣𝑘)𝑊

𝑔
𝑘

]
,

𝑓
𝑔

𝐴′
2,𝑘

(1) = 𝔼𝑃

[
𝐴2,𝑘𝑊

𝑔
𝑘−1

𝜋1,𝑘(0 ∣ 𝐿𝑘)

]
.

Lemma 2 allows recursive construction of 𝜓𝑔 entirely
in terms of weighted expectations of observed survival
and treatments.

6 INVERSE PROBABILITYWEIGHTED
ESTIMATION OF RISK UNDER
INCREMENTAL PROPENSITY SCORE
INTERVENTIONS

In low-dimensional settings, we can estimate 𝔼[𝑌𝑔𝐾]
nonparametrically by estimating each component of
the g-formula in Theorem 2, or equivalently, each com-
ponent of the alternative formulation in Lemma 2. In
high-dimensional settings, for example, when 𝐿𝑘 takes
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SARVET et al. 9

many levels and/or when 𝐾 is large, the g-formula in
Theorem 2 may be amenable to nonparametric estimation
using machine learning methods via approaches based on
the efficient influence function (EIF)—see, for example,
Bickel et al. (1993) and Van Der Laan and Rubin (2006).
Study of the EIF and resulting EIF-based estimators are
the focus of ongoing work but are complicated by the
recursive construction of the statistical functional, as
illustrated in Lemma 1. Alternatively, in such settings, the
nonparametric identification assumptions in Section 5
may be supplemented by parametric modeling assump-
tions on the propensities 𝜋1,𝑘 and 𝜋2,𝑘, which motivate
simple inverse propensity-weighted estimators.

6.1 Inverse probability-weighted
estimation

Let 𝜓𝑔 be the solution to the estimating equation

𝑛∑
𝑖=1

𝑈(𝜓𝑔, 𝛈) = 0, (17)

with respect to 𝜓𝑔 where 𝑈(𝜓𝑔, 𝛈) ∶= (𝑌𝐾 − 𝜓𝑔)𝑊
𝑔

𝐾,𝛈
.

Here, 𝑊𝑔
𝑘,𝜂

is defined as in Lemma 2, except with the
functions 𝑞𝑗 and 𝑞∗𝑗 defined in terms of the estimated
propensities 𝜋1,𝑘(𝜂1) and 𝜋2,𝑘(𝜂2) instead of 𝜋1,𝑘 and 𝜋2,𝑘,
where 𝜼 ≡ {𝜂1, 𝜂2}; 𝜋1,𝑘(𝜂1) and 𝜋2,𝑘(𝜂2) are parametric
models for 𝜋1,𝑘 and 𝜋2,𝑘; and 𝜂1 and 𝜂2 are the MLEs of
𝜂1 and 𝜂2.
Following standard m-estimation theory (Stefanski &

Boos, 2002), a consistent and asymptotically normal solu-
tion for 𝜓𝑔 may be obtained by recursively obtaining
and substituting (𝛿𝑔1

𝜼,𝑘
,𝑊

𝑔

𝑘,𝛈̂
, 𝜆
𝑔
𝑘
) for (𝛿𝑔1

𝑃,𝑘
,𝑊

𝑔
𝑘
, 𝜆
𝑔
𝑘
) from

𝑘 = 0,… , 𝐾, provided that we choose some
√
𝑛-consistent

estimator for the propensities 𝜋1,𝑘 and 𝜋2,𝑘. Note that
(𝛿
𝑔1
𝜼,𝑘
,𝑊

𝑔

𝑘,𝛈̂
) are distinguished from (𝛿𝑔1

𝑃,𝑘
,𝑊

𝑔
𝑘
) via indexing

by 𝜼.
We illustrate with the following estimation algorithm,

applied to a subject-interval dataset, constructed such
that each subject will have 𝐾∗ + 1 lines indexed by 𝑘 =
0,… , 𝐾∗, where 𝐾∗ = 𝐾 if 𝑌𝐾 = 0, else 𝐾∗ = min{𝑗 ∶
𝑌𝑗 = 1}, so that 𝐾∗ = 𝐾 when a subject is alive at the
end of follow-up or equals the interval number during
which a subject dies during follow-up. Let ℙ𝑛 denote the
empirical measure.

6.1.1 IPW estimation algorithm for 𝜓𝑔

1. Using subject interval recordswith𝑅𝑗,𝑘 = 1, obtain
√
𝑛-

consistent estimates 𝜋𝑗,𝑘(𝜂1) of 𝜋𝑗,𝑘 for 𝑗 = 1, 2.

2. Obtain

𝛿
𝑔

𝜼,0
=

ℙ𝑛(𝐴2,0)

ℙ𝑛(𝐴2,0
𝐼(𝐴1,0=0)

𝜋1,0(0∣𝐿0;𝜂1)
)
.

Then determine 𝑞∗0(𝐴0 ∣ 𝐿0; 𝛈) as in expressions (3)–
(5), except using 𝛿𝑔

𝜼,0
and𝜋2,0(𝛈) in place of 𝛿

𝑔
𝑃,0 and𝜋

𝑔
2,0.

3. For each subject’s line 1, attach the weight, 𝑊𝑔
0,𝜼
,

calculated as 𝑞
∗
0 (𝐴0∣𝐿0;𝛈)

𝑞0(𝐴0∣𝐿0;𝛈)
.

4. Compute 𝜆𝑔𝐴2,0 =
ℙ𝑛(𝐴2,0𝑊

𝑔

0,𝜼
)

ℙ𝑛(𝑊
𝑔

0,𝜼
)
, 𝜆𝑔𝑌,0 =

ℙ𝑛(𝑌0𝑊
𝑔

0,𝜼
)

ℙ𝑛(𝑊
𝑔

0,𝜼
)
, and

𝜆
𝑔,𝑠𝑢𝑏
𝑌,0 =

ℙ𝑛(𝑌0(1−𝐴2,0)𝑊
𝑔

0,𝜼
)

ℙ𝑛((1−𝐴2,0)𝑊
𝑔

0,𝜼
)
.

5. Iterate from 𝑘 = 1,…𝐾:

5.1. Obtain 𝜆𝑔
𝐴′2,𝑘

=
ℙ𝑛

(
𝐴2,𝑘𝑊

𝑔

𝑘−1,𝜼

𝐼(𝐴1,𝑘=0)

𝜋1,𝑘(0∣𝐿𝑘;𝜼1)

)
ℙ𝑛

(
𝑅1,𝑘𝑊

𝑔

𝑘−1,𝜼

𝐼(𝐴1,𝑘=0)

𝜋1,𝑘(0∣𝐿𝑘;𝜼1)

) .
5.2. Obtain 𝛿𝑔

𝜼,𝑘
=

ℙ𝑛(𝐴2,𝑘)

𝜆
𝑔

𝐴′
2
,𝑘

∏𝑘−1
𝑗=0 (1−𝜆

𝑔,𝑠𝑢𝑏
𝑌,𝑗

)(1−𝜆
𝑔
𝐴2,𝑗
)
and deter-

mine 𝑞∗
𝑘
(𝐴𝑘 ∣ 𝐿𝑘; 𝛈) as in step 2.

5.3. For each subject’s line k, attach the weight, 𝑊𝑔
𝑘,𝜼
,

calculated as
𝑞∗
𝑘
(𝐴𝑘∣𝐿𝑘;𝛈)

𝑞𝑘(𝐴𝑘∣𝐿𝑘;𝛈))
.

5.4 Obtain 𝜆𝑔
𝐴2,𝑘

=
ℙ𝑛(𝐴2,𝑘𝑊

𝑔

𝑘,𝜼
)

ℙ𝑛(𝑅1,𝑘𝑊
𝑔

𝑘,𝜼
)
,

𝜆
𝑔
𝑌,𝑘
=
ℙ𝑛(𝑌𝑘(1−𝑌𝑘−1)𝑊

𝑔

𝑘,𝜼
)

ℙ𝑛((1−𝑌𝑘−1)𝑊
𝑔

𝑘,𝜼
)
and

𝜆
𝑔,𝑠𝑢𝑏
𝑌,𝑘

=
ℙ𝑛(𝑌𝑘(1−𝐴2,𝑘)𝑅1,𝑘𝑊

𝑔

0,𝜼
)

ℙ𝑛((1−𝐴2,𝑘)𝑅1,𝑘𝑊
𝑔

0,𝜼
)
.

6. Obtain 𝜓𝑔 = 1 −
∏𝐾

𝑘=0(1 − 𝜆
𝑔
𝑌,𝑘
).

Because the statistical parameter in Theorem 2 is a func-
tion of the propensities, unlikemost g-formula parameters,
any variance estimator that does not explicitly account
for the variance in the propensity estimates (e.g., the
commonly used sandwich estimator) may be anticonser-
vative. See Haneuse and Rotnitzky (2013) and Henmi
and Eguchi (2004) for further discussion. In practice, we
recommend the nonparametric bootstrap for variance esti-
mation, which we implement for the applied example in
Section 7.

7 REAL DATA ANALYSIS

This study used data from the Scientific Registry of Trans-
plant Recipients (SRTR). The SRTR data system includes
data on all donors, wait-listed candidates, and transplant
recipients in the United States submitted by the members
of the Organ Procurement and Transplantation Network
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10 SARVET et al.

(A)

(B)

F IGURE 2 Estimated cumulative utilization of treatment. IPSIs constrained “standard risk” organ utilization to natural levels, in
contrast to the naive regime. “Increased risk” organ utilization is increased as expected under IPSI regimes 𝑔2 and 𝑔3.

(OPTN). The Health Resources and Services Adminis-
tration, US Department of Health and Human Services
provides oversight to the activities of the OPTN and SRTR
contractors. We used SRTR data to study the causal effect
of different transplantation policies involving the utiliza-
tion of “increased risk” liver grafts on patient survival.
The data were restricted to those from patients aged 18 or
older with no prior history of liver transplantation, who
were eligible for liver transplantation, were added to the
OPTN waiting list to receive a liver organ between 2005
and 2015, and were followed until death, loss to follow-

up (as reported by individual transplant programs), orMay
31st, 2016, whichever occurs first. The SRTR includes data
on wait-list candidate mortality via linkage to the National
Death Index (Kim et al., 2019). Over the study period, n =
93,956 transplant candidates were added to the wait list, of
whom 45,454 received livers from deceased donors. Data
were coarsened into discrete 30-day intervals, where k = 0
corresponds to a patient’s first 30-day interval upon enter-
ing the wait list. Data were used to estimate the 7.5-year
cumulative incidence of death (𝔼𝑃[𝑌

𝑔𝑧
𝐾 ]where𝐾 + 1 = 90)

under the following regimes:
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SARVET et al. 11

F IGURE 3 Estimated cumulative incidence of death. The naive method under-estimates cumulative incidence of death compared to an
IPSI. IPSIs that increase “increased risk” organ utilization indicate lower incidence of death compared to the natural course.

∅. Natural course: “standard risk” and “increased risk”
organs are utilized at current levels,

𝑔0. Eliminating “increased risk” organs (naive),
𝑔1. Eliminating “increased risk” organs (IPSI),
𝑔2. Increasing “increased risk” organs +25% (IPSI),
𝑔3. Increasing “increased risk” organs +50% (IPSI),

where each of these regimes targets outcomes additionally
under hypothetical interventions that abolish censoring
and, for simplicity, under interventions that abolish utiliza-
tion of transplants other than “standard risk” or “increased
risk” organs (organs from living donors, cardiac-death
donors, donors who are not HIV, hepatitis C, and hepati-
tis B seronegative, or donors with unknown risk status).
Each IPSI (𝑔1 − 𝑔3) constrains “standard risk” organs to
the marginal utilization under the natural course. Note
that the regimes 𝑔2 and 𝑔3 are examples of general IPSIs
described in the Web Appendix A. We consider the naive
regime 𝑔0 to be that which eliminates “increased risk”
organs and implicitly allows eligible patients under the
regime to receive transplants with “standard risk” organs
with the same propensity that they would under the
natural course (as in the example of Section 4).
We defined 𝐴1,𝑘 to indicate reception of an “increased

risk” organ and 𝐴2,𝑘 to indicate reception of a “standard
risk” organ in interval 𝑘. For 𝑘 = 0,… , 𝐾, interval 𝑘 con-
founders 𝐿𝑘 included waiting-list priority in the form of

model for end-stage liver disease (MELD) score, MELD
score exception, and urgent-need status. Interval 0 con-
founders 𝐿0 additionally included year of listing to the
waiting list, gender, race, age, height, weight, willingness
to accept a less optimal organ (i.e., a liver segment, an
organ from an incompatible blood type donor, or a donor
with hepatitis B or C), need for life support, functional sta-
tus, primary diagnosis leading to liver failure, history of
complications, or procedures related to liver failure (i.e.,
spontaneous bacterial peritonitis, portal vein thrombosis,
transjugular intrahepatic portosystemic shunt).We specify
the propensity models in Web Appendix E.

7.1 Results

We visually confirm that the treatment resource con-
straints are satisfied under IPSIs by plotting the estimated
utilization of “standard risk” and “increased risk” organs
under the IPSIs over a follow-up period of 7.5 years
in Figure 2. Notably, estimated utilization of “standard
risk” grafts under the naive regime is markedly, and
unrealistically, elevated compared to the natural course.
The estimated 7.5-year cumulative incidence of death

is 51.7% (95% confidence interval [CI]: 51.2–52.2%) under
the natural course regime, in contrast to 55.8% (95%
CI: 55.3–56.4%) under regime 𝑔1, corresponding to the
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12 SARVET et al.

restrictive practice of using only “standard risk” organs,
an estimated difference of 4.1 percentage points (95%
CI: 3.7–4.5 percentage points). Under the naive regime
(𝑔0), the estimated 7.5-year cumulative incidence of death
is 53.5% (95% CI: 53.0–54.0%). While the naive regime
similarly identifies that the elimination of “increased risk”
organs has a detrimental effect on long-term survival,
its estimates are optimistic compared to the IPSI that
constrains “standard risk” organ utilization to natural
levels. The cumulative incidence curves for death under
the natural course and regimes 𝑔0 and 𝑔1 are displayed in
Figure 3.
The estimated 7.5-year cumulative incidence of death is

51.1% (95% CI: 50.6–51.6%) under regime 𝑔2, correspond-
ing to the expansive practice of increasing utilization of
“increased risk” organs by 25%, an incidence 0.6 percent-
age points lower than what would be observed under the
natural course (95% CI: −0.7 to −0.4 percentage points).
The estimated cumulative incidence is 50.5% (95%CI: 49.9–
51.0%) under regime 𝑔3, corresponding to the expansive
practice of increasing utilization of “increased risk” organs
by by 50%. That is, an incidence 1.2 percentage points lower
than what would be observed under regime 𝑔0 (95% CI:
−1.5% to −0.9% percentage points). The cumulative inci-
dence for death under regimes 𝑔2 and 𝑔3 is also displayed
in Figure 3.
In summary, we estimated that, despite the concerns

regarding infectious disease transmission and organ infe-
riority, a policy of abolishing utilization of “increased risk”
organs would have increased the cumulative incidence
of death at 7.5 years and that increasing utilization of
“increased risk” organs would actually increase overall
survival compared to current practice.
Ninety-five percent confidence intervals were obtained

from the 2.5th and 97.5th percentiles of the distribution of
point estimates obtained by repeating the IPW algorithm
on 500 nonparametric bootstrap samples.

8 CONCLUSION

We have presented a new class of estimands that sat-
isfy user-specified resource constraints in longitudinal
settings with complex confounding structures: expected
potential outcomes under IPSIs for limited resource set-
tings. These estimands have desirable features compared to
traditional estimands because they (i) incorporate substan-
tive knowledge to specify limits on treatment utilization
that are feasibly achieved under an actual policy and (ii)
coarsely preserve features of the observed joint distribu-
tion between treatment and covariates, that is, the patients’
relative ordering with respect to their treatment propen-
sities, which would naturally be unperturbed in settings

where the intervention is a manipulation of treatment
resource scarcity.
Our estimands stand in contrast to the classical average

treatment effect of a deterministic regime, which is a spe-
cial case of an IPSI where treatment resources are assumed
to be practically unlimited. We give simple IPW estima-
tors for IPSIs, which can be implementedwith off-the-shelf
software. These estimators are consistent under mildly
stronger exchangeability assumptions, which are usually
required for regimes that depend on the natural value of
treatment (Young et al., 2014), but also mildly weaker pos-
itivity assumptions, like in Kennedy (2019), than those
typically needed for most causal estimands.
We demonstrated the utility of IPSIs in a study of organ

transplantation policies, where treatment resource limita-
tions are severe. This analysis supports the continued, and
possible expanded, use of the suspected inferior treatment
resource (the so-called “increased risk” liver grafts), sug-
gesting that the increased scarcity imposed by elimination
of these grafts outweighs the suspected inferiority of receiv-
ing these grafts, with respect to the cumulative incidence
of death in the population of transplant eligible patients.
Our class of estimands generalizes previously used

unlimited resource estimands. However, as discussed in
Kennedy (2019), these estimands should be interpreted as
more descriptive rather than prescriptive, because future
interventions will not be implemented exactly as the IPSIs
are defined. Further, policy-makers might be interested in
effects of different treatment prioritization rules, for exam-
ple, new (hypothetical) allocation policies corresponding
to new algorithms for prioritizing (ranking) individuals on
the national waiting list for liver transplants. Such esti-
mands fall outside of the class defined by IPSIs, because
such estimands cannot be defined under interventions that
preserve the natural prioritization of patients with dif-
ferent covariate values, which is the incremental nature
of IPSIs. New methods that allow for a wider range of
allocation policies are the focus of future work.

ACKNOWLEDGMENTS
The data reported here have been supplied by the Hen-
nepin Healthcare Research Institute (HHRI) as the con-
tractor for the Scientific Registry of Transplant Recipients
(SRTR). The interpretation and reporting of these data are
the responsibility of the author(s) and in no way should
be seen as an official policy of or interpretation by the
SRTR or the U.S. Government. We also thank Lan Wen,
James Robins, Thomas Richardson, and Elizabeth Ogburn
for insightful comments and discussions.

DATA AVAILAB IL ITY STATEMENT
The data used in this paper are available from Scientific
Registry of Transplant Recipients (https://www.srtr.org/)

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13859 by B
ibliothèque D

e L
'E

pfl-, W
iley O

nline L
ibrary on [17/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.srtr.org/


SARVET et al. 13

by request. The codes and scripts for data preprocess-
ing and reproducing all results in this paper are available
at GitHub (2023) (https://github.com/AaronSarvet/IPSI-
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