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Abstract. The role of embodied intelligence (EI) has the potential to overcome current
limitations in the fabrication, control, and resulting behavior to create robust and effective
dexterous robotic manipulators. To develop hands that truly exploit EI, we must design hands
by considering the entire system: the physical body, sensory systems, and the brain (the
controller). However, we lack clear approaches and methods that enable this system level
design for hands. We introduce an iterative approach for co-design which seeks to utilize
simulation and real world evaluation to maximize the performance by distributing EI across
the different elements of the system. To achieve this vision we require hands that can be rapidly
fabricated with variability in the design space. Thus, to further the development of robotic hands
that utilize EI we need streamlined fabrication pipelines which incorporate spatially distributed
sensors, complex geometries and materials, and control distributed at the sensory-motor and
high task planning domains.

1. Introduction
Robotic manipulation has long been an active research field involving interdisciplinary
researchers from domains including neuroscience, engineering, computer science, and materials
science [30, 33, 1]. A key focus and open challenge is achieving more human like dexterity [24, 28].
Dexterity describes the ability to perform complex interactions with objects and the environment
including in-hand manipulation, the ability to translate and rotate objects [31], and the ability
to exploit environmental constraints, for example sliding a coin over a table to grasp it off
the edge. Dexterous manipulation is particularly challenging as it inherently relies on complex
interactions between the robot, object, and the environment [8, 23].

In recent years, there have been some notable examples of robot hands that showcase examples
of this dexterous behavior [32, 7, 39, 34]. However, the capabilities of these hands are still
limited when compared to our human counterparts. For example, they have limitations for
error recovery, robustness to different environments, or behavioral diversity [11]. Extending the
capabilities of robot hands will unlock many application ranging from service robots, prosthesis,
medical or even agricultural robotics.

Many different approaches have been explored to move towards achieving dexterous
manipulation [31, 40, 2, 26, 3]. This includes developing methods for fabricating complex bio-
inspired hands and joints [38, 16], and developments in materials science and soft robotics to
allow the creation of more compliant hands and manipulators [20, 27]. Deep learning, highly
successful at many computational and learning tasks, has also been introduced to the field of
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manipulation [29, 32]. However, when compared with humans, AI based machines still struggle to
exploit their physicality and situation with the environment, while introducing large complexities
into the system [7]. In order to achieve a significant change in current dexterous manipulation
capabilities, this “conventional-AI” must be augmented or combined with so called “embodied
AI” which allows the computational power to be combined with exploitation of the physicality
of the system. To move towards this approach we must understand how to design the “body”
of robotic hands in conjunction with the algorithmic intelligence of the “brain” of these hands.

Considering human hands and fingers as a blueprint for highly dexterous manipulation, their
“co-design” of the highly complex physical components (skin, sensors, bones, ligaments) and
control system (nervous system and brain) has developed over millennia of biological evolution.
Artificially developing hands and methods of design that rival evolution continues to be a
significant challenge for engineers. Whilst complex multi-fingered hands have been developed
numerously in the past, there is limited use of the design optimization, modeling, and controller
development. In addition, due to complexity of the design and fabrication of sensory-motor
systems, the exploitation and design of tactile sensors is also often not incorporated or considered
as part of the design process for dexterous hands. This problem of negotiating complexity calls
for a new approach towards designing and developing dexterous manipulation systems.

In this chapter, we introduce and expand upon the idea of iterative co-design: the
simultaneous design iteration of the hardware and controller for multi-fingered hands. This
concept aims to exploit embodied intelligence (EI) to provide behavioral advantages by designing
the brain (controller) and body (mechatronic design) simultaneously. Importantly this extends
to sensory systems at both the physical (sensory design and properties) and computational level
(sensory-motor interactions). We hypothesize that a design methodology which simultaneously
co-designs the EI and the computational intelligence of a system will be able to achieve behaviors
that are otherwise not possible, or would require significantly more complexity or cost when
designed separately. In the remainder of this chapter, we first address the challenges of design of
robot hands, followed by a brief review of the related works with a discussion on what research
directions are missing. A framework for iterative co-design of dexterous hands is then presented,
before we conclude with a discussion on the challenges and future work.

2. Problem definition
A dexterous multi-fingered system is a highly complex system with multiple degrees of freedom
(dof), intricate structures, actuators, and levels of control. Naturally, the process of designing
and realizing such a system is therefore complex. Fig. 1 represents the progression of the
development of a robot hand from the design stages to the use case. The brain and body of the
hand is designed, fabricated, and the interactions planned. Through interactions between this
hand system and the environment the behavior of the hand emerges. As labeled in the diagram,
certain stages of the development incur “costs” C while the output behavior can be considered
a “reward” R. Examples of how these quantities could relate with a robotic hand are shown in
Table 1.

The objective of the design process is to maximize Rbehavior. However, simply aiming
for the maximum behavioral reward is likely to result in a overly complex system which is
challenging/resource-intensive to optimize at best and unable to optimize at worse. To combat
the problem with complexity, we must take into consideration of the costs of development and
devise a method to minimize those costs while maximizing the behavioral reward. This can be
done at two levels within the robot development.

In other words, we must consider an objective function Q which simultaneously maximize the
behavioral reward and minimize the costs constructed by some function q(·). We can consider the
total cost to be the combination of various costs that arise throughout the full robot development
stage and care about, given by c(·). The exact form of the function q(·) and c(·), and how the
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Figure 1. Simplified diagrammatic representation of the development and use of a robotic
hand. The costs and rewards arising throughout the process is indicated by C and R.

Table 1. Cost and rewards throughout the robot hand development and usage
Quantity Description Example

Cdes Cost of mechatronic design
Number of actuators

Time required to modify an existing design

Ccontrol Cost of controller complexity
Number of gain parameters to tune

Number of layers in the neural network
Cplan Cost of planning and running the controller Computational resource for planning or training

Cfab Cost of fabrication
Time taken to fabricate a hand

Monetary cost of purchasing a hand

Rbehavior Reward of dexterous behavior
Reachable work space by the fingertip

Success rate for a task

specific rewards and costs defined, is highly dependent on the situation.

Q = q (Rbehavior, Ctotal)

Ctotal = c (Cdes + Ccontrol + Cplan + Cfab)
(1)

Using this analysis of the “cost” of hands we can analyze the role that EI can play in both
the design, creation and use of hands. Typically, concepts EI is used to either maximize the
behavioral output with minimal gains in cost (e.g. using soft materials to provide robustness) or,
to minimize the costs whilst maintaining behavioral output (e.g. muscle synergies). However, if
we can develop methods that allow us design systems where EI can be used to affect both the
costs and rewards, we may be able to better optimize the use of EI across the entire system.
Hence develop hands with both better performance and lower cost.

2.1. Approaches towards robot hand development
In this section we discuss two high level approaches to the development of robotic hands:
sequential and iterative co-design. We aim to highlight how the costs Ctotal is closely linked
to the structure of the approach itself, and therefore claim that the cost can be minimized by
proposing an alternative robotic development approach: iterative co-design.

When designing any robotic system, and in particular a robotic hand, the stan-
dard/traditional approach has been a sequential process shown by the top flow chart of Fig.
2. In this approach, the robotic hand is developed step by step starting from the mechatronic
design, to the fabrication, sensor addition, and finally a controller to operate the hand.

Iterative co-design presents an alternative robotic system development approach and is shown
by the bottom flow chart of Fig. 2. Firstly, this approach is considered a co-design since the
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Figure 2. Block diagram of two methods of developing a robotic hand: Sequential approach
and Iterative co-design approach. *Depending on the system, sensor placement can be included
in the mechatronics design process

controller and the hardware is designed at once. Secondly it is iterative because after each
development cycle, the robotic system is evaluated which can be used to update the parameters
of the system. The development step refers to different ways a robot hand can be realized
(e.g.: physical fabrication, simulated hand model, etc). Between the two approaches, there are
trade-offs in costs incurred throughout the process. However, we claim that there are intrinsic
properties within the iterative co-design approach that maximize Q and hence the preferred
approach for the future of robotic hand design.

The sequential approach being the standard/traditional approach has a number of key
benefits which should not be overlooked. The key advantage is to exploit specialization. Robotics
being intrinsically multi-disciplinary, it is not scalable for a single individual or institutions
to perform all aspects of the development. By distributing the development to different
individuals/institutions with different tailored skills, one can argue the robot development is
more efficient. Furthermore, the development process does not rely on multiple iteration, which
further speeds up the process. However, with highly complex systems such as robot hands, there
are clear disadvantages of this process. When a robot is developed sequentially, at any given
step, design decision made earlier in the process affect the design decisions later in the process
which has the tendency for the Ctotal to increase significantly.

For robotic hands, commonly the mechanical system is designed to allow for maximum
flexibility for the user since the use case is unknown. For example, by maximizing the number
of joints and actuators, the designer of the controller is less constrained by the possible motion
of the hand. However, such design decisions generate complexity which may not contribute
to increasing the performance. In this same example, as the number of dof and actuators in
the hand increase, the controller becomes inherently complex and difficult to adapt to new
scenarios. Furthermore, certain design decisions made earlier in the process can be a hindrance
unknowingly for later processes - an unintentional cost incurred due to the structure of the
sequential approach. Especially if the hardware is purchased, the inability to modify the design
in addition to the monetary cost of the platform all contribute to increase Ctotal.
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Figure 3. Organization of related work on co-design with a focus on robotic hands utilizing EI.

Iterative co-design offers an alternative approach to benefit from EI. Robotic systems and in
particular robot hands have a strong coupling between the brain and body. The behavior of a
robotic hand is hugely dependent on the mechatronics design (body): the number of fingers, how
they bend, what sensors are placed and how they are placed, etc. Equally, the controller (brain)
defines the interaction with the world and thus the behavior. We hypothesize that through co-
design, the interaction between the brain and body can be captured and optimized, leveraging
the advantages of EI. This would result in a system with a lower complexity/cost compared to a
system developed through the sequential approach (e.g.: simpler controller, lower dof) but can
achieve similar or improved behavior. In other words, by leveraging the EI of hands through the
design method, we are able to systematically reduce Ctotal. Furthermore, the iterative nature of
the approach allows for a optimization process to be defined, leading to increasing Q.

3. Existing approaches to co-design
To understand the existing methods of co-design in robotic hand development, we consider the
diagram in Fig. 3. This figure represents a three dimensional design space between mechanical,
control, and sensor design where co-design sit at the center of this design space. This analysis
allows us to identify key works that utilize co-design as a method of exploiting EI. Please note
this is intended as a means to highlight notable works as opposed to a full review.

Soft hands are one significant area of research where EI is exploited through mechanical design
to enable compliance or adaptive grasping approaches with minimal control [20]. Enabled by
casting and lithography techniques made possible by 3D printing, key examples include the RBO
hand [12, 36], or the anthropomorphic compliant DLR hand [10]. At the intersection of control
and mechanical design, there has been progress made in recent years. This includes simulation
work that enables the co-design of morphology and grasping control for soft robots [13]. This,
and similar approaches [6, 37], are increasingly becoming feasible due to the development
of simulators that can be accurately represent soft structures and complex contact with the
environment. An alternative approach which focuses on fully exploiting EI is that of the passive
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At this end this includes both:
1) low-cost simulation 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Multi finger contact interaction
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Figure 4. Qualitative placement of various robotics tasks on a spectrum based on the ease
of simulating that task. Tasks on the spectrum can be split into two sections by the green
dotted line: one where it is cheaper to experiment in simulation, another where it is cheaper to
experiment using a physical setup.

hand – where only the wrist is actuated and the design or mechanical properties of the hand are
designed or tuned to optimize the dexterity and range of motion [19, 16]. Control approaches
leveraging this have been shown to enable piano playing and grasping of objects.

Moving towards the control domain, muscle synergies which focus on utilizing
a low-dimensional representation or control input to achieve a high-dimensional rich
behavioral/actuated output have been successfully demonstrated for manipulation [15, 17, 9].
This bio-inspired concept focuses more on exploiting the EI of control within the hands, but
requires mechanical design that have sufficient complexity to allow such control methods to be
exploited[14, 5].

Sensory-motor co-ordination sits at the intersection of sensor and controller design,
and is necessary for many of the increasingly capable in-hand manipulation tasks being
demonstrated [25]. Much of the research in this area focuses on developing controllers (including
learning approaches) that leverage sensor design. There is limited exploration of how the
sensory design affects the controller and the resultant performance. Whilst there has been
some exploration of algorithms for topology optimization or morphology optimization of soft
sensors [21, 35], this largely focuses on optimizing to improve the reconstruction of tactile
information opposed to optimizing for control purposes.

As highlighted in Fig. 3, despite the developments in the area of co-design there appears
to be limited work in the intersection of incorporation of sensor design into the design process
and hands. Existing work in sensory topology has highlighted the gains that can be made
solely through topology optimization, thus, there is an opportunity to combine and accentuate
this other EI contributions. Equally works such as [22] show the importance to consider the
body mechanics (in this case body dynamics) to assist sensing capabilities. We argue that to
fully leverage and exploit EI within hands, we need to move to an approach for co-design that
considers mechanical, control, and sensors, and that, to date, this design space has not been
explored. We hypothesized that this is largely due to three current constraints or limitations
which we discuss in detail in the following section.
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3.1. The challenges in co-design
Three key challenges can be identified when implementing the iterative co-design process for
robotic hands. The first challenge is the limitation of cheap simulation tools with a minimal
reality gap. While simulation capabilities have increasingly improved over the decade, for
robotics research involving physical hardware, accurate and general purpose simulation tools are
not widely available. The second challenge is the lack of a cheap, fast, and reliable fabrication
method to iterate upon the hardware. While customizable hardware can be developed, it tends
to incur a high cost in Cfab (in the form of monetary cost and time) preventing multiple
hardware iterations and exploration from being practical. The third challenge is the challenges
in parameterization of the design. There are multiple ways of parameterizing both the hardware
and the controller, and an effective method of doing so while maintaining real world constraints
(such as the tolerances in manufacturability) is unsolved.

To better understand these challenges, consider Fig. 4. This figure aims to illustrate a
spectrum of robotics tasks arranged by their general trend of qualitative “ease of simulation”.
Tasks which lie on the left side of the spectrum can be simulated cheaply and has a minimal
reality gap. Such tasks only have a few well defined dof and modeling techniques are well-
explored. Towards the right side, experimentation in simulation becomes challenging. This is
because a) the simulation is computationally expensive, and/or b) the reality gap is so difficult
to close such that the simulation is not meaningful. The full simulation of hands: complex multi
dof mechanical interactions involving softness and friction with modeled sensors that match
reality, is a highly challenging task which lies on the right side of this figure.

One way to combat the lack of simulation tools, is to look towards real world experiments. The
green dotted line in Fig. 4 is a slider which divides robotics tasks on the “ease of simulation”
spectrum between those which are suitable to execute in simulation or instead on a physical
setup. The position of the slider is qualitative and depends on the task and resources available.
Using real experiments, we are able to negotiate the limitation of simulation tools by offloading
certain tasks to be evaluated in real life. Conceptually, this reduces costs of setting up and
executing a complex simulation reducing Ctotal. This calls for a further need to tackle the
second key challenge: the lack of cheap, reliable hardware.

Even if we are able to achieve a good experimental setup utilizing cheap simulation and
cheap hardware, to leverage the best of both worlds, the third challenge remains. An effective
method of identifying parameters of a complex system does not exist, and is usually left to
the designer. Since the co-design process iterates on the parameters, their definition governs
the final performance of the system. Furthermore, the parameter set must be tractable in
both simulation and fabrication. If simulation and fabrication capabilities are improved, the
constraints on parameters being tractable are loosened, allowing for more diverse exploration of
the design space.

From this discussion, we see the three challenges in iterative co-design are loosely linked. If
simulation capabilities are improved, more complex experiments can be conducted in simulation,
reducing the need for hardware experiments. Conversely, if a low cost and reliable hardware
can be fabricated, real world experiments can substitute the need for complex simulations.
Improvements in simulation and fabrication techniques also allow for more diverse sets of
parameters to be used. Although addressing one challenge would contribute towards solving
the other challenge, we claim the development of a low cost and reliable hardware is most
critical in the context of robotic hands. This is because regardless of the simulation capabilities
or the definition of parameters the hardware must be fabricated at some point. With current
simulation capabilities, even with the most computational intensive machines, there will always
be some reality gap which requires calibration with a real system to close the gap.

Therefore, we believe the necessary steps to address the three key challenges are: a)
accelerating the development of a low cost and reliable robotic hardware; b) construct an iterative
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Figure 5. Three layers of abstraction to control a robotic hand system.

co-design process which utilizes simulation and real-life experiments and accounts for the cost
of hardware development; and c) explore different methods of defining a suitable parameter set,
while expanding/diversifying with improvements in simulation and fabrication.

4. A framework for iterative co-design
In the remainder of this chapter, a framework for implementing iterative co-design for robotic
hands will be discussed. We first focus on how hand control and planning can be abstracted and
divided into three layers of control. This is followed by an outline and discussion of a possible
iterative co-design process.

4.1. Control abstraction of robotic hands
4.1.1. Overview of the abstraction layers To begin the discussion of co-design, we must consider
how the hand will be controlled. Fig. 5 presents three level of abstractions for controlling a
robotic hand. This abstraction structure is directly inspired from how humans interact with
objects using our hands. Take the example of opening a door. At the highest level of abstraction,
we move our body, arm, and hand towards the object (the door handle). In the middle level
of abstraction we make an approximate pose of our hand (power grasp of the handle). Finally,
at the lowest level, we use our tactile and proprioceptive sensors to achieve a robust action
(readjusting our grip, location of fingers, force applied to the door handle, etc).

In the first two layers, the motion is planned and adjusted primarily with visual feedback
(e.g. adjusting your hand position with respect to the door handle). In the final layer however,
the motion is more reactive and is purely based on the low level controller.



International Workshop on Embodied Intelligence 2021
IOP Conf. Series: Materials Science and Engineering 1261  (2022) 012009

IOP Publishing
doi:10.1088/1757-899X/1261/1/012009

9

Reward!real

{p
pdesign

pcontrol

Mechanical design
Sensor placement

Controller + Planner

Hand 
Model}

Simulation

Reward !sim

Fabrication
Real 

experiment 

Slow optimization loop 

Fast optimization loop 
Update algorithm

Update algorithm

Physical 
hand

p

pcontrol
pdesign

Figure 6. Block diagram of a possible implementation framework of iterative co-design.

4.1.2. Abstraction layers in detail and its relationship to iterative co-design For iterative
co-design, the high level planner can be neglected (and will be neglected for the remaining
discussion), as this planner is concerned with semantic understanding of the task and positioning
of the hand, but not with the direct interaction of the hand with the environment. The final two
layers depends largely on the morphology, sensing, and the sensory-motor control, and hence
will be the focus of iterative co-design.

The middle layer of abstraction: “Pose from grasp synergies” are generated based on the
semantic pose information. Grasp synergies are a collection of low dimensional representations of
key poses of the hand, where a large collection of poses can be derived and chosen by the mid-level
controller by “interpolating” between such synergies. In this way, the set of all poses becomes
a continuous quantity - allowing possibilities of gradient based optimization to be incorporated
in this co-design process. However, potential discontinuities and unreachable spaces due to the
physical configuration of joints and actuators must be determined and optimized for the task.

The lowest layer: “Sensory motor coordination” focuses on how the sensors in the hands are
used to make the approximate pose determined in the layer above into a reliable action which
interacts with the environment. The structure and parameters of the low level controller is the
quantity to be optimized through the iterative co-design process.

4.2. Iterative co-design framework
Fig. 6 illustrates a high level framework for the implementation of iterative co-design. We
assume to have access to a low cost and reliable hardware platform as discussed in section 3.1
where its design is parameterized. The core of this framework is p, the set of all parameters of
the hand. p can be divided into pdesign and pcontrol, the parameters for the hardware design and
for the controller respectively. The aim is to maximize Q by tuning p.

The iterative part of the block diagram takes the hand system based on pi (the set of
parameters at some iteration i), evaluates the objective function (Qsim or Qreal based on if the
experimentation was in simulation or in real life), and then updates the parameters pi+1 −→ pi.
The red “inner” loop updates p by running simulated experiments while the blue “outer” updates
p by running real experiments. Through the use of a low cost hardware to run real world
experiments, we aim to optimally exploit the relative advantages of simulation and real world
experimentation as discussed in section 3.1.

In both loops the reward must be calculated. Defining a reward function mathematically is
one of the most challenging tasks of the implementation since a universal performance metric
for dexterous manipulation does not exist and the details are dependent on the task type and
environment. Furthermore, matching the high level intention of the framework designer and form
of the reward metric is challenging as we know from related challenges in artificial intelligence and
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Figure 7. Conceptual plot to visualize how the iterative co-design process is expected to
increase Q.

reinforcement learning such as reward hacking [4] and misalignment [18]. The implementation
of the updating algorithm is also a challenging yet key component of the framework. This
updating algorithm can be completely model free such as Bayesian optimization, or include
some information about the hand model to speed up the optimization process.

4.3. Iteration process
The iteration and optimization process can be divided into three stages.

(i) Update p through simulation

(ii) Update pcontrol through real experiments after fabrication

(iii) Update pdesign through real experiments

Fig. 7 illustrates how we expect the reward to increase as we repeat the iteration process.
The colors and formatting of the arrows match the that in Fig. 6. We start the process at Stage
0 with some initial design parameter. We first use simulation to optimize the parameters (red
solid arrow). We expect to use a low cost simulation, and hence this is the fast optimization
loop which can run arbitrarily many times. A key point is that during this optimization process
we only have “access” to a set of parameters of the design space the simulation can explore
denoted by {p1,Sim} (the superscript number reflects the iteration count while Sim or Real
reflects the optimization setting). The whole design space cannot be covered due to limitations
of the simulation, computational costs, and how designs may get stuck in a local minima.

Once Stage 1 is reached (the optimal point achievable via simulation experiments) the hand
will be fabricated to conduct real world experiments (green solid arrow). Since the real world
experiments allow further exploration of the design space, fabrication of the hand “unlocks
access” to a new set of parameters {p1,Real} which can now be explored and reaching Stage 2.

Once the hardware is fabricated, multiple iterations to update pcontrol can be performed (blue
dotted arrow). We limit this step to pcontrol because updating a controller is expected to be
significantly faster than updating (re-fabricating) the hardware. Once Stage 3 is reached we
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have exhausted the optimization possibilities using the current hardware setup. Finally, pdesign
can be updated to reach Stage 4 (solid blue arrow) - restarting the iteration process.

There are of course clear potential roadblocks with this iteration method. For example, the
choice of updating algorithm is critical to produce meaningful improvements in Q. Equally,
as we expand p, exploration of the full search space becomes difficult. The trade-off between
complexity and reward must always be considered.

5. Conclusion
Exploiting EI is one means by which the capabilities of current robot hands could be extended to
improve their performance in increasingly complex and unstructured environments. In addition
to core technologies that provide physical intelligence (fabrication methods, sensors, materials),
we also require methods to optimize the design of hands to incorporate EI. In order to fully
exploit the possibility of EI, we believe that co-design of the brain and body of the robotic
system is critical. In this chapter we propose a method for this: iterative co-design, which
leverages both the simulated and real world as a new method for hand design.

To implement this iterative co-design approach, one fundamental challenge is the need of
a physical platform with complex structures and embedded sensors which can be fabricated
rapidly and repeatably. The fabrication and design should be achievable on the timescale of
hours. Such a hardware platform allows the parameterized design to be rapidly iterated and
experiments conducted that can not be performed in simulation. We also require the hardware
to have a significant design space that spans different materials, sensor, and geometries.

One aspect of this approach which we have only touched upon is the task definition and the
evaluation or bench-marking metrics. The iterative optimization process relies on evaluating
the hand performance and updating the design parameters. Likewise the aim of simultaneously
developing the brain and body of hands, is to find a design solution which can perform
increasingly complex, broad, and potentially even unseen tasks. Hence, evaluation metrics must
be formulated that captures the performance of a range of tasks effectively and accurately.
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