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Abstract— Soft robot are celebrated for their propensity to
enable compliant and complex robot-environment interactions.
Soft robotic manipulators, or slender continuum structure
robots have the potential to exploit these interactions to enable
new exploration and manipulation capabilities and safe human-
robot interactions. However, the interactions, or perturbations
by external forces cause the soft structure to deform in an
infinite degree of freedom (DOF) space. To control such system,
reduced order models are needed; typically models consider
piecewise sections of constant curvature although external
forces often deform the structure out of the constant curvature
hypothesis. In this work we perform an analysis of the trade-
off between computational treatability and modelling accuracy.
We then propose a new kinematic model, the Piecewise Affine
Curvature (PAC) which we validate theoretically and experimen-
tally showing that this higher-order model better captures the
configuration of a soft continuum body robot when perturbed
by the external forces. In comparison to the current state of the
art Piecewise Constant Curvature (PCC) model we demonstrate
up to 30% reduction in error for the end position of a soft
continuum body robot.

I. INTRODUCTION

Soft robots have long promised to change the way robots
interact for the environment. One significant challenge is
the design, modeling and control of soft manipulators [1].
They have been developed in many forms and structures [2],
[3], and can show a wide range of deformation in response
to interactions with the environment [4]. Moreover, thanks
to their compliance they inherently show robust reactions
to impacts and adaptation to the environment. However,
their capacity to deform in theoretically infinite degrees of
freedom opens clear modeling and control challenges [5]. To
address these, several control-oriented models of soft robots
[6]–[9] have been developed so to be manageable in terms
of complexity and number of states, while approximating
the theoretically infinite deformation stated [10].
For soft slender robots, the most commonly used method is

the celebrated Piecewise Constant Curvature (PCC) model
[11], which is obtained from Cosserat’s rod model [12] by
neglecting all strains but curvature and assuming that the
curvature is piecewise constant in space, with fixed nodes.
Such a model is theoretically exact only if the soft robot
is statically perturbed with a constant bending moment
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Fig. 1. Pictorial figure showing the improved reconstruction capabilities
of the PAC model for soft manipulators undergoing external loads.

along each segment and the structure is homogeneous in
space [11]. Despite its simplicity, the PCC proved to well
approximate both the kinematic [13] and dynamics [14], [15]
of lightweight robots, composed of homogeneous materials
and stiffness [16] and subject to minimal interaction with
the environment. However, whenever these hypotheses are
not fulfilled, the soft robot will be eventually deformed out
of the constant curvature hypothesis. The minimalism of
the PCC model comes at the cost of a poor reconstruction
when the structure interacts with the environment, carries
a load or the self-weight is not negligible. This, ultimately
limits applications of soft manipulators to very confined
and controlled environments. To bring soft robots toward
real-world applications, it is crucial to develop models
inspired by the minimalism of PCC, but able to robustly
model the interaction with the environment. Such quest
naturally opens the question: what is the optimal trade-off
between model accuracy and computational treatability?

To address this challenge the polynomial curvature approach
was recently proposed [17]. In this model, the accuracy of the
reconstruction can be tuned by the order of the polynomium.
This has shown to provide better reconstructions of the
robot configuration when the structure is not homogeneous
and subject to dynamical excitations [18]. In this work we
demonstrate that the first-order truncation of the polynomial-
curvature model [19], [20], i.e. the affine-curvature model,
significantly outperforms the accuracy of PCC models when



an external load from the environment deforms the soft
structure. In the following, we first introduce the kinematic
and dynamic description of a three-dimensional Piecewise
Affine-Curvature (PAC) model for a multi segment robot.
We propose a simple strategy for solving the statics of a
robot modeled this way. Next, we present and characterize a
novel soft manipulator used as a platform to experimentally
demonstrate the efficacy of the PAC model under external
forces or significant self weight.
To summarize, this paper contributes to the state of the art
in control-oriented models for soft robots with:

• the three dimensional Piecewise Affine Curvature (PAC)
model for extensible, continuum soft robots,

• an experimental validation of the improved performance
provided by the PAC model, with a focus on the static
equilibrium in soft robot-environment interaction.

• a comparison between the reconstruction accuracy pro-
vided by PAC with respect to PCC models.

In the remainder of this paper we first introduce the 3D PAC
model in Sec.II after which we present the soft robotics plat-
form we use for experimental validation. The performance of
the PAC model is first shown on a single section soft robot,
before being extended to capture the effect of external forces
on a three segments robot in Sec.IV.

II. 3D PIECEWISE AFFINE CURVATURE MODEL

A. Kinematic model
We introduce here the kinematic structure of the 3D PAC
model introduced in this work (see Fig. 2). This model builds
upon the one-segment planar model in [17], later validated
experimentally for the 2D case in [18], extending it to the
multi-segment variable-length 3D case.
We start from the description of the curvature of its central
axis shape. We introduce n reference frames {S1}, ..., {Sn}
attached at the ends of each segment, plus one fixed base
frame {S0}. We call T i1

i−1 ∈ SE(3) the homogeneous
transformation mapping {Si1} into {Si}

T i
i−1 =

[
Ri

i−1 tii−1

[0 0 0] 1

]
, (1)

with Ri
i−1 = [{ni}i−1 {ei}i−1 {oi}i−1] ∈ SO(3)

rotation matrix, and tii−1 ∈ R3 translation.
{ni}i−1, {ei}i−1, {oi}i−1 are orthonormal unit vectors
which identify the three axes of {Si}, with coordinates
expressed w.r.t. {Si−1}. In this novel 3D model, each
segment is free to bend in any direction; its curvature
is affine in space but variable in time and the segments
are connected so that the resulting curve is everywhere
differentiable. We consider here that each segment can also
change length. The configuration of each segment can indeed
be described by the coordinates qi = [c0,i, c1,i, ϕi, δLi] ∈ R4

such that
• c0,i is the zero-order term of the curvature polynomium,
• c1,i is the first-order term of the curvature polynomium,
• ϕi is the the angle between the plane created by the

linear combination of {ni}i−1, {ei}i−1 and the plane
on which the bending occur,
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Fig. 2. Schematic representation of the Piecewise Affine Curvature
kinematic model. On the left, the multi segment representation, while on
the right it is possible to observe a closeup on a single segment, with the
the Lagrangian variables highlighted.

• δLi is the change in length of the central axis due to
compression or extension of the segment.

We assume that the curvature of the central axis of the i−th
segment can be described by the affine function:

c(t)i = c0,i(t) + c1,i(t)s (2)

where s ∈ [0, 1] parameterizes the position along the main
axis of the structure, so that (Li + δLi)s is the arc length of
the path connecting the base to the point s through the main
axis.
The angle of the central axis α on the plane defined by ϕ
can be found by integration of the curvature:

α(s) =

∫ s

0

c(v)dv = c0s+
c1
2
s2, (3)

where v is an auxiliary variable with the same meaning as
s. The relative rotation Rs

i−1 between the {Si−1} and the
frame {Ss} attached to the s point, expressed in the {Si−1}
frame, can be written as

Rs
i−1 =

 cos (α) cos (ϕ) − sin (ϕ) sin (α) cos (ϕ)
cos (α) sin (ϕ) cos (ϕ) sin (α) sin (ϕ)

− sin (α) 0 cos (α)

 (4)

while the translation vector tsi−1 can be written as

tsi−1 =

 cos(ϕ)
∫ s

0
(L+ δL) sin(α(v))dv

sin(ϕ)
∫ s

0
(L+ δL) sin(α(v))dv∫ s

0
(L+ δL) cos(α(v))dv

 (5)

similarly, v is an auxiliary variable with the same meaning
as s. The integrals in tsi−1 can be expressed in closed form
as combination of Fresnel integrals or Gauss error function
as discussed in [19].

B. Dynamical model

Using Lagrangian derivations, we can build1 the general
dynamical model of the robot from the kinamtic model
introduced above [5]

M(q)q̈+C(q, q̇)q̇+G(q)+D(q)q̇+K(q)=A(q)fAct+J⊤(q)fext,
(6)

1We omit the steps for the sake of space.



where M(q) and C(q, q̇) represent the inertia matrix and
the Coriolis terms respectively, G(q) is the gravitational
force, and D and K are the damping and stiffness forces.
J represents the manipulator Jacobian J(q) = ∂f(q)

∂q , where
f(q) is the forward kinematics mapping, which defines the
point contact between the manipulator and the environment
as a function of q. In the following we will consider this point
to be the end-effector of the robot, without losing generality.
Finally, the robot interacts with the environment through an
external wrench fext. For generality we consider the case in
which the actuation forces fAct are not directly collocated
at the joints coordinates, such that there is an intermediate
mapping A(q) between the actuation torques τAct and the
torques on the states τq.
The experimental validation of this paper will be concerned
with quasi-static equilibrium conditions q̇, q̈ ≈ 0. The dy-
namics of the robot can be then simplified to

G(q) +K(q) = [A(q) J⊤(q)]

[
fAct,
fext

]
. (7)

The gravitational force, can be expressed as:

G =

∫ L+δL

0

∫ r(s)

−r(s)

−ρgzs,d(v, d) dv dd, (8)

where g represents the gravitational constant, ρ the density of
soft robot’s material and r(s) the radius of the robot section
in s. The elastic field can be determined by differentiation
of the the potential elastic energy:

UE(q, k) =
1

2

∫ 1

0

k(s)α2(s, t)ds, (9)

where k(s) : [0, 1] → R+ associates a local flexural stiffness
to any point along the central axis. As introduced in [19],
the submatrix of stiffnesses on the curvatures takes the shape
of a Hankel matrix Hi,j = 1/(i+ j − 1) ∈ R2×2, while the
rest of the matrix has the diagonal elements representing the
stiffness on the rotation of the plane and the axial stiffness

Ki(qi) =

kbendingH
[

c0,i,
c1,i

]
0
0

0
0

0 0 ktorsion 0
0 0 0 kaxial

 qi (10)

C. Solution of the statics

Eq. (7) is trascendental and cannot in general be solved
in closed form. Also, the solution may in general not be
unique making it quite challenging to even approximate a
closed form relation mapping fAct, fext into an equilibrium
configuration q̄. A computationally intensive alternative is to
obtain the equilibrium by forward integration of the complete
dynamics (6). Instead, we propose here to evaluate q̄ by
simulating the following simpler dynamic system, which is
built so to have the same equilibria

Dq̇ +G(q) +K(q) = [A(q) J⊤(q)]

[
fAct,
fext

]
, (11)

where D ∈ R4×4 represents a full-rank damping matrix,
which can be taken as a costant approximation of D(q).

Fig. 3. Schematic representation of the soft manipulator used to perform
the experimental validation of this model. On the left, an image of the three
segment manipulator, with the actuation methodology and singular sections
highlighted. On the right, the representation of a single section and of the
analytical rules defining the design.

III. EXPERIMENTAL SETUP

A. Robot design

We demonstrate the capabilities of the PAC model on
a soft tendon-driven manipulator shown in Figure (3).
Soft manipulators are usually composed of a constant or
finite-variable axis length, which limits the work space of
the manipulator [4], [21]. The design of this robot arm is
based on an analytically specified topology which enables
high deformation ratios for both bending and contraction.
These features lead to a manipulator with a large working
space and which also shows non-constant curvatures under
external forces. In this section we detail the design and
characterization of the arm pertinent to the PAC model,
however full details of the design robot can be found in [22].

The manipulator is composed of three independently
actuated section placed in series, providing a redundant
workspace for the complete soft arm. The manipulator is
driven by ten Dynamixel XM430-W210 motors. While the
first three motors are directly connected to the first section
with pulleys and tendons directly, the motors actuating the
second and third section are connected through Bowden
cables to ensure the independent control of each section.
The structure of each segment of the manipulator is
generated by stacking multiple sine-wave ring structures
which are fabricated by FDM 3D printing with TPU. The
cross section was set as a rectangle with height of 3mm and
width of 6mm. Each section is composed of 12 wave rings
but only ten of them are deformable, as presented in Fig. 1.
When compressed both the axial length of the structure and



the radius of structure change. To minimize the magnitude
of this phenomenon, the two wave rings at each end are
connected to the end rings with ribs to strengthen structure.

B. A simple model of actuation
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Fig. 4. Schematic represen-
tation of the tendon forces on
the structure, for a simplified
2D case.

We propose to derive the ac-
tuation wrench fAct for such
structure from the lengths of the
tendons by simulating the low
level control loop running in the
motors. In particular, the torque
can be computed as

fAct = κD(
˙̄l−l̇)+κP(l̄−l)), (12)

where l, l̄ are the current and
desired length of the tendon and
κP, κD are two positive con-
trol gains. In the following we
take both equal to 20. Note
that, as we will be working
mostly under quasi-static condi-
tions, small changes in gains will not strongly affect the
performance of our model.
Finally, the matrix A(q), which maps the actuation force
input τAct on forces on the states fq is evaluated through
the geometric relations in Fig.4, by modeling each guide-
point of the tendon as a friction-less pulley. The force that
the i−th tendon apply on the j−th guide, when projected
on the states can be written as

fq = Jg(q)
⊤
[
cos(αj) − sin(αj)
sin(αj) cos(αj)

]⊤ [
cos(βj) + cos(γj)

0

]
f i
Act,

with βj and γj being

βj=αj+

(
ygi+1 − ygi
xg
i+1 − xg

i

)
−π

2
, γj=−αj−1−

(
ygi − ygi−1

xg
i − xg

i−1

)
+
3π

2
.

C. Mechanical Characterization

The structure of each segment was characterized with axial
compressing and side shearing load tests to provide the
necessary parameters for the PAC model. During the com-
pressing test, the segment part was connected on a load cell
and fasten on a UR5 arm. The UR5 arm compressed the
structure from 0 to 70 mm with a speed of 5 mm/s. The
stiffness resulting from the linear fitting is 1.078 N/mm.
To compensate for the the visco-elastic properties of this
structure, made of 3D printed TPU, the quasi-static free
length was stabilized around 135.4mm after one loading
cycle, which was utilized as the free length in the kinematic
and static/dynamic models.
In the shear loading test, the segment was driven by three
tendons connected with three Dynamixel motors. During the
test, the segment contracted in different length from 0 to
70 mm under the drive of three motors, and the UR5 arm
installed a load-cell compressed the segment from the side,
as Figure 5. From Fig.5, it can be seen that the stiffness of

Fig. 5. Experimental evaluation of the stiffness of the a single segment.
The structure is compressed by a load-cell connected to a UR5 robotic
manipulator. The position and force data are then post-processed to evaluate
the stiffness of the structure. The experiment is repeated for several lengths,
and the relation between structure length and stiffness is extracted.

each module increases significantly with the contraction of
the segment.

D. Working Space Characterization

To show the working space of the single segment, tests
were conducted with a single section constructed from two
segments driven by three tendons. The experiment was
repeated with different loads (0, 500 and 1000g) placed on
the end of the manipulator, so to observe the load-workspace
interdependence. The end-effector position is tracked using
motion capture (OptiTrack, with 6 cameras) for different
tendon motions with the results shown in Fig.6. The results
show that the working space range is significantly reduced
as the load is increased. The pose and structure of the
robot section also deviates increasingly from the constant
curvature behaviour as the load increases, such that the PCC
assumption is increasingly less valid. This characterization
of the workspace indicates that to accurately model the soft
robot under loads we must consider the effect of external
forces, and also account for variable curvature.



Fig. 6. Analysis of the workspace as a function of the external forces.
Different loads [0,500,1000]g are placed at the tip of the soft robot.
Interestingly, the workspace reduces with the load, and the curvatures of
the structure vary increasingly from the PCC description with increasing
loads.

IV. EXPERIMENTAL RESULTS

In this section we validate the need of higher order models
by comparing the deformation of the soft robot structure for
different loading condition for the PAC and PCC models.

A. Single section model evaluation

In order to validate the robustness of the piecewise affine
curvature model, we compute the static equilibrium over a
variety of loading conditions and imposed tendon lengths.
The static equilibrium is solved for both the PAC and PCC
models, to allow for comparison of their modeling accuracy.
We perform this for different loading conditions and different
actuation configurations to explore how the accuracy varies
for different conditions. Increasing mass was applied to the
end of the single segments of values 0, 500 or 1000g for three
different tendon lengths and for two different configurations
of the segment. Fig. 7 shows an image of the single segment
overlaid with the PCC and PAC solutions for each of these
experiments. This is shown for varying loads and tendon
configurations. We also consider varying directions of the
load by varying the placement of the soft structure between
a first configuration perpendicular to gravity, and second
placement parallel to gravity, where the moment arm is lower.
The performance of the PAC or PCC model is evaluated by
computing the error between the measured section and model
in terms of euclidean distance and orientation. The results
are reported in the barcharts in Fig.7. To compute the latter,
we used the Frobenius norm of difference between the end
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Fig. 7. Demonstration of the modeling accuracy achieved with different
loading conditions with PCC and PAC. On the top-left, the load is directed
so to have a significant moment arm, while on the bottom-right, the load
is placed so to have a small moment arm. The barcharts report quantitative
results on the modeling accuracy obtained with PCC and PAC respectively.

effector orientation and the orientation reconstructed by the
models. The PCC model shows comparable reconstruction
performances with respect to PAC for the unloaded case, with
a relative average error of 3.2 mm, 2.1 degrees as shown in
the bottom right part of Fig.7. As the external load applied to
the structure increase, the curvature of the segments becomes
increasingly non-constant and the PAC model significantly
outperforms the traditional PCC models. This is particular
the case for the perpendicularly mounted segment where
the moment arm is far higher, and the curvature of the
segment can be far from constant. Although in some cases
the distance error for these can be relatively low, the error in
the orientation reflects the significantly different form that is
predicted. In the cases with most non uniform curvature, the
PAC model can provide a significant error reduction with a
relative average error of 27 mm, 29 degrees. For the parallel
mounted segment the error between the PAC and PCC model
is similar, with the segment showing more constant curvature.
Thus, the PAC model can significantly outperform the PCC
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Fig. 8. A): demonstration of the modeling accuracy achieved with different loading conditions, specified at the top, and tendon configurations, specified
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an external force exerted by a human operator, displayed at the top of the respective figure.

model, and particularly so at high loads or moments.

B. Multi-segment reconstruction

To evaluate the performance of the PAC model on a multi-
segment soft robot manipulator, we next consider applying
external loads to the full manipulator. The soft manipulator
presented in Figure 3 was loaded with 0, 200 and 400 g at
the tip and two different motion paths were tested with the
ground truth pose catpured by motion capture.
In Fig.8, it can be observed that the 3D PAC model is
able to accurately reconstruct the static equilibrium of the
soft manipulator for a variety of tendon configurations (e.g.
motions) when a range of loads are applied to the end of
the manipulator. The PAC model captures the wide range
of poses shown by the robot, resulting from the different
tendon configurations. These results also highlight how the
impact of the load on the pose of the robot is a function of
the workspace, and despite this, the PAC model captures the
behaviour at different poses within the workspace.
Moreover, to validate the robustness of the PAC model
with respect to environmental interaction, the manipulator
is simultaneously perturbed by a human operator whilst a
load is also applied at the tip. The force produced by the
human interaction is measured with a load-cell (TAL220,
10 kg max force) which is held by the user. The load-
cell is placed perpendicularly to the local curvature of the
soft robot. This perpendicular force is then projected on a
Lagrangian force on the curvature states through the Jacobian
of the contact point, with the methodology presented in [18].
The experiment is repeated 4 times with different locations
of interactions whilst the load at the tip is kept constant.
Fig.8 demonstrates that for the different interaction points,
the PAC accurately captures the configuration of the robot
when subject to external interactions.

V. DISCUSSION & CONCLUSIONS

In this work we demonstrate the need for higher order
models to reconstruct the pose of soft robot when interacting

with the environment. We introduce a novel model, the 3D
piecewise affine curvature model (PAC), and demonstrate
experimentally the improved performances achieved with
this model when the structure is loaded by external forces.
Experimental results show that a significant improvement in
modeling accuracy with respect to PCC can be achieved at
the cost of only an extra Lagrangian variable per segment.
The results show that for larger loads and higher moment
arms the pose of the robot differs more significantly from the
PCC model predictions and that the novel PAC model is able
to greatly improve the reconstruction accuracy. This enables
the PAC model to capture the soft robot pose when in contact
with humans operators and when carrying varying loads. This
novel modelling approach has the potential to significantly
improve the control and modelling of soft manipulators
by enabling load compensation and the accounting of soft
robot-human interactions. However, the main limitation of
the proposed methodology is the lack of a closed solutions
for static equilibrium, which makes solving a quasi-static
trajectory tracking problem computationally challenging.
Due to the strong translation of the affine curvature model
to real hardware, we believe that a number of results found
in simulation for multi-stable soft structures [19] could also
be brought to reality. Of particular interest is the theory
developed in [23] which exploits the multi-stable behaviour
observed in simulation to generate efficient and guided
motion. Deploying such theory on a real hardware [24] could
bring to reality the morphological control strategy envisioned
by Fuchslin et al. [25], ultimately merging the control policy
in the embodiment of the soft robot.
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