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Abstract
The Willems’ fundamental lemma, which characterizes linear dynamics with measured trajectories,
has found successful applications in controller design and signal processing, which has driven a
broad research interest in its extension to nonlinear systems. In this work, we propose to apply the
fundamental lemma to a reproducing kernel Hilbert space in order to extend its application to a
class of nonlinear systems and we show its application in prediction and in predictive control.
Keywords: Willems’ fundamental lemma, Data-driven method, Reproducing Kernel Hilbert Space

1. Introduction

In the field of data-driven control, the characterization of system dynamics based on measured data
serves as the driving force enabling controller design. Beyond running through a parametric mod-
eling procedure (Ljung, 1999; Lanzetti et al., 2019; Chiuso and Pillonetto, 2019; Limanond and Si,
1998), non-parametric methods distinguish themselves by directly representing system dynamics
with data (Kocijan, 2016; Hou, 1994; Guardabassi and Savaresi, 2000; Levine, 2018). In particu-
lar, there is a recent spark of interest in behavioral theory (Willems and Polderman, 1997) where
system dynamics are characterized by trajectories. This viewpoint concludes a simple and closed
representation for linear time invariant systems (Willems et al., 2005), coined Willems’ fundamental
lemma, and has been successfully applied to predictive control (Coulson et al., 2019), named data-
enabled predictive control. Its extension to nonlinear systems has received broad research attention,
such as (Rueda-Escobedo and Schiffer, 2020; Guo et al., 2020; Bisoffi et al., 2020; Berberich and
Allgöwer, 2020). However, most works assume an explicit knowledge of the model structure with
fully measured states, which in general negates the necessity of a data-driven method.

Meanwhile, as control theory is well-developed for linear systems, several works have tried to
map a nonlinear control problem into a linear one. Among those trials, Koopman operator based
methods establish a special viewpoint by looking into the function evolution governed by system dy-
namics, where the Koopman operator is a linear composite operator (Koopman and Neumann, 1932)
under an autonomous system. Even though this operator is only well-defined in forward-complete
systems (Bittracher et al., 2015), it still serves as a successful heuristic motivating applications in
system identification and controller design (Lian and Jones, 2019; Korda and Mezić, 2018).

This work is inspired by both the behavioral theory and the function space viewpoints of Koop-
man operator theory. In particular, the linear dynamics of a linear functional is studied under the
framework of the Willems’ fundamental lemma, which ends up with a kernelized characterization
of system responses. The contributions of this work are summarized in the following:
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• Propose a kernelized characterization of linear dynamics evolving in the dual space of a re-
producing kernel Hilbert space and explore its application in prediction and controller design.

• Discuss the existence and some relevant mathematical properties of the proposed dynamics.
We further elaborate the special considerations with respect to numerical implementation.

An extended version of this work with more details is available on https://arxiv.org/abs/2102.06553.

1.1. Notation

{·}Ti=1 denotes a set of size T indexed by i, colspan(A) is the column space of matrix A.

2. Background

2.1. Reproducing Kernel Hilbert Space

Definition 1 (Saitoh and Sawano, 2016) A reproducing kernel Hilbert space (RKHS) over a set X
is a Hilbert space of functions from X to R such that for each x ∈ X , the evaluation functional
Exg := g(x) is bounded.

Given an RKHS H , the Riesz-representation theorem (Pedersen, 2012) guarantees that each
x ∈ X corresponds to an unique kx ∈ H such that< g, kx >H= g(x), where< ·, · >H denotes the
inner product defined in H . The kernel function defined on H is given by K(x, y) =< kx, ky >H ,
and it is positive-semidefinite. In particular, the dual space H∗ is the space of linear functionals
overH . More background knowledge of RKHS theory is available in (Berlinet and Thomas-Agnan,
2011; Steinwart and Christmann, 2008; Saitoh and Sawano, 2016).

2.2. The Willems’ Fundamental Lemma

Definition 2 A Hankel matrix of depth L associated with a vector signal {si}Ti=1, si ∈ Rns is

HL(s) :=


s1 s2 . . . sT−L+1

s2 s3 . . . sT−L+2

...
...

...
sL sL+1 . . . sT


Regarding a Hankel matrix HL(s), the signal sequence {si}Ti=1 is persistently exciting of order

L if HL(s) is full row rank. The Willems’ fundamental lemma utilizes the Hankel matrices to
characterize the response of the following deterministic linear time invariant (LTI) system, dubbed
B(A,B,C,D) with x ∈ Rnx , u ∈ Rnu and y ∈ Rny ,

xk+1 = Axk +Buk

yk = Cxk +Duk
, (1)

whose order is denoted by O(B(A,B,C,D)) and all the L-step trajectories generated by this sys-
tem is collected by BL(A,B,C,D). Given a sequence of input and output measurements {ui}Ti=1,
{yi}Ti=1 , we define the following stacked Hankel matrix

HL(u, y) :=

[
HL(u)
HL(y)

]
,
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with which one has the following Willems’ Fundamental Lemma.

Lemma 3 (Willems et al., 2005, Theorem 1) Consider a controllable linear system and assume
u is persistently excited of order N ≥ O(B(A,B,C,D)) + L. Then colspan(HL(u, y)) =
BL(A,B,C,D).

3. Nonlinear Data-enabled Methods

We consider a linear dynamical system B(A,B, C D) evolving in RKHS as

fi+1 = A fi + BEui
Eyi = C fi +DEui ,

(2)

where fi is a real-valued linear functional in RKHS H∗x , similarily Eui and Eyi are evaluation
functionals in RKHS H∗u and H∗y . The kernels of Hu and Hy are ku(·, ·) and ky(·, ·) respectively.
Meanwhile, the dynamics are modeled by bounded linear operators A : H∗x → H∗x , B : H∗u → H∗x ,
C : H∗x → H∗y and D : H∗u → H∗y . It is noteworthy to point out that these dynamics are not
necessarily infinite dimensional; more discussion is allocated to this point in Section 4.2.

Given a sequence of measurements {ui}Ti=1, {yi}Ti=1, we have two sequences of evaluation
functionals as {Eui}Ti=1, {Eyi}Ti=1. The corresponding n-column Hankel matrices are:

HL(Eu) :=


Eu1 Eu2 . . . EuT−L+1

Eu2 Eu3 . . . EuT−L+2

...
...

...
EuL EuL+1 . . . EuT

 , HL(Ey) :=


Ey1 Ey2 . . . EyT−L+1

Ey2 Ey3 . . . EyT−L+2

...
...

...
EyL EyL+1 . . . EyT

 . (3)

For simplicity, we further define v({ui}Li=1, {yi}Li=1) := [Eu1 , . . . EuL , Ey1 , . . . , EyL ]
>. The Gram

matrix of the stacked Hankel matrix HL(Eu, Ey) := [v1, . . . , vn] is then defined by

Ki,j : = k(v(ui, yi), v(uj , yj))

=
L−1∑
k=0

< Eui+k , Euj+k >H∗u +
L−1∑
k=0

< Eyi+k , Eyj+k >H∗y

(a)
=

L−1∑
k=0

ku(ui+k, uj+k) +
L−1∑
k=0

ky(yi+k, yj+k) ,

(4)

where (a) holds by the fact that the Hilbert space is self-dual (Pedersen, 2012). The corresponding
RKHS generated by k(v(ui, yi), v(uj , yj)) is constructed by the following product topology (Berlinet
and Thomas-Agnan, 2011, Chapter 1.4),

H∗ := H∗u
⊗
· · ·
⊗

H∗u︸ ︷︷ ︸
L times

⊗
H∗y
⊗
· · ·
⊗

H∗y︸ ︷︷ ︸
L times

.

With the Fundamental Lemma 3, we can state the following theorem
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Theorem 4 Consider a controllable linear system B(A,B, C,D) and assume Eu is persistently
excited of order N ≥ D(B(A,B, C,D)) + Lnu. A trajectory of length L {ũi}Li=1 and {ỹi}Li=1 is
an element of BL(A,B, C,D) if and only if there exists g ∈ Rn such that

gTKg + k(ṽ, ṽ)− 2
n∑
i=1

gik(ṽ, vi) = 0 , (5)

where ṽ := v({ũi}Li=1, {ỹi}Li=1).

Proof The inputs and outputs sequence containing the evaluation functionals is an element of
BL(A,B, C,D). Hence, by Fundamental Lemma 3, ṽ ∈ colspan(HL(Eu, Ey)) and there exists
g = [g1, . . . , gn]

> ∈ Rn such that

n∑
i=1

givi = ṽi
(a)⇐⇒ ‖

n∑
i=1

givi − ṽ‖ = 0

(b)⇐⇒
n∑

i,j=1

gi < vi, vj > gj − 2

i∑
i=1

gi < vi, ṽ > + < ṽ, ṽ >= 0

⇐⇒ gTKg + k(ṽ, ṽ)− 2

n∑
i=1

gik(ṽ, vi) = 0 .

(a) holds by the uniqueness of the zero-element in a Hilbert space and (b) follows equation (4).

Remark 5 We intentionally do not state that colspan(HL(Eu, Ey)) = BL(A,B, C,D) in this
theorem. One reason is that working with an arbitrary linear functional is not necessarily trivial in
most RKHS. The most important reason is that the evaluation functional is not necessarily dense in
the RKHS, while dynamics (2) only considers evaluation functionals. This concern can be fixed by
referring to the quotient space BL(A,B, C,D)/R; more details can be found in the appendix of the
extended version.

Remark 6 One may be concerned whether it is valid to apply the fundamental lemma in the dual
space. Besides the original proof in (Willems et al., 2005), Lemma 3 can be proven by showing that
all trajectories span the range of a linear operator. In a similar way, the fundamental lemma holds
in the dual space by considering the corresponding linear operator in the dual space.

3.1. Nonlinear Data-enabled Prediction

Given an input-output sequence of length Tm, ũm := {ũ1, ũ2, . . . ũTm} and ỹm := {ỹ1, ỹ2, . . . ỹTm},
an open-loop prediction of length Tp is to predict ỹp := {ỹTm+1, ỹTm+2, . . . ỹTm+Tp} if a sequence
of inputs ũp := {ũTm+1, ũTm+2, . . . ũTm+Tp} is applied from Tm + 1 to Tm + Tp. Theorem 4
indicates that the prediction problem is equivalent to the following optimization problem

min
yp,g

gTKg + k(ṽ, ṽ)− 2
n∑
i=1

gik(ṽ, vi) , (6)
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whereK is computed from the Hankel matrix HTm+Tp(Eu, Ey) and ṽ := v({ũi}
Tm+Tp
i=1 , {ỹi}

Tm+Tp
i=1 ).

Note that the prediction is achieved by an optimization problem instead of by solving the nonlinear
equation (5) in order to better accommodate the numerical solvability of nonlinear equation (5), the
presence of measurement noise, the model mismatch and the infinite dimensionality. At the same
time, it is noteworthy to point out that a solution to equation (5) is a global minimizer of problem (6).

Remark 7 A kernel heuristic is mentioned in (Berberich and Allgöwer, 2020, Section V), which
relies heavily on their presumed Hammerstein and/or Wiener system structure. In particular, their
algorithm decouples the reconstruction of the predicted trajectory and the selection of the weight by
assuming an inverse map from RKHS to the states, which is not valid for most RKHS. As discussed
in Remark 5, our approach looks into a quotient space resulting in an unified prediction structure.
We will show that Hammerstein and Wiener systems are special cases of the proposed framework in
Section 4.1

3.2. Nonlinear Data-enabled Predictive Control

To convert the method in Section 3.1 into a predictive control scheme, the input sequence is op-
timized so that the corresponding output sequence is most desirable. Under a receding-horizon
scheme, it leads to an optimistic bi-level problem (Dempe, 2002, Chapter 2) as follows:

min
up,yp,g

Tp∑
i=0

l(uTm+i, yTm+1+i)

s.t.uTm+i ∈ U , yTm+1+i ∈ Y

yp ∈ argminỹp g
TKg + k(ṽ, ṽ)− 2

n∑
i=1

gik(ṽ, vi) , (7a)

where l(·, ·) is the stage cost and U , Y are constraints for control input and outputs.

4. Discussion and Practical Issues

In Section 3, the theory and the applications have been built, more theoretical details and practical
issues are elaborated in this section.

4.1. On Existence of the Proposed Model

One obvious question is that whether the proposed model (2) makes any practical sense. Above all,
the proposed model (2) includes standard linear systems (1) as a special instance.

Lemma 8 IfHx, Hu, Hy are RKHS whose kernel are k(x, y) = xT y, then model (2) is equivalent
to a standard linear system (1).

Proof By Riesz representation theorem, for each fi ∈ H∗x there exists a unique xi ∈ Hx such that
∀ x̃ ∈ Hx, fi(x̃) =< xTi , x̃ >= xTi x̃. The following proof finds the xi+1 such that < xi+1, · >=
fi+1(·). For any x̃ ∈ Hx, equation (2) gives

fi+1(x̃) =A fi(x̃) + BEui(x̃)
(1)
=< Axi, x̃ > + < B ui, x̃ >

= < Axi + B ui, x̃ >=⇒ fi+1(·) =< Axi + B ui, · > ,
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where (1) follows the definition of kernel function. In a similar way, Eyi = C fi + DEui can be
reformulated. Hence, we conclude a standard linear system (1).

Remark 9 Lemma 8 can be generalized to Hammerestein systems and Wiener systems. Without
loss of generality, we consider a Hammerstein system, whose input nonlinearity enters the dynamics
through an Nφ dimensional map φ(·) as follows,

xi+1 = Axi +Bφ(ui)

yi = Cxi +Dφ(ui) .

If Hu is generated by the kernel k(x, y) =< φ(x), φ(y) >RNφ with Nφ the dimension of φ(·) and
Hx , Hy are generated by a linear kernel, then the resulting dynamics of (2) is a Hammerstein
system following a similar proof of Lemma 8.

Beyond the standard linear system, the heuristic generalized linear systems considered in Koop-
man operator based control (Korda and Mezić, 2018) is also a subset of the proposed model. In
particular, this generalized linear model has a form of

φ(xi+1) = Aφ(xi) +Bu

yi = Cφ(xi) ,

where φ(·) are some chosen/learnt basis functions. If there is some RKHS, such that φ(·) ∈ Hx, this
model can be shown to be a special of case of the proposed model in a way similar to Lemma 8. In
this case, Hy will be a subspace of Hx (Berlinet and Thomas-Agnan, 2011, Chapter 1). Note that if
φ(·) is a polynomial, thenHx will be the space equipped with the exponential kernel k(x, y) = ex

T y.

4.2. On Persistent Excitation

The assumption of persistent excitation of Eu in Theorem 4 is defined according to the rank of its
Hankel matrix HL(Eu). Checking rank of a matrix defined by functionals is not trivial, instead, the
following procedure can simplify the rank calculation.

rank(HL(Eu)) = rank(HL(Eu)T HL(Eu)) =: Ku , (Ku)i,j =
L−1∑
k=0

ku(ui+k, uj+k) .

Hence, the condition of persistent excitation is determined by the rank of the corresponding Gram
matrix. However, the condition of persistent excitation is only well defined for finite order dynamics,
where Hx, Hu, Hy are also finite dimensional, such as the RKHS corresponding to a linear kernel
or a polynomial kernel. If, instead, the RKHS is infinite dimensional, persistent excitation is no
longer guaranteed, and Theorem 4 only serves as a heuristic. In this case, more informative data
is more preferable if we still consider the condition of persistent excitation. This claim follows the
fact that rank(Ku) ≥ trace(Ku) when Eui is within a unit ball of H∗u

1. Therefore, the nuclear norm
is the convex envelop of the rank function (Fazel et al., 2001). Given the fact the ku(·, ·) is strictly
positive definite (Steinwart and Christmann, 2008, Lemma 4.55), i.e. ku(ui, ui) > 0 ∀ i ∈ Z.
Therefore, the rank of Ku is non-decreasing regarding the amount of data. In conclusion, a relaxed
condition of persistent excitation is required for an infinite dimensional system, and therefore needs
more in-depth exploration.

1. This condition holds for many stationary kernels, such as the RBF kernel.
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4.3. On Choice of the Kernel

Even though the proposed method is non-parametric, the choice of kernel still determines the final
performance. Above all, due to the unique correspondence between the RKHS and the kernel
function by Moore-Aronszajn theorem (Berlinet and Thomas-Agnan, 2011, Theorem 3), the choice
of kernel function reflects our a-priori knowledge. In particular, linear and polynomial kernels imply
symmetric dynamics around 0. Exponential kernel k(x, y) = ex

T y is used when Hx, Hu, Hy is
spanned by polynomials, because polynomials are dense in the corresponding RKHS (Steinwart and
Christmann, 2008, Chapter 4). Moreover, if the trajectories that are close to each other in the state
space also show similar behavior, the RBF kernel k(x, y) = e

‖x−y‖
2 can be used.

Beyond the a-priori knowledge about the system, the choice of kernel function also affects the
solvability of Problem (6) and Problem (7). We observe that exponential kernel has relatively low
numerical stability as two distant trajectories result in a large gradient. We also observed that the
RBF kernel leads to pervasive local minima, which causes poor performance when the Problem (7)
and Problem (6) are solved by gradient based algorithms. Based on our experiments, the kernel
function k(x, y) = e

−‖x−y‖
2 ex

T y in general has the best performance for examples tried so far.
Finally, even with all points discussed above, the choice of the kernel function is still non-trivial

in general. If a dictionary of kernel functions {k(·, ·)}Nki=1 is available, the choice of the kernel
can be optimized over the positive-weighted sum k(·, ·) =

∑Nk
i=1 αik(·, ·) via minimization of the

prediction error in the training data set.

4.4. On Stochastic Model with Measurement Noise

When the data is contaminated by measurement noise, a kernel mean embedding (Muandet et al.,
2016) can be used, which evaluates the kernel function with respect to its distribution as

EX̃k(·, x) , (8)

where x ∼ X̃ relating to the distribution of the measurement noise. If the distribution of measure-
ment noise is known, such as Gaussian distribution, the Equation (8) has closed explicit form. If
noise is unknown, then (8) can be evaluated by the empirical distribution.

Remark 10 Notice that the measurement noise in each column of the Hankel matrix is not i.i.d.
Hence, the empirical distribution has slower convergence rate than O( 1

N ).

5. Numerical Results

In this section, the proposed prediction and control scheme is validated by a nonlinearly damped
pendulum and a bilinear DC motor. The prediction problem is solved with CASADI (Andersson
et al., 2019) in MATLAB and the bi-level predictive control optimization is solved by FMINCON

interfacing CASADI. It is noteworthy that the bi-level optimization cannot be solved by reformu-
lating the lower problem with its KKT conditions, because the lower problem is non-convex. The
experiments are carried out with an Intel i7-4500U(1.8 GHz) and a 1333MHz 8 GB memory.
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Figure 1: Snapshot of training data use in damped pendulum model

5.1. Damped Pendulum

We consider a force acting on the tip of the damped pendulum. The dynamics are

ẋ1 = x2 , ẋ2 = −
2g

l
sin(x1)− µx32 +

1

l
| cos(x1)|u

with g = 9.8N/kg, l = 0.5m and µ = 0.1 denoting a nonlinear friction factor. Only x1 is
observed as y = x1. The output training data is generated by random input of ranging from -1 to 1,
the sequence is measured with a sampling time of 0.04 seconds. 500 data points are used to defined
the Problem (6) and Problem (7). Part of the output training data is shown in Figure 1, in which one
can see the nonlinear modulation effect of the damped pendulum model. An open-loop prediction
of Tp = 60 step is carried out with Tm = 10 previous step measured and the result is shown in

Figure 2, where the kernel for inputs is ku(x, y) = 0.2e
−‖x−y‖2

6 + ex
T y+0.01e

−‖x−y‖2
6 ex

T y and the

one for outputs is ky(x, y) = 0.2e
−‖x−y‖2

6 + ex
T y + 0.01e

−‖x−y‖2
6 ex

T y + (1 + xT y)2.

5.2. Bilinear Motor

We consider a bilinear motor (Daniel-Berhe and Unbehauen, 1998) whose dynamics is

ẋ1 = −
Ra
La
x1 +

km
La

x2u+
ua
La

, ẋ2 = −
B

J
x2 +

km
J
x1u−

τ

J

where x1 is the rotor current, x2 is the angular velocity and the control input u is the stator cur-
rent. Only the stator current is measured as y = x2. The parameters are La = 0.314, Ra =
12.345, km = 0.253, J = 0.00441, B = 0.00732, τ = 1.47, and ua = 60. Due to the
synthetic effect of the bilinear term and the bias term, the responses of the system at different
operating points are wildly different, hence the data is generated by a sequence of N (µn, σ

2
n),

where the mean of the random signal µn is time varying in order to excite more modes around
different operating points. In particular, the mean µn ranges from -0.5 to 0.5, and the variance
σn = 1. 700 datapoints are used to defined the prediction and the optimal control problem.
The sampling time of the generated sequence is 0.01 seconds. An open-loop prediction of 30
is carried out with 40 previous step measured, the corresponding result is shown in Figure 3,

8



NONLINEAR DATA-ENABLED PREDICTION AND CONTROL

(a) 0 0.2 0.4 0.6

−1

0

1

2

y

measured part
prediction

real outputs

(b) 0 0.2 0.4 0.6
−1.6
−1.2
−0.8
−0.4

0
0.4
0.8
1.2
1.6

(c)

0 0.2 0.4 0.6

−1

0

1

time (s)

y

(d)

0 0.2 0.4 0.6

−1

0

1

time (s)

Figure 2: Open-loop prediction of damped pendulum. An asymmetric oscillation is observed and is
learnt by the proposed method in subfigure (b). Each subplot is an open-loop prediction
evaluated on different data. By referring to Section 3.1, the black curves are ỹm and
orange curves are the open-loop prediction solved by problem (6)

where the kernel for inputs is ku(x, y) = 0.1e
−‖x−y‖2

4 + e
−‖x−y‖2

4 ex
T y and the one for outputs

is ky(x, y) = 0.1e
−‖x−y‖2

4 + e
−‖x−y‖2

4 ex
T y.

Furthermore, a predictive control scheme is tested, where the 15 previous steps are used for a
prediction horizon of 8 steps. The stage cost is l(u, y) = (y − yref)

T (y − yref) + 0.01uTu. The
proposed predictive control scheme is compared to the nonlinear model predictive control, which
has explicit knowledge of the system dynamics and full access of the state measurement. A step-like
reference signal is tracked with outcome shown in Figure 4 without considering output constraints2,
it is observed that the proposed method shows competitive performance against the model based
control law, however, it fails to converge to the upper reference with a subtle bias and it has slight
overshoot with respect to both set points.

Remark 11 The bi-level problem is currently hard to solve in real-time, it takes 15 minutes to solve
the predictive control problem. Hence, a four step closed-loop control simulation takes one hour.

6. Conclusion

This paper presents a novel data-driven method by extending the applications of the Willems’ fun-
damental lemma in a RKHS. The resulting kernelized characterization of system dynamics is stud-

2. The consideration of output constraints makes the bi-level highly unsolvable.
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Figure 3: Open-loop output prediction with random biased input sequence of bilinear motor model.
Interpretation of each subplot is similar to Figure 2

0 5 · 10−20.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

−0.5

0

time (s)

y

Nonlinear MPC
Output

Reference Signal

Figure 4: Closed-loop MPC control output

ied and applied in prediction and predictive control with numerical validations. In conclusion, the
proposed method generalizes the behavioral theory to some nonlinear dynamics, its early-stage the-
oretical result is presented in this work.
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Juš Kocijan. Modelling and control of dynamic systems using Gaussian process models. Springer,
2016.

BO Koopman and J v Neumann. Dynamical systems of continuous spectra. Proceedings of the
National Academy of Sciences of the United States of America, 18(3):255, 1932.

11



NONLINEAR DATA-ENABLED PREDICTION AND CONTROL
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