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Abstract
This thesis is dedicated to the analysis of a subclass of interfacial flows, columnlike free-

interface flows, from two view angles: (i) the symmetry breaking under geometry-induced or

external forces, (ii) their stability against infinitesimal disturbances. We employ the domain

perturbation method to address three flow types by means of linear stability analysis. First,

we examine the flow down an eccentric vertical fibre: the non-axisymmetric base flow brings

interfacial shear into play to deform the capillary-driven Rayleigh-Plateau modes. A large

enough eccentricity destabilises extra whirl modes despite the surface energy barrier to coil the

interface. The linear analysis concludes according with our experiments that the combination

of a thin fibre (with respect to the liquid column), a large Bond number (Bo, that compares

gravitational forces with surface tension), and large eccentricity leads to the destabilisation and

dominance of the whirl mode. We secondly study numerically and theoretically the draining

liquid film coating the inside of a horizontal tube at moderate Bo. The buoyancy-driven rising

interface deforms as Bo increases, and a large enough deformation can suppress the Rayleigh-

Plateau instability at large times. The linear analysis seconds pre-existing experiments in the

literature, showing that the critical stabilising Bo increases with the average film thickness,

irrespective of finite inertia and transient growth of the perturbations. Thirdly, we explore the

draining film down a horizontal cylinder, a configuration suitable for the co-existence of the

Rayleigh-Plateau and Rayleigh-Taylor instabilities. The base flow either reaches a quasi-static

pendant equilibrium or keeps falling until a two-dimensional rupture occurs. Nonlinear

simulations suggest that the critical Bo to maintain a pendant curtain scales inversely with

mean film thickness. The resulting quasi-static state is linearly unstable and the collective

action of capillary and gravitational effects can form two distinct patterns: (i) pearls enveloping

the cylinder when surface tension dominates, (ii) vertical fingers underneath the cylinder

when gravity dominates. The most linearly amplified mode will either form an array of pendant

drops or result in a three-dimensional rupture, a threshold found unaffected by the transient

growth of the perturbations. Lastly, we inspect numerically an electrified liquid jet falling

vertically from a nozzle by coupling the flow and electric field equations. When electrical forces

dominate surface tension (at large electric Bond number), the interface smoothly transitions

to a conical meniscus at the nozzle tip emitting a fine jet downstream. This is due to the

tangential electrical stress at the interface that folds the streamlines in the vicinity of the

nozzle tip. Further raising the electrical Bond number reinforces the thinning, increases the

cone half-angle, and sets in a recirculating cell at the nozzle tip to conserve the flow rate.

Keywords: symmetry breaking, free-interface, stability analysis, pattern formation, meniscus
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Résumé
Cette thèse est consacré à l’analyse d’un type d’écoulements interfaciaux, plus précisément

d’écoulements à interface libre adoptant une géométrie "en colonne". Notre analyse se

concentre sur la caractérisation (i) de la possible brisure de symétrie induite par des forces

géométriques ou externes et (ii) de leur stabilité en réponse à des perturbations infinitésimales,

par une méthode basée sur la perturbation du domaine combinée à une analyse de stabilité

linéaire, pour traiter trois types d’écoulement. En premier lieu, nous examinons l’écoulement

le long d’une fibre verticale excentrée. L’écoulement non-axi-symétrique de base introduit

un cisaillement interfacial déformant les modes classiques de Rayleigh-Plateau gouvernés

par effets capillaires. Une excentricité assez grande conduit à l’enroulement hélicoïdal de

l’interface, malgré la barrière énergétique de surface du système. L’analyse montre que la

combinaison d’une fibre fine (par rapport à la colonne liquide), d’un nombre élevé de Bond

(Bo, paramètre qui compare les forces gravitationnelles et la tension superficielle) et d’une

grande excentricité induit la déstabilisation de l’écoulement alors dominé par les modes de

vorticité.Dans un second temps, le film liquide drainant recouvrant l’intérieur d’un tube hori-

zontal est étudié à valeurs modérées de Bo. L’interface montant sous l’effet de la flottabilité

se déforme à mesure que Bo augmente. Une déformation suffisamment importante peut

conduire à la suppression de l’instabilité de Rayleigh-Plateau pendant une longue période.

L’analyse linéaire suit les expériences rapportées dans la littérature et montre que le Bo cri-

tique pour la déstabilisation augmente avec l’épaisseur moyenne du film, indépendamment

de l’inertie et de la croissance transitoire des perturbations. Dans un troisième temps, nous

observons le film drainant le long d’un cylindre horizontal, configuration adaptée à la co-

existence des instabilités de Rayleigh-Plateau et de Rayleigh-Taylor. L’écoulement de base

atteint soit un équilibre de type pendule quasi-statique, soit se poursuit jusqu’à la rupture

bidimensionnelle. Les simulations non linéaires suggèrent une valeur critique de Bo pour

maintenir l’équilibre susmentionné inversement proportionnelle à l’épaisseur moyenne du

film. L’état quasi-statique qui en résulte est linéairement instable, et l’action collective des

effets capillaires et gravitationnels peut produire deux situations distinctes : (i) des "perles"

recouvrant le cylindre lorsque la tension superficielle domine ou (ii) des structures verticales

digitiformes lorsque la gravité domine. Le mode le plus amplifié formera une série de gouttes

pendantes ou conduira à une rupture de symétrie tridimensionnelle ultérieure, dont le seuil

n’est pas affecté par la croissance transitoire des perturbations. Enfin, nous étudions la dy-

namique d’un jet de liquide électrifié tombant verticalement d’une buse, par une approche

couplant équations de l’écoulement et du champ électrique. Lorsque les forces électriques
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dominent la tension superficielle, l’interface se transforme lentement en un ménisque conique

à l’extrémité de la buse. par la tension électrique tangentielle à l’interface qui déforme les

lignes de courant près de la buse. En augmentant encore le nombre de Bond électrique, on

observe un amincissement du jet, une augmentation du demi-angle du cône et l’apparition

d’une zone de recirculation au niveau de la buse visant à préserver le débit.

Mots clés : brisure de symétrie, interface libre, analyse de stabilité linéaire, formation de motifs,

ménisque
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Riassunto
La tesi è dedicata all’analisi di flussi con interfaccia libera di tipo colonnare. L’analisi è incen-

trata sulla caratterizzazione (i) di possibili rotture di simmetria causate da forze geometriche

o esterne e (ii) della loro stabilità rispetto a disturbi infinitesimali. Tre tipi di flusso sono

analizzati con un metodo basato sulla perturbazione del dominio combinato con la stabilità

lineare. In primo luogo, esaminiamo il flusso lungo una fibra verticale eccentrica: il flusso

base, non assialsimmetrico, ha sforzi di taglio interfacciali che deformano i modi di Rayleigh-

Plateau classici, governati da effetti capillari. Un grande eccentricità di fibra destabilizza i

modi vorticosi che portano ad un avvolgimento elicoidale dell’interfaccia intorno alla fibra

nella direzione del flusso. Il sistema si oppone a tali deformazioni grazie a barriera energetica

associata alle deformazioni interfaccia. L’analisi lineare e i nostri esperimenti mostrano che

la combinazione di una fibra sottile (rispetto alla colonna di liquido) con un alto numero di

Bond (Bo, che mette a confronto forze gravitazionali e tensione superficiale) e una grande

eccentricità di fibra induce la destabilizzazione del flusso, guidato dai modi vorticosi. In secon-

do luogo, la dinamica di un film liquido sull’interno di un cilindro orizzontale viene studiata

da un punto di vista numerico e teorico per valori di Bo moderati. In tale configurazione, si

crea un’interfaccia di risalita guidata dal galleggiamento, che si deforma all’aumentare di Bo,

fino alla soppressione dell’instabilità di Rayleigh-Plateau per tempi lunghi. L’analisi lineare

conferma esperimenti presenti in letteratura e mostra che il Bo critico per la stabilizzazione

aumenta con lo spessore medio del film, indipendentemente da valori finiti di inerzia e dalla

crescita transitoria delle perturbazioni. In terzo luogo, esploriamo la dinamica di un film

sull’esterno di un cilindro orizzontale. Le instabilità di Rayleigh-Plateau e Rayleigh-Taylor

coesistono. Il flusso base raggiunge un equilibrio di tipo pendolo quasi-statico, o continua a

valle fino alla rottura della simmetria che lo rende bidimensionale. Simulazioni non lineari

mostrano che il valore critico di Bo per mantenere l’equilibrio sopra citato scala inversamente

allo spessore medio del film. L’azione di effetti capillari e gravitazionali può produrre due stati

quasi-statici linearmente instabili: (i) “perle” che ricoprono il cilindro quando la tensione

superficiale domina o (ii) strutture verticali digitiformi orientate verso il fondo del cilindro

quando la gravità domina. Il modo linearmente più amplificato forma una serie di gocce

pendenti con una successiva rottura di simmetria, in questo caso tridimensionale, la cui soglia

non è influenzata dalla crescita transitoria di eventuali perturbazioni. Infine, investighiamo

la dinamica di un getto liquido elettrificato che fuoriesce verticalmente da un ugello. Le

equazioni del flusso e del campo elettrico sono accoppiate numericamente. Quando le forze

elettriche dominano sulla tensione superficiale (ad alti Bo elettrici), l’interfaccia è un menisco

vii



Riassunto

conico all’estremità dell’ugello che emette un getto sottile. Ciò è dovuto alla tensione elettrica

tangenziale all’interfaccia che deforma le linee di flusso in prossimità della punta dell’ugello.

L’aumento del Bo elettrico rafforza l’assottigliamento, aumenta il semi-angolo del cono e crea

un ricircolo in corrispondenza dell’ugello che conserva la portata.

Parole chiave: rotture di simmetria, interfaccia libera, linearmente instabili, formazione di

motivi, menisco
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1 Introduction

The study of interfacial flow, that is, of the flow of immiscible fluids in contact with each other

and separated by physical interfaces, is one of the classical branches of fluid mechanics. These

flows are omnipresent in nature, have captured the attention of human beings, and have

challenged scientists for centuries. Sometimes constructive, as in the exchange of mass, heat,

and gas on the ocean surface, or sometimes devastating, as in tsunamis, interfacial flows play a

significant role in life on our planet and span a wide variety of scales, from nanopores (Hibara

et al., 2016; Zhang et al., 2019) up to kilometer scale of oceans (Garvine, 1974; Eames and Flor,

2011; Kneller et al., 2016). Countless natural observations inspired humans for take advantage

of the interfacial flow phenomena, not only for applied engineering purposes but also for joy

and aesthetics. In our childhood, we enjoyed splashing water in the bathtub and chasing soap

bubbles, and in our adult lives, we refresh our moods while relishing hot summer days on

water slides and challenging our artistic creativity while drawing schemes layer-by-layer with

oil paint on canvas. None of these pleasures are possible without interfacial flows.

Besides, innumerable examples can be thought of in our technology-based today life where

fundamental interfacial phenomena are entangled. Particularly, the laminar flows in the small

characteristic length scales, from microns up to a few centimeters are of great interest as the

fluid motion is smooth and one may represent and control it thanks to analytical solutions

of the flow equations or their high-resolution numerical counterparts (Smith, 1982; Schrauf,

2005). Examples of using laminar interfacial flows of small length scale in industries include

continuous casting (Santos et al., 2001; Mohammad Karim, 2022), substrate coating (De Meijer,

2004; Buerkin et al., 2017), lubricant cooling (Barbosa and Jader, 2018; Chen et al., 2021),

liquid atomisation (Eggers and Villermaux, 2008), fuel cells (Mousavi Shaegh et al., 2011),

oil extraction and transfer (Shah, 2012; Joseph and Renardy, 2013a,b), cell cultivating and

pharmaceutical industry (Chen et al., 2012; Zhu et al., 2017b,a), soft tissue printing (Zhou

et al., 2020), and powder focusing 3D printing (Hoffmann, 2017) to name a few.

When interfacial laminar flow is incorporated into processes, flow instabilities are a common

concern. Let us first describe a stable flow before explaining what flow instability means. Here

is a quote from James Clerk Maxwell, a renowned mathematician and scientist of the 18th
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century, who demonstrated the qualitative concept of stable and unstable flows:

"When an infinitely small variation of the present state will alter only by an infinitely small

quantity the state at some future time, the condition of the system, whether at rest or in

motion, is said to be stable but when an infinitely small variation in the present state may

bring about a finite difference in the state of the system in a finite time, the system is said to

be unstable." (Drazin, 2002)

Pursuing this description, instability implies a finite transition in time between two states

of the flow that occur under a small variation, hereafter referred to as the perturbation or

disturbance. In classical fluid dynamics, and in the absence of heat and mass transfer, the

state of a flow is merely described by the velocity and pressure fields within the fluid domain

and its boundaries which we choose to describe using the following notations.

Throughout this thesis, time is denoted by t [s], the three-dimensional spatial coordinates are

denoted by x = (x1, x2, x3)T where x j [m] are independent orthogonal spatial coordinates, the

three-dimensional velocity field is denoted by the velocity vector u[m/s], pressure is denoted

by the scalar p[Pa], and the coordinates of the fluid domain boundary is denoted by xb . Unless

otherwise noted in this chapter, the quantities are introduced in their dimensional form

whose dimension is presented in the brackets. These values are referred to also as the state

variables. The state of a flow is denoted thus by the state vector q(t ,x) = (u, p,xb)T , which is

a vector including all state variables. The state vector of any continuum fluidic medium is

fundamentally governed by the conservation of mass and momentum, that is, the differential

representation of second Newton’s law expressing the force balance on fluid elements. These

governing equations in differential form, respectively, can be expressed for an incompressible

fluid as

∇· u = 0, (1.1)

ρ (∂t +u ·∇)u =∇· τ+ f, (1.2)

where ρ[kg/m3] denotes the fluid density, ∂i denotes the partial derivative with respect to

the quantity i (not to be mixed with the imaginary part of a complex-valued quantity), ∇
denotes the gradient operator, τ[Pa] denotes the stress tensor, and f[N/m3] denotes body

force field per unit volume. In the context of the present thesis, f = ρg, where g[m/s2] denotes

the gravitational acceleration. For a Newtonian fluid of constant dynamic viscosity µ[Pa.s], a

particular limit of media of interest in the present thesis, the stress tensor can be expressed as

τ=−pI+µ(∇u+∇uT )
. (1.3)

Relation (1.1) is referred to as the continuity or incompressibility equation, and the vectorial

equation (1.2) is referred to hereafter as the momentum equation. Further simplification

of the momentum equation (1.2) using the incompressibiliy (1.1), gives the Navier-Stokes
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equations as follows:

∇· u = 0, (1.4)

ρ (∂t +u ·∇)u =−∇p +∇2u+ f, (1.5)

where ∇2 = ∇ ·∇ is the Laplacian of a vector field. From the mathematical point of view,

the Navier-Stokes equations form a system of deterministic non-linear partial differential

equations, second order in velocity and first order in pressure. Solving this system of equations

requires a proper set of boundary conditions and an initial condition. A thorough summary

of classical boundary conditions can be found in (Batchelor, 2000) or other fluid mechanics

references. In each chapter of the present thesis, we will recall the proper set of boundary

conditions that are relevant to the associated flow. The solution of the governing equations

describes the state of a flow at any time. Knowing the state at each instance, one can follow

systematic approaches, inspired by the description of the flow instability which was previously

introduced qualitatively in this section, to determine the effect of disturbances on the flow

stability. In §1.1 we present some of these systematic approaches employed in the present

thesis, entitled linear stability analysis, and we shed light on some classical instabilities of

interfacial flows, that are relevant in the context of this work.

1.1 Instabilities of interfacial flows

When the fluid properties are constant and in absence of any external forcing (like magnetic

or electric excitation), surface tension, gravity, shear, and inertia may cause six major families

of interfacial instabilities, depending on the possible existence of a fluid-solid contact, flow

and/or interface geometry, relative flow at two sides of the interface, and the orientation

of gravity with respect to the fluid interface. (See Gallaire and Brun (2017) for a review of

these instabilities.) These instabilities are the capillarity-driven Rayleigh-Plateau instability,

gravity-driven Rayleigh-Taylor instability, shear-driven Kelvin-Helmholtz instability, mobility-

driven Saffman-Taylor instability, inertia-driven Kapitza instabilities, and contact line-driven

instabilities. Hereafter we focus on the first two types of instabilities, namely the Rayleigh-

Plateau and Rayleigh-Taylor instabilities.

1.1.1 Stability analysis

A classical approach for theoretically studying fluid flow stability is based on the dynamics

of the small amplitude perturbations using the perturbation theory (for more details about

the perturbation theory, see Bender et al. (1999)). Accordingly, the superposition of an un-

perturbed state q0 by small perturbation ϵq1 where ϵ≪ 1, and casting it to the governing

equations of the flow yields a natural separation of orders where the first two leading orders

correspond to the unperturbed flow evolution and the linear spatio-temporal evolution of the

perturbations, respectively.
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Linear stability 

analysis

Temporal

analysis

Spatio-temporal

analysis

Transient growth

analysis

Linearly perturbed state

Figure 1.1: Summary of the classical small perturbation stability analyses, where ϵ≪ 1; the
state vector is denoted by q, and spacial coordinate vector is denoted by x = (x1, x2, x3)T .

Figure 1.2: (a) Various possibilities for gain evolution, G(t ), for initially small perturbations;
adopted from Balestra (2018); the linear (resp. non-linear) dynamics range is highlighted by
green (resp. orange) hash; thin lines present the exponential behaviour, thick lines sketch
the transient behaviour; and dashed lines schematise non-linear evolution; red (resp. blue)
colour; (b) Transient growth of the gain for a non-normal system with two degrees of freedom;
the stable eigenvectors {Φ1,Φ2} decay monotonously in time, whereas the energy gain of the
perturbation q1 increases shortly before decaying at large times; the inset depicts {Φ1,Φ2,q1}
for three instances; (c) Transient growth analysis of the steady Couette flow at Re = 350; the
dashed line sketches the optimal gain envelope Gmax for various time horizons; and solid lines
present the linear gain evolution for three optimal initial conditions (v1,v2,v3) that maximise
the energy gain at different time horizons shown by the red dots; adopted from Trefethen et al.
(1993).
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A vast number of analyses investigate the unperturbed flows, hereafter base flow, which are

time- or space-invariant. In such a case, the linearity of the mathematical system for small

perturbations allows one to decompose them as a sum of Fourier modes, and investigate the

evolution of each mode individually, thus conducting a modal analysis. Decomposition of the

perturbations is plausible for each dimension from which the base flow is independent. For

a steady-state base flow, the complex temporal Fourier mode of the so-called normal-mode

ansatz q1 = q̃(x)exp(σt )+c.c., where c.c. denotes the complex conjugate of a complex number

is relevant, ℜ(σ) represents the growth rate of perturbations, and ℑ(σ) represents their fre-

quency of oscillations, and the analysis is entitled to the linear stability analysis. For spatially-

invariant base flows in the x j direction, Fourier modes of the form exp(ik j x)+c.c. are relevant.

A complex temporal and spatial decomposition of the form q1 = q̃(x ̸= x j )exp(σt + ikx j )+ c.c.

leads to a spatio-temporal analysis of perturbations, whereas attributing the complex modes

only to time, results in their temporal analysis. In the latter case, if the base flow is zero in the

invariant spatial direction, the study is referred to as a local stability analysis, otherwise, a

global stability analysis. This classification is summarised in figure 1.1. Figure 1.2(a) depicts

different possibilities for the evolution of the perturbations. In any of the above-mentioned

decompositions with a steady base flow, the ansatz allows the transformation of the linear

problem into a generalised eigenvalue problem where ℜ(σ) > 0 (resp. ℜ(σ) < 0) indicates an

asymptotically unstable (resp. stable) behaviour, sketched with red-thin (resp. blue-thin) line

in figure 1.2(a).

In spite of the asymptotic insight gained from the spatio-temporal analysis of the perturba-

tions when t →∞, it cannot guarantee the identical behaviour of the linear perturbations

in the short term (cf. figure 1.2(a)). This approach ignores the interaction between modes

at all times. Nevertheless, when the linear operator associated with the linear system is

non-normal (Schmid et al., 2002), meaning that the eigenvector basis is non-orthogonal, the

short-term interaction between the modes can result in a transient gain in the energy of the

perturbations (cf. figure 1.2(b)). Consequently, the perturbations’ energy coming from the

small external noises (inevitable in any flow) may be amplified by several orders, triggering

non-linearities for a different fate than is predicted by linear stability analysis. Notably, linear

stability analysis has failed in providing the proper comprehension of the mechanism underly-

ing the laminar-to-turbulence transition in several wall-bounded shear flows (Schmid, 2007).

As an example, in the pipe flow and Couette flow, all eigenmodes are predicted to be linearly

stable, thus decaying monotonously in time. Nevertheless, due to the non-normality of these

systems, the transient interaction between the linearly stable modes at large Reynolds number

exhibits a large energy gain (cf. figure 1.2(c)), referred hereafter to a transient growth of the

perturbations before decaying at large times, thus destabilisation of the laminar flow and

transition to turbulent flow (Trefethen et al., 1993; Schmid and Henningson, 2001). Several

free-interface flows also present significant transient growth, as a rising drop at low Reynolds

number (Gallino et al., 2016), or the driven contact-line fingering instability (Bertozzi and

Brenner, 1997; Balestra et al., 2019).

Additionally, the dynamics of the perturbations applied to time-dependent base flows cannot
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be studied by employing the linear stability analysis. In the limit of a slowly varying base

flow, one remedy is to approximate the base state at each time with a quasi-steady-state,

so-called a frozen frame. Then, it is possible to apply the modal linear stability analysis to

each frozen frame, sequentially. The key assumption in the linear stability analysis of the

frozen frames is that perturbations grow considerably faster than the base flow evolves itself.

This assumption cannot be verified before conducting the analysis, thus the validity of the

frozen frame approximation must be investigated a posteriori. This method was successfully

applied for instance in the early study of Tan and Homsy (1986) on the miscible viscous

fingering instability in porous media, where comparison of results with initial value solutions

of the full governing equations suggests that frozen frame linear stability analysis gives a

good prediction for the most unstable wavelengths, except for short times. Even though the

frozen frame assumption is beneficial to shed light on the asymptotic behaviour of the slowly

varying time-dependent flows, the short-term dynamics of small perturbations can merely

be demonstrated rigorously by a transient growth analysis. Taking the time-varying thin film

flow coatings on the underside of some curved substrates, for example, the drainage solution

is found asymptotically linearly stable, although droplets often form in reality. Generalising

the experimental and theoretical observations of Trinh et al. (2014), Balestra et al. (2016,

2018a,b) showed that transient growth of small perturbations can cause dripping or formation

of rivulets that span in the transversal direction. Their results agree favourably with the

non-linear simulations. Thus, transient growth analysis can be used to analyse perturbation

evolutions at short time scales, as well as to take time-dependent flows into account that

cannot be fully addressed with modal analysis (Schmid, 2007).

In the following section, we demonstrate two key instabilities associated with interfacial flows

of the columnlike interfaces. Such interfaces are materialised in divers moving and stagnant

flows of various interests, like in curved liquid sheets, jets, threads, co-flows, and bubbles.

1.1.2 Rayleigh-Plateau instability

The Rayleigh-Plateau instability is the principal mechanism underlying the bubble and drop

formation emerging from columnlike interfaces (cf. figure 1.3). Long round interfaces of

various configurations, like free jets, and liquid film coating the exterior or interior side of a

cylindrical wall among many, are subject to this instability under which they break up into

droplets, beads, and plugs, respectively (cf. figure 1.3(a), see Gallaire and Brun (2017) for a

review on their similarities in pattern formation).

The first evidence of investigating the Rayleigh-Plateau instability dates back to the early study

of fluid jets by Savart (1833). It took some decades until Plateau (1873) and Rayleigh (1878,

1879) quantified this phenomenon independently for round liquid jets and threads, stating

that such a transition is in favour of surface energy minimisation (see Eggers and Villermaux

(2008) for a review). Plateau (1873) showed that when the length of a liquid column is larger

than its cross-sectional periphery, the transition to droplets occurs. Rayleigh (1878) followed a
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Figure 1.3: Examples of the Rayleigh-Plateau instability: (a) Three variants of the instability
before (top row) and after (bottom row) occurrence: liquid jet (left); liquid column coat-
ing a fibre (middle); liquid film coating inside a tube (right), reprinted from Duclaux et al.
(2006); (b) Drop formation on wet spider silk; reprinted from (https://news.mit.edu/2012/
spider-web-strength-0202); (c) Segregation of the Geneva water fountain (140 m height)
into tiny clusters of droplets; reprinted from (https://commons.wikimedia.org/wiki/File:
Le_jet_d-eau_de_Gen%C3%A8ve.jpg); (d) Micrometer size drops emerging from a bank of
ink-jet nozzles; reprinted from (https://www.in-fuseon.com/); (e) Co-axial two-phase flow in
a micro-channel; reprinted from Cordero et al. (2011).

classical linear stability approach for an infinitely long inviscid liquid jet in air and illustrated

that the threshold for the interface destabilisation depends only on the geometry, identical

to that obtained by Plateau (1873). His analysis suggests that this threshold is due to the

dual role of the interface curvature while being undulated in the streamwise direction. The

axial curvature has a stabilising effect, whereas cross-sectional curvature has a destabilising

effect, thus the above-mentioned threshold for column instability. Furthermore, his linear

analysis proposed, in very good agreement with experiments of Savart (1833), for an inviscid

jet the most amplification for the perturbations with a wavelength of 2
p

2π times the jet radius.

Viscosity does not alter the instability threshold but pushes the most amplified perturbation to

longer wavelengths, i.e. smaller wavenumbers (Rayleigh, 1892; Chandrasekhar, 2013; Augello,

2015; Pekker, 2018). On top of that, Rayleigh (1879) showed that the modification to the surface

of a linearly perturbed cylinder is proportional to its increment of local curvature, which

decreases only for axisymmetric perturbations. Thus all non-axisymmetric perturbations

increase the surface energy and should be damped.

As mentioned earlier, the liquid film coating on a vertical fibre or inside tube experiences

a similar capillary instability as the liquid jet, hence can be classified as the variants of the

Rayleigh-Plateau instability. Craster and Matar (2006) and Camassa et al. (2014) followed

a similar approach as Rayleigh (1878, 1879) and addressed analytically the linear stability

of these variants, respectively. The Rayleigh-Plateau instability is ubiquitous in nature (cf.

figure 1.3(b,c)) and has multiple practical applications from the micrometer-scale, in several
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printing (cf. figure 1.3(d)), medical and microfluidic devices (Rodriguez-Rodriguez et al.,

2015)(cf. figure 1.3(e)), up to the meter-scale in jets (Eggers and Villermaux, 2008)(cf. fig-

ure 1.3(c)), and heat exchanging systems (Zeng et al., 2018).

Rayleigh-Plateau instability is pertinent in many applications, like in the jet flow, annular

co-flow, and liquid film coating on different sides of the conduits. These flows are involved

in a multitude of processes, e.g. in oil transport (Joseph et al., 1997) and two-phase heat

exchangers (Zeng et al., 2018; O’Neill and Mudawar, 2020b), gas exchange and purification

processes (Zeng et al., 2019), and biological processes in the human airways (Camassa et al.,

2014), among many. In all examples, this flow instability can affect the process in a desirable

or undesirable fashion. While it can be favourable in altering the effective heat exchange

surface when cooling the exterior side of the pipes, it can be destructive by lowering the heat

exchanging efficiency in the condensers (Dobson and Chato, 1998; Teng et al., 1999). Also

in the human body, when it happens to the mucous covering the human airways, it can be

dangerous as it can cause airway closure (Heil et al., 2008; Levy et al., 2014).

1.1.3 Rayleigh-Taylor instability

When a heavier fluid is placed on top of lighter fluid with gravity pointing downward, toward

the lighter one, the interface separating two fluids is subjected to the Rayleigh-Taylor instabil-

ity (Rayleigh, 1882; Taylor, 1950), thus the formation of fingers (Lewis, 1950; Sharp, 1984) (cf.

figure 1.4). More precisely, an immiscible liquid-gas/liquid-liquid interface transforms under

capillary forces into advancing fingers, forming under non-linearities pendant droplets (Pitts,

1973; Yiantsios and Higgins, 1989) (cf. figure 1.4(a,d)), or rivulets (Charogiannis et al., 2018;

Balestra et al., 2018a) depending on the geometrical conditions which may or may not pinch-

off (Ledda and Gallaire, 2021; Jambon-Puillet et al., 2021) (cf. figure 1.4(a,b)), whereas, in the

case of miscible fluids, the upper fluid sinks, and the lower one rises as a result of buoyancy

(cf. figure 1.4(c)).

Early studies of this instability are devoted to two semi-infinite planar domains of inviscid

fluids of different densities in contact with each other, whose detailed description is available

in Charru (2011) and Chandrasekhar (2013). Such studies considered in the framework of the

linear stability analysis of the small uni-directional interface undulations spanning along the

interface. They illustrated that perturbations with a wavelength larger than 2π≈ 6.28 times

the capillary length are linearly unstable, that is the instability cut-off. Smaller wavelengths

create too much surface energy and cannot overcome the energy barrier to grow. Furthermore,

the linear analysis suggests that a perturbation of wavelength 3.33π≈ 10.47 times the capillary

length should grow the fastest, which agrees well with early experiments of Lewis (1950). Even

though the instability threshold remains the same regardless of the viscosity, the presence

of a wall and the domains’ depth, the fastest-growing wavelength and emerging patterns are

affected (see Gallaire and Brun (2017) for further details). For instance, for a thin liquid film

on top of light air under a flat horizontal substrate, the highest amplification rate is associated
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Figure 1.4: Examples of the Rayleigh-Taylor instability: (a) Lenses forming/dripping from
the rivulets flowing under an inclined flat plate, reprinted from Lerisson et al. (2019); (b)
Transversal rivulets under a curved substrate; reprinted from Balestra et al. (2018a); (c) Fingers
at the miscible interface of milk (cold) and coffee (hot); (d) Regular pattern of pendant droplets
under a horizontal flat plate; reprinted from Limat et al. (1992); (e) Paroxysm plume from
Mount Etna’s Voragine crater, Italy, 4 Dec. 2015; Credit: G. Famiani reprinted from (https://eos.
org/research-spotlights/can-we-predict-how-volcanic-ash-disperses-after-an-eruption); (f)
Filaments of the Crab Nebula; Credit: J. Hester and A. Loll; reprinted from (https://hubblesite.
org/resource-gallery/images).

with the wavelength of 2
p

2π≈ 8.89 times the capillary length (Limat, 1993).

Numerous recent studies have investigated the effect of geometrical parameters on Rayleigh-

Taylor instability, such as the inclination of flat substrates and the finite curvature of the

substrate whose underside is covered by fluid film. The geometrical parameters, also rele-

vant in the context of the present manuscript, can give rise to spanwise instabilities (Scheid,

2013; Rietz et al., 2017; Chandrasekhar, 2013; Charogiannis et al., 2018), stable or unstable

rivulets (Lerisson et al., 2019; Jambon-Puillet et al., 2021), secondary instabilities (Ledda and

Gallaire, 2021), or suppression of the instability (Trinh et al., 2014; Balestra et al., 2016, 2018a).

Many familiar eye-catching fingering patterns, even though not all of them, are formed due

to the Rayleigh-Taylor instability. Multiple examples can be found from the millimeter scale

droplets formed under painted ceilings or under the ceiling of hammams, up to the kilometer

scale plume mushrooms over volcanic areas (cf. figure 1.4(e)), and to the light year scale

filaments of the Crab Nebula (Schmidt, 2006; Hester, 2008) (cf. figure 1.4(f)). This instability is

substantial in wall cooling in nuclear fusion reactors, and in coating industries, amidst many

other applications. In the case of fusion reactors, droplets dripping from the coating liquid,

inside the tokamak walls, into the plasma can cause severe incidents (Majeski et al., 2010; Kaita

et al., 2010). It can also reduce the quality of painting if fingers drain on a painted surface.
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1.2 In this thesis

The dynamics and instabilities of laminar interfacial flows have been studied extensively in the

past. The big majority of the previous studies employed averaged models and asymptotical

limits of the governing equations, e.g. long-wavelength description for investigating the

slender interfaces prone to longitudinal perturbations (Eggers and Dupont, 1994), and thin-

film equation for analysing the coating flow on substrates with dimensions considerably

larger than the liquid film (Oron et al., 1997). These models, originating from the idea of the

lubrication approximation by Reynolds (1886), have achieved remarkable success when the

full resolution of the flow is prohibitively expensive, yet the variation in flow quantities is

negligible in one spatial direction compared to the others (Eggers and Villermaux, 2008). In

spite of their accomplishments, existing asymptotical models are not capable of quantitatively

capturing the phenomena whose underlying mechanisms lie in the details of the fully resolved

flow. Flow details are typically filtered out if only the averaged flow is considered (Ruyer-Quil

and Manneville, 2000; Augello, 2015; Tian et al., 2020). Even though some remedies can be

considered to improve these limitations, most of the proposed treatments are useful only

when the deviation from the asymptotical or averaged behaviour is still weak so that it can be

addressed by considering further orders of magnitude into the asymptotical equations (Ruyer-

Quil and Manneville, 2000; Amaouche et al., 2007). As a result, many of these phenomena,

which have paramount fundamental importance and technical applications, are missed or

not well understood (Duclaux et al., 2006; Gabbard and Bostwick, 2021).

Throughout this thesis, we will employ the classical temporal hydrodynamic instability ap-

proaches as well as more modern approaches, to help explain the appearance of patterns for

steady and time-varying free-interface flows with columnlike interfaces. Free-interface flows

are in essence a subclass of the interfacial flow family where a liquid medium is in contact

with air. Recently, and in continuation of the classical studies, several examples (Gallino,

2018; Balestra, 2018; Shukla, 2019; Ledda, 2022) exhibited successfully the link between the

dynamics of small perturbations and geometrical characteristics of the patterns emerging after

destabilisation of interfacial flows. Our work comprises modal temporal analyses of steady-

state and quasi-steady-state flows using their full-flow description, as well as non-modal

analysis when there is any time dependence in the flows. Here, external forces exerted on a

flow of fixed fluid quantities break temporal invariance, while the geometry of the interface or

solid surfaces breaks the spatial invariance.

1.3 Thesis outline

The graphical schematic of the chapters is sketched in figure 1.5. We start in chapter 2 with

the development of a formulation to describe the hydrodynamic boundary conditions at

generic columnlike fluid-fluid interfaces. Our formulation lies on the domain perturbation

method (Séro-Guillaume and Er-Riani, 1999; Daners, 2008), an extension of the perturbation

theory (Bender et al., 1999), and it is suitable for the spatio-temporal analysis of small dis-

10



1.3 Thesis outline

Generic interface parametrisation

Chapter 2

Chapter 3

Chapter 5Chapter 6

Figure 1.5: Schematic the thesis chapters.

turbances to the flow and its boundaries. After presenting the simplified formulations for

several canonical columnlike geometries, and proposing a numerical implementation of the

developed formulation, the limits of the method are discussed. This numerical model will be

utilised in the following chapters of this thesis.

In chapter 3 we examine numerically and experimentally the gravity-driven cylindrical liquid

column flowing down an eccentric vertical fibre in the inertialess regime (cf. figure 1.5(a)).

Here, the symmetry of the base flow is broken due to the fibre displacement. Linearly unstable

modes and their thresholds are explored, characterised, and contrasted with the classical

Rayleigh-Plateau mode, known for such flows with concentric fibre. Stability diagrams are

provided for a wide range of involving dimensionless parameters, and the role of physical

mechanisms in flow instability is elucidated.

In chapter 4 we account for the symmetry breaking in the unperturbed domain, and investi-

gate numerically the gravity-driven flow of thick liquid films coating the interior wall of a long

horizontal tube (cf. figure 1.5(b)). After demonstrating the temporal symmetry breaking of the

unperturbed flow, the linear stability of the frozen frames and transient growth of the pertur-

bations are analysed and contrasted with the classical Rayleigh-Plateau instability. The good

agreement of the results from the full flow equation analysis with the existing experimental

data in the literature is discussed.

In chapter 5 we study numerically the coexisting Rayleigh-Plateau and Rayleigh-Taylor insta-

11



Introduction

Flow Interface Axial Axial Time
axisymmetry axisymmetry flow invariance invariance Inertia

Chapter 3 × ✓ ✓ ✓ ✓ ×
Chapter 4 × × × ✓ × ✓
Chapter 5 × × × ✓ × ×
Chapter 6 ✓ ✓ ✓ × × ✓

Table 1.1: Base flow properties for the flows studied in this thesis

bilities during the gravity-driven drainage of a liquid film coating outside a long horizontal

cylinder (cf. figure 1.5(c)). As in chapter 3, the temporal symmetry breaking of the unper-

turbed flow is demonstrated. Moreover, linear stability and transient growth analyses are

used to characterise emerging two-dimensional patterns. The contributions of different flow

instabilities and the most amplified perturbations are evaluated in the resulting patterns along

with a prediction of the final three-dimensional structure.

In chapter 6 we modestly visit numerically the flow of an electrified jet where ionising two

fluids in contact induces an extra interfacial stress, so called Maxwell stress, which affects

the free-interface. Electrified flows are of notable interest in several applications thanks to

their capability for fine jet formation and high throughput drop production (Gañán-Calvo

et al., 2018a). The influences of electrical excitement strength on the flow and interface are

examined by solving the fully-resolved coupled fluid and electrical field equations.

(In each chapter of this thesis, time-dependence of the flow, spacial variations of the flow field,

and non-linear mechanisms induced by interface geometry and inertia play important roles

in the symmetry breaking and flow instability. The key features associated to the base flows

considered in this thesis are summarised in table 1.1.)

Lastly, in chapter 7 we conclude this thesis and draw the future perspectives.

This work was financed by the Strategic Focus Area (SFA) Advanced Manufacturing, under the

project "Powder focusing for beam induced laser 3D printing" (Hoffmann, 2017).
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2 A versatile formulation for the linear
analysis of perturbed columnlike in-
terfaces

In this chapter, the parametrisation of an arbitrary interface and the procedure for the numer-

ical implementation of this parametrisation is outlined. Such a parametrisation is essential

for imposing the interface boundary conditions while conducting the linear stability analysis

and solving linearised Navier-Stokes equations for interfacial flows. Some numerical stud-

ies (Augello, 2015; Gallino, 2018) have employed level-set function and boundary integral

techniques for this purpose, however, both of these methods have shown their limited applica-

tions for a rigorous analysis of curved liquid-liquid and liquid-gas interfaces. More specifically,

level-set function is difficult to be linearly perturbed and the boundary integral method is only

suitable for zero Reynolds number limit, i.e. in absence of inertia. Many of the existing studies

take advantage of the specific geometrical properties of the interface or of depth-averaging

methods enabling dimensional reduction like the lubrication for thin coating films (Oron

et al., 1997) or the slender jet/thread approximation (Eggers and Dupont, 1994). In addition,

geometries with specific symmetries (planes, cylinders, spheres, etc.) are often preferred.

Although these limits are sometimes beneficial for linear and non-linear flow analyses, they

lose the generality or practicality for a broader range of studies.

For instance, in the case of the temporal evolution of a thick film coating an arbitrary sub-

strate, applying linear perturbation analysis needs a more general formulation that accounts

for the instantaneous interface position. In a recent study, Ledda et al. (2022) employed a

differential geometry approach to investigate the film thickness in the gravity-driven coating

flows on (almost) arbitrarily curved substrates in the thin film limit. They obtained analytical

and asymptotical solutions for the film thickness on some generic substrate geometries like

ellipsoids or tori. In another interesting study, Bostwick and Steen (2018) followed a similar

differential formulation proposed by Kreyszig (2013) to parametrise the interface of a static

rivulet on a substrate, followed by its linear stability analysis. Despite the success of the

two last-mentioned works with their respective interface geometries, they cannot be readily

extended to study the perturbations of an arbitrarily developing interface with an unknown

shape a priori. For this reason, in the following, we propose an interface parametrisation
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+

Figure 2.1: Schematic of the interface and geometrical parameters. The right panel shows a
planar cross-section of the interface. The solid line shows the unperturbed interface, ∂Σ0

int,
and the dashed line shows the perturbed interface, ∂Σ1

int.

suitable for the linear perturbation analysis of an evolving interface without any particular

symmetry assumption. From the perspective of numerical implementation, this method is

aimed to be simpler than the differential geometry approach (Kreyszig, 2013) since it does not

involve any calculations of the metric tensor, and covariance and contravariance vectors, but

it remains versatile enough to be applied on a wide range of interfacial flows.

Consider an arbitrary three-dimensional interface shown schematically in figure2.1. Inspired

by the interfacial flows subject to capillarity stress, we restrict the focus of this analysis to a

family of smooth manifolds that can be parameterised by the cylindrical coordinates (r,θ, z)

as F : r − rint(t ,θ, z) = 0 for a well-chosen origin O and axis Oz; a condition we postulate,

hereafter referred to as explicit radial representation condition. This condition is quite generic

and permits multiple plausible choices of axis Oz inside or outside the liquid bulk as long

as rint remains single-valued. Some examples where this condition is violated are discussed

in §2.3. As F = 0 defines the material interface, the interface kinematic condition can be

obtained from (∂t +u ·∇)F = 0 which implies

∂t rint +u ·∇rint = u ·er at r = rint, (2.1)

where er denotes the unit radial vector, and the gradient vector in the cylindrical coordinates

can be expressed as ∇= (∂r ,1/r ∂θ,∂z )T . To avoid any singularities of the kinematic condition

(2.1), we should exclude from this analysis the interfaces such that 1/r 0
int →∞ or ∂z r 0

int →∞.

While the former can be remedied in most cases by a proper choice of axis Oz not intersecting

with the base interface, avoiding r 0
int = 0 at any point, the latter restricts the present study to the

axially open-ended interfaces. Such an interface is referred to hereafter as columnlike interface.
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+

+

Figure 2.2: Schematic of the flattening: any quantity at the red point on the perturbed interface
∂Σ1

int is expressed as a Taylor series expanded around the same quantity at the green point on
the base interface ∂Σ0

int.

A columnlike interface can, intuitively, be mapped on at least one cylinder of non-zero radius,

employing a one-to-one mapping.

We recall that the dynamic condition at the interface writes(
τ n

)out

in
=−γκn at r = rint, 1 (2.2)

where τ denotes the stress tensor, n =∇F/∥∇F∥, denotes the interface unit normal vector

pointing outward from the origin of the coordinates system O, ∥·∥ denotes the Euclidean norm,

γ denotes surface tension and κ=∇·n denotes the mean curvature of the interface. Directions

"out" and "in" are measured with respect to O. The body at the same (respectively opposite)

side of the interface as O is labeled as "in" (respectively "out").

Following the same formalism, let us now apply infinitesimal perturbations of the form ϵη1

to a base columnlike interface r 0
int, where ϵ≪ 1. The base interface is marked as ∂Σ0

int in

figure 2.1, where the perturbed interface is sketched in an exaggerated manner and marked

as ∂Σ1
int. Such an interface yields F = r − r 0

int(t ,θ, z)−ϵη1(t ,θ, z) = 0. Any quantity of interest

f at the perturbed interface ∂Σ1
int can be linearised as f = f 0 + ϵ f 1. Yet, for a typical per-

turbation analysis, η1 is an unknown of the problem, hence ∂Σ1
int is not known a priori and

one cannot readily apply the interface boundary conditions on it. To remedy the unknown

perturbed boundaries, we here employ the domain perturbation technique (Séro-Guillaume

and Er-Riani, 1999; Daners, 2008) as follows: Since the boundary perturbations occur in the

linear order, we can benefit from knowing the base interface and express any quantity on the

perturbed boundary as a Taylor series expanded around the base interface ∂Σ0
int. This process

is schematically sketched in figure 2.2 and is hereafter referred to as flattening. To express

such Taylor series, we expand at time t , each quantity f from any point (r = r 0
int+ϵη1,θ, z) (red

point in figure 2.2) on the perturbed interface ∂Σ1
int around its corresponding point on ∂Σ0

int of

coordinates (r = r 0
int,θ, z) (green point in figure 2.2). Accordingly, any flow quantity f (r,θ, z, t )

1In the tensor notation, the left-hand side of the equation writes
(
n ·τ

)out

in
. However, throughout this thesis, we

follow the linear algebra notation as expressed in (2.2).
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at the perturbed interface can be readily approximated as

f |(r=r 0
int+ϵη1,θ,z,t ) = f |(r=r 0

int,θ,z,t ) +ϵη1 ∂r f |(r=r 0
int,θ,z,t ) +O(ϵ2), (2.3)

and then, this quantity can be perturbed as f = f 0 +ϵ f 1.

The kinematic condition (2.1) for the linearly perturbed flow field u = u0 +ϵu1 implies

∂t
(
r 0

int +ϵη1)+ (
u0 +ϵu1) ·∇(

r 0
int +ϵη1)= (

u0 +ϵu1) ·er at ∂Σ1
int. (2.4)

Flattening and applying further simplifications result in a separation of orders, where in the

framework of linear analysis, we are interested in the two leading orders as

ϵ0 order:

∂t r 0
int +u0 ·∇r 0

int −u0
r = 0, at ∂Σ0

int

ϵ1 order:

∂tη
1 −u1

r + u1
θ

∂θr 0
int

r 0
int

+u1
z ∂z r 0

int +·· ·

+η1

[
−∂r u0

r +
∂r u0

θ
∂θr 0

int

r 0
int

+∂r u0
z ∂z r 0

int −
u0
θ
∂θr 0

int

(r 0
int)

2

]
+·· ·

+∂θη1
u0
θ

r 0
int

+ u0
z ∂zη

1 = 0, at ∂Σ0
int. (2.5)

Similarly, the dynamic condition (2.2) on the perturbed interface implies[(
τ0 +ϵτ1

) (
n0 +ϵn1)]out

in
=−γ(

κ0 +ϵκ1)(n0 +ϵn1) at ∂Σ1
int. (2.6)

After flattening, the two leading orders of the linearised dynamic condition imply

ϵ0 order:(
τ0 n0

)out

in
+γκ0n0 = 0, at ∂Σ0

int,

ϵ1 order:(
τ0n1 +η1∂rτ

0n0 +τ1n0
)out

in
+γ(

κ0n1 +κ1n0)= 0, at ∂Σ0
int. (2.7)

Relations (2.5) and (2.7) contain the normal vector and the curvature of the interface at the

two leading orders. We can show that the unit normal vector of a linearly perturbed interface
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can be decomposed as n = n0 +ϵn1 which reads

ϵ0 order:

n0 =

n0
r

n0
θ

n0
z

= A−1/2


1

− 1
r 0

int
∂θr 0

int

∂z r 0
int

 ,

ϵ1 order:

n1 =

n1
r

n1
θ

n1
z

=

Brη
1 +Cr∂θη

1 +Dr∂zη
1

Bθη
1 +Cθ∂θη

1 +Dθ∂zη
1

Bzη
1 +Cz∂θη

1 +Dz∂zη
1

 , (2.8)

where

A = 1+
(

1

r 0
int

∂θr 0
int

)2

+ (
∂z r 0

int

)2
, Br = A−3/2(

r 0
int

)3

(
∂θr 0

int

)2
,

Bθ = A−3/2

(
− 1(

r 0
int

)4

(
∂θr 0

int

)3 + A(
r 0

int

)2 ∂θr 0
int

)
, Bz =− A−3/2(

r 0
int

)3

(
∂θr 0

int

)2
∂z r 0

int,

Cr =− A−3/2(
r 0

int

)2 ∂θr 0
int, Cθ =− A−3/2

r 0
int

(
1+ (

∂z r 0
int

)2
)

, Cz = A−3/2(
r 0

int

)2 ∂θr 0
int ∂z r 0

int,

Dr =−A−3/2∂z r 0
int, Dθ =

A−3/2

r 0
int

∂z r 0
int ∂θr 0

int, Dz = A−3/2
((
∂z r 0

int

)2 − A
)

. (2.9)

We can also show that the local curvature of a linearly perturbed interface can be decomposed

as κ= κ0 +ϵκ1 which reads

ϵ0 order:

κ0 = 1

r 0
int

(
n0

r +∂θn0
θ

)+∂z n0
z ,

ϵ1 order:

κ1 = Eη1 +F∂θη
1 +G∂zη

1 +Dz∂zzη
1 + Cθ

r 0
int

∂θθη
1, (2.10)
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where

E = 1

r 0
int

(Br +∂θBθ)− 1(
r 0

int

)2

(
n0

r +∂θn0
θ

)+∂z Bz ,

F = 1

r 0
int

(Cr +∂θCθ+Bθ+Dθ∂z )+∂zCz +Cz∂z ,

G = Bz +∂z Dz . (2.11)

Note that the subscript r in (2.8)-(2.11) does not imply the real part of a complex number but

rather indicates the prefactors in the radial component of the normal vector. In the following,

we illustrate the presented formalism applied to some classical limits of interfacial shapes.

A

A

B

B

Figure 2.3: Examples of the geometries presented in §2.1. (a,d) Axially-invariant interface
(cf. §2.1.1); (b,e) Cylindrical interface (cf. §2.1.2); (c) Axially varying interface with circular
cross-section (cf. §2.1.3). The blue cuts shade the liquid cross-section.

2.1 Some special geometries

2.1.1 Axially-invariant interface

The first limit that we consider in this study is when the base interface has no dependence on

the axial coordinate z (cf. figure 2.3(a,d)). In this case, r 0
int = r 0

int(t ,θ) for which the kinematic

18



2.1 Some special geometries

condition (2.5) implies

ϵ0 order:

∂t r 0
int +

u0
θ

r 0
int

∂θr 0
int −u0

r = 0, at ∂Σ0
int

ϵ1 order:

∂tη
1 −u1

r + u1
θ

∂θr 0
int

r 0
int

+·· ·

+η1

[
−∂r u0

r +
∂r u0

θ
∂θr 0

int

r 0
int

−
u0
θ
∂θr 0

int

(r 0
int)

2

]
+·· ·

+∂θη1
u0
θ

r 0
int

+ u0
z ∂zη

1 = 0, at ∂Σ0
int. (2.12)

The dynamic condition is readily given by (2.7) where the normal vector can be expressed as

ϵ0 order:

n0 =

n0
r

n0
θ

n0
z

= A−1/2


1

− 1
r 0

int
∂θr 0

int

0

 ,

ϵ1 order:

n1 =

n1
r

n1
θ

n1
z

=

Brη
1 +Cr∂θη

1

Bθη
1 +Cθ∂θη

1

Dz∂zη
1

 , (2.13)

where

A = 1+
(

1

r 0
int

∂θr 0
int

)2

, Br = A−3/2(
r 0

int

)3

(
∂θr 0

int

)2
,

Bθ = A−3/2

(
− 1(

r 0
int

)4

(
∂θr 0

int

)3 + A(
r 0

int

)2 ∂θr 0
int

)
, Cr =− A−3/2(

r 0
int

)2 ∂θr 0
int,

Cθ =− A−3/2

r 0
int

, Dz =−A−1/2. (2.14)
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Similarly, the interface curvature writes

ϵ0 order:

κ0 = 1

r 0
int

(
n0

r +∂θn0
θ

)
,

ϵ1 order:

κ1 = Eη1 +F∂θη
1 +Dz∂zzη

1 + Cθ

r 0
int

∂θθη
1, (2.15)

where

E = 1

r 0
int

(Br +∂θBθ)− 1(
r 0

int

)2

(
n0

r +∂θn0
θ

)
, F = 1

r 0
int

(Cr +∂θCθ+Bθ) . (2.16)

In the present thesis, the main focus is dedicated to this geometrical limit. The linear sta-

bility analysis of an axially invariant interface is addressed for different configurations in

chapters 3,4,5.

2.1.2 Cylindrical interface

A particularly interesting limit of the axially invariant interface is the cylindrical interface,

where r 0
int = r 0

int(t) (cf. figure 2.3(b,e)). In this limit, the kinematic condition (2.12) further

simplifies as

ϵ0 order:

∂t r 0
int −u0

r = 0, at ∂Σ0
int

ϵ1 order:

∂tη
1 −u1

r −∂r u0
r η

1 +·· ·

+∂θη1
u0
θ

r 0
int

+ u0
z ∂zη

1 = 0, at ∂Σ0
int. (2.17)
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We recall that the dynamic condition is readily given by (2.7) where the normal vector presented

in relation (2.13) simplifies further as

ϵ0 order:

n0 =

n0
r

n0
θ

n0
z

=

1

0

0

 ,

ϵ1 order:

n1 =

n1
r

n1
θ

n1
z

=


0

−1
r 0

int
∂θη

1

−∂zη
1

 , (2.18)

Additionally, relation (2.15) simplifies as

ϵ0 order:

κ0 = 1

r 0
int

,

ϵ1 order:

κ1 = −1(
r 0

int

)2

(
η1 +∂θθη1)−∂zzη

1, (2.19)

The linear stability analysis of a cylindrical interface is addressed in chapter 3. Note that a

cylindrical interface does not necessarily indicate an axisymmetric flow. As will be presented

in chapter 3, a non-axisymmetric axial flow can be reached inside a cylindrical liquid column.

2.1.3 Axially varying interface with circular cross-section

Another particularly interesting limit is when the interface varies along the axial direction with

a circular cross-section at any z (cf. figure 2.3(c)). In other words, r 0
int = r 0

int(t , z). This limit is

of interest for investigating annular co-flows or elongated open-ended bubbles. In this limit,

the kinematic condition (2.5) implies
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ϵ0 order:

∂t r 0
int +u0

z∂z r 0
int −u0

r = 0, at ∂Σ0
int

ϵ1 order:

∂tη
1 −u1

r +u1
z ∂z r 0

int +η1 (−∂r u0
r +∂r u0

z ∂z r 0
int

)+·· ·

+∂θη1
u0
θ

r 0
int

+ u0
z ∂zη

1 = 0, at ∂Σ0
int. (2.20)

The dynamic condition is readily given by (2.7) where the normal vector implies

ϵ0 order:

n0 =

n0
r

n0
θ

n0
z

= A−1/2

 1

0

∂z r 0
int

 ,

ϵ1 order:

n1 =

n1
r

n1
θ

n1
z

=

Dr∂zη
1

Cθ∂θη
1

Dz∂zη
1

 , (2.21)

where

A = 1+ (
∂z r 0

int

)2
, Cθ =− A−3/2

r 0
int

(
1+ (

∂z r 0
int

)2
)

,

Dr =−A−3/2∂z r 0
int, Dz = A−3/2

((
∂z r 0

int

)2 − A
)

. (2.22)

Similarly, the interface curvature implies

ϵ0 order:

κ0 = n0
r

r 0
int

+∂z n0
z ,

ϵ1 order:

κ1 = Eη1 +G∂zη
1 +Dz∂zzη

1 + Cθ

r 0
int

∂θθη
1, (2.23)
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+

Figure 2.4: An exemplary numerical domain associated with a thick film coating the inner wall
of a cylindrical tube; the meshed region is the liquid, denoted by Ωf, separated through an
interface, denoted by ∂Σ0

int, from the surrounded air, the white region. The right panel shows
a zoom at the interface and the arc length s; the green dotted line shows a circle of constant
radius at the zoomed point whose normal (n0) and tangent (t0) vectors are sketched in blue.

where

E =− n0
r(

r 0
int

)2 , G = ∂z Dz . (2.24)

Even though the stability analysis of this class of geometry is not investigated in the present

thesis (though such base states are calculated in chapter 6), one can confirm after a little bit of

manipulation that relations (2.21)-(2.23) are identical to that presented in chapter 3 in Augello

(2015).

2.2 Numerical implementation in COMSOL MultiphysicsTM

In this section, a numerical procedure is proposed to apply the method explained earlier.

This procedure is implemented in the finite elements solver COMSOL MultiphysicsTM, and

employed in the present thesis for some axially invariant flows with Cartesian (x, y) description

of the flow in the cross-section. Indeed, a variety of numerical implementations may be

considered for this method, however, in the present procedure, we try to keep it as general

and versatile as possible. We anticipate the unperturbed numerical domain from chapter 4,

shown in figure 2.4 to visually support the procedure as illustration.

We recall that the following procedure aims at calculating different terms in expressions (2.5)-

(2.11) and impose these conditions at the interface. While some of the flow quantities like

velocity and pressure are defined both in the fluid bulk,Ωf, and at the interface, ∂Σ0
int, some
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others like the surface normal vector n0 and r 0
int are only defined at the interface. The bulk

values can be treated in a standard manner while differentiating, whereas derivating the

quantities defined only at the interface requires further attention from a numerical point of

view. Figure 2.4 shows the z = 0 cross-section of an exemplary base interface. This interface

can be represented by a single-valued function r 0
int(θ, z = 0). However, as this quantity is

defined along the curvilinear absicssa s in the numerical framework, ∂θr 0
int is not readily

defined (neither ∂x r 0
int nor ∂y r 0

int). Hence, we should firstly compute the derivative along

s, and then employ the chain rule as ∂sr 0
int = (∂θr 0

int) (∂sθ). In COMSOL MultiphysicsTM,

derivative along the curvilinear absicssa can be obtained as ∂s = t0 ·∇s , where t0 denotes the

unit tangent vector along s, and ∇s =∇−n0
(
n0 ·∇)

is the tangential gradient operator on the

same boundary. Therefore, for r 0
int and any other quantity defined only at the boundary with

reference to a curvilinear abscissa s,

∂θ =
t0 ·∇s

t0 ·∇sθ
, at ∂Σ0

int. (2.25)

Note that the base interface in figure 2.4 is axially invariant. A general columnlike interface

can have axial variations. Differentiating in the z direction can be similarly expressed as

∂z = t0 ·∇s

t0 ·∇s z
, at ∂Σ0

int. (2.26)

Since the performance of the numerical scheme is sensitive to how one exploits the available

functions in the numerical set-up, in the following we shed light on different possible manners

of defining quantities in COMSOL MultiphysicsTM.

2.2.1 Variable operator versus finite element space

One should distinguish between defining a quantity via variable operator, hereafter variable,

or in the finite element space in COMSOL MultiphysicsTM. A variable evaluates a user-defined

"strong" point-wise expression (as opposed to its weak or variational form). On the other

hand, a quantity belonging to the finite element space should be defined in the software by

means of a weak or strong equation. The value of this quantity is then evaluated by solving

numerically its descriptive equation. Note that regardless of expressing such an equation in

weak or strong form in the graphical panel of COMSOL MultiphysicsTM, it is automatically

transformed to a weak expression.

Suppose that an arbitrary space- and/or time-dependent quantity a(t ,x) is the solution of an

equation f = f (a) = 0, subject to a proper set of initial and boundary conditions.

1. To define a as a variable, it suffices to add it as a variable in the model tree in COMSOL

MultiphysicsTM.

2. To define a in the finite element space using a weak expression, one must add a weak
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Figure 2.5: Defining a quantity r0, representing the base interface, as (a) a variable, and in the
finite elements space through (b) weak form and (c) strong form equations.

form-based physics from the "Mathematics" module to the model tree in COMSOL

MultiphysicsTM, set a as its dependent variable and prescribe the weak form equa-

tion f = 0, as
∫

f ψa = 0, along with the proper initial/boundary conditions on its

domain/boundary of existence, where ψa is the corresponding test function.

3. To define a in the finite element space using a strong expression, one must add a strong

form-based physics from the "Mathematics" module to the model tree in COMSOL

MultiphysicsTM, set a as its dependent variable and prescribe the strong form equation

f = 0, directly on its domain/boundary of existence along with the proper initial/bound-

ary conditions. We recall that COMSOL MultiphysicsTM converts this strong form to the

same weak form as in step 2 before solving.

Example: In the framework of the following numerical model, let us take the base interface

radius in the x−y cross-section, then a = r 0
int =

√
x2 + y2, and f = r 0

int−
√

x2 + y2 = 0. Figure 2.5

presents three different manners of defining this quantity.

In some certain cases, as will be addressed in §2.2.2, a specific way of defining a quantity is

more desirable than the other. More specifically, defining a quantity as a variable is compu-

tationally inexpensive, whereas defining it in the finite element space can be beneficial to

achieve smooth numerical values when high-order derivations of the quantity are needed,

or when the quantity includes differentiated components itself. To clarify this point, let us

take as an example the curvature of a cylindrical base interface of unit radius. We know from

relation (2.19) that in this case, the base curvature is unity. Figure 2.6 presents an example

of calculating the interface curvature κ0, using (2.10), once with the model proposed as in

§2.2.2 (blue), and once by computing all of its contributing terms as variables (red). The

variable-based evaluation results in small numerical oscillations. If the computed value is

needed to be further differentiated, such oscillations become problematic. This is briefly

because the weak expression results in an integral equation that ensures the smoothnes of the

solution.

25



A versatile formulation for the linear analysis of perturbed columnlike interfaces

Figure 2.6: The curvature of a cylindrical interface of unite radius, computed from (2.10).

Interface

parametrisation

Linear analysis

Flattening

Base flow
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 2.7: Schematic of the implemented method. Each step is shown with a box encapsulat-
ing the corresponding calculated finite element spaces. The shape function of each space is
shown in parentheses.

2.2.2 Proposed numerical model

The schematic of the numerical procedure is shown in figure 2.7 and the steps are as follows:
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i. The first step is to solve the base flow. Upon the nature of the problem, a time-dependent

solver or steady one may suit. To maintain the generality for both modal and nonmodal

analyses, we continue the procedure by considering a temporally evolving flow coupled

with a moving mesh module. In such a case, the geometrical shape function should

crucially be quadratic Lagrange polynomial.

ii. The second step is to extract the geometrical characteristics of the flow numerically.

To this aim, the values of {r 0
int,n0,t0} are computed through mathematical equation-

based solvers only at the interface ∂Σ0
int, defined in the finite element space of quadratic

shape functions. In the z = const . cross-section, the radial coordinate is defined by r =√
x2 + y2, where (x, y) are the in-plane Cartesian coordinates. The interface unit normal

and tangent vectors are defined using the built-in operators of COMSOL MultiphysicsTM.

In addition, the polar angle θ is defined by θ = arctan(y/x) as a parameter in the whole

domain.

Note: Defining the n0 and t0 in the finite element space of the specified shape functions,

as opposed to variable, is essential to avoid numerical oscillations, because they have to

be differentiated on the interface in the next steps.

iii. Next, {∂θr 0
int,∂θθr 0

int,∂z r 0
int,∂zz r 0

int} are defined in the finite element space of quadratic

shape functions only at ∂Σ0
int. This step should be crucially done after step (ii.) to avoid

a singular matrix error where value initialisation in COMSOL MultiphysicsTMresults in

division by zero.

iv. The values of {∂r u0,τ0} are calculated in the finite element space of linear shape func-

tions in the bulkΩf, where ∂r = cosθ ∂x + sinθ ∂y .

v. The value of ∂rτ
0 is calculated in the finite element space of linear shape function at

∂Σ0
int. As τ0 is defined also in the bulk, a standard differentiation as in step (iv.) can be

employed to compute the radial derivative at the interface. This step should be done

after step (iv.) to avoid a singular matrix error.

Note: Defining the above-mentioned quantities in the finite element spaces is essential

to avoid numerical oscillation in the values. In the case of a time-dependent base

flow, steps (ii.)-(v.) can be computed and stored for each time step through a time-

dependent solver. Following these steps, the quantities and coefficients contributing to

the linear order of the normal vector and curvature, presented in relations (2.7)-(2.11),

are computed as variable in COMSOL MultiphysicsTM.

vi. Now, all of the constants and derived values from the base flow are readily in hand

for further computations. Depending on the purpose of the study, the final step may

be conducting the linear stability analysis of the linearised Navier-Stokes equations or

following the temporal evolution of the linear perturbations, as needed for the transient

growth analysis. In either case, {u1, p1,η1,∂θη
1,∂zη

1,κ1} are solved simultaneously in

the finite element space. The Navier-Stokes equations (the momentum and continuity

equations) are employed to define {u1, p1} with the quadratic and linear shape functions,
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respectively. The dynamic interface condition (2.7) is applied by means of Lagrange

multipliers of quadratic shape function. The kinematic condition (2.5) and relation (2.10)

are used to define {η1,κ1}, respectively, with the quadratic shape functions. Both ∂θη
1

and ∂zη
1 are defined in the finite element space following (2.25) and (2.26), respectively,

using cubic shape functions, and are similarly differentiated to compute ∂θθη
1 and

∂zzη
1 in (2.10). The choice of cubic shape function is somewhat peculiar, however, it

was observed as the only choice that results in the validation of the model. A rigorous

reason remains unsettled.

Note: The steps (ii.) and (iv.) can be done in parallel, as shown in figure 2.7. How-

ever, here they are presented in the same order as implemented in the COMSOL

MultiphysicsTM model.

2.2.3 Method validation

The procedure presented in §2.2 is readily implemented and validated for an axially invari-

ant flow with an asymmetric cross-sectional flow in the finite elements solver COMSOL

MultiphysicsTM. In the scope of the present thesis, even though the equations can be simpli-

fied according to §2.1.1, in the COMSOL MultiphysicsTM model, each term is implemented

without any simplification. For further details on the model validation and results, see ap-

pendix 4.5.5. The used benchmark takes into account the interface asymmetry as well as

non-zero axial base flow gradients.

2.3 Method limitations and future perspective

The interface formulation introduced earlier in this chapter is a powerful tool to address a large

variety of problems, where a liquid-liquid or liquid-air interface is perturbed with infinitesimal

perturbations. Apart from its robustness and accuracy in the numerical framework, one of its

major strong points is its numerical simplicity and modular implementation which makes

this model a versatile tool to be employed readily for several interfacial flow analyses. This

method has been already applied successfully to different examples that are presented in the

following chapters of the present thesis. However, some limitations can be considered for this

formulation, which keeps the interest for further improvement in the future. These limitations

are elaborated on in the following

1. We recall that the key assumption behind the selection of the cylindrical parametrisa-

tion for the interface is the explicit radial representation condition. Even though this

assumption holds for open-ended columnlike interfaces, it is not comprehensive. In

some flows, one may find it difficult to spot an axis Oz to ensure the explicit radial

representation condition for all times of the flow evolution. For instance, in the problem

of a thick liquid film coating the inside of a horizontal tube, to be presented in chapter 4,

if R < Rw/3, the displacement of the interface particles can be larger than the diameter
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g

Figure 2.8: (a) Two schematic frames form a draining film coating the inside of a tube; the
liquid is shown in blue, ; air is shown in white; the tube wall is shown by the thick solid line,
the initial interface is shown with the dotted line and a later frame of the interface is shown
in the thin solid line; (b) Interface of a laminar axisymmetric jet impinging a flat plate as a
function of the flow rate Q (reprinted from Scherz (2022)).

of the initial cylindrical interface (cf. figure 2.8(a)). Starting from the initially concentric

film of a uniform thickness, any axis Oz within the gaseous core and parallel to the tube

centreline can be selected. However, as the interface rises, any selected axis eventually

crosses the interface, violating r 0
int ̸= 0. Hence, our model cannot automatically follow

the parametrisation of the interface, from its initial state until the quasi-static state

approaching the upper tube wall. In this particular problem, a simple remedy could

be to stop the simulation before the axis Oz crosses the interface, then continue the

simulation with a new axis inside the displaced interface. Yet, an automatised solver is

desirable.

2. Another example of violating explicit radial representation condition is when the in-

terface exhibits axial overturning. For instance, when a laminar liquid jet impinges a

flat plate at a high flow rate, the liquid may expand radially following a hydraulic jump

at the interface (cf. figure 2.8(b)). The jump disables the radial representation of the

interface as a single-valued function, thus failing the present formulation for studying

the linear perturbations of such a flow.

3. The present model necessitates the columnlike interface to be open-ended along the

axis. In the case of a closed-ended interface, like a drop or bubble, there exists at least

one point where ∂z r 0
int →∞, preventing thus the applicability of the present formulation

in imposing the interface conditions (2.5)-(2.7).

4. In general, the interface between two fluids may be perturbed in the normal direction

to the interface at each point. We recall that the radial mapping applied while flattening

(2.3) holds only if the unperturbed and perturbed interfaces are defined over the same

ranges of (θ, z). Such a flattening applies to any columnlike interface that forms a closed
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curve in the z = const . cross-section and satisfies the explicit radial representation

condition. Nevertheless, when the interface forms an open-ended curve in the z =
const . cross-section, the choice of a proper axis Oz may not be easy. An example of

such an interface is given in Bostwick and Steen (2018) where the linear stability of a

static rivulet on top of a substrate is studied. In many other problems where the base

flow with a closed interface at z = const . cross-section benefits from some geometrical

symmetries, one may study a cut of the interface under some symmetry conditions.

In order for the flattening (2.3) to account for an open interface (cf. figure 2.3(d,e))

perturbed in the normal direction at all points, the axis Oz must strictly lie on the

intersection of the normal vectors at the two endpoints of the interface (cf. points A, B

in figure 2.3(d,e)). For such a choice of Oz, the range of (θ, z) for the base interface is

the same as that of the perturbed one. As an example, we revisit the Rayleigh-Plateau

instability for a viscous jet. The numerical domain, shown in figure 2.9(a), is a half-cut of

a unit circle at z = const . plane. Symmetry condition is applied to the flow with respect

to its vertical diameter, ∂Σ0
sym. The center of the circle is displaced away from the origin

O in the x and y directions. Figure 2.9(b) presents the effect of axis position on the

obtained dispersion curve for the axisymmetric perturbation, where several positions

of O are considered for in the z = const . cross-section. It can be seen that moving the

center of the circle in the x direction results in a dispersion curve different from the

correct one, whereas moving it only in the y direction inside the liquid bulk (keeping

point O on ∂Σ0
sym, the conjunction of the interface normal vectors at the endpoints)

results in the correct growth rate. In this example, we had multiple choices of proper

axis Oz along ∂Σ0
sym. Let us now consider another example, which is the linear stability

analysis of the Rayleigh-Taylor instability which occurs when a liquid film of constant

thickness covers the underside of a horizontal flat plate. For such a flow, the base

interface is a flat surface whose normal vectors are parallel at any point. Therefore, no

proper position for Oz can be set and the radial formulation presented in this chapter

fails.

5. In the case of a columnlike interface that satisfies all of the present formulation condi-

tions, the limit where r 0
int →∞ may cause numerical problems. Therefore, it is preferen-

tial to set the axis Oz such that this limit is avoided.

With the given overview of the developed interface parametrisation and its limitations, one

can naturally draw a future perspective to complement the present method and address the

abovementioned restrictions. A proper proposition is to develop a differential formulation,

inspired by the work of Ledda et al. (2022), for the base and perturbed interfaces in the

intrinsic normal-tangent coordinates. Such a local parametrisation of the perturbed interface

can resolve the limitations of the present method, relax the explicit radial representation

condition, and can open the door for the linear analysis of any arbitrary fluid-fluid interface

perturbation. After this will be achieved, the extension of the local method to the perturbations

of higher order can facilitate conducting the non-linear analysis of generic interfacial flows.
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Figure 2.9: (a) Numerical domain for the Rayleigh-Plateau instability, computed on half-
cylinder whose axis is located at (xs , ys) with respect to the axis Oz. Here, ∂Σ0

int marks the
unperturbed interface, and ∂Σ0

sym marks the axis of symmetry. (b) The effect of positioning
axis Oz on the dispersion curve of the axisymmetric mode; for each case, only one of xs or ys

is varied.
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We study a gravity-driven viscous flow coating a vertical cylindrical fibre. The destabilisa-

tion of a draining liquid column into a downward moving train of beads has been linked to

the conjunction of the Rayleigh-Plateau and Kapitza instabilities in the limit of small Bond

numbers Bo. Here, we focus on quasi-inertialess flows (large Ohnesorge number Oh) and

conduct a linear stability analysis on a unidirectional flow along a rigid eccentric fibre for

intermediate to large Bo. We show the existence of two unstable modes, pearl and whirl modes.

The pearl mode depicts asymmetric beads, similar to that of the Rayleigh-Plateau instability,

whereas a single helix forms along the axis in the whirl mode instability. The geometric and

hydrodynamic thresholds of the whirl mode instability are investigated, and phase diagrams

showing the transition thresholds between different regimes are presented. Additionally, an

energy analysis is carried out to elucidate the whirl formation mechanism. This analysis

reveals that despite the unfavourable capillary energy cost, the asymmetric interface shear

distribution, caused by the fibre eccentricity, has the potential to sustain a whirling interface.

In general, small fibre radius and large eccentricity tend to foster the whirl mode instability,

while reducing Bo tends to favour the dominance of the pearl mode instability. Finally, we

compare the predictions of our model with the results of some illustrative experiments, using
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highly viscous silicone oils flowing down fibres. Whirling structures are observed for the first

time, and the measured wavenumbers match our stability analysis prediction.

keywords: coating, drainage, Rayleigh-Plateau instability, surface tension, linear stability

analysis, energy analysis, whirl, interface

3.1 Introduction

Initially long liquid columns always break apart into many droplets so as to minimise their

surface energy. This phenomenon, referred to as Rayleigh-Plateau instability, has been well-

known since the studies of Plateau (1873); Rayleigh (1878). This instability, originally de-

scribed for liquid jets, can be observed under various conditions such as liquid film coating a

fibre (Duprat, 2009) or inside a tube (Duclaux et al., 2006), which gives rise to the formation

of similar interfacial patterns and represents a class of hydrodynamic instability under the

same name, reviewed in further detail in the works of Eggers and Villermaux (2008); Gallaire

and Brun (2017). One particularly interesting variant of the Rayleigh-Plateau instability is the

destabilisation of a viscous fluid draining vertically down a rigid fibre under the influence

of gravity, which leads to the formation of moving beads along the fibre. This flow has been

attracting attention for decades as a result of its numerous applications and rich dynamics.

Some direct applications are seen in coating technologies, optical coating and in drawing

fibres into/from liquid baths (Quéré, 1999; Shen et al., 2002; Duprat et al., 2007). Furthermore,

emerging patterns are characterised mainly by a high surface area to volume ratio, which is

appealing for numerous applications that involve mass and heat transfer across the liquid-gas

interfaces, e.g. microfluidics (Gilet et al., 2009), heat exchangers (Zeng et al., 2017, 2018),

vapor absorption (Chinju et al., 2000; Grünig et al., 2012; Hosseini et al., 2014) and desali-

nation (Sadeghpour et al., 2019). Predictability and control of the destabilised patterns are

crucial in many of these applications.

Numerous theoretical and experimental studies have examined the flow down rigid fibres.

Remarkably, Kliakhandler et al. (2001) reported experimentally three distinct unstable regimes:

(i) isolated beads, (ii) regularly distanced beads train, and (iii) irregularly distanced beads

train. Transition from the absolute to convective regimes occurs when the film thickness

exceeds a critical value, for which the corresponding thresholds are discussed widely in the

works of Chang and Demekhin (1999); Duprat et al. (2007). Besides secondary instabilities and

non-linear phenomena that may be observed as beads grow, solitary waves may appear along

the fibre in the non-zero inertia limit, reminiscent of the capillary Kapitza waves (Kapitza, 1949;

Duprat, 2009). Several theoretical and numerical models have been proposed to elucidate

the dynamics of the growth and motion of the emergent unstable patterns in the linear and

non-linear regimes in the limits of thin films (Frenkel, 1992; Ruyer-Quil et al., 2008; Ruyer-

Quil and Kalliadasis, 2012; Yu and Hinch, 2013) and thick films (Craster and Matar, 2006;

Liu and Ding, 2021). Each of these models captures some features of the destabilisation

process and matches the experimental data within some ranges. In addition, further studies
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concluded that besides the liquid properties, the fibre properties such as porosity (Ding and

Liu, 2011), slip properties (Haefner et al., 2015) and shape (Xie et al., 2021), as well as geometric

parameters like nozzle geometry (Sadeghpour et al., 2017), have significant impacts on altering

the dynamics and defining the range of occurrence of each unstable regime. Changes to the

dynamics may be related to changing the dominant wavelength, switching between different

regimes, changing the spacing, velocity, shape, and coalescence of mobile beads.

In all of the studies in the literature, the fibre is concentric with the liquid column, and

the initial stage of any unstable regime exhibits an axisymmetric growth of the interface

undulations. The recent work of Gabbard and Bostwick (2021) addresses the evolution of

asymmetric beads when the film thickness is initially non-homogeneous around the fibre.

In their case, they outlined the thresholds between the three regimes of isolated beads, and

regular and irregular beads trains. Yet, a full understanding of the destabilisation processes

is missing for the stability of non-homogeneous film thickness in flows down a fibre. For

instance, it is not clear why the formation of asymmetric beads is not prevented by capillary

effects. Also, the effect of non-homogeneous film thickness on the linear instability of other

non-axisymmetric modes is not known. In the present study, we focus on the effect of the fibre

position with respect to the liquid column, and we investigate the stability characteristics of

the flow and the subsequent geometry of the emerging patterns.

This paper is structured as follows. The methodology is first presented in §3.2. To begin with,

the problem formulation and the governing equations are presented in §3.2.1, from which

the base flow is deduced and discussed in §3.2.2. In §3.2.3, the stability analysis formulation

and the linearised governing equations are elaborated. Corresponding numerical methods

are detailed in §3.2.4. In §3.3, the results of the stability analyses are presented and discussed.

First, in §3.3.1, the effect of the fibre eccentricity on the stability characteristics of the flow is

given. Then a similar investigation is conducted for the other dimensionless parameters in

§3.3.2, followed by sketching the extensive stability maps in §3.3.3. In addition, the physical

mechanisms underlying the instability of the flow are elucidated by the method of energy

analysis in §3.3.4. In §3.3.5, a comparison between the linear model and our illustrative

experiments is provided. Finally, conclusions are drawn in §3.4.

3.2 Governing equations and methods

3.2.1 Problem formulation

A viscous liquid column flows under gravity along a vertical solid cylindrical fibre of radius

Rf placed with an eccentricity rec from the centre of the column. The schematic of the flow

and the cross-sectional view are shown in figure 3.1. The standard Cartesian coordinates

(x, y, z) are considered, with the origin located at the centre of the liquid column. In-plane

coordinates are (x, y), and the positive direction of the axial/vertical coordinate z, points in

the direction of the gravity acceleration g . The liquid is Newtonian, of constant dynamic
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Figure 3.1: Schematic of the coating flow along an eccentric fibre and the geometrical parame-
ters in cross-sectional view. The outer dashed black line represents the perturbed interface of
local radius rint and axial wavelength Rλ, and outer solid black line shows the cylinder with
mean radius R, which is concentric with the coordinate reference. The planar cut shows the
cross-section of the liquid column and the geometrical characteristics, where the grey region
shows the solid fibre.

viscosity µ, surface tension γ and density ρ, and is surrounded by an inviscid gas. Without loss

of generality for sufficiently small interface deformations, the interface can be parametrised in

cylindrical coordinates (r,θ, z), as rint(t ,θ, z), using the same origin as the Cartesian one, and R

denotes the reference value of rint in the absence of any perturbation. The dimensionless state

vector q = (u, p,Rint)T defines the flow where at time t , u(t , x, y, z) = (ux ,uy ,uz )T denotes the

three-dimensional velocity field, p(t , x, y, z) denotes the pressure, and Rint = rint/R denotes

the dimensionless interface radius. As opposed to Craster and Matar (2006), the state vector

and the governing equations are rendered dimensionless by the intrinsic velocity and time

scales presented by Duprat (2009), associated with the viscous axisymmetric liquid ring of

uniform thickness h0 = R −Rf that coats a centred fibre. However, we choose different length

and pressure scales, as follows:

L= R, U = ρg h2
0

µ
= ρg R2

µ
(1−α)2,

P = ρg R, T = L
U

= µ

ρg R
(1−α)−2,

(3.1)

where α= Rf/R denotes the fibre to mean radius aspect ratio. The other geometric parameter

is Rec = rec/R , which denotes the dimensionless fibre eccentricity. The flow is governed by the

incompressible Navier-Stokes equations, which in dimensionless form read
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∇· u = 0, (3.2)

Bo

Oh2 (1−α)4 (∂t +u ·∇)u =∇· τ+1 ez , (3.3)

where ∂ j denotes the partial derivative with respect to quantity j , and the stress tensor τ reads

τ=−pI+ (1−α)2 (∇u+∇uT )
. (3.4)

The two other dimensionless numbers that appear in the governing equations are the Ohne-

sorge number Oh = µ/
√
ργR, and the Bond number Bo = ρg R2/γ. While Oh compares the

viscous forces to the inertial and surface tension forces, Bo compares the gravitational and sur-

face tension forces. Our study addresses the limit of inertialess flow where (Bo/Oh2)(1−α)4 ≪
1 without any further assumptions on α.

The no-slip boundary condition u = 0 is applied on the fibre ∂Σf. On the shear-free fluid-gas

interface, the kinematic and dynamic boundary conditions, respectively, are

∂tRint +u ·∇Rint = u ·er on r =Rint, (3.5)

τ n =− κ

Bo
n on r =Rint, (3.6)

where er denotes the unit radial vector, n =∇ (r −Rint)/∥∇ (r −Rint)∥ denotes the unit normal

vector pointing outwards from the liquid bulk, ∥·∥ denotes the Euclidean norm, and κ=∇·n

denotes the interface mean curvature.

3.2.2 Base Flow

The base flow q0 is the steady-state solution of the Navier-Stokes equations (3.2)-(3.6). We

recall the solution prevailing for an eccentric fibre. In the limit of centred fibre, the analytical

solution exists whose axial velocity is composed of a logarithmic term and a parabola as

u0
z =

(1−α)−2

2

(
ln

r

α
− r 2 −α2

2

)
, p0 = 1

Bo
, (3.7)

with a constant pressure in the liquid. This velocity field is shown in figure 3.2(a) and

reveals its maximal velocity at the liquid-gas interface, and an increasing drainage flux

Q0 =Î
Ωx y

u0
z dAΩx y as the aspect ratio α decreases, i.e. for a thicker liquid film (figure 3.2(b)).

Inspired by the solution for the centred fibre, we seek a base flow that is parallel and fully

developed in the z direction with a cylindrical interface of radius R0
int = 1. Note that R0

int = 1 is

readily a solution to the non-linear kinematic condition (3.5). Assuming a constant pressure,
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Figure 3.2: Variation of the base flow as a result of the fibre eccentricity. (a) Axial velocity u0
z at

the cross-section for α= 0.1 and three different values of fibre eccentricities Rec = {0,0.1,0.5};
same colour bar applies for all plots; (b) Vertical flow rate Q0 for different values of α and Rec;
solid black lines show the results from our numerical study, and the red dots show the values
computed from the analytical flow around a centred fibre, (3.7); for each value of α, the plot
stops at α+Rec ≤ 0.95; (c) Shear rate across the thick (continuous) and thin (dashed) sides of
the liquid film along y = 0.

the normal component of the dynamic condition (3.6) is also satisfied. It remains to solve

the Poisson equation for u0
z , with no-slip on the fibre and free shear on the interface, driven

by gravity. The solution is computed numerically in the present study (see §3.2.4 for details)

for the flow coating an eccentric fibre, although it could be interesting to try to extend to

the present free-surface configuration the method proposed in Piercy et al. (1933) for a pipe

flow with a solid core. The fibre eccentricity breaks the axisymmetry of the base flow, with a

high-speed region on the thicker side of the liquid film, and a low-speed region on the thinner
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side. On the thicker side, shear is decreased near the interface while being increased in the

vicinity of the fibre (solid lines in figure 3.2(c)); on the thinner side, it evidences an increase

near the interface while being decreased near the fibre (dashed lines in figure 3.2(c)). The

drainage flow rate increases substantially with Rec (figure 3.2(b)).

3.2.3 Linear stability analysis

In order to perform the linear stability analysis on the base flow, presented in §3.2.2, the state

vector q = (u, p,Rint)T is decomposed into the sum of the steady-state base flow solution q0,

and the infinitesimal time-dependent perturbation q1 = (
u1, p1,η1

)T
, i.e.

q = q0 +ϵq1 +O(ϵ2), ϵ≪ 1, (3.8)

where the amplitude ϵ is assumed to be small. We look for perturbations q1 under the normal

form

q1 = q̃(x, y) exp[σt + ikz]+c.c., (3.9)

with k being the longitudinal wavenumber (associated with the wavelength λ= 2π/k), and c.c.

denoting the complex conjugate. It should be noted that the eccentricity of the fibre breaks

the axisymmetry of the problem, in spite of a cylindrical base interface. Therefore, a normal

mode of the form q̃(r )exp[σt + imθ+ ikz]+c.c. with m being the azimuthal wavenumber, is

not suitable in the eccentric configuration. In the asymptotic limit of large times, a normal

eigenmode perturbation with complex pulsation σ=σr + iσi is defined as unstable and hence

grows exponentially in time with the growth rate σr , if σr > 0, i.e. if σ is in the unstable

complex half-plane. (Unless otherwise noted, the subscripts r and i denote the real and

imaginary part of a complex number, respectively.) By casting the perturbed state of (3.8)

into the governing equations (3.2)-(3.3), with the stationary base flow q0 = (
u0,1/Bo,1

)T
, and

keeping the first-order terms, the linearised equations are obtained as

∇· u1 = 0, (3.10)

Bo

Oh2 (1−α)4
(
∂t u1 + (

u0 ·∇)
u1 + (

u1 ·∇)
u0

)
=∇· τ1. (3.11)

The no-slip condition implies ũ = 0 on the fibre. The perturbed interface boundary condi-

tions (3.5)-(3.6) applied on the perturbed liquid interface, can be projected radially onto

the base interface and utlimately linearised, a process called flattening (see (3.22) in ap-

pendix 3.5.1). The linearised kinematic condition can be expressed as

(
σ+ iku0

z

)
η̃= ũ ·er on r = 1. (3.12)

Introducing an eigenstate vector of the form (3.9) into (3.10)-(3.11), combined with (3.12)

leads to a generalised eigenvalue problem for σ and q̃:
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Lq̃+c.c. =σBq̃+c.c., (3.13)

where the linear operators L and B are defined as

L =

(1−α)2
(∇̃ · (∇̃+∇̃T )

) −∇̃ 0

∇̃· 0 0

er 0 −iku0
z

 , B =


Bo

Oh2 (1−α)4I 0 0

0 0 0

0 0 1

 , (3.14)

and the gradient operator and the velocity gradient tensor in the Cartesian coordinates are

∇̃ = (∂x ,∂y , ik)T , ∇̃ũ =

∂x ũx ∂y ũx ikũx

∂x ũy ∂y ũy ikũy

∂x ũz ∂y ũz ikũz

 . (3.15)

The operators L and B are then implemented and modified in the numerical model to enforce

the dynamic condition, which can be expressed as

τ̃ n0 =− κ̃

Bo
er

+ (1−α)2∂θu0
z ikη̃ eθ

+ (1−α)2 (
∂θu0

z ∂θη̃−∂r r u0
z η̃

)
ez at r = 1, (3.16)

where κ̃ denotes the dimensionless curvature perturbation expressed as

κ̃= (
k2 −1

)
η̃− ∂2η̃

∂θ2 , (3.17)

and (er ,eθ,ez ) denote the unit vectors of directions in the cylindrical coordinates (r,θ, z) used

for parameterising the interface; see figure 3.1. (For further details on the interface boundary

conditions’ derivation and implementation, see appendix 3.5.1 and §3.5.2, respectively.)

3.2.4 Numerical method

The base flow and linear stability analysis are solved numerically with the finite element

method. We use the software COMSOL MultiphysicsTM. A triangular mesh of the two-

dimensional domain, shown in figure 3.3, is generated with the Delaunay-Voronoi algorithm.

In the following sections, the area increment in the bulk cross-section is denoted by dAΩx y . On

the boundary j , the increment of surface area is denoted by dAΣ j , and the increment of arc

length is denoted by ds. The grid size is controlled by the vertex densities on the boundaries

∂Σf and ∂Σint. The variational formulation of the base flow equations (3.2)-(3.6) and the linear

stability equations (3.13) are discretised spatially using quadratic (P2) Lagrange elements for

u0, ũ and η̃, and linear (P1) Lagrange elements for p̃, yielding approximately 200’000 and

700’000 degrees of freedom for the base flow and the linear stability analysis, respectively. The
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Figure 3.3: The numerical domain used for computing the base flow and linear stability
analysis; the outer radius of the domain is set to unity, the same as that of the base interface.
Here,Ωx y denotes the liquid bulk. The boundaries of the numerical domain are denoted by
∂Ωx y = ∂Σf∪∂Σint. Here ∂Σf represents the liquid-fibre contact boundary, and ∂Σint represents
the gas-liquid interface.

base flow, the solution of a linear Poisson equation, is computed first with a linear solver. Then

this base flow is used to solve the generalised eigenvalue problem associated with the linear

stability analysis using a shift-invert Arnoldi method. (See appendix 3.5.2 for details about the

variational formulations, corresponding boundary conditions, and their implementation.)

The computation time associated with one given set of variables, followed by the stability

analysis for ∼20 values of k, is of the order of tens of minutes on a single Intel core at 3.6 GHz.

The model is validated with the analytical solutions in the literature for the coating flow over a

centred fibre. (For more details about the series of validation tests, see appendix 3.5.3.)

3.3 Results

3.3.1 Effect of the fibre eccentricity (Rec)

The results of the linear stability analysis are presented hereafter. Figure 3.4 shows the effect

of Rec on the stability of the flow. The dispersion curve, σr versus k, is plotted in figure 3.4(a)

for the two least linearly stable eigenmodes, which can be characterised by the shapes of

their eigeninterfaces in figure 3.4(b-c). In the limit of the concentric fibre, Rec = 0, only one

unstable mode exists in the range 0 < k ≤ 1, which undulates axisymmetrically in the axial

direction. This instability is known as a variant of the Rayleigh-Plateau instability (Rayleigh,

1878). The second mode is stable over the whole range of wavenumbers, and its interface

forms a single helix that whirls along the axial direction. Accordingly, hereafter, we will refer to

these two modes as the pearl (P) and the whirl (W) modes, respectively. We emphasise that

this instability is not to be confused with the classical whirl instability observed in liquid/gas-

lubricated journal bearings, that is, a self-excited rotor whirl caused by lubricating film forces

when the rotation frequency of the shaft exceeds a threshold, approaching the lowest natural
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Figure 3.4: Evolution of the two least stable eigenmodes, P (black) and W (blue), with in-
creasing the fibre eccentricity, plotted for Rec = {0,0.1,0.5}. (a) The dispersion curve. (b) A
three-dimensional render of the perturbed interface, obtained by superposition of the real
part of the corresponding eigeninterfaces with amplitude 20% onto the base interface over an
axial span of double wavelength r (θ, z) = 1+0.2η̃r cos(kz). (c) Real part of the eigeninterfaces,
η̃r , as a function of θ. All of the plots correspond to Oh →∞, Bo = 50 and α = 0.1, and the
eigeninterfaces are plotted at k = 0.1. All of the eigenstates are normalised and presented in
the same complex phase, such that at the maximal positive interface perturbation, η̃= 1.

frequency of the system (Harrison, 1919; Larson and Richardson, 1962).

By increasing Rec, the general trend observed in the stability of these two modes is as follows:

the eigeninterfaces of both modes are deformed as the flow symmetry breaks, but their general

layout remains similar to that of the concentric fibre. In addition, the P mode remains unstable,

although its dispersion curve exhibits an alteration of the range of unstable wavenumbers.

Moreover, increasing Rec over a certain threshold destabilises the W mode, and by increasing

Rec further, the W mode eventually dominates over the P mode in a range of wavenumbers.
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3.3.2 Bo and α effects
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Figure 3.5: Variation of dispersion curve for the P (black) and W (blue) modes. (a) The α effect,
plotted for Oh →∞, Bo = 50, Rec = 0.3 and α= {0.1,0.15,0.3}; each arrow shows the direction
of increasing α for the P mode dispersion curve. (b) The Bo effect; plotted for Oh → ∞,
Rec = 0.7, α= 0.1 and Bo = {4,5,6,10}; each arrow shows the direction of increasing Bo for the
P mode dispersion curve.

In this subsection the effects of Bo and α on the stability characteristics of the flow are illus-

trated via dispersion curves. Figure 3.5(a) highlights the main changes induced by decreasing

α. The instability range of the P mode extends. Additionally, although the maximal growth

rate of the P mode exhibits a minor change, its maximal wavenumber- i.e. the wavenumber at

which the maximal growth rate occurs- increases. Moreover, reducing α to less than a certain

threshold destabilises the W mode. By further reducing α, the maximal wavenumber of the

W mode and its growth rate increase, and eventually its growth rate dominates that of the P

mode in some range of wavenumbers. Similar to decreasing α, figure 3.5(b) demonstrates

the effects of increasing Bo as destabilising the W mode until its dominance over the P mode.

Besides, larger Bo increases the instability range of both P and W modes. Unlike the W mode,

the maximal growth rate of the P mode decreases by increasing Bo.

So far, three principal unstable regimes are identified in the parameter space: (i) only the P

mode is unstable; (ii) both P and W modes are unstable, and the P mode dominates; (iii) both

P and W modes are unstable, and the W mode dominates. A detailed study of the parameter

space is conducted, and the results are presented in §3.3.3.

3.3.3 Phase diagrams

The {Bo,α,Rec} space is investigated extensively to determine the threshold of the unstable

regimes. Figures 3.6(a-b) present the phase diagrams that are obtained by holding α and Bo
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Figure 3.6: Phase diagrams of the unstable modes associated with the gravity-driven coating
flow along an eccentric fibre: (a) for α= 0.1, Oh →∞; (b) for Bo = 50, Oh →∞. The dotted
curves mark the interpolated thresholds obtained from numerical eigenvalue calculations.
The grey region in the right-hand corner excludes the infeasible geometrical limit α+Rec ≥ 1
where the fibre touches the base interface. The coloured regions indicate the instabilities and
dominance in terms of the growth rate as follows: white means only the P mode destabilises;
red means both P and W modes destabilise and P dominates; blue means both P and W modes
destabilise, and W dominates.

fixed, respectively, while varying the other parameters. For any set in the investigated range of

parameters, the P mode destabilises. Furthermore, in accordance with the results presented

in §3.3.1 and §3.3.2, these diagrams show that exceeding a certain threshold, increasing Bo for

a fixed {α,Rec}, or decreasing α for a fixed {Bo,Rec}, leads to the coexistence of unstable P and

W modes, first with the dominance of the P mode, and later the dominance of the W mode.

For instance, figure 3.6(b) reveals that at a constant Bo = 50, there are two cut-off values of

Rec: first, below Rec ≈ 0.28, the W mode never dominates the P mode for a finite fibre size;

second, below Rec ≈ 0.2, only the P mode destabilises. Figure 3.6(b) is limited to α≥ 0.075 for

numerical reasons, that is, the appearance of spurious eigenmodes with discontinuities in the

interface perturbation η̃ for α≤ 0.05. Mesh refinement on the fibre boundary, on the interface

boundary and inside the domain did not resolve this numerical issue.

Formerly, extensive studies addressed the shapes of the pearls in contact with a fibre (Carroll,

1984; Brochard-Wyart et al., 1990; McHale et al., 1999; Mchale et al., 2001; Duprat, 2009).

However, instability of the W mode is not expected, as Rayleigh (1879) states that any non-

axisymmetric perturbation should be linearly stable. The reason is that the surface energy

of a liquid column is proportional to its surface area, which increases with the formation of

whirling structures. Hence, such patterns are not in favour of the surface energy minimisation

and should not destabilise (Cardoso and J., 2006; Duprat, 2009; Gallaire and Brun, 2017).

Moreover, even though some studies have addressed the linear instability of the helical mode

in the context of interfacial columnar flows, in each case an extra physical mechanism causes
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helical instability. For instance, aerodynamic interactions at the interface of inertial jets (Yang,

1992), elasticity and electric stresses at the interface of electrified jets (Li et al., 2011), and the

solid-liquid-gas contact line at the interface of static rivulets (Bostwick and Steen, 2018) are at

play to counteract capillarity, promoting helical instabilities. In our study, i.e. in the absence of

these extra triggering mechanisms, capillarity is known to stabilise non-axisymmetric interface

perturbations. This apparent paradox gives the motivation to §3.3.4, where we perform an

energy analysis on the flow.

3.3.4 Energy analysis

In this subsection, in an attempt to clarify the competition between capillary, potential and

viscous effects, and to quantify their respective contributions to the base flow and the stability

of modes P and W, we study the flow from an energy perspective. The base flow presented

in §3.2.2, and the perturbed flow resulting from the linear stability analysis and presented

in §3.3.1-3.3.2, are investigated by means of the method of energy analysis to explain the

underlying physics of the flow instability. Previously, Boomkamp and Miesen (1996); Hooper

and Boyd (1983); Kataoka and Troian (1997); Li et al. (2011) employed this method to determine

and compare the roles of different physical mechanisms on the temporal instability of various

interfacial flows.

What is commonly referred to as the energy analysis is in fact the study of the energy conserva-

tion in a flow, in different scales, from the base flow to the perturbations. More precisely, this

analysis sheds light on the rate of energy balance equation, hereafter referred to as the energy

equation, which for the inertialess gravity-driven flow along a fibre, can be expressed asÑ
Ωx y

(1−α)2 tr
((∇u+∇T u

)∇u
)

︸ ︷︷ ︸
DIS

+
Ï
∂Σint

−
(
τn0

)
·u︸ ︷︷ ︸

BND

+
Ñ

Ωx y

−uz︸ ︷︷ ︸
POT

= 0, (3.18)

where the bulk integrals are defined on the volume increment dV = dAΩx y dz, the surface

integral is defined on the cylindrical surface with the cross-section ∂Σint and axis in the z

direction (see figure 3.3), DIS denotes the rate of viscous dissipation in the bulk fluid, BND

denotes the rate of work done by the fluid through the interface, and POT denotes the rate

of change of gravitational potential energy. (For more details about the derivation of the

energy equation and its non-simplified and dimensional forms, see appendix 3.5.4.) The

energy equation implies that the energy is released and consumed in the flow at the same

rates, whereas multiple physical mechanisms may contribute to its release and consumption.

In this regard, the sign of each term in (3.18) indicates whether the energy is removed from (+)

or released into (−) the flow by the respective mechanism.
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Energy analysis of the base flow

The energy equation for the base flow presented in §3.2.2, computed per unit length in z, can

be expressed by Ï
Ωx y

(1−α)2 tr
((∇u0 +∇T u0)∇u0)

︸ ︷︷ ︸
DIS0

+
Ï
Ωx y

−u0
z︸ ︷︷ ︸

POT0=−Q0

= 0, (3.19)

which demonstrates that the potential energy released in the flow by drainage of the liquid

is steadily dissipated in the bulk liquid. We recall that Q0 > 0 (see figure 3.2) and the rate

of potential energy release increases by increasing Rec. Furthermore, recalling the dynamic

condition (3.6), BND0 = 0, which means that no energy is exchanged with the base flow from

the cylindrical interface.

Energy analysis of the perturbed flow

The energy equation at the scale of the linear perturbations, i.e. ϵ2, computed along one

wavelength, implies
Ï
Ωx y

(1−α)2 tr
((∇̃ũ+∇̃T ũ

)∇̃ũ⋆
)

︸ ︷︷ ︸
DIS1


r

+


∫
∂Σint

σ⋆

Bo
κ̃η̃⋆︸ ︷︷ ︸

BND1
c,1=σ⋆ SUR1

+
∫
∂Σint

−iku0
z

Bo
κ̃η̃⋆︸ ︷︷ ︸

BND1
c,2

+
∫
∂Σint

−
(
τ̃vn0

)
· ũ⋆︸ ︷︷ ︸

BND1
v


r

= 0, (3.20)

where ⋆ denotes the complex conjugate, BND1
c,1 and BND1

c,2 denote the capillary contribu-

tions to the rate of the work done by the fluid at the perturbed interface, SUR1 denotes the

surface energy stored in the perturbed interface, τ̃v denotes the viscous contribution of the

stress tensor, and BND1
v denotes the viscous (shear) contribution to the rate of the work done

by the fluid at the perturbed interface, which can be expressed as

BND1
v =

∫
∂Σint

(1−α)2ũ⋆z ∂r r u0
z η̃

+
∫
∂Σint

−(1−α)2 ũ⋆θ ∂θu0
z ikη̃ +

∫
∂Σint

−(1−α)2 ũ⋆z ∂θu0
z ∂θη̃. (3.21)

We recall that the subscript r denotes the real part of a complex number. Equation (3.20)

unravels that the work exchanged at the perturbed interface is partially dissipated in the bulk

liquid, whereas the remainder (or deficit) is stored at (or released from) the free surface as

interfacial energy. Equations (3.20)-(3.21) also evidence that the principal source of the work

exchanged at the interface is the base flow itself, as the viscous contribution BND1
v and the
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capillary contribution BND1
c,2 are proportional to the base flow’s shear and drainage velocity,

respectively. Note that BND1
c,1 also has an implicit contribution from the base flow through

κ̃ and the assumption of a cylindrical interface for the base flow. (For further details on the

derivation of (3.20) and its different terms, see appendix 3.5.4.)

For the P and W modes, the effect of increasing Rec on each term of (3.20) is shown in table 3.1

and table 3.2, respectively. For both of these modes, the majority of energy exchange to

the perturbations is due to the viscosity: energy enters the system through the shear at the

interface, and it is mostly dissipated in the bulk. In the case of the P mode, σ⋆r > 0 and(
SUR1

)
r < 0, meaning that over the course of time, by growth of the P perturbations, the

surface energy is also released to the system. Recalling (3.17), for some value of k ≥ 1, the

sign of κ̃ (and subsequently the sign of
(
SUR1

)
r ) changes, meaning that surface energy can

be released only in small values of k, and it should be stored in large values of k, which in

principle sets a cut-off wavenumber kcr for the instability of the P mode. In other words, in

some range 0 < k < kcr, the P mode is destabilised by both capillary and viscous mechanisms,

which justifies its presence for all sets of {Oh →∞,Bo,α,Rec}. On the other hand, in the case

of the W mode,
(
SUR1

)
r > 0, which indicates that with the growth of the whirling interface,

a part of the energy released into the system is stored as surface energy. For small Rec, the

energy added to the system by the shear at the interface is not sufficient to destabilise the W

mode; however, as Rec increases, more energy is released to the perturbations by interfacial

shear, which eventually suffices to destabilise the W mode. In other words, interfacial shear

(in favour) and capillary (against) mechanisms exhibit opposite effects on the instability of the

W mode; and for sufficiently large Rec, the interfacial shear dominates over some range of k,

thus originating the instability of the W mode.

Rec σ⋆r
(
SUR1

)
r

(
σ⋆ SUR1

)
r

(
BND1

c,2

)
r

(
BND1

v

)
r

(
DIS1

)
r

0 0.0007110 -0.0079790 -0.0000057 0 -0.9999943 1
0.1 0.0007098 -0.0079499 -0.0000056 0.0000000 -0.9999943 1
0.5 0.0026527 -0.0069362 -0.0000184 0.0000064 -0.9999822 1

Table 3.1: The effect of Rec on different terms in energy equation (3.20) for the perturbed
flow, associated with the P mode: Oh → ∞, Bo = 50, α = 0.1, k = 0.325, Rec = {0,0.1,0.5}.
The corresponding dispersion curves and their eigeninterfaces are shown in figure 3.4. As
the maximal growth rate of the W mode for Rec = 0.5 occurs at k = 0.325, it is particularly
chosen as the representative for demonstrating the effect of Rec on the variation of each term.
All of the energy terms are normalised with DIS. Recall that the sign of each term in (3.20)
indicates whether the energy is removed from (+) or released into (−) the flow by the respective
mechanism. Here,

(
SUR1

)
r is also presented as its sign determines if the energy is stored in

(+) or released from (−) the interface.

47



Whirling instability of an eccentric coated fibre

Rec σ⋆r
(
SUR1

)
r

(
σ⋆ SUR1

)
r

(
BND1

c,2

)
r

(
BND1

v

)
r

(
DIS1

)
r

0 -0.0011307 0.0017903 -0.0000020 0 -0.9999980 1
0.1 -0.0014484 0.0016131 -0.0000023 0.0003023 -1.0003000 1
0.5 0.0406023 0.0075478 0.0003065 0.000829 -1.0011355 1

Table 3.2: Same as table 3.1 for the W mode.

Figure 3.7: Schematic of the experimental set-up

3.3.5 Experimental observations

A set-up was designed a posteriori to observe experimentally the newly discovered unstable

modes, as depicted in figure 3.7. Highly viscous silicone oil (47 V 100000 BluesilTM, with the

following properties at 25◦C: ρ = 973 kg/m3, µ= 89 Pa.s, γ= 21.1×10−3 N/m) is pumped by

peristalsis to an upper tank with a moving bottom plate. The liquid discharges from a modular

hole 8-10 mm in diameter, located on the moving plate through which a solid nylon fibre 0.7

mm in diameter passes vertically. From the upper tank, the liquid flows along the fibre over a

distance ∼150 cm. The draining liquid is collected in a lower tank connected to the suction

side of the pump. When the moving plate is at one extreme, the position of each fibre end is

calibrated under high tension by means of two micrometric screws such that the fibre is vertical

and concentric with the hole and liquid column (this step is repeated every time the moving

plate is replaced to change the discharge hole diameter). Afterwards, the fibre eccentricity is

varied by displacing the moving plate continuously (within ∼ 5s), without touching the fibre.

After displacement of the moving plate, flow takes ∼ 15−40min (depending on the discharge

hole diameter and magnitude of the plate displacement) to redevelop along the fibre, and
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Figure 3.8: Experimental observation of the unstable modes: (a) pearls, data No. 1 in table 3.3;
(b) whirling interface: data No. 7 in table 3.3. The front and side views are not synchronous.

readjusts the liquid column position and fibre eccentricity. Afterwards, it takes ∼ 5−10min for

the first evidence of the instabilities to appear. Evolution of the base flow, from a concentric

flow to the eccentric one, and the occurrence of the instabilities, are photographed from two

orthogonal directions: in the direction of the plate displacement (hereafter front view), and

orthogonal to the plate displacement (hereafter side view). After each experiment run, the

moving plate is brought back to its initial position, leading to a fully developed concentric flow

down the fibre. We repeat the same procedure multiple times for different values of moving

plate displacement.
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Data No. Oh Bo α Rec kexp kLSA Modeexp ModeLSA

1 369 3.65 0.120 0.87 0.40±0.06 0.44 P P
2 344 4.83 0.107 0.64 0.43±0.06 0.45 P P
3 339 5.03 0.104 0.46 0.41±0.07 0.43 P P
4 331 5.34 0.101 0.87 0.32±0.05 0.30 W W∗

5 327 5.86 0.097 0.69 0.40±0.07 0.44 P P∗

6 321 6.32 0.094 0.95 0.28±0.08 0.28 W W∗

7 310 7.30 0.087 0.90 0.34±0.08 0.28 W W∗

8 308 7.47 0.086 0.87 0.28±0.06 0.28 W W∗

9 306 7.65 0.085 0.85 0.35±0.06 0.29 W W∗

10 303 7.99 0.083 0.84 0.24±0.06 0.28 W W∗

Table 3.3: Dimensionless parameters associated with the experimental points, reported along
with the comparison between the measured experimental wavenumber (comprising the stan-
dard deviation) kexp, and the maximal wavenumber predicted by the linear stability analysis
kLSA. Here, Modeexp indicates the mode observed experimentally, and ModeLSA indicates
the dominant unstable mode obtained from the stability analysis, where the superscript ∗
indicates that both P and W modes are unstable. The linear predictions confirm the dominant
modes observed in all of the experiments. Data No. 1 and 7 are illustrated in the panels (a)
and (b) of figure 3.8, respectively.

Figure 3.8 presents examples of the pearling and whirling interfaces captured over time,

observed from side and front views. When the fibre eccentricity is small (figure 3.8(a)), pearls

start to form. While advected downwards, pearls preserve the planar symmetry of the system

(front view) and grow predominantly on the thick side (side view). As they grow more, their

velocity and spacing alter from the early stage of their emergence under the effect of non-

linearities (see supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.876).

By increasing the fibre eccentricity far enough (figure 3.8(b)), whirling structures appear.

Initially small, the perturbations grow and finally merge under non-linear effects. The merged

structures are advected by the flow, and soon after, new whirling structures emerge and similar

sequences repeat (see supplementary movie 2 available at https://doi.org/10.1017/jfm.2022.

876). Table 3.3 shows, for different conditions, which mode is observed experimentally (P or

W) and the unstable eigenmode(s) predicted by linear stability analysis (P only, P dominant, or

W dominant). In all our experiments, the mode observed experimentally corresponds to the

dominant unstable eigenmode. The wavelengths of the emerging structures were measured

by means of a MathematicaTM image analysis script over multiple formation periods of the

unstable structures (see appendix 3.5.5 for more details about the image analyses). Table 3.3

presents the measured wavenumbers (dimensionless) from the experimental observations,

kexp, and the maximal wavenumber predicted by the stability analysis, kLSA. The comparison

confirms a firm agreement between the experiments and the linear stability analysis. We can

confirm that the flow is inertialess, as (Bo/Oh2) (1−α)4 ≤ 6.2×10−5 for all of our experiments

in table 3.3.
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3.4 Summary and conclusion

The main difficulty of the experiments is the observation of the pearl modes at high Bo. Indeed,

increasing Bo leads to faster convection, which delays the appearance of the pearls further

down the liquid column. With a total length of 1.5m, pearl modes are difficult to observe

above Bo ≈ 10, and this difficulty increases as Bo is increased further (similarly when Rec is

decreased). Furthermore, the hole at the exit of the tank hosts a complex three-dimensional

flow induced by a sudden change of boundary conditions. It leads to the selection of values

for the eccentricity that are difficult to control and very sensitive to the position of the fibre

within the hole.

Altogether, we believe that this is the first experimental observation of the whirling patterns

in flows down a fibre. We hope that this work will foster further experimental investigations,

including fluids with complex rheological properties, or non-circular sections for the liquid

column.

3.4 Summary and conclusion

In this work, we studied the stability of a gravity-driven flow along an eccentric solid fibre in

the absence of inertia. To begin with, the base flow was computed numerically for different

values of the fibre size and eccentricity under the assumption of a fully developed parallel flow

with a cylindrical interface. The results exhibit a substantial increase in the drainage, up to

more than twofold, when the fibre eccentricity is increased.

Next, the stability of the base flow was investigated by means of linear stability analysis,

where an extensive study was conducted on the space of dimensionless parameters {Oh →
∞,Bo,α,Rec}. Two main unstable modes were identified in the parameters space. First,

the pearl mode evidences the characteristics of the Rayleigh-Plateau instability, but with a

distorted interface caused by the broken symmetry of the flow, due to the fibre eccentricity.

This mode destabilises for any set of parameters over some range of wavenumbers 0 < k < kcr,

where kcr may differ from unity depending on the flow parameters. Second, we identified

for the first time the instability of the whirl mode that forms a single helix whirling around

the fibre along its axial direction in some region of the parameters space. While in such a

flow a whirling interface is well known from the literature to be stable for defying the surface

energy minimisation (the main driving force of the Rayleigh-Plateau instability), the present

linear analysis depicts that a small fibre radius, large fibre eccentricity and high Bo promote

instability of the whirl mode. Additionally, for a fixed Bo, a cut-off value was observed for the

fibre eccentricity below which no unstable whirl mode was found, even by further decreasing

the fibre radius.

In order to elucidate the origin of the whirling instability, an energy analysis was formulated

to delve into the physical mechanisms underlying the flow at the scales of the base flow and

linear perturbations. This analysis, at the scale of the base flow, demonstrates the drainage

as the means for the liquid to release its gravitational potential energy. This released energy

ultimately dissipates in the bulk fluid, which sustains a fully developed drainage. By increasing
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the fibre eccentricity, drainage increases, hence the potential energy release is also boosted.

In the presence of infinitesimal perturbations in the flow, a part of the dissipated energy is

injected into the perturbations through the interface shear. On top of that, the energy analysis

of the perturbed flow unravels the instability of the whirl mode as a direct consequence of the

increased rate of shear work at the interface, which is dissipated mainly in the bulk fluid, and

its remainder is stored at the liquid surface to promote the growth of the whirling structure

over time. In the case of the pearl mode, both surface energy release and interface shear work

support the growth of pearls for small wavenumbers. In contrast, for higher wavenumbers,

surface tension acts oppositely and stabilises the perturbations, thus establishing a cut-off

wavenumber kcr for the instability of the pearl mode, different from that of the Rayleigh-

Plateau instability (Rayleigh, 1878).

Finally, we compared the results of our stability analysis with a set of experiments carried out

with a highly viscous silicone oil. We reported the experimental observation of the whirling

perturbed interface in the flow down a rigid eccentric fibre. In addition, the dominant mode

and the maximal wavenumbers predicted by the linear stability analysis agree very well with

the experimental observations.

The formation of a liquid helix has been reported previously for the drainage of liquid jets

along vertical fibres (Jambon-Puillet et al., 2019). However, those peculiar patterns have a very

different origin, and emerge from an initially azimuthal flow, where surface tension keeps the

liquid attached to the fibre and inertia enables it to temporarily maintain the azimuthal velocity

component downstream. In our study, the shifted pearls and whirling patterns remarkably

emerge from an inertialess flow, initially fully parallel to the fibre.

Possible experimental directions for future works include exploring fluids with complex rheo-

logical properties, insofar as whirling patterns emerge from a competition between interfacial

shear and surface tension. In our study, the liquid column is initially cylindrical, as the hole

in the bottom of the reservoir is circular. Modifications of the hole geometry (e.g. ellipsoids

or polygons) are expected to lead to a rich variety of patterns. Furthermore, the flow can be

studied from the absolute/convective perspective in order to better elucidate the competition

between pearling and whirling modes.

Supplementary material https://gfm.aps.org/meetings/dfd-2020/5f4e05c3199e4c091e67ba3f
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3.5 Appendix

3.5.1 Derivation of the interface boundary conditions

In this section, the derivation of the interface boundary conditions for the perturbed flow is

elaborated. These conditions should be imposed on the perturbed interface, i.e. on r = 1+ϵη1,

while η1 is already a part of the problem unknowns. By using the Taylor expansion, that is,

projecting radially on the base interface, i.e. on r = 1, any flow quantity at the perturbed

interface can be readily approximated. This projection is referred to as flattening and for an

arbitrary function f (r,θ, z) can be expressed as

f |(r=1+ϵη1,θ,z) = f |(r=1,θ,z) +ϵη1 ∂r f |(r=1,θ,z) +O(ϵ2). (3.22)

By substituting the decomposed state vector of (3.8), into the interface conditions (3.5)-(3.6),

then using the ansatz of (3.9), and applying the aforementioned flattening, we can formulate

these conditions as a set of equivalent constraints on the boundary of the base interface. The

linearised kinematic condition readily writes (3.12), and the linearised dynamic condition

writes

τ0 ñ+ η̃∂rτ
0 n0 + τ̃ n0 =− 1

Bo

(
κ0ñ+ κ̃n0) , on r = 1, (3.23)

where κ0 = 1, n0 = 1er and ñ =−∂θη̃ eθ−ikη̃ ez , hence (3.16). In order to express this constraint

in the Cartesian coordinates, some of its terms should be transformed by employing the

Jacobian transformations as

er = cosθ ex + sinθ ey , eθ =−sinθ ex +cosθ ey ,

∂r = cosθ ∂x + sinθ ∂y , ∂θ =
t0 ·∇s

t0 ·∇sθ
, (3.24)

where t0 denotes the unit tangent vector, and ∇s =∇−n0
(
n0 ·∇)

is the tangential derivative on

the base interface. For further details concerning the numerical implementation of boundary

conditions, see appendix 3.5.2.

3.5.2 Variational formulation of problem and implementation of boundary condi-
tions

Implementation of the numerical scheme and development of the variational formulation as-

sociated with the governing equations presented in section 3.2 are elaborated in this appendix,

recalling that the numerical domain is shown in figure 3.3.
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Base flow

The stationary limit of the Navier-Stokes equations (3.2)-(3.3), for a fully developed axial flow

field q0 = (
u0

z , p0,1
)T

implies

(1−α)2 ∇2
x y u0

z +1 = 0, p0 = const ., onΩx y , (3.25)

where ∇2
x y =∇x y ·∇x y = ∂xx +∂y y denotes the Laplacian in the cross-section. As explained in

§3.2.2, the kinematic condition (3.5) is trivial. The interface dynamic condition (3.6) readily

implies

∇x y u0
z ·n0 = 0, p0 = 1

Bo
, at ∂Σint. (3.26)

To obtain the variational form of (3.25), it should be multiplied by a test function, ψz , and be

integrated onΩx y as Ï
Ωx y

(
(1−α)2 ∇2

x y u0
z +1

)
ψz dAΩx y = 0. (3.27)

After integrating the first term by part, ψz∇2
x y u0

z = ∇x y ·
(
ψz u0

z

)−∇x y u0
z · ∇x yψz , and then

applying the Gauss’s theorem to it,
Î
Ωx y

∇x y ·
(
ψz∇x y u0

z

)
dAΩx y =

∫
∂Ωx y

(
ψz∇x y u0

z

) ·n0 ds, we

can impose (3.26) on ∂Σint and no-slip condition on ∂Σf. The final variational form of the base

flow equations writes

Ï
Ωx y

(−(1−α)2 ∇x y u0
z ·∇x yψz +ψz

)
dAΩx y = 0. (3.28)

It should be noted that ψz |∂Σf = 0 due to the Dirichlet nature of the no-slip boundary con-

dition. Variational equation (3.28) can be readily implemented and solved in COMSOL

MultiphysicsTM.

Linear stability analysis

To develop the variational form of (3.13), the procedure is in a similar fashion as that of the

base flow (see appendix 3.5.2). First, the normal mode of (3.9) is applied to the system of

equations (3.10)-(3.12). Then it is internally multiplied by the vector of the test functions

ψ= (
ψp ,ψu,ψη

)T , where ψu = (
ψux ,ψuy ,ψuz

)T . The resulting scalar product is integrated on

Ωx y , which in the linear order writes{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y

+
Ï
Ωx y

ψ⋆u ·
(

Bo

Oh2 (1−α)4 (
σũ+ (

u0 · ∇̃)
ũ+ (ũ ·∇)u0)−∇̃ · τ̃

)
dAΩx y

+
∫
∂Σint

ψ⋆η
((
σ+ iku0

z

)
η̃− ũ ·er

)
ds

}
+c.c. = 0. (3.29)
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It should be noted that in a complex system, applied scalar product is Hermitian, defined

as 〈a,b〉 = a⋆ ·b where the superscript ⋆ denotes the complex conjugate. In the last line of

this system of equations, kinematic condition (3.12) is used to define η̃ only at ∂Σint. After

integrating by part, ψ⋆u ·
(
∇̃ · τ̃

)
= ∇̃ ·

(
τ̃ψ⋆u

)
− tr

(
τ̃T

(∇̃ψu
)⋆)

, and then applying the Gauss’s

theorem,
Î
Ωx y

∇̃ ·
(
τ̃ψ⋆u

)
dAΩx y =

∫
∂Ωx y

(
τ̃ψ⋆u

)
·n0 ds, (3.29) implies

{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y

+
Ï
Ωx y

ψ⋆u ·
(

Bo

Oh2 (1−α)4 (
σũ+ (

u0 · ∇̃)
ũ+ (ũ ·∇)u0)) dAΩx y

+
Ï
Ωx y

tr
(
τ̃T (∇̃ψu

)⋆)
dAΩx y

+
∫
∂Ωx y

−
(
τ̃ψ⋆u

)
·n0 ds

+
∫
∂Σint

ψ⋆η
((
σ+ iku0

z

)
η̃− ũ ·er

)
ds

}
+c.c. = 0. (3.30)

τ̃ is symmetric, thus
(
τ̃ψ⋆u

)
·n0 =

(
τ̃n0

)
·ψ⋆u . Using the dynamic condition (3.23) and the fact

thatψu|∂Σf = 0 (because of the no-slip condition on fibre), the variational form of (3.13) implies{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y (3.31)

+
Ï
Ωx y

ψ⋆u ·
(

Bo

Oh2 (1−α)4σũ
)

dAΩx y (3.32)

+
Ï
Ωx y

ψ⋆u ·
(

Bo

Oh2 (1−α)4 ((
u0 · ∇̃)

ũ+ (ũ ·∇)u0)) dAΩx y (3.33)

+
Ï
Ωx y

tr
(
τ̃T (∇̃ψu

)⋆)
dAΩx y (3.34)

+
∫
∂Σint

(
τ0 ñ+ η̃∂rτ

0 n0 + 1

Bo

(
κ0ñ+ κ̃n0)) ·ψ⋆u ds (3.35)

+
∫
∂Σint

ψ⋆η
(
ση̃

)
ds (3.36)

+
∫
∂Σint

ψ⋆η
(
iku0

z η̃− ũ ·er
)

ds

}
(3.37)

+ c.c. = 0. (3.38)

This variational equation can be readily implemented and solved in COMSOL MultiphysicsTM.

It is sufficient to solve the first part (in {}) and the c.c. is known consequently. The matrix

representation of (3.31)-(3.38) is shown in figure 3.9.
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I

(3.31)

(3.31)

(3.31)

(3.37)

(3.32)(3.33-3.34)

(3.35)

(3.36)

Figure 3.9: Matrix representation of the variational system (3.31)-(3.38), solved in COMSOL
MultiphysicsTM; blue represents the implementation of (3.10)-(3.11); white represents the
implementation of the no-slip boundary condition on fibre; green represents the implementa-
tion of the dynamic boundary condition (3.16); beige represents the implementation of the
kinematic condition (3.12).

3.5.3 Validation of numerical model

The developed numerical scheme is validated hereafter. Several measures are taken to ensure

the correspondence of the model, based on the asymptotic limits.

linear stability analysis model

Linear stability analysis is validated with the analytical solutions that Craster and Matar

(2006); Duprat (2009); Gallaire and Brun (2017) presented for the coating flow over a long

centred fibre. All of these references employed an approximation of the Stokes equations

for long jets, referred to as the long-wavelength approximation (Reynolds, 1886). Craster and

Matar (2006) expresses the growth rate of the linearly unstable axisymmetric modes in terms

of the Bessel function of the first type for the full range of α. Duprat (2009); Gallaire and

Brun (2017) employed also the lubrication approximation and represented the growth rate as

σ= 1−α
3Bo (k2 −k4)− ik in the limit of thin film, i.e. α→ 1. Figures 3.10(a) and 3.10(b) present

the validity of our model for any α, evidenced by the firm agreement between our numerical

model and the analytical solutions for the arbitrary values of α= 0.6 and α= 0.9, representing

the thick and thin liquid film limits, respectively.

Grid independency

A convergence study for the P and W modes’ eigenvalues is presented in figure 3.11, for an

arbitrary set of parameters as an example. Mesh convergence is already attained for ∼3.5k

degrees of freedom, Ndo f s , in this case. The threshold of mesh convergence may slightly vary

with Rec and Bo. In the case of large Rec, fibre vicinity requires more refinement due to the

large gradients of the fluid fields originated from the asymmetric base flow. Furthermore, as

the capillary length scales as lc ∝ Bo−1/2, interface mesh resolution plays a crucial role in
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Figure 3.10: Comparison between the present numerical model (◦) and analytical dispersion
relation (-) for a centred fibre, Rec = 0; (a) thick film, α= 0.6, |m| = {0,1}; (b) thin film, α= {0.9},
m = 0. Both cases correspond to Oh →∞, Bo = 1. Black and blue colours refer to the P and
W modes, respectively; Craster and Matar (2006); Duprat (2009); Gallaire and Brun (2017)
considered a similar perturbation as in equation 3.8 with the Fourier ansatz exponent of
exp[σt + ikz + imθ], a typical choice for the axisymmetric configurations. For a centred fibre,
the P and W modes are identical to the m = 0 and |m| = 1 modes, respectively.
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Figure 3.11: Mesh convergence proof of the P (black) and W (blue) eigenvalues as a function
of Ndo f s . Eigenvalues are rescaled with the modulus of the eigenvalue from the most refined
mesh; Oh →∞, Bo = 50, Rec = 0.3, α= 0.4, k = 0.3.
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Ndo f s required for mesh convergence. Number of divisions on the interface should be such

that elements’ edge stays shorter than lc , the reason why our study is restricted up to Bo = 50.

3.5.4 Derivation of the energy equation

Energy equation

In this section, the derivation of the energy equation is elaborated. We recall the momentum

equation (3.3), which in the dimensional form reads

ρ
(
∂t +

(
u′ ·∇))

u′ =∇· τ′+ρg, (3.39)

where the superscript ′ denotes dimensional quantities, and the dimensional stress tensor

reads

τ′ =−p ′I+µ(∇u′+∇u′T )
. (3.40)

To obtain the energy equation, we begin with computing the scalar product of (3.39) and the

velocity vector u′, then we integrate the product across the liquid bulk, which writesÑ
Ωx y

ρu′ · (∂t u′+ (
u′ ·∇)

u′) dV =
Ñ

Ωx y

u′ ·
(
∇· τ′+ρg

)
dV. (3.41)

Each term in this equation has the dimension of power, J/s. After integrating the first term in

the right hand side (RHS) by part, that is, u′ ·
(
∇· τ′

)
=∇·

(
τ′T u′

)
−tr

(
τ′∇u′

)
, and then applying

the Gauss’s theorem to it,
Ð

Ωx y
∇·

(
τ′T u′

)
dV =Î

∂Ωx y

(
τ′T u′

)
·n0 dA∂Ωx y , (3.41) implies

Ñ
Ωx y

ρu′ · (∂t u′+ (
u′ ·∇)

u′)=Ï
∂Ωx y

(
τ′T u′

)
·n0 −

Ñ
Ωx y

tr
(
τ′∇u′

)
+

Ñ
Ωx y

ρg u′
z , (3.42)

In the aforementioned equation, and hereafter, for the ease of notation, we omit dV from vol-

umetric integrals, dA∂Ωx y from boundary surface integrals, and ds from the one-dimensional

boundary integrals.

Further simplification can be made as tr
(
τ′∇u′

)
=−p ′∇·u′+µ tr

((∇u′+∇T u′)∇u′), where

∇ ·u′ = 0 due to the incompressibility. Symmetry of the stress tensor implies
(
τ′T u′

)
·n0 =(

τ′n0
)
·u′. Hence, the general form of the energy equation can be expressed as
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Ñ
Ωx y

ρu′ ·∂t u′

︸ ︷︷ ︸
KIN

+
Ñ

Ωx y

ρu′ · ((u′ ·∇)
u′)

︸ ︷︷ ︸
REY

+
Ñ

Ωx y

µ tr
((∇u′+∇T u′)∇u′)

︸ ︷︷ ︸
DIS

+
Ï
∂Ωx y

−
(
τ′n0

)
·u′

︸ ︷︷ ︸
BND

+
Ñ

Ωx y

−ρg u′
z︸ ︷︷ ︸

POT

= 0. (3.43)

Each under-brace denotes the physical mechanism associated with the respective term, as

follows:

1. KIN: the temporal rate of kinetic energy in the bulk fluid

2. REY: the rate of energy transmission between fluid layers due to the Reynolds stresses

3. DIS: the rate of viscous dissipation in the bulk fluid

4. BND: the rate of work done by the fluid through the moving boundaries

5. POT: the rate of change of gravitational potential energy

Now that the physical mechanism behind each term in the energy equation is demonstrated,

following the scaling presented in §3.2, the dimensionless form of the energy equation can be

expressed as

Ñ
Ωx y

Bo

Oh2 (1−α)4u ·∂t u︸ ︷︷ ︸
KIN

+
Ñ

Ωx y

Bo

Oh2 (1−α)4u · ((u ·∇)u)︸ ︷︷ ︸
REY

+
Ñ

Ωx y

(1−α)2 tr
((∇u+∇T u

)∇u
)

︸ ︷︷ ︸
DIS

+
Ï
∂Ωx y

−
(
τn0

)
·u︸ ︷︷ ︸

BND

+
Ñ

Ωx y

−uz︸ ︷︷ ︸
POT

= 0. (3.44)

In the limit of inertialess coating flow along a fibre, (Bo/Oh2)(1−α)4 ≪ 1, KIN and REY are

negligible. Furthermore, u = 0 at ∂Σf, thus yielding (3.18).

Energy equation for the perturbed flow

The energy equation for the perturbed flow is obtained by substituting the perturbed state

vector (3.8) with the ansatz of (3.9), into (3.18) and integrating it over one wavelength ∆z =
λ = 2π/k. The resulting integral in ϵ2 order determines the energy equation for the linear

perturbations which implies
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2π

k
e2σr t


Ï
Ωx y

(1−α)2 tr
((∇̃ũ+∇̃T ũ

)∇̃ũ⋆
)

︸ ︷︷ ︸
DIS1

+
∫
∂Σint

−
(
τ̃n0

)
· ũ⋆︸ ︷︷ ︸

BND1

+c.c. = 0, (3.45)

We remind that the ansatz of (3.9) is complex, hence the integral of terms in ϵ1 order vanish

due to the periodicity of the perturbations over λ. As 2π
k e2σr t > 0, it can be factorised and

simplified. We hereafter only focus on the real part of (3.45) which writes(
DIS1 +BND1)

r = 0. (3.46)

Recalling (3.12) and (3.16), BND can be decomposed as

BND1 = BND1
v +BND1

c, (3.47)

where subscripts v and c denote the viscous and capillary contributions to the rate of work at

the perturbed interface, respectively, expressed as

BND1
v =

∫
∂Σint

(1−α)2ũ⋆z ∂r r u0
z η̃

+
∫
∂Σint

−(1−α)2 ũ⋆θ ∂θu0
z ikη̃ +

∫
∂Σint

−(1−α)2 ũ⋆z ∂θu0
z ∂θη̃, (3.48)

BND1
c =

∫
∂Σint

σ⋆

Bo
κ̃η̃⋆︸ ︷︷ ︸

BND1
c,1

+
∫
∂Σint

−iku0
z

Bo
κ̃η̃⋆︸ ︷︷ ︸

BND1
c,2

. (3.49)

Different terms of (3.21) correspond to the rate of shear stress work on the perturbed interface.

Moreover, BND1
c,1 determines the temporal rate of surface energy release (or storage) at the

perturbed interface, which can be rewritten as

BND1
c,1 =σ⋆

∫
∂Σint

κ̃η̃⋆

Bo︸ ︷︷ ︸
SUR1

, (3.50)

where SUR1 denotes the surface energy stored in the perturbed interface, thus giving (3.20).

3.5.5 Image analysis of the experiments

In this section, we detail the step-by-step procedure to quantify our experiments by means of

the image analysis of the images taken from the side and front views. All images are saved in

binarised format, including only black and white pixels. This procedure is implemented in a
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MathematicaTM image analyses script. The steps are as follows:

1. When the fibre is concentric with the liquid column, the edges of the liquid column are

extracted from the images of the side and front views. Each edge appears as a line of

black pixels and marks the extremity of the liquid column interface.

2. Angle correction is applied on the images, to obtain vertical column edges.

3. The rotation angle of each camera is saved. These angles are applied to correct all of the

images from their corresponding cameras.

4. For each camera, the length scale of the images is calculated from the concentric liquid

column, by counting the number of pixels per unit length of a ruler placed next to the

column. These scales are saved and used for the rest of the measurements.

5. The liquid column diameter and the radial position of its mid-line axis are calculated

from each camera. The mid-line axis is a vertical line, whose radial coordinate is ob-

tained by averaging the radial position of the liquid column edges along the axis.

6. After the moving plate is displaced and flow develops, step 5 is repeated. It is important

to measure the column diameter close to the nozzle, where the liquid column remains

circular.

7. The in-plane displacement of the liquid column is calculated by subtracting the mid-line

axis positions measured from the side view camera in steps 5 and 6. (It is verified that

there is no axis displacement in the front view.)

8. The moving plate displacement is measured visually from the displacement of the ruler

engraved on the plate with respect to a reference mark.

9. Rec is calculated by subtracting the side view axis displacement, measured in step 7,

from the moving plate displacement measured in step 8.

10. α is calculated as the ratio of the fibre-to-column diameter, calculated in step 6.

11. Dimensionless numbers {Oh,Bo} are computed by knowing the physical properties of

the working fluid, α, and the column diameter.

12. For each angle-corrected image taken from the front view, the edges of the liquid column

are extracted. Each interface edge for the perturbed flow appears as a curve of black

pixels (we note that at the early stage of interface destabilisation, the interface perturba-

tions are more visible in the front view). Then the peak-to-peak and crest-to-crest axial

distances on the interface are extracted.

13. The perturbation wavelength is computed by averaging the distances computed in

step 12, reported along with their standard deviation during multiple formation periods

of the unstable structures.
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4 On the liquid film instability of an
internally coated horizontal tube

Remark This chapter is largely inspired by the manuscript of the same name, submitted for
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We study numerically and theoretically the gravity-driven flow of a viscous liquid film coating

the inner side of a horizontal cylindrical tube and surrounding a shear-free dynamically inert

gaseous core. The liquid-gas interface is prone to the Rayleigh-Plateau and Rayleigh-Taylor

instabilities. Here, we focus on the limit of low and intermediate Bond numbers Bo, where

the capillary and gravitational forces are comparable and the Rayleigh-Taylor instability is

known to be suppressed. We first study the evolution of the axially invariant draining flow,

initiating from a uniform film thickness until reaching a quasi-static regime as the bubble

approaches the upper tube wall. We then investigate the flow’s linear stability within two

frameworks: frozen time-frame (quasi-steady) stability analysis and transient growth analysis.

We explore the effect of the surface tension (Bo) and inertia (measured by the Ohnesorge

number Oh) on the flow and its stability. The linear stability analysis suggests that the interface

deformation at large Bo results in the suppression of the Rayleigh-Plateau instability in the

asymptotic long-time limit. Furthermore, the transient growth analysis suggests that the initial

flow evolution does not lead to any considerable additional amplification of initial interface

perturbations, a posteriori rationalising the quasi-steady assumption. The present study yields

a satisfactory prediction of the stabilisation threshold found experimentally by Duclaux et al.

(2006).
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4.1 Introduction

The gravity-driven flow of a viscous liquid film coating inside a solid cylinder has received

attention by virtue of its rich dynamics and numerous applications. One major industrial

application of such a flow is in two-phase heat exchangers, like in evaporators (O’Neill and

Mudawar, 2020a) and vertical tube condensers (Revankar and Pollock, 2005), where the

dynamics of the gas plugs and capillary blockage affect the heat transfer efficiency and pressure

loss (Dobson and Chato, 1998; Teng et al., 1999). It is also relevant in the airways of the human

lung where the coupling between the moving wall of the airways and the liquid film coating

the wall can cause airway closure (Heil et al., 2008; Bian et al., 2010; Levy et al., 2014).

The liquid-gas interface is prone to different instabilities due to surface tension, shear, gravity,

and inertia, which eventually lead to the emergence of various patterns (Eggers and Villermaux,

2008; Gallaire and Brun, 2017). For instance, the long column may break apart into distinct

plugs separated axially by collars, thus minimising the surface energy. This phenomenon

is classified in a large family of hydrodynamic instabilities known as the Rayleigh-Plateau

instability (Plateau, 1873; Rayleigh, 1878). Flow characteristics of the viscous film coating

the inner side of a tube depend also on its orientation with respect to gravity. In the case of

a vertical tube, where gravity drives an axial flow, the liquid interface is mainly destabilised

by the Rayleigh-Plateau instability (Goldsmith and Mason, 1963). Different stages of such

instability have been investigated through a large number of numerical and experimental

studies. Goren (1962) showed analytically that in the absence of inertia, the length of plugs is

set by the interface radius. Frenkel et al. (1987) demonstrated that despite the growth of small

disturbances, non-linear saturation of instabilities can avoid the rupture of the liquid film in a

certain range of axial flow parameters. Using the long-wavelength approximation, Camassa

et al. (2014, 2016) showed the existence of non-trivial axially traveling waves along the interface

when the film thickness exceeds a critical value. Moreover, these studies describe how plugs

form via Hopf bifurcation as the waves grow, and explore experimentally the absolute/convec-

tive properties of the traveling waves. With this general picture, further studies address the

effects of flow parameters on the dynamics of the flow instability, e.g. air driven flow (Camassa

et al., 2017) and multiple liquid layers (Ogrosky, 2021a), wall porosity (Liu and Ding, 2017),

Marangoni effect (Ding et al., 2018b), and the presence of surfactant (Ogrosky, 2021b).

Alternatively, in the case of liquid film coating the inner side of long horizontal or inclined

tubes, where gravity is not orthogonal to the cross-section of the tube, a second instability,

the Rayleigh-Taylor instability (Rayleigh, 1882; Taylor, 1950), may arise. As a result, the heavy

liquid film accelerates into the light gaseous core in the direction of the gravitational field,

thus forming suspended droplets, moving lenses, or rivulets (Trinh et al., 2014; Balestra

et al., 2016, 2018a), extending the case of a flat overhanging thin liquid film (Fermigier et al.,

1992). Therefore, in the case of a horizontal tube, both Rayleigh-Plateau and Rayleigh-Taylor

instabilities may potentially coexist depending on the film thickness (Benilov et al., 2005;

Benilov, 2006). Trinh et al. (2014) investigated both experimentally and theoretically, in the

absence of any axial flow, the stability of a thin viscous film that coats the underside of a
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tube. Focusing on the situations where gravitational forces dominate surface tension forces,

they did not evidence any manifestation of the Rayleigh-Plateau instability, highlighting

that finite wall curvature and sufficiently high surface tension can suppress the Rayleigh-

Taylor instability as the liquid drains. Using a similar flow configuration, and also employing

the lubrication approximation, Balestra et al. (2016) showed that when gravity overcomes

capillarity, the linear transient growth of the disturbances can lead to the formation of tiny

spanwise homogeneous traveling waves at the top of the interface, which may pinch or decay

as they travel downward. Balestra et al. (2018a) however showed that spanwise periodic (but

streamwise homogeneous) structures called rivulets display significantly larger transient gains,

rationalising their experimental observations.

By increasing the film thickness and/or lowering the tube curvature, liquid drainage is en-

hanced and the Rayleigh-Taylor instability is dampened, thus allowing the Rayleigh-Plateau

instability to occur. Through an experimental investigation of a wider range of film thick-

nesses, Duclaux et al. (2006) evidenced that when capillary forces dominate over gravity forces,

the Rayleigh-Plateau instability sets in, but when they stop to dominate, the Rayleigh-Plateau

instability can be suppressed by gravity. In this case, liquid drainage is faster than capillarity-

induced interface undulations and plug formation. Hence, gravity and surface tension play

dual roles in interface destabilisation. While gravity promotes the Rayleigh-Taylor instability

at the top of the interface, it opposes the formation of hanging droplets by enhancing drainage

progressively while draining down the curved substrate. In contradistinction, surface tension

promotes the Rayleigh-Plateau instability, whereas it opposes the Rayleigh-Taylor instability.

Duclaux et al. (2006) complemented their experimental measurements with a theoretical

analysis based on the lubrication theory and assuming a circular interface. This analysis

correctly predicted the scaling of the stability threshold in terms of film thickness and Bond

number and qualitatively captured the increasing trend of the instability wavelength with

the initial radius of the liquid-air interface. It did not, however, achieve a fully satisfactory

quantitative agreement. In this study, we set to investigate accurately how gravity-induced

drainage suppresses the Rayleigh-Plateau instability. Crucially, we consider the full Navier-

Stokes equations and take into account the temporal evolution of the interface. We study

the linear instability in two ways: (i) with a linear stability analysis performed at each instant

taken in isolation, assuming that the base flow is "frozen"; (ii) with a transient growth analysis

rigorously accounting for the temporal evolution of the base flow.

This paper is structured as follows. The methodology is presented in §4.2. The problem for-

mulation and the dimensionless governing equations are presented in §4.2.1, from which the

base flow is deduced and discussed in §4.2.2. In §4.2.3, the stability analysis formulation and

the linearised governing equations are elaborated. Then, in §4.2.4 the formulation of the linear

transient growth of perturbations is detailed. Corresponding numerical methods are detailed

in §4.2.5. In §4.3, the results of the stability and transient growth analyses are presented and

discussed. Section 4.3 summarises the effect of different dimensionless parameters on the

stability of the flow: §4.3.2-4.3.3 present the effect of surface tension and inertia, respectively,
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On the liquid film instability of an internally coated horizontal tube

Figure 4.1: Schematic of the liquid film coating the inner side of a horizontal tube and the
geometrical parameters. The thick solid black line shows the tube wall of inner radius Rw,
which is concentric with the coordinate reference. Initially surrounded by a constant film
thickness, the liquid-gas interface is a cylinder of radius R, concentric with the tube. The
dashed black line represents the perturbed liquid-gas interface of local radius rint and axial
wavelength λR. The inset shows the zoomed cross-section of the initial perturbed interface.
The gravitational field acts vertically, perpendicular to the tube axis.

and §4.3.4 presents the linear stability diagram. The results of the transient growth analysis are

presented in §4.3.8 and finally, conclusions are drawn in §4.4 by comparing the linear stability

and transient growth analyses.

4.2 Governing equations and methods

4.2.1 Problem formulation

The inner side of a cylindrical tube of radius Rw is coated with a viscous liquid film. The

schematic of the flow is shown in figure 4.1. The standard Cartesian coordinates (x, y, z) are

considered with the origin located at the center of the tube cross-section. In-plane coordinates

are (x, y) and the gravity acceleration g, points in −y direction. The liquid is Newtonian, of

constant dynamic viscosity µ, surface tension γ, and density ρ, and surrounds a core bubble of

inviscid gas of density much smaller than that of the liquid. The bubble is initially concentric

with the tube and the liquid film thickness is constant on the wall, h0 = Rw −R, where R

denotes the initial bubble radius. The bubble interface can be parametrised without loss of

generality in cylindrical coordinates (r,θ, z) as rint(t ,θ, z) using the tube center as the origin. It

will be shown in §4.3 that it remains radially representable at later times. The dimensionless

state vector q = (u, p,Rint)T defines the flow at dimensionless time t , where u(t , x, y, z) =
(ux ,uy ,uz )T denotes the three-dimensional velocity field, p(t , x, y, z) denotes the pressure, and

Rint = rint/R denotes the dimensionless interface radius. The state vector and the governing
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equations are rendered dimensionless by the intrinsic velocity scale associated with a viscous

film of thickness h0 falling under its weight, inspired from Duclaux et al. (2006). However, we

choose differently the length, time, and pressure scales as follows:

L= R, U = ρg h2
0

µ
= ρg R2

µ
(β−1)2,

P = γ

R
, T = L

U
= µ

ρg R
(β−1)−2,

(4.1)

where β= Rw/R denotes the dimensionless tube radius. As a result, the dimensionless value

of the initial film thickness can be expressed as δ= h0/R =β−1. The flow is governed by the

incompressible Navier-Stokes equations which in dimensionless form read

∇· u = 0, (4.2)

(
Bo

Oh

)2

δ4 (∂t +u ·∇)u =∇· τ−Bo ey , (4.3)

where ∂ j denotes the partial derivative with respect to quantity j , and the stress tensor τ reads

τ=−pI+Bo δ2 (∇u+∇uT )
. (4.4)

The two other dimensionless numbers which appear in the governing equations are the

Ohnesorge number, Oh =µ/
√
ργR , and the Bond number, Bo = ρg R2/γ. While Oh compares

the viscous forces to the inertial and surface tension forces, Bo compares the gravitational

and surface tension forces.

The no-slip boundary condition, u = 0, is applied at the tube wall, r = β. At the shear-free

liquid-gas interface, the dimensionless kinematic and dynamic boundary conditions write

∂tRint + (u ·∇)Rint = u ·er at r =Rint, (4.5)

τ n = κn at r =Rint, (4.6)

respectively, where er denotes the unit radial vector, n =∇ (r −Rint)/∥∇ (r −Rint)∥ denotes

the interface unit normal vector pointing from the gas to the liquid, ∥·∥ denotes the Euclidean

norm, and κ=∇·n denotes the interface mean curvature.

4.2.2 Base flow

The base flow denoted by q0(t , x, y) is the two-dimensional time-dependent solution of the

Navier-Stokes equations (4.2)-(4.6) initiated from rest at t = 0, with pressure p0(t = 0) =
−1−Bo y , which consists of a constant contribution from the interface Laplace pressure and

a linear hydrostatic term. To begin with, before even presenting the numerical tools in §4.2.5,
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Figure 4.2: Base flow evolution: (a) Snapshots of the flow field: colour map shows the velocity
magnitude, arrows show the liquid velocity field, and the point N marks the north pole of
the bubble, θ =π/2; (b) Temporal variation of the relative liquid film thickness at N ; (c) Film
thickness variation as a function of the vertical velocity at N ; Oh →∞,Bo = 0.05,δ/β= 0.3.

we build up the intuition about the flow by presenting an illustrative example of the base flow

evolution in figure 4.2 for a case where surface tension dominates gravity, Bo = 0.05, and a

thick initial film, δ/β= 0.3, considering the quasi-inertialess limit when Oh →∞. The liquid

drains around the core bubble under gravity, and consequently, the bubble moves upwards

under the buoyancy effect. The dynamics of the base flow, presented in figure 4.2(b-c), can be

characterised by quantifying the liquid film thickness and the vertical velocity at the north pole

of the bubble (N , hereafter referred to as the north pole), where the strongest gravitational

effects are expected (Trinh et al., 2014). In the quasi-inertialess limit, Oh →∞, drainage begins

with an immediate upward drift of the bubble (denoted as t = 0+ in figure 4.2(a)). Drainage

and hence the rising velocity of the bubble decrease with time, as the bubble approaches the

top side of the tube.
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4.2.3 Linear stability analysis

Since the base flow presented in §4.2.2 is time-dependent, in order to perform the linear sta-

bility analysis, we look at the frozen frames of the unperturbed flow, from which we investigate

the evolution of small perturbations applied to each time frame t 0, sequentially. Here, we

assume that the perturbations evolve much faster than the base flow itself, such that within

their evolution, the base flow can be approximated as quasi-steady, an assumption to be

verified a posteriori in §4.3.4. To this aim, the state vector q = (u, p,Rint)T is decomposed into

the sum of the frozen base flow solution q0, and the infinitesimal time-dependent perturbation

q1 = (
u1, p1,η1

)T
which writes

q = q0|t 0 +ϵq1 +O(ϵ2), ϵ≪ 1, (4.7)

where the amplitude ϵ is assumed to be small. The ansatz of the perturbation q1 with the

longitudinal wavenumber k (associated with the wavelength λ= 2π/k) reads

q1 = q̃(x, y) exp[σt + ikz]+c.c., (4.8)

where c.c. denotes the complex conjugate. Any other function in terms of the state vector can

be decomposed in the same fashion, e.g. τ= τ0+ϵτ1, n = n0+ϵn1 and κ= κ0+ϵκ1. For further

details about the formulation of n1 and κ1, see appendix 4.5.3. In the asymptotic limit of large

times, a normal eigenmode perturbation with complex pulsation σ=σr + iσi , is considered

as unstable if σr > 0, i.e. if σ lies in the unstable complex half-plane. An unstable eigenmode

grows exponentially in time with the growth rate σr (unless otherwise noted, the indices r

and i denote the real and imaginary parts of a complex number, respectively). By casting

the perturbed state (4.7) into the governing equations (4.2)-(4.3), and keeping the first-order

terms, the linearised equations are obtained as

∇· u1 = 0, (4.9)

(
Bo

Oh

)2

δ4 (
∂t u1 + (

u0 ·∇)
u1 + (

u1 ·∇)
u0)=∇· τ1. (4.10)

The no-slip condition implies ũ = 0 on the solid wall. The interface conditions (4.5)-(4.6),

applied on the perturbed liquid interface, can be projected radially onto the base interface and

ultimately linearised, a process called flattening (see (4.25) in appendix 4.5.1). The linearised

kinematic condition can be expressed as

ση̃+
(
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃︸ ︷︷ ︸
−G0η̃

+ ∂θR0
int

R0
int

ũθ = ũr at r =R0
int, (4.11)

where
(
u0

r ,u0
θ

)T
and (ũr , ũθ)T denote the velocity vectors of the base state and perturbations,

respectively, represented in the cylindrical coordinates. Introducing an eigenstate vector of the
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form (4.8) into (4.9)-(4.10), combined with (4.11), leads to a generalised eigenvalue problem

for σ and q̃ that writes

Lq̃+c.c. =σBq̃+c.c., (4.12)

where the linear operators L and B are defined as

L =


( Bo

Oh

)2
δ4F0 +Boδ2

(∇̃ · (∇̃+∇̃T )
) −∇̃ 0

∇̃· 0 0(
er − ∂θR0

int

R0
int

eθ
)
· 0 G0

 ,

B =


( Bo

Oh

)2
δ4I 0 0

0 0 0

0 0 1

 , (4.13)

where F0ũ =−((
u0 · ∇̃)

ũ+(ũ ·∇)u0
)
, (er ,eθ,ez ) denote the vectors of unit directions in the cylin-

drical coordinates (r,θ, z) used for parameterising the interface, and the gradient operators

and the velocity gradient tensors in the Cartesian coordinates read

∇= (∂x ,∂y ,∂z )T , ∇u0 =

∂x u0
x ∂y u0

x 0

∂x u0
y ∂y u0

y 0

0 0 0

 ,

∇̃ = (∂x ,∂y , ik)T , ∇̃ũ =

∂x ũx ∂y ũx ikũx

∂x ũy ∂y ũy ikũy

∂x ũz ∂y ũz ikũz

 . (4.14)

(4.15)

The interface dynamic condition (4.6), once linearised, can be expressed as

τ0ñ+ η̃∂rτ
0n0 + τ̃ n0 = κ0ñ+ κ̃n0 at r =R0

int. (4.16)

For further details on the derivation of the interface conditions and their implementation, see

appendices 4.5.1 and 4.5.2, respectively.

4.2.4 Transient growth analysis

In contrast to the linear stability analysis, the transient growth analysis tolerates any kind of

temporal dependency for both the base flow and the perturbation and does not rely on a

separation of time scales between their respective evolutions. Moreover, it accounts for the

so-called "nonmodal" mechanisms arising from the nonnormality (non-commutativity with

the adjoint) of the linear operator L. Owing to these mechanisms, small-amplitude initial

perturbations may experience a large transient amplification due to intricate cooperation be-

tween a possibly large number of eigenmodes; therefore, reducing the dynamics to the leading

(least stable or most unstable) eigenmode might be irrelevant at finite time. If nonnormality
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is often inherited from the linearization of the advective term, the operator L expressed in

(4.13) can be nonnormal even in the quasi-inertialess limit Oh →∞, due to the presence of

the interface.

The ansatz (4.8) is generalised as

q1 = q̄(t , x, y) exp[ikz]+c.c., (4.17)

where an exponential temporal behavior is not enforced. The temporal evolution of q̄(t , x, y)

is an extension of (4.12)

Lq̄+c.c. = B
∂q̄

∂t
+c.c., (4.18)

We recall that L is time-dependent and parameterised by k. We are interested in the initial

perturbation of the interface q̄(0, x, y) = [0,0, η̄(0)]T that is the most amplified by (4.18) after a

temporal horizon t = T , where T is named a temporal horizon. A given initial condition might

project on the optimal one, and can be amplified strongly enough to lead to a non-linear

regime. We follow the methodology proposed in Del Guercio et al. (2014), and take advantage

of the fact that the base flow interface is axisymmetric at t = 0 (see figure 4.2) to expand η̄(0) as

a finite series of Fourier modes in θ

η̄(0) =
N∑

m=−N
αme imθ = a0 +

N∑
m=1

[am cos(mθ)+bm sin(mθ)] (4.19)

with

α−m =α⋆m
where the superscript ⋆ denotes the complex conjugate, a0 =α0, and for m ≥ 1

am =αm +α⋆m , and bm = i (αm −α⋆m).

Note that am , bm (m = 0,1,2, ...) and η̄(0) are real-valued. The associated first-order interfacial

energy density per spanwise wavelength is proportional to

e0 = k

2π

∫ 2π

0

∫ 2π/k

0

[
η̄(0)e ikz + c.c

]2
dzdθ = 2πaT a, (4.20)

where R0
int(0) = 1 was implied, and where we defined

a = [aN , aN−1, ..., a1,
p

2a0,bN ,bN−1, ...,b1]. (4.21)

Let us define η̄m(t ) as the evolution at time t of each term η̄m(0) = e imθ of the inital condition

(4.19). Thanks to the linearity of the evolution equation (4.18), the interface shape at t = T

reads simply

η̄(T ) =
N∑

m=−N
αm η̄m(T ). (4.22)
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1

Figure 4.3: The numerical domain used for computing the base flow and the linear stability
analysis. Ωx y denotes the liquid bulk. The boundaries of the numerical domain are denoted
by ∂Ωx y = ∂Σw ∪∂Σint. Here, ∂Σw represents the interior wall of the tube with the radius β,
and ∂Σint represents the gas-liquid interface. The cross-section of the interface is initially a
circle of unit radius, concentric with the tube (sketched with dashed line).

The corresponding interfacial energy density per wavelength is proportional to

e(T ) = k

2π

∫ 2π

0

∫ 2π/k

0
|η̄(T )e ikz + c.c|2dzR0

int(T )dθ. (4.23)

We further show in appendix 4.5.4 that e(T ) = 2aT E(T )a where E(T ) is a real-valued, symmet-

ric, strictly positive definite matrix of size (2N +1)× (2N +1). In this manner, the (optimal)

transient gain G(T ) defined as

G(T ) = max
a

e(T )

e0
=π−1 aT E(T )a

aT a
(4.24)

is simply the largest eigenvalue of E(T ) divided by π, and the associated eigenvector provides

directly the Fourier mode coefficients of the optimal initial condition.

4.2.5 Numerical method

The base flow calculation, linear stability, and transient growth analyses are performed nu-

merically employing the finite element package COMSOL MultiphysicsTM. A triangular mesh

is generated on the two-dimensional domain shown in figure 4.3. In the following sections,

the area increment in the bulk cross-section is denoted by dAΩx y . On the boundary j , the

increment of surface area is denoted by dAΣ j , and the increment of arc length is denoted by

ds. The grid size is controlled by the vertex densities on the boundaries ∂Σw and ∂Σint. The

variational formulations of the base flow equations (4.2)-(4.6), linear stability equations (4.12),

and linearised Navier-Stokes equations (4.18) are discretised spatially using quadratic (P2)

Lagrange elements for u0, ũ, ū, η̃ and η̄ as well as the base flow interface geometry, and linear

(P1) Lagrange elements for p0, p̃, and p̄. While the interface conditions are applied in the

built-in modules of COMSOL MultiphysicsTM, the linearised condition (4.16) is applied by
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means of the Lagrange multipliers of quadratic (P2) order. The employed discretisation yields

approximately 500’000 degrees of freedom for the base flow, linear stability, and transient

growth analyses.

The time-dependent base flow is computed using the laminar two-phase flow module coupled

with the moving mesh module. The numerical time step is set by the Backward differentiation

formula with maximum differentiation order of 2. The solver is initialised by the Backward

Euler consistent initialization with an initial step fraction of 10−9. At each time step, Newton’s

method is used to solve the non-linear equations, where the relative tolerance for convergence

is set to 10−6. Following the computed base flow, and after extracting the geometric charac-

teristics of the base interface at each time step, the generalised eigenvalue problem (4.12)

is solved using the shift-invert Arnoldi method (for more details on the development of the

variational formulation, the implementation of the linear stability eigenvalue problem and

their corresponding boundary conditions see appendix 4.5.2).

The computation time associated with obtaining the base flow for a given set of parameters,

followed by the stability analysis for ∼20 values of k, is of the order of a few hours on a single

Intel core at 3.6 GHz. For the transient growth analysis, the computation of the propagator

matrices with −5 ≤ m ≤ 5 over 10 values of k takes a few days; the calculation of the opti-

mal transient gain for the same k values and ∼12 values of the temporal horizon T takes

approximately one hour. Both the base flow and stability analysis model are validated with

the analytical solutions available in the literature for the flow of liquid coating the inside of a

vertical tube (for more details about the series of validation tests see appendix 4.5.5).

4.3 Stability analysis results

In this section, we present the linear stability characteristics associated with the drainage of

a liquid film coating the inside of a horizontal circular tube. The results of the frozen base

flow linear stability analysis in terms of different parameters are presented hereafter. First, an

overview of the stability characteristics of the flow is presented in §4.3.1. Then, the influence

of Bo and Oh is demonstrated in §4.3.2-4.3.3, and the stability diagram is presented in §4.3.4.

Additional comments on the effect of Bo and on the most unstable wavenumber are given in

§4.3.5-4.3.6. The validity of the frozen base flow assumption is discussed in §4.3.7.

4.3.1 Stability of draining film at different instants of its evolution

Figure 4.4(a-b) shows the three least stable modes of the base flow presented in figure 4.2 at the

initial time, t = 0+, and figure 4.4(c) presents the corresponding dispersion curves (growth rate

σr as a function of the axial wavenumber k). Only one unstable mode (mode 1) is detected,

whose dispersion curves at later time instants are shown in figure 4.4(d). The characteristics

of this mode are symmetry with respect to the vertical mid-plane, strong interface modulation

at the bottom of the bubble, and weak interface modulation at the top of the bubble. The
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Figure 4.4: Linear stability analysis of the base flow presented in figure 4.2. (a) Three least
stable eigenmodes for t = 0+,k = 0.55. The colour map presents the axial eigenvelocity, black
arrows show the in-plane eigenvelocity field, and black dashed line shows the superposition of
the eigeninterface (with arbitrary amplitude) onto the base interface. (b) Three-dimensional
render of the same perturbed interfaces. (c) The dispersion curve of the same three modes
at t = 0+. (d) Temporal variation of the dispersion curve of the unstable mode (mode 1). The
green line marks the large time limit; Oh →∞, δ/β= 0.3, Bo = 0.05.

fact that this mode is unstable at k = 0 is reminiscent of the instability properties of a purely

viscous liquid thread in absence of inertia (see Eggers and Villermaux (2008)). This mode

resembles the structure of the unstable interface observed in the experiments of Duclaux et al.

(2006). The maximal growth rate of the unstable mode initially decreases before increasing and

eventually saturating to a value inferior to the initial one (see the green line in figure 4.4(d)), as

the flow evolves further. The corresponding wavenumber decreases monotonously.

4.3.2 Effect of the Bond (Bo) number

In this section, the influence of Bo on the base flow and its stability is illustrated. Figure 4.5(a-

b) show for several Bo values the characteristics of the north pole evolution until t = t f , when

the relative thickness at the north pole H 0
N /δ diminishes below 10% for an initial thick film
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Figure 4.5: Influence of Bo on the base flow and its long-time linear stability for Oh →∞, δ/β=
0.3, Bo = {0.05,0.25,0.35,0.65}. (a) Evolution of the relative thickness at the north pole. The
dashed line present the exponential fit H 0

N /δ= a1 exp[−t/T1]+a2 exp[−t/T2], and the values
of {a1, a2,T1,T2} are given in table 4.1. The inset shows the variation of t f as a function of Bo.
(b) Bubble interface at t = t f when the relative thickness at the north pole reaches 10%. The
dashed line shows the tube wall. (c) Dispersion curve of the unstable eigenmode, mode 1, for
Bo = {0.05,0.25,0.65}.

Bo a1 T1 a2 T2

0.05 0.986 5.07 0.014 51.5
0.25 0.831 4.75 0.178 52.9
0.35 0.788 4.74 0.217 58.0
0.65 0.731 5.07 0.261 103

Table 4.1: Fitting parameters associated with the relative pole thickness H 0
N /δ =

a1 exp[−t/T1]+a2 exp[−t/T2] for different values of Bo presented in figure 4.5(a).
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δ/β = 0.3. The relative pole thickness decays exponentially with two distinct time scales,

presented in table 4.1. Increasing Bo results in an exponential increase of t f (figure 4.5(a)).

Figure 4.5(b) presents for the same flows the bubble interface at t = t f . This figure evidences

the horizontal bubble widening as it rises towards the upper wall. Low surface tension or large

gravitational effects, i.e. high Bo, results in more deviation of the interface cross-section from

its initial circular shape. Note that as Bo increases, the location where the gap between the

interface and the tube is thinnest moves from the north pole to the sides.

The influence of Bo on the dispersion curve of mode 1 is presented in figure 4.5(d). The

evolution of the dispersion curves for small Bo values (here Bo = {0.05,0.25}) is similar to that

demonstrated in §4.3.1. Increasing Bo reduces the maximal growth rate of the unstable mode

and the range of unstable wavenumbers, k. Further increasing Bo results in the suppression

of the instability after a finite time (see Bo = 0.65). In this investigation, no other unstable or

marginally stable mode was detected while varying Bo.

4.3.3 Effect of the Ohnesorge (Oh) number

In the present study, all of the aforementioned results were limited to the quasi-inertialess

regime, where (Bo/Oh)2δ4 → 0. One can interpret (Bo/Oh)2δ4 = Re δ2 where the Reynolds

number Re, is defined upon the same length scale and drainage velocity scale given in (4.1).

In this section, we study the base flow and its stability in presence of inertia by decreasing

Oh while keeping the rest of the flow parameters identical to those presented in §4.2.2 and

§4.3.1. Figure 4.6(a-b) depict the influence of inertia on the base flow evolution from the initial

time t = 0+ to a terminal time t = t f identical to that presented in §4.3.2. Compared to the

quasi-inertialess drainage, the inertial bubble accelerates and decelerates with some delay.

Eventually, the relative film thickness at the north pole and its velocity converge to that of

the quasi-inertialess flow. The delays in the bubble acceleration and deceleration increase by

decreasing Oh. However, the bubble interfaces in all cases are identical at the terminal time

(figure 4.6(c)).

Figure 4.6(d-e) present the effect of Oh on the dispersion curve of the unstable mode at t = 0+

and t = t f , respectively. Including inertia (finite Oh) affects the initial dispersion relation of

the unstable mode in two ways. The first effect is associated with k = 0, where the immediate

bubble drift in the inertialess flow was seen to induce a non-zero growth rate. The addition of

inertia, no matter small, yields a zero growth rate, a regularisation by inertia also observed

for the Rayleigh-Plateau instability of a liquid thread (see Eggers and Villermaux (2008)). The

second effect is linked to the shape of the dispersion curve, which is similar to that of the

classical thin-film Rayleigh-Plateau instability in the vicinity of a wall and in the absence of

gravity, as obtained by a lubrication analysis σr ∝ k2 −k4 (Camassa et al., 2014; Gallaire and

Brun, 2017), for Oh > 0.25. In the limit of small Oh, inertia diminishes the growth rate of the

perturbations without altering the instability cut-off compared to the inertialess limit.
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Figure 4.6: Influence of Oh: (a) Evolution of the relative thickness at the north pole. (b) The
relative film thickness variation as a function of the velocity at the north pole. (c) Interface at
t = t f when the relative thickness at the north pole reaches 10%; dashed line shows the tube
wall. (d) Dispersion curve at t = 0+. (e) Dispersion curve at t = t f ; Bo = 0.05, δ/β= 0.3, Oh =
{0.01,0.05,0.25,∞} (corresponding to 0 ≤ (Bo/Oh)2δ4 ≤O(1)).

4.3.4 Asymptotic linear stability diagram

The {δ,Bo} space is investigated to follow the transition of the interface from unstable to

stable. Figure 4.7(a) presents the stability diagram based on the dispersion curve of the most

unstable mode obtained from the linear stability analysis at large time t = t f (it is verified that

evaluation of the stability at t = {0.75t f ,7t f } does not alter the obtained marginal curve). For

each δ, increasing Bo results in interface stabilisation. Figure 4.7(b) presents the same linear

stability phase diagram in δ vs Bo/(1−Bo)2 plane. Such an abscissa is suggested by Duclaux
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Figure 4.7: Linear stability stability diagram: (a) In δ−Bo plane; the blue and red bullets
are obtained from the present numerical stability analysis. three base interfaces at t = t f

are shown for δ/β= 0.3 (corresponding to δ= 0.43) and Bo = {0.05,0.25,0.65}. (b) the same
diagram shown in δ−Bo/(1−Bo)2 plane; the green dashed line shows the analytical stability
margin predicted by Duclaux et al. (2006), the black squares and the passing dashed line show
their transition experimental data and their best linear fit δ= 0.26Bo/(1−Bo)2, respectively.
The crosses show their experimental data, the continuous black line shows the best linear fit
to the present linear analysis: δ= 0.14Bo/(1−Bo)2.

et al. (2006) who proposed an analytical dispersion relation using the lubrication theory and

assuming a circular base interface. Note that their definition of Bo is different from ours

and the abscissa is adapted to the present study. Even though their analysis suggests the

stability threshold as δ = 12Bo/(1−Bo)2, their experiments suggest δ = 0.26Bo/(1−Bo)2

for the stability transition. The present numerical stability analysis suggests the best fit to

the separatrix as δ = 0.14Bo/(1−Bo)2. Therefore, our stability analysis yields a significant

improvement, although a discrepancy remains. Note that the definition by Duclaux et al.

(2006) of the transition regime is not the appearance of growing perturbations but rather that

of a visible top/down asymmetry. It is therefore reassuring to observe their transition points

(black squares) fall in the unstable region predicted by our stability analysis (see figure 4.7(b)).

However, for a few points, the linear analysis predicts instability while the experiments report

a stable interface, resulting in a small relative error in δ.

4.3.5 Why does increasing Bond number stabilise the flow?

To shed light on the reasons for the present improvement in the prediction of the stability

threshold, we recall from §4.2.2 that the present study exhibits for a high Bo a remarkable

deformation of the rising bubble (also shown in figure 4.7(a)). The interface deformation is

disregarded in the analysis of Duclaux et al. (2006). Yet, their analysis predicts the suppression

of the instability. To elucidate the stabilising role of the Bond number, we take benefit of

the linear instability formalism to decouple artificially the effect of Bo into (i) its capacity to
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Figure 4.8: Decoupled effects of Bo on the linear stability of the flow at different scales forδ/β=
0.3: (a) the maximal growth rate obtained by isolating Bo for the base flow (Bob = {0.01,0.65})
and varying it for perturbations (Bop ). (b) the maximal growth rate obtained by varying Bo
for the base flow (Bob) and isolating it for the unstable perturbations (Bop = {0.01,0.65}). The
varying base interfaces are shown. In both panels, thin dashed lines show the tube wall and
thin solid lines show the base interfaces, the thick solid lines represent a stable regime, and
pentagrams mark the stabilisation thresholds, and the green colour presents the analytical
prediction by Duclaux et al. (2006).

deform the base state as a result of drainage and capillary forces, and (ii) its explicit role in the

perturbation equations (4.12) and (4.13). As detailed below, we will therefore distinguish the

"perturbation Bond number " Bop and the "base Bond number " Bob .

1. First, we isolate the effect of the perturbation Bond Bop on the stability properties by
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fixing the base state according to two extreme values of the base Bond number Bob . In

other words, we artificially prevent the Bond number from deforming the base state but

let it act on the perturbations. We consider the two limits of low (Bob = 0.01) and high

(Bob = 0.65) base Bond numbers for δ/β = 0.3. The former is unstable and the latter

stable according to our linear analysis (figure 4.7), and the stabilisation threshold is Bo ≈
0.575. Fixing the bubble interface to that obtained at t f , the effect of Bop is investigated

by varying it over a wide range. Remember that the base flow at t f is quasi-stagnant.

The variation of the maximal growth rate, σmax
r , is presented in figure 4.8(a) along with

its corresponding prediction from the dispersion relation of Duclaux et al. (2006) (green)

and the "matching" value obtained when Bob = Bop (black squares). The results show

that the growth rate for the bubble with a circular cross-section (Bob = 0.01, blue circles)

diminishes with Bop . However, the interface does not stabilise (the growth rate does not

cross zero) even for a rather large perturbation Bond number, Bop = 102. In contrast,

the deformed interface of Bob = 0.65 (red crosses) stabilises as Bop exceeds a threshold

(red pentagram) inferior to that of the "matching" case Bob = Bop (black pentagram),

and far larger than that of Duclaux et al. (2006) (green pentagram). Moreover, for small

Bob where the bubble interface is almost circular, the isolated growth rate (blue circle) is

close to the "matching" value (black square). We observe that the present linear analysis

does not agree with the growth rate predicted by Duclaux et al. (2006) even in the low Bo

limit, where the interface is circular. It is seen that the base bubble deformation state

plays a significant role: a more deformed bubble (larger Bob) is less unstable so that

a lower Bop number is needed to eventually stabilise the flow than when Bop = Bob .

Remember that, in contrast, a quasi-cylindrical bubble (smaller Bob) is found more

unstable than the "matching" case Bop = Bob , and is actually never stabilised. This

demonstrates the essential role of the perturbation Bond number Bop .

2. Next, we artificially fix the perturbation Bond number Bop to the same extreme values

(Bop = 0.01 and Bop = 0.65) and let the base Bond number Bob influence the base

state. Not surprisingly, a larger perturbation Bond number (Bop = 0.65, red crosses) is

more stabilising than the "matching" case (black squares), while a smaller perturbation

Bond number (Bop = 0.01, blue circles) is more destabilising. The associated critical

Bob numbers (blue and red pentagrams) bracket the "matching" critical Bond number

(black pentagram). This demonstrates the role of the Bond number on the base state

and, in turn, on the stability properties.

To conclude, decoupling the effects of Bo on the base flow and perturbations suggests that

its influence on the base state (as revealed by the bubble deformation at t f ) is essential to

stabilise the flow. Without base state deformation, the instability would persist at large Bond

numbers.

This remark contrasts with what Duclaux et al. (2006) concluded, namely that the whole flow

would become stable as soon as any region would become stable (in this case the north pole).

The mismatch between their analytical threshold and experiments (as well as our analysis)
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Figure 4.9: Maximal wavenumber (kmax ) obtained from the linear stability analysis: (a) in
k2

max −Bo plane for different initial film thickness values; the black dashed lines show the
linear fit to the present numerical data k2

max = c0(δ)− c1(δ)Bo, and the green dashed line
shows the prediction by Duclaux et al. (2006). (b) The prefactors obtained from the fit shown
in panel (a).

could therefore be possibly explained by the circular bubble cross-section assumption in

their derivation of the linear stability characteristics. Another source of discrepancy may be

related to their dispersion relation, where the growth rate is non-uniform in θ, whereas in

principle the normal mode assumption forbids any dependency of the growth rate on the

spatial coordinates.

4.3.6 Maximal unstable wavenumber

The maximal wavenumber, associated with the maximal growth rate of the unstable mode

1 is shown in figure 4.9 for a wide range of parameters. Increasing Bo decreases the optimal

wavelength and kmax → 0 on the stability boundary. While Duclaux et al. (2006) propose the

fit k2
max = 0.5−1.25Bo, the present linear analysis evidences a similar trend but with different

fitting parameters that depend on the initial film thickness. These fitting parameters are

presented in figure 4.9(b). Note that considering the universal relation of Duclaux et al. (2006),

one expects a unique stabilisation threshold of Bo = 0.4 for all film thickness values in contrast

to their phase diagram.

4.3.7 Validity of the frozen frame assumption

We should recall from §4.2.3 that the key assumption behind the frozen frame approach for the

linear stability analysis is that the perturbations evolve much faster than the base flow (Tan and
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Figure 4.10: Frozen frame analysis validity check for the unstable modes presented in fig-
ure 4.5(c). (a) Temporal evolution of 1/max(σr ). (b) Comparison of the evolution rate between
the base and perturbed flows.

Homsy, 1986). To assess the validity of this assumption, one can consider the characteristic

time scales of the base flow evolution presented in table 4.1. After the initial bubble drift, the

base flow decelerates mainly with two distinct time scales; a fast time scale T1 ∼ 5 and a slow

time scale T2 > 50. On the other hand, the relevant time scale for the unstable perturbation’s

evolution can be computed at different time steps as 1/max(σr ), which is presented in fig-

ure 4.10(a). To indicate how fast the base flow interface evolves compared to the unstable per-

turbation, |∂t H 0
N /∂tη

1| ∼ δ
(
a1/T1 exp[−t/T1]+a2/T2 exp[−t/T2]

)
/max(σr )exp[max(σr )t ] is

presented in figure 4.10(b). The numerator is calculated from the double-exponent fit of the

base flow, and the denominator is calculated from the temporal growth of the most unstable

mode. A look at this indicator reveals that the base flow and perturbations may evolve at

similar rates at small times, and even in some cases that the base flow may evolve faster than

the perturbation. Nevertheless, at large times, when the drainage has decayed, the unstable

perturbation grows faster than the base flow. Thus, the frozen frame assumption is only valid

for large times, and loses its rigor in the early stages. We recall that the criterion to distinguish

between stable and unstable modes in figure 4.7 is the growth rate of the modes at large times,

sufficient for the frozen frame assumption to hold. However, it is crucial to properly take

into account the base flow evolution at early times and to account for possible nonmodal

mechanisms. For this reason, we carry out a transient growth analysis whose results are

presented and discussed in the next section.
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Figure 4.11: The parameters δ/β= 0.3 and Bo = 0.65 have been selected. (a) Isocontours of
the transient gain G defined in (4.24) in the k −T plane, the temporal horizon T ∈ [0, t f ] (only
the region where G ≥ 1 is shown). (b) Along the thin dashed lines in (a), comparison of the
transient gain (full line) with its approximation using the dispersion curve only (dotted line),
for k = 0.2 and k = 0.5 (maximum gain highlighted by a circle and a diamond, respectively).

4.3.8 Transient growth analysis

We present in what follows the results of the transient growth analysis, conducted mainly in the

stable part of the parameter space in figure 4.7. Indeed, a flow can be linearly (asymptotically)

stable but transiently amplify an initial perturbation so significantly that it is destabilised

through a subcritical transition.

The transient gain for δ/β= 0.3 and Bo = 0.65 is shown in figure 4.11(a) as a function of the

wavenumber k and the temporal horizon T . Longer waves are subject to larger maximum

transient gain but require more time before reaching it. The maximum attainable transient

gain over all considered k and T is Gmax = 2.64, reached for the lowest considered k. This

maximum gain value is of order unity, such that, for the considered parameters at least, a

small-amplitude initial perturbation is not expected to be sufficiently amplified by the flow to

trigger non-linearities.

The extent to which the transient growth is driven by nonmodal mechanisms, and may or

may not be estimated directly from dispersion curves is investigated in figure 4.11(b), where

the transient gains are compared with the integrated growth rate exp
[∫ T

0 2σr (k, t )d t
]

for

k = 0.2 and k = 0.5 (thin dashed lines). We recall that the growth rate σr (k, t ) for δ/β= 0.3 and

Bo = 0.65 is shown in figure 4.5(c). For k = 0.5 in figure 4.11(b), the curves are qualitatively

similar but present some small quantitative discrepancies: the maximum transient gain

reaches a slightly larger value at a larger temporal horizon, T = 5 against T = 2.5. Thus,

between these two times, the energy of the perturbation can grow although the frozen base
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Figure 4.12: (a) Transient gains for δ = 0.43 (corresponding to δ/β = 0.3), and Bo = 0.05
(significantly unstable), Bo = 0.55 (slightly unstable), Bo = 0.575 (stable) and Bo = 0.65 (stable).
Bullet (resp. diamond) markers highlight the largest gain for linearly stable (resp. unstable)
parameters. Inset: zoom highlighting the largest gains for Bo = 0.575 and Bo = 0.65. The
wavenumber k leading to the largest growth has been selected for all curves. (b) Phase
diagram obtained from the transient growth analysis. Colours stand for Gmax = maxk,T G with
k ∈ [0.1,0.9] and T ∈ [0, t f ]. The thin dotted line corresponds to δ/β = 0.3. The blue (resp.
red) dashed-dotted line links the last unstable (resp. first stable) points for a given δ and by
increasing Bo.

flow is linearly stable. For k = 0.2 the transient gain is also systematically larger, however the

two curves present little differences, implying this transient gain to be driven mostly by modal

mechanisms.

In figure 4.12(a), the gain for δ/β= 0.3 and Bo = 0.65 is compared to those of three additional

Bond numbers: Bo = 0.575, Bo = 0.55 and Bo = 0.05, which correspond to a stable, a slightly

and a strongly unstable flow, respectively. The wavenumber associated with the largest gain

was selected. For Bo = 0.05, the maximum growth rate remains large (see figure 4.5(c)) and the

gain quickly aligns on the fast exponential growth; specifically, the slope of the line marked

with the black diamond is two times the maximum growth rate. For Bo = 0.55, the maximum

growth rate rapidly converges towards very small values but does not become negative, thus

the gain also grows exponentially for large times. Overall, results shown in figure 4.12(a)

suggest that large gains can only be attained through instability.

To assess the generality of this conclusion, we report Gmax
.= maxk,T G for k ∈ [0.1,0.9] and

T ∈ [0, t f ] in figure 4.12(b), in the same {δ,Bo} parameter space as in figure 4.7. The considered

points were voluntarily chosen in the stable regime and the closest to the separatrix (i.e., the

first red dot for a given δ in figure 4.7(b)). For all the considered parameters, Gmax does not

exceed the small value of Gmax = 3.8. In this sense, the linear stability analysis seems to provide
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a sufficiently complete description of this flow, since linear stability seems to imply small

transient gains; conversely, linear instability seems to be a necessary and sufficient condition

for large gains. Moreover, as we saw for δ/β = 0.3 and Bo = 0.65, and we have checked

these conclusions to be true for all the other points in figure 4.12(b), Gmax is reasonably well

characterised using solely the information about the growth rate. In conclusion, nonmodal

mechanisms are believed to have little influence on the flow, at least for the parameters

considered in this paper.

4.4 Summary and conclusion

In this work, we have studied the draining flow of a viscous liquid film coating the inner wall

of a horizontal tube. First, the temporal evolution of the axially invariant base flow with an

initially stagnant film of uniform thickness was computed numerically. In the absence of

inertia, the base flow exhibits an instantaneous upward drift of the core bubble, followed by

an exponential decay of the flow as the interface approaches the tube upper wall.

Next, the stability of the evolving base flow was investigated by means of a linear stability

analysis under the frozen frame assumption. It was verified that this assumption holds at large

times. One unstable mode was observed which features the characteristics of the Rayleigh-

Plateau mode: axial interface undulations, horizontal symmetry, and vertical asymmetry

evidencing stronger modulation at the bottom. These features match the interface shape

observed in the experiments of Duclaux et al. (2006). The maximal growth rate of this mode

decreases as the bubble approaches the tube upper wall.

A parametric study was then conducted in the space of dimensionless parameters {Bo,Oh,β}.

This study suggests that increasing Bo, equivalent to weakening surface tension in comparison

with gravity, results in a horizontally wider bubble interface that rises more slowly than quasi-

cylindrical bubbles observed at small Bond numbers. The bubble slowdown coincides with

the displacement of the location of minimum film thickness from the north pole to the sides.

With increasing Bo, the deformed interface becomes less unstable, and the Rayleigh-Plateau

instability is suppressed above a critical Bo value. We also demonstrated that inertial forces,

achieved at finite Oh, affect the flow mainly at the onset of the drainage such that the bubble

drifts upward more smoothly, and the drainage is delayed. However, inertia does not alter

the shape of the interface, nor its linear stability regime, and has a minor influence on the

maximal growth rate at large times.

Finally, a stability diagram was sketched by investigating the linear stability of the deformed

interface in the limit of large times for various {Bo,β}, confirming the stabilising effect of larger

Bond numbers and thinner films. By relaxing assumptions of past studies (e.g. circular base

interface), the present linear study showed an interesting improvement on existing theoretical

results for the transition between stable and unstable interfaces. A slight discrepancy with

the experimental data of Duclaux et al. (2006) remains, resulting in a few stable experimental

conditions predicted to be unstable by our linear stability analysis. Comparing the experi-
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mental protocol of Duclaux et al. (2006) with the assumptions of the present study suggests

some possibilities for the observed slight mismatch. Firstly, the most unstable wavenumber

diminishes with Bo, which results in the promotion of very long wavelengths. Capturing

wavelengths longer than the finite length of the experimental apparatus is not possible, which

may result in the stabilization of perturbations that would be unstable in an infinitely long

tube. Additionally, in the experiments, the gaseous core is pushed into a wet tube by a syringe

pump; any residual axial velocity, left-right asymmetry, or axial variations in the deposited

film thickness (Balestra et al., 2018c) may all have some influence on the stability. Finally,

we note that linear analysis cannot capture the influence of non-linearities on the final pat-

tern. Non-linearities may quickly saturate the growth of the linear modes to a very small

amplitude (Halpern and Grotberg, 2003) which may make it difficult to observe the instability

experimentally.

Lastly, a transient growth analysis was conducted so as to relax the frozen base flow assumption.

It conclusively demonstrated the small importance of nonmodal mechanisms, both because

the transient gains were systematically of order unity in the linearly stable region of the

parameter space, and because they were rather well predicted from the growth rate of the

leading eigenvalue. This justifies the relevance of the linear stability analysis for this flow when

compared with experimental data.

The present study, based on the full Navier-Stokes equations and capable of handling complex

interface geometries, paves the way for a wealth of future investigations. For instance, it would

be of interest to investigate the effect of inclining the tube: as gravity becomes non-orthogonal

to the tube axis, one can expect a competition between transverse drainage and longitudinal

advection, possibly resulting in a transition from absolute to convective instability. Another

exciting perspective is that of a film coating the outside of an inclined tube: in addition to

the aforementioned competition, this configuration offers the possibility of rich non-linear

dynamics such as pinch-off. Finally we recall that the present study has focused on the

regime of small and intermediate Bond numbers, where the Rayleigh-Taylor instability is

suppressed (Trinh et al., 2014; Balestra et al., 2016). A natural extension of our work should

explore larger Bond numbers. We conjecture the existence of an interval of stable Bond

numbers, with smaller Bo unstable to the Rayleigh-Plateau instability (like in the present

study) and larger Bo unstable to the Rayleigh-Taylor instability (Trinh et al., 2014; Balestra

et al., 2016, 2018b).
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4.5 Appendix

4.5.1 Derivation of the interface boundary conditions

In this section, the derivation of the interface boundary conditions for the perturbed flow

is elaborated. These conditions should be imposed on the perturbed interface, i.e. at r =
R0

int +ϵη1, while η1 is already a part of the problem unknowns. By using the Taylor expansion,

that is, projecting radially on the base interface, i.e. on r =R0
int(θ, t ), any flow quantity at the

perturbed interface can be readily approximated. This projection is referred to as flattening

and for an arbitrary function f (r,θ, z, t ) can be expressed as

f |(r=R0
int+ϵη1,θ,z,t ) = f |(r=R0

int,θ,z,t ) +ϵη1 ∂r f |(r=R0
int,θ,z,t ) +O(ϵ2). (4.25)

By substituting the decomposed state vector of (4.7), into the interface conditions (4.5)-(4.6),

then using the ansatz of (4.8), and applying the aforementioned flattening, we can formulate

these conditions as a set of equivalent constraints on the boundary of the base interface. The

linearised form of the kinematic condition (4.5) writes

∂t
(
R0

int +ϵη1)+ (
u0 +ϵu1) ·∇(

R0
int +ϵη1)= (

u0 +ϵu1) ·er , at r =R0
int +ϵη1, (4.26)

where the gradient vector in the Cylindrical coordinate can be expressed as ∇= (∂r ,1/r∂θ,∂z )T .

Applying (4.25) to (4.26) and using the ansatz of (4.8) readily results in (4.11).

The linearised dynamic condition (4.6) writes(
τ0 +ϵτ1

) (
n0 +ϵn1)= (

κ0 +ϵκ1)(n0 +ϵn1) , at r =R0
int +ϵη1, (4.27)

Applying (4.25) to (4.27) and using the ansatz of (4.8) readily results in (4.16). In order to

express interface conditions in the Cartesian coordinates, the terms which are expressed in

the Cylindrical coordinates should be transformed by employing the Jacobian transformations

as

er = cosθ ex + sinθ ey , eθ =−sinθ ex +cosθ ey ,

∂r = cosθ ∂x + sinθ ∂y , ∂θ =
t0 ·∇s

t0 ·∇sθ
, (4.28)

where t0 denotes the unit tangent vector, and ∇s =∇−n0
(
n0 ·∇)

is the tangential derivative on

the base interface. Both conditions (4.11) and (4.16) include the normal vector and the curva-

ture of the perturbed interface whose formulation is given in appendix 4.5.3. For further details

concerning the numerical implementation of the boundary conditions, see appendix 4.5.2.
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4.5.2 Variational formulation of the linear stability analysis and implementation
of boundary conditions

Implementation of the numerical scheme and development of the variational formulation as-

sociated with the governing equations presented in section 4.2 are elaborated in this appendix,

recalling that the numerical domain is shown in figure 4.3. To develop the variational form

of (4.12), firstly the normal mode of (4.8) is applied to the system of equations (4.9)-(4.11).

Then it is internally multiplied by the vector of the test functions ψ = [ψp ,ψu,ψη], where

ψu = [ψux ,ψuy ,ψuz ]. The resulting scalar product is integrated on Ωx y , which in the linear

order gives{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4 (
σũ+u0 · ∇̃ũ+ ũ ·∇u0)−∇̃ · τ̃

)
dAΩx y

+
∫
∂Σint

ψ⋆η

(
ση̃+

(
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃+
∂θR0

int

R0
int

ũθ− ũr

)
ds

}
+c.c. = 0. (4.29)

It should be noted that in a complex system, the applied scalar product is Hermitian, defined

as 〈a,b〉 = a⋆ ·b where the superscript ⋆ denotes the complex conjugate. In the last line of

this system of equations, kinematic condition (4.11) is used to define η̃ only on ∂Σint. After

integrating by parts, ψ⋆u ·
(
∇̃ · τ̃

)
= ∇̃ ·

(
τ̃ψ⋆u

)
− tr

(
τ̃T

(∇̃ψu
)⋆)

, and then applying the Gauss’s

theorem,
Î
Ωx y

∇̃ ·
(
τ̃ψ⋆u

)
dAΩx y =

∫
∂Ωx y

(
τ̃ψ⋆u

)
·n0 ds, (4.29) implies

{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4 (
σũ+u0 · ∇̃ũ+ ũ ·∇u0)) dAΩx y

+
Ï
Ωx y

tr
(
τ̃T (∇̃ψu

)⋆)
dAΩx y

+
∫
∂Ωx y

−
(
τ̃ψ⋆u

)
·n0 ds

+
∫
∂Σint

ψ⋆η

(
ση̃+

(
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃+
∂θR0

int

R0
int

ũθ− ũr

)
ds

}
+c.c. = 0. (4.30)

The stress tensor τ̃ is symmetric, thus
(
τ̃ψ⋆u

)
· n0 =

(
τ̃n0

)
·ψ⋆u . Using the dynamic condi-

tion (4.16) and the fact that ψu|∂Σf = 0 (because of the no-slip condition on the solid wall), the
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(4.31)

(4.31)

(4.31)

(4.32)(4.33-4.34)

(4.35)

(4.37) (4.36)

I

Figure 4.13: Matrix representation of the variational system (4.31)-(4.38), solved in COMSOL
MultiphysicsTM; blue represents the implementation of (4.9)-(4.10), white represents the
implementation of the no-slip boundary condition on the solid wall, green represents the
implementation of the dynamic boundary condition (4.16), represents the implementation of
the kinematic condition (4.11).

variational form of (4.12) implies{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y (4.31)

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4σũ
)

dAΩx y (4.32)

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4 (
u0 · ∇̃ũ+ ũ ·∇u0)) dAΩx y (4.33)

+
Ï
Ωx y

tr
(
τ̃T (∇̃ψu

)⋆)
dAΩx y (4.34)

+
∫
∂Σint

(
τ0 ñ+ η̃∂rτ

0 n0 − (
κ0ñ+ κ̃n0)) ·ψ⋆u ds (4.35)

+
∫
∂Σint

ψ⋆η
(
ση̃

)
ds (4.36)

+
∫
∂Σint

ψ⋆η

((
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃+
∂θR0

int

R0
int

ũθ− ũr

)
ds

}
(4.37)

+c.c. = 0. (4.38)

This variational equation can be readily implemented and solved in COMSOL MultiphysicsTM.

It is sufficient to solve the first part (in {}) and the c.c. is known consequently. The matrix

representation of (4.31)-(4.38) is shown in figure 4.13.

4.5.3 Characterization of an arbitrary interface

In this section, we present the geometrical characterization of an arbitrary interface pa-

rameterised in Cylindrical coordinates. The aim is to develop the characteristics of a three-

dimensional interface, as well as the linear perturbations applied to this interface. The key
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properties of interest are the normal vector and the local curvature.

Normal vector

We recall that the unit normal vector of a linearly perturbed interface can be decomposed as

n = n0 +ϵn1 which reads

n0 =

n0
r

n0
θ

n0
z

= A−1/2


1

− 1
R0

int
∂θR0

int

∂zR0
int

 , (4.39)

n1 =

n1
r

n1
θ

n1
z

=

Brη
1 +Cr∂θη

1 +Dr∂zη
1

Bθη
1 +Cθ∂θη

1 +Dθ∂zη
1

Bzη
1 +Cz∂θη

1 +Dz∂zη
1

 , (4.40)

where

A = 1+
(

1

R0
int

∂θR0
int

)2

+ (
∂zR0

int

)2
, Br = A−3/2(

R0
int

)3

(
∂θR0

int

)2
,

Bθ = A−3/2

(
− 1(

R0
int

)4

(
∂θR0

int

)3 + A(
R0

int

)2 ∂θR
0
int

)
, Bz =− A−3/2(

R0
int

)3

(
∂θR0

int

)2
∂zR0

int,

Cr =− A−3/2(
R0

int

)2 ∂θR
0
int, Cθ =− A−3/2

R0
int

(
1+ (

∂zR0
int

)2
)

, Cz = A−3/2(
R0

int

)2 ∂θR
0
int ∂zR0

int,

Dr =−A−3/2∂zR0
int, Dθ =

A−3/2

R0
int

∂zR0
int ∂θR

0
int, Dz = A−3/2

((
∂zR0

int

)2 − A
)

. (4.41)

For a base interface of the form r =R0
int(t ,θ) and a perturbation ansatz (4.8), the normal

vector of the base interface can be further simplified as

n0 =

n0
r

n0
θ

n0
z

= A−1/2


1

− 1
R0

int
∂θR0

int

0

 , (4.42)

and simplification of the linearised perturbation of the normal vector (4.40)-(4.41) implies

ñ =

ñr

ñθ
ñz

=

Br η̃+Cr∂θη̃

Bθη̃+Cθ∂θη̃

ikDz η̃

 , (4.43)
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where

A = 1+
(

1

R0
int

∂θR0
int

)2

, Br = A−3/2(
R0

int

)3

(
∂θR0

int

)2
,

Bθ = A−3/2

(
− 1(

R0
int

)4

(
∂θR0

int

)3 + A(
R0

int

)2 ∂θR
0
int

)
, Cr =− A−3/2(

R0
int

)2 ∂θR
0
int,

Cθ =− A−3/2

R0
int

, Dz =−A−1/2. (4.44)

Curvature

We recall that the local curvature of a linearly perturbed interface can be decomposed as

κ= κ0 +ϵκ1 which reads

κ0 = 1

R0
int

(
n0

r +∂θn0
θ

)+∂z n0
z , (4.45)

κ1 =− η1(
R0

int

)2

(
n0

r +∂θn0
θ

)+ 1

R0
int

(
n1

r +∂θn1
θ

)+∂z n1
z

= Eη1 +F∂θη
1 +G∂zη

1 +Dz∂
2
zzη

1 + Cθ

R0
int

∂2
θθη

1, (4.46)

where

E = 1

R0
int

(Br +∂θBθ)− 1(
R0

int

)2

(
n0

r +∂θn0
θ

)+∂z Bz ,

F = 1

R0
int

(Cr +∂θCθ+Bθ+Dθ∂z )+∂zCz +Cz∂z ,

G = Bz +∂z Dz . (4.47)

Note that the subscript r in (4.39)-(4.47) does not imply the real part. For a base interface of

the form r =R0
int(t ,θ) and a perturbation ansatz (4.8), the curvature of the base interface can

be further simplified as

κ0 = 1

R0
int

(
n0

r +∂θn0
θ

)
, (4.48)

and simplification of the linearised perturbation of the curvature (4.46)-(4.47) implies

κ̃=− η̃(
R0

int

)2

(
n0

r +∂θn0
θ

)+ 1

R0
int

(ñr +∂θñθ)+ ikñz

= E η̃+F∂θη̃−k2Dz η̃+ Cθ

R0
int

∂2
θθη̃, (4.49)
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where

E = 1

R0
int

(Br +∂θBθ)− 1(
R0

int

)2

(
n0

r +∂θn0
θ

)
,

F = 1

R0
int

(Cr +∂θCθ+Bθ) .

4.5.4 Derivation of a simplified expression for the energy density of the transient
response.

The interfacial energy density per wavelength is proportional to

e(T ) = k

2π

∫ 2π

0

∫ 2π/k

0
|η̄(T )e ikz + c.c|2dzR0

int(T )dθ

= 2
∫ 2π

0
|η̄(T )|2R0

int(T )dθ

= 2
N∑

m=−N

N∑
n=−N

α⋆mαn

∫ 2π

0
η̄m(T )⋆η̄n(T )R0

int(T )dθ

= 2αH A(T )α

(4.50)

where the strictly positive definite and Hermitian matrix A(T ) is such that

[A(T )]mn =
∫ 2π

0
η̄m(T )⋆η̄n(T )R0

int(T )dθ, (4.51)

for −N ≤ m ≤ N and −N ≤ n ≤ N , and where we defined

α= [α⋆N ,α⋆N−1, ...,α⋆1 ,α0,α1, ...,αN−1,αN ]T . (4.52)

The leading eigenvector of A(T ) has no particular reason to have its N first elements equal to

the complex conjugate of its last N . Thus, it cannot correspond directly to the optimal set of

α, that should satisfy this last constraint. For this reason we introduce the matrix

M−1 =

 I O P

OT
p

2 OT

−iI O iP

 , with Ii j = δi j , Pi j = δN−i+1, j , and Oi = 0. (4.53)

for 1 ≤ i , j ≤ N . Namely, I is the identity matrix of size N ×N , P is the identity matrix mirrored

around its vertical axis (it contains ones on the diagonal from the bottom-left to the top-right

and zeros everywhere else) and O is a vectors of zeros of size N ×1. In this manner, we have

directly a = M−1α, such that :

e(T ) = 2αH A(T )α= 2aT MH A(T )Ma = 2aT ℜ[MH A(T )M]a (4.54)
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where we used that a and e(T ) are a real-valued. Therefore, defining E(T ) = ℜ[MH A(T )M]

leads to the desired result.

4.5.5 Validation of the numerical model

The developed numerical scheme is validated hereafter. Several measures are taken to ensure

the correspondence of the model, based on the asymptotic limits where an analytical solution

may exist.

Base flow model

The present base flow model is validated with Balestra et al. (2016) who studied a similar

base flow in the limit of thin film, δ≪ 1, and small surface tension, Bo ≫ 1, by employing

lubrication equations (Oron et al., 1997). Figure 4.14(a) shows that the present model gives a

solution of the base flow in full agreement with the solution of Balestra et al. (2016).
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Figure 4.14: Numerical model validation. (a) Base flow: two snapshots of the liquid film
thickness H 0 = β−R0

int, in the right half-plane, at time t = {2β,4β}. Solid lines present
the solution from the present study, and the dashed lines present the solution obtained
by Balestra et al. (2016); Oh = 10.05,Bo = 1960.2,δ/β= 0.01. (b) Stability analysis: dispersion
curves of the two least stable modes associated with the viscous film coating inside a vertical
tube, namely |m| = {0,1}. The continuous lines present the analytical solution obtained
from the Stokes equations, and the circle represents the results from the present model;
Oh →∞,Bo = 1,δ= 0.1.
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Linear stability analysis model

The present linear stability model is validated with the analytical solution that Camassa et al.

(2014) presented for the gravity-driven flow of a viscous film that coats the interior side of a

vertical tube (where gravity points in z direction in figure 4.1). The corresponding base flow is

parallel and can be expressed in cylindrical coordinates as

u0
z =

δ−2

2

(
β2 − r 2

2
+ ln

r

β

)
, p0 =−1, R0

int = 1. (4.55)

For the linear stability analysis, Camassa et al. (2014) employed an approximation of the

Stokes equations for long jets, referred to as the long-wavelength approximation (Reynolds,

1886) and compared the results with the analytical solution, in terms of Bessel functions,

obtained by solving the full Stokes equations (Goren, 1962). Thanks to the axisymmetry of

the base flow, Camassa et al. (2014) considered a perturbation as in (4.8) with the Fourier

ansatz exponent of exp[σt + ikz + imθ] where m denotes the azimuthal wavenumber. Both of

the aforementioned equations match in the limit of thin liquid film, β→ 1, where the long-

wavelength approximation gives a dispersion relation of σ= S
(
k2 −k4

)− ik with S = S(Bo,δ)

being constant for the axisymmetric perturbation m = 0. All of the helical perturbations,

|m| > 0, are known to be linearly stable for such a flow (Rayleigh, 1878). Figure 4.14(b) presents

the full agreement between the present linear stability model and the analytical solution for a

relatively thin film thickness δ= 0.1. It should be noted that despite the axisymmetric nature

of the validated case, this presented validation holds also for an arbitrary interface. For this

aim, the geometrical symmetry in the numerical reference frame is broken by setting the

origin of the coordinates system at an arbitrary location inside the bubble, (x, y) = (0.2,0.7).

Grid independency

A convergence study for the base flow evolution and the linear stability of the unstable eigen-

value is presented in figure 4.15, for {Oh → ∞,Bo = 0.05,δ/β = 0.3}. Mesh resolution is

controlled by setting the number of divisions on the solid wall and interface boundaries. Mesh

convergence is already attained for the presented grids. All of the presented results in the

manuscript are obtained employing M3.
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Figure 4.15: Mesh convergence proof for Oh →∞,Bo = 0.05,δ/β= 0.3: (a) base flow; H 0
N /δ vs

u0
y ; (b) linear stability analysis; σmax

r vs Ndo f . All of the results presented in this manuscript
are obtained for M3.
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In this chapter, we study the drainage of a viscous liquid film coating the outside of a solid

horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge

numbers Oh, where inertia is negligible compared to viscous effects. We first study the

evolution of the axially invariant draining flow, initiated at rest with uniform film thickness δ.

Non-linear simulations indicate that for each δ, there is a threshold in the Bond number (Bo,

which compares the gravitational effects with surface tension) above which the draining liquid

bulk ruptures. This critical Bo is found to scale inversely with δ, below which a quasi-stationary

pendant liquid curtain is sustained below the cylinder by surface tension. The interface of the

pendant curtain is unconditionally linearly unstable and is prone to Rayleigh-Plateau-like,

capillarity-driven, and Rayleigh-Taylor, gravity-driven, instabilities. The linear stability of the

quasi-static state along with an energy analysis of the unstable mode illustrates that while the

Rayleigh-Taylor instability is always present, capillary effects dominate the instability at small

Bo, which promotes the formation of pearls enveloping the cylinder. In contrast, at large Bo,

capillarity acts in a stabilising way and the instability is purely gravity-driven, forming vertical

fingers. We present the asymptotic energy repartition representing the different physical

mechanisms at play in the instability of the saturated curtains for a wide range of {Bo,δ}. The

results of the linear analysis confirm the pre-existing non-linear simulations of Weidner et al.

(1997) in the limit of a thin film and extend the results for thick films. Additionally, based
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on the volume made available for droplet growth by the development of the most linearly

amplified wavelength, we build a phase diagram that predicts the final patterns emerging

from the pendant curtain, namely an array of saturated pearls or pendant drops or the onset

of three-dimensional droplet pinch-off. Furthermore, a transient growth analysis accounting

for the time-evolution of the base state towards a saturated curtain conclusively demonstrates

that the initial flow evolution does not result in altering the most amplified wavelength, thus

rationalising a posteriori the asymptotic analysis to predict the fate of the three-dimensional

patterns.

Keywords: coating, Rayleigh-Taylor instability, Rayleigh-Plateau instability, surface tension,

linear stability analysis, interface, transient growth

5.1 Introduction

Gravity-driven liquid films coating the outer side of a solid surface are ubiquitous in nature.

Some daily-life examples are dew covering the strings of spider silk (Elettro et al., 2016),

raindrop spread and accumulation around tree branches (Herwitz, 1987), and lava flow on

volcanoes (Kilburn, 2000), to name a few. Such a flow is also of interest for several practical

applications, for instance in coating industries (Quéré, 1999; Shen et al., 2002; Duprat et al.,

2007), painting (Blair, 1969; Zenit, 2019), vapor absorption (Chinju et al., 2000; Grünig et al.,

2012; Hosseini et al., 2014; Ding et al., 2018a) and desalination (Sadeghpour et al., 2019), shell

fabrication (Lee et al., 2016) and heat exchangers (Zeng et al., 2017, 2018). The motion of

the coating liquid film may be influenced by several factors, most chiefly, the solid surface

geometry, and gravitational, capillary, and viscous forces. The dynamics of coating film

flows, their instabilities, and subsequent pattern formation have gained attention in the last

decades (Eggers and Villermaux, 2008; Gallaire and Brun, 2017).

A particular coating flow configuration is the gravity-driven flow around a horizontal solid

cylinder. The interface of this draining film is prone to several instabilities which have been

studied extensively, both numerically and experimentally. A vast majority of the numerical

analyses have focused on the thin film limit and exploited the lubrication approximation (Oron

et al., 1997). Balestra et al. (2019) for instance investigated the conditions for fingering insta-

bility to occur during the spreading of a thin film over a partially wetting horizontal cylinder.

Several other studies addressed the liquid motion, film thickness, and the centrifugal in-

stability of a liquid-coated cylinder rotating around its axis (Hansen and Kelmanson, 1994;

Peterson et al., 2001; Ashmore et al., 2003; Evans et al., 2004; Li and Kumar, 2018). However,

surprisingly, the coating flow around a fully wetting horizontal cylinder, in absence of rotation,

has received little attention. Reisfeld and Bankoff (1992) investigated the two-dimensional

isothermal and non-isothermal evolution of a thin liquid film of initially uniform thickness

around a stationary horizontal cylinder. Their study describes the flow as the drainage of the

liquid film around the cylinder that leads to the formation of a pendant liquid curtain at the

bottom of the cylinder. They also investigated the shape variation of the pendant interface as a

function of the thermal properties of the flow. Later, using non-linear simulations of a similar
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isothermal flow configuration, Weidner et al. (1997) demonstrated the three-dimensional

temporal evolution of the flow. Initially perturbed by a low-level white noise, they depicted the

flow evolution in four phases: First, the axially invariant liquid bulk is pulled off without any

evidence of instabilities. After a while past the establishment of a pendant curtain, the second

phase starts with the appearance of growing small-amplitude longitudinal wavy perturbations

at the bottom of the interface. The third phase evidences non-linearities that affect the growth

of these wavy patterns and lead to the formation of large drops separated axially by very thin

liquid ridges, as well as possible smaller satellite drops. In the fourth phase, the satellite drops

coalesce into bigger drops and the interaction between single drops ceases. Weidner et al.

(1997) highlighted that in the limit of small cylinder diameter with respect to the capillary

length, where surface tension is important, perturbations lead to an upward motion of the

flow that results in pierced droplets surrounding the cylinder, hereafter pearls. Later, Weidner

(2013) reported a similar reversal of drop formation due to surface tension modification in the

presence of surfactants.

While these studies are limited to a thin film layer, where the lubrication approximation holds,

the formation of a collected liquid bulk underneath the cylinder may violate the thin-film

assumption. Weidner et al. (1997) reasoned in analogy with a static pendant drop solution,

where except for highly curved regions of the interface, a thin-film approximation results

in a fair prediction of the curtain interface. remarkably, at the south pole of the cylinder

that is the thickest region, exhibits a good accordance. Furthermore, despite their effort

to apply an initial white noise to the film, the amplification of perturbations during the

first phase (liquid pull-off), and its potential influence on the final droplet size are not well

understood. Characteristics of the emerging patterns and their shape strongly resemble those

of the classical Rayleigh-Taylor instability (Rayleigh, 1882; Taylor, 1950) and capillary instability,

which can be considered as an extension of the Rayleigh-Plateau instability (Plateau, 1873;

Rayleigh, 1878) on a fibre (Quéré, 1999).

The present study revisits the flow configuration as in Weidner et al. (1997) from an arbitrary

thick-film viewpoint and aims at linking the pattern formation in such a flow with the linear

interplay between the capillary-driven and gravity-driven instabilities. This aim is pursued by

means of the linear stability analysis of the quasi-static pendant liquid curtain for a wide range

of parameters. Additionally, we examine the amplification of the initial perturbations during

the liquid drainage around the cylinder by means of transient growth analysis and address its

effects on the pattern formation.

This paper is structured as follows. The methodology is detailed in §5.2. The problem formula-

tion and governing equations are presented in §5.2.1, from which the base flow is deduced

and discussed in §5.2.2. In §5.2.3, the formulation for the stability analysis and the linearised

governing equations are elaborated. In §5.2.4 the formulation of the transient growth analysis

is detailed. The numerical methods are presented in §5.2.5. In §5.3, the results of the stability

and transient growth analyses are presented. In §5.3.1 the influence of the Bond number

on the characteristics of the flow stability is summarised. In §5.3.2, the flow is investigated
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Figure 5.1: (a) Schematic of the liquid film coating the outside of a horizontal cylinder and the
geometrical parameters. The thick solid black line shows the cylinder wall of the radius Rw,
centred at (0,0,0). The liquid-gas interface is shown in the thin solid black line. Grey colour
marks the interior cross-section of the solid cylinder. The dashed black line represents the
perturbed liquid-gas interface of the local radius rint and axial wavelength λR . The inset shows
the zoomed cross-section of the perturbed interface. Gravity acts vertically, perpendicular to
the tube axis; (b) The initial x − y cross-section of the liquid column.

from an energy perspective, and the base flow and the perturbed flow’s energy balance are

detailed in §5.3.2 and §5.3.2, respectively, followed by the obtention of an asymptotic energy

diagram in §5.3.2. The linear stability phase diagram and the large-time pattern formation

are discussed in §5.3.3. Finally, the results of the transient growth analysis are presented in

§5.3.4 where conclusions are drawn by contrasting the transient and the stability around the

saturated pendant curtain analyses.

5.2 Governing equations and methods

5.2.1 Problem formulation

The outer wall of a rigid and immobile solid circular cylinder of radius Rw is coated with a

viscous liquid film. The schematic of the flow is presented in figure 5.1(a). The standard

Cartesian coordinates (x, y, z) are considered with the origin concentric with the solid cylinder.

In-plane coordinates are (x, y), and the gravity acceleration g, points in the −y direction. We

consider a Newtonian liquid of constant dynamic viscosity µ, surface tension γ, and density ρ,

surrounded by an inviscid immobile gas. The interface radius rint is parametrised in cylindrical

coordinates (r,θ, z) as F = r − rint(t ,θ, z) = 0, using the same origin as the Cartesian one. The

liquid-gas interface is initially concentric with the cylinder and the liquid film thickness is

constant around the periphery of the wall, h0 = R −Rw, where R denotes the initial interface

radius (figure 5.1(b)). At dimensionless time t = 0, the initial condition writes rint(0,θ, z) = R.
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5.2 Governing equations and methods

The dimensionless state vector q = (u, p,Rint)T describes the liquid motion at any instance

t , where u(t , x, y, z) = (ux ,uy ,uz )T denotes the three-dimensional velocity field, p(t , x, y, z)

denotes the pressure, and Rint = rint/R denotes the dimensionless interface radius. We choose

the initial interface radius R as the length scale and its static pressure jump as the pressure

scale. The intrinsic velocity scale associated with a viscous liquid film of thickness h0 falling

under its weight, presented by Duclaux et al. (2006), is chosen to make the state vector and

the governing equations dimensionless. Additionally, the advecting time scale is constructed

based on the aforementioned velocity and length scales as:

L= R, U = ρg h2
0

µ
= ρg R2

µ
(1−β)2,

P = γ

R
, T = L

U
= µ

ρg R
(1−β)−2,

(5.1)

where β = Rw/R denotes the dimensionless wall radius. Consequently, the dimensionless

value of the initial film thickness is expressed as δ= h0/R = 1−β. The flow is governed by the

conservation of mass and momentum equations which in dimensionless form read

∇· u = 0, (5.2)

(
Bo

Oh

)2

δ4 (∂t +u ·∇)u =∇· τ−Bo ey , (5.3)

respectively, where ∂ j denotes the partial derivative with respect to quantity j , and the stress

tensor τ is expressed as

τ=−pI+Bo δ2 (∇u+∇uT )
. (5.4)

Two other dimensionless numbers appear in the governing equations: Ohnesorge number,

Oh =µ/
√
ργR, compares the viscous and inertial forces. Bond number, Bo = ρg R2/γ, com-

pares the gravitational and surface tension forces. Our study addresses the limit of inertialess

flow where (Bo/Oh)2δ4 ≪ 1. One can re-express (Bo/Oh)2δ4 as Re δ2 where the Reynolds

number, Re = ρUL/µ, is constructed upon the same scales presented in (5.1).

The no-slip boundary condition, u = 0, is applied on the solid wall, at r =β. On the shear-free

fluid-gas interface, the kinematic and dynamic boundary conditions write

∂tRint +u ·∇Rint = u ·er at r =Rint, (5.5)

τ n =−κn at r =Rint, (5.6)

respectively, where er denotes the unit radial vector, n =∇ (r −Rint)/∥∇ (r −Rint)∥, denotes

the interface unit normal vector pointing outward from the origin of the coordinate system,
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∥·∥ denotes the Euclidean norm, and κ=∇·n denotes the mean curvature of the interface. To

build intuition about the flow characteristics and before detailing the stability analysis and

numerical method, we illustrate the reference flow in §5.2.2.

5.2.2 Base flow
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Figure 5.2: Base flow evolution for Oh →∞,Bo = 0.4,δ= 0.2. (a) Snapshots of the flow field:
colour map shows the in velocity magnitude, arrows show the liquid velocity field, and the
point S marks the south pole of the bubble, θS = 3π/2. (b) Temporal variation of the relative
liquid film thickness at the pole H 0

S /δ = (R0
int(θS)−β)/δ. (c) Film thickness variation as a

function of the vertical velocity at the pole.

The base flow, denoted by q0, is the transient solution of the non-linear conservation equa-

tions (5.2)-(5.6) where the fluid is initially assumed at rest with constant initial pressure

p0(t = 0) = 1 and R0
int = 1. Due to the non-linear nature of the interface conditions, finding an

analytical solution for such a flow is challenging. Hence, the temporal evolution of the flow is

computed numerically (see §5.2.5 for details). Some snapshots from the base flow evolution

are shown in figure 5.2 for an exemplary case of δ= 0.2, and an intermediate Bond number

Bo = 0.4. The dynamics of the base flow, presented in figure 5.2(b-c), can be characterised by

quantifying the relative liquid film thickness H 0/δ= (R0
int −β)/δ at the south pole cylinder,

θ = 3π/2, and its vertical velocity. This point is hereafter referred to as the pole, where the
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Figure 5.3: Influence of the surface tension. The base flow dynamics for Oh →∞,δ= 0.2,Bo =
{0.01,0.4,1.6,2.5,3,3.1}: (a) Temporal variation of the relative liquid film thickness at the pole.
(b) Film thickness variation as a function of the vertical velocity at the pole. (c) Large-time
interface of the pendant curtain at Bo = {0.01,0.4,1.6,2.5,3}, and the dripping curtain at
Bo = 3.1 (green) for the same flows presented in panels (a-b). The black dashed circle shows
the cylinder. (d) Two-dimensional pendant vs dripping diagram in the δ−Bo plane: the black
dashed line corresponds to the best fit to the two-dimensional pendant to dripping transition:
Bo = 0.61δ−1.

strongest gravitational effects are expected. Drainage begins with an immediate liquid pull-off

around the solid cylinder that decays with time. The liquid body forms a two-dimensional

quasi-static pendant curtain as t →∞.
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Drainage dynamics are significantly influenced by surface tension and gravity effects, i.e. by

Bo. Figure 5.3 presents the influence of the Bond number. By increasing Bo, i.e. weakening

the effect of surface tension against gravity, flow initially accelerates before decaying and the

formation of the quasi-static curtain delays (figure 5.3(a)). Exceeding a critical Bo value, the

interface cannot sustain the liquid weight anymore and the pole accelerates downward sharply

(green line in figure 5.3(a-b)), thus causing a two-dimensional rupture. Figure 5.3(c) shows

the interface of the quasi-static pendant curtain for several Bo values as well as one example

of dripping bulk after re-accelerating. While small Bo numbers sustain the quasi-circular

cross-section of the curtain, increasing Bo results in a stretched interface in the direction

of gravity. The green line in figure 5.3(c) depicts the falling liquid interface right after the

pole acceleration (at t = 855.8). Figure 5.3(d) presents the region of saturation towards a

static pendant curtain in the δ−Bo plane. This phase diagram is obtained by following the

non-linear drainage simulations until the maximal flow velocity magnitude drops below 10−5

(pendant) or the occurrence of the large-time pole acceleration (dripping). It was verified for

some marginal sub-critical pairs of {Bo,δ} that lowering the velocity threshold down to 10−7

does not affect the critical parameters at the transition between these two behaviours. The

dripping occurs if Bo > 0.61δ−1, suggested by the best fit to the data from our simulations.

We now follow a scaling argument to rationalise the obtained threshold. In the case of a

pendant curtain, the capillary force per unit axial length ∝ 2γ overcomes the bulk weight,

πρg R2δ(1+β). This comparison implies the dripping threshold as Bo > (2/π)δ−1(1+β)−1

where 2/π ≈ 0.64. In the thick-film limit, β ≪ 1 (remember that δ = 1−β), the dripping

threshold approaches 0.64δ−1 which is in good agreement with our numerics. Following this

scaling argument, by approaching the thin-film limit, β→ 1, the dripping threshold should

approach Bo > 0.32δ−1. However, this scaling contradicts the numerical observation. One

might propose a correction to this scaling argument by taking into account the tangential

direction at which the minimum capillary force is applied. However, such a correction was

found unsuccessful, too. Note that rupture occurs through the pole acceleration, and necking

takes place at some distance below the cylinder, where surface tension fails to withstand

merely the portion of the liquid weight that accelerates underneath the neck (see the green

interface in figure 5.3(c)).

5.2.3 Linear stability analysis of the pendant curtain

To conduct the linear stability analysis of the quasi-static pendant curtain, presented in

§5.2.2, the state vector q = (u, p,Rint)T is decomposed into the sum of the steady saturated

base flow solution q0∞ (subscript ∞ denotes large-time evaluation), and the infinitesimal

time-dependent perturbation q1 = (
u1, p1,η1

)T
, i.e.

q = q0
∞+ϵq1 +O(ϵ2), ϵ≪ 1, (5.7)
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where the amplitude ϵ is small. The normal mode of the perturbation q1 with the longitudinal

wavenumber k (associated with the wavelength λ= 2π/k) reads

q1 = q̃(x, y) exp[σt + ikz]+c.c., (5.8)

where c.c. denotes the complex conjugate. All other functions in terms of the state vector

can be decomposed in a similar fashion. Namely, τ= τ0 +ϵτ1, n = n0 +ϵn1 and κ= κ0 +ϵκ1.

(For further details about the formulation of n1 and κ1, see §4.5.3 in chapter 4.) In the

asymptotic limit of large times, a normal eigenmode perturbation with complex pulsation

factor σ = σr + iσi , is unstable if σr > 0. An unstable eigenmode grows exponentially in

time with the growth rate σr . (Unless otherwise noted, the indices r and i denote the real

and imaginary parts of a complex number, respectively.) After casting the perturbed state

of (5.7) into the governing equations (5.2)-(5.3), with the static pendant curtain base state

q0∞ = (
u0, p0,R0

int

)T
, and neglecting the higher orders in ϵ, the linearised equations can be

expressed as

∇· u1 = 0, (5.9)

(
Bo

Oh

)2

δ4 (
∂t u1 + (

u0 ·∇)
u1 + (

u1 ·∇)
u0)=∇· τ1. (5.10)

The corresponding boundary conditions are as follows. On the solid cylinder boundary, r =β,

the no-slip condition implies ũ = 0. As the geometry of the perturbed flow is unknown, the

interface conditions (5.5)-(5.6), applied on the perturbed liquid interface r =R0
int+ϵη1, should

be projected radially onto the base interface, r =R0
int, and ultimately linearised; a process

called flattening (see (5.29) in appendix 5.5.1). The kinematic condition, once linearised

implies

ση̃+
(
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃︸ ︷︷ ︸
−G0η̃

+ ∂θR0
int

R0
int

ũθ = ũr , at r =R0
int, (5.11)

where
(
u0

r ,u0
θ

)T
and (ũr , ũθ)T denote the velocity vectors of the base state and perturbations,

respectively, represented in the cylindrical coordinates. Even though in the case of a quasi-

static pendant curtain, u0 ≈ 0, we keep the corresponding terms in the linearised equations

(5.11) and the following equations, since they will be needed in the transient growth analysis,

to be presented in §5.2.4. Introducing a normal eigenmode of the form (5.8) into (5.9)-(5.10),

combined with (5.11), leads to a generalised eigenvalue problem for σ and q̃ as

Lq̃+c.c. =σBq̃+c.c., (5.12)
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where the linear operators L and B can be expressed as

L =


( Bo

Oh

)2
δ4F0 +Boδ2

(∇̃ · (∇̃+∇̃T )
) −∇̃ 0

∇̃· 0 0(
er − ∂θR0

int

R0
int

eθ
)
· 0 G0

 ,

B =


( Bo

Oh

)2
δ4I 0 0

0 0 0

0 0 1

 , (5.13)

where F0ũ = −((
u0 · ∇̃)

ũ+ (ũ ·∇)u0
)
. Here, (er ,eθ,ez ) denote the unit direction vectors in

the cylindrical coordinates (r,θ, z) used for parameterising the interface, and the gradient

operators and the velocity gradient tensors in the Cartesian coordinates read

∇= (∂x ,∂y ,∂z )T , ∇u0 =

∂x u0
x ∂y u0

x 0

∂x u0
y ∂y u0

y 0

0 0 0

 ,

∇̃ = (∂x ,∂y , ik)T , ∇̃ũ =

∂x ũx ∂y ũx ikũx

∂x ũy ∂y ũy ikũy

∂x ũz ∂y ũz ikũz

 . (5.14)

The interface dynamic condition (5.6), once linearised, reads

τ0ñ+ η̃∂rτ
0n0 + τ̃ n0 =−(

κ0ñ+ κ̃n0) , at r =R0
int. (5.15)

(For further details on the derivation of the interface conditions and their implementation,

see appendices 5.5.1 and 5.5.2, respectively.)

5.2.4 Transient growth analysis

As the base flow presented in §5.2.2 evolves temporally, we perform a transient growth analysis

to study the evolution of the perturbations from the initial state until the formation of the

pendant curtain. In contrast with the linear stability analysis, the transient growth analysis

accounts for the temporal dependency of both the base flow and the perturbation.

We follow a similar procedure as in chapter 4; the perturbation is now written without impos-

ing its exponential temporal evolution

q1 = q̄(t , x, y) exp[ikz]+c.c., (5.16)
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which is instead a straightforward extension of (5.12):

L(t )q̄+c.c. = B
∂q̄

∂t
+c.c., (5.17)

recalling that L is parametrised by k. We seek an initial perturbation of the interface q̄(0, x, y) =
[0,0, η̄(0)]T that is the most amplified by (5.17) after a time t = T , where T is named the

temporal horizon. Imperfect initial flow structure or experimental artifacts might project

on this optimal one and might be greatly amplified, possibly triggering a non-linear regime

and/or being directly comparable with the experimentally observed patterns, thus making the

linear stability analysis results irrelevant. To this aim, we pursue the methodology proposed

by Del Guercio et al. (2014), and take advantage of the fact that the base flow interface is

axisymmetric at t = 0 (see figure 5.2) to expand η̄(0) as Fourier modes in θ as

η̄(0) =
N∑

m=−N
αme imθ = a0 +

N∑
m=1

[am cos(mθ)+bm sin(mθ)], (5.18)

with α−m =α⋆m , a0 =α0, and for m ≥ 1: am =αm +α⋆m and bm = i(αm −α⋆m). Note that am , bm

(where m = 0,1,2, ...) and η̄(0) are real-valued.

We then define η̄m(t ) as the evolved state at time t of the specific initial condition η̄m(0) = e imθ

for the interface. Thanks to the linearity of the evolution equation (5.17), the interface shape

at t = T simply reads

η̄(T ) =
N∑

m=−N
αm η̄m(T ). (5.19)

The associated interfacial energy density per spanwise wavelength is proportional to

e(T ) = k

2π

∮
S(T )

∫ 2π/k

0
|η̄(T )e ikz + c.c|2dzds = 2aT E(T )a, (5.20)

where
∮
S(T ) ds represents the closed line integration along the time-dependent base state

interface, E(T ) is a real-valued, symmetric, strictly positive definite (2N +1)× (2N +1) matrix,

derived in appendix 5.5.3, and

a = [aN , aN−1, ..., a1,
p

2a0,bN ,bN−1, ...,b1]. (5.21)

In this manner, the optimal transient gain G(T ), defined as

G(T ) = max
a

e(T )

e(0)
=π−1 aT E(T )a

aT a
, (5.22)

is simply the largest eigenvalue of E(T ) divided by π, and the associated eigenvector provides

directly the Fourier mode coefficients of the optimal initial condition, where we used that

E(0) =πI.
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Figure 5.4: The numerical domain for computing the base flow, transient growth study, and
linear stability analysis. Here,Ωx y denotes the liquid bulk. The boundaries of the numerical
domain are denoted by ∂Ωx y = ∂Σw ∪∂Σint, where ∂Σw represents the exterior wall of the
cylinder with the radius of β, and ∂Σint represents the gas-liquid interface. The cross-section
of the interface is initially a circle of unit radius, concentric with the cylinder (sketched in
black dashed line).

5.2.5 Numerical method

The base flow, transient growth, and linear stability analyses are carried out numerically by

the finite element software COMSOL MultiphysicsTM. A triangular moving mesh is generated

on the two-dimensional domain shown in figure 5.4. The grid size is controlled by the vertex

densities on the boundaries ∂Σw and ∂Σint. The variational formulation of the base flow

equations (5.2)-(5.6), linear stability equations (5.12), and linearised Navier-Stokes equations

(5.17) are discretised spatially using quadratic (P2) Lagrange elements for the geometrical

shape function, u0, ũ, ū, η̃ and η̄, and linear (P1) Lagrange elements for p0, p̃, and p̄. This

discretisation results in approximately 400’000 degrees of freedom, Ndo f , for each step of the

base flow, linear stability, and transient growth analyses.

First, the base flow is computed using the laminar two-phase flow module incorporated

with the moving mesh module. The numerical time step is determined by the Backward

differentiation formula with maximum differentiation order of 2. The solver is initialised by

the Backward Euler consistent initialisation with an initial step fraction of 10−9. At each time

step, Newton’s method is used to solve the non-linear equations, where the relative tolerance

for the iterative solver convergence is set to 10−6. In order for the base flow solver to capture the

rupture, the kinematic condition (5.5) is replaced by its equivalent form readily implemented

in the built-in fluidic module of COMSOL MultiphysicsTM. It enforces instead u ·n = umesh ·n,

at ∂Σint, where umesh denotes the moving mesh velocity. Following the computed base flow,

the first solution after the maximal velocity falls below 10−5 is considered as the static pendant

curtain. After extracting the flow field and geometrical characteristics of the base interface,

linear perturbation analyses are conducted. For the linear stability analysis, the generalised

eigenvalue problem (5.12) is solved for the static pendant curtain using the shift-invert Arnoldi
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method. For the transient growth analysis, the linearised conservation equations (5.17) are

solved over the corresponding time horizon with a dimensionless time step of 0.1. Then, the

resulting propagator matrices are computed and imported to MatlabTM, where the optimal

transient gain (5.22) is computed. (For more details on the development of the variational

formulation, implementation of the linearised Navier-Stokes and linear stability eigenvalue

problem, and their corresponding boundary conditions see appendix 5.5.2.)

The computation time for obtaining the base flow for a given set of parameters, followed by

the stability analysis for ∼20 values of k, is of the order of an hour on a single Intel core at

3.6 GHz. For the transient growth analysis, the computation of the propagator matrices with

−5 ≤ m ≤ 5 over 10 values of k and dimensionless temporal horizon of dozen units, and the

maximal gain calculation take place in the order of a few days in total. Both the base flow and

stability analysis model are validated with the existing solutions in the literature. (For more

details about the series of validation tests see appendix 5.5.4.)

5.3 Results

The results of the linear stability analysis and transient growth analysis are presented hereafter.

To begin with, an overview of the stability of the pendant curtain and the influence of Bo are

presented in §5.3.1. Then both the base flow and the perturbations feeding on the pendant

curtain are further discussed from an energy viewpoint in §5.3.2, enabling us to investigate

the contributions of different physical mechanisms in the formation of the pendant curtain

and its instability, and to complement the stability diagram by identifying regions where

either the Rayleigh-Plateau or the Rayleigh-Taylor instabilities dominate. In §5.3.3, the most

asymptotically amplified linear modes and the consequent pattern formation are discussed,

followed by sketching the phase diagram of the pendant curtain predicted by the linear analysis.

The transient growth of the perturbations before reaching the quasi-static state is detailed in

§5.3.4 where the influence of the optimal perturbation amplification on the ultimate pattern

formation is discussed.

5.3.1 Linear stability of the pendant curtain

In this section, we present the linear stability characteristics associated with the quasi-static

pendant curtain coating the outside of a horizontal cylinder. We follow the same exemplary

cases of δ= 0.2 the base flows of which are presented in §5.2.2. Each set of parameters exhibits

only a single unstable mode whose dispersion curve, representing the growth rate σr (k), is

presented in figure 5.5(a). This mode is unstable within a range of wavenumbers 0 ≤ k ≤ kc ,

where kc denotes the cut-off wavenumber, and exhibits a peak in its growth rate, σmax
r , at

an associated maximal mavenumber kmax . Starting from large surface tension compared to

gravity, Bo = 0.01, increasing Bo results first in a decrease in σmax
r (from Bo = 0.01 to Bo = 0.4)

followed by a rebound for large Bo (for Bo > 0.4). The cut-off wavenumber kc increases

monotonously, whereas kmax increases up to a saturated value k ≈ 1.05.

109



Stability of liquid film coating a horizontal cylinder: capillary and potential interplay

0 0.5 1 1.5 2 2.5

0

1

2

3
3

1.6

2.5

0.4

0.01

2

4

0

2.5

4.5

0.01 0.4 3

0

2.5

5

0

Figure 5.5: The influence of Bo on the linear stability of the pendant curtains whose base flows
are presented in figure 5.3: (a) Dispersion curve of the unstable eigenmode; (b) Eigenvelocity
fields and eigeninterfaces of the same unstable modes at kmax , corresponding to σmax

r ; the
color map presents the axial eigenvelocity, black arrows show the in-plane eigenvelocity field;
magenta arrows show the eigenvelocity at the base interface, and the red line renders the
base interface perturbed by an arbitrary amplitude; (c) The three-dimensional render of the
asymptotically most amplified perturbed interfaces, shown in panel (b); Oh →∞, δ= 0.2.

The perturbation eigenvelocity fields at kmax and three-dimensional rendering of the per-

turbed interface with an arbitrary amplitude are presented for Bo = {0.01,0.4,3} in figure 5.5(b-

c), respectively. Each eigenstate q̃ is normalised with its RMS value, and its phase is corrected

such that the axial velocity of the pole, w̃z (θ = −π/2), becomes real-valued. The unstable

mode features left/right symmetry, strong interface modulation at the bottom of the pendant

curtain, and an immobile interface at the top of the cylinder, θ =π/2. While intermediate and

strong surface tension to gravity ratios, Bo = {0.01,0.4}, evidence the flow reversal towards the

top side of the cylinder, when gravity dominates at Bo = 3, interface perturbations take place

only at the bottom of the pendant curtain, promoting vertical fingers underneath the cylinder.

Similar patterns were reported through the non-linear simulations of Weidner et al. (1997) in

the thin film limit with large surface tension. For one particular case of liquid roll-up, they

observed that the non-linear evolution of the perturbations results in lower surface energy
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at the cost of increasing the potential energy of the liquid. On the contrary, for one case

of gravity dominance, the non-linear perturbation evolution was reported in favour of the

potential energy reduction despite increasing the surface energy. These arguments give us the

motivation to further study the base flow and linear perturbations from an energy perspective

to quantify the effect of different physical mechanisms at play in the flow.

5.3.2 Energy analysis

In this section, we study the flow from an energy point of view in order to clarify the inter-

actions between capillary, viscous, and gravitational effects, and to quantify their respective

contributions to the formation and linear instability of a pendant curtain. Formerly, Hooper

and Boyd (1983); Boomkamp and Miesen (1996); Kataoka and Troian (1997); Li et al. (2011)

employed this method to evaluate and compare the role of different physical mechanisms on

the temporal instability of various interfacial flows. Hereafter, the area increment in the bulk

cross-section is denoted by dAΩx y . On the boundary j , the increment of the surface area is

denoted by dAΣ j , and the increment of the arc length is denoted by ds.

Here, we study energy conservation in the flow, on different scales, from the base flow to

the perturbations. We focus on the base flow presented in §5.2.2 and the unstable modes

presented in §5.3.1. More precisely, the energy analysis sheds light on the balance of the energy

rate, hereafter referred to as the energy equation, which for the inertialess gravity-driven flow

down a horizontal cylinder can be expressed asÑ
Ωx y

Bo δ2 tr
((∇u+∇T u

)∇u
)

dV︸ ︷︷ ︸
DIS

+
Ï
∂Σint

−
(
τn0

)
·u dAΣint︸ ︷︷ ︸

BND

+
Ñ

Ωx y

−Bo uy dV︸ ︷︷ ︸
POT

= 0, (5.23)

where the bulk integral is defined on the volume increment dV = dAΩx y dz, the surface inte-

gral is defined on the columnar surface with the cross-section ∂Σint and axis in z direction

(see figure 5.4), DIS denotes the rate of viscous dissipation in the bulk fluid, BND denotes

the rate of interfacial work conducted by the fluid, and POT denotes the rate of change of

gravitational potential energy. (For more details about the derivation of the energy equation,

see appendix 5.5.5. Hereafter, for the ease of notation, we omit dV from volumetric integrals,

dAΣint from boundary surface integrals, and ds from the one-dimensional boundary integrals.)

The energy equation implies that the net rate of energy exchange in the flow is zero, where

multiple physical mechanisms may contribute to energy release and consumption. The sign

of each term in (5.23) indicates whether the energy is removed from (+) or released into (−)

the flow by the respective mechanism.
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Figure 5.6: Energy analysis of the base flow presented in figure 5.2. (a) Evolution of the surface
energy Esur, and potential energy Epot, per unit length. (b) The rate of viscous dissipation DIS0,
surface energy SUR0, and potential energy POT0.

Energy analysis of the base flow

The energy equation for the base flow presented in §5.2.2, computed per unit length in z, can

be expressed asÏ
Ωx y

Bo δ2 tr
((∇u0 +∇T u0)∇u0)

︸ ︷︷ ︸
DIS0

+
∫
∂Σint

κ0n0 ·u0︸ ︷︷ ︸
SUR0

+
Ï
Ωx y

−Bo u0
y︸ ︷︷ ︸

POT0

= 0. (5.24)

In the case of the base flow, the dimensionless bulk potential energy (made dimensionless by

γR2), evaluated with respect to the initial state, can be expressed as

Epot =
Ï
Ωx y

Bo y, (5.25)

and the dimensionless surface energy evaluated with respect to the initial state can be ex-

pressed as

Esur =−2π+
∫
∂Σint

1. (5.26)

Figure 5.6(a) shows the temporal evolution of the potential and surface energies until reaching

a quasi-static pendant drop for {δ,Bo} = {0.2,0.4} whose base flow is presented in figure 5.2.

As the liquid is pulled off the cylinder, the bulk potential energy is released. Being partially

stored as surface energy, the potential energy allows the interface to deform. This energy

transfer slows down and saturates later when the pendant curtain stagnates. The rates at

which the energy is transferred are presented in figure 5.6(b) which demonstrates that the
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terms are normalised by
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excess potential energy is dissipated in the bulk liquid.

Energy analysis of the perturbed flow

The energy equation at the scale of linear perturbations computed along one wavelength

results in terms with an order of ϵ2, giving
Ï
Ωx y

Bo δ2 tr
((∇̃ũ+∇̃T ũ

)∇̃ũ⋆
)

︸ ︷︷ ︸
DIS1


r

+


∫
∂Σint

κ̃n0 · ũ⋆︸ ︷︷ ︸
SUR1

+
∫
∂Σint

(
η̃ ∂rτ

0 n0
)
· ũ⋆︸ ︷︷ ︸

POT1


r

= 0, (5.27)

where ⋆ denotes the complex conjugate, DIS1 denotes the bulk viscous dissipation rate, and

SUR1 and POT1 denote the contributions of capillarity and gravity to the rate of the work done

by the fluid at the perturbed interface, respectively. (For further details on the derivation

of (5.27) and its different terms see appendix 5.5.5.) We recall that the subscript r here denotes

the real part of a complex number. As for the base flow, equation (5.27) unravels that the

work exchanged at the perturbed interface is partially dissipated in the bulk liquid, and the

remainder (or deficit) is stored at (or released from) the free surface in the form of surface

energy.

Figure 5.7 shows the results of the energy analysis on the unstable mode for δ = 0.2 and

Bo = {0.01,0.4,3}. We remind the reader that the linear stability characteristics of this mode are

presented in figure 5.5. In the case of large surface tension to gravity ratios, typically Bo = 0.01,
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Figure 5.8: (a) Linear stability energy diagram of the pendant curtain: the color bar indicates
the energy ratio Γ, magenta dashed lines with the pentagram and square markers show Γ= 0
and Γ = 1 iso-values, respectively, obtained by data interpolation. The sub-region above
the pentagrams is purely gravity-driven Rayleigh-Taylor instability, and Bo < 0.05 indicates
capillarity-dominant instability.

where the base interface is quasi-circular, both potential and capillary mechanisms drive the

instability. However, the instability is dominated by capillarity, as the majority of the energy

exchange to the perturbations is provided by capillarity (|SUR1| ≫ |POT1|). By increasing

Bo which results in a vertically outstretched pendant curtain, the instability becomes less

favourable for the surface energy minimisation. Ultimately, exceeding a threshold for Bo, the

instability is merely induced by the potential energy release, and capillarity acts to stabilise

the flow (SUR1 > 0 for Bo = 3, see figure 5.7).

Asymptotic energy diagram of the static pendant curtain

The {δ,Bo} space is investigated to follow the linear stability of the pendant curtain. The

pendant state is found unconditionally unstable for a single unstable mode for which the

gravitational effect is always destabilising. Here, the maximal wavenumber kmax , and the

contribution of the involving mechanisms are studied merely for this unstable mode. To

compare the role of gravity and capillarity in the flow destabilisation, following the results

presented in §5.3.2, we can define the capillary-to-potential rate of energy ratio, hereafter

referred to as the energy ratio, as

Γ= SUR1

POT1

∣∣∣∣
kmax

. (5.28)
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Figure 5.9: (a) kmax vs Bo for different values of δ obtained from the linear analysis of the pen-
dant curtain. (b) An exemplary evaluation of the drop pinching criteria for δ= 0.2: diamonds
represent the maximum plausible volume of a static three-dimensional droplet (Weidner
et al., 1997), crosses represent the volume of a droplet based on the most linearly amplified
wavenumber, Vdrop = 2π2(1−β2)/kmax , solid lines here show interpolation between discrete
data, and the black circle indicates the critical value for pinching; the cyan region highlights
the drip parameters, and the white region highlight the pendant state. (c) Stability diagram
based on the encapsulated volume within the most linearly amplified perturbation, following
the same sample calculation as in panel (b): the grey region shows the two-dimensional
curtain dripping in absence of perturbations; the circles, cyan and white regions indicate the
post-instability state, the same as in panel (b); the black dashed line shows the logarithmic
interpolation between critical values.

The energy ratio includes two pieces of information at the most linearly amplified wavenum-

ber kmax ; firstly, as POT1 < 0 always, the sign of Γ indicates if the capillarity acts as a stabilising

mechanism (−) or a destabilising (+) one. Secondly, the magnitude of Γ indicates if the in-

stability is gravity-dominated (|Γ| ≪ 1), capillarity-dominated (|Γ| ≫ 1). When |Γ| = O(1),

both mechanisms contribute to the curtain instability. Figure 5.8 presents the energy dia-

gram coloured by the energy ratio. When surface tension dominates gravity, Bo ≤ 0.05, the

instability is capillarity-dominated (warm colours). Although Γ> 45 for all of the data with

Bo = 0.01, the color bar is limited to 10 for better visibility of the energy diagram. Increasing

Bo for a fixed δ reduces the capillary contribution. Exceeding some threshold in Bo (marked

by the magenta pentagrams), capillarity becomes stabilising and the instability turns purely

gravity-driven. The sub-region of the purely gravity-driven instability narrows down by in-

creasing δ, and for δ≥ 0.4 this threshold is very close and slightly inferior to the critical Bo for

two-dimensional curtain dripping. (The grey shaded area is the two-dimensional dripping

presented in figure 5.3(d).)

5.3.3 Linear prediction: pattern formation and three-dimensional pinch-off

Figure 5.9(a) presents the variation of kmax for different values of {δ,Bo}. For Bo ≤ 0.1 and fix

δ, where the instability is surface tension dominated, kmax is set by capillarity and does not
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exhibit a significant variation, whereas further increasing Bo towards where capillarity and

gravity become comparable, kmax is affected. For δ> 0.4, kmax diminishes slightly with Bo,

whereas for δ< 0.4, increasing Bo over the pure gravity-driven instability threshold (above

pentagrams in figure 5.8) leads to an increase of kmax , reaching up to three-fold for δ= 0.1.

Further growth of linearly unstable modes is expected to form a single array of drops, either as

pearls wrapping around the cylinder, or pendants underneath the cylinder. The volume of

the biggest static three-dimensional droplet that can suspend on/under a cylinder was calcu-

lated previously by Weidner et al. (1997). In the thin-film limit, their non-linear simulations

evidenced that even though the amplification rate of perturbation varies with time due to

non-linear effects, the fundamental wavelength of the perturbed interface does not change

significantly. They also noticed that in the case of a small Bond number, the final size of the

pearl was comparable to that predicted by the linear theory for a coating film on a fibre in the

absence of gravity. Inspired by this observation, our linear analysis suggests a prediction of the

final state of the pendant curtain after instability, deduced from {δ,Bo} and kmax as follows.

Mass conservation implies that the volume contained within the most linearly amplified

wavelength λmax = 2π/kmax is given by Vdrop = π(1−β2)λmax . Therefore, comparing this

value with the one calculated by Weidner et al. (1997) can indicate whether or not the patterns

emerging from a pendant curtain ultimately drip. (See an exemplary investigation for δ= 0.2

in figure 5.9(b).)

Figure 5.9(c) sketches a phase diagram obtained by following a similar calculation for a wide

range of {δ,Bo}: the grey shade indicates the parameters’ range for which a two-dimensional

rupture occurs, the same as presented in figure 5.3(d). The cyan designates the region where

the most linearly amplified mode results in a volume larger than what surface tension can

withstand, thus a three-dimensional pinch-off leading to dripping. For parameter combi-

nations in the white region however, the pendant curtain transforms into an array of static

pearls/pendants. This phase diagram demonstrates that the parameters in the vicinity of the

two-dimensional dripping result in a three-dimensional rupture, irrespective of δ. Further-

more, a thick film of δ> 0.6 will always pinch-off even when surface tension largely dominates

gravity, i.e. at small Bo.

We recall that the phase diagram presented in figure 5.9(c) is attained from the asymptotic

analysis of the quasi-static pendant curtain. In other words, the aforementioned linear analysis

does not account for the possible amplification of the perturbations before reaching a two-

dimensional pendant equilibrium, nor for the possible nonnormality in the system. As a

piece of evidence, the non-linear simulations of Weidner et al. (1997) did not report for any of

their simulations the appearance of any measurable interface disturbances before reaching a

pendant state. Later simulations of Weidner (2013) in presence of surfactants led to a similar

observation. In both studies, an initial low-level white noise of dimensionless amplitude

10−6 was applied at the interface of a liquid column at rest and concentric with the solid

cylinder. Nevertheless, performing a rigorous transient growth analysis is insightful toward

comprehension of the short-term perturbations’ amplification.
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Figure 5.10: Transient growth analysis: (a) Three pinching pairs of {Bo,δ} analysed in the
vicinity of the critical pinch-off separatrix (dashed line): (b) Point (i): {Bo,δ} = {1.1,0.1}; (c)
Point (ii): {Bo,δ} = {0.3,0.3} (d) Point (iii): {Bo,δ} = {0.06,0.5}. Panels (b-d) present the optimal
transient gain G , as a function of the temporal horizon T , for different wave numbers k. The
exponential evolution of the asymptotically predicted most unstable wave number kmax , is
shown in a black dashed line, and the thick black line represents the transient gain of kmax .

5.3.4 Transient growth analysis

In the following, we present the results of the transient growth analysis for three pairs of

parameters {Bo,δ}, shown in figure 5.10(a), at the vicinity of the three-dimensional pinch-off

separatrix, obtained in §5.3.3. As it is constructed using the drop volumes, corresponding

to the asymptotically most unstable wavelengths, predicted by the linear analysis of the

pendant state, it is especially important to evaluate the transient effects, which might amplify

potentially different wavelengths before the formation of the pendant curtain, thus possibly

modifying the end-fate of the drops.

Figures 5.10(b-d) present the optimal transient gains as a function of the time horizon, for

different wave numbers k. We observe no appreciable transient growth, which is consistent

with the lack of measurable interface disturbances before the saturation of the pendant

curtain in the non-linear simulations of Weidner et al. (1997). Moreover, the wavelength
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selection appears to be unaffected. The gain of the asymptotically most unstable wave number,

predicted by linear stability analysis (black dashed line), largely coincides with that of the

envelope, i.e. it is as amplified as the transiently most amplified wave number. Therefore,

we can safely conclude that the criterion for three-dimensional pinch-off is unaltered by the

transient nature of the drainage, and is instead well captured, at least in the linear regime, by

the asymptotic quasi-stationary modal stability analysis.

5.4 Summary and conclusion

In this work, we studied the gravity-driven flow of a viscous liquid film coating the outer wall

of a horizontal cylinder in the inertialess regime. A numerical solution was first computed for

the temporal evolution of an axially invariant base flow, starting from rest and of a uniform

thickness. The base flow exhibits an instantaneous liquid pull-off. For a fixed mean thickness,

but depending on the Bond number, two trends were observed at large times: either the

draining film reaches a quasi-static axially invariant pendant curtain (at small Bond numbers),

or the liquid pull-off continues and results in a two-dimensional pinch-off under the cylinder

(at large Bond numbers). While at small Bond numbers, surface tension sustains a quasi-

circular interface shape, increasing the Bond number results in further deformation of the

interface, stretching out vertically underneath the cylinder. A similar effect of the Bond

number on the deformation of the interface was observed in chapter 4 for a liquid film

coating the inside of a tube. However, inside a tube, the surrounding solid wall prohibits

any two-dimensional rupture. The critical two-dimensional pinch-off Bond number is found

to scale as the inverse of the mean film thickness around the cylinder. This scaling and

its numerically obtained prefactor agree firmly with the critical value obtained by a scaling

analysis that equates the weight of the whole liquid bulk with the surface tension in the thick-

film limit. The scaling analysis however fails to give an accurate prediction for the thick film,

as the dripping occurs following an interface necking at some distance below the cylinder. As

a result, the surface tension fails to retain a fraction of the liquid bulk which accelerates below

the neck.

Next, the stability of the quasi-stationary pendant curtain was investigated through a linear

stability analysis. The curtain was found unconditionally linearly unstable. The sole unstable

mode features a left/right symmetry, strong interface modulations at the bottom, and an

immobile interface at the top of the cylinder for all parameter ranges. A similar top/bottom

asymmetry in the unstable mode was found in chapter 4. In both flows, the small film

thickness in the vicinity of a solid wall at the top of the interface forbids the interface from being

perturbed. The unstable eigenmode varies strongly with the Bond number; at small Bond

numbers, where surface tension dominates over gravity, the instability causes a flow reversal

towards the top of the cylinder, resembling the capillary-driven Rayleigh-Plateau instability.

By increasing the Bond number, the flow reversal weakens and ultimately vanishes, and

the instability promotes the formation of vertical fingers under the cylinder, resembling the

Rayleigh-Plateau instability. This observation is in accordance with the non-linear simulations
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of Weidner et al. (1997); Weidner (2013) in the thin film limit.

A parametric study was then conducted on the space of the dimensionless parameters {Bo,δ},

along with the energy analysis of the base flow and unstable mode. The energy analysis helped

interpreting the formation of a pendant curtain as a process to minimise the gravitational po-

tential energy of the bulk flow, subject to a surface energy barrier. It furthermore demonstrates

that gravity is unconditionally destabilising, whereas the role of surface tension varies with

the Bond number. At small Bond numbers, surface tension is destabilising and dominates

the instability. The eigenflow reduces the surface energy, confirming the characteristics of the

Rayleigh-Plateau instability. In contrast, increasing the Bond number reduces the capillarity

contribution to the instability, and exceeding a threshold, surface tension turns stabilising

as the eigenmode reduces only the gravitational potential energy, in analogy with the purely

gravity-driven Rayleigh-Taylor instability. Both limits are in accordance with the former de-

scription given by Weidner et al. (1997) in the early stages of the appearance of disturbances

to the flow in the thin film limit. Nevertheless, their analysis addressed a stabilising effect of

gravity at a low Bond number when the perturbations amplify beyond the linear range.

The present linear analysis also illustrates that the wavenumber of the most amplified mode

is selected through a compromise between surface energy and potential energy reduction,

and varies non-monotonously as a function of the mean film thickness and Bond number.

Moreover, a phase diagram was sketched for the viscous liquid films draining down the outer

wall of a horizontal cylinder, based on the asymptotic linear analysis of a quasi-static pendant

curtain, postulating that the non-linearity does not affect selection of the most amplified

wavelength. This assumption is aligned with the non-linear simulations of Weidner et al.

(1997). This diagram proposes a regime boundary as a function of the Bond number and mean

film thickness to predict if the emerging pattern leads into a three-dimensional pinch-off or

forms a static array of wrapping pearls or pendant drops. Lastly, a transient growth analysis

revealed that the most amplified wavenumber is correctly predicted by the leading eigenvalue

associated to the stability of the saturated pendant curtain, and concluded that the nonmodal

mechanisms are too weak to alter the fate of the pendant curtain instability.

Finger (Takagi and Huppert, 2010; Balestra et al., 2019) and pearl (Carroll, 1984; Brochard-

Wyart et al., 1990; McHale et al., 1999) formation in the viscous flow on top of a cylindrical

substrate have been addressed extensively. However, one should note that the contact-line

plays an essential role in those cases, hence they differ in nature from the instabilities reported

in our analysis. The linear stability of a liquid column covering the entire periphery of a

horizontal cylinder at rest in the presence of gravity has not been well addressed experimentally

in the literature. One possible reason may be the practical challenge of initiating a long liquid

column of desired thickness around the cylinder. Yet it will be of interest to explore this flow

experimentally and compare the real-life pattern formations with those predicted by our study.

Note that the threshold of three-dimensional droplet rupture by Weidner et al. (1997) was

obtained using the thin film equations. This prediction states that a pearl of large mean
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thickness eventually pinches even at a very low Bond number; an intuitively reasonable

prediction. Yet, the critical pinch-off volume may feature a thick film for which the thin-

film equations may suffer from a lack of accuracy. Therefore, a direct numerical simulation

of a three-dimensional static drop may verify the accuracy of the analysis of Weidner et al.

(1997), and consequently the droplet pinch-off boundary in the phase diagram of the present

study. Additionally, a key assumption behind the presented phase diagram in §5.3.3 is that

the most amplified wavelength remains unchanged throughout different instability stages. It

is worth therefore verifying this assumption by means of direct numerical simulations. Such

an analysis will be insightful for verifying whether or not the droplet rupture will be affected

by the meniscus connecting the droplet to the thin film that remains on the cylinder or by

coalescing with possible neighbouring tiny satellite pearls (Weidner et al., 1997). It would

further be pertinent to perform a transient growth analysis in the two-dimensional dripping

regime. Under the effect of finite-time amplification of perturbations, the draining bulk could

arguably split into an array of droplets, small enough to remain suspended on the fibre, before

the rupture of the curtain. Another direction for future investigations is to evaluate the flow

instability when the cylinder is inclined so that a longitudinal component of gravity creates

axial flow motion, forming a single rivulet under the cylinder (Aktershev et al., 2021).
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5.5 Appendix

5.5.1 Derivation of the interface boundary conditions

In this section, the derivation of the interface boundary conditions is elaborated for the

perturbed flow. These conditions are imposed at the perturbed interface, i.e. atr =R0
int +

ϵη1, while η1 is already an unknown of the problem. By using the Taylor expansion, that is,

projecting radially at the base interface, i.e. at r =R0
int(θ, t ), any flow quantity at the perturbed

interface can be readily approximated. This projection is referred to as flattening and for an

arbitrary function f (r,θ, z, t ) can be expressed as

f |(r=R0
int+ϵη1,θ,z,t ) = f |(r=R0

int,θ,z,t ) +ϵη1 ∂r f |(r=R0
int,θ,z,t ) +O(ϵ2). (5.29)

By substituting the decomposed state vector of (5.7), into the interface conditions (5.5)-

(5.6), then using the normal mode (5.8), and applying the aforementioned flattening, we can

formulate these conditions as a set of equivalent constraints at the boundary of the base

interface. The linearised form of the kinematic condition (5.5) writes

∂t
(
R0

int +ϵη1)+ (
u0 +ϵu1) ·∇(

R0
int +ϵη1)= (

u0 +ϵu1) ·er at r =R0
int +ϵη1, (5.30)

where the gradient vector in the Cylindrical coordinates can be expressed as∇= (∂r ,1/r∂θ,∂z )T .

Applying (5.29) to (5.30) and using the normal mode (5.8) readily results in (5.11).

The linearised dynamic condition (5.6) writes(
τ0 +ϵτ1

) (
n0 +ϵn1)=−(

κ0 +ϵκ1)(n0 +ϵn1) at r =R0
int +ϵη1, (5.31)

Applying (5.29) to (5.31) and using the normal mode (5.8) readily results in (5.15). In order to

express interface conditions in the Cartesian coordinates, the terms which are expressed in

the Cylindrical coordinates should be transformed by employing the Jacobian transformations

as

er = cosθ ex + sinθ ey , eθ =−sinθ ex +cosθ ey ,

∂r = cosθ ∂x + sinθ ∂y , ∂θ =
t0 ·∇s

t0 ·∇sθ
, (5.32)

where t0 denotes the unit tangent vector, and ∇s =∇−n0
(
n0 ·∇)

is the tangential derivative

at the base interface. Both conditions (5.11) and (5.15) include the normal vector and the

curvature of the perturbed interface whose formulation is given in §4.5.3 in chapter 4. For

further details concerning the numerical implementation of the boundary conditions, see

appendix 5.5.2.
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5.5.2 Variational formulation of the linear stability analysis and implementation
of its boundary conditions

Implementation of the numerical scheme and development of the variational formulation as-

sociated with the governing equations presented in section 5.2 are elaborated in this appendix,

recalling that the numerical domain is shown in figure 5.4. To develop the variational form

of (5.12), firstly the normal mode of (5.8) is applied to the system of equations (5.9)-(5.11).

Then it is internally multiplied by the vector of the test functions ψ = [ψp ,ψu,ψη], where

ψu = [ψux ,ψuy ,ψuz ]. The resulting scalar product is integrated at Ωx y , which in the linear

order writes{Ï
Ωx y

ψ⋆p
(∇̃ · ũ

)
dAΩx y (5.33)

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4σũ
)

dAΩx y (5.34)

+
Ï
Ωx y

ψ⋆u ·
((

Bo

Oh

)2

δ4 (
u0 · ∇̃ũ+ ũ ·∇u0)) dAΩx y (5.35)

+
Ï
Ωx y

tr
(
τ̃T (∇̃ψu

)⋆)
dAΩx y (5.36)

+
∫
∂Σint

(
τ̃0 ñ+ η̃∂rτ

0 n0 + (
κ0ñ+ κ̃n0)) ·ψ⋆u ds (5.37)

+
∫
∂Σint

ψ⋆η
(
ση̃

)
ds (5.38)

+
∫
∂Σint

ψ⋆η

((
−∂r u0

r +
∂r u0

θ
∂θR0

int

R0
int

−
u0
θ
∂θR0

int(
R0

int

)2

)
η̃+

u0
θ

R0
int

∂θη̃+
∂θR0

int

R0
int

ũθ− ũr

)
ds

}
(5.39)

+ c.c. = 0. (5.40)

It should be noted that in a complex system, the applied scalar product is Hermitian, defined

as 〈a,b〉 = a⋆ ·b where the superscript ⋆ denotes the complex conjugate. This variational

equation can be readily implemented and solved in COMSOL MultiphysicsTM. It is sufficient

to solve the first part (in {}) and the c.c. is known consequently. Step-by-step derivation of this

equation is presented in §4.5.2. The matrix representation of (5.33)-(5.40) is also similar to

that shown in figure 4.13.

5.5.3 Derivation of a simplified expression for the energy density of the transient
response.

The interfacial energy density per wavelength is proportional to
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e(T ) = k

2π

∮
S(T )

∫ 2π/k

0
|η̄(T )e ikz + c.c|2dzds = 2

∮
S(T )

|η̄(T )|2ds

= 2
N∑

m=−N

N∑
n=−N

α⋆mαn

∮
S(T )

η̄m(T )⋆η̄n(T )ds

= 2αH A(T )α,

(5.41)

where the strictly positive definite and Hermitian matrix A(T ) is such that

[A(T )]mn =
∮
S(T )

η̄m(T )⋆η̄n(T )ds, (5.42)

for −N ≤ m ≤ N and −N ≤ n ≤ N , and where we defined

α= [α⋆N ,α⋆N−1, ...,α⋆1 ,α0,α1, ...,αN−1,αN ]T . (5.43)

The leading eigenvector of A(T ) has no particular reason to have its N first elements equal to

the complex conjugate of its last N . Thus, it cannot correspond directly to the optimal set of

α, that should satisfy this last constraint. For this reason we introduce the matrix

M−1 =

 I O P

OT
p

2 OT

−iI O iP

 , with Ii j = δi j , Pi j = δN−i+1, j , and Oi = 0. (5.44)

for 1 ≤ i , j ≤ N . Namely, I is the identity matrix of size N ×N , P is the identity matrix mirrored

around its vertical axis (it contains ones on the diagonal from the bottom-left to the top-right

and zeros everywhere else) and O is a vector of zeros of size N ×1. In this manner, we have

directly a = M−1α, such that

e(T ) = 2αH A(T )α= 2aT MH A(T )Ma = 2aT ℜ[MH A(T )M]a, (5.45)

where we used that a and e(T ) are real-valued. Therefore, defining E(T ) =ℜ[MH A(T )M] leads

to the desired result.

Finally, the orthogonality of the Fourier modes ensures that A(0) = 2πI. It is further straightfor-

ward to show that MH M = 1
2 I, resulting in E(0) =πI and e(0) = 2πaT a.

5.5.4 Validation of the numerical model

The present numerical scheme is validated hereafter. Several measures are taken to ensure the

correspondence of the model, based on the asymptotic limits and analytical solutions if any.
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Figure 5.11: Numerical model validation; (a) base flow: temporal evolution of the south pole
thickness; solid line presents the solution from the present numerical study, and the red circles
present the solution obtained by Weidner et al. (1997); Oh →∞,Bo = 1.21,β= 10/9; (b) linear
stability analysis: dispersion curves of the two least stable modes associated with the gravity-
driven viscous film flow down a centered cylinder, namely |m| = {0,1}. The continuous lines
present the analytical solution obtained from the Stokes equations, and the circles represent
the results from the present numerical model; Craster and Matar (2006) considered a similar
perturbation as in equation 5.7 with the normal mode of exp[σt + ikz + imθ], a typical choice
for the axisymmetric configurations. Note that the present model, in the Cartesian coordinates,
does not expand in the azimuthal wavenumber m; Oh →∞,Bo = 1,δ= 0.4.

Base flow model

The present base flow model is validated with Weidner et al. (1997) who employed the lubrica-

tion approximation (Oron et al., 1997) to simulate the non-linear gravity-driven evolution of a

thin film around a solid horizontal cylinder. Figure 5.11(a) shows the temporal evolution at

the south pole of the cylinder for {Oh →∞,Bo = 1.21,β= 10/9}. The present model results in

a solution of the base flow in firm agreement with the solution of Weidner et al. (1997).

Linear stability analysis model

The present linear stability model is validated with the analytical solutions that Craster and

Matar (2006) presented for the gravity-driven coating flow down a vertical centered cylinder

(where gravity points in z direction in figure 5.1). The corresponding base flow is parallel and
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Figure 5.12: Mesh convergence proof for Oh →∞, Bo = 0.4, δ = 0.2: (a) base flow; H 0
S /δ vs

|u0
y |; (b) linear stability analysis; σmax

r vs Ndo f . All of the results presented in this manuscript
are obtained from M3.

can be expressed in cylindrical coordinates as

u0
z =

δ−2

2

(
ln

r

β
− r 2 −β2

2

)
, p0 = 1, R0

int = 1. (5.46)

For the linear stability analysis, Craster and Matar (2006) employed the long-wavelength ap-

proximation (Reynolds, 1886) and compared the results with the analytical solution, in terms

of Bessel functions, obtained by solving the full Stokes equations (Goren, 1962). Unlike the

present study that is formulated in the Cartesian coordinates, Craster and Matar (2006) used

the axisymmetry of the flow and considered a perturbation as in (5.8) with the normal mode

exponent of exp[σt + ikz + imθ] where m denotes the azimuthal wavenumber. Figure 5.11(b)

presents the agreement between the present linear stability model and the analytical solution

for a thick film δ= 0.4. It should be noted that despite the axisymmetric nature of the vali-

dated case, this presented validation holds also for an arbitrary interface. For this aim, the

geometrical symmetry in the numerical reference frame is broken by setting the origin of the

coordinates system at an arbitrary location inside the liquid film, (x, y) = (0.2,0.7).

Grid independency

A convergence study for the base flow evolution and the linear stability of the most unsta-

ble eigenvalue is presented in figure 5.12, for {Oh →∞,Bo = 0.4,δ = 0.2}. Mesh resolution

is controlled by setting a prefactor multiplied by the number of divisions at the solid wall

and interface boundaries. Mesh convergence is obtained for the presented grids. All of the
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presented results in the manuscript are obtained employing M3.

5.5.5 Derivation of the energy equation

In this section, the derivation of the energy equation is elaborated. Dimensional form of

the momentum equation (5.3) in the inertialess limit is given in chapter 3. Following the

same formalism, the dimensionless form of the energy equation, obtained under the scaling

presented in §5.2, can be expressed as

Ñ
Ωx y

Bo δ2 tr
((∇u+∇T u

)∇u
)

︸ ︷︷ ︸
DIS

+
Ï
∂Ωx y

−
(
τn0

)
·u︸ ︷︷ ︸

BND

+
Ñ

Ωx y

−Bo uy︸ ︷︷ ︸
POT

= 0. (5.47)

Each under-brace denotes the physical mechanism associated with the respective term, as

follows:

1. DIS: the rate of viscous dissipation in the bulk fluid

2. BND: the rate of work done by the fluid through the moving boundaries

3. POT: the rate of change of gravitational potential energy

No-slip condition implies u = 0 at ∂Σw, thus yielding (5.23).

Energy equation for the perturbed flow

The energy equation for the perturbed flow is obtained by substituting the perturbed state

vector (5.7) with the normal mode (5.8), into (5.23) and integrating it over one wavelength

∆z =λ= 2π/k. The resulting integral is of the order ϵ2 and determines the energy equation for

the linear perturbations which implies

2π

k
e2σr t


Ï
Ωx y

Bo δ2 tr
((∇̃ũ+∇̃T ũ

)∇̃ũ⋆
)

︸ ︷︷ ︸
DIS1

+
∫
∂Σint

−
(
τn0

)
· ũ⋆︸ ︷︷ ︸

BND1

+c.c. = 0, (5.48)

We remind that the normal mode (5.8) is complex, hence the integral of terms in ϵ1 order vanish

due to the periodicity of the perturbations over λ. As (2π/k)e2σr t > 0, it can be factorised and

simplified. We hereafter only focus on the real part of (5.48) which writes(
DIS1 +BND1)

r = 0. (5.49)

Let us recall (5.15), and that for a quasi-static pendant drop where u0 ≈ 0, τ0 =−p0I. Except for

the thin film covering the upper side of the cylinder, where η̃≈ 0 and pressure follows the lu-
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brication pressure, bulk pressure is hydrostatic, p0 ≈−Bo y . Thus, BND1 can be decomposed

as

BND1 = SUR1 +POT1, (5.50)

where SUR1 denotes the capillary contribution to the rate of work at the perturbed interface,

and POT1 denotes the rate at which the fluid works against the hydrostatic pressure to perturb

the interface. These terms can be expressed as

SUR1 =
∫
∂Σint

κ̃n0 · ũ⋆, (5.51)

POT1 =
∫
∂Σint

(
η̃ ∂rτ

0 n0
)
· ũ⋆, (5.52)

thus giving (5.27).
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6 Modeling melt electrowriting beam

Remark This chapter is largely inspired by the master thesis of Cèdric Scherz, of the same

title

Cèdric Scherz1, Shahab Eghbali1† and F. Gallaire1

1 Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne CH-1015, Switzerland

Authors’contributions F.G. conceived the project, funded by SFA Advanced Manufacturing.

S.E. prepared the preliminary multiphysics numerical model and developed the theoretical

framework. C.S provided further developments on the model. S.E. supervised C.S. during his

master thesis, and wrote the manuscript with input from C.S..

6.1 Introduction

The flow of an electrically induced liquid jet has received attention since the early studies

of Zeleny (1914). When the bulk of two immiscible fluids of finite conductivity in contact with

each other is exposed to an intense electric field, the free ions carried by the fluids are attracted

in the direction of the applied field due to additional stress, known as Maxwell stress. Since the

interface halts the transport of charged particles from one fluid to another, ions accumulate at

the interface and form a strong local electric field. The difference in the polarisability of the

media in contact, measured by their permittivity, induces a stress jump at the interface that

can cause vigorous interfacial motions. In such a case, the superposition of hydrodynamic

and electrical stresses modifies the shape of the interface. Most notably, the interface forms a

conical shape when the applied electrical field is intense enough.

Electrified flows have a vast number of applications in biomedical or soft robotics, micro/-

nanofluidics, ink-jet and 3D printing, fine material production and processing, combined

electrical and mechanical flow focusing, and pharmaceutical processes (Gañán-Calvo et al.,

2006; Gañán-Calvo and Montanero, 2009; Gomez and Deng, 2011; Schröder, 2012; Cruz-Mazo
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Figure 6.1: (a) Cone-jet with the well visible cone apex and emitting thin jet from the tip,
reprinted from Rosell-Llompart et al. (2018); (b) Cone-jet with a smooth meniscus connecting
to the thin jet; white lines show the numerically computed streamlines, reprinted from Herrada
et al. (2012); (c) Illustration of the melt electrowriting process, reprinted from Robinson et al.
(2019).

et al., 2016; Boda et al., 2018; Gañán-Calvo et al., 2018b). In a pioneering theoretical study, Tay-

lor (1964) neglected the fluid motion and considered the conical deformation of an inviscid

drop for which he computed the angle that satisfies the balance of stresses between the surface

tension and the one induced by the electric field. The equilibrium suggests a cone half-angle

value equal to 49.3◦, known as the Taylor cone. Analogously, in the case of a liquid jet in an

intense electric field, the interface thins along the flow and forms a similar conical shape

with an emerging jet from its apex (cf. figure 6.1(a)), a configuration referred to hereafter as

cone-jet. The emerging jet from the cone is prone to the instabilities caused by the capillary

effects in the presence of electrical charge transportation, leading to the jet break up and for-

mation of droplets; single ones, or spraying clusters downstream of the thin jet (Zeleny, 1914;

Cloupeau and Prunet-Foch, 1989). Numerous studies have addressed electrified liquid jets

surrounded by air from two perspectives: (i) based on the scaling analysis, and (ii) theoretical

electrohydrodynamic models. Studying the underlying mechanisms by means of scaling laws

is mainly based on Gañán-Calvo et al. (1994); Gañán-Calvo (1999) where the intrinsic scales

of length, time, and electric current were proposed to analyse the universal properties of the

cone-jet. Such arguments have suggested scalings for the jet size, electric current, and the

droplet size (De La Mora and Loscertales, 1994; Gañán-Calvo et al., 1994; Gañán-Calvo, 1999;

Gañán-Calvo and Montanero, 2009) based on the hydrodynamic and electrical properties of

the liquid and the ambient air. These scales are in agreement with numerous experimental

measurements (see Gañán-Calvo et al. (2018b) for the review).

On the other hand, the Taylor-Melcher leaky dielectric model (Melcher and Taylor, 1969;

Saville, 1997) is the backbone of the theoretical studies of electrified liquids. Gañán Calvo

(1997) employed this model and described the static cone-jet using the slender-jet description.

Later, López-Herrera et al. (2013) showed the accuracy of the slender-jet assumption for the

quasi-cylindrical jets in the high Ohnesorge limit. Gamero-Castaño and Magnani (2019b)

simulated static cone-jet of a smooth conical meniscus by solving the Navier-Stokes equations
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coupled with the electric field equation, in favourable agreement with the experiments (cf.

figure 6.1(b)). These studies, among all, distinguished three main sub-regions in the cone-jet:

(i) the upstream meniscus attached to the capillary, where the charge transport is dominated by

ohmic conduction; (ii) the cone neck, which is the intermediate transition region between the

conduction-dominant meniscus and the convection-dominated jet; and (iii) the downstream

jet, where the surface convection leads the charge transport.

In this chapter, we investigate numerically the cone-jet formation from the perspective of the

melt electrowriting, that is, an additive manufacturing technique that gained a growing interest

over the last ten years (see Robinson et al. (2019) for detailed review). In this process, a liquid

thread of dozens nl/s volumetric flow rate falls on a moving collector, while an electric field acts

on the thread, schematised in figure 6.1(c). The electric field, created by a potential difference

of kV order between the metallic nozzle and a ground electrode located at the collector level

reduces the liquid beam size. Common thread diameters measure dozens of micrometers,

while the smallest values can reach around 2 µm (Bober and Chen, 2011; Hrynevich et al.,

2018). Neglecting what happens when the thread reaches the collector plate, we focus on the

interface shape and flow characteristics near the nozzle outlet, and on the dependence of the

jet thinning and cone half-angle on the electrical and hydrodynamic parameters. To this aim,

we extend the methodology of Herrada et al. (2012) to a time-dependent laminar jet flow in

two-dimensional axisymmetric configuration.

This chapter is organised as follows. In § 6.2, the problem formulation and numerical method

are detailed. The governing equations and underlying assumptions are presented in § 6.2.1,

and the numerical procedure is detailed in § 6.2.2. The results are presented and discussed

in § 6.3. The influence of the applied electric field on the flow field is discussed in § 6.3.1.

Moreover, the variation of the jet interface under the applied electric field is quantified in

§ 6.3.2, whereas the influence of gravity on the electrified field is discussed in § 6.3.3. Lastly, a

summary and the future perspectives are outlined in § 6.4.

6.2 Governing equations and methods

6.2.1 Problem formulation

An axisymmetric liquid jet is considered to discharge into the air with a volumetric flow

rate of Q from a nozzle of radius R. The schematic of the flow is shown in figure 6.2. The

standard axisymmetric coordinates (r, z) are considered with the origin (r = 0, z = 0) located

at the center of the nozzle outlet, and the gravity acceleration, g, points in the positive z

direction. A potential difference V0 is applied between the nozzle and a ground plate located

at a distance H . Both liquid and air are assumed incompressible and Newtonian. The liquid is

of density ρ, viscosity µ and surface tension γ, while the surrounding air is of density ρai r ≪ ρ

and viscosity µai r ≪ µ. The electrical permittivity of air is ϵ0, the liquid-to-air electrical

permittivity ratio is β, the liquid conductivity is K , and the conductivity of air is neglected. The
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interface can be parametrised with its radial position in cylindrical coordinates as rint(t , z). The

Figure 6.2: Schematic of an electrified jet; the blue area shows the liquid jet surrounded by air,
the thin solid line shows the liquid-air interface, and the substrate of zero potential is located
at a far distance H downstream the nozzle. The volumetric flow rate of the nozzle is denoted
by Q.

dimensionless state vector q = (ui ,o , p i ,o ,Rint,V i ,o)T defines the flow at dimensionless time t ,

where ui ,o(t ,r, z) = (ui ,o
r ,ui ,o

z )T denotes the two-dimensional velocity field, p i ,o(t ,r, z) denotes

the pressure, Rint = rint/R denotes the dimensionless interface radius, and V i ,o denotes the

electrical potential. Superscripts i and o denote hereafter the inner liquid domain and the

outer air domain, respectively. The equations governing the system are the Navier-Stokes

equations for the pressure and velocity fields and the Laplace equation for the potential of

the electric field. The state vector and the governing equations are rendered dimensionless

using the nozzle radius as characteristic length L= R, viscous time scale T = ρR2/µ, viscous

velocity scale U = R/T =µ/ρR, viscous stress P =µ2/ρR2, and the nozzle voltage V0.

The dimensionless Navier-Stokes equations in the liquid and air domains, respectively, write

∇·ui = 0 , (6.1a)(
∂t +ui ·∇

)
ui =−∇p i +∇2ui + Bo

Oh2 ez , (6.1b)

∇·uo = 0 , (6.2a)

ρai r

ρ

(
∂t +uo ·∇)

uo =−∇po + µai r

µ
∇2uo + ρai r

ρ

Bo

Oh2 ez , (6.2b)

where ∂ j denotes the partial derivative with respect to quantity j , Oh =µ/
√
ρRγ is the Ohne-

sorge number and Bo = ρg R2/γ is the hydrodynamic Bond number computed for the liquid.
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While Oh compares the viscous forces to the inertial and surface tension forces, Bo compares

the gravitational and surface tension forces. We recall that ρai r ≪ ρ and µai r ≪µ.

The dimensionless Laplace equations for the electric potential in the liquid and air write

∇2V i ,o = 0. (6.3)

From the potentials, the electric fields in the liquid and air domains can be deduced as Ei ,o =
−∇V i ,o . The motion of charged species is modeled using the leaky dielectric model, assuming

that the electric relaxation time is much smaller than the hydrodynamic time scale (Yan et al.,

2003; Rosell-Llompart et al., 2018; Herrada et al., 2012). Thus, the charge density in the liquid

bulk vanishes and all of the electric charges accumulate at the jet interface (Melcher and

Taylor, 1969), where the coupling between the fluid and the electric field occurs through the

balance of the electrical (Maxwell) stress and the mechanical stress, which implies(
τo

m
−τi

m

)
n+ χ

Oh2

(
τo

e
−βτi

e

)
n = 1

Oh2 (∇s ·n)n , at r =Rint, (6.4)

where the mechanical stress tensor reads

τi ,o
m

=−p i ,oI+ µi ,o

µ

(
∇ui ,o +∇T ui ,o

)
, (6.5)

χ = ϵ0V 2
0 /γR denotes the electrical Bond number that compares the electrical forces and

capillary ones, ∇s ·n is the interface curvature, ∇s = (I−nnT )∇ denotes the surface gradient

operator (see appendix 6.5.1 for further detail), and Maxwell stress reads

τi ,o
e

= Ei ,o ⊗Ei ,o − 1

2
∥Ei ,o∥2I, (6.6)

where ⊗ denotes the tensor product of two vectors and ∥ ·∥ denotes the Euclidean norm of a

vector. The conservation of surface charge at the interface reads

∂tσ+∇s · (σui ) =αEi ·n , at r =Rint, (6.7)

where σ= (Eo −βEi )|r=Rint ·n denotes the surface charge density, and α= KρR2/µϵ0 denotes

the dimensionless electrical conductivity. The boundary conditions to complement the system

of governing equations are presented in § 6.2.2.

6.2.2 Numerical method

In this section, the numerical procedure to simulate the melt electrowriting beam is detailed.

The state vector is obtained by solving the governing equations (6.1)-(6.7) numerically employ-

ing the finite element package COMSOL MultiphysicsTM. The numerical domain is sketched

in figure 6.3. The flow behaviour in the vicinity of the nozzle is of the utmost interest, thus

the numerical domain is truncated before the flow reaches the collector plate, where the jet
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Figure 6.3: Numerical domain; the liquid domain is indicated in blue, the air domain is
indicated in white, the red lines indicate the boundaries of the air domain, and the liquid-air
interface is indicated by the green continuous line, ∂Σint. Nozzle outlet (domain inlet) is
marked as ∂Σinlet, axis is marked as ∂Σsym, top wall is marked as ∂Σw,1, side wall is marked as
∂Σw,2, liquid outlet is marked as ∂Σi

out and air outlet is marked as ∂Σo
out. The numerical sponge

region is shaded in grey. The right panel shows the numerical variation of the Bond number,
Bonum , along the domain and numerical sponge, upstream of the outlet.

has a dimensionless length of Ld , referred to hereafter as the jet length. The dimensionless

distance of the nozzle from the ground potential is denoted by H = H/L. The shear-free

air surrounding the jet is considered up to a far-field radius Rd from the axis, referred to

hereafter as the domain width. Inspired by Ponce-Torres et al. (2018), the dimensions of the

computational domain are set to {Ld ,Rd ,H} = {20,40,40}. (Dependence of the solutions on

the domain dimensions is presented in appendix 6.5.2.)

The computational domain is discretized using triangular mesh elements, where the grid

size is controlled by the vertex densities on the boundaries. The Navier-Stokes equations

(6.1)-(6.2) are discretised using the linear Lagrange shape function (P1) for the velocity and

the pressure with streamline diffusion stabilization. The Laplace equations (6.3) and the

conservation of surface charge equation (6.7) are discretised with the quadratic Lagrange

shape function (P2). Such a discretisation results in ∼160’000 degrees of freedom, verified to

attain a grid-independent solution (see appendix 6.5.2 for more details).

Numerical boundary conditions

The boundary conditions are as follows:
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• Nozzle:

The inlet volumetric flow rate is applied as

Q= 2π
∫ 1

r=0
ui

z r dr, at ∂Σinlet, (6.8)

where Q = ρQ/µR denotes the dimensionless flow rate and the constant voltage is

imposed as

V i = 1, at ∂Σinlet. (6.9)

• Axis:

The symmetry condition is applied as

ui
r = ∂r ui

z = ∂r V i = 0, at ∂Σsym. (6.10)

• Walls:

No slip condition is applied as ui ,o = 0 on ∂Σw,1 ∪∂Σw,2. On the top wall, the logarithmic

drop of potential is applied (Ponce-Torres et al., 2018) that implies

V o = 1− (
1−φ(r =Rd , z = 0)

) logr

logRd
, at ∂Σw,1, (6.11)

where φ(r, z) is the analytical solution for a far-field potential given as

φ(r, z) =− Kv

log(4H)
log

( √
r 2 + (z/H)2 + z/H√

r 2 + (2− z/H)2 + (2− z/H)

)
, (6.12)

where Kv (H) is a dimensionless constant given by Gañán-Calvo et al. (1994). Further-

more, the far-field potential at the right-side boundary implies

V o =φ(r =Rd , z), at ∂Σw,2. (6.13)

• Interface:

The kinematic boundary condition and continuity of the electric potential are imposed

as

ui ·n = uo ·n, at ∂Σint, (6.14)

V i =V o , at ∂Σint, (6.15)

respectively, where n denotes the normal vector to the interface that points from the

liquid to the air. The dynamic condition (6.4) is applied using the Lagrange multipliers

of quadratic shape function (P2).

• Outlet:

Setting the outlet hydrodynamic condition requires further numerical treatments as the

liquid jet in presence of gravity varies continuously along the axial direction. A numerical
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sponge region is considered to neutralise gravity numerically before the jet reaches the

outlet. The Bond number in the numerics is set as Bonum = Bo
(
1− step(z, zs , ls)

)
.

In the domain, for z < zs = 15, this value is set by the hydrodynamic Bond number,

and in the sponge region, for z ≥ zs , a smooth step function with continuous second

derivative, is used to reduce the Bond number to null over a vertical distance of ls = 2

(for further details about the independency of the solution from sponge parameters, see

appendix 6.5.2). As a result, the stress-free condition at the jet outlet can be imposed as

τi
m

ez = 0, at ∂Σi
out. (6.16)

Also, the outlet pressure in the air implies

τo
m

ez =−p0ez, at ∂Σo
out. (6.17)

Additionally, the constant surface charge at the interface is applied (Ponce-Torres et al.,

2018) that gives

∂zσ(z =Ld ) = 0, at ∂Σint, (6.18)

and the far-field potential at the outlet of both fluids implies

∂zV i ,o = ∂zφ=− Kv

H log(4H)

(
1√

r 2 + (Ld /H)2
+ 1√

r 2 + (2−Ld /H)2

)
, at ∂Σi ,o

out.

(6.19)

Numerical solver settings

The time-dependent flow is computed using the laminar two-phase flow module coupled with

the moving mesh module and the equation-based PDE solver for the electrical potential in two

domains and surface charge density at the interface. An automatic remeshing order is activated

if the mesh quality, defined as the volume-to-circumradius ratio (COMSOL MultiphysicsT M ,

2020), falls under 0.2. The parallel sparse direct solver (PARDISO) is used for the iterations

with a backward differentiation formula that sets the time step automatically with a second-

order scheme. In order to avoid the singularity while solving the shear-free interface, we set

µo/µi = ρo/ρi = 10−6.

The time-dependent solver was found to be very sensitive to flow initialisation. Several trials to

initialise the flow with a cylindrical interface and stagnant air failed at the very first time step.

These trials consist of setting various combinations of initialising the flow with electrified or

non-electrified fluids, a stagnant or Poiseuille velocity profile, constant or hydrostatic pressure

in the liquid body, and a Stokes flow field with a cylindrical interface (obtained by removing

the inertia terms from (6.1) and (6.2)). Therefore, the following numerical procedure with

three main steps is proposed in order to reduce the solver sensitivity step by step.

1. In the initialisation step, the Navier-Stokes equations are solved with unitary {Q,Oh,Bo}.
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Due to the sensitivity of the solver to the initialisation, this step is divided into two sub-

steps as follows.

• First, in the absence of nozzle voltage, the interface is initialised with an arbitrary

analytical shape. The velocity and pressure fields are then initialised by solving a

steady solver in which the interface is considered a solid slip wall. Several initial

shapes of the initial interface are tested, all resulting in the same solution (for more

details see appendix 6.5.2).

• Second, the liquid-air interface conditions are imposed at the interface. The

time-dependent computation is pursued until reaching the steady state. With the

present initialisation, several tests suggest that the solution reaches saturation

within 100 dimensionless time units.

2. Next, the volumetric flow rate Q is increased to 15 with a smooth step function over the

time interval ∆t = 10. Several trials suggest that a time span of 1000 dimensionless units

is sufficient for the flow to saturate.

3. Finally, the fully coupled system of equations is solved for {α,β} = {10,10}. The nozzle

voltage is increased by a smooth step function from 0 to 1 over the time interval ∆t = 20,

where the maximal time step and relative tolerance of the solver are set to 0.5 and 10−6,

respectively. Variation of the flow as a function of the electrical Bond number χ is then

pursued through a continuation in this step from 0 to 104 until reaching saturation for

each χ.

6.3 Results

This section presents the results of the electrified jet simulations. The space of variables

{Oh,Bo,Q,H,α,β,χ} is vast and can be explored following various formalisms. However, in

favour of time, only the effect of the electrical Bond number χ is studied in detail where we

shed light on the flow after the steady state is achieved.

6.3.1 Influence of the electrical Bond number (χ)

The effect of increasing the electrical Bond number on the flow is depicted in figure 6.4 for

{Oh,Bo,Q,H,α,β} = {1,1,15,40,10,10}. In absence of any electrical field, χ= 0, the liquid bulk

accelerates as it falls under the effect of gravity, leading to a continuous reduction in the cross-

sectional area of the jet (cf. figure 6.4(a)). Increasing χ to 104 results in a gradual formation

of a stretched meniscus, reminiscent of the Taylor cone, in the vicinity of the nozzle with a

high-speed jet emitting downstream, up to 18 times faster than the non-charged jet. A closer

look at the meniscus reveals that at the nozzle tip, streamlines fold and for a sufficiently large χ,

a recirculation cell appears which grows with increasing χ (cf. figure 6.4(b)). Existence of such

a recirculating cell was reported is some previous studies (Herrada et al., 2012; Gupta et al.,

2021). At the interface, the liquid velocity is enhanced the most, and the velocity accelerates
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Figure 6.4: Variation of the saturated flow as a function of electrical Bond χ; (a) Liquid velocity
and interface shape; (b) The same field zoomed in the vicinity of the nozzle tip; the black
continuous lines show the streamlines and the vectors show the velocity field; (c) Electrical
potential in the liquid jet; the blue continuous lines show the contours of electrical potential
in the liquid and air.
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Figure 6.5: (a) Axial velocity profile at the nozzle tip for different χ values for
{Oh,Bo,Q,H,α,β} = {1,1,15,40,10,10,40}; the black arrows represent the velocity vectors
along the velocity profile for χ= 104; upward arrows indicate backflow; (b) Axial velocity at the
center of the nozzle outlet, at (r, z) = (0,0).
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Figure 6.6: (a) Jet interface for various electrical Bond numbers; for {Oh,Bo,Q,H,α,β} =
{1,1,15,40,10,10}; the dashed gray line marks the beginning of the sponge region, zs ; (b) Jet
interface revisited for χ = 104; the inset zooms on the same interface in the vicinity of the
sponge, zs = 15.

further along the meniscus. Figure 6.4(c) exhibits a strong discontinuity in the electric field

(potential gradient) at the two sides of the interface along the meniscus. We recall from the

dynamic condition (6.4) that the influence of the maxwell stress increases proportionally with

increasing χ, implying that this strong liquid acceleration is induced by the strong tangential

stress applied at the meniscus. The formation of a recirculating cell is therefore a natural

response of the flow to conserve the mass flow rate at the nozzle tip. Away from the meniscus,

figure 6.4(c) evidences that the electrical potential becomes constant at the cross-section of

the jet and merely varies along the axial direction. The air electrical potential, in contrast,

varies in both (r, z) directions.

One can distinguish a recirculation cell simply through the backflow at the nozzle tip. Fig-

ure 6.5(a) shows that the strongest backflow occurs at the center of the nozzle, (r, z) = (0,0).

Before the recirculation cells form, the nozzle center evidences the least axial velocity. Fig-

ure 6.5(b) presents the variation of the liquid axial velocity at the center of the nozzle, uc
z =

ui
z (r = 0, z = 0), as a function of χ. This minimum velocity remains invariant for χ ≤ 100,

followed by a decrease as χ increases. The occurrence of the backflow, sign change from

positive to negative, takes place for χ≈ 2650, obtained from a logarithmic interpolation of the

numerical simulations. Note that this value corresponds only to the present set of parameters,

that is {Oh,Bo,Q,H,α,β} = {1,1,15,40,10,10}.

6.3.2 Jet interface

The liquid-air interface is depicted in figure 6.6 for several values of χ. The interface can be

further investigated from two perspectives: (i) the thin jet radius emitting from the meniscus,

and (ii) the cone half-angle. Figure 6.6(a) evidences that higher electrical Bond results in a more
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Figure 6.7: (a) Jet radius ratio as a function of the electrical Bond number for
{Oh,Bo,Q,H,α,β} = {1,1,15,40,10,10}; the black dots show the obtained values for the
present simulations, and the continuous line shows the interpolated values. (b) The cone
half-angle as a function of the electrical Bond number for the same parameters; the black
dashed line shows the theoretical angle obtained from the analysis of Taylor (1964).
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Figure 6.8: (a) The cone half-angle for large χ values; the solids line shows the meniscus;
the dotted line shows the tangent line at the inflection point; the black dash-dotted line
presents the Taylor cone with the theoretical angle; (b) The cone half-angle as a function of
the electrical Bond number for the same parameters as in figure 6.7; the black dashed line
shows the theoretical angle obtained from the analysis of Taylor (1964).

distincct conical meniscus of shorter length. The jet thinning almost plateaus downstream of

the cone with a variation of only 3.9% for χ= 104 over a distance 0.6zs ≤ z ≤ zs , corresponding

to a distance of about 30 times larger than the local jet radius, as shown in figure 6.6(b).

Therefore, we set a metric, hereafter referred to as radius ratio, to measure the emerging jet
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radius before the numerical sponge, at a distance of 0.8zs downstream of the nozzle, to that

of the non-electrified jet at the same flow parameters, i.e. R j =Rint(z = 0.8zs ,χ)/Rint(z =
0.8zs ,χ= 0). This metric represents the downstream jet thinning due to the electric potential.

Figure 6.7 presents the radius ratio as a function of χ. The decrease in R j takes place for χ> 10

and continues for larger χ in the present study.

Another important characteristic of the interface is the cone half-angle. Note that even though

highly electrified menisci in the present study resemble the Taylor cone at intermediate and

large χ, they do not exhibit a perfectly straight side as for a cone (cf. figure 6.8(a)). Still, it is

insightful to measure the half-angle of the electrified menisci. To do so, the angle between the

axis and the tangent line at the inflection point of the meniscus (dotted lines in figure 6.8(a)) is

measured as the cone half-angle θ. Figure 6.8(b) presents the variation of θ for several values

of χ. This angle begins to vary for χ> 100 coinciding with the flow deceleration at the nozzle

center (cf. figure 6.5(a)). Within 700 ≤χ≤ 104, the variation exhibits a power law, best fitted by

θ = 13.37χ0.19−37.3. The largest θ found in the present study is θ(χ= 104) = 40.6◦ which differs

from that calculated in Taylor (1964), θth = 49.3◦. For χ> 104, the numerical solver slows down,

resulting in very long simulations with tiny time steps of the order of 10−8. Several settings

were examined to accelerate the simulation time; increasing the mesh resolution at the nozzle

tip, reducing the mesh quality threshold for remeshing, applying the mesh distortion as the

remeshing criteria, increasing the solver tolerance, and varying the iterative solver and time

stepping settings, to name a few. Yet, no tangible improvement was achieved. Thus, the

present study is limited to 0 ≤ χ≤ 104. Considering the same trend observed for θ, it is not

impossible that this angle approaches the theoretical one. Nevertheless, it is not clear if the

same power law sustains for all ranges of larger χ, in which case it exceeds the theoretical

49.3◦. We note that the cone half-angles lower or higher than that of Taylor’s calculation have

been reported experimentally in the literature (De La Mora, 1992; Pantano et al., 1994).

6.3.3 Effect of the gravity

One of the above-mentioned observations is that the jet radius plateaus upstream of the

sponge (cf. figure 6.6(b)). Such an observation is contrary to the typical jet thinning due to

gravity. Thus we investigate the effect of gravity on the interface of the electrified jet. Figure 6.9

compares the interface for Bo = {0,1} at the highest electrical Bond in the present study,

χ = 104. In the absence of gravity, the interface does not alter for the presented electrified

jet. This result suggests that the behaviour of the electrified jet is ruled by the electrical Bond

number and not the hydrodynamic one. Such an observation is consistent with those of Ponce-

Torres et al. (2018); Gamero-Castaño and Magnani (2019a,b); Saville (1997) who neglected the

gravity in their computations.

141



Modeling melt electrowriting beam

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Figure 6.9: Effect of gravity on the jet interface {Oh,Q,H,α,β} = {1,15,40,10,10} and Bo =
{0,1}.

6.4 Summary and perspective

In this chapter, the behaviour of a liquid jet under the action of an electric field was studied.

In particular, we investigated the jet thinning and formation of the conical meniscus as

electrical stresses increase, by increasing the electrical Bond number. The steady electrified

was obtained numerically by solving the time-dependent Navier-Stokes equations until large

times in both liquid and surrounding shear-free air in the axisymmetric configuration, coupled

with the electric field equations under the leaky-dielectric assumption.

The interface transition was successfully captured from a falling nozzle outlet to the conical

meniscus with a fine jet emerging from its tip. For low and intermediate electrical Bond, the

flow is mainly governed by the hydrodynamic parameters. On the contrary, it was shown

that increasing the electrical Bond results in a strong jump in the electric field at the liquid-

air interface. As a result, the liquid flow accelerates tangentially at the interface and the

streamlines fold in the vicinity of the nozzle. Exceeding the electrical Bond over a threshold

results in the formation of a recirculating cell and backflow at the nozzle tip to preserve the

mass flow rate. By increasing the electrical Bond further, this recirculation cell grows while

the length of the meniscus shrinks; approaching a cone-like shape. Furthermore, the far

downstream jet radius and cone half-angle were measured as a function of the electrical Bond.

A strong jet thinning occurs as the electrical Bond increases, resulting in a downstream jet

5 times smaller in radius for the highest electrical Bond studied. The present study reveals

that for a sufficiently large electrical Bond, the emitting thin jet reaches a parallel profile

downstream of the meniscus where the jet thinning saturates. It was also shown that gravity

does not affect the interface at large electrical Bond numbers, whereas the meniscus half-angle

increases by increasing the voltage, exhibiting a power law trend with the electrical Bond.

Despite depicting the cone-jet formation, the present study remains a preliminary parametric
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study that was restricted to one set of hydrodynamic parameters due to the time constraint.

Investigating the full space of dimensionless numbers {Oh,Bo,Q,H,α,β,χ} requires consid-

erable time and computation power. Nevertheless, from a practical perspective, such an

investigation can be beneficial to provide the operation maps for electrified jets, as well as

correlations for the jet radius, cone half-angle, and charge transport along the meniscus and

emitting jet. In the present case, it was observed that exceeding an electrical Bond of 104

prohibitively increases the computation time, thus the presented results are limited to this

value. Furthermore, the present hydrodynamic parameter set does not correspond to any of

the studies in the literature. In spite of several measures taken to reassure the robustness of

the developed numerical scheme, it is essential to extend the range of parameters in order

to compare and validate the present model with the existing numerical solutions and exper-

imental observations in the literature. Moreover, the present model takes into account the

temporal evolution of the flow and opens the door to further investigating the spatio-temporal

stability characteristics of the electrified jet.
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6.5 Appendix

6.5.1 Surface divergence in the cylindrical coordinates

The surface divergence of a vector u is defined as the trace of its surface gradient, that is ∇s ·u =
tr(∇s u) (Gurtin and Ian Murdoch, 1975; Buscaglia and Ausas, 2011), where ∇s = (I−nnT )∇ is

the surface gradient operator, with n being the vector normal to the surface and I denoting

the identity tensor. Thus, the surface divergence can be written as

∇s ·u = tr ((I−nnT )∇u) . (6.20)

Considering the cylindrical coordinates, u = uer + veθ+wez , n = nr er +nθeθ+nz ez and the

gradient of a vector writes

∇u =

∂r u 1
r ∂θu − v

r ∂z u

∂r v 1
r ∂θv + u

r ∂z v

∂r w 1
r ∂θw ∂z w .

 (6.21)

Hence, the surface divergence in cylindrical coordinates implies

∇s ·u =tr


 1−n2

r −nr nθ −nr nz

−nθnr 1−n2
θ

−nθnz

−nz nr −nz nθ 1−n2
z


∂r u 1

r ∂θu − v
r ∂z u

∂r v 1
r ∂θv + u

r ∂z v

∂r w 1
r ∂θw ∂z w .




=(1−n2
r )∂r u − nr nθ

r
∂θu −nr nz∂z u + 1−n2

θ

r
u

−nθnr∂r v + 1−n2
θ

r
∂θv −nθnz∂z v + nθnr

r
v

−nz nr∂r w − nz nθ
r

∂θw + (1−n2
z )∂z w

(6.22)

6.5.2 Validation of the numerical model

Influence of the domain dimensions

The size of the computational domain is set with two parameters, namely the jet length Ld

and the domain width Rd . Their influence on the results is investigated here. The jet interface

is shown in figure 6.10(a) for Ld = {20,22.5,25}, evidencing that the interface is identical for

these cases.

Next, the influence of the domain width Rd on the flow is investigated. Figure 6.10(b) shows

the variation of the jet interface is not negligible in terms of Rd . An explanation for this

dependence is how the potential on the upper boundary of the air domain is set through

the boundary condition (6.11). The applied potential is plotted in figure 6.10(c) for Rd =
{20,40,60}. The potential decrease from the nozzle to the far field depends on Rd with the
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Figure 6.10: Influence of the computational domain dimensions on the jet interface for
{Oh,Bo,Q,H,α,β,χ} = {1,1,15,40,10,10,104}; (a) Effect of jet length Ld ; (b) Effect of the
domain width Rd ; (c) Applied potential on ∂Σw,1.
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Figure 6.11: Effect of the sponge location on the jet interface for {Oh,Bo,H,α,β} =
{1,1,40,10,10}; (a) Non-electrified jet of small flow rate; {Q,χ} = {1,0}; (b) Highly electrified jet;
{Q,χ} = {15,104};.

imposed condition. Therefore, it is essential to replace the employed condition with another

choice, converging with increasing Rd in the far field.

Dependence of the solution on the numerical sponge location

The influence of sponge location, zs , on the jet interface is investigated here. To this end, the

jet interfaces for χ= {0,104} are plotted in figure 6.11 for zs = {12,15,18}. In both cases of the

non-electrified jet with low flow rate (figure 6.11(a)) and electrified jet (figure 6.11(b)), the

interface upstream of the sponge region remains identical for these choices of zs . Thus, the

choice of the zs is sufficiently large to not affect the flow upstream of the sponge.

Mesh dependency of the results

Figure 6.12 presents the mesh dependency of the obtained results. We recall that the number

of degrees of freedom Ndo f is controlled by changing the number of divisions on each bound-

ary. Figure 6.12(a) depicts the jet interface is independent of the mesh for Ndo f ≥ 93’325.
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Figure 6.12: Mesh convergence of the obtained results for {Oh,Bo,Q,H,α,β,χ} =
{1,1,15,40,10,10,104} assessed for different mesh refinements; (a) Jet interface; (b) radius
ratio; the red point corresponds to the mesh used for the presented results in § 6.3.

Additionally, figure 6.12(b) shows that the radius ratio converges above the same value. In the

present study, the results are associated with the grid with Ndo f = 162’125.

Sensitivity of the flow to the initialised interface

As mentioned in § 6.2.2, in order to ensure the independence of the obtained results on the

flow initialisation, three different initial interfaces are examined. The initialised interfaces are

as follows.

Initial Shape A: r = 1p
1+ z

Initial Shape B: z =Ld

[
1− log10

(
1+9r −10rend

1− rend

)]
, rend = 0.3

Initial Shape C: z =Ld

[
1−Ld

(
r − rend

1− rend

)1/4
]

, rend = 0.2

Figure 6.13 presents the initial interfaces and obtained steady jet interface. The steady inter-

faces remain identical under the examined initialisations. As the electric potential is applied

to this steady interface, the electrified interface is also expected to remain independent from

the initialised interface geometry.
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Figure 6.13: Dependence of the obtained non-electrified interface on the interface initialisa-
tion; the dashed lines show different initial interfaces and the solid lines show the correspond-
ing steady interface; the black dotted line shows the onset of the sponge region.
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7 Conclusions and perspectives

The circumstantial conclusions were drawn at the end of each chapter, so we provide here

only a brief summary of each chapter with some future perspectives.

7.1 Conclusions

The principal objective of this thesis was to investigate fully-described laminar flows of column-

like free interfaces whose symmetry of the base state is broken and to relate the patterns

emerging from these flows to the dynamics of the small perturbations applied to them. Chap-

ter 2 laid the foundation by developing a parametrisation based on domain perturbation

in order to describe hydrodynamic boundary conditions at generic perturbed columnlike

interfaces incorporating possible symmetry breaking and time variations. Furthermore, some

canonical geometries are highlighted along with their simplified interface conditions. The

following chapters employed the representation of chapter 2 for linear stability analyses of

some exemplary interfacial flows of broken symmetry.

In chapter 3 we studied the gravity-driven cylindrical viscous liquid column flowing down an

eccentric vertical fibre. Even though the base interface is axisymmetric, the draining flow is

not axisymmetric as a result of the non-homogeneous film thickness surrounding the fibre. We

highlighted the influence of fibre eccentricity on the linear stability of the flow. We observed

that the Rayleigh-Plateau mode of asymmetric interface destabilises for all eccentricities,

forming pearls that are fatter on the thicker film side, whereas the combination of a large

eccentricity, large Bond number, and small fibre radius can trigger a whirling mode which

forms a single helical pattern along the fibre. While the pearl mode is driven by surface

tension and shear according to a perturbative energy analysis, the whirl mode is shear-driven

and in spite of increasing surface energy, it can dominate the pearl mode for a large enough

eccentricity. Both pearl and whirl modes were observed in experiments using highly viscous

silicone oil, exhibiting favourable agreement with the linear theory in both interface shape

and wavelength.
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In chapter 4 we investigated the linear stability of the frozen frames of the draining liquid film

coating the interior wall of a long horizontal cylinder whose axis is orthogonal to gravity. We ac-

counted in this chapter for the time-varying non-linear distortion of the unperturbed domain

as well as non-axisymmetric flow. It was shown that the drainage slows down as the gaseous

core approaches the upper side of the wall under the effect of buoyancy. While at small Bond

numbers, the interface remains quasi-cylindrical, it flattens horizontally as the Bond number

is increased. Linear stability analysis at large times (when the flow is quasi-stationary) demon-

strated the symmetry breaking of the Rayleigh-Plateau modes featuring larger modulations at

the bottom of the interface which ultimately stabilise at sufficiently large Bond numbers. The

critical stabilising Bond number increases for thicker films. Furthermore, we demonstrated

that the interface deformation is mandatory for the suppression of instability. The linear

analysis exhibits satisfactory quantitative agreement with the experiments of Duclaux et al.

(2006) in terms of the stabilisation threshold and the emerging wavelengths. Formerly, their

linear analysis using the thin-film equation had failed in predicting the stabilisation threshold

and wavelength of the most unstable mode quantitatively. Additionally, it was concluded

that flow inertia and transient amplification of perturbations are not significant to alter the

stabilisation threshold obtained from the linear analysis.

Following the linear analyses of the previous chapters, we looked in chapter 5 at a draining

viscous liquid film coating the exterior wall of a long horizontal cylinder whose axis is orthogo-

nal to gravity as another example of interface-deforming base flow. Unlike the drainage inside

a horizontal tube, the unperturbed draining liquid around a cylinder does not always reach an

equilibrium state. The parameter ranges to outstretch toward a steady pendant curtain were

sought in terms of the Bond number and mean film thickness, outside of which the pendant

curtain goes through a two-dimensional pinch-off. There is a sole unconditional linearly unsta-

ble mode that destabilises the quasi-static pendant curtain displaying two distinct behaviours:

(i) drainage reversal at small Bond numbers which eventually forms pearls wrapping around

the entire circumference of the cylinder, (ii) strong undulations at the bottom of the curtain

for large Bond numbers that ultimately forms droplets. In the former, the Rayleigh-Plateau

instability dominates the instability, whereas the latter is purely driven by the Rayleigh-Taylor

instability. Moderate Bond numbers have a comparable contribution from both instability

mechanisms. In consequence, the most linearly unstable wavenumber is selected upon a

trade-off between these two instabilities. Generally, surface energy minimisation promotes

a smaller wavenumber than potential energy minimisation for the majority of the range of

the studied parameters. The results of the linear analysis complement the vision achieved

by the non-linear analysis of Weidner et al. (1997) in the thin-film limit. A prediction for the

three-dimensional dripping is proposed accordingly by extrapolating the recruitable fluid

volume from the most linearly unstable wavelength. Transient growth of the most amplified

mode happens to cause no alternation in the droplet dripping prediction.

Lastly, in chapter 6 we humbly revisited numerically the non-linear evolution of an electrified

liquid jet and its smooth transition from a falling filament to the formation of a conical

meniscus connected to the nozzle tip that emits a fine downstream jet from its apex.
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Chapter 3

Chapter 5

Chapter 4

Chapter 6

Figure 7.1: Graphical summary of the physical problems addressed in the present thesis
(qualitative comparison in all panels): (a) Chapter 3: numerical and experimental visual-
isations of the pearl (left pair) and whirl (right pair) modes; (b) Chapter 4: (top) experi-
mental visualisation of the unstable liquid film coating inside a horizontal tube, reprinted
from Duclaux et al. (2006); (bottom) numerical visualisation of the perturbed interface ob-
tained from the present linear analysis; (c) Chapter 5: an observation of the two distinct
patterns emerging from olive oil coating a horizontal fibre along with the visualisation of
the modes from the present linear study: a small pearl wrapping around the fibre formed
under the Rayleigh-Plateau instability (red numerical interface), four bigger pendant drops
formed under Rayleigh-Taylor instability (purple numerical interface), Credit: Hervé Elettro,
reprinted from https://royalsociety.org/journals/publishing-activities/photo-competition/
2017-winners-runners-up/micro-imaging/; (d) Chapter 6: (left) numerical and (right) ex-
perimental visualisation of the cone-jet under electrical excitation, experiment reprinted
from (Herrada et al., 2012).

Figure 7.1 sketches a graphical summary of the flows studied in the present thesis. To conclude,

we recall that neither of the flow instabilities addressed in the present thesis could have been

comprehensively quantified over a wide range of parameters by using depth-averaging and

reduced-order flow equations.

151

https://royalsociety.org/journals/publishing-activities/photo-competition/2017-winners-runners-up/micro-imaging/
https://royalsociety.org/journals/publishing-activities/photo-competition/2017-winners-runners-up/micro-imaging/


Conclusions and perspectives

10 mm

Figure 7.2: Experimentally stable eccentric column; the fibre, located at the vicinity of the
interface, is not visible as a result of the highly shifted liquid column.

7.2 Perspectives

In this section, we outline the future directions of the present work. According to the findings

of this thesis, two main directions can be appraised: (i) methodological perspectives to extend

the present method beyond its restrictions, (ii) numerical and experimental perspectives that

use the present work’s method for further problems.

7.2.1 Methodological perspectives

The interface parametrisation presented in chapter 2 evidenced remarkable versatility in en-

abling the application of the linear stability analysis to the non-symmetric and non-axisymmetric

base flows. Despite the large number of problems that can be addressed by the present method,

there exist certain failure limits which are already pointed to in chapter 2. We recall that the

three main origins of the aforementioned limitations root in (i) the necessity of the base

interface manifold to be an explicit radially representable surface in a suitably-chosen cylin-

drical coordinate system, (ii) the prohibition of a vanishing interface radius at any polar

cross-section, (iii) the prohibition of the base interface whose polar cross-section is an open

curve whose normal vectors at the two endpoints are parallel to each other.

To address some of the restrictions of the present method, one can pursue a generic interface

parametrisation for the explicit expressible manifolds in other coordinate systems, i.e. in

Cartesian coordinates, spherical coordinates, toroidal coordinates, etc. Eventually, the only

remedy to resolve all of the above-mentioned limitations is the development of a local interface

parametrisation that relies on the local differential geometry representation of the linearly

perturbed manifolds. (See § 2.3 for a detailed discussion.)

7.2.2 Theoretical, numerical and experimental perspectives

Flow down an eccentric vertical fibre

We showed in chapter 3 the existence of two linearly unstable modes in the gravity-driven

flow down an eccentric fibre, namely the pearl and the whirl modes. As the base flow has an

axial velocity component, a natural direction to explore is the absolute/convective behaviour

of these two modes (Huerre and Monkewitz, 1990; Carriere and Monkewitz, 1999). Such

an analysis has been carried out theoretically for a fibre coated with a concentric draining

column of small film thickness (Duprat et al., 2007; Gallaire and Brun, 2017), exhibiting good
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agreement with the experiments (Duprat et al., 2009). Our experiments on the eccentric fibre

evidenced, in the case of the pearl dominance, that for some sets of the drainage hole diameters

and fibre eccentricities the appearance of pearls at the very bottom of the experimental

apparatus. Decreasing the eccentricity resulted in the pearls being washed down the fibre and

sustaining the columnar shape of the interface eccentric with the fibre along the apparatus (cf.

figure 7.2); suggesting a convective instability. (For a descriptive movie about these effects, see

https://gfm.aps.org/meetings/dfd-2020/5f4e05c3199e4c091e67ba3f) We also noted that for

the hole diameters with which we could observe pearls and whirls, the concentric column-

fibre configuration was always stable, too. Experiments of Gabbard and Bostwick (2021) also

indicated an absolute/convective transition in their observed pearls, despite the possibility of

the existing contact-line effects on the flow due to the flow feeding mechanism in the set-up.

In contrast, when the whirl mode was observed, increasing the eccentricity resulted in a self-

sustained unstable interface that periodically deteriorated under the non-linear evolution of

the perturbations followed by the reformation of the whirling structures, resembling absolute

instability.

Our numerical model can readily examine the spatio-temporal characteristics of the flow

for a wide range of fibre aspect ratios, Bond numbers, and fibre eccentricities. Furthermore,

we focused only on the inertialess limit in our analysis. Formerly, Ruyer-Quil et al. (2008)

demonstrated the wave dynamics and inertia-driven Kapitza instability of the flow down

a centred fibre. Including finite inertia in the linear stability analysis of the eccentric fibre

would also shed light on its influences on the temporal and spatio-temporal dynamics of

the perturbations. Additionally, further investigations are proposed for probing the flows

down an eccentric vertical fibre for Non-Newtonian fluids, and in the presence of surfactants

and thermally-driven Marangoni effects. Such a study can be of interest in vertical fibre heat

exchangers (Zeng et al., 2019), for instance.

From an experimental viewpoint, the present set-up detailed in chapter 3 can be modified

and adapted to probe the absolute/convective nature of both pearl and whirl modes, as well as

using less viscous working fluids in order to investigate the effects of inertia on the appearance

and characteristics of the whirl mode.

Flow down an inclined fibre

Another direction to pursue is bridging between the findings of chapter 3 and chapter 5 by

conducting in the linear stability framework both temporal and spatio-temporal analyses of a

gravity-driven flow down an inclined cylinder (cf. figure 7.3). For an inclined fiber, tilted with

an angle φg measured between the gravity and fiber axis, the dimensionless conservation of

mass and momentum equations can be expressed as

∇· u = 0, (7.1)
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Figure 7.3: Schematic of a the effect of fibre inclination: Stability of a rivulet flowing down an
inclined cylinder proposed for future study.

(
Bo

Oh

)2

δ4 (∂t +u ·∇)u =∇· τ+Bo cosφg ez −Bo sinφg ey , (7.2)

under the same dimensional scaling, dimensionless parameters, and boundary conditions

presented in chapter 5, where ey and ez denote the unit directions in the positive y and z

directions. Studies of chapter 3 and chapter 5 are the two limits of φg = 0 and φg =π/2 of this

configuration, respectively (cf. figure 7.3). In spite of the non-linear nature of the interface

kinematic condition, we can postulate, inspired by the pendant curtain solutions obtained

in chapter 5, a steady-state parallel base flow with a pendant interface whose velocity field

is merely axial, i.e. a single rivulet flowing under the cylinder and parallel to it. Hence, the

z−momentum equation is decoupled from the other directions, and the axial velocity can

be obtained from the Poisson equation solved in chapter 3. Interestingly, such a decoupling

results in the pressure field and cross-sectional geometry of the pendant curtain invariant

as long as Bo sinφg is fixed. To put it differently, the interface around a titled cylinder of

inclination φg and the pressure in the cross-section are identical to those of a horizontal

cylinder with a Bond number of Bo sinφg . Such a solution satisfies the governing equations

and their respective boundary conditions, i.e. no-slip on the cylinder and shear-free interface.

Recently Aktershev et al. (2021) investigated the dynamics of the waves traveling along the sim-

ilar rivulet flow in the thin-film limit by means of Integral Boundary Layer model (Demekhin

and Shkadov, 1984) and long-wave approximation (Eggers and Dupont, 1994). The domain

of existence of the whirl mode is to be investigated in the range of 0 < φg < π/2, as well as

the detailed influence of the inclination on the temporal stability and absolute/convective

characteristics of both pearl and whirl modes.

Some preliminary results: Figure 7.4 presents the results obtained from the linear spatio-

temporal analysis of a draining rivulet down a cylinder of inclinationφg =π/4, Bo = 0.0354 and

β= 0.8. Figure 7.4(a) shows the base flow where the colour code measures the axial velocity

field (remembering that the in-plane velocity is null). Figure 7.4(b) presents the leading

eigenmode, corresponding to k = 0.5 in the dispersion relatioin of figure 7.4(c). Figure 7.4(d)
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presents the saddle point analysis of this eigenmode, evidencing a saddle point (red dot) of

positive growth rate, indicating an absolute instability (Huerre and Monkewitz, 1990; Gallaire

and Brun, 2017).

Figure 7.4: Linear stability analysis of a pendant rivulet down an inclined cylinder at Oh →∞,
{Bo,β,φg } = {0.0354,0.8,π/4}. (a) Base flow; the colour map indicates the axial velocity (in-
plane velocity is null). (b) The leading eigenmode of k = 0.5: colour map indicates the
axial eigenvelocity, black vectors present the in-plane eigenflow field, purple arrows show
the velocity at the interface, and red line presents the perturbed interface of an arbitrary
amplitude. (c) Dispersion curve: growth rate (black) and eigenfrequency (blue) of the unstable
mode. (d) Saddle point analysis of the same mode; colour map indicates the growth rate for
the space of imaginary wavenumbers; red point presents the saddle point.

Buckling of a viscous sheet or filament

The buckling of a liquid filament falling from a sufficiently high distance on a substrate

was first addressed by Taylor (1969). This instability, referred to as the viscous buckling

instability or coiling instability in the case of cylindrical liquid ropes, is present in nature

in different length scales, and is important in engineering applications. A few examples

are shown in figure 7.5(a). Many studies have addressed for decades the viscous buckling
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(i) (ii) (iii) (iv) (v)

Figure 7.5: Viscous buckling; (a) Examples taken from Ribe (2017): (i) Coiling of silicone
oil (Mahadevan et al., 1998); (ii) Folding silicone oil rope in a microchannel; photo by T.
Cubaud; (iii) Desiccation-induced coiling of Erodium cicutarium seed; (iv) A falling molten
chocolate sheet folding; photo by Mars Inc; (v) A falling lava stream folding: photo from the
U.S. Geological Survey; (b) Schematic of a viscous sheet falling on a solid substrate proposed
for future study.

instability theoretically (Skorobogatiy and Mahadevan, 2000; Ribe, 2003; Jawed et al., 2015),

numerically (Tome and McKee, 1999; Batty and Bridson, 2008; de Souza Andrade et al., 2015),

and experimentally (Cruickshank and Munson, 1981; Cubaud and Mason, 2006; Le Merrer

et al., 2012; Lisicki et al., 2022). A large number of the numerical and theoretical studies

employed reduced-order one-dimensional equations for thin viscous sheets under some

loading or slender liquid ropes for viscous liquid filaments and sought the threshold and

characteristics of the liquid rope coiling (Ribe, 2002, 2004; Ribe et al., 2012). These equations

apply the force and torque balance over the midsurface of the viscous sheets and the centreline

of the liquid filaments.

On the other hand, Brun et al. (2015) introduced a quasistatic geometrical model for a vis-

cous filament that falls on a moving belt. Their model counted for the radial deflection, the

orientation, and the curvature of the path of the filament’s contact point with the moving

belt, and captured the coiling patterns. The filament buckling does not occur only for falling

liquids. Le Merrer et al. (2012) observed experimentally that a non-oscillating (steady) buckling

takes place while a fast compression of a liquid column that is pinned to solid walls at its two

ends. In a recent study, Tian et al. (2020) highlighted the importance of the capillary effects

for the coiling of liquid ropes in certain jet regimes and applied a linear stability analysis on

the slender-jet equations (Ribe, 2004). They reported a steady unstable buckling mode, how-

ever, their quantified characteristics differ substantially from the experimental observations

of Le Merrer et al. (2012). Their study suggests that the nonuniformity along the shape of the

liquid rope and the gravity may be the reason for such a mismatch.

We recall that the slender-jet and thin-sheet equations are both long wavelength approxi-

mations exploiting a separation of scales in the flow. Even though they impose the natural

essence of the velocity profile in the cross-section, they may not be able to fully capture the

flow resolution within the falling liquid bulk; analogous to the long-wavelength approximation
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(to capture whirls in chapter 3) and thin-film model (to analyse the problems in chapter 4,5 )

in presence of strong symmetry breaking. Furthermore, these methods cannot account for

the meniscus at the bottom of the liquid sheet/rope where the liquid bulk reaches either a

substrate or a liquid bath.

Therefore, we propose the numerical investigation of the viscous coiling via linear stability

analysis of the primitive flow equations. To begin with, we suggest a planar configuration

to examine the linear stability of a viscous liquid sheet falling from a slot on a liquid bath

covering a solid substrate (cf. figure 7.5(b)). The flow symmetry with respect to the vertical

midplane (dash-dotted line) allows us to perform a numerical simulation of the flow in the

half domain by applying the symmetry condition at the midplane. The base flow can be

obtained by following the numerical method we pursued in chapter 6, that is, running a

time-dependent simulation until reaching a steady-state solution. Then, we seek possible

anti-symmetric two-dimensional global unstable modes that correspond to the buckling of

the liquid falling sheet. Considering the limitations of our present parametrisation method,

discussed in chapter 2, we note here that the cross-section of the interface does not form a

closed path. Hence, to utilise the present formulation, the origin of the coordinates system

should uniquely be located at the intersection of the normal directions of the two endpoints of

the interface, as shown in figure 7.5(b). Additionally, such a flow may be prone to the formation

of a hydraulic jump. The present formulation can bear hydraulic jumps as long as the base

interface remains explicitly radially representable in the selected coordinates reference, i.e. no

interface overturning is viewed from the coordinates’ origin.

An extension of the proposed study is to carry out numerically the linear stability and transient

growth analyses of a round (axisymmetric) liquid filament; either a steady-state rope falling

on a liquid bath, or a compressing filament replicating the experiments of Le Merrer et al.

(2012). In the axisymmetric configuration, no hydraulic jump can be tolerated with the present

interface parametrisation. Nevertheless, several experimental observations reassure us that a

hydraulic jump does not occur for a wide range of active buckling regimes (cf. supplementary

video of Tian et al. (2020)), therefore, maintaining our motivation to capture the buckling

instability using the present numerical model.

Some preliminary results: Figure 7.6 presents some preliminary results of the linear stability

analysis of a viscous sheet of aspect ratio H/wl = 14, falling on a flat substrate.
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Figure 7.6: Preliminary results of the linear stability analysis of a planar viscous sheet. (a)
Base flow in half domain; colour map indicates the base flow velocity magnitude. Inset:
three antisimmetric unstable modes; the coulour map in the inset indicates the in-plane
eigenvelocity magnitude, the solid line represents the perturbed interface of an arbitrary
amplitude, and vectors represent the eigenvelocity field at interface. (b) Eigenvalue spectrum.
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Lisicki, M., Adamowicz, L., Herczyński, A., and Moffatt, H. K. (2022). Viscous thread falling on

a spinning surface. Symmetry, 14(8):1550.

Liu, R. and Ding, Z. (2017). Stability of viscous film flow coating the interior of a vertical tube

with a porous wall. Physical Review E, 95(5):053101.

Liu, R. and Ding, Z. (2021). Coating flows down a vertical fibre: towards the full navier–stokes

problem. Journal of Fluid Mechanics, 914.

López-Herrera, J., M.A., H., J.M., M., N., R.-M., and Gañán-Calvo, A. M. (2013). On the validity

and applicability of the one-dimensional approximation in cone-jet electrospray. Journal of

Aerosol Science, 61:60–69.

Mahadevan, L., Ryu, W. S., and Samuel, A. D. T. (1998). Fluid ‘rope trick’investigated. Nature,

392(6672):140–140.

Majeski, R., Kugel, H., Kaita, R., Avasarala, S., Bell, M. G., Bell, R. E., Berzak, L., Beiersdorfer,

P., Gerhardt, S. P., Granstedt, E., et al. (2010). The impact of lithium wall coatings on nstx

discharges and the engineering of the lithium tokamak experiment (ltx). Fusion engineering

and design, 85(7-9):1283–1289.

Mchale, G., Newton, M. I., and Carroll, B. J. (2001). The shape and stability of small liquid

drops on fibers. Oil & Gas science and technology, 56(1):47–54.

McHale, G., Rowan, S. M., Newton, M. I., and Käb, N. A. (1999). Estimation of contact angles

on fibers. Journal of adhesion science and technology, 13(12):1457–1469.

Melcher, J. R. and Taylor, G. I. (1969). Electrohydrodynamics: a review of the role of interfacial

shear stresses. Annual Review of Fluid Mechanics, 1(1):111–146.

Mohammad Karim, A. (2022). A review of physics of moving contact line dynamics models

and its applications in interfacial science. Journal of Applied Physics, 132(8):080701.

Mousavi Shaegh, S. A., Nguyen, N. T., and Chan, S. H. (2011). A review on membraneless

laminar flow-based fuel cells. International Journal of Hydrogen Energy, 36(9):5675–5694.

Ogrosky, H. R. (2021a). Impact of viscosity ratio on falling two-layer viscous film flow inside a

tube. Physical Review Fluids, 6(10):104005.

Ogrosky, H. R. (2021b). Linear stability and nonlinear dynamics in a long-wave model of film

flows inside a tube in the presence of surfactant. Journal of Fluid Mechanics, 908.

O’Neill, L. and Mudawar, I. (2020a). Review of two-phase flow instabilities in macro-and

micro-channel systems. International Journal of Heat and Mass Transfer, 157:119738.

168



Bibliography

O’Neill, L. E. and Mudawar, I. (2020b). Review of two-phase flow instabilities in macro-and

micro-channel systems. International Journal of Heat and Mass Transfer, 157:119738.

Oron, A., Davis, S. H., and Bankoff, S. G. (1997). Long-scale evolution of thin liquid films.

Reviews of modern physics, 69(3):931.

Pantano, C., Gañán-Calvo, A. M., and Barrero, A. (1994). Zeroth-order, electrohydrostatic

solution for electrospraying in cone-jet mode. Journal of Aerosol Science, 25(6):1065–1077.

Pekker, L. (2018). On plateau-rayleigh instability of a cylinder of viscous liquid. Journal of

Imaging Science and Technology, 62(4):40405–1.

Peterson, R. C., Jimack, P. K., and Kelmanson, M. A. (2001). On the stability of viscous free–

surface flow supported by a rotating cylinder. Proceedings of the Royal Society of London.

Series A: Mathematical, Physical and Engineering Sciences, 457(2010):1427–1445.

Piercy, N. A. V., Hooper, M. S., and Winny, H. F. (1933). Liii. viscous flow through pipes with

cores. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

15(99):647–676.

Pitts, E. (1973). The stability of pendent liquid drops. part 1. drops formed in a narrow gap.

Journal of Fluid Mechanics, 59(4):753–767.

Plateau, J. A. F. (1873). Statique expérimentale et théorique des liquides soumis aux seules forces

moléculaires, volume 2. Gauthier-Villars.

Ponce-Torres, A., Rebollo-Muñoz, N., Herrada, M. A., Gañán-Calvo, A. M., and Montanero,

J. M. (2018). The steady cone-jet mode of electrospraying close to the minimum volume

stability limit. Journal of Fluid Mechanics, 857:142–172.

Quéré, D. (1999). Fluid coating on a fiber. Annual Review of Fluid Mechanics, 31(1):347–384.

Rayleigh, L. (1878). On the instability of jets. Proceedings of the London mathematical society,

1(1):4–13.

Rayleigh, L. (1879). Vi. on the capillary phenomena of jets. Proceedings of the Royal Society of

London, 29(196-199):71–97.

Rayleigh, L. (1882). Investigation of the character of the equilibrium of an incompressible

heavy fluid of variable density. Proceedings of the London mathematical society, 1(1):170–

177.

Rayleigh, L. (1892). Xvi. on the instability of a cylinder of viscous liquid under capillary

force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

34(207):145–154.

Reisfeld, B. and Bankoff, S. G. (1992). Non-isothermal flow of a liquid film on a horizontal

cylinder. Journal of Fluid Mechanics, 236:167–196.

169



Bibliography

Revankar, S. and Pollock, D. (2005). Laminar film condensation in a vertical tube in the

presence of noncondensable gas. Applied mathematical modelling, 29(4):341–359.

Reynolds, O. (1886). Iv. on the theory of lubrication and its application to mr. beauchamp

tower’s experiments, including an experimental determination of the viscosity of olive oil.

Philosophical transactions of the Royal Society of London, 177:157–234.

Ribe, N. M. (2002). A general theory for the dynamics of thin viscous sheets. Journal of Fluid

Mechanics, 457:255–283.

Ribe, N. M. (2003). Periodic folding of viscous sheets. Physical Review E, 68(3):036305.

Ribe, N. M. (2004). Coiling of viscous jets. Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, 460(2051):3223–3239.

Ribe, N. M. (2017). Liquid rope coiling: a synoptic view. Journal of Fluid Mechanics, 812.

Ribe, N. M., Habibi, M., and Bonn, D. (2012). Liquid rope coiling. Annual review of fluid

mechanics, 44(1):249–266.

Rietz, M., Scheid, B., Gallaire, F., Kofman, N., Kneer, R., and Rohlfs, W. (2017). Dynamics

of falling films on the outside of a vertical rotating cylinder: waves, rivulets and dripping

transitions. Journal of fluid mechanics, 832:189–211.

Robinson, T. M., Hutmacher, D. W., and Dalton, P. D. (2019). The next frontier in melt electro-

spinning: taming the jet. Advanced Functional Materials, 29(44):1904664.

Rodriguez-Rodriguez, J., Sevilla, A., Martínez-Bazán, C., and Gordillo, J. M. (2015). Generation

of microbubbles with applications to industry and medicine. Annu. rev. Fluid Mech., 47:405–

429.

Rosell-Llompart, J., Grifoll, J., and Loscertales, I. G. (2018). Electrosprays in the cone-jet mode:

From Taylor cone formation to spray development. Journal of Aerosol Science, 125:2–31.

Ruyer-Quil, C. and Kalliadasis, S. (2012). Wavy regimes of film flow down a fiber. Physical

Review E, 85(4):046302.

Ruyer-Quil, C. and Manneville, P. (2000). Improved modeling of flows down inclined planes.

The European Physical Journal B-Condensed Matter and Complex Systems, 15(2):357–369.

Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C., and Kalliadasis, S. (2008).

Modelling film flows down a fibre. Journal of Fluid Mechanics, 603:431–462.

Sadeghpour, A., Zeng, Z., Ji, H., Dehdari Ebrahimi, N., Bertozzi, A. L., and Ju, Y. S. (2019).

Water vapor capturing using an array of traveling liquid beads for desalination and water

treatment. Science advances, 5(4):eaav7662.

170



Bibliography

Sadeghpour, A., Zeng, Z., and Ju, Y. S. (2017). Effects of nozzle geometry on the fluid dynamics

of thin liquid films flowing down vertical strings in the rayleigh–plateau regime. Langmuir,

33(25):6292–6299.

Santos, C. A., Quaresma, J. M. V., and Garcia, A. (2001). Determination of transient interfacial

heat transfer coefficients in chill mold castings. Journal of Alloys and Compounds, 319(1-

2):174–186.

Savart, F. (1833). Wemoire sur la constitution des veines liquids lancees par des orifices

circulaires en mince paroi. Ann. de chim., 53:337–386.

Saville, D. A. (1997). Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annual

Review of Fluid Mechanics, 29(1):27–64.

Scheid, B. (2013). Rivulet structures in falling liquid films. In Without Bounds: A Scientific

Canvas of Nonlinearity and Complex Dynamics, pages 435–441. Springer.

Scherz, C. (2022). Modeling melt electrowriting beam. Technical report, EPFL semester

project.

Schmid, P. J. (2007). Nonmodal stability theory. Annu. Rev. Fluid Mech., 39:129–162.

Schmid, P. J. and Henningson, D. S. (2001). The viscous initial value problem. In Stability and

Transition in Shear Flows, pages 99–151. Springer.

Schmid, P. J., Henningson, D. S., and Jankowski, D. F. (2002). Stability and transition in shear

flows. applied mathematical sciences, vol. 142. Appl. Mech. Rev., 55(3):B57–B59.

Schmidt, W. (2006). From tea kettles to exploding stars. Nature Physics, 2(8):505–506.

Schrauf, G. (2005). Status and perspectives of laminar flow. The aeronautical journal,

109(1102):639–644.

Schröder, D. (2012). Applications of electrospray ionization mass spectrometry in mechanistic

studies and catalysis research. Accounts of chemical research, 45(9):1521–1532.

Séro-Guillaume, O. and Er-Riani, M. (1999). Domain perturbation method and shape of a

bubble in a uniform flow of an inviscid liquid. European Journal of Mechanics-B/Fluids,

18(6):991–1003.

Shah, D. O. (2012). Improved oil recovery by surfactant and polymer flooding. Elsevier.

Sharp, D. H. (1984). An overview of rayleigh-taylor instability. Physica D: Nonlinear Phenomena,

12(1-3):3–18.

Shen, A. Q., Gleason, B., McKinley, G. H., and Stone, H. A. (2002). Fiber coating with surfactant

solutions. Physics of Fluids, 14(11):4055–4068.

171



Bibliography

Shukla, I. (2019). Response of noise-amplifier flows: From linear control to nonlinear jet breakup.

PhD thesis, EPFL.

Skorobogatiy, M. and Mahadevan, L. (2000). Folding of viscous sheets and filaments. EPL

(Europhysics Letters), 52(5):532.

Smith, F. T. (1982). On the high reynolds number theory of laminar flows. IMA Journal of

Applied Mathematics, 28(3):207–281.

Takagi, D. and Huppert, H. E. (2010). Flow and instability of thin films on a cylinder and sphere.

Journal of Fluid Mechanics, 647:221–238.

Tan, C. T. and Homsy, G. (1986). Stability of miscible displacements in porous media: Rectilin-

ear flow. Phys. Fluids, 29(11):3549–3556.

Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpen-

dicular to their planes. i. Proceedings of the Royal Society of London. Series A. Mathematical

and Physical Sciences, 201(1065):192–196.

Taylor, G. I. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal

Society of London. Series A. Mathematical and Physical Sciences, 280(1382):383–397.

Taylor, G. I. (1969). Instability of jets, threads, and sheets of viscous fluid. In Applied mechanics,

pages 382–388. Springer.

Teng, H., Cheng, P., and Zhao, T. S. (1999). Instability of condensate film and capillary blocking

in small-diameter-thermosyphon condensers. International journal of heat and mass

transfer, 42(16):3071–3083.

Tian, J., Ribe, N. M., Wu, X., and Shum, H. C. (2020). Steady and unsteady buckling of viscous

capillary jets and liquid bridges. Physical Review Letters, 125(10):104502.

Tome, M. F. and McKee, S. (1999). Numerical simulation of viscous flow: buckling of planar

jets. International journal for numerical methods in fluids, 29(6):705–718.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C., and Driscoll, T. A. (1993). Hydrodynamic stability

without eigenvalues. Science, 261(5121):578–584.

Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J., and Stone, H. A. (2014).

Curvature suppresses the rayleigh-taylor instability. Phys. Fluids, 26(5):051704.

Weidner, D. E. (2013). Suppression and reversal of drop formation on horizontal cylinders due

to surfactant convection. Physics of Fluids, 25(8):082110.

Weidner, D. E., Schwartz, L. W., and Eres, M. H. (1997). Simulation of coating layer evolu-

tion and drop formation on horizontal cylinders. Journal of Colloid and interface science,

187(1):243–258.

172



Bibliography

Xie, Q., Liu, R., Wang, X., and Chen, X. (2021). Investigation of flow dynamics of thin viscous

films down differently shaped fibers. Applied Physics Letters, 119(20):201601.

Yan, F., Farouk, B., and Ko, F. (2003). Numerical modeling of an electrostatically driven liquid

meniscus in the cone–jet mode. Journal of Aerosol Science, 34(1):99–116.

Yang, H. Q. (1992). Asymmetric instability of a liquid jet. Physics of Fluids A: Fluid Dynamics,

4(4):681–689.

Yiantsios, S. G. and Higgins, B. G. (1989). Rayleigh–taylor instability in thin viscous films.

Physics of Fluids A: Fluid Dynamics, 1(9):1484–1501.

Yu, L. and Hinch, J. (2013). The velocity of ‘large’viscous drops falling on a coated vertical fibre.

Journal of fluid mechanics, 737:232–248.

Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of

measuring the electric intensity at their surfaces. Phys. Rev., 3:69–91.

Zeng, Z., Sadeghpour, A., and Ju, Y. S. (2018). Thermohydraulic characteristics of a multi-string

direct-contact heat exchanger. International Journal of Heat and Mass Transfer, 126:536–544.

Zeng, Z., Sadeghpour, A., and Ju, Y. S. (2019). A highly effective multi-string humidifier with a

low gas stream pressure drop for desalination. Desalination, 449:92–100.

Zeng, Z., Sadeghpour, A., Warrier, G., and Ju, Y. S. (2017). Experimental study of heat transfer

between thin liquid films flowing down a vertical string in the rayleigh-plateau instability

regime and a counterflowing gas stream. International Journal of Heat and Mass Transfer,

108:830–840.

Zenit, R. (2019). Some fluid mechanical aspects of artistic painting. Physical Review Fluids,

4(11):110507.

Zhang, K., Jia, N., Li, S., and Liu, L. (2019). Rapid determination of interfacial tensions in

nanopores: Experimental nanofluidics and theoretical models. Langmuir, 35(27):8943–

8949.

Zhou, L.-Y., Fu, J., and He, Y. (2020). A review of 3d printing technologies for soft polymer

materials. Advanced Functional Materials, 30(28):2000187.

Zhu, L., Gallaire, F., Reigh, S. Y., and Lauga, E. J.-M. (2017a). Swimming with a cage: low-

reynolds-number locomotion inside a droplet. Soft Matter.

Zhu, L.-K., Song, B. Y., Wang, Z. L., Monteil, D. T., Shen, X., Hacker, D. L., De Jesus, M., and

Wurm, F. M. (2017b). Studies on fluid dynamics of the flow field and gas transfer in orbitally

shaken tubes. Biotechnology progress, 33(1):192–200.

173





SHAHAB EGHBALI
� +41-78-821 25 92 ï shahabeghbali
@ shahab.eghbali@epfl.ch * Rte de la Pierre 20A, 1024 Ecublens, Switzerland
� Shahab Eghbali Work permit B, avec activité (see Art. 21 para. 3)

LANGUAGES
English: C1/C2
French: B2/C1
Persian: Native

SKILLS
Multiphysics analysis
Numerical modeling CFD
Electro-thermofluidic analysis
Heat & mass transfer
Machine learning
Project management
Negotiation
Presentation

INTERESTS
Fluid Mechanics
Flow Instabilities
Coating Flows
Interfacial Flows

EDUCATION
PhD, Mechanics | EPFL, Switzerland z 2018–2022
• Laboratory of Fluid Mechanics and Instabilities
• Thesis title: Columnlike free-interface flows: symmetry breaking and linear instability, underthe supervision of Prof. François Gallaire

MSc, Mechanical engineering | EPFL, Switzerland z 2014–2017
• Specialization: Aero-and Hydrodynamics, Institute of Mechanical Engineering
• Thesis title: Linear stability analysis of spiral vortex breakdown in presence of a spherical object
in constricted pipe, under the supervision of Dr. Simon Pasche & Prof. François Gallaire

• GPA: 5.32/6
BSc, Mechanical engineering | University of Tehran, Iran z 2010–2014
• GPA: 18.26/20
PUBLICATIONS & CONFERENCES
Publications
• S. Eghbali, L. Keiser, E. Boujo, F. Gallaire, Whirling instability of an eccentric coated fibre ,
Journal of Fluid Mechanics, 2022

• S. Eghbali, Y.-M. Ducimetière, E. Boujo, F. Gallaire, On the liquid film instability of an inter-
nally coated horizontal tube , submitted

• S. Eghbali, S. Djambov, F. Gallaire, Stability of liquid film coating a horizontal cylinder: capillary
and potential interplay , in preparation

Conferences
• 14th European Fluid Mechanics Conference (EFMC), Athens, Greece, 2022, S. Eghbali, L.Keiser, E. Boujo, F. Gallaire, Whirling instability of an eccentric coated fibre
• APS Division of Fluid Mechanics Meeting, Chicago, USA, 2020, S. Eghbali, L. Keiser, E.Boujo, F. Gallaire, Helical Instability of an Eccentric Coated Fiber ,
PROFESSIONAL EXPERIENCE
Numerical modeling analyst (PhD collaboration) | SFA Advanced Manufac-turing, Switzerland z 2018–2022
• Conducted electrohydrodynamic simulations of powder focusing for beam induced laser3D printing (COMSOL)

Service & Rehab Trainee | ANDRITZ HYDRO R&D, Switzerland z Spring 2016
• Established experimental protocol for measurement of material erosion (4 months)
• Modified the test rig resulted in +40% faster erosion in cavitating venturi

175



IT SKILLS
Multiphysics:
COMSOL, ANSYS, FreeFem++,
OpenFOAM, CFturbo, NU-
MECA
Machine learning:
Scikit-learn, PyTorch, Deep
learning
Programming:
C, C++, Python, MATLAB,
Mathematica, Maple
Thermal:
Wosemose, EES, CyclePad
CAD:
AutoCAD, SolidWorks
Data Visualization:
Paraview, Adobe, Tecplot
General:
MSWindows, MS Office,
Wordpress, Prezi, LATEX

HOBBIES
Music (12 years):
Instruction, giving concerts,
organizing venues
Sports:
Fitness, football, hiking
Volunteering (10 years):
Charity fund raising,
voluntary education
Socializing:
Event & competition organiz-
ing (10 years)
Travelling:
Tourism & professional

TEACHING EXPERIENCE
Project supervision EPFL, Switzerland z 2018–2022
• Supervised master’s and semester projects (5x)

Teaching assistant EPFL, Switzerland z 2014–2022
• Hydrodynamics (M.Sc. course)
• Two-phase flow and heat transfer (M.Sc. course)
• Numerical flow simulation (M.Sc. course)
• Finite element method (B.Sc. course)
• Thermodynamics (B.Sc. course)
• Analysis I & II (B.Sc. courses)
• General physics I, II & III (B.Sc. courses)
ORGANIZATION EXPERIENCE
President | Iranian Students Association at EPFL, Switzerland z 2020–2021
• Other roles: Director of communications (from 2021), Vice president (2016–2017)
• Organized cultural events, exhibitions and festivities to promote Persian culture
• Supported Persian scholars of Switzerland in networking, integration and administrations:
Organized pedagogical webinars and extracurricular debate/discussion sessions; Initiatedlegal and job search consulting panel for non-EU scholars

• Executed project planning, led an effective know-how documentation and budgeting;
Awarded 6 grants in total 15 kCHF (12x increase), organized 24 events (2x increase)

REFERENECS
Prof. François Gallaire | LFMI-EPFL, Switzerland
• PhD&MSc advisor @ francois.gallaire@epfl.ch � +41-21-693 33 65

Dr. Mohamed Farhat | MF-EPFL, Switzerland
• MSc& internship co-advisor @ mohamed.farhat@epfl.ch � +41-21-693 50 86

Dr. Edouard Boujo | LFMI-EPFL, Switzerland
• MSc thesis refree& coauthor @ edouard.boujo@epfl.ch � +41-21-693 53 48

176


	Acknowledgements
	Abstract (English/Français/Italiano)
	Contents
	Introduction
	Instabilities of interfacial flows
	Stability analysis
	Rayleigh-Plateau instability
	Rayleigh-Taylor instability

	In this thesis
	Thesis outline

	A versatile formulation for the linear analysis of perturbed columnlike interfaces
	Some special geometries
	Axially-invariant interface
	Cylindrical interface
	Axially varying interface with circular cross-section

	Numerical implementation in COMSOL MultiphysicsTM
	Variable operator versus finite element space
	Proposed numerical model
	Method validation

	Method limitations and future perspective

	Whirling instability of an eccentric coated fibre
	Introduction
	Governing equations and methods
	Problem formulation
	Base Flow
	Linear stability analysis
	Numerical method

	Results
	Effect of the fibre eccentricity (Rec) 
	Bo and  effects
	Phase diagrams
	Energy analysis
	Experimental observations

	Summary and conclusion
	Appendix
	Derivation of the interface boundary conditions
	Variational formulation of problem and implementation of boundary conditions
	Validation of numerical model
	Derivation of the energy equation
	Image analysis of the experiments


	On the liquid film instability of an internally coated horizontal tube
	Introduction
	Governing equations and methods
	Problem formulation
	Base flow
	Linear stability analysis
	Transient growth analysis
	Numerical method

	Stability analysis results
	Stability of draining film at different instants of its evolution
	Effect of the Bond (Bo) number
	Effect of the Ohnesorge (Oh) number
	Asymptotic linear stability diagram
	Why does increasing Bond number stabilise the flow?
	Maximal unstable wavenumber
	Validity of the frozen frame assumption
	Transient growth analysis

	Summary and conclusion
	Appendix
	Derivation of the interface boundary conditions
	Variational formulation of the linear stability analysis and implementation of boundary conditions
	Characterization of an arbitrary interface
	Derivation of a simplified expression for the energy density of the transient response.
	Validation of the numerical model


	Stability of liquid film coating a horizontal cylinder: capillary and potential interplay 
	Introduction
	Governing equations and methods
	Problem formulation
	Base flow
	Linear stability analysis of the pendant curtain
	Transient growth analysis
	Numerical method

	Results
	Linear stability of the pendant curtain
	Energy analysis
	Linear prediction: pattern formation and three-dimensional pinch-off
	Transient growth analysis

	Summary and conclusion
	Appendix
	Derivation of the interface boundary conditions
	Variational formulation of the linear stability analysis and implementation of its boundary conditions
	Derivation of a simplified expression for the energy density of the transient response.
	Validation of the numerical model
	Derivation of the energy equation


	Modeling melt electrowriting beam
	Introduction
	Governing equations and methods
	Problem formulation
	Numerical method

	Results
	Influence of the electrical Bond number ()
	Jet interface
	Effect of the gravity

	Summary and perspective
	Appendix
	Surface divergence in the cylindrical coordinates
	Validation of the numerical model


	Conclusions and perspectives
	Conclusions
	Perspectives
	Methodological perspectives
	Theoretical, numerical and experimental perspectives


	Bibliography
	Curriculum Vitae



