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Abstract

Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure
that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are
therefore crucial for genome stability. In spite of the heterochromatin-characteristic features present
at telomeres and subtelomeric regions, telomeres are transcribed into the telomeric repeat containing
RNA —TERRA.

The transcription of TERRA stems from promoters residing within subtelomeric sequences in most
chromosome arms. It proceeds through the telomeric repetitive tract, using the C-rich telomeric strand
as template. TERRA has been implicated in multiple processes, such as the regulation of the
heterochromatic structure of telomeres, and the modulation of telomerase — the ribonucleoprotein
complex which extends telomeric DNA. Notably, TERRA is capable of hybridizing telomeric DNA, forming
three-stranded structures termed R-loops, which comprise a DNA:RNA hybrid and a displaced DNA
strand. Remarkably, many functions attributed to TERRA have been shown to depend on TERRA R-
loops, including the stimulation of telomere elongation mediated by homologous-recombination, as
well as the interference with the progression of the DNA replication machinery for appropriate
duplication of telomeric DNA.

Aiming to elucidate the regulation of TERRA recruitment to telomeres, a reporter system was
developed for the study of ectopically-expressed TERRA-like RNA molecules. Employing this system
revealed that TERRA can associate with chromosome ends post-transcriptionally in trans, in different
phases of the cell cycle, forming R-loop structures preferentially at short telomeres.

The study of the regulation of TERRA association with telomeres is of utmost relevance, given that
the excess or scarcity of TERRA R-loops can impinge on telomeric stability and maintenance, thus
potentially affecting cellular life span and tumorigenesis. Importantly, we show that TERRA R-loops are
mediated by the DNA recombinase RAD51, which directly binds TERRA and stimulates TERRA invasion
of telomeric DNA. On the other hand, we also report that the association of TERRA with telomeres
through R-loops is counteracted by the THO complex (THOC) — a protein complex which links
transcription with RNA processing and was previously shown to restrain the accumulation of DNA:RNA
hybrids throughout the genome. We found that THOC counteracts R-loops formed at telomeres co-
transcriptionally and also post-transcriptionally in trans — when TERRA is ectopically-expressed. We
demonstrate that THOC binds nucleoplasmic TERRA, and that RNaseH1 loss increases THOC telomeric
occupancy. Additionally, RAD51-mediated TERRA R-loop formation results in telomere fragility — which
is indicative of defects in the semiconservative replication of telomeric DNA. Concurrently, THOC
counteracts R-loop-derived telomeric fragility. Particularly, we found that THOC restrains telomeric
fragility at telomeres replicated by lagging strand synthesis and mainly by leading strand synthesis.
Finally, we observed that THOC suppresses telomeric sister chromatid exchange and C-circle
accumulation in ALT cells, which employ a recombination-mediated telomere maintenance mechanism.

Overall, this work contributes to the comprehensive characterization of the regulation of TERRA
association with telomeres as R-loops, and explores the impact of the accumulation of these structures
in telomere integrity.

Keywords

Telomeres / TERRA / R-loops / DRIP / RAD51 / THO complex / telomeric fragility / recombination /
C-circles



Résumé

Les télomeéres sont des structures nucléoprotéiques présentent aux extrémités des chromosomes
linéaires. lls permettent d’éviter la reconnaissance des extrémités chromosomiques comme des
cassures doubles brins, et donc ont un réle important dans la stabilité du génome. Malgré les marques
hétérochromatiques présentent aux télomeres et aux régions subtélomériques, les télomeres sont
transcrits en un ARN appelé TERRA.

TERRA est transcrit a partir des promoteurs situés dans les régions subtelomériques. La plupart des
régions subtélomériques peuvent générer ce transcrit qui utilise comme matrice le brin riche en
cytosine. TERRA a des nombreuses fonctions tel que la régulation de la structure hétérochromatique
des télomeres, ou la régulation de I'activité de la télomérase — une ribonucléoprotéine qui permet
d’ajouter des séquences répétées d’ADN télomériques. Remarquablement, TERRA peut former un
hybride ADN:ARN qui provoque I'ouverture de I’ADN double brin et constitue ce qui est appelé une R-
loop. Plusieurs fonctions attribuées a TERRA proviennent de cette capacité a former des R-Loops, parmi
lesquelles la stimulation de I'élongation des télomeéres provenant de la recombinaison homologue, ainsi
gue l'interférence du processus de réplication responsable de la duplication de I’ADN.

Dans le but d’élucider la régulation du recrutement de TERRA aux télomeres, un systéme rapporteur
a été développé au laboratoire pour I'étude des molécules de TERRA ectopiquement exprimées. En
utilisant ce systeme, nous avons mis en évidence que TERRA pouvait s’associer de facon post-
transcriptionnel en trans, aux différentes phases du cycle cellulaire. De plus, les R-loops sont
préférentiellement formés aux télomeres courts.

L’étude de la régulation de I'association de TERRA aux télomeres est de toute importance étant
donné que I'excés ou la rareté des R-loops peut avoir un effet délétére sur la stabilité et la maintenance
des télomeres, affectant donc potentiellement la tumorogénése et la durée de vie cellulaire de fagon
générale. Nous avons démontré que les R-loops sont contrélées par I’ADN recombinase RAD51, qui se
lie directement a TERRA et stimule l'invasion de "ADN télomérique par ce dernier. Nous avons
démontré également que I'association de TERRA aux télomeres est contrecarrée par le THO complexe
(THOC) — un complexe protéique a la fois important pour la transcription et la machinerie de régulation
de I’ARN, et dont il a été démontré précédemment qu'il limite I'accumulation d'hybrides ADN:ARN dans
tout le génome. Nous avons observé que THOC s'oppose aux R-loops formés au niveau des télomeéres
de maniére co-transcriptionnelle et également post-transcriptionnelle en trans - lorsque TERRA est
exprimé de maniére ectopique. Nous avons démontré que THOC se lie a TERRA dans le nucléoplasme
et que la déplétion de la RNaseH1 augmente la présence de THOC1 aux télomeres. De plus, la formation
des R-loops dépendante de RAD51 induit le phénoméne de fragilité des télomeres, indicatif d’un
probléme dans le processus semi-conservatif de la réplication de I’ADN télomérique. En méme temps,
THOC contrecarre la fragilité provenant de la présence des R-loops. Particulierement, nous avons
observés que THOC limite la fragilité télomérique au niveau des télomeres répliqués par synthese de
brin retardé et principalement par synthese de brin avancé. Enfin, nous avons observé que THOC joue
un réle important dans les cellules ALT ou il limite le processus de recombinaison, et particulierement
I’échange entre chromatides sceurs et I'accumulation de C-circles.

De maniére générale, ce travail contribue a la caractérisation de la régulation de I'association de
TERRA aux télomeéres sous la forme de R-loops et explore I'impact de I'accumulation de ces structures
pour l'intégrité des téloméres.

Mots-clés

Téloméres / TERRA / R-Loops / DRIP / RAD51 / THO complexe / fragilité des télomeres /
recombinaison / C-circles
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Chapter 1 Introduction

1.1. Telomere structure, function and maintenance

Interest in the ends of linear chromosomes emerged in the 1930s from the fundamental observation
that physiological chromosome ends must be distinct from chromosome breaks induced by X-rays,
which often result in detrimental rearrangements (Muller, 1938; McClintock, 1939, 1941). The term
telomere was then coined by H. Muller — from the Greek “end part” — referring to the termini of linear
chromosomes, and it was postulated that a protective role was associated with these structures.

Following the discovery of the DNA double helix structure, a theory of the mechanism for DNA
duplication was established, ensuring appropriate segregation of the genetic material into two identical
daughter cells originating from a single cell (Watson & Crick, 1953; Meselson & Stahl, 1958). In the case
of linear chromosomes, this mechanism implied that with each replication cycle DNA molecules would
shorten, resulting in loss of genetic information (Watson, 1972). This is recognized as the end-replication
problem. Indeed, it was discovered that there is a finite number of duplications that can be undertaken
by somatic cells in culture, before they cease to divide — known as the Hayflick limit (Hayflick, 1965).
Consistent with the idea that telomeres play a protective function, it was suggested that the terminally-
localized genes — designated “telogenes” — would be sacrificed during successive cell divisions,
functioning as “buffers” that would be gradually exhausted until a fixed number of somatic cell
duplications is reached (Olovnikov, 1973). Later on, it was understood that this loss of genetic material
was justified not only by a replication-inherent problem, but due to post-replicative processing of
chromosome ends (see chapter 1.1.2).

Remarkably, the function of telomeres is tightly linked to its structure (Szostak & Blackburn, 1982;
Lundblad & Szostak, 1989). In a ciliated protozoan, it was originally found that the termini of linear
ribosomal RNA genes are composed of a repeated hexanucleotide sequence of variable length
(Blackburn & Gall, 1978). This repetitive feature has been found to be a conserved attribute of telomeres
across eukaryotes, displaying a tandem array of guanine-rich repeats — underscoring the tight link
between telomeric structure and function.

In human cells, telomeres consist of (TTAGGG), repeats oriented 5 to 3’ towards the end of
chromosomes (Figure 1.1), stretching from ca. 2 to 15 kb long sequences (Moyzis et al, 1988; Hastie et
al, 1990; de Lange et al, 1990). In various species, including human, all telomeres terminate into a 3’
overhang, with a variable length of 50 to 300 nt, where the G-rich strand is longer than the C-rich strand
(Klobutcher et al, 1981; Henderson & Blackburn, 1989; Makarov et al, 1997).

Subtelomeres designate the sequences located immediately upstream of the repetitive telomeric
tract. They bear chromosome-arm-specific sequences and comprise telomeric-like repeats and
segmentally duplicated tracts (Riethman et al, 2005). A subset of subtelomeres contains a conserved
tandem repeat-containing region termed “61-29-37 repeats” (Nergadze et al, 2009). Several human
subtelomeres contain promoters that drive transcription of the telomeric long noncoding RNA TERRA —
Telomeric Repeat containing RNA (Azzalin et al, 2007) (Figure 1.1) (see chapter 1.2).

1.1.1. The telomere-specific shelterin complex and chromosome end protection

Several proteins have been found at chromosome ends. The most abundant protein complex
specifically accumulated at human telomeres — named shelterin complex — comprises six distinct
subunits (de Lange, 2005) (Figure 1.1). Two shelterin proteins — TRF1 and TRF2 (telomeric repeat binding
factor 1 and 2) specifically bind double-stranded (ds) TTAGGG repeats as homodimers, through Myb
domains (Zhong et al, 1992; Chong et al, 1995; Bilaud et al, 1997; Broccoli et al, 1997; Konig et al, 1998).
The shelterin Rapl (repressor-activator protein 1) is a constitutive binding partner of TRF2 (Li et al,
2000). TRF1 and TRF2 are linked by TIN2 (TRFl-interacting nuclear protein 2) (Kim et al, 1999;
Houghtaling et al, 2004, Liu et al, 2004a). In turn, TIN2 associates with TPP1 (combination of TINT1,



PTOP and PIP1) (Houghtaling et al, 2004, Liu et al, 2004b; Ye et al, 2004), which recruits POT1 (protection
of telomeres 1) (Baumann & Cech, 2001; Liu et al, 2004b; Ye et al, 2004). The shelterin POT1 has the
particularity of binding the single stranded (ss) G-rich telomeric strand, through OB (oligonucleotide-
binding) folds. A crucial purpose of the telomere-specific shelterin complex is ensuring that
chromosome ends are not inappropriately recognized as dsDNA breaks, thus avoiding a promiscuous
activation of the DNA damage signalling cascade (see below) (Figure 1.1).

The single-stranded 3’ overhang found at the termini of telomeres has been shown to invade the
double-stranded telomeric tract — at a variable position —, hybridizing with the complementary C-rich
strand, leading to displacement of the G-rich strand. This characteristic lasso-like structure —termed “T-
loop” (Figure 1.1) — is thought to provide a mechanism for “sequestering” the natural ends of
chromosomes from DNA damage signalling (Griffith et al, 1999). T-loop dynamics are coordinated by
TRF2 (Griffith et al, 1999; Doksani et al, 2013). This shelterin regulates T-loop unwinding by RTEL1
helicase for appropriate telomere replication in S-phase, and blocks unscheduled T-loop dismantlement
throughout the rest of the cell cycle (Vannier et al, 2012; Sarek et al, 2015, 2019). When tucked into the
T-loop conformation, chromosome ends are “concealed” from the MRN (Mre11-NBS1-RAD50) complex
—one of the first sensors and responders to dsDNA breaks —, averting the activation of the DNA damage
response (DDR) via ATM kinase (Ataxia-telangiectasia mutated) pathway and c-NHEJ (classical non-
homologous end joining) signalling by Ku70/80 (Doksani et al, 2013). Additionally, TRF2 directly prevents
the oligomerization of Ku70/80 (Ribes-Zamora et al, 2013) and inhibits the accumulation of 53BP1 (p53-
binding protein 1) at dsDNA breaks (Okamoto et al, 2013), therefore counteracting c-NHEJ-mediated
repair. TRF2 deficiency results in phosphorylation of ATM downstream effectors, leading to the
formation of so-called telomere dysfunction-induced foci (TIFs) — visualized by immunofluorescence
detection of 53BP1 or yH2AX (Takai et al, 2003). In addition, a notorious phenotype observed in TRF2-
depleted cells is the formation of chromosome end-to-end fusions, as telomeres become substrates for
c-NHEJ-mediated repair (van Steensel et al, 1998; Celli & de Lange, 2005). This leads to considerable
chromosomal instability through deleterious breakage-fusion-bridge cycles (McClintock, 1941). Co-
depletion of TRF2 and TPP1 in mouse embryonic fibroblasts (MEFs) was suggested to induce the
alternative-NHEJ pathway, also resulting in increased chromosome fusions (Rai et al, 2010).

The shelterin subunit POT1 is recruited to telomeres via TPP1 and specifically binds the single
stranded 3’ overhang (Baumann & Cech, 2001; Liu et al, 2004b; Ye et al, 2004). The elevated
concentration of POT1 at chromosomes ends excludes binding of ss-telomeric DNA by RPA (replication
protein A). In the case of Potla loss (one of the two Potl proteins identified in mouse cells), RPA binds
ssDNA with high affinity, which elicits ATR (ataxia telangiectasia and Rad3 related) kinase activation and
phosphorylation of downstream targets, eventually culminating in cell cycle arrest (Denchi & de Lange,
2007). In human and mouse cells, conditional deletion of POT1 (or Potla) further revealed a role for this
shelterin in suppressing detrimental homology-directed repair (HDR) at telomeres (Wu et al, 2006;
Glousker et al, 2020). POT1 — and subsequent RPA — replacement by ssDNA-binding factors involved in
classical recombination — such as the DNA recombinase RAD51 — may be envisioned as a possible
mechanism responsible for eliciting HDR at telomeres devoid of POT1 (Glousker et al, 2020).

ATR activation at telomeres may not only stem from unprotected ssDNA at telomeric overhangs, but
also — for example — from exposed ssDNA stretches at damaged or stalled replication forks or other
structures formed at telomeres, such as DNA:RNA hybrids (see chapter 1.2.2.1). The shelterin TRF1
contributes to the suppression of ATR activation at telomeres during S-phase, given its key role in
suppressing replication defects at telomeres (Sfeir et al, 2009) (see chapter 1.1.2). Furthermore, loss of
TRF1 in MEFs results in ATR-mediated TIF accumulation (Sfeir et al, 2009).

Overall, the shelterin complex constitutes the central solution for the end-protection problem,
ensuring that the ends of linear chromosomes are not threatened by inappropriate DDR activation
throughout the cell cycle.
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Figure 1.1. The nucleoprotein structure of chromosome ends.

Telomeres are the nucleoprotein structures located at chromosome ends. They consist of an array
of 5’-TTAGGG-3’ repeats of variable length (highlighted by the magnifying glass). The telomeric single-
stranded 3’ overhang invades the double-stranded telomeric tract, hybridizing with the C-rich strand,
leading to displacement of the G-rich strand — forming the T-loop. This structure is essential for
maintenance of telomeric integrity, and is transiently dismantled for appropriate replication of the
telomeric DNA. Telomeres are coated by the specialized shelterin complex, comprising double-stranded
DNA-binding proteins TRF1 and TRF2, POT1 which binds the single stranded telomeric overhang, TIN2
and TPP1 which connect POT1 to TRF1 and TRF2, and TRF2-bound Rap1. The shelterin complex ensures
that chromosome ends are not inappropriately recognized as sites of DNA damage, preventing
activation of several repair pathways, including homology-directed repair (HR), ATR and ATM signalling,
and canonical and alternative non-homologous end joining (c- and alt-NHEJ). The sequences located
immediately upstream of the repetitive telomeric tract are designated subtelomeres, and comprise
unigue sequences for each chromosome arm. Several subtelomeres have been found to contain
promoters driving the transcription of the telomeric long noncoding RNA TERRA (TSS indicates
transcriptional start site). This illustration was created with BioRender.com.

1.1.2. Telomere shortening and telomere fragility

As predicted upon the conceptualization of the mechanism for DNA duplication, chromosome
ends shorten with every cell division. This is partially due to the fact that DNA polymerases require a
free 3’ OH group as a site for nucleotide addition. Because of this inability for de novo synthesis, and
since the replication machinery at telomeres moves predominantly towards chromosome ends
(Drosopoulos et al, 2012), replication must occur discontinuously to duplicate the telomeric G-rich
strand oriented 5’ to 3. It involves the generation of short RNA primers by primase, which are extended
by DNA polymerases a. and 9, synthesizing ca. 200 bp stretches at a time. The RNA primers are then
removed, leaving gaps which can be filled-in and ligated (MacNeill, 2012). Due to the removal of the
distal-most RNA primer, a short 3’ overhang is formed. As for the telomeric C-rich strand oriented 3’ to
5’, replication occurs in a continuous manner by leading strand synthesis by DNA polymerase g, leaving
a blunt end (MacNeill, 2012). However, all chromosome ends within each cell have 3’ single-stranded
overhangs, rather than blunt ends (Klobutcher et al, 1981; Henderson & Blackburn, 1989; Wellinger et
al, 1993; Makarov et al, 1997; McElligott & Wellinger, 1997). Furthermore, in the case of mouse and
human cells, the telomere shortening observed for each population doubling exceeds that attributable
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to the removal of the RNA primer alone (Huffman et al, 2000). Therefore, chromosome ends were
found to be subjected to a post-replicative processing that generates 3’ overhangs.

Formation of 3’ overhangs at telomeres is initiated by TRF2 and regulated by POT1 (Wu et al, 2012).
It involves 5" resection by Apollo nuclease — recruited by TRF2 — at the parental strand duplicated by
leading strand replication, followed by extensive 5’ resection by Exonuclease 1 at both telomeres. POT1
then engages the CST (CTC1-STN1-TEN1) complex and DNA polymerase a-primase for C-strand fill-in
synthesis (Dai et al, 2010; Wu et al, 2012), leaving both ends with a 3° overhang. This process results in
one chromatid with equal telomere length — following lagging strand synthesis — as the parental
molecule, while leading strand synthesis and nuclease processing generates a telomere shorter than
the one contained in the parental molecule. In different human cell lines, a correlation can be
established between 3’ overhang length and the shortening rate (Huffman et al, 2000).

Telomeres are difficult to replicate regions. The hexameric repeats that compose telomeres and
their GC-rich nature represent a risk for replication fork slippage (de Lange et al, 1990). In addition, it
has been suggested that the progression of the replication bubble at telomeres is mostly unidirectional
— from subtelomeres towards telomere ends (Drosopoulos et al, 2012). This implies that the G-rich
telomeric strand is replicated by lagging strand synthesis, increasing the chances for bare G-rich ssDNA
to form stable G-quadruplex (G4) structures, which can impede the progression of the replication fork
(Granotier et al, 2005; Lerner & Sale, 2019). Moreover, G4s can also form at the displaced DNA strand
of R-loops (Duquette et al, 2004) — which are structures formed at telomeres when the telomeric RNA
TERRA hybridizes with the C-rich DNA strand. Telomeric transcription as well as the accumulation of
telomeric R-loops constitute major hurdles to proper telomere replication (Balk et al, 2013; Arora et al,
2014; Sagie et al, 2017) (see chapter 1.2.2.1). T-loops — formed at telomere ends to protect telomeric
3’ overhangs — are normally unwound in S-phase, allowing access of the replication machinery to
chromosome termini. T-loop persistence constitutes a major threat to telomere replication, resulting
in excision by the SLX4 nuclease and culminating in telomere loss (Vannier et al, 2012; Sarek et al, 2015).
Positive supercoiling formed ahead of the replication fork due to unwinding by the replicative helicase
also constitutes another source of topological stress at the telomere, which must be resolved for
faithful DNA duplication (Bermejo et al, 2007; Ye et al, 2010). Furthermore, in vitro experiments have
suggested that the presence of the shelterin complex at telomeres must be finely regulated so that its
role in promoting telomeric replication is fulfilled, while tight binding to telomeric DNA does not impair
replication fork progression (Ohki & Ishikawa, 2004; Sfeir et al, 2009). Besides the multiple features
identified at telomeres that can potentially constitute obstacles for complete and faithful telomere
duplication, the unidirectionality of the replication fork at telomeres means that, in the eventuality of
replication stalling and fork collapse, a convergent fork is unlikely to sustain its rescue.

Challenges encountered by the replication machinery may give rise to defects that can be observed
in metaphase chromosomes by fluorescence in situ hybridization (FISH). This phenotype can be induced
by the replication inhibitor aphidicolin at so-called fragile sites, by delaying replication at these genomic
loci and thus affecting chromatin condensation (Glover et al, 2017). Similarly, replication stress at
chromosome ends promotes the formation of fragile telomeres, manifested as smeary or multiple
telomeric FISH signals per chromosome end (Sfeir et al, 2009). While the molecular source of this
feature is not fully elucidated, it is thought to originate from incomplete DNA replication and the
subsequent repair processes of damaged replication forks — leaving ssDNA gaps —, or partial chromatin
condensation (reviewed in (Glousker & Lingner, 2021)).

Several factors that enable replication fork progression have been shown to counteract telomere
fragility, for example by regulating the accumulation of topological obstructions such as G4s, R-loops
or the T-loop, or elicit/participate in DNA repair at telomeres. The shelterin component TRF1
constitutes a paradigmatic example. TRF1 has been shown to be a major regulator of telomeric fragility
by recruiting the helicase BLM for unwinding of G4s (Sfeir et al, 2009; Zimmermann et al, 2014), as well
as counteracting the TRF2-mediated formation of TERRA R-loops (Lee et al, 2018). In addition, it was
proposed that TRF1 interacts and functions together with TIMELESS — which is part of the fork
protection complex, stabilizing the replisome (Leman et al, 2012). It was also suggested that TRF1
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counteracts telomere fragility by mediating the binding of DNA topoisomerase Il a to telomeres, which
removes topological stress during replication (d’Alcontres et al, 2014). Moreover, a recent study in
MEFs showed that TRF1 interacts with and recruits TFIIH to telomeres. There, TFIIH acts as a key factor
facilitating DNA replication, thus preventing telomeric fragility. While TFIIH is a key component involved
in transcriptional initiation and nucleotide excision repair (NER), its TRF1-mediated role in telomere
protection appears to involve a noncanonical function (Yang et al, 2022).

1.1.3. Telomere maintenance

Inadequate telomere maintenance results in insufficient shelterin binding and the inability to form
a T-loop, leading to activation of ATM- and ATR-dependent checkpoint signaling and cellular senescence
or apoptosis (Yu et al, 1990; Maciejowski & de Lange, 2017). Therefore, telomere elongation
mechanisms have evolved as a form of DNA repair localized to chromosome ends, to compensate for
telomere shortening in rapidly proliferating cells — such as stem cells, germ line cells or tumour cells.

Most eukaryotes resort to the specialized enzyme telomerase to counteract telomere attrition.
Telomerase is a ribonucleoprotein complex which extends telomeres, adding telomeric repeats de novo
—one nucleotide at a time. It is comprised of a reverse transcriptase protein subunit (TERT) and an RNA
component (TERC) which serves as a primer and a template to specify the sequence added to
chromosome ends (Greider & Blackburn, 1985, 1987; Feng et al, 1995; Lingner et al, 1997; Nakamura
et al, 1997).

During human embryonic development, telomerase activity is stringently suppressed in the large
majority of somatic cells, either by epigenetic-mediated transcriptional repression, or processing of
hTERT RNA or hTR (human TERC) (Cong et al, 2002). Upon critical shortening, the protective function
of telomeres and the shelterin complex succumbs, DNA damage signaling cascades are triggered, and
cells eventually subside into cell cycle arrest and replicative senescence (Fagagna et al, 2003). Thus,
cessation of telomerase activity provides a molecular expiration date dictating the proliferative lifespan
of human somatic cells, acting as a tumor suppressor. In the majority of tumors — 85 to 90% of cancers
—, transformed cells restore telomerase expression and activity — often by acquiring mutations in hTERT
promoter (Sharma & Chowdhury, 2022) — to sustain high cell division rates and avert telomere-derived
cellular senescence (Kim et al, 1994; Shay & Bacchetti, 1997).

The alternative lengthening of telomeres (ALT) is a telomerase-independent pathway, which
resorts to homology-directed recombination between telomeres (Bryan et al, 1995; Dunham et al,
2000). It is used for telomere maintenance in 10-15% of cancer types — with a higher prevalence in
aggressive tumours with mesenchymal cell origin (Henson et al, 2005; Heaphy et al, 2011a). In ALT cells,
break-induced replication (BIR)-mediated telomere synthesis requires the RFC-PCNA-Pold replisome
and is instigated by exacerbated and unresolved replication stress (Dilley et al, 2016; Roumelioti et al,
2016; Lu & Pickett, 2022). Telomere processing by ALT occurs upon telomere clustering in ALT-
associated PML (promyelocytic leukemia) bodies (APBs), and is thought to follow two mechanisms with
converse RAD52-dependency (Yeager et al, 1999; Zhang et al, 2019). Recombination intermediates can
be dissolved by the BLM-TOP3A-RMI (BTR) complex — which is essential for ALT activity —, promoting
telomere extension with no exchange of telomeric DNA, or resolved by SLX4-SLX1-ERCC4, where
telomere extension is aborted and crossover events may occur (Wu & Hickson, 2003; Svendsen et al,
2009; Sobinoff et al, 2017). This results in telomeric sister chromatid exchanges (T-SCEs) and a
distinctive telomere length heterogeneity (Bryan et al, 1995; Londofio-Vallejo et al, 2004) — two
hallmarks of ALT cells. Extra-chromosomal telomeric repeats (ECTR) in the form of C-rich circles — likely
formed as a by-product of recombination — are also commonly detected in ALT-immortalized cells
(Ogino et al, 1998; Tokutake et al, 1998).

While characteristic features of ALT activity have been identified, the precise molecular trigger of
this telomere maintenance mechanism is still ill-defined. Many ALT lines have been shown to have a
G2/M checkpoint deficiency, but this could not be correlated with defects in the ATM or ATR signalling
pathways (Lovejoy et al, 2012). In addition, mutations in the genes encoding the histone variant H3.3
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or the chromatin remodelers ATRX (a-thalassemia/mental retardation X-linked) and DAXX (death-
domain-associated protein) are commonly found in ALT tumour cells (Heaphy et al, 2011b;
Schwartzentruber et al, 2012). Loss of ATRX or DAXX affects H3.3 deposition at telomeres (Lewis et al,
2010), which is thought to modify the telomeric heterochromatic status, contributing to telomere
recombination. Other mechanisms implicating ATRX in replication progression or telomere cohesion
have also been suggested as possible explanations for the correlation of ALT with ATRX deficiency
(Pickett & Reddel, 2015). Nonetheless, loss of any of these factors appears to be insufficient to activate
ALT (Lovejoy et al, 2012). In vitro activation of ALT has been achieved through downregulation of the
ASFla and ASF1b histone chaperones (O’Sullivan et al, 2014). It results in de novo appearance of ALT
features such as APBs, ECTRs, T-SCEs accompanied by increased heterogeneous telomere length, and
even in repression of hTERT expression and activity (O’Sullivan et al, 2014). Even though ASF1 is
expressed in ALT cells, these results emphasize the notion that an altered chromatin organization
underlies ALT activation (O’Sullivan et al, 2014). Furthermore, another key factor with a demonstrated
contribution to triggering/sustaining ALT activity is the telomere-derived transcript TERRA (see below).

1.2. The telomeric repeat-containing INcRNA: TERRA
1.2.1. Telomeric transcription

The telomere position effect (TPE) has been described using yeast, over the observation that the
expression of reporter genes is reversibly repressed when they are placed adjacently to telomeric
repeats (Gottschling et al, 1990). TPE has also been described in human cells (Baur et al, 2001). This
phenomenon is consistent with the fact that telomeres and subtelomeric regions are enriched in
features characteristic of heterochromatic domains. At mammalian chromosome ends these features
include DNA methylation, trimethylation of lysines 9 and 27 at histone H3, trimethylation of lysine 20
at histone H4 and hypoacetylation of H3 and H4, and binding by HP1a (heterochromatin protein 1)
(Blasco, 2007; Tardat & Déjardin, 2018). These observations supported the assumption that telomeres
are devoid of transcriptional activity. However, telomeres were found to be transcribed into the
telomeric repeat containing RNA (TERRA) (Figure 1.2) (Azzalin et al, 2007).

TERRA was detected in human (Azzalin et al, 2007), mouse and Chinese hamster cells (Azzalin et
al, 2007; Schoeftner & Blasco, 2008), zebrafish (Schoeftner & Blasco, 2008) and other eukaryotes
including plants (Vrbsky et al, 2010), yeast (Luke et al, 2008; Bah et al, 2012; Greenwood & Cooper,
2012) and protozoa (Nanavaty et al, 2017), demonstrating its conservation across species.

The transcription of TERRA is driven by RNA Polymerase Il. It stems from promoters residing within
subtelomeric sequences at most chromosome arms (Figure 1.1), and proceeds through the telomeric
tract, using the C-rich telomeric strand as template (Azzalin et al, 2007; Schoeftner & Blasco, 2008;
Nergadze et al, 2009; Porro et al, 2014; Feretzaki et al, 2019). In human cells, a subset of TERRA
promoters comprises CpG islands which are methylated de novo during development and remain
methylated in most somatic cells (Nergadze et al, 2009; Porro et al, 2014; Feretzaki et al, 2019). The
DNA methyltransferases DNMT1 and -3B are responsible for methylation of subtelomeric CpG islands,
inhibiting the expression of a fraction of TERRA molecules (Yehezkel et al, 2008). Also the shelterin TRF2
has been shown to repress TERRA transcription (Porro et al, 2014). Many transcription factors have
been identified as transcriptional regulators of TERRA (Feretzaki et al, 2019), including CTCF (CCCTC-
binding factor) and the cohesion subunit RAD21, which have been show to bind to subtelomeres and
sustain telomeric transcription (Deng et al, 2012).

1.2.2. Molecular features, regulation and functions of TERRA

Given that TERRA transcription is initiated at subtelomeric sequences and extends through
telomeric repeats at several chromosome arms, TERRA refers to a heterogeneous class of long non-
coding RNAs (IncRNAs), containing chromosome arm-specific subtelomeric-derived sequences at the 5’
end, followed by an array of UUAGGG repeats (Porro et al, 2010; Feretzaki et al, 2019). In human cells,
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TERRA molecules range in size from about 100 bases up to 9 kb and are not translated into known
functional proteins — justifying the long non-coding RNA designation (Azzalin et al, 2007; Statello et al,
2021). The length heterogeneity is thought to arise from the lack of a specified transcription
termination site, resulting in variable processing through telomeric repeats by the RNA polymerase.
TERRA is mainly localized in the nucleus (Azzalin et al, 2007), and similarly to mMRNAs generated by RNA
Polymerase Il, TERRA contains a 7-methylguanosine cap at the 5" end, which is thought to have a
protecting role from 5’-to-3" exonucleases (Shatkin, 1976; Porro et al, 2010). Only a minor fraction of
TERRA molecules is polyadenylated (< 10%), which is more stable — with a half-life exceeding 8 hours —
than the poly(A)-negative TERRA majority — with a half-life of ~3 hours (Porro et al, 2010). While a
considerable fraction of poly(A)-negative TERRA is found in association with chromatin — which is
thought to have major implications for TERRA function (see below) —, polyadenylated TERRA is mainly
found in the nucleoplasm (Porro et al, 2010) (Figure 1.2). Analysis of the 5" subtelomeric-derived region
of TERRA did not reveal any splicing events undertaken during TERRA biogenesis (Porro et al, 2014).
Recently, the subtelomeric-derived region of human TERRA has been shown to contain the N°-
Methyladenosine (m®A) modification, which is catalysed by the m®A methyltransferase METTL3 and
protected by the YTHDC1 reader (Chen et al, 2022). The m®A post-transcriptional modification was
shown to contribute to the stability of TERRA, without affecting its transcription (Chen et al, 2022).

The telomeric structure and composition is modulated throughout the cell cycle, namely to enable
progression of the replication machinery, and access and extension by telomerase. Concurrently,
cellular levels of TERRA are also subjected to cell cycle regulation. RT-gPCR analysis of the abundance
of different TERRA sub-species in synchronized human Hela cells demonstrated that the highest TERRA
levels are measured in early G1, gradually decreasing in late G1 and S phases, and reaching the lowest
levels in late S/G2. As cells progress through G2 and mitosis into G1, TERRA levels progressively increase
(Porro et al, 2010). Whether this cyclic process depends on transcriptional or post-transcriptional
regulation in human cells is still unexplored. In budding yeast, maximum TERRA levels are reached in S-
phase, decreasing throughout S and G2 phases (Graf et al, 2017).

Cell cycle regulation of TERRA in human cells has been hypothesized to contribute to telomere
length maintenance by telomerase (Figure 1.2) — which extends chromosome ends in late S-phase,
when TERRA levels reach the lowest levels (Tomlinson et al, 2006; Porro et al, 2010). In vitro
experiments have shown that TERRA is a strong inhibitor of telomerase activity, base pairing with hTR
and interacting with the catalytic component hTERT (Redon et al, 2010). In addition, a fine balance
between TERRA and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is thought to regulate
telomerase access to telomeres. hnRNPA1 is a major TERRA-binding protein, which also inhibits
telomerase in vitro and is detected at telomeres (Redon et al, 2013). When in excess over hnRNPA1,
TERRA may bind and directly inhibit telomerase activity, while when TERRA is at equilibrium with
hnRNPA1, telomerase may be released from binding by TERRA and hnRNPA1 —which interact with each
other —, thus accessing and elongating chromosome ends (Redon et al, 2013). Furthermore, the
dynamic interplay between TERRA and hnRNPA1 has been proposed to promote POT1 binding to the
telomeric 3’ overhang. It occurs through displacement of the strong ssDNA-binding complex RPA by
hnRNPA1 — which in turn is not bound by downregulated TERRA in late S-phase (Flynn et al, 2011). Re-
association of hnRNPA1 with TERRA after S-phase has been hypothesized to then liberate the G-rich
overhang for POT1 access. POT1 binding to telomeres has been suggested to counteract telomerase
activity in vivo and in vitro (Loayza & De Lange, 2003; Kelleher et al, 2005), therefore TERRA may exert
a direct and POT1-mediated indirect negative regulation over telomerase. Of note, while TERRA
together with hnRNPA1 may contribute to POT1 association with telomeres by mediating RPA
displacement, an alternative model suggests that tethering of POT1 to telomeres by TPP1 and TIN2 is
sufficient for an RPA-to-POT1 switch (Takai et al, 2011).

Conversely, in yeast, in vivo experiments point towards a positive control of telomerase activity by
TERRA. In S. cerevisiae, TERRA levels have been shown to be elevated in cells with short telomeres,
where TERRA clusters with TLCI (yeast telomerase RNA) in early S-phase. TERRA then specifically
coordinates telomerase recruitment to short telomeres in cis — from which TERRA was transcribed —,
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promoting their preferential elongation (Cusanelli et al, 2013). In S. pombe, telomere shortening
promotes accumulation of polyadenylated TERRA. Upon transcriptional induction of telomeres,
polyadenylated TERRA was found to stimulate the association of telomerase with short telomeres,
promoting their elongation (Moravec et al, 2016). However, this was solely achieved when TERRA
induction was coupled with a histone deacetylase inhibitor treatment, which decreases chromatin
compaction (Moravec et al, 2016).

TERRA levels are not only regulated in a cell cycle-dependent manner, but are also inversely
correlated with telomere length. In human cells, TERRA levels have been shown to decrease upon
telomere elongation, through transcriptional repression mediated by SUV39H1 H3K9 histone
methyltransferase and HP1 proteins (Arnoult et a/, 2012). Despite a lower abundance of TERRA in cells
with longer telomeres, the UUAGGG content of these TERRA molecules was shown to be higher. In
turn, a rise in the size of TERRA was hypothesized to serve as a recruitment platform for histone-
modifying enzymes (Figure 1.2), allowing re-establishment of H3K9me3 at telomeres, in a cell cycle-
regulated and telomere length-dependent manner (Arnoult et al, 2012). This supports a model in which
TERRA contributes to the regulation of telomeric heterochromatin through a feedback mechanism. Also
upon telomere uncapping following TRF2 depletion in human cells, transcriptional repression of TERRA
is lost (Porro et al, 2014). Elevated TERRA in TRF2-depleted cells directly interacts with SUV39H1, which
maintains telomere chromatin compaction by methylating H3K9. In addition, recruitment of SUV39H1
by TERRA was proposed to sustain end-to-end telomeric fusions prompted by TRF2 deficiency (Porro
etal, 2014).

In budding yeast, TERRA levels were also found to be increased in cells with shorter telomeres.
This process is thought to be regulated by the nuclear 5-3° RNA exonuclease Ratlp, which is
preferentially enriched at longer telomeres where it degrades TERRA (Luke et al, 2008; Graf et al, 2017).
In turn, TERRA accumulation at critically short telomeres elicits DNA damage signalling, promoting
recruitment of factors involved in recombination-mediated repair such as RAD51, thus stimulating HDR-
mediated telomere elongation (Graf et al, 2017) (Figure 1.2). Importantly, stimulation of HDR at
telomeres by TERRA has been shown to require direct hybridization of TERRA with the telomeric tract,
forming structures termed R-loops (Balk et al, 2013; Graf et al, 2017) (see chapter 1.2.2.1).

1.2.2.1. Regulation and impact of TERRA R-loops

R-loops are intermolecular three-stranded structures that form when an RNA strand invades the
dsDNA helix and hybridizes with the complementary strand forming a DNA:RNA hybrid, leaving a
displaced DNA strand. R-loops can range from 100 bp to over 2 kb long (Garcia-Muse & Aguilera, 2019).
These structures have been detected throughout the genome and are thought to mainly occur during
transcription in cis, due to sequence complementarity between the nascent transcript and the template
DNA strand (Reaban et al, 1994; Yu et al, 2003; Crossley et al, 2019; Lafuente-Barquero et al, 2020).
Studies in yeast (Wahba et al, 2013) and plant (Ariel et al, 2020) revealed that R-loops can also be
formed post-transcriptionally, in trans — at genomic regions distinct from the loci where the RNA was
transcribed from. R-loops tend to form in genomic regions with high GC content and GC skew, and the
displaced ssDNA strand is prone to form G4s, which in turn are thought to stabilize the DNA:RNA hybrid
(Duqguette et al, 2004; Miglietta et al, 2020).

R-loops have been demonstrated to be crucial intermediates in several processes (reviewed in
(Aguilera & Garcia-Muse, 2012)), namely in immunoglobulin (Ig) class-switch recombination (Yu et al,
2003), sequence-specific targeting by the bacterial CRISPR-Cas9 DNA endonuclease (linek et al, 2012),
or priming of mitochondrial DNA replication (Xu & Clayton, 1996). In addition, R-loops formed across
the genome have been implicated in the regulation of gene expression, being involved in transcriptional
activation or silencing — by stimulating binding of transcription factors to promoters where R-loops can
accumulate, or by “masking” promoters from transcription factors —, or in promoting transcriptional
termination by RNA Polymerase (reviewed in (Garcia-Muse & Aguilera, 2019)). On the other hand, R-
loops can pose an obstacle to the elongating transcription machinery, as well as an impairment to DNA
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replication, potentially resulting in accumulation of DNA damage and genome instability in the form of
transcription-associated recombination (TAR) (Huertas & Aguilera, 2003; Wellinger et al, 2006; Gan et
al, 2011a; Dominguez-Sanchez et al, 2011). While R-loops can directly slow down or obstruct the
replication fork leading to fork stall and collapse, the chromatin changes promoted by R-loop
accumulation may also constitute a barrier to DNA replication, and contribute to genome instability
(Garcia-Pichardo et al, 2017). Exposure and consequent vulnerability of the ssDNA strand within R-
loops, and nucleolytic processing of R-loops have also been described as R-loop-derived sources of DNA
damage (reviewed in (Brickner et al, 2022)).

At telomeres, R-loops form when TERRA RNA invades the telomeric dsDNA, base pairing with the
C-rich strand, leaving the G-rich DNA strand displaced (Figure 1.2). R-loops were first detected at yeast
telomeres (Balk et al, 2013; Graf et al, 2017), resorting to a chromatin immunoprecipitation approach,
with the DNA:RNA hybrid-recognizing $9.6 antibody (Boguslawski et al, 1986). Also at human telomeres
the formation and regulation of R-loops has been the focus of growing interest (Arora et al, 2014; Sagie
et al, 2017; Silva et al, 2019; Yadav et al, 2022, 1; Kaminski et al, 2022).

Notably, several functions associated with the role of TERRA in telomere maintenance have been
shown to depend on R-loops. As aforementioned, in telomerase-negative budding yeast, induction of
HDR following increased expression and accumulation of TERRA at short telomeres was shown to
involve R-loops, as it is sensitive to RNaseH1 overexpression (Graf et al, 2017). RNaseH1 is part of the
RNaseH ribonuclease family which specifically hydrolyses the RNA moiety in R-loops (Cerritelli &
Crouch, 2009). Additionally, it was reported that another member of this family — RNaseH2 — is
preferentially recruited to long telomeres where it degrades TERRA R-loops in late S-phase, but is lost
at short telomeres where R-loop build-up is required for recombination-mediated telomere re-
elongation, avoiding replicative senescence (Graf et al, 2017; Misino et al, 2022) (Figure 1.2). At short
telomeres, Npl3 — previously implicated in transcription and R-loop regulation — was shown to interact
with TERRA-mediated R-loops, stabilizing these structures (Pérez-Martinez et al, 2020).

Numerous studies have demonstrated the fundamental role of TERRA R-loops specifically in
human ALT cancer cells — which depend on recombination to avert telomere shortening and
subsequent replicative senescence. ALT cells are characterized by a reduced chromatin compaction and
elevated telomeric transcription and telomeric R-loops, compared to telomerase-positive cell lines
(Episkopou et al, 2014; Arora et al, 2014). In addition, loss of the chromatin remodeling protein ATRX
in ALT cells compromises cell cycle regulation of TERRA (Flynn et al, 2015). Thus, TERRA lingers
throughout S-phase and G2, sustaining elevated telomeric R-loop levels and contributing to the
elevated replication stress characteristic of ALT telomeres (Arora et al, 2014; Flynn et al, 2015; Silva et
al, 2019; Lu & Pickett, 2022).

The role of TERRA in recombination-mediated telomere maintenance is inherently dependent on
an extremely tight control of telomeric R-loops (Figure 1.2), as supported by the growing number of
reports demonstrating that dysregulation of factors which control telomeric R-loops leads to
disproportionate and possibly detrimental ALT activity levels. The ribonuclease RNaseH1 abounds at
ALT telomeres, where it directly regulates R-loops by degrading TERRA molecules engaged in DNA:RNA
hybrids. Loss of RNaseH1 leads to an excess of R-loops, which triggers an aberrant accumulation of
phosphorylated RPA (pSer33RPA) at telomeres — indicative of high replication stress (Olson et al, 2006)
—, increased telomeric leading strand fragility, C-circles and rapid telomere loss (Arora et al, 2014).
Strikingly, overexpression of RNaseH1 is also disadvantageous, as it prevents R-loop-derived replication
stress from sustaining homology-directed recombination for telomere elongation, thus also resulting in
telomere loss derived from telomere shortening (Arora et al, 2014). In vivo and in vitro experiments
have shown that the Fanconi anemia-associated ATPase/translocase FANCM also restrains exacerbated
TERRA levels and R-loops at telomeres in ALT cells, likely through its translocase activity (Silva et al,
2019; Hodson et al, 2022). Depletion of FANCM leads to an escalation of replication defects at
telomeres as a consequence of an accumulation of R-loops, increased DNA damage signaling and
elevated ALT activity. Notably, FANCM deficiency selectively compromises the viability of ALT cells (Silva
et al, 2019). Similarly, NONO and SFPQ proteins, which have been implicated in different steps of RNA

16



biogenesis, have also been proposed to suppress TERRA R-loops in ALT cells (Petti et al, 2019).
NONO/SFPQ heterodimers were identified as TERRA binding proteins. Their depletion in ALT cells
promotes the accumulation of DNA:RNA hybrid signals at telomeres. In addition, it increases the
frequency of some ALT features, including an elevated localization of phosphorylated RPA at telomeres
— which was partially rescued by RNaseH1 overexpression —, increased APBs and telomeric sister
chromatid exchanges. Loss of NONO increases telomeric fragility specifically at telomeres replicated by
leading strand synthesis (Petti et al, 2019). Interestingly, the DNA recombination factor BRCA1 was
shown to bind TERRA R-loops and mediate their repair. Depletion of BRCA1 in different human cell lines
(including ALT cells) resulted in R-loop-dependent accumulation of DNA damage, accompanied by
elevated frequency of telomeric fragility and telomere loss (Vohhodina et al, 2021). In ALT cells, XPF —
an endonuclease implicated in nucleotide excision repair —is recruited to telomeres via TERRA R-loops.
There, it has been proposed to counteract R-loop accumulation by cleaving R-loop-containing DNA,
forming DSBs. Processing of R-loops by XPF presumably activates BIR-mediated telomere synthesis by
mediating BRCA1 and RAD51 recruitment to telomeres, contributing to proliferation of ALT cells (Sollier
et al, 2014; Guh et al, 2022). Recently, RAD51AP1 (RAD51-associated protein 1), which has previously
been demonstrated to be a crucial mediator of ALT (Gonzalez et al, 2019), was shown to bind TERRA
and contribute to the formation of TERRA R-loops (Yadav et al, 2022; Kaminski et al, 2022).

Experiments involving direct manipulation of TERRA transcription or stability in ALT cells have also
contributed to the perception that a finely-tuned balance of R-loop-induced replication stress is
required for triggering HR by break-induced replication, allowing telomere elongation without entirely
threatening telomere integrity. Particularly, in ALT cells with engineered Transcription Activator-Like
Effectors (TALEs) fused to transcription repressor domains targeting some subtelomeres, TERRA
transcription is blocked, which presumably constrains R-loop formation. This is correlated with a
reduced DNA damage checkpoint signalling at telomeres (as accessed through colocalization of
pSer33RPA and YH2AX with telomeres), impaired ALT activity (decreased APBs, telomere synthesis and
POLD3 localization to telomeres) and a rise of telomere loss (Silva et al, 2021). Downregulation of TERRA
RNA with an RNA-targeting Cas9 system in ALT cells has led to similar results (Guh et al, 2022), indicating
that it is not only a high telomeric transcription rate per se that contributes to the ALT pathway, but
TERRA RNA itself. Conversely, the use of TALEs fused to a transcriptional activator enhanced TERRA
transcription in ALT cells, and resulted in amplified damage checkpoint signalling at telomeres (further
recruitment of pSer33RPA and yH2AX to telomeres) and elevated ALT activity (increased APBs, telomere
synthesis and POLD3 localization to telomeres). Interestingly, despite the increase in telomere synthesis
— as detected through EdU incorporation at telomeres —, overexpression of TERRA in ALT cells results
in accumulation of telomere-free ends (Silva et al, 2022). This observation, which had also been
reported in experiments with inhibition of TERRA transcription, illustrates the notion that TERRA levels
must be kept at precise levels to efficiently sustain BIR-mediated telomere maintenance.

Furthermore, interfering with the methylation status and consequent stability of TERRA in ALT cells
was linked to lower frequency of telomeric recombination events, which was rescued when R-loop
levels were restored by RNaseH1 depletion. Inadequate methylation of TERRA culminated in telomere
loss and increased frequency of telomere fusions (Chen et al, 2022).

Altogether, dysregulation of factors which regulate the abundance of TERRA R-loops, as well as
direct modulation of TERRA transcriptional levels or TERRA stability in ALT cells have provided
cumulative evidence on the significance of TERRA and TERRA R-loops in cells which resort to the ALT
pathway for telomere regulation.

Several other factors have been shown to regulate TERRA R-loops in human telomerase-positive
cells, impacting telomere stability. The FEN1 endonuclease — which has a canonical function in lagging
strand DNA replication —, has been shown to prevent leading strand fragility specifically derived from
telomeric DNA:RNA hybrids (Teasley et al, 2015). In vitro experiments demonstrated that the shelterin
component TRF2 can bind TERRA and promote R-loop formation, and TRF2 overexpression in human
cells leads to increased R-loop detection at telomeres. Conversely, loss of the shelterin subunit TRF1
was shown to result in elevated TERRA R-loop levels in a TRF2-dependent manner and R-loop-derived
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telomere loss (Lee et al, 2018). In human cells, conditional deletion of POT1 leads to an accumulation
of TERRA R-loops and correlates with an induction of ALT-associated features, including formation of
APBs, C-circles and strong activation of telomeric recombination (Glousker et al, 2020). UPF1 is an
ATPase and 5’-3’ helicase involved in the regulation of mRNAs containing premature stop codons
through the nonsense mediated RNA decay (NMD) pathway. UPF1 association with telomeres is
stimulated by ATR and by telomere elongation. Interestingly, loss of UPF1 in Hela cells increases TERRA
association with telomeres, and causes DNA damage signaling activation, as well as frequent loss of
telomeres replicated by leading strand synthesis (Azzalin et al, 2007; Chawla et al, 2011). The helicase
RTEL1 — with a crucial role in dismantling T-loops in S-phase — has been shown to bind G4-containing
TERRA RNA, promoting its association with chromosome ends, and thus hindering transcription from
telomeres harboring R-loops. Additionally, deletion of RTEL1 promotes telomere loss, limits growth
capacity and leads to premature senescence. Strikingly, complementation of RTEL1 deletion with RTEL1
mutants deficient for either TERRA binding or helicase activity failed to rescue the senescence
phenotype (Ghisays et al, 2021). Whether the defects observed at telomeres in cells with deficiency of
POT1, UPF1 or RTEL1 depend on TERRA is not yet fully elucidated.
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Figure 1.2. The telomeric IncRNA TERRA and its proposed functions at chromosome ends;
Regulators of TERRA R-loops.

Telomeres are transcribed into the long non-coding RNA TERRA - Telomeric Repeat containing
RNA. The transcription of TERRA stems from subtelomeric promoters and is extended through the
telomeric tract. TERRA molecules have a variable size and are mainly localized in the nucleus. TERRA
contains a 5-m’G cap, and was found to carry the m®A modification (not depicted). Only a minor
fraction of TERRA is polyadenylated (< 10%) — PolyA* TERRA. Polyadenylated TERRA is commonly
detected in the nucleoplasm, while non-polyadenylated TERRA RNAs are often found in association with
the telomeric chromatin, forming R-loops. These structures are formed when TERRA invades the
telomeric dsDNA, base pairing with the C-rich strand — forming a DNA:RNA hybrid —, leaving a displaced
DNA strand. The displaced G-rich ssDNA strand has the propensity to form G-quadruplex (G4)
structures. TERRA has been proposed to regulate the recruitment or activity of telomerase —while some
studies indicate that TERRA may inhibit telomerase, others suggest that TERRA guides telomerase to
short telomeres for their preferential elongation. TERRA has also been implicated in the regulation of
the chromatin composition of telomeres, serving as a recruitment platform for histone-modifying

18



enzymes, particularly when telomeres become short or uncapped. TERRA R-loops have been shown to
interfere with the progression of the replication fork at telomeres, affecting their integrity. Additionally,
TERRA R-loops can stimulate homology-directed recombination (HDR)-mediated telomere elongation.
Given the relevance of TERRA R-loops in different biological contexts, numerous factors have been
implicated in their regulation. Proteins promoting or counteracting the accumulation of TERRA R-loops
are listed. This illustration was created with BioRender.com.

Elevated transcriptional levels of TERRA have been correlated with short telomere length in cells
from patients affected by the rare autosomal recessive ICF (Immunodeficiency, Centromeric instability
and Facial anomalies) syndrome type |. Increased TERRA has been explained by severe hypomethylation
of subtelomeres as a consequence of mutations in the gene encoding the major DNA methyltransferase
DNMT3B (Yehezkel et al, 2008), although it has been shown that loss of DNMT3B is not sufficient to
upregulate TERRA, requiring co-depletion of DNMT1 (Nergadze et al, 2009). In ICF samples, TERRA cell
cycle regulation is lost, resulting in high R-loop detection throughout the cell cycle, particularly involving
the telomeric-hexameric repeats (Sagie et al, 2017). Remarkably, ICF cells display high DNA damage
marks at chromosome ends, which are reduced by RNaseH1 overexpression. Therefore, the prominent
DNA damage signaling detected at telomeres of ICF cells appears to arise as a consequence of
accumulated TERRA R-loops across the cell cycle, presumably interfering with the progression of the
replication machinery through telomeres, and resulting in the short telomere phenotype and
premature replicative senescence characteristic of ICF.

As described in budding yeast and human ALT cells, TERRA R-loops act as an essential trigger for
telomere elongation. On the other hand, in ICF it may pose as a harmful obstacle, inducing telomere
shortening rather than contributing to recombination-mediated telomere extension. Given the
contrasting outcomes of TERRA R-loop-derived replication stress, it raises the question on how
sufficient TERRA R-loops are to modulate telomere length. Altogether, it suggests that the
consequences of R-loop formation at telomeres are highly context-dependent — including telomere
chromatin composition.

1.3. The THO and TREX complexes
1.3.1. THOC/TREX in yeast

Over 30 years ago, Andrés Aguilera and Hannah Klein identified an hpr1 S. cerevisiae mutant, which
confers an increased intrachromosomal recombination phenotype, and a mild reduction in growth rate
(Aguilera & Klein, 1990). Further characterization of hpriA cells showed a transcriptional elongation
defect at the engineered bacterial lacZ coding region — irrespectively of the type of promoter —, while
no hurdles were detected in the transcription of an examined set of endogenous yeast genes. Depletion
of HPR1 did, however, also confer sensitivity to a transcription elongation inhibitor in endogenous yeast
DNA sequences (Chavez & Aguilera, 1997).

In a quest to find yeast factors which — upon overexpression —would suppress the transcriptional
defects observed in hpriA, Tho2 was identified (as in Suppressor of Transcription Defects of hpriA
Mutants by Overexpression). Analysis of tho2A cells revealed that such mutants grow slower than
wildtype and show a striking hyperrecombination phenotype (Piruat & Aguilera, 1998). Such effect in
recombination seemed to arise from a general role for Tho2 in transcriptional elongation of yeast genes
transcribed by RNA Polymerase Il, independently from whether genes are located in plasmids or
chromosomes, and whether they are constitutive or regulated (Piruat & Aguilera, 1998). Interestingly,
the manifestations of tho2A mutation resembled those of hprlA, suggesting Hprl and Tho?2 act in the
same biological process.

Indeed, the multisubunit THO complex (THOC) was readily identified as a functional unit in yeast
(Chavez et al, 2000). This protein complex comprises Hprl, Tho2, as well as Mft1 (mitochondrial fusion
targeting 1), Thp2 (for Tho2/Hprl phenotype) and Tex1 (TREX component 1) (Chavez et al, 2000;
Plhringer et al, 2020) (Figure 1.3A). Expression of GFP-fusion proteins suggested that the THO complex
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is mainly nuclear, and similarly to hpriA and tho2A, mft1A and thp2A lead to impaired transcription
through laczZ, and hyperrecombination dependent on transcription (Chdvez et al, 2000). Concordantly,
THOC components were found to interact with RNA Polymerase Il in yeast (Chang et al, 1999) and
mutations in the RNA Polymerase Il transcriptional machinery were found to rescue the
hyperrecombination phenotype characteristic of hpriA cells (Fan et al, 1996).

Transcriptional defects of yeast THOC mutants were initially detected in G+C-rich genes —such as
the bacterial lacZ reporter or the yeast YATI —, or in long ORFs — such as the yeast LYS2 fragment —,
while only a slight defect was detected in the transcription of LAC4 — an ortholog of /acZ with a lower
G+C content (Chavez et al, 2001). Therefore, length and G+C content were proposed to be preferential
elements influencing the requirement of THOC (namely Hprl) for efficacious transcription in S.
cerevisiae (Chavez et al, 2001). On the other hand, it was proposed that long internal tandem repeats
were instead the key feature found in yeast genes that require THOC for transcription, as for example
appropriate transcription of the wild-type FLO11 yeast gene containing internal tandem repeats
depends on a functional THO complex, while transcription of the same gene without the repeats is
insensitive to THOC expression levels (Voynov et al, 2006). This is consistent with the fact that an hpri
mutant was primarily identified on the basis of increased recombination frequency between
engineered tandem repeats (Aguilera & Klein, 1988). Additionally, yeast genes whose expression is
most affected by depletion of THOC components do not necessarily exhibit a high G+C content nor a
remarkable length (Voynov et al, 2006).

Along with the role of THOC in transcription, this oligomeric complex was found to play a part in
RNA nuclear export as an element of the larger TREX complex (standing for transcription and export),
together with Yral and Sub2 (StrdRer et al, 2002; Jimeno et al, 2002) (Figure 1.3A). All components of
the THO complex were found to genetically interact with SUB2 in a synthetic lethal screen with mutant
sub2 (StréRer et al, 2002), which had in turn been found to be related to YRAI — two yeast genes
encoding proteins which interact with each other and are involved in messenger RNA export (StralRer
& Hurt, 2000, 2001). In parallel, SUB2 was isolated as a multicopy suppressor of the transcriptional
defect observed in hprlA, and together with yralA, sub2A cells displayed similar transcriptional
problems and hyperrecombination phenotypes as THOC mutants (Jimeno et al, 2002). Additionally,
Yral, Sub2 and THOC components were found to physically interact independently of RNA, suggesting
that — as previously described (Lei et al, 2001) — export factors are recruited to RNAs in a transcription-
coupled manner (StraRer et al, 2002).

While Sub2 had previously been implicated in the spliceosome assembly process (Libri et al, 2001;
Zhang & Green, 2001), it was proposed to be involved in recruiting Yral to both intron-containing and
intron-lacking mRNAs for export (Stréfer & Hurt, 2001). Likewise, THOC components were found to be
required for efficient export of mMRNAs derived from intronless genes (StraRer et al, 2002; Rondén et al,
2003), being crucial for the efficient recruitment of Sub2 and Yral to elongating RNA Polymerase Il
(Zenklusen et al, 2002).

Yeast cells harbouring a mutated TREX complex show an irregular nuclear export of polyadenylated
MRNAs, thought to derive from abnormal 3’end mRNA processing. Interestingly, in the case of a pool
of heat shock HSP104 transcripts, the observed 3’end-truncation in TREX mutant strains was suggested
to stem from nuclear RNA degradation, rather than from a transcription elongation defect — as
previously described for other transcripts regulated by THOC/TREX. In this case, incomplete RNAs result
from degradation by an exosome-associated exonuclease, while RNAs that are not degraded remain
trapped at the transcription site (Libri et a/, 2002; Zenklusen et al, 2002; Saguez et al, 2008).

Importantly, strains lacking a functional THO complex, exhibit a striking accumulation of genome-
wide DNA:RNA hybrids, as determined by the sensitivity of nucleic acids extracted from THOC mutant
cells to different nucleases (Huertas & Aguilera, 2003). Such structures were found to accumulate
toward the 3’ end of genes (Huertas & Aguilera, 2003), and when formed co-transcriptionally pose an
obstacle to elongating RNA Polymerase Il, impairing transcription elongation (Bentin et al, 2005; Tous
& Aguilera, 2007; Gémez-Gonzdlez et al, 2011). Additionally, if a hammerhead ribozyme self-cleaves
nascent RNAs during transcription, the hyperrecombination phenotype observed in THOC mutants is
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suppressed. Therefore, DNA:RNA hybrids are thought to be one of the main sources of so-called
transcription-associated recombination (Huertas & Aguilera, 2003). Such hyperrecombination has been
proposed to stem from stalling of the replication fork (Gan et al, 2011b; Wellinger et al, 2006) or from
RNA polymerase obstruction by DNA:RNA hybrids. In addition, the vulnerability of ssDNA stretches
formed in the displaced DNA strand of R-loops to damage agents, inducing the formation of DNA
breaks, is also thought to contribute to recombinogenic events (Huertas & Aguilera, 2003). Moreover,
detailed analysis of DNA:RNA hybrids in THOC mutants throughout the cell cycle suggested that the
THO complex counteracts R-loop accumulation in G1 and S-phases of the cell cycle (San Martin-Alonso
et al, 2021). Overall, TAR is strongly associated to genetic instability, placing the THOC/TREX complex
as a key player in the maintenance of genome integrity.

Unexpectedly, overexpression of the TREX adaptor protein Yral was shown to increase DNA:RNA
hybrids — presumably by binding and stabilizing such structures —, thus contributing to transcription-
replication collisions (Gavalda et al, 2016; Garcia-Rubio et al, 2018). Therefore, overriding Yral tight
stoichiometric regulation (Rodriguez-Navarro et al, 2002; Preker & Guthrie, 2006) leads to genomic
instability and has a negative impact on cell viability in yeast (Gavalda et al, 2016; Garcia-Rubio et al,
2018).

Altogether, the yeast TREX complex seems to be recruited to transcribing genes, independently
from splicing, traveling with elongating RNA polymerase Il. Additionally, it couples transcription with
appropriate RNA processing, counteracting the accumulation of DNA:RNA hybrids, and contributing to
appropriate RNA export from the nucleus to the cytoplasm (role in nuclear export reviewed in (lglesias
& Stutz, 2008)).

1.3.2. THOC/TREX in human

Upon the discovery of the THOC/TREX complex in yeast, a search for structural and functional
homologues in human cells was launched. The human THO complex was characterized as comprising
six essential subunits (Figure 1.3A). It includes THOC1, which had previously been discovered as a
protein associated with the retinoblastoma tumour suppressor protein (Rb1) (Durfee et al, 1994), and
which was identified as a member of human THOC on the basis of resemblance with the yeast
homologue Hprl (Li et al, 2005). Resorting to human protein data bases, THOC2 was found to be a
homologue of yeast Tho2 (West et al, 2000) — where the C-terminal domain of yeast Tho?2 is thought
to be essential for nucleic acid binding (Pefia et al, 2012). In addition, THOC3 was identified as a
homologue of yeast Tex1 (Soding et al, 2005). More recently, the homology between yeast Thp2 and
Mft1 with human THOCS and THOC7, respectively, was determined by structural analysis of yeast and
human complexes (PUhringer et al, 2020). THOC6 — originally identified as part of THOC in Drosophila
cells (Rehwinkel et al, 2004) —is also a component of the human THO complex, with no identified yeast
homologue. Similarly to yeast, human THOC was found to be included in the larger TREX complex,
together with the splicing factor UAP56/DDX39B (a homologue of yeast Sub2), and the RNA nuclear
export protein Aly/ALYREF/THOC4 (homologue of Yral) (Fleckner et al, 1997; Zhang & Green, 2001;
Zhou et al, 2000; Luo et al, 2001) (Figure 1.3A). Taken together, the human TREX complex assembles as
a tetramer, with four units of each composing subunit (Figure 1.3B) (while it seems to form a dimer in
yeast) (PUhringer et al, 2020). Excitingly, there seems to be a high degree of structural evolutionary
conservation of TREX proteins, consistent with a key function in genome maintenance across species.

The role of THOC/TREX in human cells was described to resemble, to some extent, that observed
in S. cerevisiae. Namely, a correlation was established between THOC1 or THOC2 depletion and a
decreased growth rate, in different analysed human cell lines — namely Hela, Hek293 and U20S cells
(Li et al, 2005). Also in human cells, THOC was found to interact with elongating RNA Polymerase Il (Li
et al, 2005). siRNA-mediated depletion of subunits THOC1 or THOC2 was shown to impact the
expression of some endogenous human genes, as well as the reporter gene lacZ. lacZ expression was
reduced upon THOC1 depletion, irrespectively of the promoter driving lacZ expression in human cells,
indicating that the observed transcriptional defect is presumably not due to a faulty promoter-
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dependent transcriptional initiation. Additionally, upon THOC1 depletion, the density of RNA
Polymerase Il along the lacZ gene was reduced (Li et al, 2005). These data, together with the use of a
tandem transcriptional elongation reporter system (Dominguez-Sanchez et al, 2011), are consistent
with a role of human THOC in transcriptional elongation.
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Figure 1.3. Composition and structure of the THO and TREX complexes.

A Subunits of THO and TREX complexes. Human proteins are colour-coded matching the structures
depicted in B and C. Respective homologue yeast proteins are indicated in grey. The number of amino
acids (a.a.) of each human protein is indicated, and each bar’s length attempts to reflect the relative
size between components.

B Front view of the human 14-subunit THOC-UAP56 asymmetric dimers, forming a tetramer with
28 subunits. Red and yellow outlines highlight a monomer each. Seven main subunits of TREX are
labelled in one of the four monomers (monomer outlined in red). A dimerization domain and the
tetramer interface are indicated. The obtained structure was modelled from cryo-electron microscopy
and combined with a previously obtained low-resolution yeast THOC-Sub?2 crystal structure (for UAP56
RecAl lobe depicted in light pink). Depicted THOC2 subunits only comprise residues 1-1203, since the
disordered C-terminal domain was truncated for recombinant protein expression. The TREX component
ALYREF was not modelled in this structure.

C Depiction of TREX structure and its proposed function in nuclear export. The THO complex binds
UAP56, forming a tetramer. It is recruited to RNA molecules (depicted as black lines) and engages the
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nuclear export adaptor ALYREF (i), and presumably other adaptor proteins. In turn, it may promote
binding of other factors, licensing the RNA for nuclear export (ii). The TREX complex depiction including
ALYREF (here represented in purple) was obtained by preparing a homology model of UAP56 bound to
RNA and ALYREF, based on a previously obtained yeast crystal structure, and superimposing this model
onto the human THO-UAP56 tetramer structure.

Figure modified from Pihringer et al, 2020.

Remarkably, the role of THOC within the TREX complex in coupling transcription with RNA export
seems to be conserved from yeast to human, however, in higher eukaryotes it is thought to depend on
RNA splicing (which occurs co-transcriptionally). In contrast to yeast, human THOC was proposed to be
recruited to elongating transcription in an indirect manner — via the splicing machinery. In vitro
experiments have suggested that human THOC exclusively associates with spliced RNA, but not
unspliced pre-mRNA (Masuda et al, 2005). Additionally, immunofluorescence staining experiments
revealed that THOC shows a diffuse nuclear pattern and localizes with splicing factors in nuclear speckle
domains (where splicing takes place) (Masuda et al, 2005). In order to assemble the larger TREX
complex, THOC associates with the splicing factor UAP56 (Li et al, 2005), which interacts with Aly in an
ATP-dependent manner (Taniguchi & Ohno, 2008), which in turn are thought to associate with the exon
junction complex (EJC) (Merz et al, 2007). In contrast, THOC1, UAP56 and Aly were also found to
interact with unspliced, 5’ capped AdML RNA (Merz et al, 2007). In line with this observation, TREX is
thought to be recruited to RNA not only in a splicing-dependent manner, but also via the RNA 5" cap
site, through THOC and Aly association with the cap-binding complex (CBC) component CBP80 (Cheng
et al, 2006; Chi et al, 2013). In addition, TREX components were recently found to interact with the m°A
methyltransferase complex. This places the m®A modification of RNA as yet another feature presumably
contributing to the recruitment of TREX proteins to RNA — a process which was shown to be crucial for
efficient RNA export (Lesbirel et al, 2018).

Following recruitment to RNA, TREX becomes essential for appropriate RNP (ribonucleoprotein
complex) formation, engaging the export factor NXF1-NXT1 and sustaining RNA nuclear export (Figure
1.3C) (reviewed in (Kohler & Hurt, 2007; Carmody & Wente, 2009)). Accordingly, depletion of THOC or
TREX components results in a noticeable nuclear accumulation of polyadenylated RNAs (Dominguez-
Sanchez et al, 2011; Chi et al, 2013).

The first evidence of a role of human THOC in the regulation of DNA:RNA hybrids in human cells
arose from the quantification of the reporter lacZ RNA levels in nuclease-treated nucleic acid extracts
from human cells. Analysis of nucleic acids from cells depleted of THOC1 showed an increased
sensitivity to RNaseH digestion (which specifically degrades the RNA moiety of DNA:RNA hybrids) prior
to reverse transcription, compared to extracts from control cells (Li et al, 2005). Furthermore,
downregulation of THOC subunits led to an accumulation of DNA damage, as examined by an increase
in tail moment in comet assay (single-cell electrophoresis), and a higher percentage of cells displaying
yYH2AX and 53BP1 foci. Importantly, staining of such DNA damage markers in cells with reduced THOC
levels was sensitive to RNaseH1 and 2, indicating that DNA breaks are prompted by R-loops linked to
loss of THOC (Dominguez-Sanchez et al, 2011). Analogously to the hyperrecombination phenotype
documented in yeast THOC mutants — although to a lower extent —, depletion of THOC subunits in
human cells induces an elevated recombination frequency, as measured with a direct-repeat
recombination reporter construct (Dominguez-Sanchez et al, 2011). Intriguingly, DNA combing
experiments suggest that loss of THOC1 results in apparently longer replicons. This was interpreted as
a possible failure in triggering DNA damage response checkpoint, or as a direct consequence of delayed
replication termination, or even as an indirect outcome of a lower density of RNA Polymerase Il, due to
unsuccessful transcriptional elongation (Dominguez-Sanchez et al, 2011). Overall, this underscores the
role of human THOC/TREX in the maintenance of genome stability, by counteracting the accumulation
of DNA:RNA hybrids.

Nevertheless, the exact mechanism through which THOC/TREX prevents the accumulation of
DNA:RNA hybrids is still not well elucidated. The observation that downregulation of several RNA-
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binding and RNA-processing proteins contributes to the accumulation of R-loops is consistent with the
notion that inadequate formation of RNP particles prompts RNA hybridization with DNA (reviewed in
(Aguilera, 2005) — which is most prone to occur co-transcriptionally, due to sequence complementarity
and an open chromatin state during transcriptional elongation.

In addition, a relationship between THOC and chromatin modifiers unravelled a new putative
explanation for the mechanism undertaken by THOC in restraining R-loops (Salas-Armenteros et al,
2017). In this study, THOC1 was shown to physically interact with components of the Sin3 deacetylase
complex. Depletion of THOCL1 led to a decrease in histone deacetylase activity and a tenuous increase
in cellular histone acetylation levels. In turn, depletion of Sin3A scaffold histone deacetylase or chemical
inhibition of histone deacetylation led to elevated DNA:RNA hybrid levels, as well as DNA damage levels
— which are dependent on active transcription and sensitive to RNaseH1 overexpression, thus likely
being a consequence of R-loop build-up. In parallel, a histone acetyltransferase inhibitor reduced
DNA:RNA hybrid levels, as well as cellular DNA damage detection by yH2AX staining and comet assay.
Altogether it was proposed that the THO complex directs histone hypo-acetylation via Sin3A, transiently
closing chromatin during transcriptional elongation, and thus preventing co-transcriptional
accumulation of R-loops (Salas-Armenteros et al, 2017). Nonetheless, while deacetylase activity was
decreased upon THOC1 and/or Sin3A siRNA-mediated downregulation, analysis of AcH3 levels at
specific genomic loci did not fully correlate with R-loop accumulation under such conditions (Salas-
Armenteros et al, 2017). Therefore, further studies will be required to conclusively determine whether
chromatin modifications form the direct basis for the role of THOC in preventing R-loops.

Along with the notion that THOC/TREX can offset the accumulation of R-loops by preventing the
hybridization of RNA with template DNA in the first place — either by directly binding the RNA, and/or
by directing chromatin accessibility —, it has been shown that the core TREX component UAP56 has the
capacity to resolve unscheduled R-loops (Pérez-Calero et al, 2020). UAP56 is a DEAD-box RNA-
dependent ATPase (Shen et al, 2007), which was shown to be recruited to most transcribed DNA regions
— possibly dependently on splicing (Luo et al, 2001). In vitro, UAP56 displays a strong DNA:RNA helicase
activity, unwinding blunt-ended hybrids and hybrids displaying 5" or 3’ overhangs, as well as an RNA-
DNA flap structure which mimics an R-loop. Accordingly, in vivo experiments showed that depletion of
UAP56 increases R-loops genome-wide, which is accompanied by elevated DNA damage levels,
specifically dependent on active transcription and R-loops (as yH2AX staining and comet assay revealed
a sensitivity to the transcription elongation inhibitor cordycepin and to RNaseH1 overexpression in
UAPS6 depleted condition). Furthermore, loss of UAP56 led to an increase in yH2AX most prominently
in S and G2 phases of the cell cycle, as well as a lower replication fork velocity, and a higher fork
asymmetry rescued by RNaseH1 overexpression, indicative of replication defects as a consequence of
R-loop persistence (Pérez-Calero et al, 2020). Interestingly — as shown for THO subunit 1 (Salas-
Armenteros et al, 2017) —, UAP56 interacts with the Sin3A scaffold histone deacetylase, and co-
depletion of UAP56 and Sin3A results in elevated R-loop levels, compared to control cells, although to
a lower extent than individual depletions (Pérez-Calero et al, 2020).

1.3.3. Involvement of THOC/TREX in development and pathological contexts: a
brief overview

Given that the highly conserved THOC/TREX participates in very fundamental molecular processes
—including RNA biogenesis and export —, it is anticipated that these complexes are involved, to some
degree, in developmental and pathological contexts, across different species.

While the TREX component Yral is essential for viability in yeast cells (Portman et al, 1997), strains
with loss of THOC components are viable, despite a slight decrease in growth rate (Aguilera & Klein,
1990; Piruat & Aguilera, 1998). On the other hand, a different scenario is observed in mammals. In mice,
homozygous THOC1 null embryos are not recovered, indicating that THOC1 is required for early
embryonic development (Wang et al, 2006). Particularly, development is blocked upon implantation,
and in vitro culture of embryos results in fundamental defects (Wang et al, 2006). In addition, in mouse
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embryonic stem-cells, THOC subunit 5 was shown to preferentially interact with pluripotency-related
RNAs such as Nanog and Sox2 (Wang et al, 2013). Through its role in RNA export, THOCS is thought to
contribute to embryonic stem cell self-renewal, while at the onset of differentiation, THOCS is
downregulated, thus leading to a depletion of pluripotency-related factors, facilitating exit from self-
renewal (Wang et al, 2013). Interestingly, inducible depletion of THOC1 in adult mice appears to have
a tissue/cell type-dependent effect. For example, at the gastro-intestinal tract, it is small intestine cells
which seem to be the most disrupted, with compromised proliferation and viability upon inducible
downregulation of THOCL1 (Pitzonka et al, 2013). Also, at the hematopoietic system, specifically myeloid
lineages appear to have the most pronounced sensitivity to loss of THOC1, presumably owing to their
high rate of proliferation (Pitzonka et al, 2014). In the male mouse, THOC1 deficiency compromises
gametogenesis — likely as a consequence of defects in the regulation of transcripts involved in postnatal
differentiation of testes —, rendering the animals infertile (Wang et al, 2009). In human, THOC5 was
implicated in osteoclast differentiation (Mun et al, 2022) — a process required for constant maintenance
and repair of bones. Therefore, the impact of THOC in adult tissue appears to be highly context specific,
possibly because different subsets of RNAs are regulated by THOC in different tissues/cell types.

Intriguingly, it has been hypothesized that some cancer cells require higher levels of THOC
components for their viability than cells which have not undergone neoplastic transformation (Li et al,
2007). For instance, THOC1 is overexpressed in breast cancer cells, compared to normal epithelial cells,
and its levels correlate with tumour size and metastases (Guo et al, 2005). Loss of THOC1 impaired the
growth and viability of oncogene-transformed human fibroblasts — presumably by promoting apoptosis
—, while control fibroblasts were not affected. Also in human epithelial cancer cell lines —including Hela
cells — viability is slightly affected and yH2AX cellular levels are increased upon THOC1 downregulation
(Li et al, 2007). Additionally, in hepatocellular carcinoma, THOC1 is outstandingly upregulated, and is
thought to promote proliferation, contributing to tumorigenesis (Cai et al, 2020). Importantly, THOC1
loss was shown to sensitize hepatocellular carcinoma cells to the chemotherapeutic cisplatin (Cai et al,
2020), raising the possibility of exploring THOC subunits as potential therapeutic targets. In contrast,
overexpression of THOC1 in lung cancer cell lines, was demonstrated to inhibit cell proliferation and
promote G2/M cell cycle arrest, culminating in apoptosis, likely by affecting the cell cycle regulators
cyclin A1 and B1, and pro-apoptotic factors Bax and caspase-3 (Wan et al, 2014).

Overall, considering the extent of biological contexts THOC/TREX has been implicated in, the
elucidation of its molecular function is of great relevance.

1.3.4. THOC/TREX at yeast and human telomeres

A few studies have been undertaken to decipher a putative (direct or indirect) role of THOC
components in telomere biology. For example, S. cerevisiae hprl or tho2 mutants were shown to have
longer telomeres. This elongation was shown to occur in a telomerase-dependent manner, and
irrespectively of recombination, since cells lacking Rad52 (crucial for homologous recombination) still
displayed such elongation (Yu et al, 2012). Interestingly, this effect in telomere length caused by loss of
Hprl and Tho2 was proposed to result from a decrease in Rif1 mRNA and protein levels (Yu et al, 2012)
— a factor which interacts with the shelterin Rap1 and is a negative regulator of telomere length (Hardy
et al, 1992). This study did not evaluate the presence of THOC components at yeast telomeres, and
reports what seems to be an indirect consequence of loss of THOC, given its role in global RNA
biogenesis.

Also the impact of the TREX component Sub2 was briefly evaluated at yeast telomeres.
Overexpression of Sub2 was proposed to rescue telomeric silencing, as measured by a colony survival
assay reflecting the expression level of the telomeric positioning effect reporter URA3 (Lahue et al,
2005). While this can result from a direct or indirect pathway (for example by impacting other telomere-
related factors, as described above for some THOC subunits), Sub2 proteins were in fact shown to
associate with yeast telomeres (Lahue et al, 2005), recognizing also the possibility of a direct role of
THOC/TREX at telomeres.
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In line with this notion, ChIP experiments in S. cerevisiae cells revealed that THOC subunits Hpr1,
Tho2, Mftl and Thp2 are found at most chromosome ends (Pfeiffer et al, 2013). Interestingly, deletion
of HPR1 or THP2 increased the levels of TERRA-R-loops detected at yeast telomeres, without
significantly changing TERRA levels (Balk et al, 2013; Pfeiffer et al, 2013). Furthermore —and in contrast
to the study of Yu and colleagues (Yu et al, 2012) regarding loss of HPR1 and THO2 —, THP2 deletion
resulted in shortening of telomeres. However, this effect could not be rescued by RNAseH1
overexpression combined with THP2 deletion. Instead, telomere shortening caused by loss of THP2 was
sensitive to deletion of the DNA specific Exonuclease 1 (EXO1), suggesting that Thp2 somehow protects
telomeres from Exol (Pfeiffer et al, 2013). In addition, Thp2 is presumably required for efficient
replication of telomeres when replication stress is induced (Pfeiffer et al, 2013). Overall, different
pathways necessary for telomeric homeostasis may require the THO component Thp2, in a direct
and/or indirect manner.

In parallel with the global role of THOC/TREX components in counteracting accumulation of R-
loops, overexpression of the TREX adaptor protein Yral in S. cerevisiae cells actually leads to increased
DNA:RNA hybrids across the genome, presumably by binding and stabilizing such structures (Gavalda
et al, 2016; Garcia-Rubio et al, 2018). This effect was also observed at the telomeric tract, both in
telomerase-positive and -negative strains. Despite the increased R-loop-mediated recombination
frequency in Yral overexpressing cells, rapid shortening of telomeres was observed under these
circumstances (independently from telomerase), as well as an accelerated senescence phenotype
(Gavalda et al, 2016; Garcia-Rubio et al, 2018). Altogether, THOC/TREX components appear to play a
role in proper maintenance of yeast telomeres, and disruption of different subunits appears to lead to
highly diverse phenotypes.

Resorting to a mass spectrometry-based quantitative telomeric chromatin isolation protocol
(QTIP) in human cells (HelLa), THO subunits 1-7, as well as the TREX component Aly were found to be
associated with human telomeres (Grolimund et al, 2013), meaning THOC/TREX occupancy at
telomeres seems to be evolutionarily conserved. Comparison between cell clones with long and short
telomere length did not detect any differences in the telomeric occupancy of THOC/TREX components
(Grolimund et al, 2013). The TREX component DDX39B was also identified at human telomeres
(Hek293E cells) in a subsequent QTIP experiment (Lin et al, 2021).

In human cells, the TREX complex is generally recruited to elongating nascent RNA via the splicing
apparatus (Masuda et al., 2005). However, while THOC/TREX components have been detected at
human telomeres along with some splicing factors, there is thus far no evidence supporting that the
telomeric RNA TERRA is spliced. It must be noted that this evaluation is delicate due to the repetitive
nature of TERRA. Analysis of the subtelomeric-derived regions of TERRA (comprised between TERRA's
5" end and the start of the UUAGGG repetitive tract) did not reveal any splicing events in TERRA (Porro
et al, 2014). Therefore, the criteria determining THOC/TREX recruitment to human telomeres and the
function of THOC/TREX at chromosome ends requires further elucidation.

1.4. Thesis outline

The telomeric IncRNA TERRA has previously been implicated in several aspects concerning
telomere maintenance and stability. Notably, important roles carried out by TERRA — including
interference with replication of telomeric DNA, as well as stimulation of homologous recombination at
telomeres — rely on direct DNA:RNA interactions with telomeric DNA. Therefore, this study aims at
extending current knowledge on the regulation and impact of R-loops formed at chromosome ends.

Chapter 2 presents the work spearheaded by Marianna Feretzaki (Feretzaki et al, 2020), to which
| contributed as a third author. This project entailed the development of a reporter system for the
visualization of ectopically-expressed TERRA-like molecules, which enabled the scrutiny of the
association of TERRA with telomeres. Namely, it allowed the identification of the domain within TERRA
RNA that is necessary for the localization of TERRA to chromosome ends. Additionally, it was
demonstrated that TERRA preferential association with telomeres inversely correlates with telomere
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length, and that telomeric R-loops can form post-transcriptionally in trans, in a RAD51-mediated
manner. The reporter system developed in this project and subsequent findings laid the foundation for
the following chapters presented in this thesis.

Chapter 3 consists of a published article (Valador Fernandes et al, 2021) intended at placing the
results described in Feretzaki et al, 2020 into context. In this article, we listed several regulators of
telomeric R-loops, and discussed putative consequences of RAD51-mediated R-loop formation and
accumulation at the telomeric tract. In addition, control and complementing experiments to the work
presented in Chapter 2 were included, namely the analysis of the cell cycle distribution of RAD51-
depleted cells, and evaluation of expression and telomeric localization of ectopically-expressed TERRA
molecules during S-phase.

Chapter 4 comprises a published detailed description and illustration of the DNA:RNA
immunoprecipitation protocol optimized for detection of R-loops at chromosome ends, either as a bulk
—through dot blot analysis of immunoprecipitated telomeric DNA —, or at individual subtelomeres — by
gPCR (Glousker, Valador Fernandes, Feretzaki et al, 2022).

The THO complex (THOC) has previously been identified at human telomeres. It couples
transcription with RNA processing, restraining the accumulation of co-transcriptional DNA:RNA hybrids
throughout the genome. In Chapter 5 we investigated how THOC impacts the association of TERRA with
telomeres in human cells. Resorting to the TERRA reporter system described in Chapter 2, we explored
the role of THOC in the post-transcriptional regulation of telomeric R-loops. We propose a model in
which THOC plays a dual role at telomeres, where it directly prevents the association of TERRA with
telomeric DNA — co- and post-transcriptionally — by binding it, and also contributes to the resolution of
DNA:RNA hybrid structures formed at telomeres. Furthermore, we examined the impact of THOC in
restricting telomere fragility, as well as telomeric sister chromatid exchange and C-circle accumulation,
implicating the THO complex in telomere homeostasis.
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Chapter 2 RAD51-dependent recruitment of
TERRA IncRNA to telomeres through R-loops

Marianna Feretzaki, Michaela Pospisilova, Rita Valador Fernandes, Thomas Lunardi, Lumir
Krejci and Joachim Lingner

Nature 587, pages 303—-308 (2020)

https://doi.org/10.1038/s41586-020-2815-6

Reprinted with permission from all authors

2.1 Abstract

“Telomeres — repeated, noncoding nucleotide motifs and associated proteins that are found at
the ends of eukaryotic chromosomes—mediate genome stability and determine cellular lifespan.
Telomeric-repeat-containing RNA (TERRA) is a class of long noncoding RNAs (IncRNAs) that are
transcribed from chromosome ends; these RNAs in turn regulate telomeric chromatin structure and
telomere maintenance through the telomere-extending enzyme telomerase and homology-directed
DNA repair. The mechanisms by which TERRA is recruited to chromosome ends remain poorly defined.
Here we develop a reporter system with which to dissect the underlying mechanisms, and show that
the UUAGGG repeats of TERRA are both necessary and sufficient to target TERRA to chromosome ends.
TERRA preferentially associates with short telomeres through the formation of telomeric DNA-RNA
hybrid (R-loop) structures that can form in trans. Telomere association and R-loop formation trigger
telomere fragility and are promoted by the recombinase RAD51 and its interacting partner BRCA2, but
counteracted by the RNA-surveillance factors RNaseH1 and TRF1. RAD51 physically interacts with
TERRA and catalyses R-loop formation with TERRA in vitro, suggesting a direct involvement of this DNA
recombinase in the recruitment of TERRA by strand invasion. Together, our findings reveal a RAD51-
dependent pathway that governs TERRA-mediated R-loop formation after transcription, providing a
mechanism for the recruitment of IncRNAs to new loci in trans.”

2.2 Highlights

= Development of a reporter system which allows visualization of ectopically-expressed GFP-
tagged TERRA-like molecules.

=  The UUAGGG repetitive tract of TERRA is necessary and sufficient for the localization of TERRA
to chromosome ends.

= Association of TERRA with telomeres occurs preferentially at telomeres with shorter telomere
length.

=  Ectopically-expressed TERRA molecules can hybridize with telomeres, forming DNA-RNA
hybrids (R-loops) in trans.

=  Therecruitment of TERRA to telomeres and formation of telomeric R-loops depend on the DNA
recombinase RAD51 and its interacting partner BRCA2.

= RNA-surveillance factors, DNA:RNA hybrid-specific endonuclease RNaseH1 and shelterin
component TRF1 counteract TERRA association with chromosome ends.

= RAD51 binds TERRA in nuclear extracts and in vitro.

= RADS5I1 catalyses strand invasion of telomeric DNA in vitro.

2.3 Author contributions

“M.F. and J.L. conceived the study. M.F. and R.V.F. executed all cell and molecular biology
experiments. M.P. performed all biochemistry experiments and T.L. some EMSA experiments. L.K.
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conceived the RAD51-based biochemistry experiments and advised on the text. J.L. and M.F. wrote the
paper.”

Detailed contributions of R.V.F:

= Performed amplification and purification of PP7-TERRA constructs and respective controls.

= Performed amplification and purification of wildtype and lI3A mutant RAD51-expressing
constructs.

= Contributed to cell and molecular biology experiments, including cell culture, steps in
immunofluorescence experiments, western blotting, and optimization of DRIP-gPCR.

= Performed experiments requested by reviewers that did not arrive to conclusive results and
were consequently not included in the article. These experiments included evaluation of the
effect of BRCA2 depletion, as well as RAD51 strand-invasion mutant expression in telomeric R-
loops by DRIP dot-blot in cells with longer and shorter telomere length; troubleshooting of
siRNA-mediated depletion of HOP2 and MND1; design of guide RNAs for CRISPR-Cas9-mediated
downregulation of HOP2 and MND1.

= Re-organized main and extended figures, adjusted figure legends and prepared source data
documents for the manuscript’s final submission.
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TERRAis transcribed from numerous chromosome ends, and comprises
both subtelomeric sequences and telomeric repeats. More than 50%
of TERRA is associated with chromatin’. To investigate how TERRA is
recruited to or retained at telomeres, we generated a plasmid encoding
24 copies of the stem-loop of phage PP7 (ref.®) under the control of the
tetracycline-inducible (TET) promoter, followed by 90 TTAGGG repeats
(Fig.1a). To generate full-length TERRA transcripts, we also cloned the
human chromosome Xq and 15q subtelomeric regions containing the
TERRA startsites between the PP7 stem-loops and the TTAGGG repeats.
The constructs were then transiently transfected into HeLa clones
that were constitutively expressing the PP7 coat protein fused to GFP
(PCP-GFP) and a nuclear-localization signal. PCP-GFP exhibited a
diffuse signal in the nucleus but formed nuclear foci upon expression
of the PP7 stem-loops, which are bound by PCP and can gather up to
48 PCP-GFP molecules per RNA. These foci did not co-localize with
telomeres (Fig. 1b). The fusion of the subtelomeric region of 15q or
Xq TERRA to the stem-loops did not promote substantial trafficking
of the PP7 foci to telomeres. However, when the telomeric TTAGGG
repeats were fused downstream of PP7, co-localization with telomeres
occurred, as analysed by conventional and confocal imaging (Fig.1b),
indicating that the 5-UUAGGG-3’repeats of TERRA drive telomere asso-
ciation. The full-length PP7-tagged 15q and Xq chimaeric TERRA also
showed marked co-localization with telomeres (Fig. 1b and Extended

DataFig.1a). Therefore, chimaeric TERRAs that originated froma plas-
mid were directed to telomeresin trans.

To eliminate possible confounding effects due to the high plasmid
copy number orincreased levels of transgenic TERRA, we used CRISPR-
Cas9 technology to integrate the chimaeric TERRA constructs into
the genome at the adeno-associated-virus integration site 1 (AAVS1)
on chromosome 19, which represents a safe harbour for transgene
expression™ (Extended Data Fig. 1b). Following isolation of clones, we
confirmed monoallelic site-specific integration of the full constructs
by polymerase chain reaction (PCR) and sequencing. These TERRA
expression levels were lower than the levels of expression from plas-
mids, giving one to three foci—indicative of displacement from the
transcription site. But, similar to the results obtained upon transient
transfection, the PP7 loops formed nuclear foci, and only when fused
to 5-UUAGGG-3’ repeats did the chimaeric RNAs co-localize with tel-
omeres (Extended Data Fig. 1c, d).

Shorter telomeres recruit more TERRA

In Saccharomyces cerevisiae and Schizosaccharomyces pombe, short
telomeres recruit more TERRA, possibly to facilitate telomere main-
tenance through recombination or telomerase recruitment®*®, To
explore the putative roles of telomere length in TERRA recruitment

'Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. “Department of Biology and
National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic. *International Clinical Research Center, St Anne’s University Hospital, Brno, Czech Republic.

Fe-mail: krejci@chemi.muni.cz; joachim.lingner@epfl.ch
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Fig.1|Tr ic TERRA es with tel esina thatdep
onRADS51. a, Chimaeric TERRA construct (top) and assay for TERRA localization
(bottom). Using lipofectamine, plasmids were transfected into HeLa cells
constitutively expressing PCP-GFP protein. After 24 h, transcription of TERRA
was induced with doxycycline. Chimaeric TERRA, which is recognized and bound
by PCP-GFP, was analysed 24 h after induction. CMV, cytomegalovirus.

b, Fluorescence in situ hybridization (FISH) analysis of telomeric DNA (red) and
immunofluorescence of GFP (green) were used to assess the co-localization of
transiently expressed PP7 constructs with telomeres. Confocal images are
shown. White arrows indicate co-localization of PP7 foci with telomeric signals.
¢, Toidentify proteins involved in the localization of TERRA at telomeres, we used
siRNAs to target factors implicated in TERRA and telomere biology. HeLa clones
with long (10-kilobase average) and short (3 kb) telomeres were transfected first

inhuman cells, we isolated individual HeLa clones that constitutively
expressed the PCP-GFP and measured telomere lengths by telomere
restriction fragment length (TRF) analysis (Extended DataFig. 2). Cells
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with siRNA pools and then with chimaeric TERRA. The percentage of
co-localizing TERRA foci was assessed by telomeric FISH combined with GFP
immunofluorescence. n=2biologically independent experiments; more than 40
nuclei were analysed per condition; data are means +s.d. One-way analysis of
variance (ANOVA) with Dunnett’s multiple comparisons test was used,
comparing all conditions with control siRNA (siControl): *P< 0.05; **P< 0.01;
***P<0.00L***P<0.0001. d, The enzymatic activity of RAD51is required to
recruit TERRA. Endogenous RADS51 was depleted with siRNA, and wild-type
RADS1 or the RADS511I3A mutant was expressed from plasmid containing
complementary DNA. The co-localization of TERRA with telomeres was assessed
asinc.n=23biologically independent experiments; more than 80 nuclei were
analysed per condition; data are means £ s.d. A two-tailed unpaired ¢-test was
used to calculate P-values: *P<0.05; **P<0.01; ***P< 0.001; ***P< 0.0001.

carrying short telomeres recruited TERRA much more efficiently than
cellswithlong telomeres, as seen upon transient or stable expression
of TERRA (Extended Data Fig. 2). Therefore, short telomeres must be
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more accessible to recruitment or retention of TERRA; alternatively,
long telomeres might contain active systems that expel TERRA.Inboth
experiments the overall expression levels of chimaeric TERRA varied in
individual clones, but this did not correlate with telomere length and
telomere recruitment of TERRA (Extended Data Fig. 2b, d).

Recombination factors enable TERRA recruitment
Toidentify proteinsinvolvedin the localization of TERRA at telomeres,
we performed screens using shortinterfering RNAs (siRNAs) to target
selected factorsimplicated in TERRA and telomere biology. Using cell
lines withlongor short telomeres, we transfected first siRNA pools and
then the15q TERRA construct. After inducing TERRA expression with
doxycycline, we analysed the cells (Fig. 1c) and evaluated the level of
depletion of each factor by using reverse transcription with quantita-
tive PCR (RT-qPCR) or western blotting (Extended Data Fig.3a, b). We
found that the number of transgenic TERRA foci was not affected by
individual depletions, and we observed no striking effects on levels
of selected endogenous TERRA molecules (Extended Data Fig. 3¢, d).
Among tested factors, depletion of telomeric repeat factor 1 (TRF1)
significantly increased TERRA co-localization at short and long tel-
omeres, while removal of TRF2led to amilderincrease in recruitment
(Fig. 1c). Depletion of the nonsense-mediated decay (NMD) factors
also stimulated co-localization of TERRA at long telomeres, support-
ing their crucial role in displacing TERRA from chromosome ends?.
Similarly, removal of RNaseH1 resulted in a substantial accumulation
of TERRA at chromosome ends in cells with long telomeres (Fig. 1c).
This result indicated that TERRA recruitment to, or retention at, long
telomeres involves the formation of DNA-RNA hybrids. In cells with
short telomeres, depletion of RNaseH1 only marginally increased the
co-localization of TERRA with telomeres. The roles of NMD factors
in cells with short telomeres could not be analysed, as their deple-
tion caused cell death. Notably, depletion of RAD51-which facilitates
strand invasion of DNA molecules during homology-directed repair
(HDR)—led to a substantial decrease in TERRA recruitment to both
long and short telomeres (Fig. 1c, d).

The involvement of RAD51 in TERRA recruitment prompted us
to interrogate the role of the BRCA2 protein in TERRA trafficking.
BRCA2 loads RAD51 and promotes the displacement of replication
protein A (RPA), allowing the formation of stable filaments of RAD51on
single-stranded DNA (ssDNA) that are capable of homology search to
facilitate HDR during double-strand-break repair; BRCA2 also protects
stalled replication forks'>>, We found that depletion of BRCA2 led to
amarginal decrease in TERRA recruitment at long, but more promi-
nentreduction at short, telomeres (Extended Data Fig. 4a). However,
removal of BRCA2 also diminished total RAD51 protein levels in both
cell lines (Extended Data Fig. 4a). Finally, we tested whether RADS1
enzymatic activity is required for TERRA recruitment, taking advan-
tage of a mutation (RADS11I3A) that allows the protein to retain its
DNA-binding but not its strand-invasion activity'. In siRAD51-treated
cells, the expression of wild-type RADS1 from complementary DNA
largely rescued TERRA co-localization with telomeres, but expression
of RAD51113A did not (Fig. 1d and Extended Data Fig. 4b). Therefore,
the enzymatic activity of RADS51is required for TERRA to associate
with telomeres. Overall, these data suggest that the HDR machinery
promotes the recruitment of TERRA to telomeres.

TERRA forms R-loops causing telomere fragility

As the association of TERRA with long telomeres was increased upon
depletion of RNaseH1, we hypothesized that the transgenic TERRA may
form R-loops with telomeres in trans. To explore this possibility, we
applied the DNA-RNA immunoprecipitation protocol (DRIP), in which
the specificity of the S9.6 monoclonal antibody for eight to nine base
pairs of DNA-RNA hybrids is exploited”. Precipitated nucleic acids
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were probed for telomeric repeats, and, as a control for specificity,
isolated nucleicacids were treated in vitro with RNaseH1 beforeimmu-
noprecipitation. Abolishment of the signal upon pretreatment with
RNaseH1 confirmed the specificity of the assay for telomeric R-loops
(Fig. 2a). As expected, we detected R-loops at telomeres in wild-type
cells (Fig. 2a). Depletion of RNaseH1led to anincrease in the number of
R-loops, whileits overexpression to a decrease in R-loops atboth long
and short telomeres (Fig. 2a and Extended Data Fig. 5a). Overexpres-
sion of chimaeric TERRA further increased the frequency of R-loops
in cells with both long and short telomeres (Fig. 2a); this frequency
again increased upon depletion of RNaseH1 and decreased upon its
overexpression (Fig. 2aand Extended DataFig. 5a), indicating that the
transgenic TERRA formed DNA-RNA hybrids.

The DRIP assay (Fig. 2a) could not distinguish to what extent the DRIP
signals for transgenic TERRA were derived from R-loops forming within
thetransgenic plasmid during transcription, or R-loops forming after
transcriptionin trans with telomeres. To measure R-loops specifically
attelomeres, we used the DRIP samples derived from HeLa cells with
long telomeres (Fig. 2a), and determined the presence of four spe-
cific chromosome ends by qPCR using subtelomere-specific primers
residing inimmediate proximity to the terminal 5’-TTAGGG-3' repeats
(Fig. 2b). Telomeric R-loops became detectable at the ends of all four
chromosomes upon depletion of RNaseH1 (Fig. 2b). Specifically, 1q,
10qand13qsubtelomeric DNAincreased strongly inabundance upon
expression of transgenic PP7-15qTERRA, indicating that R-loops had
formed atthese telomeres with PP7-15qTERRA. The 15q subtelomeric
signal was enhanced even more extensively, presumably because of
R-loops forming with plasmid DNA containing the 15q sequence. As
withwild-type TERRA, overexpression of RNaseH1almost completely
abolished the signals, whereas RNaseH1 depletion increased R-loop
abundance. We sequenced the qPCR products (Extended Data Fig. 5b),
verifying theidentity of products for each chromosome end. Together,
these data confirmed that transgenic PP7-15qTERRA associated with
telomeres in trans through the formation of R-loop structures.

TERRA R-loops have been implicated in interfering with telomere
replication™*”’5; this is manifested in telomere fragility', characterized
by the accumulation of telomeric signals in metaphase chromosomes
with a smeary or discontinuous appearance (Extended Data Fig. 6a).
We found that transgenic TERRA increased telomere fragility (Fig. 2c
and Extended Data Fig. 6b), which was suppressed by depletion of
RADS51 or overexpression of RNaseH1 but increased by depletion of
RNaseH1 (Fig.2d and Extended Data Fig. 6¢, d). These results confirm
that, after transcription from plasmids, TERRA forms R-loops at tel-
omeresintrans.

RADS51 promotes telomeric R-loop formation

We next used the DRIP assay to test the role of RAD51 in the formation
ofhybrids containing endogenous TERRA at telomeresin wild-type cell
lines (Fig. 2e and Extended Data Fig. 7a). While depletion of RNaseH1led
to the expected mild increase in R-loops, depletion of RAD51 caused a
substantial decrease in hybrid accumulation. Even stronger reduction
of R-loops was observed in RAD51-depleted cells with short telom-
eres, which are characterized by higher levels of DNA-RNA hybrids.
Therefore, RAD51 promotes the association of endogenous TERRA
with telomeres through R-loop formation.

We hypothesized either thatRADS51binds TERRA to catalyseits strand
invasioninto the telomeric repeats (Extended Data Fig. 7b, lower panel),
or that TERRA might hybridize to exposed single-stranded telomeric
DNA during RAD51-mediated HDR between telomeric DNA molecules,
evenintheabsence of aphysicalinteraction between TERRA with RAD51
(Extended Data Fig. 7b, upper panel). To explore these hypotheses, we
performed native RNA immunoprecipitations using anti-RAD51 anti-
bodiesinHeLacells. As a control, we also included antibodies specific
for hnRNPAL, as this protein binds TERRA*. Immunoprecipitation of
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endogenous RADS51 specifically retrieved TERRA and not the nuclear  to treatment with DNasel. Together these results indicate that TERRA
Ulsmall nuclear RNA (snRNA; Fig. 3a and Extended Data Fig. 7c),and  associates with RADS51in vivo.

similar results were observed in the U20S ALT cell line (Extended Data We wished to determine whether purified RAD51 can bind TERRA
Fig.7d). The TERRA signal was sensitive to treatment with RNaseA, directly by carrying out electrophoretic mobility shift assays (EMSAs).
showingaspecific recovery of RNA, but the RNA signal wasinsensitive ~ We incubated recombinant RAD51 with fluorescently labelled TERRA
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Fig. 3| RAD51associates with TERRA and catalyses R-loop formation. a, Native
RNA-immunoprecipitation assays using anti-RAD51 and anti-hnRNPAl antibodies
were performed in extracts from HeLa cell clones with long or short telomeres.
Western blotting was used to evaluate the efficiency of immunoprecipitation of
RAD51and hnRNPA1 (and the co-immunoprecipitation of BRCA2; Extended Data
Fig.7c, d). Immunoprecipitation-recovered RNA was analysed for TERRA and U1
snRNA. n=3 biologically independent experiments; dataare means +s.d. b, The
affinity of RADS51 for TERRA and telomeric DNA (TeIDNA) oligonucleotides was
analysed by electrophoretic mobility shift assay (EMSA). Fluorescently labelled

or telomeric DNA oligonucleotides, and resolved the reactions by
agarose-gel electrophoresis (Fig. 3b). RAD51 bound the TERRA oli-
gonucleotide with threefold higher affinity than the corresponding
telomeric DNA sequence (TelDNA), as with TERRA oligonucleotide a
lower protein concentration was required to obtain shifted oligonucleo-
tide-RADS51 complexes (Fig. 3b). The binding of RAD51 to the TERRA
oligonucleotide was tighter than to an unrelated RNA (Extended Data
Fig. 7e) and also more stable when compared with telomeric DNA, as
shown by a stability assay in which pre-formed TERRA-RADS1 or Tel-
DNA-RADS51 complexes were challenged with an excess of unlabelled
49-mer competitor ssDNA (cDNA) (Extended Data Fig. 7f).

Totest whether RADS1promotes R-loop formationinvitro, we carried
out a strand-invasion assay using recombinant RAD51and telomeric
RNA and DNA (Fig. 3c-e). Wild-type RADSI, unlike the catalytically
dead RADS1113A, catalysed both R-loop and D-loop formationin a
concentration-dependent manner (Extended DataFig. 8a). Asexpected,
canonical R-loops were sensitive to treatment with RNaseHl1 and were
supershifted with the R-loop recognizing $9.6 antibody when combined
with anti-mouse IgG (Extended Data Fig. 8b, c). Together, these data
supportadirect role of the RADS51 proteinin localizing TERRA to initi-
ate strand invasion and promote the formation of DNA-RNA hybrids
at telomeres.

Discussion

Our datareveal the mechanism by which TERRA is recruited to chro-
mosome ends through RNA strand invasion. The recruitment of
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(pink star) RNA or DNA substrates (20 nM) were incubated with increasing
concentrations of RAD51 protein (0 nM, 550 nM, 1,100 nM, 2,200 nM and

4,400 nM). Quantification is shown at the bottom. n=3independent
experiments; dataare means +s.d. ¢, Assay for the formation of R-loops and
D-loops. d, The formation of R-loops depends on the concentration of RADS1:
detection on native gel (left) and quantification (right). n=3 independent
experiments; data are means +s.d. e, Detection of D-loops on native gel (left) and
quantification (right). n=3 independent experiments; data are means + s.d.

TERRA and formation of R-loops depend on the recombinase RAD51
and the 5’-UUAGGG-3’ repeats of TERRA. Although the subtelomeric
TERRA sequences were not required for telomere recruitment in our
assay, we do not exclude the possibility that they may contribute
by targeting endogenous TERRA molecules to their native chromo-
some ends. The observed base pairing between TERRA and telom-
eric DNA provides a mechanism for how this long noncoding RNA
can encounter its major site of action at chromosome ends. There-
fore, the recruitment of TERRA seems to occur through a process
that strongly resembles the strand-invasion and homology-search
mechanism exploited in all living organisms during DNA repair by
HDR, and whichis also characteristic of telomere stabilization by the
‘alternative lengthening of telomeres’ (ALT) mechanism in cancer
cells. A direct involvement of RAD51 in the strand-invasion reaction
is supported by our finding that RADS51 strongly binds TERRA and
catalyses strand invasioninto telomeric sequencesin vitro. However,
itis likely that there are important differences between DNA- and
RNA-mediated strand invasion with the regard to the mechanism
and the requirement for accessory factors, which must be explored
inthe future.

The increased formation of R-loops and association of RAD51 with
short telomeres has previously been shown in yeast®. Our findings in
human cells are consistent with these observations. Furthermore, we
reveal that TERRA can form R-loops post-transcriptionally at telomeres
in trans. R-loops have generally been assumed to form only during
transcription, through the unsuccessful removal of native RNA from
its DNA template?. However, previous studies in yeast suggested that
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R-loops may also format loci that are distinct from the site of synthesis
of the RNA?. Our work here suggests that R-loop formation in trans
plays amajor partin telomere homeostasis. Throughits mechanism of
recruitment, TERRA may represent a scaffold that guides and regulates
telomerase, HDR proteins and chromatin modifiers specifically at the
chromosome ends that may need their attention. It willbe interesting
tosee whichotherIncRNAs arerecruited to their sites of action through
similar mechanisms.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment.

Cell culture and transfections

The telomerase-positive cell line HeLa (cervical cancer) was from
the American Type Culture Collection (ATCC), and the ALT cell line
U20S (osteosarcoma) from the European Collection of Authenticated
Cell Cultures (ECACC). The cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 100 U mI™ of penicillin/streptomycin (Thermo
Fisher Scientific). The cell lines were maintained in a 5% CO, incuba-
tor at 37 °C and were routinely checked to ensure that they remained
mycoplasma-free.

HelLa cells were transfected with lipofectamine 2000 according to
the manufacturer’s instructions (Invitrogen). To induce TERRA tran-
scription, doxycycline (1 pg ml™) was added to the medium 24 h after
transfection, and the cells were harvested 48 h after transfection. To
isolate clones containing integrated TERRA transgenes, puromycin
(1pg mI™) was added to the medium 24 h following transfection using
the pSpCas9(BB)-2A-Puro plasmid. Selection was maintained for 5 days.
SiRNAs were purchased as pools from Dharmacon (siGENOME SMART-
pool; Extended Data Table 1). Cells were transfected with 20 pmol siR-
NAs using calcium phosphate transfection in 6-well plates in DMEM
supplemented with10% FBS. Cells were harvested 72 h after transfec-
tion. Wild-type RAD51 or the RADS51113A mutant was expressed from
plasmid containing complementary DNA™.

Lentivirus production and cell transduction

Plasmids pMD2.G (1 pg) and pCMVR8.74 (3 pg) (gifts from D. Trono,
EPFL) were mixed with PP7_eGFP (3 pug) (agift from D. Larson, National
Institutes of Health (NIH)) or pLenti CMV rtTA3 Hygro (Addgene cata-
logue number 26730) for transfection of HEK293T cells in Optimem
medium (Thermo Fisher Scientific) using lipofectamine 2000. The
transfection mix was incubated overnight and the medium replaced
the nextday. Supernatants were collected on the next two consecutive
days upon centrifugation, and cleared through a 0.22-pum filter unit
(Stericup, Millipore), before the viruses were aliquoted and frozen
at—80 °C. HeLa cells were transduced with 1 ml of viral particles of
pLenti CMV rtTA3 Hygro. Following infection, the cells were selected
with hygromycin (200 pg ml™) for 5 days, before they were infected
again with the PP7-GFP viruses. GFP-positive clones with similar GFP
intensity were isolated with a FACSAria Fusion sorter by EPFL’s flow
cytometry core facility.

Cloning of TERRA constructs

TERRA constructs were cloned inthe pTRE2puro vector of Clontech’s
TET-ON system without the corresponding polyA region. The PP7
stem-loops were amplified from Addgene plasmid #61762 (a gift from
D.Larson) andintroducedinto pTRE2puro throughin-fusion cloning.
To amplify the TTAGGG sequence, we performed PCR using the Phu-
sion Green Hot Start I high-fidelity DNA polymerase (F537S) with no
templateinareaction containing:1x GC Phusion buffer,0.2mM dNTPs,
0.4 pM primer 5-TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG-3’,0.4 uM
primer 5’- CCCTAACCCTAACCCTAACCCTAACCCTAA-3’,and 2 U of
polymerase. The PCR consisted of 30 s at 98 °C followed by 10 cycles at
98°Cfor5s,60°Cfor10s,and 72 °Cfor15s. DNA products of variable
size were fractionated on a 1.2% agarose gel, and the desired size was
excised, extracted with a QIAquick gel extraction kit, and cloned into
the pTRE2puro vector containing the 24 copies of PP7 stem-loops. Sub-
telomeric sequences were amplified using a high-fidelity polymerase
from phenol-chloroform-extracted genomic DNA from HeLa cells, and
introduced into the corresponding vectors through in-fusion cloning.
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All constructs were verified by restriction digestion and sequencing.
The plasmids were amplified inahomologous-recombination-deficient
E. colistrain (Stbl3) at 30 °C. All of the primers are listed in Extended
DataTable1.

Generation of integrated TERRA cell lines

The integration of TERRA constructs into the AAVS1 locus was per-
formed as described®. The guide RNA for AAVSI (5'-ACCCCACAG
TGGGGCCACTA-3’) and its complementary strand were annealed, and
cloned into the pSpCas9(BB)-2A-Puro plasmid acquired from Addgene
(catalogue number 48139). The donor template encompassed roughly
800 base pairs of homology arms for AAVS1, which were amplified from
HeLagenomic DNA, and clonedinto the plasmids containing the control
PP7 stem-loop construct and the different TERRA transgenes. HeLa
cells were transfected with both the gRNA/Cas9 and donor template
vectors. Individual clones were screened by PCR for the presence of
the transgene in the AAVSl locus.

Immunofluorescence and FISH

Cells were grown on glass coverslips by following the culture conditions
above. The coverslips were washed twice with 1x phosphate-buffered
saline (PBS), fixed with 4% paraformaldehyde for 10 min at room tem-
perature, and washed twice with 1x PBS. The cells were then permea-
bilized in 1x detergent solution for 5 min (0.1% Triton X-100, 0.02%
SDS in 1x PBS), followed by pre-blocking with 2% bovine serum albu-
min (BSA) in 1x PBS for 10 min. Next the cells were blocked with 10%
normal goat serum in 2%BSA/1x PBS for 30 min at room temperature.
Coverslips were incubated with primary and then secondary antibod-
ies in blocking solution for 90 min each time at room temperature,
and fixed with 4% paraformaldehyde for 5 min at room temperature;
the samples were then dehydrated with increasing concentrations
of ethanol. For FISH staining, the cells were incubated with hybridi-
zation solution containing 10 mM Tris-HCI pH 7.4, 70% formamide,
0.5% blocking reagent and 1/1,000 Cy3 probe, denatured at 80 °C
for 3 min, and hybridized for 3 h at room temperature. The cells were
washed withwash1(10 mM Tris-HCI pH 7.4, 70% formamide) and wash
2(0.1M Tris-HCl pH 7.4,0.15M NaCl, 0.08% Tween-20) twice, stained
with4’,6-diamidino-2-phenylindole (DAPI), and dehydrated with etha-
nol. Images were acquired on an Upright Zeiss Axioplan or on a Zeiss
LSM700 equipped with an AxioCam MRm B/W.Images were processed
and analysed with Image) and Adobe Photoshop. All statistical analy-
sis was performed using GraphPad Prism. All figures were created in
Adobe Illustrator.

Telomeric FISH on metaphase spreads

Cells were treated with 0.05 pg ml™ demecolcine for 2 h, collected and
incubated in hypotonicsolution (0.075 MKCI) at 37 °C for 8 min. Swol-
len cells were collected and fixed in ice-cold methanol:acetic acid (3:1)
overnightat4 °C. The next day, 100 pl of cell suspension was dropped
ontoslides, incubated at 70 °C for 1min and air-dried overnight at room
temperature. FISH staining was performed as above.

Telomere length analysis

HeLa genomic DNA was isolated with the Wizard genomic DNA puri-
fication kit according to the manufacturer’s instructions (Promega).
Then, 6 pg of genomic DNA was digested with 30 U of Hinfl and Rsal
overnight at 37 °C. The digested DNA was mixed with 6x MassRuler
DNA-loading dye (Thermo Fisher Scientific), loaded ona 0.8% agarose
gelin1x Tris-borate-EDTA (TBE) buffer, and fractionated by gel elec-
trophoresis at 2V cm™ for 20 h. The gels were dried for two hours at
50 °Cinvacuum, treated with denaturation buffer (0.5MNaOH,1.5M
NaCl) and neutralization buffer (0.5M Tris-HCIpH 7.5,1.5M NacCl), and
then pre-hybridized with Church buffer for1hat 50 °C. The gels were
hybridized overnightat 50 °Cwitharandomly labelled TeloC probe as
described®. The gels were washed for 1h at 50 °C with 4x saline sodium
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citrate (S§SC), 4% SSC 0.1% SDS, and 2x SSC 0.1%SDS, exposed to a phos-
phorimager screenand analysed ona Typhoon phosphorimager (GE).

RT-qPCR

For RT-qPCR of TERRA, 3 x 10° cells were harvested following trans-
fection of the chimaeric TERRA constructs. RNA was isolated with a
NucleoSpin RNA kit (Macherey-Nagel). RT-qPCR for 15 TERRA was
carried out using our previously described protocol*. To assess mes-
senger RNA levels following siRNA transfections, we used ThermoFisher
Scientific’s SuperScript Il reverse transcriptase and Power SYBR Green
PCR master mix onan Applied Biosystems 7900HT fast real-time system
according to the manufacturer’s instructions.

Westernblotting

Antibodies are listed in Extended Data Table 2. Protein samples were
mixed with 2x Laemmli buffer, boiled for 5 min at 95 °C, run on 4-15%
SDS-PAGE precast gels (Mini-PROTEAN TGX Gels, BioRad), transferred
to nitrocellulose blotting membranes (Amersham), blocked with
blocking solution (3% BSA in 1x PBS, 0.1% Tween-20), and incubated
overnight at 4 °C with the corresponding primary antibody. Mem-
branes were washed three times for 5min each with 1x PBS plus Tween
(PBST) buffer, and then incubated for 1 h at room temperature with
horseradish-peroxidase-conjugated secondary antibodies (Promega)
in blocking solution. Membranes were washed again three times for
5minwith 1x PBST before revealing them with a chemiluminescence
detection kit (Western bright electrochemiluminescence, Advansta)
and analysing them on a Vilber Fusion FX imaging system.

DNA-RNA immunoprecipitation

Cellsatroughly 40% confluence in 6-well plates were transfected first
with siRNAs and then, the next day, with plasmids. The cells were har-
vested on ice 48 h later, counted on a CASY cell counter and washed
with 1x PBS; samples were taken for DRIP and western blot analysis. For
DRIP, 107 cells were dissolved in 175 pl of ice-cold RLN buffer (50 mM
Tris-HCI pH 8.0, 140 mM NaCl, 1.5 mM MgCl,, 0.5% NP-40, 1 mM dithi-
othreitol (DTT), and 100 U mI™ RNasIN PLUS), incubated on ice for
5min, and centrifuged (300g, 2 min, 4 °C). The nuclei were lysed in
500 plRA1buffer (NucleoSpin RNA, Macherey-Nagel) containing 5 pl of
B-mercaptoethanol, and homogenized by passing them througha20G
x1”2syringe (0.9 mm x 40 mm). The nucleic-acid-containing extracts
were mixed with 250 pl H,0 and 750 pl phenol:chloroform:isoamyla
Icohol (25:24:1) in a Phase Lock Gel heavy (SPRIME) and centrifuged
(13,000g, 5 min, room temperature). The upper aqueous phase was
mixed with 750 pl of ice-cold isopropanol, with addition of NaCl to
50 mM, then incubated on ice for 30 min; precipitated nucleic acids
were collected by centrifugation at 10,000g for 30 min at 4 °C. The
pellets were washed twice with 70% ice-cold ethanol, air-dried, dis-
solved in 130 pl of H,0, and sonicated on a Covaris system (10% duty
factor,200 cycles per burst, for180's, with an AFA intensifier) to obtain
fragments of 100-500 bp. Next, 90 pg of sonicated nucleic acids were
mixed with RNaseH1 or H,O in RNaseH1 buffer (20 mM HEPES-KOH
pH7.5,50 mM NaCl, 10 mM MgCl,,1mM DTT) and incubated at 37 °C
for 90 min. The samples were diluted ten times in DIP-1buffer (10 mM
HEPES-KOH pH 7.5, 275 mM NacCl, 0.1% Na-deoxycholate, 0.1% SDS,
1% Triton X-100) and pre-cleared with 80 pl of sepharose protein G
beads for 1 h, on arotating wheel, at 4 °C. One per cent of the nucleic
acids were kept asinput. Half of the samples (roughly 45 pg of nucleic
acids) were incubated with 3 pg of $9.6 antibody or mouse IgG and
40 pl of sepharose protein G beads on a rotating wheel at 4 °C over-
night. The next day the samples were washed for 5 min on a rotating
wheelat4 °Cwith DIP-2 (50 mM HEPES-KOH pH 7.5,140 mM NaCl,1mM
EDTA pH 8.0, 1% Triton X-100, 0.1% Na-deoxycholate), DIP-3 (50 mM
HEPES-KOH pH 7.5, 500 mM NaCl, 1 mM EDTA pH 8.0, 1% Triton-X100,
0.1% Na-deoxycholate), DIP-4 (10 mM Tris-HCI pH 8.0, 1 mM EDTA
pH 8.0,250 mM LiCl, 1% NP-40, 1% Na-deoxycholate), and TE buffer
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(10 mM Tris-HCIpH 8.0,1mM EDTA pH 8.0). The samples were digested
at 65 °C overnight with 10 pg mI™ RNase (DNase-free (Roche)) inabuffer
containing 20 mM Tris-HCIpH 8.0,1% SDS, 0.1M NaHCO;, 0.5 mMEDTA
pH 8.0. The DNA was isolated using the Qiagen PCR clean-up kit. The
DNA was pipetted onto a positively charged nylon membrane (Amer-
sham Hybond N+) and telomeric DNA was detected with a telomeric
probe as described?.

RNA immunoprecipitation

Cells were grown toroughly 70% confluence in15-cm dishes, harvested
onice, counted ona CASY cell counter, washed with1x PBS, and lysed in
RNA-immunoprecipitation RLN buffer (50 mM Tris-HCI pH 8.0,140 mM
NaCl,1.5mM MgCl,, 0.5% NP-40,1mM DTT,400 UmI™ RNasIN PLUS, and
proteaseinhibitors (Complete, Roche)). The lysates were pre-cleared
with Dynabeads plus protein G for 1h on arotating wheel at 4 °C, and
incubated overnight with 6 pg of the corresponding antibody on a
rotating wheel at4 °C. Next 35 pl of Dynabeads protein G (ThermoFisher
Scientific) that had been preblocked with transfer RNA were added to
eachmixtureandincubated for2honarotating wheelat4 °C; thiswas
followed by five washes with RLN buffer supplemented with 6 MM EDTA
pH 8.0. The RNA was eluted in 1% SDS, 5 mM EDTA pH 8.0, and 5 mM
B-mercaptoethanolat42 °Cfor 30 min, followed by 30 minat 65 °C. The
RNA was purified using the RNA clean-up protocol of the NucleoSpin
RNA kit (Macherey-Nagel). The RNA was denatured at 65 °C for 3 min
and pipetted on a positively charged nylon membrane (Amersham
Hybond N+). TERRA and U1snRNA were detected with corresponding
probes as described?.

EMSA

RADS1 protein was purified”” and diluted in dilution buffer
(25 mM Tris-HCI (pH 7.5), 10% (v/v) glycerol, 0.5 mM EDTA, 50 mM
KCI, 1 mM DTT and 0.01% NP40). Increasing concentrations of
RADS1 were incubated with 20 nM Cy3-labelled 41mer TERRA
(5’-UUAGGGUUAGGGUUAGGGUUAGGGUUAGGGUUAGGGUUAGG-3),
41mer TelDNA(5'-TTAGGGTTAGGGTTAGGGTTAGGGTTAGG
GTTAGGGTTAGG-3'),41mernon-TelRNA (5-AGUAUAUAUGAGUAAACUU
GGUCUGACAGUUACCAAUGCUU-3’) or 40mer non-TeIDNA
(5-AAATTAACAAGTATAATAAGAA ATAGAAACAAGAAATAGA-3’) sub-
strate at 37 °C for 10 min in 10 pl of buffer D (50 mM Tris-HCI (pH 7.5),
50 mM KCl, 1 mM MgCl,, 1 mM ATP). Reaction mixtures were then
crosslinked with 0.01% glutaraldehyde for 10 min. Products were
resolved using 0.8% TBE agarose gels supplemented with 10 mM KCI
at4 °C for 50 min (6.5V cm™). Gels were imaged on a FLA-9000 scan-
ner (Fujifilm) and quantified with Multi Gauge version 3.2 (Fujifilm).

Stability EMSA

Fluorescently labelled 4lmer TERRA or 41mer TeIDNA substrates
(20 nM) were incubated with indicated concentrations of RAD51
at 37 °C for 10 min in 50 mM Tris-HCI (pH 7.5), 50 mM KCI, 1 mM
MgCl, and 1 mM ATP. To challenge assembled RAD51-ssDNA com-
plexes, increasing concentrations of unlabelled 49mer competitor
sSDNA (5-CCTGTTCAAACGCACATATTAAGCATTTC CTGTCATTG
GCGGCTAATTC-3’) were added and incubated for another 10 min at
37 °C. Products were crosslinked with 0.005% glutaraldehyde for a
further 10 min and resolved using a 0.8% TBE agarose gel supplemented
with 10 mM KCl at 4 °C for 50 min (6.5 V cm™). Gels were imaged on a
FLA-9000 scanner (Fujifilm) and quantified with Multi Gauge version
3.2 (Fujifilm).

Assays for R-loop/D-loop formation

Fluorescently labelled 41lmer TERRA or 41mer TeIDNA (50 nM) were
pre-incubated for 10 min at 37 °C with increasing concentrations of
RADS51in 50 mM Tris-HCI (pH7.5),1mM MgCl, supplemented with1mM
CaCl,and1mM adenylyl-imidodiphosphate (AMP-PNP). The reaction
was started by adding 600 ng pCR4-TOPO vector containing the 15q



subtelomeric sequence followed by 15 copies of TTAGGG repeats. The
mixture was incubated for another 10 min at 37 °C and then stopped
by adding SDS (0.1%) and proteinase K (0.1 mg ml™); this was followed
by 3-minincubations at 37 °C. Reaction mixtures were separated on
0.8% agarose gel and analysed as described above for EMSA. For diges-
tion of R-loops by RNaseH, the mixtures were incubated for 1 min with
phenylmethylsulfonyl fluoride (PMSF;2mM) and with EGTA (1.6 mM) at
37°Ctoinhibit proteinase K and chelate calciumions, respectively. The
products were digested with RNaseH1 (6.8 mU pl™, Thermo Scientific)
or RNaseH2 (6.8 mU pl™, New England Biolabs) for 1 min at 37 °C and
resolved as above. For antibody-specific supershift of R-loops, the prod-
ucts were formed as described above for RNaseH digestion (but without
EGTA) and thenincubated with $9.6 antibodies (0.02 pg pl™) for 2min at
37 °Cand/or anti-mouse horseradish-peroxidase-conjugated antibody.

RNaseH1digestion of telomeric DNA-RNA hybrids

Fluorescently labelled TERRA or non-telomeric RNAs were mixed with
their corresponding complementary ssDNA in annealing buffer (10 mM
Tris pH 8.5,50 mM NaCl,1mM EDTA). To form DNA-RNA hybrids, the
mixture was heated for 5 min at 95 °C, and then gradually cooled to
room temperature. The DNA-RNA hybrid (40 nM) was cleaved by
RNaseH1 (6.8 mU pl™) in the presence or absence of 1 mM CacCl, for
10 minat37°Cin50 mM Tris (pH7.5),1mM MgCl,and 1mM AMP-PNP.
Thereactionwas stopped by adding SDS/proteinase K, and thenincu-
bated for10 minat 37 °C. Reaction mixtures were loaded on 10% PAGE
gel, separated by electrophoresis (90 V for 60 min at 4 °C), scanned
using anImage Reader FLA-9000 scanner and quantified by MultiGauge
version 3.2 software.

Supershift of DNA-RNA hybrid with $9.6 antibody

Fluorescently labelled TERRA and non-telomeric DNA-RNA hybrids
(40 nM) were incubated with 0.015 pg pl™ of S9.6 antibody for 10 min
at37 °C, then crosslinked with 0.01% glutaraldehyde for 10 minat 37 °C
and resolved using 0.8% TBE agarose gel at 4 °C for 50 min (6.5Vcem™).
Gelswereimaged ona FLA-9000 scanner (Fujifilm) and quantified with
Multi Gauge version 3.2 (Fujifilm).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Data availability

The data that support the findings of this study are available from the
correspondingauthors uponreasonable request. Source dataare pro-
vided with this paper.
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a, Quantification of co-localization of transgenic RNA foci expressed from
plasmids with telomeres. b, Strategy for targeting the AAVS1 locus through
CRISPR-CAS9 tointegrate chimaeric TERRA constructsinto the genome. LHA
andRHA, leftand right homology arms. ¢, Quantification of co-localization of

Extended DataFig.1|Co-localization of transgenic TERRA with telomeres.
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expressed asafraction ofinput. Right, the amplified DNAwasrunonagel, then
isolated and sequenced.
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Extended DataFig. 6| Transgenic TERRA expressed from plasmidsinduces

telomere fragility. a, Representative examples of metaphase chromosomes
stained with FISH to visualize telomeres. DNAis stained with DAPI. Fragile
telomeresareindicated by white arrowheads. b, Quantification of telomere
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15qTERRA inwhich expression of RNaseH1(RNH1) and RAD51 was manipulated
asindicated. For b, ¢, the numbers of metaphases scored over three
biologically independent experiments are indicated for each conditionas n.
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Extended DataFig.7 | RAD51binds TERRA and promotes R-loop formation.
a, Detection of endogenous telomeric R-loops on dot-blots asin Fig. 2a. Cells
were transfected with siCONTROL (siC), siRNH1 or siRADS51. b, Possible models
fortheroles of RADS1in mediating TERRA-telomere associations. Upper row,
RADS51binds telomericsingle-stranded DNA, inducing strand invasion of
another telomere. TERRA hybridizes to the displaced strand upon branch
migration. Lower row, RAD51binds TERRA directly and initiates homology
searchandstrandinvasion by TERRA atatelomere. ¢, Western blot analysis of
RADS51and hnRNPAluponimmunoprecipitation (IP) of native RNA (see Fig. 3a
for RNA analysis). SN, supernatant.d, Native Immunoprecipitation of RNA was

performedin U20S cell extracts, demonstrating the association of TERRA with
RAD51and hnRNPAL. n=3biologicallyindependent experiments; dataare
means ts.d. e, Affinity of RAD51 for TERRA and non-telomeric-RNA
(Non-TelRNA) oligonucleotides. Quantification is shown on theright.n=3
independent experiments; dataare means +s.d. f, Top, stability EMSA assay.
Bottom,20 nM TERRA (lanes 2-7) or TeIDNA (lanes 9-14) oligonucleotides were
pre-bound withRAD51(2.2 uMor 8.8 uM) and challenged withincreasing
concentrations of unlabelled competitor ssDNA (cDNA; 0.28 uM, 0.56 uM,
1.13 pM, 2.27 uM or 4.54 pM). Quantificationisshownon theright.n=3
independent experiments; dataare means £s.d.
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Extended DataFig.8|RADS1 catalyses the formation of canonical R-loops.
a, Left, the RADS1113A mutant (lines 2-5;325nM, 650 nM, 1,300 nM or

2,600 nM) or wild-type RADS51 (lines 6 and 7; 325 nM or 650 nM) was incubated
with TERRA oligonucleotide substrate (50 nM), and then plasmid containing
thehomologous region was added. Right, quantification of R-loopsin the
presence of wild-type RAD51or RADS511I3A. n=2independent experiments;
dataaremeans ts.d. b, Top, the R-loop and D-loop assays. After RAD51-
mediated R-loop or D-loop formation, proteins were digested with proteinase
K (PK), whichwas theninactivated with PMSF and EGTA. Bottom left, R-loops or

D-loopswere detected on native gels as indicated. Treatment with RNaseH1,
which degrades the RNA moiety in RNA-DNA hybrid structures, eliminates
R-loopsbut has no effect on D-loops. RNaseH2, which cleaves ribonucleotides
inDNA, has no effect, as expected. Right, quantification. n=3 independent
experiments; dataare means +s.d. ¢, Top, the R-loop and D-loop assays. Middle
and bottom, RADS1-mediated R-loops (middle; n=3independent experiments;
dataaremeans £s.d.), unlike D-loops (n=1experiment), are recognized by the
S9.6 antibody and supershifted in presence of both $9.6 and anti-mouse IgG.
Quantificationis shownontheright.

48



Article

Extended Data Table 1| Oligonucleotides used herein

Primers used for Chimeric TERRA constructs

Name Forward

Reverse

Amplification of PP7 stem loops CCGCGGCCCCGAATTCTATCGATACTCGAGATCCTA

Amplification of TTAGGG repeats TTAGGGTTAGGGTTAGGGTTAGGGTTAGGG

GAACGCGTGTGGATCATTCTCCTCAGGTCAGACCCG

Ampli ion of 15q Cl
Amplification of Xq subtelomere GAACGCGTGTGGATCCCGAGTTGCGTTCTCG

Amplification of AAVEL TGACCGGTTGCTTTCTCTGACCAGCATTC

GCTGACTAGAGGATCCACACGCGTTCTCGATAATGAA

CCCTAACCCTAACCCTAACCCTAACCCTAA

CTAACCCTAAGGATCCTAACCGTGACCCT GACCCCG

CTAACCCTAAGGATCGCACATGAGGAATGTGGGTG

GTGTTAACCACTGTGGGGTGGAGGGGAC

left homology arm
Amplification of AAVS1
right homology arm CGGATATCACTAGGGACAGGATTGGT GTGATATCCTGTAGGAAGGGGCAGGAGA
Primers used for RT-gPCR
Name Forward Reverse
15q TERRA CAGCGAGATTCTCCCAAGCTAAG AACCCTAACCACATGAGCAACG
GAPDH AGCCACATCGCTCAGACAC GOCCAATACGACCAAATCC
TRF1 CTTGCCAGTTGAGAACGATATACA CATCAGGGCTGATTCCAAGG
TRF2 GGGTTATGCAGTGTCTGTCGEG CAGTGGTGTGAGCTCAGCCT
POT1 CCAAGCTCTGGATCAGTATCATT CATAGTGGTGTCCTCTC AAATAC
SMG1 CCAAGCACCGTTCCAGGAACTG CTCTCTTGCACCGCTTTCOCAG
UPF1 CGCAGGGCTACATCTCCATGAG CTCBTCACCAAGGTAACTGTCCTG
UPF2 GGCTGAGTCTGCAGACACAATGC GCAGCAAGTTGAGAGGACATGGG
RNaseH1 GGCCAGGCCATCCTTTAAATGTAGG GCTTGTTCAATGGCTTTGCAGGE
RPA2 GCAGGGAACTTTGGTGGGAATAGT COCTTCAGGTCTTGGACAAGCT
RAD51 GAGGAAAGGAAGAGGGGAAACCAG CCCACTCCATCTGCATTAATGGCG
1q subtelomere CAGCGTCGCAACTCAAATG COCTCACCCTCCATGAGTAATA
10q subtelomere GCATTCCTAATGCACACATGAC TACCCGAACCT GAACCCTAA
13q subtelomere GCACTTGAACCCTGCAATACAG CCTGCGCACCGAGATTCT
15q subtelomere AACCCTAACCACAT GAGCAACG GCTGCATTAAAGGGTCCAGT
siRNAs
Gene name Dharmacon catalog number SIRNA sequences
siControl S UAGCGACUAAACAGALICAA, UAAGGCUAUGAAGAGAUAC,
AUGUAUUGGCCUGUAUUAG, AUGAACGUGAAUUGCUCAA
SITRF1 01054202 CAAGAUAAACCUAGUGGUA, GGUGAUCCAAAUUCUCAUA,
GGAAACUGGUCUAAAAUAC, GOCAGUUGAGAACGAUAUA
GAAGUGGACUGUAGAAGAA, GGAAGCUGCUGUCAULAUU,
siTRF2 M-D03546-00 .
GGAALCAGCUAUCAAUGUG, GAAGACAGUACAACCAAUA
AGAAAGAI AN A, GA AAUCGAAA
iPOT1 MD4205.01 GAAAGAUGUCAACAGCUA, GAGGCAAAGAAUCGAAAUA,
CAGGAGUACUAGAAGCCUA, UGCAAGAUCUCCACGUUAA
SiSMGT —— GUGAAGAUGUUCCCUAUGA, GAGGUUAGCUGCGGAAAGA,
GGUCAGACAUCCACCAGAA, UAACULGGCUCAGCUGUAU
SIUPF1 0176301 GCUCCUACCUG GUGCAGUA, UCAAGGUCCCUGAUAAUUA,
GGAAGUCGACCUCCUUUGA, CAAGAUAACAUCACUGUCA
GGAACGAGAAUUCUUAAUA, GCAUGUACCUUGUGUAGAA,
siUPF2 M-012993-01 . .
GAAGAUAUUCGAUUAGGAA, GGUCUAGAGAGUUGCGAAU
A AGCUAAA AAGA,
<iRNaseH1 MO1Z55.00 GCGCAGAGCCGUAUGCAAA, GAGCUAAACAALICGGAAGA,
GOCAGGCCAUCCUUUAAAU, GACAUUCAGUGGAUGCAUG
SiRPAZ P GAUCAAUGCACACAUGGUA, CAAAAUAGAUGACAUGACA,
GAGUGAAGCAGGGAACUUL, GUGGAACAGUGGAULCGAA
GAAGCUAUGUUCGCCAUUA, GCAGUGAUGUCCUGGAUAA,
siRAD51 M-003530-04 .
CCAACGAUGUGAAGAAAUU, AAGCUAUGUUCGCCALUAA
AAACG GACUUGCUAUUUA, AAAUG CAGAAULC,
$IBRCA2 MDO3ME2-01 GAAACGH CUAUUUA, GUAAAGAAAUGCAGAAUUC,
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Extended Data Table 2 | Antibodies used herein

Antibody Company Catalogue No Dilution (Technique)
Anti-GFP Home-Made 1:1,000 (IF)
Anti-GFP Merck Millipare MAB3580 1:1,000 (IF, WB)

Anti-RAD51 Santa-Cruz 5c-8349 1:1,000 (WB)

Anti-RADS51 ABCAM ab133534 6ug (IP)

Anti-BRCA2 Merck Millipore MAB3580 1:1,000 (WB)

Anti-Vinculin ABCAM ab129002 1:10,000 (WB)
Anti-hnRNPA1 Santa-Cruz 5c-32301 1:1,000 (WB), 6 pg (IP)
Anti-RNaseH1 GeneTex GTX-117624 1:1,000 (WB)

Anti-TRF1 Santa-Cruz sc-6165R 1:1,000 (WB)
Anti-TRF2 Merck Millipare 05-521 1:1,000 (wB)
Anti-POT1 ABCAM ab124784 1:1,000 (WB)
Anti-SMG1 Abgent AP8055a 1:500 (WB)
Anti-UPF1 Bethyl Laboratories A300-037A 1:1,000 (wB)
Anti-RPA2 ABCAM ab2175 1:1,000 (WB)

Anti-DNA-RNA Hybrid [59.6] Kerafast ENHOO1 1 pg/ 10 pg nucleic acids (DRIP)
A"“'Ra":“ 1gG (H+L), HRP Promega Wa011 1:10,000 (WE)
onjugate
A"ﬁ'M“g“.'gG (H+L), HRP Promega w4021 1:10,000 (WB)
onjugate
Goat anti-Rabbit 1gG (H+L) Cross-
Adsorbed Secondary Antibody, Thermao Fisher A-21070 1:1,000 (IF)

Alexa Fluor 633

IF, immunofluorescence; IP, immunoprecipitation; WB, western blot.
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3.1 Abstract

“Telomeres protect chromosome ends from nucleolytic degradation, uncontrolled recombination
by DNA repair enzymes and checkpoint signaling, and they provide mechanisms for their maintenance
by semiconservative DNA replication, telomerase and homologous recombination. The telomeric long
noncoding RNA TERRA is transcribed from a large number of chromosome ends. TERRA has been
implicated in modulating telomeric chromatin structure and checkpoint signaling, and in telomere
maintenance by homology directed repair, and telomerase — when telomeres are damaged or very
short. Recent work indicates that TERRA association with telomeres involves the formation of DNA:RNA
hybrid structures that can be formed post transcription by the RAD51 DNA recombinase, which in turn
may trigger homologous recombination between telomeric repeats and telomere elongation. In this
review, we describe the mechanisms of TERRA recruitment to telomeres, R-loop formation and its
regulation by shelterin proteins. We discuss the consequences of R-loop formation, with regard to
telomere maintenance by DNA recombination and how this may impinge on telomere replication while
counteracting telomere shortening in normal cells and in ALT cancer cells, which maintain telomeres in
the absence of telomerase.”

3.2 Context/highlights

In this review article, we describe several factors contributing to the regulation of TERRA
association with telomeres and telomeric R-loop formation. We discuss putative consequences of R-
loop formation and accumulation, including the interference with semi-conservative replication of
telomeric DNA and possible stimulation of homology-directed repair.

Furthermore, we contribute to the characterization of the RAD51-dependent pathway directing
TERRA-mediated telomeric R-loop formation described in Feretzaki et al, 2020 (see Chapter 2). Namely,
we show that the cell cycle control that governs endogenous TERRA levels is disrupted when transgenic
TERRA is expressed from plasmids with a heterologous promoter. Additionally, we demonstrate that
ectopically expressed TERRA is recruited to telomeres in and outside of S phase — as determined by IF-
FISH combined with nuclear staining upon pulse labeling with EdU. Moreover, we analyze the cell cycle
profile of RAD51-depleted cells, in the absence or presence of ectopically-expressed TERRA. We show
that RAD51 depletion induces a slight increase in the percentage of cells in G2/M, and no substantial
changes in the percentage of cells in S phase — when endogenous TERRA levels are the lowest in Hela
cells.

3.3 Erratum

In figures 2 and 3 of “The makings of TERRA R-loops at chromosome ends” by Valador Fernandes
et al, 2021, the molecular weight marker in a-RAD51 blots shows bands corresponding to 35 and 40
kDa, instead of 25 and 35 kDa as indicated.
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ABSTRACT ARTICLE HISTORY
Telomeres protect chromosome ends from nucleolytic degradation, uncontrolled recombination Received 8 June 2021

by DNA repair enzymes and checkpoint signaling, and they provide mechanisms for their main-  Revised 23 July 2021
tenance by semiconservative DNA replication, telomerase and homologous recombination. The ~ Accepted 28 July 2021
telomeric long noncoding RNA TERRA is transcribed from a large number of chromosome ends. KEYWORDS

TERRA has been implicated in modulating telomeric chromatin structure and checkpoint signal- Telomeres; TERRA; R-loops;

ing, and in telomere maintenance by homology directed repair, and telomerase — when telomeres RAD51; shelterin proteins;
are damaged or very short. Recent work indicates that TERRA association with telomeres involves homologous recombination
the formation of DNA:RNA hybrid structures that can be formed post transcription by the RAD51

DNA recombinase, which in turn may trigger homologous recombination between telomeric

repeats and telomere elongation. In this review, we describe the mechanisms of TERRA recruit-

ment to telomeres, R-loop formation and its regulation by shelterin proteins. We discuss the

consequences of R-loop formation, with regard to telomere maintenance by DNA recombination

and how this may impinge on telomere replication while counteracting telomere shortening in

normal cells and in ALT cancer cells, which maintain telomeres in the absence of telomerase.

Introduction is tucked into the double-stranded part of the
telomere, base pairing with the complementary 5'-
CCCTAA-3' repeats [8]. POT1 can be physically
linked to TRF1 and TRF2 through protein inter-
actions involving the shelterin components TPP1
and TIN2 (TRFl-interacting nuclear factor 2).
TPP1 also enhances the affinity of POT1 for telo-
meric DNA, and the interaction of POT1 with the
other shelterins is required for telomere associa-
tion of POT1, possibly by increasing its local con-
centration [9]. Rap1 (repressor activator protein 1)
is recruited to vertebrate telomeres via TRF2.

A large number of additional telomeric proteins
that are less abundant at chromosome ends have

Telomeres correspond to the physical ends of
eukaryotic chromosomes. They consist of short
tandem DNA repeats that are generally rich in
guanine and thymine bases. In vertebrates, telo-
meres consist of 5-TTAGGG-3' repeats in the
DNA strand containing the 3’ end. The overall
length of human telomeres varies between roughly
3,000-15,000 bp. Telomeres have a 3’ overhang of
roughly 50-200 nucleotides [1,2] and are asso-
ciated with several hundred proteins [3,4,5]. Most
abundant and best characterized is the shelterin
protein complex comprising up to six different
?a(zltoyi e}l))tlzlrelsd [”?%{F?l{)i d(zzliﬁggziizi:ttﬁéngéi% been identified through studies of telomere main-
ble stranded part of telomeres. POT1 (protection ten.ance by telomerase, genetic and protei.n inter-
of telomeres 1) binds specifically to the single- actlon. screens agd upon .p urification  of
stranded 5-TTAGGG-3' repeats which are present crosslinked telomeric cl}romatln, followed by
at the 3’ end of telomeres [7]. Alternatively, POT1 mass .spectrometry analysis [3,4,.5]. Most of these
is thought to bind to single-stranded 5-TTAGGG protem§ are not telomere specific and many (_)f
-3' repeats present as displaced strand internally, tbem bind to telom'ere's only under certain Confh'
when telomeres adopt the T-loop configuration j[lOIlS.. Notably, a significant nun.nber of proteins
(Figure 1). In T-loops, the telomeric 3' overhang identified at telomeres are linked to RNA
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— (TRF1

@ Telomere

Figure 1. Cartoon of the nucleoprotein structure of chromosome ends; telomeric R-loops and its regulators. Among the numerous
proteins associating with telomeres, the shelterin protein complex components are the most abundant, comprising the dsDNA-
binding proteins TRF1 and TRF2, the ssDNA-binding protein POT1, TIN2, TPP1 and Rap1. Telomeres have a 3’ overhang, which can
invade the dsDNA region, forming a D-loop which is termed T-loop. Telomeres are transcribed into TERRA. TERRA transcription starts
at subtelomeric regions, extending toward chromosome ends. The vast majority of TERRA molecules is not polyadenylated and
largely colocalizes with telomeres. TERRA binding to telomeres can occur through direct base-pairing with telomeric DNA, forming
R-loop structures, leaving a displaced G-rich DNA strand. Factors which are suspected to regulate TERRA association with telomeres
are indicated. TERRA association and R-loop formation at telomeres depend on the RAD51 DNA recombinase, which binds TERRA
and catalyzes TERRA R-loop formation in vitro. Also, the helicase RTEL1 was proposed to stimulate TERRA association with
chromosome ends via R-loops. The shelterin TRF2 can also bind TERRA and stimulate R-loop formation in vitro — a process
counteracted in vivo by TRF1. Loss of POT1 was found to result in a striking accumulation of telomeric R-loops, suggesting a role
in preventing the accumulation of such structures. Proteins involved in the NMD RNA surveillance pathway, including UPF1, UPF2
and SMG1, were also shown to prevent TERRA association with telomeres. The DNA recombination factor BRCA1 was as well shown
to modulate TERRA binding to telomeres, preventing R-loop-associated telomeric DNA damage. The ATPase/translocase FANCM
resolves RNA:DNA hybrids in vitro and counteracts telomeric R-loop accumulation in ALT cells. The THO multi-subunit complex is
present at human and budding yeast telomeres, and was found to prevent R-loop accumulation and telomere shortening in budding
yeast. RNase H enzymes — which remove RNA-DNA hybrids through the endonucleolytic cleavage of the engaged RNA moiety —
were found to regulate TERRA R-loops, with a prominent role in ALT cells. In S. cerevisiae, Rat1 nuclease, as well as RNase H2, are
preferentially recruited to long telomeres in S phase, preventing TERRA accumulation and formation of R-loops prone to pose an
obstacle to telomeric replication. The Illustration was created with BioRender.com.

metabolism, which can be rationalized by the fact  transcription at telomeres [19,20]. TERRA tran-
that telomeres are transcribed into the telomeric  scription proceeds from promoters residing in

repeat containing RNA (TERRA) [10,11]. the subtelomeric regions into the telomeric tract
TERRA has been detected in a large number of  [10,21-23]. Thus, human TERRA starts with
eukaryotes including humans and other verte- sequences stemming from different subtelomeres

brates [10,11], yeast [12,13,14], plants [15] and and it ends with numerous 5-UUAGGG-3'
protozoa [16]. Thus, telomere transcription occurs  repeats [24]. In Trypanosoma brucei, telomere
despite the fact that telomeric chromatin has het-  transcription occurs mainly at the telomere
erochromatic characteristics [17,18]. At human  which contains the active VSG gene [25]. In
telomeres, histone H3 is frequently trimethylated  other eukaryotes where this has been character-
at Lys9 and Lys27, and nucleosomes are narrowly  ized, telomere transcription is common to several
spaced [18] due to the lack of the linker histone  or all chromosome ends. The assignment of
H1(3]. The discovery of telomere transcription was ~ TERRA molecules to individual chromosome
also counterintuitive at the time, as the telomere  ends is ambiguous in many species including
position effect — which reflects the variegated humans, as subtelomeres are rich in repetitive
repression of genes experimentally placed next to  sequences which have not been well annotated.
telomeres - suggested a general absence of Interestingly, the regulation of TERRA expression
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at individual chromosome ends may differ from
one to another. In Saccharomyces cerevisiae for
example, the major double strand telomere-
binding protein Rap1p regulates TERRA transcrip-
tion and degradation [26]. At subtelomeres con-
taining the so-called Y’ repeat elements, Raplp
recruits Rifl and Rif2 to downregulate TERRA
transcription. At  subtelomeres  containing
X repeat elements, Rapl-mediated TERRA repres-
sion involves the Sir2/3/4 histone deacetylase and
Rif1/2 complexes. Also in humans, TERRA tran-
scription has been detected at a large number of
chromosome ends. At some telomeres, TERRA
promoters harbor CpG islands which are nega-
tively regulated by DNA methyltransferases that
can modify these sequences [22,23,27]. A second
class of TERRA promoters lacks CpG islands and
is insensitive to DNA methylation [23]. In mouse
cells, TERRA expression has also been detected at
several chromosome ends [28]. In addition, a more
abundant noncoding 5-UUAGGG-3' repeat con-
taining RNA termed PAR-TERRA which is
involved in the pairing of homologous sex chro-
mosomes has been described. The PAR-TERRA
primary structure has not been elucidated so far
and its transcription has not been demonstrated to
proceed into the terminal telomeric repeats, as
seen for canonical TERRA transcripts [29].
CHIRT-seq experiments indicate binding of PAR-
TERRA throughout the genome as well as at chro-
mosome ends, suggesting functions that are parti-
cular to this RNA. We do not cover PAR-TERRA
in this review.

Telomeres are dynamic structures. They change
their composition during the cell cycle and upon
shortening and damage, to mediate DNA damage
checkpoint signaling and repair. Telomere short-
ening is a common phenomenon in human
somatic cells, as differentiated cells do not express
the catalytic subunit of telomerase hTERT [30].
Short telomeres elicit ATM- and ATR-dependent
checkpoint signaling to induce cellular senescence
which represses the growth of precancerous
lesions that have lost normal growth control [31].
At short telomeres, T-loops are thought to unfold
due to low levels of TRF2, which enables ATM
activation. Low levels of POT1 allow binding of
RPA to single-stranded telomeric DNA, leading to
ATR-ATRIP  recruitment and  checkpoint
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activation. TERRA is another major player which
triggers local remodeling events at individual chro-
mosome ends that may have suffered from damage
or severe shortening. TERRA expression is
enhanced at telomeres from which TRF2 has
been depleted [21] and its expression increases
from telomeres when they get shorter in budding
yeast [32] and in human cells [33]. Thus, through
its accumulation at short or damaged telomeres
through increased expression and recruitment,
TERRA can act as a recruitment platform for
DNA repair enzymes at telomeres that need their
attention.

TERRA R-loop formation and regulation at
chromosome ends

TERRA is transcribed at human and yeast telo-
meres by RNA polymerase II. The 5'-UUAGGG-3’
tract of human TERRA is heterogeneous in length.
For most TERRA molecules the length varies
between 100-400 nucleotides [24], though longer
TERRA transcripts approaching the ends of chro-
mosomes can also be detected [27,33]. More than
90% of human TERRA is not polyadenylated, fre-
quently terminating with the sequence 5'-UUAGG
-3'[24]. The mechanisms of 3’end formation are
not well understood. The 3’ends of the non-
polyadenylated fraction might simply occur due
to termination of transcription within telomeric
chromatin that might impede efficient read-
through. The poly(A) tail of the polyadenylated
fraction of TERRA is generated by the canonical
poly(A) polymerase, at least in budding yeast [12].
If polyadenylation of TERRA is preceded by RNA
cleavage as for mRNAs is not known.

Analyses by fluorescence in situ hybridization
and cellular fractionation studies indicate that
TERRA is enriched at human telomeres [10]. In
addition, approximately half of TERRA is not
tightly associated with chromatin. Notably, all
poly(A)" TERRA was detected in a nucleoplasmic
fraction and not on chromatin [24] suggesting that
its functions do not involve physical interactions
with telomeres. In contrast, non-polyadenylated
TERRA colocalizes to a large extent with telo-
meres. In principle, it may be retained at telomeres
through interactions with telomere binding pro-
teins or through base-pairing with telomeric DNA,
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forming so-called R-loop structures in which the
TERRA:telomeric DNA RNA/DNA helix causes
displacement of the telomeric strand containing
5-TTAGGG-3' DNA repeats (Figure 1). Several
proteins have been identified to regulate TERRA
association with telomeres. Using a reporter sys-
tem in which TERRA was expressed ectopically
with an RNA tag (PP7 stem loops) that is recog-
nized by the bacteriophage PP7 coat protein fused
to GFP, we could demonstrate that TERRA associ-
ates with telomeres post transcription, through the
formation of R-loop structures [34] (Figure 2).
This association is dependent on TERRA’s 5'-
UUAGGG-3' repeats suggesting that the R-loops
form within the telomeric repeats. However, the
length and exact position of the R-loop structures
has not been determined. Telomere association
and R-loop formation depend on the RAD5I1
DNA recombinase [34] since its depletion reduces
TERRA foci at telomeres (Figure 2). Interestingly,
while endogenous TERRA is rare in S phase, trans-
genic TERRA expressed from plasmids with
a heterologous promoter loses this control and
efficiently associates with telomeres in S phase
nuclei that were identified through pulse labeling
with EAU (Figure 2). This association is also
reduced upon RADS51 depletion indicating the
involvement of RAD51. The presence of trans-
genic TERRA at telomeres during replication can
explain its interference with telomere replication
(see below). Also of note, though RAD5I is an
essential protein, its substantial depletion by
siRNA only slightly increased the number cells in
G2/M and it did not substantially affect the frac-
tion of cells in S phase during which endogenous
TERRA levels are low (Figure 3).

Since RAD51 promotes homology search and
strand invasion of recombining DNA molecules,
the data suggested that RAD51 may also home
TERRA through an analogous mechanism. In sup-
port of this model, RAD51 is bound to TERRA in
cellular extracts and it binds the 5-UUAGGG-3’
repeats of TERRA in vitro with high affinity.
Furthermore, RAD51 catalyzes strand invasion of
TERRA into plasmid DNA in vitro and it is
required for the formation of telomeric R-loops
by endogenous TERRA [34]. It will be important
to determine how RADS51 distinguishes TERRA
from the bulk of other nuclear RNAs it may not
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act upon. The 5-UUAGGG-3' repeats of TERRA
provide a unique signature for this RNA. Also,
these G-rich repeats can form G-quadruplex struc-
tures which might be recognized by RADS5I.
Alternatively, other TERRA-binding proteins
might facilitate a preferential association of
RADS51 with TERRA. BRCA2 facilitates RAD51
binding to single-stranded DNA during double
strand break repair by homologous recombination.
BRCA2 depletion reduced TERRA association
with telomeres, but it also diminished the presence
of RAD51 in the nucleus. Thus, it remains uncer-
tain if BRCA2 promotes RADS51 binding to
TERRA. Notably, these results are strikingly dif-
ferent from what has been seen for highly tran-
scribed genes, which may retain R-loops from
transcription and for which BRCA2 was reported
to diminish R-loops through a collaboration with
the TREX-2 mRNP biogenesis and export complex
[35]. Interestingly, BRCA1 — which among others
also promotes RAD5I-mediated homologous
recombination for DNA repair - is a second
DNA recombination factor that was recently
shown to physically interact with TERRA as well
as TERRA R-loops [36]. In contrast to RAD51,
however, BRCA1 counteracts telomeric R-loops
[36]. The underlying mechanism remains uncer-
tain, but it was proposed to involve BRCALI inter-
actions with XRN2, which is the ortholog of yeast
Ratl. Ratl is a 5-3' RNA exonuclease which is
involved in transcription termination, among
others. Ratl degrades TERRA in S. cerevisiae
[12]. To what extent other recombination factors
may regulate TERRA at telomeres remains to be
investigated. The recent findings already hint
toward important differences between RNA and
DNA mediated homology search. However, if
TERRA strand invasion of telomeric DNA initiates
at TERRA 3'ends this mechanism could explain
why poly(A)* TERRA is not retained on
chromatin.

While RADS51 is likely to catalyze strand inva-
sion of TERRA into telomeric DNA, several telo-
mere-associated proteins have also been identified
to regulate strand invasion and telomere retention
(Figure 1). Among the shelterin components,
TRF1, TRF2 and POT1 play critical roles. The
N-terminal basic domain of TRF2 can bind
TERRA and stimulate R-loop formation in vitro
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Figure 2. Transgenic TERRA associates with telomeres in and outside S phase. a) Top: Depiction of transiently expressed chimeric
TERRA, comprising twenty-four Pseudomonas aeruginosa phage 7 (PP7) stem-loops — recognized by GFP-tagged dimerized PP7 Coat
Protein (PCP) -, and a subtelomere-derived sequence, followed by UUAGGG tandem repeats. lllustration created with BioRender.
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com. Bottom: Immunofluorescence of GFP (green) was employed to analyze co-localization of transiently expressed PP7-fused 15¢-
TERRA transcripts with telomeres (red) identified by Fluorescence in situ hybridization (FISH) (as described in ref 34). Representative
images are shown and were acquired with a Leica SP8 confocal microscope. White dashed line outlines the nuclear region and was
determined based on DAPI-staining. White arrowheads indicate co-localization of GFP-PCP with telomeric FISH signals. Scale bar
indicates 5 um. b) Hela cells with long (10 kilobase average) or short (3 kb average) telomeres were transfected with siRNA pools to
down-regulate RAD51 or RNase H1 mRNA levels. PP7-15g-TERRA-coding constructs were transfected and their expression was
induced with doxycycline for 24 hours. Cells were then pulse-labeled with 10 pM of 5-ethynyl-2'-deoxyuridine (EdU) (Invitrogen) for
10 min and harvested. c) Western blotting was used to evaluate knockdown efficiency of RAD51 (top) or RNase H1 (bottom). Vinculin
is shown as a loading control. Representative blots of three biologically-independent experiments are shown. d) Percentage of EdU-
positive cells in the total population of cells (left) or cells displaying TERRA foci (right), across indicated conditions. After EdU pulse-
labeling, cells were fixed in 4% paraformaldehyde for 10 min at room temperature. Anti-GFP immunofluorescence was performed as
described in ref 34. After fixation of bound primary and secondary antibodies, cells were permeabilized with a detergent solution
(0.1% Triton X-100, 0.02% SDS in 1x PBS) for 5 min, followed by pre-blocking with 2% bovine serum albumin (BSA) in 1x PBS for
30 min. Cells were then incubated with a click-it reaction (4 mM copper sulfate, 100 mM sodium ascorbate and 4 uM Alexa Fluor 488
Azide (Invitrogen) in 1x PBS) for 30 min in a humidity-chamber, followed by three 1x PBS washes, permeabilization with a detergent
solution (indicated above) for 3 min and 4% paraformaldehyde fixation for 5 min. FISH staining was then carried out following the
procedure described in ref 34. At least 460 total cells and 74 cells displaying TERRA foci were analyzed per condition, across three
independent biological replicates. Data are means + s.d. e) Representative images of EdU-negative (left) and EdU-positive (right)
Hela cells with short telomeres, obtained as described in d. Representative images were acquired with a Leica SP8 confocal
microscope. White dashed line outlines the nuclear region and was determined based on DAPI-staining. EdU signal is shown, as well
as GFP-PCP and TeloC merged signals. White arrowheads indicate co-localization of GFP-PCP with telomeric FISH signals. Scale bars
indicate 5 pm. f) The percentage of PP7-15q-TERRA foci colocalizing with telomeric FISH signals per nucleus was assessed by GFP
immunofluorescence, EdU Click-it and telomeric FISH as described in d. At least 74 cells were analyzed per condition, across three
independent biological replicates. Data are means * s.d. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons
test was used, comparing all conditions with non-targeting siRNA (siControl): **P < 0.01; ****P < 0.0001. All statistical analysis was
performed using GraphPad Prism. All images were processed and analyzed with Image J.

[37]. This activity is prevented in vitro and in vivo ~ subsequently replacement by RAD51 to mediate
by TRF1 through its N-terminal acidic domain. homologous recombination (Figure 4).

Whether TRF2 promotes R-loops under physiolo- The FANCM protein, whose mutation has been
gical conditions is not known, though TRF2 deple-  associated with Fanconi Anemia, is an ATPase
tion per se does not decrease R-loop formation at  associated with DNA branch migration. Its roles
telomeres [34,37]. POT1 binds specifically to the  at telomeres have been characterized in U20S cells
single-stranded G-rich telomeric DNA but not to ~ [40,41], which are ALT cells (for alternative
the corresponding 5-UUAGGG-3' repeats in lengthening of telomeres) that use DNA recombi-
TERRA [38]. POTI deletion in human cells causes  nation to maintain telomeric DNA repeats.
rapidly dramatic telomere elongation by RAD51-  Strikingly, FANCM depletion caused an increase
mediated homologous recombination [39]. At the  in R-loops both at telomeres and elsewhere in the
same time the telomeric R-loops are increased. Itis ~ genome. In addition, FANCM can resolve telo-
unclear if TERRA R-loops are formed as an  meric R-loops in vitro using its RNA:DNA helicase
immediate consequence of POT1-loss and if they  activity suggesting that it directly participates in
are a prerequisite for telomere recombination. R-loop resolution [40]. NONO/SFPQ heterodi-
Perhaps more likely, POT1-loss liberates the sin-  mers, which are involved in various aspects of
gle-stranded telomeric DNA for RPA binding RNA metabolism in the nucleus, have also been
which subsequently, with assistance of BRCA2, implicated in suppressing telomeric R-loops [42].
becomes replaced by RAD51. The increased local ~ Their depletion increased R-loop signals partially
concentration of RAD51 may facilitate the binding ~ colocalizing with telomeres in nuclei of U20§
of TERRA by RAD51 in a succeeding step, which  cells. Most recently, the RTEL1 helicase has been
will trigger strand invasion and R-loop formation. ~ implicated in TERRA regulation [43]. RTELI has
The DNA strand that is displaced by the TERRA  well-established crucial roles during telomere
R-loop may recruit additional RPA and RAD51 in  replication resolving T-loops in S phase as well as
a feedforward loop to first promote RPA-  telomeric G-quadruplex structures [44]. The new
dependent DNA checkpoint signaling and  work shows that RTELI also binds in vitro TERRA
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Figure 3. The fraction of cells in S phase is not strongly
impacted by siRNA-mediated depletion of RAD51, with or with-
out PP7-15g-TERRA inducible expression. a) Western blotting
was used to evaluate siRNA-mediated knockdown efficiency of
RAD51, with and without PP7-15g-TERRA inducible expression.
Vinculin is shown as a loading control. Representative blots of
three biologically-independent experiments are shown. b)
Distribution of cells of indicated conditions in G1, S or G2/M
cell cycle phases. To evaluate cell cycle distribution of cells with
depleted RAD51, DNA content was assessed by flow cytometry
analysis of fixed DAPI-stained cells. Briefly, 1 million cells/con-
dition was harvested by trypsinization. Cells were washed twice
with cold 1x PBS and resuspended in 1 ml cold 70% ethanol
while vortexing. After 30 min, ethanol was aspirated and fixed
cells were resuspended in 1x PBS containing 0.2 pg/ml RNase,
DNase-free (Merck) and incubated at 37°C for 15 min. 1x PBS
containing 2 pg/ml DAPI (BioChemica) was then added to stain
DNA. Samples were processed with a BD LSR Fortessa. 20.000
events were acquired per condition, per biological replicate.
Data are means + s.d. of three independent biological repli-
cates. Two-tailed unpaired t-tests were used to calculate
P-values: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
Flow cytometry data were analyzed with FlowJo and statistical
analysis was performed using GraphPad Prism.

5-UUAGGG-3"  repeats  when  adopting
a G-quadruplex structure [43]. Strikingly, RTELI
deletion caused strong increase in TERRA levels,
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while TERRA association with telomeres was sig-
nificantly diminished. It was proposed that RTEL1
facilitates TERRA association with chromosome
ends through a stimulatory effect on telomeric
R-loops, which in turn could prevent additional
transcription from the R-loop containing telo-
meres [43]. This proposed mode of action deviates
from the documented roles of RTEL1 at
G-quadruplex forming DNA sequences elsewhere
in the genome where RTEL1 dismantles R-loops
[45]. Therefore, it will be interesting to further
dissect the mechanism and also test if and to
what extent the S phase-specific telomere recruit-
ment of RTEL1 by dephosphorylated TRF2 may
contribute [46]. Certainly, also other models could
be at play. For example, if RTEL1 affected TERRA
3" end formation preventing its polyadenylation,
absence of RTEL1 and TERRA polyadenylation
might also stabilize this RNA and trigger its dis-
sociation from chromosome ends [24].

Proteins involved in nonsense mediated RNA
decay (NMD) of mRNAs containing premature
stop codons also regulate TERRA stability and
R-loop formation. These proteins, though most
abundant in the cytoplasm, are also present in
nuclei and can be detected at telomeres by chro-
matin immunoprecipitation, suggesting direct
roles at telomeres [10]. Depletion of the NMD
proteins UPF1, UPF2, SMG1 and SMG#6 increased
TERRA foci at telomeres, while not markedly
impacting on total TERRA levels. This suggested
that these proteins displace TERRA from telo-
meres, though they might also degrade this RNA
locally at chromosome ends. Consistent with such
models, depletion of UPF1, UPF2 and SMG1 also
increased association of transgenic TERRA with
telomeres [34]. Live cell imaging of TERRA should
allow to discriminate if NMD proteins may influ-
ence the dynamics of TERRA interaction with
chromosome ends or if they are involved in its
local destruction at the telomere.

Regulation of TERRA during the cell cycle and
with telomere length

Telomeres change their composition during
S phase of the cell cycle to mediate their replica-
tion by the semiconservative DNA replication
machinery and end maintenance by telomerase.
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Figure 4. Possible R-loop- and RAD51-mediated telomere elongation mechanism upon loss of POT1. Loss of the ssDNA-binding
shelterin POT1 at human telomeres leaves exposed the telomeric 3’ overhang — which can be bound by RPA (i). With assistance of
BRCA2, RAD51 may displace and replace RPA (ii). This increased concentration of RAD51 at telomeres may facilitate binding of
RAD51 to TERRA (iii), which subsequently can trigger strand invasion and R-loop formation (iv). Upon R-loop formation, the displaced
single-stranded DNA strand can be bound by RPA - serving as a key platform for ATR activation (v). Assisted by BRCA2, RAD51 may
then substitute RPA, mediating homologous recombination at the telomere (vi) eventually resulting in HDR-mediated telomere
elongation (observed as a striking consequence of conditional deletion of POT7 in human cells). lllustration created with BioRender.
com.
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Also, TERRA levels are regulated during the cell
cycle. In budding yeast, TERRA levels and telo-
meric R-loops increase from GI1 to S phase, but
they drop during S phase, reaching lower levels by
the time of semiconservative DNA replication of
telomeres in late S phase - possibly to prevent
interference with the replisome [32]. The low
levels of TERRA in late S phase are
a consequence of the recruitment of Ratl nuclease
to telomeres at this stage. In human cells, TERRA
levels also decrease during S phase, reaching low-
est levels as cells proceed from late S to G2 [24].
This cell cycle control is lost in cells carrying
defects in the chromatin remodeling enzyme
ATRX or the DNA methyl transferase DNMT3b
(see below). However, the exact mechanisms of
regulation at the transcriptional and posttranscrip-
tional level remain to be elucidated.

TERRA has been suspected to regulate telomer-
ase activity, and in vitro TERRA is a potent inhi-
bitor of the human telomerase enzyme as it tightly
binds to the RNA template [47]. In vivo in bud-
ding yeast, however, positive roles of TERRA for
telomerase have been proposed. TERRA coloca-
lizes with telomerase in early S phase, which then
has been suggested to guide telomerase to specifi-
cally short telomeres promoting their preferential
elongation [48]. Interestingly, TERRA molecules
from short telomeres appeared to reassociate with
the short telomeres from which they originated,
which could be explained by a homology-driven
search mechanism that we describe in this review
for human TERRA. In fission yeast, TERRA has
also been proposed to be a positive regulator of
telomerase, but a positive effect of TERRA over-
expression on telomere length was only observed
upon treatment of cells with histone deacetylase
inhibitors [49]. Finally, roles of TERRA have been
postulated in human cells for promoting POT1
association with the G-rich telomeric strand after
DNA replication [50]. hnRNPA1l is a major
TERRA-binding protein, binding its 5-UUAGGG
-3" repeats [51], while also having strong affinity
for single-stranded 5-TTAGGG-3' DNA repeats
[52]. As TERRA levels decline in late S phase,
hnRNPAL1 is liberated from TERRA - now binding
the single-stranded telomeric DNA. Thus,
hnRNPA1 may displace RPA from the G-rich
telomeric DNA strand, which is the major single-
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strand DNA-binding protein associating with all
single-stranded DNA for replication. As TERRA
reaccumulates after S phase, hnRNPA1 may reas-
sociate with TERRA and liberate the single-
stranded G-rich telomeric strand for POT1 bind-
ing. More detailed knowledge on the regulation of
TERRA expression and its interaction with telo-
merase, hnRNPA1 and other protein partners dur-
ing the cell cycle may be required to clarify these
issues.

TERRA association with chromosome ends also
increases as telomeres get shorter. In budding
yeast, this is due to increased transcription [48]
and the absence of Ratl nuclease and RNase H2 (a
member of the Ribonuclease H family of enzymes
that specifically degrade the RNA moiety in DNA:
RNA hybrid structures) at short telomeres [32].
Conversely, at longer telomeres, the telomeric
Rif2 recruits efficiently RNase H2 and Ratl. In
human cells, telomere transcription increases at
short telomeres due to a decreased presence of
trimethylated H3K9, which recruits HP1 [33]. In
addition, ectopically expressed TERRA is recruited
to short telomeres more efficiently by the RAD51
recombinase [34]. The underlying mechanism for
this has not yet been uncovered in human cells.
However, RNase HI1 might be involved, as its
depletion increased telomere association of ectopic
TERRA strongly at long but not at short telomeres
[34] (Figure 2).

Consequences of R-loop formation:
replication interference and stimulation of
HDR

The formation of TERRA-mediated telomeric
R-loops appears to be beneficial when telomeres
become damaged or when they are very short. In
such cases, telomeres activate DNA damage check-
point signaling to induce cell cycle arrest or cellu-
lar senescence, they may be fused to one another
by DNA repair enzymes if they completely lose
capping function and become mistaken as DNA
double strand breaks [31]. Alternatively, short tel-
omeres are healed and re-elongated by telomerase
or by homology directed repair. For the latter,
single-stranded G-rich telomeric DNA may invade
the telomeric DNA of adjacent chromosomes
which is followed by elongation of the invading
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Figure 5. Possible mechanisms for TERRA R-loop-mediated stimulation of homologous recombination at telomeres. a) Upon R-loop
formation, the displaced single-stranded DNA strand may facilitate the loading of the RAD51 recombinase and other recombination
factors at telomeres. b) Telomeric R-loops pose a structural barrier that hinders progression of the replication machinery. Replication
fork stalling may culminate in the formation of DNA double-strand breaks, which can then be repaired by homology-directed repair.
¢) RAD51-mediated stimulation of TERRA R-loops and association of RAD51 with the displaced DNA strand - exposed as
a consequence of R-loop formation — may lead to local increased concentration of this recombinase and other recombination
factors at telomeres, which in recombination-prone ALT cells may sustain telomeric homologous recombination and telomere

elongation. lllustration created with BioRender.com.

3" end by DNA polymerase § [53,54]. This is
followed by fill-in synthesis of the lagging strand,
leading to telomere extension by conservative
synthesis of telomeric DNA. The mechanism is
referred to as break-induced replication.
Recombination mediated telomere synthesis is
prevalent in ALT cancer cells that lack telomerase.
However, recombination mediated telomere
synthesis, though partially repressed, is also at
play in normal or telomerase positive mammalian
cells. This notion is supported by the finding that
Brca2 deletion or Rad51 depletion in mouse
embryonic fibroblasts leads to telomere damage
and shortening [55] and telomere-internal double
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strand breaks can be repaired by homologous
recombination [56]. In budding yeast, deletion of
telomerase causes continuous telomere shortening.
Intriguingly, TERRA R-loop formation at short
telomeres promotes homology directed repair-
dependent re-elongation, preventing premature
onset of cellular senescence [32]. This repair of
short telomeres is active in cells that have not yet
engaged the ALT pathway, demonstrating the
importance of homology directed repair for telo-
mere homeostasis in normal cells.

The first evidence that TERRA R-loops can
promote homology directed repair and telomere
elongation came from studies in human ALT



cancer cells [57]. Coinciding with telomere recom-
bination, TERRA expression and R-loop forma-
tion are increased in ALT cells. Telomeric
R-loops cause replication stress at chromosome
ends, which is a hallmark of ALT telomeres. On
the other hand, inhibition of TERRA transcription
was recently shown to decrease marks of DNA
replication stress at telomeres, while telomere
maintenance by ALT activity was impaired [58].
Interestingly, it appears that TERRA R-loops must
achieve optimal levels to stimulate homology
directed repair, while not completely destroying
telomere integrity by overly severe replication
stress [57]. RNase H1 and FANCM, which associ-
ate with ALT telomeres, play critical roles in keep-
ing telomeric R-loops at tolerable levels [40,41,59].
FANCM depletion is selectively toxic in ALT cells.
In its absence DNA replication stress at telomeres
increases to unbearable levels. This stress is caused
through telomeric R-loops, as RNase H1 overex-
pression suppressed the telomere replication stress
of FANCM depleted ALT cells [40,59]. Of note,
ALT cells lose the cell cycle control of TERRA
expression due to mutations in chromatin remo-
deling protein ATRX [60]. Thus, TERRA remains
high in S phase and G2 - consistent with its effects
on telomere replication and elongation. Non-
repressed TERRA in S phase may also, through
its binding of the telomerase RNA template, rein-
force telomerase repression in ALT cells.

While break-induced replication of telomeres
can proceed through Rad51-dependent and inde-
pendent mechanisms in yeast [61], the different
synthesis pathways which operate in human ALT
cells have not been fully dissected. Several studies
documented roles of RAD51 in ALT cells.
Depletion of RAD51 decreased the formation of
AlLT-associated promyelocytic leukemia bodies
(APBs) in ALT cells in which telomeres gather
for ALT DNA synthesis [62]. Also, chemical inhi-
bition of RAD51 in ALT cells interfered with tel-
omere maintenance [63] and RADS51 depletion
with the frequency of telomere extension events
[64]. In addition, human RAD5I facilitates long-
range telomere movement and telomere clustering
in ALT cells [65]. On the other hand, based on
RAD51-depletion experiments, other studies
described RADS51-independent mechanisms for
break-induced telomere synthesis in ALT cells.
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A major mechanism involves RADS52, while
a second ill-defined mechanism can be observed
in the absence of RAD52 [54,66]. Remarkably,
RAD52 can bind RNA:DNA duplexes [67,68] as
well as single and double stranded DNA and thus
may associate with TERRA R-loops to mediate
a PCNA-RFC-Pol§-dependent pathway for con-
servative DNA synthesis that extends telomere
length. Overall, the published work demonstrates
that distinct mechanisms contribute to telomere
elongation in human ALT cells. In our view, how-
ever, it may be premature to exclude crucial roles
of RADS51 in a subset of the mechanisms, as this
protein is required for cell viability and essential
functions may have been retained in the knock-
down studies.

At least three mechanisms could be envisioned
of how TERRA and TERRA R-loops promote tel-
omere recombination and elongation (Figure 5).
First, the telomeric R-loops will lead to displace-
ment of the telomeric G-rich strand which may
facilitate loading of the RAD51 recombinase and
other recombination proteins (Figure 5(a)).
Second, R-loops can lead to replication stress and
DNA double strand breaks, which can then be
repaired by homology directed repair (Figure 5
(b)). Third, the increased levels of TERRA at chro-
mosome ends through R-loops in ALT cells may
not only require RAD51 - as is the case in telo-
merase-positive cells - but in turn also increase the
local concentration of this TERRA binding recom-
binase to sustain DNA  recombination
(Figure 5(c)).

R-loops had been originally considered as
toxic by-products of transcription which gener-
ate obstacles for DNA and RNA polymerases,
inducing DNA damage wupon replication
[69,70]. Also at telomeres, R-loops do interfere
with the semiconservative DNA replication
machinery. The THO complex, which has been
implicated in removing nascent RNA from chro-
matin, is present at telomeres in human cells
and in budding yeast [4,71]. Deletion of THO
components in S. cerevisiae increases telomeric
R-loops, leading to replication stress at telomeres
and telomere shortening [71]. As discussed
above, RNase H enzymes also counteract
R-loops. In their absence the accumulation of
telomeric R-loops leads to telomere loss and
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accelerated  senescence in  recombination-
deficient budding yeast, supporting the notion
that R-loops interfere with telomere replication
[72]. Finally, depletion of NMD factors in
human cells led to increased TERRA at telo-
meres and frequent loss of telomeric DNA [10].
Specifically, UPF1 depletion leads to inefficient
replication of telomeres synthesized by leading
strand synthesis, suggesting a role of this heli-
case in removing TERRA from leading strand
telomeres for their replication [73].
Hypomorphic mutations in the de novo DNA

methyltransferase DNMT3b cause ICF
(Immunodeficiency, Centromeric instability and
Facial anomalies) syndrome type I [27].

Subtelomeric DNA sequences are hypomethylated
in ICF type I syndrome cells, correlating with
strongly increased TERRA levels. These cells also
display increased telomeric R-loops throughout
the cell cycle, telomere damage, accelerated telo-
mere shortening and premature replicative senes-
cence, all being consistent with the interference of
TERRA R-loops with telomere replication [74].
However, a direct demonstration of causative
roles of DNMT3b deficiency and subtelomeric
DNA demethylation in the short telomere pheno-
type has been cumbersome. The DNA methylation
status at subtelomeres cannot be rescued in the
cellular ICF models with ectopic DNMT3b, indi-
cative of a persistent epigenetic memory [75].
Arguably, the most direct evidence for TERRA
interfering with telomere replication comes from
experiments in which TERRA was expressed ecto-
pically from plasmids [34]. As discussed above,
transgenic TERRA associates with telomeres post
transcription through R-loops that are formed in
a RAD51-dependent manner. Interference with tel-
omere replication in human cells gives rise to so-
called telomere fragility, in which the telomeric
FISH signal on metaphase chromosomes is smeared
or double [76]. Notably, expression of transgenic
TERRA caused a significant increase of telomere
fragility. This fragility was suppressed by RNase
H1 overexpression or RAD51 depletion, demon-
strating that it is a direct consequence of the phy-
sical presence of TERRA as R-loop at chromosome
ends, even in the absence of increased RNA poly-
merase II and transcription at the telomere [34].
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Conclusions

The finding that TERRA can associate with telo-
meres post transcription through the formation of
R-loops was unexpected. Generally, it had been
assumed that R-loops are formed during transcrip-
tion mostly at the 5’ and 3’ ends of GC-skewed
regions. However, in addition to TERRA, several
papers reported on the formation of R-loops post
transcription in trans. The long noncoding RNA
APOLO associates with multiple loci in the gen-
ome of Arabidopsis thaliana post transcription
through R-loops modulating gene expression
through decoy of polycomb repressive complex 1
components [77]. The mechanism of R-loop for-
mation by APOLO has remained unknown. In
S. cerevisiae, it has been reported that Rad51p
mediates hybridization of transcripts to homolo-
gous chromosomal loci distinct from their site of
synthesis [78], though another paper disputed this
conclusion [79]. Finally, R-loop formation is well
documented for the bacterial CRISPR-Cas9 DNA
endonuclease [80], in which Cas9 bends the DNA
to allow guide RNA infiltration into the double
helix. The mechanism of TERRA R-loop forma-
tion post transcription depends on the RADS5I
recombinase which binds TERRA, and which can
catalyze this reaction in vitro. It will be important
to dissect the detailed mechanisms in the future.
For instance, it is unclear how TERRA and telomere
binding proteins may influence this reaction to
achieve substrate specificity for TERRA and prefer-
ential invasion at short telomeres. It will also be
important to determine if other factors of the recom-
bination machinery which are required for strand
invasion of recombining DNA molecules may parti-
cipate in the TERRA strand invasion reaction.
Finally, it will important to determine if and to
what extent telomeric R-loops arise during transcrip-
tion in cis and if RAD51 also plays a role in their
establishment.

R-loops cause DNA damage and genome instabil-
ity, presumably through their interference with DNA
polymerases during replication. In addition, several
papers reported also on beneficial roles of R-loops,
for example for the repair of DNA double breaks
[67,68,81]. The work on TERRA suggests that this
RNA preferentially associates with short or damaged



telomeres, where it may coordinate the DNA
damage response, as well as repair processes. As
discussed above, excellent evidence has been pro-
vided that TERRA promotes telomere elongation
by homologous recombination of short telomeres
[32,57]. But does the mechanism also involve induc-
tion of replication stress and fork collapse, as
a prerequisite to induce HDR? Replication stress is
prevalent at telomeres in ALT, supporting the notion
that these cells indeed must manage a labile balance
between telomere loss by fork collapse and elonga-
tion by HDR [40,57].
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4.1 Abstract

“R-loops are three-stranded nucleic acid structures composed of a DNA-RNA hybrid and a
displaced DNA strand. The long noncoding RNA TERRA forms R-loops at telomeres influencing the
telomeric chromatin composition and impacting on telomere maintenance mechanisms by
semiconservative DNA replication, homology directed DNA repair and telomerase. Here, we describe a
method to detect R-loops at telomeres, which involves immunoprecipitation with the R-loop
recognizing S9.6 antibody, followed by detection of telomeric DNA by either dot-blot hybridization with
a radiolabeled telomeric probe, or gPCR using DNA primers that are specific for subtelomeric
sequences.”

4.2 Highlights

In this chapter of the book entitled “R-loops: Methods and Protocols”, we compile a detailed and
comprehensive protocol for the detection of DNA:RNA hybrids at telomeres by DNA:RNA
immunoprecipitation (DRIP), resorting to the R-loop-recognizing S9.6 antibody. We describe two
methods for the detection of immunoprecipitated R-loops: dot blot with a radiolabeled telomeric
probe, and gPCR using primers amplifying subtelomeric DNA. In addition, we provide a concise scheme
of the methodology for an immediate understanding of the major steps, as well as illustrative data.

4.3 Author contributions

= Contributed to the optimization of the DRIP dot blot/qPCR protocol for detection of TERRA R-
loops at human telomeres.

= Prepared all figures and schemes.

= Wrote the text together with G.G. and J.L., focusing predominantly on the DRIP gPCR section.
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Ty Chapter 11

Detection of TERRA R-Loops at Human Telomeres

Galina Glousker, Rita Valador Fernandes, Marianna Feretzaki,
and Joachim Lingner

Abstract

R-loops are three-stranded nucleic acid structures composed of a DNA-RNA hybrid and a displaced DNA
strand. The long noncoding RNA TERRA forms R-loops at telomeres influencing the telomeric chromatin
composition and impacting on telomere maintenance mechanisms by semiconservative DNA replication,
homology directed DNA repair and telomerase. Here, we describe a method to detect R-loops at telomeres,
which involves immunoprecipitation with the R-loop recognizing §9.6 antibody, followed by detection of
telomeric DNA by either dot-blot hybridization with a radiolabeled telomeric probe, or qPCR using DNA
primers that are specific for subtelomeric sequences.

Key words Telomeres, TERRA long noncoding RNA, DNA-RNA hybrids, R-loops, DRIP, Immu-
noprecipitation, $§9.6 monoclonal antibody

1 Introduction

The detection of R-loops at telomeres is crucial to study how
these structures are being formed and how they impinge on telo-
mere biology. Of note, TERRA R-loops can form posttranscription
in transin dependency of the RAD51 DNA recombinase [1]. Fur-
thermore, they are critical to promote telomere maintenance by
homology directed repair which is particularly important in ALT
cancer cells [2].

The detection of telomeric R-loops involves the isolation of
total nucleic acids (DNA and RNA) from human cells under con-
ditions which maintain nucleic acid double-stranded helical struc-
tures (Fig. 1a). The nucleic acid fraction is then sonicated to obtain
smaller fragments with a length of approximately 100-500 base
pairs (Fig. 1b). From the sonicated fraction, the DNA-RNA
hybrids are immunoprecipitated using the commercially available
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§9.6 monoclonal antibody [3] which binds to R-loops (Fig. 1d).
This step is often referred to as DRIP (for DNA-RNA immuno-
precipitation). As a control for specificity, the nucleic acid fraction is
treated in parallel prior to immunoprecipitation with the RNase H
enzyme, which destroys the RNA moiety in DNA-RNA hybrid
structures (Fig. 1¢). Thus, this sample provides a negative control
and the background signal. Finally, immunoprecipitates are eluted
and treated with RNase (Fig. 1e). Telomeric DNA is then detected
in the precipitated test and control samples in one of two ways
(Fig. 1f). Either, the precipitated nucleic acids are spotted on a
nylon membrane and telomeric DNA is detected by Southern
hybridization with a radioactively labelled telomeric probe (as in
Fig. 2a, b). Alternatively, telomeric DNA containing fragments are
quantified by qPCR using DNA primers that recognize subtelo-
meric sequences residing in the vicinity of the chromosome-
terminal telomeric 5'-TTAGGG-3' repeats (as in Fig. 2c¢).

2 Materials

2.1 Buffers and
Solutions

Work in RNase-free conditions. Clean all the surfaces and pipettes
with RNase AWAY (Thermo Fisher Scientific) or an equivalent
product.

1. RLN buffer: 50 mM Tris-HCl pH 8.0, 140 mM NaCl,
1.5 mM MgCl,, 0.5% Nonidet P-40. Filter and store at 4 °C.
Prior to use, add 100 U/mL RNasin Plus (Promega N2615)
and DTT to 1 mM.

2. 10x RNase H buffer: 0.2 M HEPES-KOH pH 7.5, 0.5 M
NaCl, 0.1 M MgCl,, 10 mM DTT. Prepare fresh, do not filter.

3. DIP-1 buffer: 10 mM HEPES-KOH pH 7.5, 275 mM NaCl,
0.1% SDS, 1% Triton X-100, 0.1% Na-deoxycholate. Filter,
store at 4 °C, short term.

4. DIP-2 buffer: 50 mM HEPES-KOH pH 7.5, 140 mM NacCl,
1 mM EDTA pH 8.0, 1% Triton X-100, 0.1%
Na-deoxycholate. Filter, store at 4 °C, short term.

5. DIP-3 buffer: 50 mM HEPES-KOH pH 7.5, 500 mM NaCl,
1 mM EDTA pH 8.0, 1% Triton X-100, 0.1%
Na-deoxycholate. Filter, store at 4 °C, short term.

6. DIP-4 buffer: 10 mM Tris—-HCI pH 8.0, 1 mM EDTA pH 8.0,
250 mM LiCl, 1% NP-40, 1% Na-deoxycholate. Filter, store at
4 °C, short term.

7. TE buffer: 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0.
Filter, store at RT.

8. Elution buffer: 20 mM Tris-HCI pH 8.0, 0.1% SDS, 0.1 M
NaHCOg;, 0.5 mM EDTA pH 8.0. Filter, store at RT. Prior to
use, add RNase-DNase free (Roche) to 10 pg/mL final
concentration.
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Fig. 2 Detection of telomeric R-loops by DRIP. Nucleic acids used for DRIP were isolated from HeLa cells
expressing from transfected plasmids either Pseudomonas aeruginosa Phage 7 (PP7) RNA stem-loops or
PP7-15qTERRA RNA. The cells were also transfected with nontargeting siRNA (siControl), siRNA targeting
RNaseH1 (siRNaseH1) or a plasmid overexpressing RNaseH1 (RNaseH1 OE), as indicated. (a) DRIP samples
were spotted on a nylon membrane and telomeric DNA was detected with an «-32P-radiolabeled telomeric
probe. The telomeric signal from PP7-15qTERRA plasmid containing cells is much stronger due to presence of
telomeric repeats in the plasmid and R-loops that are formed at the site of transcription. Depletion of
endogenous RNase H1 increased the DRIP signal whereas RNase H1 overexpression reduced it. In vitro
RNase H treatment prior to immunoprecipitation with the $9.6 antibody reduced the signal to background
levels. (b) Quantification of three independent biological replicates as in a. (c) DRIP samples were analyzed by
gPCR and DNA was detected with primers targeting 1q, 10q, 13q, or 15q subtelomeric DNA sequences, as
indicated. Three independent biological replicates are shown. Of note, expression of PP7-15qTERRA from
plasmids increased the DRIP signal at telomeres 1q, 10q, and 13q which is indicative of R-loop formation at
these telomeres posttranscription in frans. The very strong signal obtained with 15q stems mostly from the
plasmid DNA which contains 15q subtelomeric sequences
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. 2% SSC buffer: 30 mM sodium citrate pH 7.0, 300 mM NaCl.
10.
11.
12.

Denaturation buffer: 0.5 M NaOH, 1.5 M NaCl.
Neutralization bufter: 0.5 M Tris-HCI pH 7.0, 1.5 M NaCl.

Church Buffer: 0.5 M NaHPO4, 1 mM EDTA, pH 8.0, 1%
(weight/volume) BSA, 7% SDS.

. 1 mL syringes.

. 0.9 x 40 mm needles.

. p-mercaptoethanol.

. RAI buffer (NucleoSpin RNA, Macherey-Nagel).

. Phase Lock Gel Heavy 2 mL tubes (5PRIME).

. 25:24:1 phenol-chloroform-isoamyl alcohol (pH 7.8-8.2).

. 15 mL Falcon tubes.

. Covaris E220 focused-ultrasonicator.

. AFA intensifier for sonication (PN 500141).

. Microtubes (AFA fiber Screw Cap 6 x 16 mm (Ref 520,096)).

. RNase H (Roche).

. 0.5 M EDTA pH 8.0.

. Protein G Sepharose 4 Fast Flow (Cytiva).

. Tube rotator.

. Table top centrifuge.

. Anti-DNA-RNA Hybrid [S9.6] antibody (Kerafast 022715).
. Normal mouse IgG control.

. RNase (DNase-free).

. NucleoSpin Gel and PCR Cleanup kit (Macherey-Nagel).

. QIAquick PCR Purification kit (Qiagen).

. Hybond N+ membrane (GE Healthcare).

. Bio-dot filter paper.

. Bio-dot blot apparatus.

. Stratalinker UV crosslinker.

. Hybridization oven.

. Hybridization bottles.

. TeloC probe (PCR product generated as described [4] and

labeled using RadPrime DNA Labeling System [Invitrogen]).

. Aluprobe (5’ end labeled 5'-gtgatccgeccgecteggecteccaaagtg-3').
. RadPrime DNA Labeling System (Invitrogen).

. T4 Polynucleotide kinase (NEB).
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25 qPCR

11.
12.
13.
14.
15.
16.

1.
2.

N Ul B~ W

a->*P dCTP (10 pCi/pL; 3000 Ci/mmol).
¥-32P ATP (10 pCi/pL; 3000 Ci/mmol).
Mini quick spin Oligo Column (Roche).
Mini quick spin DNA Column (Roche).
Phosphorimager screen.

Typhoon phosphorimager (GE).

12-channel 0.5-10 pL pipette.
Primers:
a) 1q subtelomeric primers (5'-cagcgtcgcaactcaaatg-3'; 5-
q p gegteg 2
'-cccteacectecatgagtaata-3');
b) 10q subtelomeric primers (5’-gcattcctaatgcacacatgac-3';
q p g g g
5’-tacccgaacctgaaccctaa-3');
¢) 13q subtelomeric primers (5'-gcacttgaaccctgcaatacag-3';
q p g & g 2
5'-cctgegeaccgagattct-3');
d) 15q subtelomeric primers (5’-aaccctaaccacatgagcaacg-3’;
q p gagcaacg
5'-gctgcattaaagggtecagt-3').

. Power SYBR Green PCR Master Mix (Applied Biosystems).

. 384-well reaction plate.

. Optical adhesive film.

. QuantStudio 7 Flex Real-Time PCR System (Applied Biosys-

tems) or equivalent.

3 Methods

3.1 Cells Harvesting
and Isolation of
Nucleic Acids

Clean all surfaces and tools with RNase AWAY.

1.

Harvest ten million cells per condition for DRIP assay. Harvest
additional one million cells for Western blot analysis if needed.
Spin down the cells for 5 min at 300 x g at 4 °C. Keep cells
on ice.

. Wash cells with 1-2 mL cold PBS and transfer into Eppendorf

microfuge tubes. Spin down again for 5 min at 300 x gat 4 °C.

. Aspirate PBS. Loosen pellet thoroughly by flicking the tube.

Resuspend 10 x 10° cells in 175 pL of cold RLN buffer
containing DTT and RNaseIN;, pipet up and down once, and
incubate for 5 min on ice for cell lysis (se¢ Note 1).

. Spin down at 300 x g, for 2 min, 4 °C. Remove the supernatant

carefully and discard.

. Wash the nuclei containing pellet in 500 pL cold PBS. Spin

down at 300 x g, for 2 min, 4 °C. Remove the supernatant
carefully and discard.
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3.2 Sonication with
Covaris E220

12.
13.

14.

15.
16.
17.

18.

1.
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. Warm tubes to RT and continue to work at RT. Move to fume

hood. Loosen nuclear pellet thoroughly by flicking the tube.

. Pellet gel in Phase Lock Gel (PLG) Heavy 2 mL tubes by

centrifugation at 13,000 x 4 for 1 min.

. Prepare nuclear lysis buffer: add 10 pL of f-mercaptoethanol

per 1 mL of buffer RA1 (prepare 1 mL of nuclear lysis buffer
per condition).

. Resuspend nuclei in 500 pL of nuclear lysis buffer at RT.
10.
11.

Pass the lysate 10 times up and down through a needle.

Transfer the lysate into the PLG tubes. Add 250 pL. H,O and
750 pL 25:24:1 phenol/chloroform/isoamyl alcohol. Mix
thoroughly, but do not vortex.

Centrifuge at 13,000 x g for 5 min to separate phases.

Transfer the nucleic-acid-containing aqueous upper phase
(NA) into a fresh 2 mL Eppendorf microfuge tube on ice.

Perform isopropanol precipitation: 750 pLL NA + 15 pL 5 M
NaCl +750 pL ice-cold isopropanol. Shake vigorously! Incu-
bate on ice for 30 min, then spin down for 30 min at
10,000 x gat 4 °C (in 2 mL Eppendorf tubes) (see Note 2).
Wash pellet 2x with 1 mL of ice cold 70% ethanol.

Let the pellet air dry (see Note 3).

Add 135 pL H,O to each pellet from 10 x 10° cells, flick to
detach the pellet from the wall of the tube, incubate for approx-
imately 1 h shaking in the cold room until nucleic acids are
dissolved.

Take sample “A” before sonication: 3 pL.

Transfer each condition into a microtube for sonication
(130 pL per tube). Perform sonication using the following
conditions to achieve fragment length < 500 bp.

Condition a single condition

Duty factor 10%

Peak incident power (W) 140

Cycles per burst 200

Time (seconds) 150
AFA intensifier Yes

Temperature 4°C

Water level 6
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2.
3.

Take sample “B” after sonication: 3 pL.

Test sonication profile:

(a) Add to 3 pL of sample (A and B) 7 pL of H,O.
(b) add 2 pL of 6x loading buffer.

(c) Analyze on a 1% TBE-agarose gel.

You can freeze the samples in liquid nitrogen and keep them at

—80 °C for a few days.

3.3 DNA-RNA 1.
Immunoprecipitation
2
3

Measure the concentration of nucleic acids with Nanodrop
(DNA). Use the same amount of nucleic acids for all your
samples (15-60 pg depending on the concentration—see
Note 4).

. Prepare fresh RNase H buffer.
. Perform the RNase H control +/—RNase H treatment -

example:
(a) nucleic acids,
(b) 15 pL 10x RNase H buffer

(¢) 10 pL RNase H (1 U/pL; Roche) (control) or H,O
(sample)

(d) H,O to 150 pL.

4. Incubate at 37 °C for 90 min.

5.

Add 2 pL 0.5 M EDTA (pH 8.0) to stop the reaction.

6. During the RNase H treatment equilibrate beads (se¢ Note 5).

Use 200 pL beads per condition (equals to 400 pL of 50%

slurry stock (see Note 6)).

(a) Put the 50% Sepharose G bead stock on the wheel in the
cold room for 5 min to mix it very well. Take what you
need into a new tube and spin them down for 2 min at
300 x gat4 °C. Remove the supernatant.

(b) Add the same volume of DIP-1 buffer, wash beads on the
wheel for 5 min at 4 °C. Spin down for 2 min at 300 x gat
4 °C, discard the supernatant. Repeat this step once.

(c) Resuspend the beads in DIP-1 buffer to have a 50% slurry.

. Preclear the nucleic acids. Mix in a 2 mL microfuge tube the

following.

(a) 150 pL nucleic acids after RNase H treatment.

(b) 1270 pL DIP-1 buffer (ten-fold dilution of nucleic acids).
(c) 80 pL of protein G beads 50% slurry.

. Incubate for 1 h at 4 °C on the wheel. Spin down 5 min at

300 x gand continue with the precleared extract.
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3.4 Dot Blot

11.
12.

13.

14.
15.

16.
17.

18.
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. Put aside 1% input.
10.

Assemble the IP reaction.
(a) 600 pL of precleared extract.
(b) 3 pg ofantibody (spin down before use):
e Tube 1: §9.6 antibody (Kerafast 022715).
e Tube 2: mouse IgG (5c2025).
(c) 80 pL of protein G beads 50% slurry.
Incubate overnight on the wheel at 4 °C.

Spin down for 2 min at 300 X g at 4 °C, discard the
supernatant.

Wash the beads 5 min on a wheel at 4 °C with ice-cold buffers
(spin for 2 min at 300 x gat 4 °C).

(a) 1 mL DIP-2 buffer.

(b) 1 mL DIP-3 buffer.

(¢) 1 mL DIP-4 buffer.

(d) 1 mLTE.

Spin for 5 min at 300 x gat 4 °C.

Resuspend beads and inputs in 100 pL Elution buffer contain-
ing RNase (DNase-free).

Incubate for 1-2 h at 65 °C (or overnight).

Extract DNA using:

(a) Ifyou continue with dot-blot: Macherey-Nagel NucleoSpin
Gel and PCR Cleanup kit and elute in 100 pL H,O (Heat
up H,O to 70 °C = > Incubate for 5 min before elution).

(b) If you continue with gPCR: Qiagen PCR Purification kit
for qPCR and elute in 100 pl H,O (Heat up H,O to
70 °C = > Incubate for 5 min before elution).

Store DNA at —20 °C or directly continue with dot-blot or

qPCR.

. Clean Dot-Blot apparatus (rinse with 0.02% SDS; spray with

70% ethanol, rinse with H,O multiple times; dry completely).

2. Prewarm Church buffer and hybridization oven.

. Denature DNA for 10 min at 95 °C and keep on ice for 5 min

or longer.

. Assemble the dot blot apparatus with N+ Hybond membrane

soaked in 2x SSC, Whatman paper soaked in 2xSSC, then
wash the slots with 200 pL 2x SSC.

. Apply the samples. For the input (which is 1%), add 900 pL of

H,0O and load 200 pL (0.2%), 100 pL (0.1%), and 50 pL
(0.05%), for the IP samples load the entire sample (se¢ Note 7).
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10.

11.

. Wash again the slots that have been used with 2x SSC.
. UV-crosslink the DNA onto the membrane (do not let the

membrane get completely dry), using autocrosslink as a
setting.

. Denature the membrane in 0.5 M NaOH, 1.5 M NaCl for

15 min on a shaker at room temperature.

. Neutralize the membrane in 0.5 M Tris-HCIl pH 7.0, 1.5 M

NaCl for 10 min on a shaker at room temperature.

Prehybridize the membrane with Church Buffer for atleast 1 h
at 65 °C when using the telomeric probe and at 55 °C for the
alu probe.

Label telomeric probe or alu probe.
(a) Telomeric probe.

e pL. DNA (200 ng; telomeric PCR product (Porro
etal., 2014)).

* 20 pL H,O.

e Denature for 5 min at 95 °C => put on ice immedi-
ately, add the following.

o 1 pL dATP (500 pM), 1 pL dGTP (500 pM), 1 pL
dTTP (500 pM).

e 20 pL 2,5x Random Prim buff.

e 1 pL Klenow enzyme.

e 5pL a-**P dCTP (3000 Ci/mmol; 10 pCi/pL).
e H,O to 50 pL.

e Incubate at 37 °C for at least 10 min.

e Purify the labeled DNA using the Mini quick spin
DNA Column.

e Denature the radiolabeled probe for 5 min at 95 °C.
e Place on ice.
¢ Add to 20-30 mL of Church buffer.
(b) Alu probe.
¢ 1 pL oligonucleotide (from a 10 pM stock).
e 27 pL H,O.
e 4 uL T4 PNK buffer.
e 2uL T4 PNK
e 5puLy-**P ATP (3000 Ci/mmol; 10 uCi/pL).
e H,0 to 40 pL.
e Incubate at least 1 h at 37 °C.
e Purify using Mini quick spin Oligo Column.
e Add to 20-30 mL of Church buffer.
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12.

13.

14.

15.

16.

O 0 N O
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Hybridize with radiolabeled telomeric probe or alu probe
overnight.
On the following day:

Rinse with 4x SSC.

Wash three times for 30 min at 65 °C in 1x SSC, 0.5% SDS at
65 °C for the telomeric probe or 55 °C for the alu probe.
Rinse in 4x SSC in a tray to remove SDS before sealing the
membrane.

Place the membrane into a plastic folder, seal properly and
expose to a phosphorimager screen (expose overnight, prolong
exposure time if needed).

. Set up a qPCR master mix for each primer pair (all components

should be kept on ice).

(a) 5 pL Power SYBR Green (prolonged direct light exposure
should be avoided).

(b) 1 pL of each primer (forward and reverse) from a 10 pM
stock.

(¢) H,O to a total volume of 9 pL per well.

. Prepare serial dilutions of the collected 1% input in H,O

(at least two dilutions; for example, dilution factors of 10 and
100—see Note 7).

. Transfer all samples (diluted inputs and immunoprecipitates)

and master mixes into 0.2 mL PCR tube strips, to facilitate
pipetting samples with multichannel pipette.

. Resorting to a multichannel pipette (in order to minimize

pipetting-derived errors), transfer 9 pL of each primer pair
master mix into each well of a 384-well reaction plate.

. Resorting to a multichannel pipette, add 1 pL of each input

dilution and each DRIP sample into each well of the reaction
plate. At least two technical replicates per input dilution/sam-
ple should be carried out. For each primer pair a control
reaction with no template should also be included.

. Seal the reaction plate with optical adhesive film.
. Briefly centrifuge the plate at 2000 x 4.
. Load on the qPCR instrument.

. Perform the qPCR reaction according to manufacturer’s

instructions: 95 °C for 10 min, followed by 95 °C for 15 s,
and annealing and extension at 60 °C for 1 min for 40 cycles,
and finalized with dissociation stage for melting curve analysis.

79



170 Galina Glousker et al.

3.5.1 qPCR Data Analysis 1.

Using the Ct values obtained for the dilutions of input samples,
perform a regression analysis to determine the equation of the
standard curve of each input.

. Using each input equation, calculate the corresponding S9.6

and IgG IPs as percentage of input.

4 Notes

. Do not scale up. The efficient lysis is only possible with no

more than 10 x 10° cells per 175 pL of RLN buffer. If your
signal is too low and you want to increase the starting number
of cells to 20 x 10°, split your cells into two tubes with
10 x 10° cells in each.

. The work in the fume hood lasts for at least 1 h.

. You can load your Western blot during that time. Turn on

Covaris in a timely manner to ensure that the water is cold
and degassed when you start sonication.

. Depending on the cell line, basal levels of telomeric RNA—

DNA hybrids will vary. Adjust cell number and amount of
nucleic acids accordingly (e.g., for HeLa cells 30 pg/IP are
required, while for U20S cells 7.5 pg/IP should suffice).

. Do not use Falcon tubes to spin down the beads as the beads

tend to be lost in these tubes. Use 5 mL or 2 mL tubes.

. Start with 20% more beads than you need.

. The input dilutions should be adjusted so that the amount of

target DNA in each immunoprecipitated sample lies within the
linear dynamic range of each assay.
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Chapter 5 The THO Complex counteracts
TERRA R-loop-mediated telomere fragility in
telomerase® cells and recombination in ALT"
cells

Rita Valador Fernandes and Joachim Lingner
Manuscript under revision

5.1 Abstract

Telomeres are the nucleoprotein structures at the ends of linear chromosomes. Telomeres are
transcribed into the long non-coding Telomeric Repeat-Containing RNA (TERRA), whose functions rely
on its ability to associate with telomeric chromatin. The conserved THO complex (THOC) was previously
identified at human telomeres. It links transcription with RNA processing, decreasing the accumulation
of co-transcriptional DNA:RNA hybrids throughout the genome. Here, we explore the role of THOC at
human telomeres, as a regulator of TERRA localization to chromosome ends. We show that THOC
counteracts TERRA association with telomeres via R-loops formed co-transcriptionally and also post-
transcriptionally, in trans. We demonstrate that THOC binds nucleoplasmic TERRA, and that RNaseH1
loss, which increases telomeric R-loops, promotes THOC occupancy at telomeres. Additionally, we show
that THOC counteracts lagging and mainly leading strand telomere fragility, suggesting that TERRA R-
loops can interfere with replication fork progression. Finally, we observed that THOC suppresses
telomeric sister chromatid exchange and C-circle accumulation in ALT cancer cells, which maintain
telomeres by recombination. Altogether, our findings reveal crucial roles of THOC in telomeric
homeostasis through the co- and post-transcriptional regulation of TERRA R-loops.

5.2 Highlights

= The THO complex counteracts telomeric R-loops, in ALT cells.

= THOC subunits 1 and 2 counteract PP7-15gTERRA colocalization with telomeres, in the form of
R-loops formed post-transcriptionally, in trans.

= THOC1 occupancy at the telomeric tract is increased following RNaseH1 depletion.

= THOC associates with endogenous nucleoplasmic TERRA.

= THOC prevents telomeric fragility induced by TERRA R-loops.

= THOC restrains telomeric fragility at telomeres replicated by leading and (to a lesser extent)
lagging strand synthesis.

= THOC counteracts telomeric sister chromatid exchange events and C-circle accumulation in ALT
cells.

5.3 Author contributions

= Performed all experiments.
= Prepared all figures, schemes and respective legends.
=  Wrote the full manuscript, which was edited by J.L..

5.4 Introduction

Telomeres are the nucleoprotein structures at the termini of linear chromosomes. They are crucial
for genome stability and ensure that chromosome ends are not inappropriately recognized as sites of
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DNA damage. Telomere functions at mammalian telomeres are in part achieved by a telomere-specific
protein complex termed shelterin. It includes the double strand (ds) DNA-binding proteins TRF1 and
TRF2, POT1 which binds the single stranded telomeric overhang, TIN2 and TPP1 which connect POT1
to TRF1 and TRF2, and TRF2-bound Rap1 (de Lange, 2005).

Despite the heterochromatic features found at telomeres (Tardat & Déjardin, 2018), RNA
polymerase Il drives transcription of the telomeric long noncoding RNA TERRA — Telomeric Repeat
containing RNA, using the C-rich strand as a template (Azzalin et al, 2007). In human cells, transcription
of TERRA stems from promoters residing within subtelomeric sequences in most chromosome arms,
and proceeds through the telomeric repetitive tract (Nergadze et al, 2009; Porro et al, 2014; Feretzaki
et al, 2019). For that reason, TERRA is a heterogeneous class of IncRNAs, comprising chromosome arm-
specific subtelomeric-derived sequences at the 5 end, followed by a variable number of UUAGGG
repeats (Porro et al, 2010; Arnoult et al, 2012; Feretzaki et al, 2019).

Several functions regarding telomere maintenance and stability have been attributed to TERRA.
Namely, TERRA has been proposed to contribute to the regulation of the heterochromatic structure of
telomeres (Arnoult et al, 2012; Porro et al, 2014), particularly when telomeres are depleted of the
shelterin protein TRF2 — which results in upregulation of TERRA and activation of a DNA damage
response (Porro et al, 2014). In addition, the modulation of telomerase — the ribonucleoprotein which
extends the telomeric DNA — by TERRA has previously been proposed. In vitro, TERRA was shown to
bind the telomerase RNA template, thus acting as an inhibitor of human telomerase (Redon et al, 2010).
On the other hand, in vivo experiments in budding yeast suggested that TERRA preferentially guides
telomerase to short telomeres, which are then selectively elongated (Cusanelli et al, 2013). While the
majority of cancer cells maintains telomere length by overexpressing telomerase, about 10% of cancer
types compensates telomere loss by a mechanism termed alternative lengthening of telomeres (ALT),
which relies on homologous recombination (HR) (Bryan et al, 1997). In ALT human cells, TERRA was
shown to be a crucial factor involved in telomere maintenance, by promoting a finely-tuned equilibrium
of replication stress required for triggering of HR by break-induced replication, allowing telomere
elongation (Arora et al, 2014; Silva et al, 2019, 2021, 2022). Also in Saccharomyces cerevisiae cells,
TERRA was shown to accumulate at critically short telomeres, where it is thought to promote replication
stress, resulting in homology-directed repair and telomere elongation (Graf et al, 2017).

Notably, most functions attributed to TERRA in telomere maintenance were shown to depend on
direct DNA:RNA interactions (hybrids), termed R-loops (Balk et al, 2013; Arora et al, 2014; Graf et al,
2017; Sagie et al, 2017; Silva et al, 2019). Such structures form when TERRA RNA invades the telomeric
dsDNA helix, base pairing with the template strand, leaving the TTAGGG-containing DNA strand
displaced. R-loops were shown to form co-transcriptionally in cis — as the transcription machinery
progresses through the telomeric tract —, as well as post-transcriptionally in trans — at a telomeric locus
other than the one from which the RNA originated (Feretzaki et al, 2020). Several factors involved in
the regulation of telomeric R-loops have been identified and characterized (reviewed in (Valador
Fernandes et al, 2021)). Among which, the DNA recombinase RAD51 was shown to be required for the
formation of telomeric DNA:RNA hybrids (Feretzaki et al, 2020). More recently, another HR protein,
RAD51AP1, has also been implicated in mediating TERRA R-loops in ALT cancer cells (Yadav et al, 2022;
Kaminski et al, 2022). On the other hand, factors restraining the accumulation of telomeric R-loops
include the shelterin proteins TRF1 and POT1 (Lee et al, 2018; Glousker et al, 2020), as well as RNase H
enzymes (Arora et al, 2014) — which remove DNA:RNA hybrids through the endonucleolytic cleavage of
the engaged RNA molecules.

R-loops have primarily been viewed as harmful by-products of transcription, posing an obstacle for
the progression of DNA and RNA polymerases, thus jeopardizing genome stability. However, their
involvement in a myriad of cellular processes has been demonstrated (Garcia-Muse & Aguilera, 2019).
At chromosome ends, R-loops are thought to contribute to DNA damage checkpoint signalling when
telomeres become damaged or very short (Balk et al, 2013; Graf et al, 2017; Feretzaki et al, 2020).
Additionally, as mentioned above, R-loops appear to be a requirement for appropriate telomerase-
independent telomere elongation in ALT cancer cells. Altogether, this underscores the relevance behind
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a comprehensive analysis of the regulation and impact of telomeric R-loops. In this study, we aimed at
understanding the roles undertaken by the THO (Suppressor of Transcription Defects of hpr1A mutants
by Overexpression) complex at human telomeres.

The THO complex was originally identified in S. cerevisiae as a functional unit involved in
transcriptional elongation of genes with high GC content or that are particularly long, suppressing
hyperrecombination events (Aguilera & Klein, 1990; Chéavez et al, 2000, 2001). In human cells, the THO
complex comprises six subunits: THOC1, -2, -3, -5, -6 and -7 (PUhringer et al, 2020). It facilitates
transcription of a large number of human genes, and often co-localizes with splicing factors in nuclear
speckles (Li et al, 2005; Dominguez-Sanchez et al, 2011; Masuda et al, 2005). In addition to its function
during transcription, THOC plays a conserved role in RNA nuclear export, as an element of the larger
TREX complex (Transcription and Export), together with the helicase and splicing factor UAP56/DDX398B
and the RNA nuclear export protein Aly/ALYREF/THOC4 (along with other factors) (Fleckner et al, 1997;
Zhang & Green, 2001; Zhou et al, 2000). Remarkably, THOC/TREX have also been described to take part
in the regulation of DNA:RNA hybrids formed across the genome during transcription, counteracting
the accumulation of R-loop-induced DNA damage (Li et al, 2005; Dominguez-Sanchez et al, 2011; Pérez-
Calero et al, 2020). THOC/TREX factors are thought to be recruited to spliced, 5" capped RNAs during
RNA biogenesis, and contribute to the adequate formation of ribonucleoprotein complexes (Masuda et
al, 2005; Cheng et al, 2006; Chi et al, 2013; Kéhler & Hurt, 2007; Carmody & Wente, 2009). Thus,
THOC/TREX bridge transcription with RNA processing and nuclear export.

All THOC subunits were previously detected in purified human telomeric chromatin by mass-
spectrometry (Grolimund et al, 2013). In yeast, several THOC subunits have also been detected at
chromosome ends (Pfeiffer et al, 2013). THOC was previously proposed to indirectly counteract
telomeric elongation, through the regulation of Rif1 mRNA (a negative regulator of telomere length in
S. cerevisiae) (Yu et al, 2012). On the other hand, yeast THOC subunits Hprl and Thp2 were
demonstrated to counteract TERRA-mediated telomeric R-loops. Genetic experiments further
suggested that Thp2 protects chromosome ends from telomere shortening in an R-loop-independent
but exonuclease 1-dependent manner (Pfeiffer et al, 2013). At human telomeres, the roles of the THO
complex remained elusive.

Here, we demonstrate that THOC subunits 1 and 2 counteract R-loops formed at human telomeres.
Resorting to a previously developed system to detect the nuclear localization of ectopically-expressed
TERRA molecules (Feretzaki et al, 2020), we show that, unexpectedly, the THO complex also
counteracts the association of TERRA with telomeres post-transcriptionally, in trans, via R-loops. In
addition, we find that the THO complex is recruited to telomeres when cells are depleted of the
ribonuclease RNaseH1, which specifically degrades DNA:RNA hybrids. In addition, THOC interacts with
nucleoplasmic TERRA. Therefore, we propose that THOC counteracts telomeric R-loops through several
mechanisms. First, THOC may prevent the association of TERRA with telomeric DNA through R-loops
during transcription. Second, THOC contributes to the resolution of DNA:RNA hybrid structures that
have formed post-transcriptionally. Third, through binding of TERRA in the nucleoplasm, THOC may
counteract TERRA association with telomeric DNA post-transcriptionally. Finally, we observe that loss
of THOC subunits results in fragility at telomeres replicated by leading strand synthesis, and also to a
lesser extent by lagging strand synthesis. In addition, in ALT cells — but not in telomerase-positive Hela
cells—loss of THOC leads to an increase in the frequency of telomeric sister chromatid exchange events,
as well as C-circles, likely as a consequence of accumulated R-loops at the telomeric tract in these cells.
Thus, our data demonstrate that THOC promotes telomere stability through the regulation of the
IncRNA TERRA.

5.5 Results
The THO complex counteracts telomeric DNA:RNA hybrids

THOC was previously shown to be necessary for appropriate expression of several genes in yeast
and human cells, promoting transcriptional elongation by RNA polymerase Il (Chavez et al, 2000; Li et
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al, 2005; Dominguez-Sanchez et al, 2011; Chavez & Aguilera, 1997; Piruat & Aguilera, 1998). To
understand if THOC is involved in the transcriptional regulation of TERRA affecting its expression levels,
we knocked down THOC core subunits 1 and 2 in Hela cells (Fig 1A). Of note, siRNA mediated targeting
of THOC1 caused a reduction of THOC2 and vice versa, indicating that THOC subunits THOC1 and THOC2
are stabilizing one another. We evaluated total TERRA levels by RNA dot blot, probed with a 3?P-
radiolabeled [CCCTAA]; probe and normalized the signal to 18S rRNA (Fig 1B). No significant changes
were detected in UUAGGG-containing RNA levels upon depletion of THOC (Fig 1B-C). This indicates that
the expression of TERRA is not directly modulated by THOC, nor is the telomeric transcriptional
elongation affected by loss of THOC subunits, since a defect in TERRA transcriptional elongation would
be reflected in changes in the detected UUAGGG content.

In U20S cells, which do not use telomerase for telomere length maintenance, but resort instead to
the recombination-based ALT pathway, basal TERRA levels are elevated, relative to Hela or other
telomerase-positive cell lines (Lovejoy et al, 2012). Nonetheless, depletion of THOC subunits in U20S
cells (Fig 1D) did not lead to any perceptible changes in TERRA levels (Fig 1E and F), similarly to what
we observed in Hela cells.

Telomeres are prone to form DNA:RNA hybrids with TERRA (Graf et al, 2017; Arora et al, 2014,
Feretzaki et al, 2020). Since THOC has been implicated in counteracting DNA:RNA hybrids across the
genome (Li et al, 2005; Dominguez-Sanchez et al, 2011), we analysed telomeric DNA:RNA hybrid levels
under depletion of THOC. We implemented DNA:RNA immunoprecipitation (DRIP), which uses the R-
loop-recognizing S9.6 antibody (Boguslawski et al, 1986), and quantified the DNA component of the
hybrids by DNA dot blot, probed with a C-rich telomeric probe. Nucleic acids were in vitro treated with
the ribonuclease RNaseH (which specifically hydrolyses the RNA moiety of DNA:RNA hybrids (Cerritelli
& Crouch, 2009)) before the immunoprecipitation step, as a specificity control. Interestingly, depletion
of THOC led to a perceptible (yet non statistically significant) increase in telomeric R-loop levels in HelLa
cells (Fig 1G and H). In U20S cells, basal telomeric R-loops were shown to accumulate more frequently,
compared to telomerase-positive cells (Arora et al, 2014). When examining U20S cells by DRIP dot blot,
we observed that loss of THOC in these cells significantly increased the occurrence of telomeric R-loops
by about 2-fold (Fig 11 and J). This indicates that the THO complex plays a role at human telomeres in
counteracting TERRA-mediated R-loops.
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Figure 1. THOC counteracts TERRA R-loops.

A Western blot analysis of depletion efficiency with indicated siRNAs in Hela cells with 10 kb average telomere
length, used in B, C, G and H.

B RNA dot blot analysis of TERRA or 18S rRNA levels upon depletion with indicated siRNAs in Hela cells. 4 pg
total RNA were loaded per sample. RNA samples were treated with RNase (DNase-free) as a control.

C Quantification of TERRA levels (as in B), normalized to 18S rRNA levels in Hela cells, plotted as fold change
over control siNT. Data are mean £ s.d., from three independent biological replicates. One-way analysis of variance
(ANOVA) with Dunnett’s multiple comparisons test was applied: ns indicates non-significance (P > 0.05).

D Western blot analysis of depletion efficiency with indicated siRNAs in U20S cells, used in E, F, | and J.

E RNA dot blot analysis of TERRA or 18S rRNA levels upon depletion with indicated siRNAs in U20S cells. 2 pg
total RNA were loaded per sample.

86



F Quantification of TERRA levels (as in E), normalized to 18S rRNA levels in U20S cells, plotted as fold change
over control siNT. Data are mean £ s.d., from three independent biological replicates. One-way analysis of variance
(ANOVA) with Dunnett’s multiple comparisons test was applied: ns indicates non-significance.

G DRIP assay using anti-DNA:RNA hybrid $9.6 antibody was performed in extracts from Hela cells. In vitro
digestion with RNaseH1 prior immunoprecipitation served as a negative control. Allimmunoprecipitates and input
samples were treated with RNase (DNase-free) and analyzed by DNA dot blot probed with a **p_radiolabelled
[CCCTAA]; probe.

H Quantification of telomeric DNA:RNA hybrids in Hela cell extracts (as in G), as fold change over siNT. Data
represent mean * s.d., from three independent biological replicates. One-way analysis of variance (ANOVA) with
Dunnett’s multiple comparisons test was applied: ns indicates non-significance (P > 0.05).

| DRIP assay using anti-DNA:RNA hybrid S9.6 antibody was performed in extracts from U20S cells. In vitro
digestion with RNaseH1 prior immunoprecipitation served as a negative control. Allimmunoprecipitates and input
samples were treated with RNase (DNase-free) and analysed by DNA dot blot probed with a **p-radiolabelled
[CCCTAA]; probe.

J Quantification of telomeric DNA:RNA hybrids in U20S cell extracts (as in 1), as fold change over siNT. Data
represent mean + s.d., from three independent biological replicates. One-way analysis of variance (ANOVA) with
Dunnett’s multiple comparisons test was applied: ** P <0.01.

The THO complex counteracts PP7-15gTERRA associations with telomeres

formed in trans

While most R-loops are thought to occur only during transcription, TERRA R-loops can also form
post-transcriptionally, in dependency of the RAD51 recombinase (Feretzaki et al, 2020). To investigate
putative roles of THOC in the post-transcriptional regulation of TERRA, we used a previously developed
system in which TERRA is expressed from plasmids, allowing the characterization of the subnuclear
localization of ectopically transcribed TERRA-like molecules (Feretzaki et al, 2020). It resorts to the
inducible-expression of a chimeric RNA molecule comprised of about ninety UUAGGG repeats at the 3’
end, preceded by the 159 subtelomeric-derived sequence, and twenty-four Pseudomonas aeruginosa
Phage 7 (PP7) stem-loops. The PP7 stem-loops are recognized and bound by GFP-tagged PP7-Coat
Protein (PCP) proteins (Larson et al, 2011), thus enabling the analysis of colocalization of chimeric
TERRA molecules with telomeres detected by DNA fluorescence in situ hybridization (FISH) (Feretzaki
et al, 2020).

Hela cells with an average length of 10 kb were transfected with siRNAs for depletion of THOC
subunits, the TREX component DDX39B or RNaseH1. Cells were then transfected with plasmids allowing
the expression of PP7-15gTERRA upon 24h doxycycline induction (Fig 2A). Notably, PP7-15gTERRA RNA
molecules expressed from plasmids were found to colocalize more often with telomeres when THOC
subunits 1 or 2, or RNaseH1 were depleted (Fig 2B-D). This indicates, unexpectedly, that THOC has the
ability to impact PP7-15qTERRA associations with telomeres which are occurring post-transcriptionally,
in trans. Also, in cells with shorter average telomere length (ca. 2.5 kb), where PP7-15qTERRA was
previously shown to be preferentially recruited to telomeres (Feretzaki et al, 2020), a further increase
in colocalization with telomeres was observed when THOC subunits and the TREX component DDX39B
were downregulated (Supplementary fig 1A and B).

To ensure that increased colocalization prompted by loss of THOC did not stem from an increase in
the nuclear PP7-15gTERRA levels, we collected total RNA from cells (10 kb average telomere length)
transfected with the PP7-15qTERRA-coding plasmid and where THOC1 and -2, or RNaseH1 were
downregulated (Supplementary fig 2A), and quantified TERRA by RNA dot blot (Supplementary fig 2B
and C). While depletion of THOC1 or RNaseH1 did not disturb endogenous plus ectopically expressed
TERRA levels, THOC2 depletion led to a slight reduction in UUAGGG-containing RNA levels
(Supplementary fig 2B and C). This result was accompanied by a subtle reduction in the total number
of PP7-15gTERRA foci detected per nucleus (Supplementary fig 2D). While this may reveal a different
requirement of THOC by endogenous and ectopically expressed TERRA species, we consider that this
should not significantly affect the analysis of TERRA association with telomeres, given that it is
guantified as percentage of colocalizing TERRA foci with telomeric FISH signal, over total TERRA foci
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detected per nucleus. In addition, a similar effect in PP7-15qTERRA telomeric colocalizations is
observed upon depletion of THOC1 — which did not result in any perceivable changes in ectopically-
expressed TERRA levels (Supplementary fig 2B and C).

A
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Figure 2. THOC subunits 1 and 2 counteract PP7-15qTERRA colocalization with telomeres.

A Experimental setup: Hela cells with 10 kb average telomere length were transfected with siRNA pools,
followed by PP7-15qTERRA-expressing plasmid. Cells were fixed with formaldehyde 24h post-PP715qTERRA
induction and 72h after siRNA transfection.

B Western blot analysis of depletion efficiency with indicated siRNAs in Hela cells with 10 kb average telomere

length, used in C and D.
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C Immunofluorescence of GFP-PCP (green) was employed to analyse co-localization of transiently expressed
PP7-fused 15g-TERRA transcripts with telomeres (red) identified by fluorescence in situ hybridization (FISH).
Representative images are shown for indicated conditions. White dashed lines outline the nuclear region and
were determined based on DAPI-staining. White arrowheads indicate co-localization of GFP-PCP-tagged TERRA
with telomeric FISH signal. Scale bars indicates 5 um.

D Quantification of colocalization of GFP-PCP-tagged PP7-15qTERRA with telomeric FISH signal, as percentage
of colocalization events over total GFP-PCP-tagged PP7-15qTERRA foci, per nucleus. At least 78 cells were
analysed per condition, across three independent biological replicates. Horizontal line and error bars represent
mean + s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test was applied: ****
P <0.0001, * P <£0.05, ns indicates non significance (P > 0.05).

The THOC complex counteracts R-loop-mediated PP7-15qTERRA associations

with telomeres formed in trans

Aiming to determine the nature of PP7-15gTERRA associations with telomeres, prompted by loss of
THOC subunits, we generated Hela cells with inducible RNaseH1 overexpression by lentiviral
transduction. In this experimental setup, PP7-15qTERRA expression is induced by doxycycline alongside
with RNaseH1 overexpression (Fig 3A and B). Interestingly, we observed that PP7-15qTERRA:telomere
colocalizations promoted by THOC deficiency are sensitive to RNaseH1 overexpression, being rescued
to near basal levels (Fig 3C; Supplementary fig 2E). This suggests that THOC counteracts associations
formed in trans, which take the form of direct DNA:RNA hybrids. Additionally, in cells with shorter
telomeres, RNaseH1 overexpression could rescue the telomeric colocalizations induced by THOC siRNA
transfection to the basal levels observed with a non-targeting siRNA (Supplementary fig 3A and B).
However, upon RNaseH1 overexpression, colocalization levels in these cells could not be reduced to
those observed in cells with longer telomere length, indicating that not all associations occur through
direct DNA:RNA base-pairing.
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Figure 3. THOC subunits 1 and 2 counteract PP7-15qTERRA colocalization with telomeres, in the form of R-
loops formed in trans.

A Experimental setup: Hela cells with 10 kb average telomere length were generated by lentivirus-
transduction for doxycycline-inducible overexpression of RNaseH1-Myc-6xHis (designated RNaseH1 OE) or
respective empty vector (EV) control. Cells were transfected with siRNA pools followed by PP7-15qTERRA-
expressing plasmid. Cells were fixed with formaldehyde 24h post-PP715gTERRA induction and 72h after siRNA
transfection.

B Western blot analysis of depletion efficiency with indicated siRNAs in Hela cells overexpressing RNaseH1 or
in control cells, used in C.

C Quantification of colocalization of GFP-PCP-tagged PP7-15qTERRA with telomeric FISH signal, as percentage
of colocalization events over total GFP-PCP-tagged PP7-15gTERRA foci, per nucleus. At least 74 cells were
analysed per condition, across three independent biological replicates. Horizontal line and error bars represent
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mean * s.d.. Two-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test was applied: **** p <
0.0001, *** P <0.001, ns indicates non significance (P > 0.05).
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Figure 4. THOC counteracts TERRA R-loops formed in trans, post-transcriptionally.

A Experimental setup: Hela cells with 10 kb average telomere length were transfected with siRNA pools,
followed by PP7- or PP7-15gTERRA-expressing plasmids. Cells were collected for DNA:RNA immunoprecipitation
(DRIP) 72h following siRNA transfection.

B Western blot analysis of depletion efficiency with indicated siRNAs in Hela cells with 10 kb average telomere
length, used in C.

C DRIP assay using anti-DNA:RNA hybrid $9.6 antibody was performed in extracts from Hela cells with average
10 kb telomere length. Immunoprecipitates and input samples were treated with RNase (DNase-free), purified
and analysed by gPCR with primer sets amplifying 1qg, 10q or 13q subtelomeric DNA. Data are mean fold change
over PP7 siNT + s.d.. Two-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test was applied:
*** P <0.001, ** P<0.01, * P <0.05, ns indicates non significance (P > 0.05).

To corroborate the formation of R-loops structures at telomeres upon expression of transgenic
TERRA (Fig 4A and B), we employed DRIP. In this experiment we analysed the pulled down DNA
component of DNA:RNA hybrids by qPCR, using subtelomeric-specific primers residing in sequences
adjacent to the telomeric TTAGGG repetitive tract, namely 1qg, 10g and 13q subtelomeres. This ensures
that R-loops formed at chromosome ends are being detected, as opposed to those which may form at
the repetitive tract of plasmids from which PP7-15qTERRA RNAs are expressed (which would likely be
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detected when analysing DRIP samples by DNA dot blot with a probe targeting telomeric repeats).
While R-loops were only slightly (non-significantly) increased upon THOC depletion under endogenous
TERRA expression (PP7-control expression), as well as upon TERRA overexpression (combined with
control siRNA transfection), a noticeable increase of telomeric R-loops was detected when TERRA
overexpression was combined with depletion of THOC subunits (Fig 4C). This is consistent with the
RNaseH1-sensitive TERRA:telomeric associations induced by loss of THOC subunits 1 or 2 (Fig 3C), and
suggests that THOC has the capacity to impact not only R-loops which are formed co-transcriptionally,
but also those which form post-transcriptionally in trans.

The THO complex occupancy at the telomeric tract is increased upon loss of
RNaseH1

The THO complex was previously found to be part of the human telomeric proteome (Grolimund et
al, 2013). Thus, we wished to elucidate the basis of THOC recruitment to telomeres, in order to better
understand the mechanism behind the observed effect in counteracting telomeric R-loops. For that
end, we depleted RNaseH1 (Fig 5A) — which subtly elevates telomeric R-loop levels at telomeres (Fig
4C) — and evaluated THOC1 occupancy at telomeres by chromatin immunoprecipitation (ChIP) with an
antibody against this THOC subunit. Pulled-down DNA was analyzed by DNA dot blot hybridization with
a C-rich telomeric probe (Fig 5B). Interestingly, THOC1 occupancy at telomeres showed a near 2-fold
increase when RNaseH1 was depleted, compared to control cells (Fig 5C). This suggests that upon R-
loop accumulation at the telomeric tract, THOC is recruited to resolve them. Thus, THOC may assist the
transcriptional machinery during elongation, and it may remove this topological obstacle from DNA also
post-transcriptionally, in a timely manner, to prevent encounters with the replication machinery.

Endogenous nucleoplasmic TERRA RNA associates with the THO complex

THOC is a known RNA-binding complex (Jimeno, 2002; Masuda et al, 2005). To determine whether
THOC subunits associate with TERRA, we carried out native RNA immunoprecipitation (RNA [P) with
antibodies against THOC subunits 1 and 2 (Fig 5D; Supplementary fig 4A). As a control, hnRNPA1 was
also immunoprecipitated (Fig 5D; Supplementary fig 4A), since it is a known TERRA-binding protein
(Redon et al, 2013). Remarkably, while THOC1 is specifically immunoprecipitated by anti-THOC1
antibody, both subunits THOC1 and -2 are immunoprecipitated by anti-THOC2 antibody. Pulled-down
RNA was then examined by RNA dot blot, probed with a 32P-radiolabeled [CCCTAA]s probe (Fig 5E). As
hnRNPA1, both THOC1 and THOC2 associate with endogenous nucleoplasmic TERRA in nuclear extracts,
irrespective of telomere length (Fig 5E and F). Conversely, the very abundant 18S rRNA is not
significantly bound by THOC (Supplementary fig 4B and C). In addition, we performed RNA [P in Hek293E
cells transfected with shRNAs designed to downregulate THOC subunits 1 and 2 (Supplementary fig 5A
and B). This validated the immunoprecipitation with anti-THOC1 and -THOC2 antibodies, since lower
TERRA amounts were pulled down when compared to cells transfected with control shRNA
(Supplementary fig 5C-G). Additionally, nucleic acids labelled by TERRA probe pulled down by native
RNA immunoprecipitation with anti-THOC1 and -THOC2 antibodies are fully sensitive to RNase (DNase-
free) digestion (Supplementary fig 5C).
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Figure 5. THOC1 occupancy at the telomeric tract is increased upon R-loop accumulation following RNaseH1
depletion; THOC associates with endogenous nucleoplasmic TERRA.

A Western blot analysis of depletion efficiency with siRNaseH1 in Hela cells with average 10 kb telomere
length, used in B and C.

B Chromatin-immunoprecipitation (ChIP) assay using anti-THOC1 antibody was performed in extracts from
Hela cells with average 10 kb telomere length, transfected with siRNA to deplete RNaseH1 or control non-
targeting siRNA (siNT). Samples were analysed by DNA dot blot probed with a *’p-radiolabelled [CCCTAA]; probe.

C Quantification of immunoprecipitated telomeric DNA (as in B), as fold change over siNT. The signal
corresponding to immunoprecipitates using 1gG antibody was subtracted from corresponding test
immunoprecipitation signals as background. Data represent mean * s.d., from three independent biological
replicates. Two-tailed ratio paired t-test was applied: * P <0.05.

D Western blot was used to evaluate the efficiency of immunoprecipitation of THOC1 and THOC2 (left hand
side panel), and hnRNPA1 (right hand side panel). Samples obtained from assay with Hela cells with average 10
kb telomere length were used in shown blots as an example.

E Native RNA-immunoprecipitation (RNA-IP) assay using anti-THOC1, anti-THOC2 and anti-hnRNPA1
antibodies was performed in extracts from Hela cells with long (average 10 kb, top) or short (average 2.5 kb,

bottom) telomere length. Samples were analysed by RNA dot blot probed with a **p_radiolabelled [CCCTAA],

probe.

F Quantification of immunoprecipitated TERRA (as in E), as percent of input. The signal corresponding to
immunoprecipitates using 1gG antibody was subtracted from corresponding test immunoprecipitation signals as
background. Data represent mean * s.d., from three independent biological replicates.
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The THO complex counteracts TERRA R-loop-mediated telomeric fragility

Telomeres are difficult to replicate regions, given their repetitive sequence and the multiple
topological hurdles encountered at the telomeric tract. These include G-quadruplex (G4) structures,
that can form on the lagging strand template, as well as R-loops, which can form on the telomeric
leading strand (Granotier et al, 2005; Balk et al, 2013; Arora et al, 2014; Sagie et al, 2017). Replication-
dependent defects at telomeres have been shown to result in a fragile telomere phenotype observed
in metaphase chromosomes. This feature is thought to originate from incomplete DNA replication or
partial chromatin condensation, and is manifested as smeary or multiple telomeric FISH signals per
chromosome end (Sfeir et al, 2009) (Fig 6). Additionally, the accumulation of telomeric G-quadruplexes
and R-loop structures has previously been correlated with increased telomere fragility (Vannier et al,
2012; Yang et al, 2020; Lin et al, 2021; Arora et al, 2014; Teasley et al, 2015, Petti et al, 2019; Feretzaki
et al, 2020).
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Figure 6. THOC prevents telomeric fragility induced by TERRA R-loops.

A Experimental setup: Hela cells with 10 kb average telomere length were transfected with siRNA pools,
followed by PP7-15qTERRA-expressing plasmid. Samples were collected after 2 h demecolcine treatment for
enrichment of cells in metaphase.

B Telomeric FISH on metaphase spreads of Hela cells stained with Cy3-[CCCTAA]; FISH probe (red) and DAPI
(blue). White arrowheads indicate fragile telomeres, either with a smeary FISH signal (top) or multiple FISH signals
(bottom) in a single chromosome arm end. Scale bars indicate 2 um.
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C Quantification of fragile telomeres, as percentage of events per metaphase spread. At least 77 metaphase
spreads were analysed per condition, across three independent biological replicates. Horizontal line and error
bars represent mean * s.d.. Two-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test was
applied: **** P <0.0001.

D Quantification of fragile telomeres, as percentage of events per metaphase spread. Cells were lentivirus-
transduced for doxycycline-inducible overexpression of RNaseH1-Myc-6xHis (designated RNaseH1 OE) or
respective empty vector (EV) control. At least 71 metaphase spreads were analysed per condition, across three
independent biological replicates. Horizontal line and error bars represent mean + s.d.. Two-way analysis of
variance (ANOVA) with Tukey’s multiple comparisons test was applied: **** P <0.0001; *** P <0.001, ns indicates
non significance (P > 0.05).

We set out to investigate whether loss of THOC subunits (Fig 6A; Supplementary fig 6A) impacts
telomeric fragility. In this analysis, depletion of the shelterin component TRF1 was included as a positive
control, since it has been shown to suppress telomeric fragility, namely by recruiting the G4-unwinding
BLM helicase and the transcription initiation factor TFIIH, thus sustaining replication of lagging and
leading strand telomeres (Sfeir et al, 2009; Zimmermann et al, 2014; Yang et al, 2020, 2022).
Importantly, depletion of THOC subunits elevated the frequency of detected fragile telomeres (Fig 6C;
Supplementary 6B). This effect was also observed upon PP7-15gTERRA expression, as previously
described (Feretzaki et al, 2020), and further increased when combined with THOC depletion (Fig 6C;
Supplementary 6B). In addition to the fragile telomere phenotype, other telomere abnormalities were
guantified, including telomere loss and outsider telomeres (Supplementary Fig 6B and C), the latter
being visualized as a telomeric FISH signal detached from chromosome ends (Majerska et al, 2018).
However, no significant changes were detected in the amount of outsider or lost telomeres upon
depletion of THOC subunits, under endogenous or ectopically expressed TERRA levels (Supplementary
Fig 6B). As expected, TRF1 depletion elevated the frequency of fragile telomeres. Furthermore, TRF1
depletion resulted in the accumulation of outsider telomeres (Supplementary Fig 6B).

To determine the origin of this telomeric fragility phenotype, we investigated the impact of THOC in
telomeric fragility in RNaseH1 overexpressing cells (Supplementary fig 6D). In these cells, fragility levels
remained unaffected by depletion of THOC subunits, even when TERRA was overexpressed (Fig 6D;
Supplementary 6E). This underscores the notion that the fragility phenotype prompted by loss of THOC
subunits stems from telomeric R-loops, and indicates that THOC alleviates R-loop-derived telomeric
fragility, thus contributing to the suppression of telomeric replication defects. Of note, abnormalities
induced by loss of TRF1 could not be rescued by RNaseH1 overexpression (Supplementary fig 6E),
consistently with previously acquired data in Hela cells (Lee et al, 2018). This suggests that different
pathways are undertaken by THOC and TRF1 to prevent telomeric aberrations.

The THO complex counteracts leading and lagging strand telomeric fragility

To better characterize the telomeric fragility observed as a consequence of R-loop accumulation,
we performed chromosome-orientation telomeric FISH (CO-FISH) (Bailey et al, 1996). In this
experiment, BrdU and BrdC are incorporated into the DNA through semi-conservative replication,
during a single replication cycle (Fig 7A). Upon collection of metaphase spreads, the nascent replicated
strand — which incorporated BrdU/C — is degraded by UV irradiation, followed by digestion with
exonuclease lll. This allows specific labelling of the parental strands with different fluorescent dyes: the
chromosome end replicated by lagging strand synthesis is labelled in red, while the one replicated by
leading strand synthesis in green (Fig 7A and B). Since optimal CO-FISH staining conditions were
achieved in cells with long telomeres of approximately 30 kb length, telomeric FISH staining in
metaphase spreads was repeated in these cells, so that a correlation could be established between
telomeric FISH and CO-FISH stainings. Of note, basal fragility levels detected by FISH in these cells were
higher (Fig 7C) than in cells with 10 kb telomeres (Fig 6C), consistent with the fact that telomere length
correlates with the probability for the replication machinery to encounter obstacles, resulting in
telomeric fragility. As expected, analysis of telomeric fragility by FISH upon depletion of THOC or TRF1
in cells with 30 kb average telomere length telomeres (Fig 7C; Supplementary fig 7A) reproduced the
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trend observed in cells with 10 kb telomeres (Fig 6C; Supplementary fig 6A). Interestingly, in CO-FISH
experiments, depletion of THOC subunits elevated telomeric fragility at both lagging and — most
prominently —leading strand telomeres (Fig 7D). Upon TRF1 depletion, telomeric fragility also increased
at both strands (Fig 7D), as previously reported (Sfeir et al, 2009; Lee et al, 2018). In addition, TRF1
depletion resulted in increased frequency of outsider telomeres, at both strands — most notably at the
telomere replicated by lagging strand synthesis (Fig 7E and F) — a phenotype not commonly observed
in mouse cells deleted of TRF1 (Sfeir et al, 2009; Yang et al, 2022). THOC depletion did not impact
telomere loss or outsider telomere frequency (Fig 7E and F).
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Figure 7. THOC prevents telomeric fragility at both lagging and leading strands.

A Experimental setup: Hela cells with 30 kb average telomere length were transfected with siRNA pooals,
followed by BrdU/C (3:1) incorporation for a total of 15.5. Samples were collected after 2 h demecolcine
treatment, for enrichment of cells in metaphase (left hand side). Representative metaphase chromosome labelled
by CO-FISH, where lagging strand telomeres are labelled in red and leading strand telomeres are labelled in green
(right hand side). Scale bar indicates 2 um.

B Telomeric CO-FISH on metaphase spreads of Hela cells stained with TYE563-TeloC LNA probe (red), FAM-
TeloG LNA probe (green) and DAPI (blue). White arrowheads indicate fragile (top) or outsider (bottom) telomeres,
as indicated. Scale bars indicate 2 um.

C, E Quantification of fragile telomeres (C), or outsider and lost telomeres (E) in metaphase chromosomes
stained by FISH, as percentage of events per metaphase spread (in Hela cells with average 30 kb telomere length).
75 metaphase spreads were analysed per condition, across three independent biological replicates. Horizontal
line and error bars represent mean + s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple
comparisons test was applied: **** P <0.0001, *** P <0.001, ns indicates non significance (P > 0.05).

D, F Quantification of lagging and leading strand fragile telomeres (D) or outsider and lost telomeres (F) in
metaphase chromosomes stained by chromosome orientation FISH (CO-FISH), as percentage of events per
metaphase spread (sum of lagging and leading strand telomeres, in Hela cells with average 30 kb telomere
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length). At least 74 metaphase spreads were analysed per condition, across three independent biological
replicates. Horizontal line and error bars represent mean * s.d.. One-way analysis of variance (ANOVA) with
Dunnett’s multiple comparisons test was applied: **** P < 0.0001, *** P < 0.001, * P < 0.05, ns indicates non
significance (P > 0.05).

The THO complex counteracts telomeric sister chromatid exchange in U20S

The CO-FISH protocol not only allows to examine telomeric strand-specific abnormalities, but to
investigate telomeric recombination events with exchange of parental strand DNA. We analyzed both
types of single sister chromatid exchange events (single t-sce) — resulting in double leading or double
lagging telomeric signals — as well as reciprocal sister chromatid exchange (reciprocal t-sce)
(Supplementary fig 7B; Fig 8A-E). Remarkably, depletion of THOC subunits 1 and 2, or TRF1 in Hela cells
(Supplementary fig 7A) led to no perceptible changes in sister chromatid exchange events, compared
to control cells (Supplementary fig 7C). Conversely, in U20S cells, depletion of THOC1 increased the
frequency of reciprocal t-sce, while depletion of THOC2 led to a mild but significant increase of leading
and lagging strand single t-sce (Fig 8C-E; Supplementary fig 8A). Knock down of BLM helicase was used
as a positive control for reciprocal t-sce in U20S cells (Sarkar et al, 2015; Sobinoff et al, 2017). These
data indicate that the THO complex counteracts t-sce in ALT cells.

The THO complex counteracts C-circle accumulation in ALT cells

We then analysed another hallmark of ALT cells — the accumulation of extrachromosomal telomeric
DNA in the form of partially single-stranded C-rich circles, designated C-circles (Henson et al, 2009). For
that end, we employed the phi29-mediated C-circle assay (Henson et al, 2009). In U20S cells, depletion
of THOC subunits led to a remarkable increase of C-circles (most prominently upon siTHOC1), as
detected by non-denaturing DNA dot blot (Fig 8F, G). This trend was also perceptible upon depletion of
THOC1 or THOC2 in Saos2 cells (an ALT cell line with shorter telomere length than U20S), although to
a milder non-significant extent (Fig 8F, H; Supplementary fig 8B). In contrast, in Hela cells — with no
detectable basal levels of C-circles (as an ALT cell line) — depletion of THO subunits was not sufficient
to trigger a discernible formation of such structures (Fig 8F).

Aiming to understand whether R-loops could play a role in the C-circle accumulation observed when
THOC was downregulated in ALT cells, we transiently overexpressed RNaseH1 from a plasmid in U20S
cells (Supplementary fig 8C), and evaluated C-circle levels. RNaseH1 overexpression led to a partial
rescue of C-circles, when combined with depletion of THOC1 (Fig 81, J). Of note, C-circle levels prompted
by loss of THOC2 did not exhibit sensitivity to RNaseH1 overexpression. The fact that ectopically-
expressed RNaseH1 protein levels were slightly affected in siTHOC2-transfected cells, compared to non-
targeting siRNA (Supplementary fig 8C), may contribute to the disparity in RNAseH1-sensitivity of C-
circles detected in cells depleted of THOC1 or THOC2.

Together these data point to a role of the THO complex in counteracting C-circle accumulation in
ALT cells, partially through the regulation of R-loops.
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Figure 8. THOC telomeric sister chromatid exchange and C-circle accumulation in U20S cells.

A Experimental setup: U20S cells were transfected with siRNA pools, followed by BrdU/C (3:1) incorporation
for a total of 17.5 hours. Samples were collected after 5 h demecolcine treatment, for enrichment of cells in
metaphase.

B Telomeric CO-FISH on metaphase spreads of U20S cells stained with TYE563-TeloC LNA probe (red), FAM-
TeloG LNA probe (green) and DAPI (blue). White arrowheads indicate double leading (left-hand side), double
lagging (centre) or reciprocal telomeric sister chromatid exchange (right-hand side), as indicated. Scale bars
indicate 2 um.

C-E Quantification of double leading telomeres (C), double lagging telomeres (D) or reciprocal telomeric sister
chromatid exchange (E), as percentage of events per metaphase spread (sum of lagging and leading strand
telomeres, in U20S cells). 75 metaphase spreads were analysed per condition, across three independent
biological replicates. Horizontal line and error bars represent mean + s.d.. One-way analysis of variance (ANOVA)
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with Dunnett’s multiple comparisons test was applied: ** P <0.01, * P <0.05, ns indicates non significance (P >
0.05).

F Phi29 C-circle assay on 30 ng of gDNA from U20S, Saos2 or Hela cells, transfected with non-targeting or
THOC1 or THOC2 siRNAs, as indicated. Amplification products were analysed by dot blot probed with a p-
radiolabelled C-rich telomeric probe. Phi29* signals were acquired from non-denatured membrane, while Phi29
signals were acquired from stripped, denatured and re-probed membrane.

G-H Quantification of C-circle assay on gDNA from U20S cells (G) or Saos2 cells (H) (as in F), as fold change
over siNT. Data represent mean + s.d., from three independent biological replicates. One-way analysis of variance
(ANOVA) with Dunnett’s multiple comparisons test was applied: * P < 0.05, ** P < 0.01, ns indicates non
significance (P > 0.05).

| Phi29 C-circle assay on 30 ng of gDNA from U20S cells, transfected with indicated siRNAs, and with empty-
vector (EV) or RNaseH1 overexpressing (OE) constructs. Amplification products were analysed by dot blot probed
with a **P-radiolabelled C-rich telomeric probe. Phi29* signals were acquired from non-denatured membrane,
while Phi29 signals were acquired from stripped, denatured and re-probed membrane.

J Quantification of C-circle assay on gDNA from U20S cells (as in 1), as fold change over EV siNT. Data represent
mean t s.d., from three independent biological replicates. Two-way analysis of variance (ANOVA) with Tukey’s
multiple comparisons test was applied: ** P <0.01, ns indicates non significance (P > 0.05).

5.6 Discussion

In this paper, we explore the roles of the THO complex at human telomeres. We show that THOC
negatively regulates TERRA-mediated telomeric R-loops. This was most perceptible in U20S ALT cells,
which display a stronger accumulation of telomeric DNA:RNA hybrids when compared to telomerase-
positive Hela cells (Arora et al, 2014), rendering these structures more readily detectible by DRIP. The
impact of THOC depletion in telomeric R-loops does not stem from changes in TERRA transcriptional
elongation, nor TERRA expression levels, since no significant changes were detected in UUAGGG-
containing RNA cellular levels upon depletion of THOC.

R-loops have previously been thought to form exclusively during transcription, where the nascent
RNA strand can base pair with its template DNA in cis (Crossley et al, 2019; Lafuente-Barquero et al,
2020). However, studies in Saccharomyces cerevisiae (Wahba et al, 2013) and in Arabidopsis thaliana
(Ariel et al, 2020) revealed that R-loops can be formed post-transcriptionally, in trans at genomic
regions distinct from the loci where the RNA was transcribed from. Additionally, in human cells, we
previously demonstrated that TERRA forms R-loops post-transcriptionally at telomeres, in trans, in a
RAD51-mediated manner (Feretzaki et al, 2020). Resorting to a previously published proxy for the study
of the nuclear localization of TERRA (Feretzaki et al, 2020), we found that THOC is able to counteract
PP7-15gTERRA associations with chromosome ends, which are formed when TERRA is ectopically
expressed from a plasmid. Particularly, we found that such associations take the form of DNA:RNA
hybrids. This suggests that THOC is not only able to prevent the accumulation of co-transcriptionally
formed R-loops, but also has the capacity to counteract R-loops formed post-transcriptionally, in trans.

A detailed mechanism through which THOC restrains DNA:RNA hybrids throughout the genome is
not well elucidated. The discovery of an interplay between THOC and components of the Sin3
deacetylase complex suggested that THOC limits the formation of DNA:RNA hybrids indirectly, through
the modulation of chromatin modifications (deacetylation of H3), which render the chromatin less
accessible (Salas-Armenteros et al, 2017). In addition, DDX39B — a component of the RNA export TREX
complex —was shown to directly resolve DNA:RNA hybrids through its helicase activity (Pérez-Calero et
al, 2020). Here, we observed a recruitment of THOC to the telomeric tract when RNaseH1 was depleted.
While RNaseH1 occupancy at telomeres was shown to be much more prominent in ALT cells compared
to telomerase-positive cells (Arora et al, 2014), our DRIP analysis in (telomerase-positive) Hela cells
revealed a subtle but detectable increase in telomeric R-loops upon RNaseH1 depletion (even under
endogenous TERRA expression only). Combined, these data indicate that THOC is recruited to
telomeres when R-loops accumulate (Fig 9A). This is consistent with a function of THOC in assisting with
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the progression of the elongating transcription machinery when R-loops accumulate (since THOC was
previously found to interact with RNA Polymerase Il (Li et al, 2005)). In addition, our data suggest a role
of THOC in the resolution of DNA:RNA structures formed at telomeres post-transcriptionally (Fig 9A).
Along with THOC subunits (Grolimund et al, 2013), the TREX component DDX39B was identified at
human telomeres in a mass spectrometry-based approach to identify telomeric proteins in Hek293E
cells (Lin et al, 2021). We have only observed a significant change in PP7-15gTERRA localization to
telomeres in Hela cells with ca. 2.5 kb average telomere length, upon DDX39B depletion
(Supplementary fig. 1a), but not in cells with 10 kb average telomere length depleted of DDX39B. Thus,
DDX39B may counteract R-loops specifically at short telomeres. It is unclear if at long telomeres
THOC1/2 counteract R-loops directly or if another component is involved.

We show that THOC (subunits 1 and 2) binds nucleoplasmic endogenous TERRA in Hela and
Hek293E nuclear extracts, suggesting that THOC acts directly on TERRA. Together with the physical
presence of THOC at telomeres, it suggests direct functions at chromosome ends. In human cells, THOC
has been found to associate with spliced, 5" capped RNAs (Masuda et al, 2005; Cheng et al, 2006; Merz
et al, 2007; Chi et al, 2013). Additionally, the m°A modification of RNA was hypothesized to contribute
to THOC recruitment (Lesbirel et al, 2018). Over 90% of human TERRA is not polyadenylated (Porro et
al, 2010), and previous analysis of the 5’ subtelomeric-derived region of TERRA did not reveal any
splicing events undertaken during TERRA biogenesis (Porro et al, 2014). On the other hand, TERRA
contains 7-methylguanosine 5’ cap structures (Porro et al, 2010), and the m°A modification was
recently found to be present on the subtelomeric region of TERRA (Chen et al, 2022). While the basis
of THOC recruitment to TERRA remains unclear, we hypothesize that loading of THOC onto nascent
TERRA and steady binding to nucleoplasmic TERRA prevents invasion into telomeric DNA, and formation
of co- and post-transcriptional R-loops, respectively (Fig 9A). Furthermore, our findings are consistent
with a model in which THOC remains associated with nucleoplasmic TERRA following TERRA removal
from DNA:RNA hybrid structures.

R-loops formed across the genome have been shown to pose an obstacle to the transcription
machinery during elongation as well as an impairment to DNA replication, resulting in accumulation of
DNA damage and genomic instability (Huertas & Aguilera, 2003; Wellinger et al, 2006; Gan et al, 2011;
Dominguez-Sanchez et al, 2011). The fragile telomere phenotype is correlated with defects in the
progression of the replication machinery at chromosome ends (Sfeir et al, 2009). In this study, we show
that THOC counteracts telomeric fragility through its regulation of TERRA R-loops. Moreover, through
CO-FISH staining of parental telomeric strands in metaphase chromosomes, we observed that telomeric
fragility prompted by THOC deficiency is detected at telomeres replicated by lagging and most strikingly
by leading strand synthesis. Leading strand telomeric fragility may be observed when factors that
suppress telomeric R-loops are perturbed, while lagging strand telomeric fragility may result from
accumulation of G4 structures, which have the propensity to form within the G-rich telomeric strand
(Glousker & Lingner, 2021). Therefore, we can idealize a model in which loss of THOC results in build-
up of telomeric R-loops, resulting in leading strand fragility. At the same time the displacement of the
G-rich telomeric strand may stimulate formation and accumulation of G4s, which impair lagging strand
replication (Fig 9B). Formation of G4s on the displaced strand by TERRA R-loops was recently proposed
by Yadav and colleagues (Yadav et al, 2022).

Telomeric fragility is commonly assumed to originate from replication defects and the ensuing repair
processes of damaged replication forks (Glousker & Lingner, 2021). Therefore, one can hypothesize
that fragility occurs as a consequence of R-loop accumulation, which generates DNA damage at
telomeres. Comparison of fragility assessed by FISH with fragility (at lagging plus leading strands)
analyzed by CO-FISH in Hela cells (with the same telomere length) depleted of THOC revealed similar
fragility percentages (Fig 7C and D). This suggests that fragility elicited by accumulation of R-loops upon
THOC depletion does not stem from break-induced replication alone, since this repair pathway relies
on conservative DNA synthesis, and its outcome would therefore not be detected by CO-FISH staining,
which involves degradation of newly synthesized DNA. In mouse cells, lagging strand fragility observed
in BIm-deficient cells was proposed to result from G4 accumulation, followed by formation of double-

99



strand breaks repaired by break-induced replication coupled with alternative non-homologous end
joining (Yang et al, 2020). Whether a similar mechanism stands behind the fragility detected by CO-FISH
with our experimental setup needs to be elucidated.

TERRA levels are regulated throughout the cell cycle, reaching the lowest levels in late S phase when
telomeres are replicated (Porro et al, 2010; Graf et al, 2017), presumably to reduce the frequency of R-
loops which pose an obstacle to the progression of the DNA replication machinery. However, our data
suggest that the repression of TERRA in S phase is not sufficient to completely eliminate telomeric R-
loops, and that THOC is required to facilitate telomere replication by counteracting R-loops. Of note,
the regulation of TERRA during the cell cycle is lost in ALT cancer cells (Flynn et al, 2015), explaining the
increased telomere replication stress that is caused by TERRA in these cells (Arora et al, 2014; Silva et
al, 2021). We have previously shown that transgenic PP7-15gTERRA expressed from plasmids loses cell
cycle control and associates with telomeres in S phase (Valador Fernandes et al, 2021). Therefore, this
system may recapitulate the replication stress observed in ALT cells.

Despite the observed increase in TERRA R-loops and telomeric fragility, no changes were detected
in the frequency of sister chromatid exchange events in Hela cells depleted of THOC subunits,
compared to control siRNA. Thus, loss of THOC is not sufficient to induce this ALT-like hallmark
phenotype in telomerase-positive cells. Additional events may be required to increase telomere
recombination frequency, such as the modulation of the telomeric chromatin structure and telomerase
inhibition (as observed upon depletion of the histone chaperones ASFla+b in immortalized fibroblasts
and Hela cells (O’Sullivan et al, 2014)). A consensually used biomarker of cells which maintain telomere
length via the ALT pathway instead of telomerase is, among others, an elevated frequency of t-sce
(Londofio-Vallejo et al, 2004). We found that THOC counteracts single and reciprocal t-sce in U20S cells
(Fig 9B), likely by regulating the association of TERRA with telomeres via R-loops. Similarly, co-depletion
of NONO and SFPQ in ALT cells has been shown to result in accumulation of telomeric R-loops, as well
as an increased rate of telomeric sister chromatid exchange (Petti et al, 2019).

Finally, analysis of extrachromosomal telomeric DNA in the form of C-circles in ALT cells depleted of
THOC subunits revealed a role for THOC in limiting the accumulation of C-circles (Fig 9B). Ectopic-
expression of RNaseH1 in U20S cells revealed that the detected increase in C-circle formation
particularly prompted by loss of THOC1 is partially dependent on R-loops. The fact that RNaseH1
overexpression does not significantly impact basal C-circle levels in U20S cells indicates that R-loops
are not essential for their formation in ALT cells. In addition, our data suggest that R-loops mediate C-
circle formation, as previously demonstrated upon dysregulation of other components involved in
telomeric R-loop regulation (Arora et al, 2014; Lu et al, 2019; Silva et al, 2019; Sakellariou et al, 2022).
R-loop-mediated C-circle formation may occur through processing of R-loops (directly through excision
by endonucleases such as XPF or MUS81, and self-ligation of the C-rich DNA strand) and/or processing
of DNA structures resulting from R-loop accumulation (for example following break-induced replication
triggered by R-loops) (Sakellariou et al, 2022; Lu et al, 2019). Similarly to telomeric sister chromatid
exchange events, no C-circle formation was detected in THOC-depleted Hela cells.

While TERRA was shown to be a crucial trigger/amplifier of the ALT pathway, inappropriate
restriction of TERRA-induced ALT activity is thought to compromise telomere integrity (Silva et al, 2019,
2021, 2022). Therefore, a fine regulation of TERRA and TERRA R-loops must be attained in ALT cells.
Altogether, our work demonstrates that the THO complex is one of the factors that are involved in such
intricate balance at telomeres.
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Figure 9. Working model for the role of THOC at human telomeres.
A Interplay of THOC with TERRA and putative functions of THOC at human telomeres.

B Impact of THOC deficiency in telomeric fragility, telomeric sister chromatid exchange and C-circle
accumulation.

See discussion for details.
This illustration was created with BioRender.com.
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5.7 Supplementary figures and tables
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Supplementary figure 1. THOC counteracts PP7-15qTERRA colocalization with telomeres in cells with
short telomeres.

A Quantification of colocalization of GFP-PCP-tagged PP7-15qTERRA with telomeric FISH signal, as
percentage of colocalization events over total GFP-PCP-tagged PP7-15qTERRA foci, per nucleus, in Hela cells
with ca. 2.5 kb average telomere length. At least 73 cells were analysed per condition, across three
independent biological replicates. Horizontal line and error bars represent mean + s.d.. One-way analysis of
variance (ANOVA) with Dunnett’s multiple comparisons test was applied: **** P <0.0001, *** P <0.001, ns
indicates non significance (P > 0.05).

B Number of total PP7-15qTERRA foci per nucleus, in cells of each indicated condition used for
quantification of colocalization of GFP-PCP-tagged PP7-15qTERRA with telomeric FISH signal (as in A). At
least 73 cells were analysed per condition, across three independent biological replicates. Horizontal line
and error bars represent mean + s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple
comparisons test was applied: ns indicates non significance (P > 0.05).
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Supplementary figure 2. Analysis of PP7-15gTERRA levels by RNA dot blot and microscopy.

A Western blot analysis of depletion efficiency with indicated siRNAs in Hela cells with average 10 kb telomere
length.

B RNA dot blot analysis of TERRA or 18S rRNA levels upon depletion with indicated siRNAs in Hela cells
transfected with PP7- or PP7-15gTERRA-expressing plasmids. 4 pg total RNA were loaded per sample. RNA
samples were treated with RNase (DNase-free) as a control.

C Quantification of TERRA levels (as in B), normalized to 18S rRNA levels in Hela cells, plotted as fold change
over PP7-15qTERRA siNT. Data are mean + s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple
comparisons test was applied: **** P <0.0001, ** P <0.01, ns indicates non-significance (P > 0.05).

D Number of total PP7-15gTERRA foci per nucleus, in Hela cells with average 10 kb telomere length of each
indicated condition, used for quantification of colocalization of GFP-PCP-tagged PP7-15gTERRA with telomeric
FISH signal. At least 78 cells were analysed per condition, across three independent biological replicates.
Horizontal line and error bars represent mean # s.d.. One-way analysis of variance (ANOVA) with Dunnett’s
multiple comparisons test was applied: * P <0.05, ns indicates non significance (P > 0.05).

E Number of total PP7-15gTERRA foci per nucleus, in Hela cells with average 10 kb telomere length of each
indicated condition used for quantification of colocalization of GFP-PCP-tagged PP7-15qTERRA with telomeric
FISH signal. At least 74 cells were analysed per condition, across three independent biological replicates.
Horizontal line and error bars represent mean + s.d.. Two-way analysis of variance (ANOVA) with Tukey’s multiple
comparisons test was applied: ns indicates non significance (P > 0.05).
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Supplementary figure 3. PP7-15qTERRA telomeric colocalizations prompted by loss of THOC are partially
sensitive to RNaseH1 overexpression, in cells with short telomeres.

A Quantification of colocalization of GFP-PCP-tagged PP7-15gTERRA with telomeric FISH signal, as percentage
of colocalization events over total GFP-PCP-tagged PP7-15gTERRA foci, per nucleus, in Hela cells with 2.5 kb
average telomere length, overexpressing RNaseH1 or in control cells, as indicated. At least 84 cells were analysed
per condition, across three independent biological replicates. Horizontal line and error bars represent mean +
s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test was applied: **** p <
0.0001, *** P <£0.001, ns indicates non significance (P > 0.05).

B Number of total PP7-15qTERRA foci per nucleus, in cells of each indicated condition used for quantification
of colocalization of GFP-PCP-tagged PP7-15gTERRA with telomeric FISH signal (as in A). At least 84 cells were
analysed per condition, across three independent biological replicates. Horizontal line and error bars represent
mean * s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test was applied: ns
indicates non significance (P > 0.05).
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Supplementary figure 4. THOC associates with nucleoplasmic TERRA, but not the abundant 18S rRNA.

A Western blot was used to evaluate the efficiency of immunoprecipitation of THOC1 and THOC2 (left hand
side panel), and hnRNPA1 (right hand side panel). Samples obtained from RNA-IP assays with Hela cell clones with
short (average 2.5 kb) were used in shown blots.
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B RNA-IP samples from Hela cells with long (average 10 kb, top) or short (average 2.5 kb, bottom) telomere

length were analysed by RNA dot blot probed with a *’p-radiolabelled probe complementary to the abundant 18S
rRNA.

C Quantification of immunoprecipitated TERRA versus 18S rRNA (as in c), as percent of input. The signal
corresponding to immunoprecipitates using 1gG antibody was subtracted from corresponding test
immunoprecipitation signals as background. Data represent mean + s.d., from three independent biological
replicates, for each Hela cell clone with long (average 10 kb) or short (average 2.5 kb) telomere length.
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Supplementary figure 5. THOC associates with nucleoplasmic TERRA, but not the abundant 18S rRNA,
Hek293E cells.

A Experimental setup: HEK293E cells were transfected with plasmids expressing shRNAs targeting THOC1 or
THOC2 (or control shRNA designated shEV). Puromycin selection of transfected cells was performed for 72h
before collecting cells for RNA-IP.

B Western blot analysis of depletion efficiency with indicated shRNAs in HEK293E cells, used in C-G.
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C Native RNA-immunoprecipitation (RNA-IP) assay using anti-THOC1 and anti-THOC2 antibodies was
performed in extracts from HEK293E cells transfected with indicated shRNAs. Samples were analysed by RNA dot
blot probed with a *’p-radiolabelled [CCCTAA]; probe. Half of each IP sample was treated with RNase (DNase-
free) as a control.

D Quantification of immunoprecipitated TERRA (as in C), as fold change over control shRNA (shEV). The signal
corresponding to immunoprecipitates using 1gG antibody was subtracted from corresponding test
immunoprecipitation signals as background. Data represent mean * s.d., from three independent biological
replicates.

E Western blot was used to evaluate the efficiency of immunoprecipitation of THOC1 and THOC2 in samples
obtained from RNA-IP assays with HEK293E cells transfected with indicated shRNAs.

F RNA-IP samples from HEK293E cells transfected with indicated shRNAs were analysed by RNA dot blot
probed with a **p-radiolabelled probe complementary to the abundant 18S rRNA.

G Quantification of immunoprecipitated TERRA versus 18S rRNA (as in F), as percent of input. The signal
corresponding to immunoprecipitates using 1gG antibody was subtracted from corresponding test
immunoprecipitation signals as background. Data represent mean + s.d., from three independent biological
replicates with HEK293E transfected with shEV.
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Supplementary figure 6. THOC prevents telomeric fragility induced by TERRA R-loops, but has no detectable

effect in telomere loss or outsider telomeres.

A Western blot analysis of indicated proteins in lysates collected from Hela cells with 10 kb average telomere
length, transfected with specified siRNAs and with plasmids for expression of PP7 or PP7-15qTERRA transcripts,

used in B.

B Quantification of telomeric abnormalities — fragile telomeres, outsider telomeres and telomeric signal loss
—, plotted as percentage of events per metaphase spread. At least 77 metaphase spreads were analysed per
condition, across three independent biological replicates. Data are mean * s.d.. Two-way analysis of variance
(ANOVA) with Tukey’s multiple comparisons test was applied: **** P <0.0001, ns indicates non significance (P >

0.05).

C Telomeric FISH on metaphase spreads of Hela cells stained with Cy3-[CCCTAA]; FISH probe (red) and DAPI
(blue). White arrowheads indicate abnormal telomeres, either with a smeary FISH signal, multiple FISH signals,

outsider telomere or loss of telomeric FISH signal in a single chromosome arm end.
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D Western blot analysis of indicated proteins in lysates collected from lentivirus-transduced RNaseH1 OE or
control Hela cells with 10 kb average telomere length. Cells were transfected with indicated siRNAs and with
plasmids for expression of PP7 (left panel) or PP7-15qTERRA transcripts (right panel), used in E.

E Quantification of telomeric abnormalities — fragile telomeres, outsider telomeres and telomeric signal loss —
, plotted as percentage of events per metaphase spread. At least 71 metaphase spreads were analysed per
condition, across three independent biological replicates. Data are mean + s.d.. Two-way analysis of variance
(ANOVA) with Tukey’s multiple comparisons test was applied: **** p < 0.0001, ** P < 0.01, ns indicates non
significance (P > 0.05).
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Supplementary figure 7. THOC depletion has no effect in telomeric sister chromatid exchange events in Hela
cells.

A Western blot analysis of indicated proteins in lysates collected from Hela cells with 30 kb average telomere
length, used in FISH and CO-FISH experiments, transfected with indicated siRNAs.

B Telomeric CO-FISH on metaphase spreads of Hela cells with 30 kb average telomere length, stained with
TYE563-TeloC LNA probe (red), FAM-TeloG LNA probe (green) and DAPI (blue). White arrowheads indicate double
leading telomeres (left hand side), double lagging telomeres (centre) or reciprocal telomeric sister chromatid
exchange (right hand side).

C Quantification of double leading telomeres (left hand side), double lagging telomeres (centre) or reciprocal
telomeric sister chromatid exchange (right hand side), as percentage of events per metaphase spread (sum of
lagging and leading strand telomeres, in Hela cells with average 30 kb telomere length). At least 74 metaphase
spreads were analysed per condition, across three independent biological replicates. Horizontal line and error
bars represent mean + s.d.. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons test was
applied: ns indicates non significance (P > 0.05).

108



N Vv
(GIN @]
ol Q
S L S
kDa e\é e<\ $ kDa (§ o)g’
W= =fathocr g & [asu
180 o-THOC2 _C @) e

35

* unspecific band

2 Vv
>
< &oieoo
kDa > & o
100 7 - | a-THOC1
180 —— M = a-THOC2

* unspecific band

[
EV RNaseH OE EV  RNaseH OE
N N S >
(G o O S LN
@ _,Q?‘O,Q?‘O,é& _,& ,Q?‘o kDa 9\6 %& é\é ’o\%
kDa > o o & > & BLM
= o
100 - — — «| a-THOC1 180 fi? =
3 S s e s | o-hnRNPAL
5
180 = ™ o-THOC2 R e
130 s wem s s | 0-Vinculin
35 S e e e e | 0-NRNPAL
130‘-_...__ ] o.Vinculin 35 ‘ a-RNaseH1
* unspecific band
40
a-RNaseH1

Supplementary figure 8. THOC depletion in U20S and Saos2 cells.

A Western blot analysis of indicated proteins in lysates collected from U20S cells, transfected with indicated
SiRNAs.

B Western blot analysis of indicated proteins in lysates collected from Saos2 cells, transfected with indicated
SiRNAs.

C Western blot analysis of indicated proteins in lysates collected from U20S cells, transfected with indicated
siRNAs and with empty-vector (EV) or RNaseH1 overexpressing (OE) constructs.
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Supplementary table 1. siRNA sequences

SiRNA siRNA target sequences Supplier: catalog number
UAGCGACUAAACACAUCAA,
. , UAAGGCUAUGAAGAGAUAC, Dharmacon:
siNT (non-targeting)
AUGUAUUGGCCUGUAUUAG, D-001206-13
AUGAACGUGAAUUGCUCAA
GCAAUGAUCUCCUAAGAAG,

_ GAGGAGAACAUGUAUAUUU, Dharmacon:
sITHOCL GGUCUUAACUUGCAGAGUC, M-019911-01
UAACUUUCGUCGACACAUC
GGAGAGACGUGUUCAAUAU,

. GAAAUAAGGCUGAUCAAUU, Dharmacon:
SITHOC2 CAGCAUAGAUAUCGUCUGU, M-025006-01
AAAGAACGCCGAAGUCUGA
GCGCAGAGCCGUAUGCAAA,

_ GAGCUAAACAAUCGGAAGA, Dharmacon:

siRNaseH1
GCCAGGCCAUCCUUUAAAU, M-012595-00
GACAUUCAGUGGAUGCAUG
CAAGAUAAACCUAGUGGUA,
, GGUGAUCCAAAUUCUCAUA, Dharmacon:
SITRF1 GGAAACUGGUCUAAAAUAC, M-010542-02
GCCAGUUGAGAACGAUAUA
ACAAUGAGCUCUUGGACUA,
. GGAUGAAUGUGAUAAGAUG, Dharmacon:
siDDX398B
UUAGUGAGCUGCCUGAUGA, M-003805-00
UAUGAGCGCUUCUCUAAAU
GAGCACAUCUGUAAAUUAA,
, GAGAAACUCACUUCAAUAA, Dharmacon:
SIBLM CAGGAUGGCUGUCAGGUUA, M-007287-02
CUAAAUCUGUGGAGGGUUA
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Supplementary table 2. Plasmids

Plasmid Source Notes
OMD2.G Kind gift from D. Trono, VSV-G envelope expressing plasmid, used
EPFL for lentivirus production
SCMVRS.74 Kind gift from D. Trono, Lentiviral packaging plasmid, used for
EPFL lentivirus production

pTRE2_24xPP7_Puro

Feretzaki et al, 2020

Doxycycline inducible expression
of PP7 RNA

pTRE2_24xPP7_15q
subtel_90xTTAGGG_Puro

Feretzaki et al, 2020

Doxycycline inducible expression
of PP7-15gTERRA RNA

pLenti_RNaseH1_Myc/His_Puro

Backbone: kind gift from E.
Meylan, ELB

RNaseH1-Myc/His lentiviral transduction
(doxycycline-inducible expression);
backbone: pCW22_TREtight_Blast (selection
marker exchanged with puromycin)

pcDNA6-RNAseH1-myc-His

RNaseH1 sequence
amplified from construct
kindly gifted by A. Straight,
Stanford

Ectopic-expression of RNaseH1;
backbone: pcDNA6

pshEV_Puro

pshTHOC1_Puro

pshTHOC2_Puro

Backbone: Oligoengine

Negative control shRNA; backbone:
pSuper_Puro

Expression of shRNA for THOC1 depletion;
backbone: pSuper_Puro

Expression of shRNA for THOC2 depletion;
backbone: pSuper_Puro
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Supplementary table 3. Antibodies

Antibody Supplier: catalog number | Dilution/Amount Application
1:1,500 Western Blot
6 RNA
a-THOC1 GeneTex: GTX118740 He Immunoprecipitation
Chromatin
4ug N
Immunoprecipitation
a-THOC2 Bethyl: A303-629A-T 1:10,000 Western Blot
RNA
a-THOC2 Abcam: ab129485 6 ug o
Immunoprecipitation
a-RNaseH1 GeneTex: GTX117624 1:1,000 Western Blot
a-TRF1 Santa Cruz: sc-6165-R 1:1,000 Western Blot
a-DDX398B Proteintech: 14798-1-AP 1:10,000 Western Blot
o-BLM Abcam: ab476 1:2,000 Western Blot
1:1,000 Western Blot
a-hnRNPA1 Santa Cruz: sc-32301 6 RNA
He Immunoprecipitation
a-Vinculin Abcam: ab129002 1:10,000 Western Blot
. RNA
a-HA BioLegend: BGL901502 6 ug L
Immunoprecipitation
0.1 pg/ug nucleic DNA:RNA

a-DNA:RNA hybrid (S9.6)

Kerafast: ENHOO1

acids Immunoprecipitation
a-mouse 1gG (H+L) HRP-
) Promega: W4021 1:10,000 Western Blot
conjugated
a-rabbit IgG (H+L) HRP-
- Promega: W4011 1:10,000 Western Blot
conjugated
a-GFP Homemade 1:1,000 Immunofluorescence
a-rabbit IgG (H+L)
CrossAdsorbed secondary Thermo Fisher: A-21070 1:1,000 Immunofluorescence

antibody, Alexa Fluor 633
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Supplementary table 4. Oligonucleotide sequences

Purpose Oligonucleotide sequence
1q subtelomere for DRIP-qPCR CAGCGTCGCAACTCAAATG, CCCTCACCCTCCATGAGTAATA
10g subtelomere for DRIP-gPCR GCATTCCTAATGCACACATGAC, TACCCGAACCTGAACCCTAA
139 subtelomere for DRIP-gPCR GCACTTGAACCCTGCAATACAG, CCTGCGCACCGAGATTCT
Replacing Blast with Puro
Generation of selection marker by In- TGATAAGCTTGCCACATGACCGAGTACAAGCCCAC,
AGTTAAGAATACGATTCAGGCACCGGGCTTG
pLenti_RNaseH1_ Fusion cloning
Myc/His_Puro Insertion of RNaseH1 by In- GATCGCCTGGAGGTTAACATGAGCTGGCTTCTGTTCCT,
Fusion cloning ATCTTGGGTGGGTTAATTAATCAATGGTGATGGTGATGATGACCG
GATCCCCGCAATGATCTCCTAAGAAGTTCAAGAGACTTCTTAGGA
Generation of pshTHOC1_Puro by restriction GATCATTGC TTTTTGGAAA,
cloning AGCTTTTCCAAAAAGCAATGATCTCCTAAGAAGTCTCTTGAACTTC
TTAGGAGATCATTGCGGG
GATCCCCGAAATAAGGCTGATCAATTTTCAAGAGAAATTGATCAG
Generation of pshTHOC2_Puro by restriction CCTTATTTCTTTTTGGAAA,
cloning AGCTTTTCCAAAAAGAAATAAGGCTGATCAATTTCTCTTGAAAATT
GATCAGCCTTATTTCGGG

5.8 Materials and methods

Cell culture

Hela, U20S, Saos2 and Hek293T cell lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco), supplemented with 10% fetal bovine serum (FBS) and 100 U/ml of
penicillin/streptomycin. Cells were maintained in a controlled humidified atmosphere with 5% (v/v)
CO,, at 37°C. Generation of rtTA* PCP-GFP* Hela cells for PP7-15gTERRA expression was previously
described (Feretzaki et al, 2020). Generation of Hela cells with ca. 30 kb average telomere length was
previously described (Cristofari & Lingner, 2006). Suspension Hek293E cells were cultured in EX-CELL
293 Serum-Free Medium (Merck), supplemented with 4 mM GlutaMAX (Thermo Fisher Scientific) with
5% (v/v) CO,, at 37°C, with constant agitation.

siRNA and plasmid transfection

180,000 cells/well were plated in 6 well plates one day before siRNA transfection. The following day,
growth medium was replaced by antibiotic-free DMEM supplemented with 10% FBS, and cells were
transfected with 20 pmol siRNA (see Supplementary table 1) using calcium phosphate transfection. The
following day, antibiotic-supplemented growth medium was replenished, and cells were transfected
with Lipofectamine 2000 (Invitrogen) using 2.5 pg plasmid DNA (see Supplementary table 2), following
manufacturer’s instructions. When doxycycline-inducible constructs were used, 1 ug/ml doxycycline
was added to the medium 24 h after plasmid DNA transfection. Cells were harvested 72 h post-siRNA
transfection and 48 h post-plasmid DNA transfection.

Lentivirus production and cell transduction

HEK293T cells were plated one day before transfection for lentivirus production. The following day,
growth medium was replaced by Opti-MEM (Thermo Fisher Scientific). Cells were transfected with 1 ug
pPMD?2.G plasmid, 3 pg pCMVR8.74 plasmid and 4 pg of lentivirus transfer plasmid (see Supplementary
table 2), using Lipofectamine 2000 (Invitrogen), following manufacturer’s instructions. Cells were kept
in the transfection mix overnight, which was replaced by antibiotic-supplemented growth medium the
next day. Supernatants containing lentiviral particles were collected on the two following days, and
filtered through syringes with 0.45 um filter units. Viruses were aliquoted and kept at -80°C. 1 ml of
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lentivirus-containing medium was carefully added to each 6 cm dish containing recipient cells plated
one day before transduction. Cells were split into 15 cm dishes, and selection was initiated with
appropriate antibiotic 48 h post-transduction. Puromycin selection was done at 1 pg/ml final
concentration.

Immunofluorescence and telomeric fluorescence in situ hybridization (FISH)

Cells were grown on round coverslips. Coverslips were washed twice in 1x PBS, fixed with 4%
paraformaldehyde in PBS for 10 min at room temperature, and washed twice in 1x PBS. Coverslips were
then incubated in detergent solution (0.1% Triton X-100, 0.02% SDS in 1x PBS) for 5 min, and incubated
in 2% BSA dissolved in PBS for 10 min. Incubation with primary antibody (see Supplementary table 3) in
blocking solution (10% normal goat serum in 2% BSA dissolved in PBS) was done overnight at 4°C, in a
humidified chamber. The following day, three washes with 2% BSA dissolved in PBS were done for 4
min/wash, before incubation with secondary antibody (see Supplementary table 3) in blocking solution,
for 30 min at room temperature, in a humidified chamber. Coverslips were then washed three times in
1x PBS, fixed with 4% paraformaldehyde in PBS for 5 min at room temperature, washed three times in
1x PBS, and dehydrated with 70%, 95% and 100% ethanol.

For FISH staining, hybridization was done with 100 nM Cy3-[CCCTAA]; PNA probe (PNA Bio) in 15 pl
hybridization mix per coverslip (10 mM Tris pH 7.4, 70% formamide, 0.5% blocking reagent (Roche)), at
80°C for 3 min, followed by 3 h at room temperature, in a humidified chamber. Slides were washed
twice with wash buffer 1 (10 mM Tris pH 7.4, 70% formamide) for 15 min/wash, and then washed three
times with wash buffer 2 (0.1 M Tris pH 7.4, 0.15 M NaCl, 0.08% Tween-20) for 5 min/wash. DAPI was
added to the second last wash at 0.1 pg/ml. Slides were dehydrated with 70%, 95% and 100% ethanol,
air-dried and mounted with Vectashield.

Images were acquired with an Upright Zeiss Axioplan equipped with a 100x/1.40 oil objective.

Telomeric FISH on metaphase chromosomes

Cells were treated with 0.05 pg/ml demecolcine for 2 h before harvesting by trypsinization,
resuspended in hypotonic solution (0.056 M KCl), and incubated at 37°C for 7 min. Cells were fixed in
cold methanol:glacial acetic acid (3:1) solution overnight at 4°C. Fixed cells were dropped onto glass
slides, incubated at 70°C for 1 min in a humidified oven, and air-dried overnight at room temperature.
Slides were incubated in 4% formaldehyde in PBS for 5 min, washed three times in 1x PBS and
dehydrated with 70%, 95% and 100% ethanol. Hybridization was done with 100 nM Cy3-[CCCTAA]; PNA
probe (PNA Bio) in 70 ul hybridization mix (10 mM Tris pH 7.4, 70% formamide, 0.5% blocking reagent
(Roche)), at 80°C for 3 min, followed by 3 h at room temperature, in a humidified chamber. Slides were
washed twice with wash buffer 1 (10 mM Tris pH 7.4, 70% formamide) for 15 min/wash, and then
washed three times with wash buffer 2 (0.1 M Tris pH 7.4, 0.15 M NaCl, 0.08% Tween-20) for 5
min/wash. DAPI was added to the second last wash at 0.1 pg/ml. Slides were dehydrated with 70%,
95% and 100% ethanol, air-dried and mounted with Vectashield.

Images were acquired with an Upright Zeiss Axioplan equipped with a 100x/1.40 oil objective, or
with a Leica SP8 confocal microscope equipped with a 63x/1.40 oil objective and a DFC 7000 GT camera.

Chromosome Orientation (CO)-FISH on metaphase chromosomes

CO-FISH staining was performed as previously described (Lee et al, 2018), with some modifications.
Hela or U20S cells were incubated with BrdU/BrdC (3:1 at a final concentration of 10 uM) for 15.5 or
17.5 h, and with 0.1 or 0.2 pug/ml demecolcine for 2 or 5 h before harvesting by trypsinization,
respectively, resuspended in hypotonic solution (0.056 M KCl), and incubated at 37°C for 7 min. Cells
were fixed in cold methanol:glacial acetic acid (3:1) solution overnight at 4°C. Fixed cells were dropped
onto glass slides, incubated at 70°C for 1 min in a humidified oven, and air-dried overnight at room
temperature. Slides were re-hydrated in 1x PBS for 5 min and treated with 250 pg/ml RNaseA (Promega)
for 1 h at 37°C. Slides were washed in 1x PBS for 2 min and incubated with 10 pg/ml Hoechst 33258
(Invitrogen) in 1xPBS for 15 min at room temperature. Slides were then exposed to 365 nm UV light
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using a Stratagene Stratalinker 1800 UV irradiator set to 5400 J, covered by minimal amount of 1x PBS.
A brief wash in H,O was done after irradiation, followed by treatment with 10 U/ul Exonuclease Il (New
England Biolabs) for 1 h at 37°C. Slides were incubated in 4% formaldehyde in PBS for 3 min, washed
three times in 1x PBS, and dehydrated with 70%, 95% and 100% ethanol. Following overnight air-drying
of slides, hybridizations were done sequentially using 0.22 uM TYE563- or 6-FAM-labeled LNA probes
(Qiagen) (TeloC LNA probe: 5" TYE563-CCC*TAACCC*TAACCC*TAA 3'; TeloG LNA probe: 5' 6-FAM-
T*TAGGGT*TAGGGT*TAGGG — where asterisks (*T) indicate LNA nucleotides) in 60 pl hybridization mix
per slide (2x SSC, 30% formamide, 0.5% blocking reagent (Roche)), at room temperature for 2 h each.
After each hybridization, slides were washed three times in 2x SCC for 3 min and dehydrated with 70%,
95% and 100% ethanol. After the last probe hybridization, DAPI was added to the second 2xSSC wash
at 0.1 pg/ml. Slides were air-dried and mounted with ProLong Diamond Antifade mountant.

Images were acquired with a Leica SP8 confocal microscope equipped with a 63x/1.40 oil objective
and a DFC 7000 GT camera.

Western blotting

Cells were collected by trypsinization, washed with 1x PBS and resuspended in 2x Laemmli buffer,
to a final concentration of 10,000 cells/ul of Laemmli buffer. Samples were incubated at 95°C for 5 min.
Proteins were separated on a 4-15% SDS-PAGE precast gel (Mini-PROTEAN TGX Gels, Bio-Rad) and
transferred onto a 0.2 um nitrocellulose membrane (Amersham). Membranes were blocked with
blocking solution (3% BSA (w/v) in 1x PBS with 0.1% Tween-20) for 1 h at room temperature and
incubated with primary antibodies (see Supplementary table 3) at 4°C overnight. Membranes were
washed three times for 15 min/wash with 1x PBS with 0.1% Tween-20, and incubated with Horseradish
Peroxidase-conjugated secondary antibodies (see Supplementary table 3) in blocking solution, for 1 h
at room temperature. Membranes were then washed three times for 5 min/wash with 1x PBS with
0.1% Tween-20. ChemiGlow Chemiluminescence Substrate (Bio Techne) was used to develop the signal,
which was detected by a Fusion FX imaging system (Vilber).

RNA isolation and RNA dot blot

RNA was isolated from 3 to 5 million cells with the NuceloSpin RNA kit (Macherey-Nagel). Two on-
column and one in-solution rDNase digestions (Macherey-Nagel) were performed.

Purified RNA was digested with RNase (DNase-free, Roche), as a control. All samples were denatured
at 65°C for 3 min and blotted onto a Hybond-XL membrane (Amersham) using a dot-blot apparatus
(Bio-Rad). RNA was UV-crosslinked to the membrane. The membrane was then blocked in Church buffer
(0.5 M NaHPO4, 1 mM EDTA, pH 8.0, 1% (w/v) BSA, 7% SDS) for at least 1 h at 50°C, and hybridized with
a ¥P-radiolabeled telomeric probe in Church buffer at 50°C overnight. The membrane was washed
twice in 2x SSC, 0.5% SDS and twice in 1x SSC, 0.5% SDS, for 15 min/wash. The membrane was exposed
to a phosphorimager screen. Radioactive signal was detected with a Typhoon Biomolecular Imager (GE).
After signal detection, the membrane was stripped by incubation with boiled 0.1x SCC, 1 % SDS at 55°C,
three times for 30 min each, and blocked in Church buffer for at least 1 h at 55°C. A 3?P-radiolabeled
18S rRNA oligo probe was used for hybridization at 55°C overnight. The membrane was then treated as
described for the telomeric probe.

RNA immunoprecipitation (RIP)

Cells were harvested by trypsinization (or collected by centrifugation in the case of suspension
Hek293E cells), counted, washed with 1x PBS and placed on ice. Cells were then lysed in RLN buffer (50
mM Tris-HCl pH 8.0, 140 mM NaCl, 1.5 mM MgCl,, 0.5% NP-40, 1 mM dithiothreitol (DTT)),
supplemented with 400 U/ml RNasin Plus (Promega) and a protease inhibitor cocktail (cOmplete,
Roche) (100 x10° cells/ml of RLN buffer). Lysates were homogenized with a Dounce homogenizer,
incubated on a rotating wheel for 20 min at 4°C, and centrifuged at high-speed for 10 min. The
supernatant was collected and pre-cleared with magnetic protein G Dynabeads (Thermo Fisher
Scientific) on a rotating wheel for 1 h at 4°C (70 ul beads per 1 ml of extract). Pre-cleared extracts
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equivalent to 50 x10° cells were used per immunoprecipitation with 6 pg of antibody (see
Supplementary table 3), and incubated on a rotating wheel for 2 hours at 4°C. Input samples equivalent
to 10% of each immunoprecipitation were also collected. 35 pl of magnetic protein G Dynabeads
(Thermo Fisher Scientific) pre-blocked with yeast transfer RNA were then added to each
immunoprecipitation sample and incubated on a rotating wheel overnight at 4°C. Samples were then
washed at 4°C for 5 min/wash on a rotating wheel with RLN buffer supplemented with 6 mM EDTA pH
8.0, 0.5% NP-40 and 20 U/ml SUPERase In RNase inhibitor (Thermo Fisher Scientific). RNA was eluted
from beads with 1500 rpm agitation, in 1% SDS, 5 mM EDTA pH 8.0 and 5 mM 2-mercaptoethanol, at
42°C for 30 min (for input and immunoprecipitation samples), followed by 65°C for 30 min (for
immunoprecipitation samples only). The RNA was purified following the RNA clean-up protocol of the
NucleoSpin  RNA isolation kit (Macherey-Nagel) and eluted in 100 ul H20. Half of each
immunoprecipitation sample was digested with RNase (DNase-free, Roche)). Input samples were
diluted appropriately to ensure that the amount of probed RNA in each immunoprecipitated sample
lies within the linear dynamic range of the assay. RNA dot blot was done as described above.

Chromatin immunoprecipitation (ChIP)

Cells were harvested by trypsinization 72 h post-siRNA transfection, counted, and washed with cold
1x PBS. For Western blot analysis of depletions, ca. 0.5 x10° cells/condition were collected. For ChIP, 10
x10° cells/condition were crosslinked in 1 ml 1% methanol-free formaldehyde in PBS, for 15 min, on a
rotating wheel, at room temperature. Formaldehyde was quenched by adding 250 mM Tris pH 8.0 in
PBS, and incubating for 5 min, on a rotating wheel, at room temperature. Cells were then washed three
times with cold PBS and kept at 4°C throughout the procedure until the crosslink reversal stage. Cells
were washed once with 1 ml LB3 buffer (10 mM Tris pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA,
0.1% Na-Deoxycholate, 0.25% sodium lauroyl sarkosinate, supplemented with protease inhibitor
cocktail (cOmplete, Roche)), resuspend in 1 ml LB3 buffer, transferred to sonication vials with AFA fiber
(Covaris), and sonicated with a Focused-Ultrasonicator (E220, Covaris) (10% duty factor, 140 W power,
200 cycles per burst, for 20 min), to achieve fragments with <500 bp. Sonicated samples were
centrifuged at 21,000 g for 15 min. Supernatants were collected and diluted 1:2 in IP dilution buffer
(16.7 mM Tris pH 8.0, 1.1% Triton-X, 300 mM NaCl, 1.2 mM EDTA pH 8.0, supplemented with protease
inhibitor cocktail (cOmplete, Roche)). Samples were pre-cleared with sepharose protein G beads
(Cytiva) pre-blocked with yeast transfer RNA, on a rotating wheel for 1 h, at 4°C. Pre-cleared extracts
equivalent to 2 x10° cells were used per immunoprecipitation with 4 pg of antibody (see Supplementary
table 3), and 20 ul sepharose protein G beads pre-blocked with yeast transfer RNA, on a rotating wheel,
at 4°C, overnight. Input samples equivalent to 10% of each immunoprecipitation were also collected.
The following day, samples were washed at 4°C for 5 min/wash on a rotating wheel with buffer Wash
1 (0.1% SDS, 1% Triton, 2 mM EDTA pH 8.0, 20 mM Tris pH 8.0, 300 mM NaCl), buffer Wash 2 (0.1 %
SDS, 1% Triton, 2 mM EDTA pH 8.0, 20 mM Tris pH 8.0, 500 mM NaCl), buffer Wash 3 ( 250 mM LiCl,
1% NP-40, 1% Na-deoxycholate, 1 mM EDTA pH 8.0, 10 mM Tris pH 8.0) and TE buffer (1 mM EDTA pH
8.0, 10 mM Tris pH 8.0). Washed beads and input samples were resuspended in crosslink reversal buffer
(0.1% SDS, 0.1 M sodium bicarbonate, 0.5 mM EDTA pH 8.0, 20 mM Tris pH 8.0, supplemented with 10
ug/ml RNase (DNase-free (Roche)) at 65°C, on a rotating wheel, overnight. DNA was isolated with the
NucleoSpin Gel and PCR Clean-up kit with NTB buffer (Macherey-Nagel) and eluted in 40 ul H,O.
Samples were then analyzed by dot blot (see below).

DNA:RNA immunoprecipitation (DRIP)

DRIP was performed as previously described (Glousker et al, 2022). Cells were harvested by
trypsinization 72 h post-siRNA transfection and 48 h post-plasmid DNA transfection, counted and
washed with cold 1x PBS. For Western blot analysis of depletions, ca. 0.5 x10° cells/condition were
collected. For DRIP, 10 x10° cells/condition were resuspended in 175 pl of ice-cold RLN buffer (50 mM
Tris-HCl pH 8.0, 140 mM NaCl, 1.5 mM MgCl,, 0.5% NP-40, 1 mM dithiothreitol (DTT), and 100 U/ml
RNasin Plus (Promega)), incubated on ice for 5 min, and centrifuged at 300 g for 2 min at 4°C. Nuclei

116



were brought to room temperature and lysed with 500 pl RA1 buffer (NucleoSpin RNA purification kit,
Macherey-Nagel) containing 1% 2-mercaptoethanol, and homogenized with a syringe with a 0.9x40
mm needle. Nucleic acid extracts were then loaded in Phase Lock Gel heavy (5PRIME) tubes, mixed with
250 ul H,O and 750 ul phenol-chloroform-isoamylalcohol (25:24:1) with a pH of 7.8 to 8.2, and
centrifuged at 13,000 g for 5 min at room temperature. The aqueous phase was transferred into a new
tube. 750 pl cold isopropanol and NaCl to 50 mM were added to the agueous phase, mixed thoroughly,
and incubated on ice for 30 min. Samples were centrifuged at 10,000 g for 30 min at 4°C to precipitate
nucleic acids, followed by two washes with 70% cold ethanol. After air-drying, nucleic acids were
dissolved in 130 pl of H20, and sonicated with a Focused-Ultrasonicator (E220, Covaris) (10% duty
factor, 140 W power, 200 cycles per burst, for 150 s, with an AFA intensifier), to achieve fragments with
100-300 bp. The concentration of fragmented nucleic acids was determined by spectrophotometry
with a NanoDrop (ThermoFisher). Appropriate amount (see below) of nucleic acids was digested with
10 pl RNaseH (1 U/ ul, Roche) — as a negative control — or H,0, in 15 pl RNaseH buffer (20 mM HEPES-
KOH pH 7.5, 50 mM NaCl, 10 mM MgCl,, 1 mM DTT), in a total volume of 150 pl, and incubated at 37°C
for 90 min. Digestion was stopped with 2 ul 0.5 M EDTA (pH 8.0) per sample. Samples were diluted 1:10
in DIP-1 buffer (10 mM HEPES-KOH pH 7.5, 275 mM NaCl, 0.1% Na-deoxycholate, 0.1% SDS, 1% Triton
X-100) and pre-cleared with 40 ul of sepharose protein G beads (Cytiva) for 1 h, on a rotating wheel, at
4°C. 30 pg of diluted nucleic acids from Hela cells or 12.5 pg of diluted nucleic acids from U20S cells
were used per immunoprecipitation with 3 ug of 9.6 antibody (Kerafast) or mouse 1gG antibody (see
Supplementary table 3), and 20 pl of sepharose protein G beads (Cytiva), and incubated on a rotating
wheel at 4°C overnight. Nucleic acids equivalent to 1% of each immunoprecipitation sample were
collected as input. The following day, samples were washed at 4°C for 5 min/wash on a rotating wheel
with buffer DIP-2 (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1%
Na-deoxycholate), buffer DIP-3 (50 mM HEPES-KOH pH 7.5, 500 mM NaCl, 1 mM EDTA pH 8.0, 1%
Triton-X100, 0.1% Na-deoxycholate), buffer DIP-4 (10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0, 250 mM
LiCl, 1% NP-40, 1% Na-deoxycholate), and TE buffer (10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0).
Immunoprecipitation and input samples were resuspended overnight at 65°C with 100 pl elution buffer
(20 mM Tris-HCl pH 8.0, 0.1% SDS, 0.1 M NaHCOs, 0.5 mM EDTA pH 8.0) containing 10 pg/ml RNase
(DNase-free (Roche)). DNA was isolated with the QlAquick PCR Purification kit (Qiagen) and eluted in
100 pl H,0. Samples were then analysed by dot blot or gPCR (see below).

gPCR analysis of DRIP samples

Each gPCR reaction comprised 1 ul of purified DNA (immunoprecipitation and diluted input samples
—as aforementioned), 5 pl Power SYBR Green PCR Master Mix (Thermo Fisher Scientific), 1 uM forward
and reverse primers (see Supplementary table 4), and H,O up to 10 pl total reaction volume. Each input
or immunoprecipitation sample was run in technical duplicate. gPCR reactions were caried at 95°C for
10 min, followed by 95°C for 15 sec, and annealing and extension at 60°C for 1 min for 40 cycles in a
QuantStudio 6 Flex Real-Time PCR system (Thermo Fisher Scientific). At least two serial dilutions (with
dilution factors of 5 and 50) of each input sample were included, in order to perform a regression
analysis to determine the equation of the standard curve of each input. Using each input equation, the
corresponding S9.6 and IgG immunoprecipitations were calculated as percentage of input.

Dot blot analysis of CHIP and DRIP samples

Input samples (ChIP and DRIP) were diluted appropriately to ensure that the amount of probed DNA
in each immunoprecipitated sample lies within the linear dynamic range of each assay. Purified DNA
(diluted inputs and immunoprecipitated samples) was incubated at 95°C for 5 min and kept on ice.
Samples were blotted onto a Hybond-XL membrane (Amersham) using a dot blot apparatus (Bio-Rad),
and DNA was UV-crosslinked to the membrane. The membrane was denatured in 0.5 M NaOH, 1.5 M
NaCl for 15 min on a shaker at room temperature, neutralized in 0.5 M Tris-Cl pH 7.0, 1.5 M NaCl for
10 min on a shaker at room temperature, and then blocked in Church buffer (0.5 M NaHPQ4, 1 mM
EDTA, pH 8.0, 1% (w/v) BSA, 7% SDS) for at least 1 h at 65°C. The membrane was hybridized with a 32P-
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radiolabeled TeloC probe in Church buffer at 65°C overnight. Washes were done three times for 30
min/wash at 65°C, in 1x SSC, 0.5% SDS. The membrane was then exposed to a phosphorimager screen.
Radioactive signal was detected with a Typhoon Biomolecular Imager (GE).

C-circle assay

The C-circle assay was performed as previously described (Henson et al, 2009). Briefly, genomic DNA
was extracted with phenol-chloroform-isoamyl alcohol (25:24:1) and digested with Hinfl and Rsal (NEB)
in CutSmart buffer (NEB), overnight at 37°C. 30 ng of digested DNA were incubated with 7.5 U phi29
DNA polymerase (NEB) (orin its absence for phi29™ control reaction), in the presence of dATP, dTTP and
dGTP (1 mM each) at 30°C for 8 h, followed by heat-inactivation at 65°C for 20 min. Reaction products
were blotted onto a Hybond-XL membrane (Amersham) using a dot blot apparatus (Bio-Rad), and DNA
was UV-crosslinked to the membrane. The non-denatured membrane was blocked in Church buffer
(0.5 M NaHPQ4, 1 mM EDTA, pH 8.0, 1% (w/v) BSA, 7% SDS) for at least 1 h at 42°C. The membrane was
hybridized with a 3?P-radiolabeled TeloC oligo probe in Church buffer at 42°C overnight. Washes were
done three times for 30 min/wash at 42°C, in 1x SSC, 0.5% SDS. The membrane was then exposed to a
phosphorimager screen. Radioactive signal was detected with a Typhoon Biomolecular Imager (GE). For
detection of the phi29 signal, the membrane was stripped and denatured as mentioned above, blocked
in Church buffer for at least 1 h at 42°C, and re-probed with a 3?P-radiolabeled TeloC oligo probe in
Church buffer at 42°C overnight. Washes and signal detection were done as described.

Software

Images were processed and analysed with ImageJ (2.0.0-rc-69/1.53k). Dot blots were analysed using
Aida Image Analyzer (v. 5.1). Preparation of graphs and statistical analyses were performed using
GraphPad Prism (v. 9.4.1 (458)). lllustrations were generated with BioRender.com.
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Chapter 6 Conclusion and future perspectives

The telomeric RNA TERRA is a crucial telomere component, involved in the regulation of telomere
stability and cellular lifespan. TERRA is capable of directly hybridizing telomeric DNA, forming R-loops —
which consist of a three-stranded nucleic acid structure, comprising a DNA:RNA hybrid and a displaced
DNA strand. The abundance of TERRA R-loops has previously been shown to have a major impact in
telomeric integrity, underscoring the relevance of a comprehensive investigation into their formation
and accumulation at chromosome ends, and the possible outcomes of their dysregulation.

In chapter 2 areporter system was developed for the study of ectopically-expressed TERRA-like RNA
molecules. This system enables the detailed analysis of the association of TERRA with telomeres. It
revealed that the recruitment of TERRA to chromosome ends can occur post-transcriptionally in trans,
requiring the UUAGGG repetitive tract of TERRA. In addition, the work presented in chapter 2
demonstrated that TERRA R-loops form preferentially at short telomeres and are mediated by the DNA
recombinase RAD51, which also has the ability to directly bind TERRA RNA. It will be of great interest to
dedicate efforts in the identification and characterization of the requirements of a putative RAD51-
dependent general mechanism that facilitates the association of other long non-coding RNAs to
chromatin. Furthermore, adapting the PP7-fused TERRA system to live cell imaging will allow to describe
TERRA nuclear dynamics.

The work presented in chapter 3 is based on the findings described in chapter 2. It theorizes on the
consequences of RAD51-mediated R-loop formation and accumulation at chromosome ends, namely
in the stimulation of homologous recombination at telomeres. A detailed analysis of the possible
involvement of other factors implicated in homology-directed repair in TERRA R-loop regulation would
be of great significance in the study of telomere maintenance.

The detection of TERRA R-loops is central to study the formation and impact of these structures in
telomere homeostasis. Different techniques have previously been proposed for the detection of R-
loops formed across the genome (reviewed in (Garcia-Muse & Aguilera, 2019)). A straight-forward
method that was primarily used in the study of DNA:RNA hybrids is the analysis of sensitivity of isolated
nucleic acids to RNaseH (Huertas & Aguilera, 2003). Other common approaches include the detection
of hybrids with inactivated RNaseH or the RNAseH1 hybrid-binding domain, followed by IF or ChIP
(Ginno et al, 2012; Bhatia et al, 2014; Chen et al, 2017). The DNA:RNA hybrid-recognizing $9.6 antibody
(Boguslawski et al, 1986) has also frequently been employed in IF and immunoprecipitation
experiments. Of note, the S9.6 antibody is able to recognize double stranded RNAs, therefore treatment
with RNaseH is necessary to determine the specificity of the detected structures (Smolka et al, 2021).
Furthermore, sodium bisulfite treatment or activation-induced cytidine deaminase (AID)-derived DNA
mutagenesis followed by sequencing have been used for the mapping of R-loops (Yu et al, 2003; Gomez-
Gonzélez & Aguilera, 2007). The protocol presented in chapter 4 provides a practical tool for the
methodical and controlled assessment of R-loops formed at telomeres, using the $9.6 antibody in an
immunoprecipitation-based approach.

In chapter 5 we investigate the roles of the THO complex at human telomeres. We demonstrate that
THOC contributes to the negative regulation of TERRA R-loops. While this effect was better perceived
using U20S ALT cells, a subtle non-significant increase in telomeric hybrids was observed in telomerase-
positive Hela cells, transfected with siRNAs for THOC depletion. Since full deletion of THOC components
could not be employed, a partial down regulation may still allow for THOC to fulfil its function, justifying
the tenuous effect observed. In addition, the possibility of THOC subcomplexes to act as functional units
has not yet been fully elucidated. Nevertheless, depletion of THOC1 caused a reduction in THOC2
protein levels and vice versa, which is consistent with an interdependency of the multiple THOC/TREX
subunits to sustain THOC/TREX complexes (Chi et al, 2013). Furthermore, considering the numerous
proteins which have previously been identified as regulators of TERRA R-loops and the detrimental
effects identified thus far as an outcome of the accumulation of TERRA R-loops (see introduction), it is
conceivable that different redundant pathways are involved in their suppression at chromosome ends.
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Therefore, co-depletion of THOC subunits with other factors implicated in the control of TERRA R-loops
may allow to better manipulate the levels of these structures and thoroughly assess their
consequences. Of note, previous DRIP experiments performed in the Lingner lab using shRNAs to
deplete THOC1 in telomerase-positive cells have failed to detect a significant change in telomeric R-
loops (Grolimund, 2013). It should be noted that prolonged shRNA-mediated knock down of THOC1 —
5 days —vyielded a very striking percentage of cell death, which may have compromised the assessment
of any telomeric phenotype, as it may select for cells undergoing partial rescue of the effects derived
from loss of THOC (Grolimund, 2013).

Resorting to RNA immunoprecipitation experiments, we demonstrate that THOC associates with
nucleoplasmic TERRA. In addition, ongoing in vitro experiments have validated the binding of THOC1 to
a TERRA-like UUAGGG-containing oligonucleotide (unpublished data acquired by the Lingner lab
member Thomas Lunardi). It remains unclear whether the presence of THOC at human telomeres is
mediated by TERRA RNA (directly hybridizing telomeric DNA or interacting with other telomeric
proteins). Previous QTIP experiments —further validated by ChIP — have readily detected THOC subunits
at telomeres (Grolimund et al, 2013). However, the use of an alternative protocol to determine the
telomeric chromatin composition — termed PICh — has not identified THOC components (Déjardin &
Kingston, 2009). Importantly, in contrast to QTIP, the PICh method includes an RNase digestion step,
which may result in the loss of TERRA-mediated telomere-interacting factors — as may be the case for
THOC components. A modified ChIP protocol including an RNase treatment (including RNaseH which
would degrade TERRA molecules engaged in R-loops) could elucidate this point.

The exact mechanism through which THOC counteracts the accumulation of R-loops at telomeres is
not yet clearly disclosed. Previously proposed models for the function of THOC in the modulation of R-
loops formed across the genome suggest an interplay between THOC and chromatin modifiers, leading
to decreased chromatin condensation, and thus increased propensity for DNA:RNA hybrid formation.
However, analysis of AcH3 cellular levels in lysates from cells depleted of THOC1/2 has not succeeded
in reproducing the increase in global histone acetylation levels demonstrated by Salas-Armenteros and
colleagues (data not shown) (Salas-Armenteros et al, 2017). Additionally, the use of the histone
acetyltransferase inhibitor anacardic acid has failed to rescue the increase in PP7-15qTERRA
colocalization with telomeres promoted by loss of THOC (data not shown). Therefore, further
experiments will be required to determine whether the modulation of chromatin accessibility is
required for THOC to restrain R-loop formation at telomeres. Consistently with a model depicting
THOC/TREX as a factor involved in the resolution of R-loops (as previously proposed (Pérez-Calero et al,
2020), depletion of RNaseH1 — which leads to an accumulation of TERRA R-loops — led to an elevated
occupancy of telomeres by THOC subunit 1. Moreover, a QTIP experiment aimed at identifying the
telomeric proteome under menadione treatment — which generates reactive oxygen species and thus
induces oxidative stress — has detected an enrichment of THOC/TREX components at telomeres,
comparing to untreated cells (unpublished data acquired by the Lingner lab member Trang Nguyen).
Interestingly, menadione treatment correlates with an increase of TERRA R-loops (unpublished data
acquired by the Lingner lab member Trang Nguyen). This observation is consistent with a recruitment
of THOC to telomeres to preserve telomere integrity when R-loops pose a threat. In vitro experiments
may assist in the elucidation of the detailed mechanism involving THOC in the management of telomeric
R-loops. Additionally, understanding a putative role of THOC in the response to oxidative damage could
open new lines of investigation for therapeutic purposes.

Employing telomeric FISH and CO-FISH, we have demonstrated that loss of THOC induces R-loop-
dependent telomere fragility — a distinct indicator of replication defects at telomeres. Moreover, the
fragility promoted by THOC depletion was observed not only at telomeres replicated by leading strand
synthesis — as often reported upon dysregulation of factors involved in counteracting TERRA R-loops —
but also, (to a lesser extent) at telomeres replicated by lagging strand synthesis. While the accumulation
of telomeric R-loops has previously been correlated with leading strand fragility, the occurrence of
lagging strand fragility under depletion of THOC was unexpected. Displacement of the G-rich telomeric
strand upon the formation of R-loops may fuel the formation and stabilization of G4s, which in turn
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may impair lagging strand replication. In addition, a direct role of THOC in the regulation of G4s has not
yet been explored. Examining whether a build-up of telomeric G4 structures occurs at chromosome
ends when THOC subunits are depleted — possibly resorting to G4-specific antibodies — may uncover
the origin of the observed increase in lagging strand fragility.

Telomeric CO-FISH staining has also revealed that depletion of THOC subunits elevates the
frequency of sister chromatid exchange events quantified specifically in U20S ALT cells — while it is not
sufficient to trigger this ALT hallmark in telomerase-positive Hela cells. It would be interesting to
explore if this effect of THOC depletion occurs in other ALT cell lines, and whether it depends on the
formation of R-loops at telomeres.

Finally, we found that the THO complex counteracts C-circle accumulation in ALT cells, partially by
regulating R-loops. While C-circle formation does not seem to require telomeric R-loops, our data
reinforces the notion that R-loops can contribute/mediate to the genesis of C-circles. Given that the
generation of C-circles and the relevance of its presence in the cell is not fully understood, it will be
interesting to understand whether R-loops are involved in C-circle formation in a direct manner — being
excised, circularized and ligated —, or indirect way — by stimulating break-induced replication at
telomeres.

Future experiments intended at evaluating whether other ALT-characteristic features are amplified
when THOC is depleted in ALT cells — such as telomere extension by BIR in APBs — would further
contribute to the characterization of the function of THOC/TREX components and TERRA in the
maintenance of human telomeres.
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