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Abstract
Transfer learning, where a language model is first pre-trained on large-scale unlabeled data followed
by fine-tuning on a downstream task, has emerged as a dominating technique in natural language
processing obtaining the state of the art results on a wide range of tasks. The striking effectiveness
of transfer learning has given rise to a variety of methods, and practice. In spite of this rapid progress,
transfer learning and building robust models from these pretrained language models (PLMs) which can
generalize to unseen domains is a multifaceted problem, requiring addressing several open questions
such as a) training models robust to dataset biases, which can generalize better in real-world scenarios b)
reducing over-fitting when fine-tuning PLMs on low-resource setting c) fine-tuning strategies allowing
learning from multiple training resources while being able to generalize to new domains d) efficient
and effective fine-tuning methods for PLMs allowing transfer learning with limited data and to new
domains e) few-shot learning with few labeled examples. In this dissertation, we propose multiple
methods to improve generalization of PLMs from different aspects:

Our first contribution is to propose two learning strategies to train neural models, which are more
robust to dataset biases and transfer better to out-of-domain datasets. We specify the biases in terms of
one or more bias-only models, which learn to leverage the dataset biases. During training, the bias-only
models’ predictions are used to adjust the loss of the base model to reduce its reliance on biases by
down-weighting the biased examples and focusing training on the hard examples. Results show that
our debiasing methods greatly improve robustness on several natural language understanding (NLU)
benchmarks and improve transfer learning to other textual entailment datasets.

Our second contribution is to propose an effective regularization method to reduce overfitting when
fine-tuning PLMs on a small number of training data. We leverage Variational Information Bottleneck
(VIB) (Alemi et al., 2017) to suppress irrelevant features when fine-tuning on low-resource target tasks
and show that our method effectively reduces overfitting. Moreover, we show that our VIB model
finds sentence representations that are more robust to biases in natural language inference datasets,
and thereby substantially improves generalization to out-of-domain datasets.

Our third contribution is to develop an effective and parameter-efficient way to fine-tune PLMs in a
multi-task learning setup while allowing generalization to new domains. Our method allows sharing
information across tasks to enable positive transfer to low-resource and related tasks while avoiding
negative task interference. we propose HYPERFORMER++, which employs a compact hypernetwork
(Ha et al., 2017; Oswald et al., 2020) shared across tasks and layers. The hypernetwork then learns
to generate task and layer-specific adapter parameters, conditioned on task and layer id embeddings in
a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the
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Abstract

best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model
to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE
benchmark show improved performance in multi-task learning while adding only 0.29% parameters
per task. We additionally demonstrate substantial performance improvements in few-shot domain
generalization across a variety of tasks.

Our fourth contribution is to propose COMPACTER, a method for fine-tuning large-scale language
models with a better trade-off between task performance and the number of trainable parameters
than prior work. COMPACTER accomplishes this by building on top of ideas from adapters, low-rank
optimization (Aghajanyan et al., 2021), and parameterized hypercomplex multiplication layers (Zhang
et al., 2021a). Specifically, COMPACTER inserts task-specific weight matrices into a pretrained model’s
weights, which are computed efficiently as a sum of Kronecker products between shared “slow”
weights and “fast” rank-one matrices defined per COMPACTER layer. By only training 0.047% of a
pretrained model’s parameters, COMPACTER performs on par with standard fine-tuning on GLUE and
outperforms standard fine-tuning on SuperGLUE and low-resource settings.

Our final contribution is to propose PERFECT, a simple and efficient method for few-shot fine-tuning
of PLMs without relying on any handcrafting, which is highly effective given as few as 32 data points.
This is in contrast to the current methods for few-shot fine-tuning of pretrained masked language
model (PLM) require carefully engineered prompts and verbalizers for each new task, to convert
examples into a cloze-format that the PLM can score. PERFECT makes two key design choices: First,
we show that manually engineered task prompts can be replaced with task-specific adapters that
enable sample-efficient fine-tuning and reduce memory and storage costs by roughly factors of 5 and
100, respectively. Second, instead of using handcrafted verbalizers, we learn a new multi-token label
embedding during fine-tuning which are not tied to the model vocabulary and which allows us to avoid
complex auto-regressive decoding. These embeddings are not only learnable from limited data but also
enables nearly 100x faster training and inference. Experiments on a wide range of few shot NLP tasks
demonstrate that PERFECT, while being simple and efficient, also outperforms existing state-of-the-art
few-shot learning methods.

Keywords: transfer learning, generalization, fine-tuning, bias-reduction, multi-task learning, few-shot
learning, low-resource setting, parameter-efficient fine-tuning, adapter, robustness.
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Abstrakt
Das Transferlernen, bei dem ein Sprachmodell zunächst auf vielen Daten ohne Annotationen vortrai-
niert und dann auf einer Zielaufgabe feinabgestimmt wird, hat sich zu einer dominierenden Technik in
der Verarbeitung natürlicher Sprache entwickelt, und dadurch Ergebnisse auf dem neuesten Stand der
Technik für eine Vielzahl von Aufgaben erzielt. Die bemerkenswerte Wirksamkeit des Transferlernens
hat zu einer Vielzahl von Methoden und Praktiken geführt. Trotz dieses schnellen Fortschritts ist
das Transferlernen und die Konstruktion robuster Modelle aus diesen vortrainierten Sprachmodellen
(auf Englisch: Pretrained Language Models, PLMs), welche auf neuartige Anwendungsdomäne
verallgemeinert werden können, ein vielschichtiges Problem, das die Beantwortung mehrerer offener
Fragen erfordert: a) Modelle trainieren, die robust gegenüber Bias in Datensätzen sind, damit sie
besser in realistischen Szenarien funktionieren, b) die Reduktion von Überanpassung, wenn man PLMs
auf wenigen Daten feinabstimmt, c) Strategien zur Feinabstimmung, die es erlaubt von mehreren
Trainingsressourcen zu lernen, während es gleichzeitig auf neuen Domänen generalisiert, d) effiziente
und effektive Feinabstimmung für PLMs, die Transferlernen mit weniger Daten und in neuen Domänen
erlaubt, und e) Lernen mit wenigen annotierten Beispielen. In dieser Dissertation schlagen wir mehrere
Methoden vor, die die Verallgemeinerung von PLMs unter verschiedenen Aspekten verbessern:

Unser erster Beitrag besteht darin, zwei Lernstrategien vorzuschlagen, um neuronale Modelle zu trainie-
ren, die robuster gegenüber Datensatzverzerrungen sind und besser auf Out-of-Domain-Datensätze über-
tragen werden können. Wir spezifizieren den Bias in Bezug auf ein oder mehrere Bias-Only-Modelle,
die lernen, den Dataset-Bias zu nutzen. Während des Trainings werden die Vorhersagen der Nur-Bias-
Modelle verwendet, um die Zielfunktion des Basismodells anzupassen, um seine Abhängigkeit vom
Bias zu verringern, indem die voreingenommenen Beispiele heruntergewichtet und das Training auf die
schwierigen Beispiele konzentriert wird. Die Ergebnisse zeigen, dass unsere Debiasing-Methoden die
Robustheit bei mehreren NLU-Benchmarks (Natural Language Understanding) erheblich verbessern
und zusätzlich das Transferlernen auf anderen Datensätzen des textuellen Schließens verbessern.

Unser zweiter Beitrag besteht darin, eine effektive Regularisierungsmethode vorzuschlagen, um die
Überanpassung bei der Feinabstimmung von PLMs auf eine kleine Anzahl von Trainingsdaten zu re-
duzieren. Wir nutzen das Variational Information Bottleneck (VIB) (Alemi et al., 2017), um irrelevante
Merkmale bei der Feinabstimmung von Zielaufgaben mit wenig Ressourcen zu unterdrücken, und
zeigen, dass unsere Methode eine Überanpassung effektiv reduziert. Darüber hinaus zeigen wir, dass
unser VIB-Modell Satzrepräsentationen findet, die robuster gegenüber Verzerrungen in Inferenzda-
tensätzen natürlicher Sprache sind, und dadurch die Verallgemeinerung auf Out-of-Domain-Datensätze
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Abstrakt

erheblich verbessert.

Unser dritter Beitrag ist die Entwicklung einer effektiven und parametereffizienten Methode zur
Feinabstimmung von PLMs in einem Multi-Task-Lernaufbau, während gleichzeitig eine Verallgemei-
nerung auf neue Bereiche ermöglicht wird. Unsere Methode ermöglicht das Teilen von Informationen
über Aufgaben hinweg, um einen positiven Transfer zu ressourcenarmen und verwandten Aufga-
ben zu ermöglichen, während negative Aufgabeninterferenzen vermieden werden. Wir schlagen
HYPERFORMER++ vor, das ein kompaktes Hypernetzwerk (Ha et al., 2017; Oswald et al., 2020)
verwendet, das über Aufgaben und Schichten hinweg geteilt wird. Das Hypernetzwerk lernt dann,
aufgaben- und schichtspezifische Adapterparameter zu erzeugen, abhängig von Aufgaben- und Schicht-
ID-Einbettungen in ein Transformer-Modell. Dieses parametereffiziente Multitask-Lernframework
ermöglicht es uns, das Beste aus beiden Welten zu verbinden, indem wir Wissen über Aufgaben über
Hypernetzwerke teilen und gleichzeitig ermöglichen, dass sich das Modell durch aufgabenspezifi-
sche Adapter an jede einzelne Aufgabe anpasst. Experimente mit der bekannten GLUE-Benchmark
zeigen eine verbesserte Leistung beim Multitasking-Lernen, während nur 0,29% Parameter pro Auf-
gabe hinzugefügt werden. Wir demonstrieren außerdem erhebliche Leistungsverbesserungen bei der
Domain-Generalisierung mit wenigen Beispielen für eine Vielzahl von Aufgaben.

Unser vierter Beitrag besteht darin, COMPACTER vorzuschlagen, eine Methode zur Feinabstimmung
großer Sprachmodelle mit einem besseren Kompromiss zwischen Aufgabenleistung und der Anzahl
trainierbarer Parameter als frühere Arbeiten. COMPACTER erreicht dies, indem es auf Ideen von
Adaptern, Niedrig-Rang-Optimierung (Aghajanyan et al., 2021) und parametrisierten hyperkomplexen
Multiplikationsschichten (Zhang et al., 2021a) aufbaut. Insbesondere fügt COMPACTER aufgabenspe-
zifische Gewichtsmatrizen in die Gewichte eines vortrainierten Modells ein, die effizient als Summe
von Kronecker-Produkten zwischen gemeinsamen “langsamen” Gewichten und “schnellen” Rang-
Eins-Matrizen berechnet werden, die pro COMPACTER-Schicht definiert sind. Obwohl nur 0,047%
der Parameter eines vortrainierten Modells trainiert werden, ist COMPACTER auf Augenhöhe mit der
standardmäßigen Feinabstimmung auf GLUE und übertrifft die standardmäßige Feinabstimmung auf
SuperGLUE und ressourcenarmen Aufgaben.

Unser letzter Beitrag besteht darin, PERFECT vorzuschlagen, eine einfache und effiziente Methode
zur Feinabstimmung von PLMs in wenigen Schritten ohne sich auf Handarbeit zu verlassen, die
bei nur 32 Datenpunkten sehr effektiv ist. Dies steht im Gegensatz zu den aktuellen Methoden zur
Feinabstimmung von vortrainierten maskierten Sprachmodellen (PLM) in wenigen Beispielen, die
sorgfältig konstruierte Eingabeaufforderungen und Verbalisierer für jede neue Aufgabe erfordern,
um Beispiele in ein Lückentextformat umzuwandeln, das das PLM bewerten kann. PERFECT trifft
zwei wichtige Designentscheidungen: Erstens zeigen wir, dass manuell erstellte Task-Prompts durch
task-spezifische Adapter ersetzt werden können, die eine dateneffiziente Feinabstimmung ermöglichen
und die Arbeitsspeicher- und Festplattenspeicherkosten ungefähr um den Faktor 5 beziehungsweise
100 reduzieren. Zweitens lernen wir, anstatt handgefertigte Verbalisierer zu verwenden, während der
Feinabstimmung ein neues Multi-Token-Label-Einbetten, das nicht an das Modellvokabular gebunden
ist und uns erlaubt, komplexe autoregressive Dekodierung zu vermeiden. Diese Einbettungen sind
nicht nur aus begrenzten Daten erlernbar, sondern ermöglichen auch fast 100-mal schnelleres Training
und Schlussfolgerungen. Experimente mit einer breiten Palette von NLP-Aufgaben mit wenigen
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Beispielen zeigen, dass PERFECT, obwohl es einfach und effizient ist, auch bestehende hochmoderne
Lernmethoden mit wenigen Beispielen übertrifft.

Stichworte: Transferlernen, Verallgemeinerung, Feinabstimmung, Bias-Reduktion, Multitask-Lernen,
Lernen mit wenigen Beispielen, ressourcenarme Aufgaben, Parameter-effiziente Feinabstimmung,
Adapter, Robustheit.
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1 Introduction & Background

I do what I feel is right. I am not
scared to walk on the new path and take risk.

Aamir Khan

Natural language processing (NLP), i.e., allowing machines to break down and understand human
language, is a complicated task requiring training neural models capable of grasping a variety of
knowledge. This knowledge can range from low-level, like syntactic rules or interpreting the meaning
of individual words, to high-level understanding, such as semantic plausibility, e.g. that elephants do not
fit in a fridge requires prior knowledge about elephants and fridges. There is almost always not sufficient
data available to learn these different types of required knowledge from task data. This necessitates
training neural language models (Bengio et al., 2003) which can build a general understanding of the
text while being able to get adapted to downstream tasks. Early successes in this goal were found in
learning word embeddings (Mikolov et al., 2013b,a; Pennington et al., 2014) to map words to a space
where similar words obtain similar vector representations. This acts as a single layer of representation,
which is then fed to task-specific architectures. Later efforts, use a Recurrent neural network (RNN)
with multiple layers of representation to obtain more powerful contextualized representations (Dai and
Le, 2015; McCann et al., 2017; Peters et al., 2018) while still feeding them to task-specific models.
More recently, this paradigm shifted to pretraining the entire transformer (Vaswani et al., 2017) and
recurrent models, followed by fine-tuning on downstream tasks. This flexible technique subsequently
eliminates the need for learning task-specific models (Radford et al., 2018; Devlin et al., 2019; Howard
and Ruder, 2018), becoming a dominating technique in NLP and computer vision.

Broadly speaking, pretraining is used to train an entire neural model on a large amount of data, to learn
the general-purpose knowledge and understanding of language, which can later be adapted to each in-
dividual downstream task, referred to as transfer learning. In computer vision, transfer learning (Oquab
et al., 2014; Jia et al., 2014; Huh et al., 2016; Yosinski et al., 2014) is usually performed by pretraining
models on large labeled datasets such as ImageNet (Russakovsky et al., 2015; Deng et al., 2009). In
NLP, however, pretraining is usually done through unsupervised objectives such as predicting the next
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Chapter 1. Introduction & Background

token given previous tokens auto-regressively (Brown et al., 2020), or replacing random tokens with a
[MASK] token and predicting them given their context (Devlin et al., 2019), masking random contigu-
ous spans rather than individual tokens and predicting the span using the tokens at the boundary (Joshi
et al., 2020), and corrupting the text with an arbitrary noising function and learning to reconstruct the
original text (Lewis et al., 2020), to name a few. Unsupervised pretraining objectives without requiring
labeled data allow leveraging a massive amount of data for pretraining available through the Internet.
For instance, the Common Crawl project1 provides 20TB of data every month. This combines with the
fact the language models scale remarkably well, allowing obtaining striking performance as pretraining
larger-scale models on larger dataset sizes (Chowdhery et al., 2022; Du et al., 2022; Brown et al., 2020;
Hoffmann et al., 2022; Hestness et al., 2017; Shazeer et al., 2017; Jozefowicz et al., 2016; Mahajan
et al., 2018; Radford et al., 2019; Shazeer et al., 2018; Huang et al., 2018; Keskar et al., 2019).

The success of pretrained language models (PLMs) on a wide variety of tasks (Raffel et al., 2020;
Chowdhery et al., 2022; Du et al., 2022; Brown et al., 2020; Hoffmann et al., 2022), has given rise
to a broad spectrum of research efforts such as developing new pretraining objectives (Dai and Le,
2015; Ramachandran et al., 2017; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019; Liu et al.,
2019a; Wang et al., 2019a; Song et al., 2019; Dong et al., 2019; Joshi et al., 2020), collecting new
benchmarks to pose a more rigorous test of language understanding (Wang et al., 2019b), efficient
fine-tuning methods (Mahabadi et al., 2021a,b; Howard and Ruder, 2018; Houlsby et al., 2019; Peters
et al., 2019), collecting more clean unlabeled datasets (Raffel et al., 2020), improving the efficiency of
language models (Dettmers et al., 2022; Rajbhandari et al., 2019; Smith et al., 2022), and many others.

1.1 Open problems

In spite of this rapid progress, transfer learning and training neural models which can generalize
to unseen domains is a multifaceted problem, requiring addressing several open questions. In this
thesis, we look at a) training models robust to biases in datasets b) reducing overfitting, especially
in low-source settings c) learning from multiple resources and generalization to unseen domains d)
efficient fine-tuning methods e) few-shot learning with PLMs:

• Training models robust to biases in datasets Several recent studies have shown that neural
models (Devlin et al., 2019; Radford et al., 2018) tend to rely on unwanted dataset biases2,
and leverage superficial correlations between the label and existing shortcuts in the training
dataset to perform surprisingly well, without learning the underlying task (Kaushik and Lipton,
2018; Gururangan et al., 2018; Poliak et al., 2018; Schuster et al., 2019; McCoy et al., 2019b),
resulting in models that fail to generalize to out-of-domain datasets (i.e. when the data provided
to the model at test time is significantly different from what it is trained on) and are likely
to perform poorly in real-world scenarios. For instance, natural language inference (NLI) is
supposed to test the ability of a model to determine whether a hypothesis sentence (There is

1http://commoncrawl.org
2We use biases, heuristics or shortcuts interchangeably.
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no teacher in the room) can be inferred from a premise sentence (Kids work at computers with
a teacher’s help) (Dagan et al., 2005).3 However, recent work has demonstrated that large-scale
NLI benchmarks contain annotation artifacts; certain words in the hypothesis that are highly
indicative of inference class and allow models that do not consider the premise to perform
unexpectedly well (Poliak et al., 2018; Gururangan et al., 2018). As an example it has been
shown that negation words such as “nobody”, “no”, and “not” in the hypothesis are often highly
correlated with the contradiction label. It is, therefore, crucial to develop techniques to reduce
the reliance on dataset biases during the training of neural models.

• Reducing overfitting especially on low-resource setting Pretrained language models have a huge
number of parameters, potentially making fine-tuning susceptible to overfitting in a low-resource
setting, i.e. when there is a limited amount of training data available for training. In particular, the
task-universal nature of large-scale pretrained sentence representations means that much of the
information in these representations is irrelevant to a given target task. If the amount of target task
data is small, it can be hard for fine-tuning to distinguish relevant from irrelevant information,
leading to overfitting on statistically spurious correlations between the irrelevant information and
target labels. It is therefore crucial to address the problem of overfitting and propose fine-tuning
methods to improve transfer learning in low-resource scenarios. Addressing learning from
low-resource tasks is especially an important topic in NLP (Cherry et al., 2019) because data
annotation is costly and time-consuming, and in several tasks access to data is limited.

• Learning from multiple resources and generalizing to unseen domains Multi-task learning
with pretrained language models (Ruder, 2017) is appealing for multiple reasons: 1) Training
individual models per task results in higher computational costs, which hinders their deploy-
ment and maintenance. These costs are substantially reduced by training a single model. 2)
Fine-tuning the model across multiple tasks allows sharing information between the different
tasks and positive transfer to other related tasks. Specifically, when target datasets have limited
training data, multi-task learning improves the performance compared to individually trained
models (Liu et al., 2019a; Ratner et al., 2018). However, multi-task fine-tuning can result in
models underperforming on high-resource tasks due to constrained capacity (Arivazhagan et al.,
2019; McCann et al., 2018). Additionally, such models can be susceptible to task interference
or negative transfer, where achieving good performance on one task can hinder performance
on another (Wang et al., 2019d). It is therefore important to be able to fine-tune PLMs on
multiple tasks in a way that information across tasks can be shared while avoiding negative task
interference, and ideally enabling transferring this knowledge to unseen domains.

• Efficient fine-tuning methods PLMs are generally applied to downstream tasks via fine-tuning
(Howard and Ruder, 2018), which requires updating all parameters and storing one copy of the
fine-tuned model per task. This causes substantial storage and deployment costs and hinders the
applicability of large-scale PLMs to real-world applications. Additionally, fine-tuning of over-
parameterized models on low-resource datasets has been shown to be subject to instabilities and
may lead to poor performance (Peters et al., 2019; Dodge et al., 2020). This is therefore pivotal

3The given sentences are in the contradictory relation, and the hypothesis cannot be inferred from the premise.
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to develop practical, memory-efficient methods that train a minimum set of parameters while
achieving performance on par or better than full fine-tuning for state-of-the-art NLP models.

• Few-shot learning with PLMs Recently, GPT-3 (Brown et al., 2020) has obtained impressive
few-shot performance on several natural understanding tasks. GPT3 conditions on a language
prompt and a few demonstrations of the task without updating the weights of the underlying
model. However, it has over 175B parameters, hindering its application in real-world scenarios.
This is therefore of huge practical value, to obtain similar or better few-shot performance on
much smaller PLMs like BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019b). This not
only allows an efficient training/inference with a low compute budget, but also reduces the need
for costly annotated examples, and is practical as this is easy to annotate a few training examples
(e.g., 32 samples).

In the rest of this chapter, we shall provide background relevant to the topics of this thesis, which we
will use to state our main contributions at the end of this chapter.

1.2 Background & Related work

1.2.1 Bias reduction

As a result of the existence of dataset biases, models exploiting statistical shortcuts during training often
perform poorly on out-of-domain datasets, especially if the datasets are carefully designed to limit the
spurious cues. To allow proper evaluation, recent studies have tried to create new evaluation datasets
that do not contain such biases (Gururangan et al., 2018; Schuster et al., 2019; McCoy et al., 2019b).
Unfortunately, it is hard to avoid spurious statistical cues in the construction of large-scale benchmarks,
and collecting new datasets is costly (Sharma et al., 2018). It is pivotal to develop techniques to reduce
the reliance on biases during the training of neural models.

To address dataset biases, researchers have proposed to augment datasets by balancing the existing
cues (Schuster et al., 2019) or to create an adversarial dataset (Jia and Liang, 2017). However, collecting
new datasets, especially at a large scale, is costly, and thus remains an unsatisfactory solution. It is, there-
fore, crucial to develop strategies to allow models to be trained on the existing biased datasets. Schuster
et al. (2019) propose to first compute the n-grams in the dataset’s claims that are the most associated
with each fact-verification label. They then solve an optimization problem to assign a balancing weight
to each training sample to alleviate the biases. However, this model does not work end-to-end, which is
convenient in practice. Additionally, Belinkov et al. (2019a) propose adversarial techniques to remove
from the NLI sentence encoder the features that allow a hypothesis-only model to succeed. However,
in general, the features used by the hypothesis-only model can include some information necessary to
perform the NLI task, and removing such information from the sentence representation can hurt the per-
formance of the full model. Their approach consequently degrades the performance on the hard SNLI
set, which is expected to be less biased. However, this is valuable to developing debiasing strategies
that can improve the generalization of neural models, while not hurting their in-domain performance.
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Figure 1.1: Left: Adapter integration in a PLM. Right: An adapter architecture. Adapters are usually
inserted after the feed-forward and self-attention modules. During training, only the green components
are optimized.

1.2.2 Reducing overfitting on low-resource setting

Several regularization techniques have been used to reduce over-fitting when fine-tuning PLMs, es-
pecially on low-resource settings: 1) Dropout: (Srivastava et al., 2014), a widely used stochastic
regularization technique used in multiple large-scale language models (Devlin et al., 2019; Yang
et al., 2019; Vaswani et al., 2017) to mitigate overfitting. 2) Mixout (Lee et al., 2019): is a stochastic
regularization technique inspired by Dropout with the goal of preventing catastrophic forgetting during
fine-tuning. Mixout regularizes the learning to minimize the deviation of a fine-tuned model from
the pretrained initialization. It replaces the model parameters with the corresponding value from the
pretrained model with probability p. 3) Weight Decay (WD): is a common regularization technique
to improve generalization (Krogh and Hertz, 1992). It regularizes the large weights w by adding a pe-
nalization term λ

2∥w∥ to the loss, where λ is a hyperparameter specifying the strength of regularization.
Chelba and Acero (2004) and Daumé III (2007) adapt WD for fine-tuning of the pretrained models,
and propose to replace this regularization term with λ∥w −w0∥, where w0 are the weights of the
pretrained models. Recently, Lee et al. (2019) demonstrated that the latter formulation of WD works
better for fine-tuning of BERT than conventional WD and can improve generalization on small training
sets. In another line of work, Phang et al. (2018) proposed to perform an extra data-rich intermediate
supervised task pretraining followed by fine-tuning on the target task. They showed that their method
leads to improved fine-tuning performance on the GLUE benchmark (Wang et al., 2019c). However,
their method requires pretraining with a large intermediate task. However, this is of practical value,
to address overfitting by leveraging only the provided low-resource target datasets.
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1.2.3 Efficient Fine-tuning of PLMs

Adapter layers Recent work has shown that fine-tuning all parameters of PLMs with a large number
of parameters in low-resource datasets can lead to a sub-optimal solution (Peters et al., 2019; Dodge
et al., 2020). As shown in Figure 1.1, Rebuffi et al. (2018) and Houlsby et al. (2019) suggest an
efficient alternative, by inserting small task-specific modules called adapters within layers of a PLMs.
They then only train the newly added adapters and layer normalization, while fixing the remaining
parameters of a PLM.

Each layer of a transformer model is composed of two primary modules: a) an attention block, and b) a
feed-forward block, where both modules are followed by a skip connection. As depicted in Figure 1.1,
adapters are normally inserted after each of these blocks before the skip connection. Adapters are
bottleneck architectures. By keeping input and output dimensions the same, they introduce no addi-
tional architectural changes. Each adapter, A(.)∈RH , consists of a down-projection, D(.)∈RH×B,
a non-linearity, such as GeLU (Hendrycks and Gimpel, 2016), and an up-projection U(.)∈RB×H ,
where H is the dimension of input hidden states x, and B is the bottleneck size. Formally defined as:

A(x)=U(GeLU(D(x)))+x, (1.1)

Parameter-efficient fine-tuning methods Li et al. (2018) and Aghajanyan et al. (2021) study training
models in a low-dimensional randomly oriented subspace instead of their original parameter space.
Another recent line of work has shown that pretrained models such as BERT are redundant in their
capacity, allowing for significant sparsification without much degradation in end metrics (Chen et al.,
2020; Prasanna et al., 2020; Desai et al., 2019). Such methods, however, remain not well supported
by current hardware and often perform worse compared to dedicated efficient architectures (Blalock
et al., 2020). Cai et al. (2020) propose to freeze the weights and only train the biases. By not storing
intermediate activations, this method enables substantial memory savings. Ravfogel et al. (2021) study
a similar method for PLMs that fine-tunes only the biases and the final output layer. Other work
includes prompt tuning (Lester et al., 2021) which is the successor variant of Li and Liang (2021),
which prepends a randomly initialized continuous prompt to the input. Another variant of it initializes
prompts using token embeddings of the pretrained language model’s vocabulary (Lester et al., 2021).

Efficient fine-tuning methods in the multi-task learning setting Multi-task learning, i.e., learning a
unified model to perform well on multiple different tasks, is a challenging problem in NLP. It requires
addressing multiple challenges such as catastrophic forgetting, and handling disproportionate task sizes
resulting in a model overfitting in low-resource tasks while underfitting in high-resource ones (Ari-
vazhagan et al., 2019). Liu et al. (2019a) proposed Multi-Task Deep Neural Network (MTDNN) for
learning from multiple NLU tasks. Although MTDNN obtains impressive results on GLUE, it applies
multi-task learning as a form of pretraining followed by task-specific fine-tuning. In another line of
research, Clark et al. (2019c) proposed to learn multi-task models with knowledge distillation. Houlsby
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et al. (2019) trained adapters for each task separately, keeping the model fixed. Stickland and Murray
(2019) share the model parameters across tasks and introduce task-specific adapter parameters. In
another approach, Oswald et al. (2020) proposed a task-conditioned hypernetwork to generate all the
weights of the target model in a continual learning setup, where tasks are learned sequentially. Simi-
larly, Jin et al. (2020) generate the full model from task-specific descriptions in different domains. Note
that such methods dealing with fully generating all the weights of the target models are not efficient.
Prior work also proposed meta-learning or Bayesian approaches to generate softmax layer parameters
for new settings (Bansal et al., 2020; Ponti et al., 2020). Meta-learning approaches are notoriously
slow to train. In addition, generating softmax parameters requires a substantially higher number of
parameters, leaves the method unable to adapt the lower layers of the model, and restricts their appli-
cation to classification tasks. This is of paramount importance to develop efficient fine-tuning methods
for multi-task learning settings, which allow the model to generalize to the new unseen domains.

1.2.4 Few-shot Learning with Pretrained Language Models

In this section, we review the related work on few-shot learning with pretrained language models.

Standard Fine-tuning In standard fine-tuning with PLMs (Devlin et al., 2019), first a special [CLS]
token is appended to the input x, and then the PLM maps it to a sequence of hidden representa-
tions h = (h1,...,hS) with hi ∈ RH , where H is the hidden dimension, and S is the maximum
sequence length. Then, a classifier, softmax(W T h[CLS]), using the embedding of the classification
token (h[CLS]), is trained end-to-end for each downstream task. The main drawback of this approach
is the discrepancy between the pre-training and fine-tuning phases since PLMs have been trained to
predict mask tokens in a masked language modeling task (Devlin et al., 2019).

Prompt-based tuning To address this discrepancy, prompt-based fine-tuning (Schick and Schütze,
2021a,b; Gao et al., 2021) formulates tasks in a cloze-format (Taylor, 1953). This way, the model
can predict targets with a masked language modeling (MLM) objective. For example, as shown in
Figure 1.2, for a sentiment classification task, inputs are converted to:

xprompt = [CLS] x . It was︸ ︷︷ ︸
pattern

[MASK] . [SEP]

Then, the PLM determines which verbalizer (e.g., ‘great’ and ‘terrible’) is the most likely substitute
for the mask in the xprompt. This subsequently determines the score of targets (‘positive’ or ‘negative’).
Then, a mapping, M :Y →V, from target labels to individual words in a PLM’s vocabulary is learned.
We refer to this mapping as verbalizers. Then the input is converted to xprompt =T (x) by appending
a pattern and a mask token to x so that it has the format of a masked language modeling input. Then,
the classification task is converted to an MLM objective (Tam et al., 2021; Schick and Schütze, 2021a),

7



Chapter 1. Introduction & Background

[CLS] The restaurant had excellent foods. It was [MASK] [SEP]

Pretrained Language Model

Input Pattern

MLM Head
 terrible

great
Verbalizers

positive

negative

Labels

Figure 1.2: Existing few-shot fine-tuning methods rely on handcrafted patterns and verbalizers to
convert tasks to a masked language modeling format.

and the PLM computes the probability of the label y as:

p(y|x)=p([MASK]=M(y)|xprompt)=
exp(W T

M(y)h[MASK])∑
v′∈Vexp(W T

v′ h[MASK])
, (1.2)

where h[MASK] is the last hidden representation of the mask, and Wv shows the output embedding
of the PLM for each verbalizer v∈V. For many tasks, verbalizers have multiple tokens. Schick and
Schütze (2021b) extended (1.2) to multiple mask tokens by adding the maximum number of mask
tokens M needed to express the outputs (verbalizers) for a task. In that case, Schick and Schütze
(2021b) computes the probability of each class as the summation of the log probabilities of each token
in the corresponding verbalizer, and then they add a hinge loss to ensure a margin between the correct
verbalizer and the incorrect ones.

This formulation obtained impressive few-shot performance with PLMs. However, the success of this
approach heavily relies on engineering handcrafted patterns and verbalizers. Coming up with suitable
verbalizers and patterns can be difficult (Mishra et al., 2021). Additionally, the performance is sensitive
to the wording of patterns (Zhao et al., 2021; Perez et al., 2021; Schick and Schütze, 2021a; Jiang
et al., 2020) or to the chosen verbalizers (Webson and Pavlick, 2021).

Researchers continuously tried to address the challenges of manually engineered patterns and ver-
balizers: a) Learning the patterns in a continuous space (Li and Liang, 2021; Qin and Eisner, 2021;
Lester et al., 2021), while freezing PLM for efficiency, has the problem that, in most cases, such an
approach only works with very large scale PLMs (Lester et al., 2021), and lags behind full fine-tuning
in a general setting while being inefficient and not as effective compared to adapters (Mahabadi et al.,
2021a). b) Optimizing patterns in a discrete space (Shin et al., 2020; Jiang et al., 2020; Gao et al., 2021)
has the problem that such methods are computationally costly. c) Automatically finding verbalizers in
a discrete way Schick et al. (2020); Schick and Schütze (2021a) is computationally expensive and does
not perform as well as manually designed ones. d) Removing manually designed patterns (Logan IV
et al., 2021) substantially lags behind the expert-designed ones. This is therefore pivotal to propose
few-shot learning methods which do not rely on any handcrafted patterns and verbalizers.
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1.3 Research Questions & Contributions

Having discussed the relevant background material, we are now ready to delve into the concrete
research questions we consider in this thesis.

Research Question 1 Is it possible to train robust natural language understanding (NLU) models
that are not relying on unwanted dataset biases and generalize better to out-of-domain datasets?

We answer this research question in Chapter 2 by proposing two learning strategies to train neural
models, which are more robust to dataset biases and transfer better to out-of-domain datasets. The
biases are specified in terms of one or more bias-only models, which learn to leverage the dataset biases.
During training, the bias-only models’ predictions are used to adjust the loss of the base model to
reduce its reliance on biases by down-weighting the biased examples and focusing training on the hard
examples. We experiment on large-scale natural language inference and fact verification benchmarks,
evaluating on out-of-domain datasets that are specifically designed to assess the robustness of models
against known biases in the training data. Results show that our debiasing methods greatly improve
robustness in all settings and better transfer to other textual entailment datasets.

Research Question 2 Is it possible to reduce the overfitting of large-scale pretrained language models
when fine-tuned especially on low-resource scenarios and suppress the irrelevant features, learned
during pretraining, for a given target task?

In Chapter 3 we take a bird’s eye view on fine-tuning large-scale pretrained language models on
low-resource datasets and ask how can we reduce overfitting when the number of training data is
limited. We start with the observation that due to the task-universal nature of pretraining of language
models, such models are general-purpose feature extractors and many of these features are inevitably
irrelevant for a given target task. If the amount of target task data is small, it can be hard for fine-tuning
to distinguish relevant from irrelevant information, leading to overfitting on statistically spurious
correlations between the irrelevant information and target labels. Crucially, learning low-resource tasks
is an important topic in NLP (Cherry et al., 2019) because annotating more data can be very costly and
time-consuming, and because in several tasks access to data is limited. This leaves an open question
of how we can suppress these irrelevant features while keeping the most concise representation which
can still solve the task. To address this problem, we propose to use Variational Information Bottleneck
(VIB) (Alemi et al., 2017) to suppress irrelevant features when fine-tuning on low-resource target tasks
and show that our method successfully reduces overfitting. Moreover, we show that our VIB model
finds sentence representations that are more robust to biases in natural language inference datasets,
and thereby substantially improves generalization to out-of-domain datasets. Evaluation on seven
low-resource datasets in different tasks shows that our method significantly improves transfer learning
in low-resource scenarios, surpassing prior work. Moreover, it improves generalization on 13 out of
15 out-of-domain natural language inference benchmarks.
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Research Question 3 Is it possible to fine-tune pretrained language models across multiple tasks
efficiently, allowing sharing information across tasks while eliminating negative task interference?

State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between
the layers of a pretrained language model. However, such modules are trained separately for each
task and thus do not enable sharing information across tasks. We ask if there can be an effective and
parameter-efficient way to share information across multiple adapters to enable positive transfer to
low-resource and related tasks. To address this problem and to enable sharing information across tasks
while reaping the benefits of adapter layers, in Chapter 4, we propose HYPERFORMER++, which
employs a compact hypernetwork (Ha et al., 2017; Oswald et al., 2020) shared across tasks and layers.
The hypernetwork is a network that generates the weights of another network. The hypernetwork
then learns to generate task and layer-specific adapter parameters, conditioned on task and layer id
embeddings in a transformer model. This parameter-efficient multi-task learning framework allows
us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while
enabling the model to adapt to each individual task through task-specific adapters. Experiments on
the well-known GLUE benchmark show improved performance in multi-task learning while adding
only 0.29% parameters per task. We additionally demonstrate substantial performance improvements
in few-shot domain generalization across a variety of tasks.

Research Question 4 Is it possible to fine-tune pretrained language models in a parameter-efficient
and stable way in a low-resource setting?

We answer this question in Chapter 5 by proposing COMPACTER, a method for fine-tuning large-scale
language models with a better trade-off between task performance and the number of trainable parame-
ters than prior work. COMPACTER accomplishes this by building on top of ideas from adapters, low-rank
optimization (Aghajanyan et al., 2021), and parameterized hypercomplex multiplication layers (Zhang
et al., 2021a). Specifically, COMPACTER inserts task-specific weight matrices into a pretrained model’s
weights, which are computed efficiently as a sum of Kronecker products between shared “slow”
weights and “fast” rank-one matrices defined per COMPACTER layer. By only training 0.047% of a
pretrained model’s parameters, COMPACTER performs on par with standard fine-tuning on GLUE and
outperforms standard fine-tuning on SuperGLUE (Wang et al., 2019b) and low-resource settings.

Research Question 5 Is it possible to few-shot fine-tune pretrained language models without relying
on any handcrafting?

Current methods for few-shot fine-tuning of pretrained masked language model (PLM) require carefully
engineered prompts and verbalizers for each new task, to convert examples into a cloze-format that
the PLM can score. In Chapter 6, we propose PERFECT, a simple and efficient method for few-shot
fine-tuning of PLMs without relying on any such handcrafting, which is highly effective given as few
as 32 data points. PERFECT makes two key design choices: First, we show that manually engineered
task prompts can be replaced with task-specific adapters that enable sample-efficient fine-tuning and
reduce memory and storage costs by roughly factors of 5 and 100, respectively. Second, instead of
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using handcrafted verbalizers, we learn a new multi-token label embedding during fine-tuning which
is not tied to the model vocabulary and which allows us to avoid complex auto-regressive decoding.
These embeddings are not only learnable from limited data but also enable nearly 100x faster training
and inference. Experiments on a wide range of few-shot NLP tasks demonstrate that PERFECT, while
being simple and efficient, also outperforms existing state-of-the-art few-shot learning methods.
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2 End-to-End Bias Mitigation by Mod-
elling Biases in Corpora

Several recent studies have shown that strong natural language understanding (NLU) models are prone
to relying on unwanted dataset biases without learning the underlying task, resulting in models that
fail to generalize to out-of-domain datasets and are likely to perform poorly in real-world scenarios.
In this Chapter, we propose two learning strategies to train neural models, which are more robust to
such biases and transfer better to out-of-domain datasets. The biases are specified in terms of one
or more bias-only models, which learn to leverage the dataset biases. During training, the bias-only
models’ predictions are used to adjust the loss of the base model to reduce its reliance on biases by
down-weighting the biased examples and focusing training on the hard examples. We experiment on
large-scale natural language inference and fact verification benchmarks, evaluating on out-of-domain
datasets that are specifically designed to assess the robustness of models against known biases in the
training data. Results show that our debiasing methods greatly improve robustness in all settings and
better transfer to other textual entailment datasets.1

2.1 Introduction

Recent neural models (Devlin et al., 2019; Radford et al., 2018; Chen et al., 2017) have achieved high
and even near human-performance on several large-scale natural language understanding benchmarks.
However, it has been demonstrated that neural models tend to rely on existing idiosyncratic biases
in the datasets, and leverage superficial correlations between the label and existing shortcuts in the
training dataset to perform surprisingly well, without learning the underlying task (Kaushik and Lipton,
2018; Gururangan et al., 2018; Poliak et al., 2018; Schuster et al., 2019; McCoy et al., 2019b). For
instance, natural language inference (NLI) is supposed to test the ability of a model to determine
whether a hypothesis sentence (There is no teacher in the room) can be inferred from a premise
sentence (Kids work at computers with a teacher’s help) (Dagan et al., 2005).2 However, recent work
has demonstrated that large-scale NLI benchmarks contain annotation artifacts; certain words in the
hypothesis that are highly indicative of inference class and allow models that do not consider the

1Our code and data are publicly available in https://github.com/rabeehk/robust-nli.
2The given sentences are in the contradictory relation, and the hypothesis cannot be inferred from the premise.
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Premise Hypothesis

The woman is not sleeping.

Bias-only Model

0.1 0.8

0.9 0.05 0.05

0 1 0

Combination Model 0.6 0.3 0.1

0 1 0

Training

NLI Model

Evaluation

The woman is awake.

0.1

Target

Target

Forward pass 

   Backward pass 

Figure 2.1: An illustration of our debiasing strategies applied to an NLI model. The bias-only model
only sees the hypothesis, where negation words like “not” are highly correlated with the contradiction
label. We train a robust NLI model by training it in combination with the bias-only model and motivate
it to learn different strategies than the ones used in the bias-only model. The robust NLI model does
not rely on the shortcuts and obtains improved performance on the test set.

premise to perform unexpectedly well (Poliak et al., 2018; Gururangan et al., 2018). As an example,
in some NLI benchmarks, negation words such as “nobody”, “no”, and “not” in the hypothesis are
often highly correlated with the contradiction label.

As a result of the existence of such biases, models exploiting statistical shortcuts during training often
perform poorly on out-of-domain datasets, especially if the datasets are carefully designed to limit the
spurious cues. To allow proper evaluation, recent studies have tried to create new evaluation datasets
that do not contain such biases (Gururangan et al., 2018; Schuster et al., 2019; McCoy et al., 2019b).
Unfortunately, it is hard to avoid spurious statistical cues in the construction of large-scale benchmarks,
and collecting new datasets is costly (Sharma et al., 2018). It is, therefore, crucial to develop techniques
to reduce the reliance on biases during the training of the neural models.

We propose two end-to-end debiasing techniques that can be used when the existing bias patterns are
identified. These methods work by adjusting the cross-entropy loss to reduce the biases learned from
the training dataset, down-weighting the biased examples so that the model focuses on learning the
hard examples. Figure 2.1 illustrates an example of applying our strategy to prevent an NLI model
from predicting the labels using existing biases in the hypotheses, where the bias-only model only sees
the hypothesis. Our strategy involves adding this bias-only branch fB on top of the base model fM

during training. We then compute the combination of the two models fC in a way that motivates the
base model to learn different strategies than the ones used by the bias-only branch fB. At the end of
the training, we remove the bias-only classifier and use the predictions of the base model.

In our first proposed method, Product of Experts, the training loss is computed on an ensemble of
the base model and the bias-only model, which reduces the base model’s loss for the examples that
the bias-only model classifies correctly. For the second method, Debiased Focal Loss, the bias-only
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predictions are used to directly weight the loss of the base model, explicitly modulating the loss
depending on the accuracy of the bias-only model. We also extend these methods to be robust against
multiple sources of bias by training multiple bias-only models.

Our approaches are simple and highly effective. They require training only a simple model on top of
the base model. They are model agnostic and general enough to be applicable for addressing common
biases seen in many datasets in different domains.

We evaluate our models on challenging benchmarks in textual entailment and fact verification, includ-
ing HANS (Heuristic Analysis for NLI Systems) (McCoy et al., 2019b), hard NLI sets (Gururangan
et al., 2018) of Stanford Natural Language Inference (SNLI) (Bowman et al., 2015) and MultiNLI
(MNLI) (Williams et al., 2018), and FEVER Symmetric test set (Schuster et al., 2019). The selected
datasets are highly challenging and have been carefully designed to be unbiased to allow proper
evaluation of the out-of-domain performance of the models. We additionally construct hard MNLI
datasets from MNLI development sets to facilitate the out-of-domain evaluation on this dataset.3 We
show that including our strategies on training baseline models, including BERT (Devlin et al., 2019),
provides a substantial gain on out-of-domain performance in all the experiments.

In summary, we make the following contributions: 1) Proposing two debiasing strategies to train
neural models robust to dataset bias. 2) An empirical evaluation of the methods on two large-scale
NLI datasets and a fact verification benchmark; obtaining a substantial gain on their challenging
out-of-domain data, including 7.4 points on HANS, 4.8 points on SNLI hard set, and 9.8 points on
FEVER symmetric test set, setting a new state-of-the-art. 3) Proposing debiasing strategies capable
of combating multiple sources of bias. 4) Evaluating the transfer performance of the debiased models
on 12 NLI datasets and demonstrating improved transfer to other NLI benchmarks.

2.2 Related Work

To address dataset biases, researchers have proposed to augment datasets by balancing the existing
cues (Schuster et al., 2019) or to create an adversarial dataset (Jia and Liang, 2017). However, collecting
new datasets, especially at a large scale, is costly, and thus remains an unsatisfactory solution. It is,
therefore, crucial to develop strategies to allow models to be trained on the existing biased datasets.

Schuster et al. (2019) propose to first compute the n-grams in the dataset’s claims that are the most
associated with each fact-verification label. They then solve an optimization problem to assign a
balancing weight to each training sample to alleviate the biases. In contrast, we propose several
end-to-end debiasing strategies. Additionally, Belinkov et al. (2019a) propose adversarial techniques to
remove from the NLI sentence encoder the features that allow a hypothesis-only model to succeed.
However, we believe that in general, the features used by the hypothesis-only model can include some
information necessary to perform the NLI task, and removing such information from the sentence
representation can hurt the performance of the full model. Their approach consequently degrades the

3Removing the need to submit to an online evaluation system for MNLI hard test sets.
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performance on the hard SNLI set, which is expected to be less biased. In contrast, we propose to
train a bias-only model to use its predictions to dynamically adapt the classification loss to reduce the
importance of the most biased examples.

Concurrently to our work, Clark et al. (2019b) and He et al. (2019) have also proposed to use the
product of experts (PoE) models for avoiding biases. They train their models in two stages, first
training a bias-only model and then using it to train a robust model. In contrast, our methods are trained
in an end-to-end manner, which is convenient in practice. We additionally show that our proposed
Debiased Focal Loss model is an effective method to reduce biases, sometimes superior to PoE. We
have evaluated on new domains of NLI hard sets and fact verification. Moreover, we have included an
analysis showing that our debiased models indeed have lower correlations with the bias-only models,
and have extended our methods to guard against multiple bias patterns simultaneously. We furthermore
study transfer performance to other NLI datasets.

2.3 Reducing Biases

Problem formulation We consider a general multi-class classification problem. Given a dataset
D={xi,yi}N

i=1 consisting of the input data xi ∈X , and labels yi ∈Y, the goal of the base model is
to learn a mapping fM parameterized by θM that computes the predictions over the label space given
the input data, shown as fM :X →R|Y|. Our goal is to optimize θM parameters such that we build a
model that is more resistant to benchmark dataset biases, to improve its robustness to domain changes
where the biases typically observed in the training data do not exist in the evaluation dataset.

The key idea of our approach, depicted in Figure 2.1, is first to identify the dataset biases that the base
model is susceptible to relying on, and define a bias-only model to capture them. We then propose
two strategies to incorporate this bias-only knowledge into the training of the base model to make it
robust against the biases. After training, we remove the bias-only model and use the predictions of
the base model.

2.3.1 Bias-only Branch

We assume that we do not have access to any data from the out-of-domain dataset, so we need to know
a priori about the possible types of shortcuts we would like the base model to avoid relying on. Once
these patterns are identified, we train a bias-only model designed to capture the identified shortcuts that
only uses biased features. For instance, a hypothesis-only model in the large-scale NLI datasets can
correctly classify the majority of samples using annotation artifacts (Poliak et al., 2018; Gururangan
et al., 2018). Motivated by this work, our bias-only model for NLI only uses hypothesis sentences.
Note that the bias-only model can, in general, have any form, and is not limited to models using only a
part of the input data. For instance, on the HANS dataset, our bias-only model makes use of syntactic
heuristics and similarity features (see §2.4.3).

Let xb
i ∈X b be biased features of xi that are predictive of yi. We then formalize this bias-only model
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as a mapping fB :X b →R|Y|, parameterized by θB and trained using cross-entropy (CE) loss LB:

LB(θB)=− 1
N

N∑
i=1

log(σ(fyi
B (xb

i ;θB))), (2.1)

where fj
B(xb

i ,θB) is the jth element of fB(.), and σ(uj)=euj
/
∑|Y|

k=1euk
is the softmax function.

2.3.2 Proposed Debiasing Strategies

We propose two strategies to incorporate the bias-only fB knowledge into the training of the base
model fM . In our strategies, the predictions of the bias-only model are combined with either the
predictions of the base model or its error, to down-weight the loss for the examples that the bias-only
model can predict correctly. We then update parameters of the base model θM based on this modified
loss LC. Our learning strategies are end-to-end. Therefore, to prevent the base model from learning
the biases, the bias-only loss LB is not back-propagated to any shared parameters of the base model,
such as a shared sentence encoder.

Method 1: Product of Experts

Our first approach is based on the product of experts (PoE) method (Hinton, 2002). Here, we use
this method to combine the bias-only and base model’s predictions by computing the element-wise
product ⊙ between their predictions as σ(fB(xb

i))⊙σ(fM(xi)). We compute this combination in the
logarithmic space, making it appropriate for the normalized exponential below:

fC(xi,x
b
i)=log(σ(fB(xb

i)))+log(σ(fM(xi))),

The key intuition behind this model is to combine the probability distributions of the bias-only and
the base model to allow them to make predictions based on different characteristics of the input; the
bias-only branch covers prediction based on biases, and the base model focuses on learning the actual
task. Then the base model parameters θM are trained using the cross-entropy loss LC of the combined
classifier fC:

LC(θM ;θB)=− 1
N

N∑
i=1

log(σ(fyi
C (xi,x

b
i))). (2.2)

When updating the base model parameters using this loss, the predictions of the bias-only model
decrease the updates for examples that it can accurately predict.

Justification Probability of label yi for the example xi in the PoE model is computed as:

σ(fyi
C (xi,x

b
i))= σ(fyi

B (xb
i))σ(fyi

M(xi))∑|Y|
k=1σ(fk

B(xb
i))σ(fk

M(xi))
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Then the gradient of cross-entropy loss of the combined classifier (2.2) w.r.t θM is (Hinton, 2002):

∇θM
LC(θM ;θB)=− 1

N

N∑
i=1

|Y|∑
k=1

[(
δyik−σ(fk

C(xi,x
b
i))

)
∇θM

log(σ(fk
M(xi)))

]
,

where δyik is 1 when k=yi and 0 otherwise. Generally, the closer the ensemble’s prediction σ(fk
C(.)) is

to the target δyik, the more the gradient is decreased through the modulating term, which only happens
when the bias-only and base models are both capturing biases.

In the extreme case, when the bias-only model correctly classifies the sample, σ(fyi
C (xi,x

b
i)) = 1

and therefore ∇θM
LC(θM ;θB) = 0, the biased examples are ignored during training. Conversely,

when the example is fully unbiased, the bias-only classifier predicts the uniform distribution over all
labels σ(fk

B(xb
i))= 1

|Y| for k∈Y, therefore σ(fyi
C (xi,x

b
i))=σ(fyi

M(xi)) and the gradient of ensemble
classifier remains the same as the CE loss.

Method 2: Debiased Focal Loss

Focal loss was originally proposed in Lin et al. (2017) to improve a single classifier by down-weighting
the well-classified points. We propose a novel variant of this loss that leverages the bias-only branch’s
predictions to reduce the relative importance of the most biased examples and allows the model to
focus on learning the hard examples. We define Debiased Focal Loss (DFL) as:

LC(θM ;θB)=− 1
N

N∑
i=1

(
1−σ(fyi

B (xb
i))

)γ
log(σ(fyi

M(xi))) (2.3)

where γ is the focusing parameter, which impacts the down-weighting rate. When γ is set to 0,
DFL is equivalent to the cross-entropy loss. For γ > 0, as the value of γ is increased, the effect of
down-weighting is increased. We set γ =2 through all experiments, which works well in practice, and
avoid fine-tuning it further. We note the properties of this loss: (1) When the example xi is unbiased,
and the bias-only branch does not do well, σ(fyi

B (xb
i)) is small, therefore the scaling factor is close

to 1, and the loss remains unaffected. (2) As the sample is more biased and σ(fyi
B (xb

i)) is closer to
1, the modulating factor approaches 0 and the loss for the most biased examples is down-weighted.

2.3.3 RUBi baseline (Cadene et al., 2019)

We compare our models to RUBi (Cadene et al., 2019), a recently proposed model to alleviate unimodal
biases learned by Visual Question Answering (VQA) models. Cadene et al. (2019)’s study is limited
to VQA datasets. We, however, evaluate the effectiveness of their formulation on multiple challenging
NLU benchmarks. RUBi consists in first applying a sigmoid function ϕ to the bias-only model’s
predictions to obtain a mask containing an importance weight between 0 and 1 for each label. It then
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computes the element-wise product between the obtained mask and the base model’s predictions:

fC(xi,x
b
i)=fM(xi)⊙ϕ(fB(xb

i)),

The main intuition is to dynamically adjust the predictions of the base model to prevent it from
leveraging the shortcuts. Then the parameters of the base model θM are updated by back-propagating
the cross-entropy loss LC of the combined classifier.

2.3.4 Joint Debiasing Strategies

Neural models can, in practice, be prone to multiple types of biases in the datasets. We, therefore,
propose methods for combining several bias-only models. To avoid learning relations between biased
features, we do not consider training a classifier on top of their concatenation.

Instead, let {x
bj

i }K
j=1 be different sets of biased features of xi that are predictive of yi, and let fBj

be an individual bias-only model capturing x
bj

i . Next, we extend our debiasing strategies to handle
multiple bias patterns.

Method 1: Joint Product of Experts We extend our proposed PoE model to multiple bias-only
models by computing the element-wise product between the predictions of bias-only models and the
base model as: σ(fB1(xb1

i ))⊙···⊙σ(fBK
(xbK

i ))⊙σ(fM(xi)), computed in the logarithmic space:

fC(xi,{x
bj

i }K
j=1)=

K∑
j=1

log(σ(fBj(x
bj

i )))+log(σ(fM(xi))).

Then the base model parameters θM are trained using the cross-entropy loss of the combined classifier
fC .

Method 2: Joint Debiased Focal Loss To extend DFL to handle multiple bias patterns, we first com-
pute the element-wise average of the predictions of the multiple bias-only models: fB({x

bj

i }K
j=1)=

1
K

∑K
j=1fBj(x

bj

i ), and then compute the DFL (2.3) using the computed joint bias-only model.

2.4 Evaluation on Unbiased Datasets

We provide experiments on a fact verification (FEVER) and two large-scale NLI datasets (SNLI and
MNLI). We evaluate the models’ performance on recently-proposed challenging unbiased evaluation
sets. We use the BERT (Devlin et al., 2019) implementation of Wolf et al. (2020) as our main baseline,
known to work well for these tasks. In all the experiments, we use the default hyperparameters of the
baselines.
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Loss Dev Test ∆
CE 85.99 56.49
RUBi 86.23 57.60 +1.1
Schuster et al. (2019) 84.6 61.6 +5.1

DFL 83.07 64.02 +7.5
PoE 86.46 66.25 +9.8

Table 2.1: Results on FEVER development and symmetric test set. ∆ are absolute differences with
CE loss.

2.4.1 Fact Verification

Dataset The FEVER dataset contains claim-evidence pairs generated from Wikipedia. Schuster et al.
(2019) collected a new evaluation set for the FEVER dataset to avoid the idiosyncrasies observed in
the claims of this benchmark. They made the original claim-evidence pairs of the FEVER evaluation
dataset symmetric, by augmenting them and making each claim and evidence appear with each
label. Therefore, by balancing the artifacts, relying on statistical cues in claims to classify samples is
equivalent to a random guess. The collected dataset is challenging, and the performance of the models
relying on biases evaluated on this dataset drops significantly.

Base models We consider BERT as the base model, which works the best on this dataset (Schuster
et al., 2019), and predicts the relations based on the concatenation of the claim and the evidence with
a delimiter token (see Appendix 2.8).

Bias-only model The bias-only model predicts the labels using only claims as input.

Results Table 2.1 shows the results. Our proposed debiasing methods, PoE and DFL, are highly
effective, boosting the performance of the baseline by 9.8 and 7.5 points respectively, significantly
surpassing the prior work of Schuster et al. (2019).

2.4.2 Natural Language Inference

Datasets We evaluate on hard datasets of SNLI and MNLI (Gururangan et al., 2018), which are the
splits of these datasets where a hypothesis-only model cannot correctly predict the labels. Gururangan
et al. (2018) show that the success of the recent textual entailment models is attributed to the biased
examples, and the performance of these models is substantially lower on the hard sets.

Base models We consider BERT and InferSent (Conneau et al., 2017) as our base models. We choose
InferSent to be able to compare with the prior work of Belinkov et al. (2019b).
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t]

Loss BERT InferSent

Test Hard ∆ Test Hard ∆
CE 90.53 80.53 84.24 68.91
RUBi 90.69 80.62 +0.1 83.93 69.64 +0.7
AdvCls* — — — 83.56 66.27 -2.6
AdvDat* — — — 78.30 55.60 -13.3

DFL 89.57 83.01 +2.5 73.54 73.05 +4.1
PoE 90.11 82.15 +1.6 80.35 73.69 +4.8

Table 2.2: Results on the SNLI test, hard set, and differences with CE loss. *: results from Belinkov
et al. (2019b).

Bias-only model The bias-only model predicts the labels using the hypothesis (Appendix 2.9).

Results on SNLI Table 2.2 shows the SNLI results. With InferSent, DFL and PoE result in 4.1 and 4.8
points gain. With BERT, DFL and PoE improve the results by 2.5 and 1.6 absolute points. Compared
to the prior work of Belinkov et al. (2019b) (AdvCls), our PoE model obtains a 7.4 points gain, setting
a new state-of-the-art.

Results on MNLI We construct hard sets from the validation sets of MNLI Matched and Mismatched
(MNLI-M). Following Gururangan et al. (2018), we train a fastText classifier (Joulin et al., 2017)
that predicts the labels using only the hypothesis and consider the subset on which it fails as hard
examples.

We report the results on MNLI mismatched sets in Table 2.3 (see Appendix 2.9 for similar results on
MNLI matched). With BERT, DFL and PoE obtain 1.4 and 1.7 points gain on the hard development
set, while with InferSent, they improve the results by 2.5 and 2.6 points. To comply with limited access
to the MNLI submission system, we evaluate only the best result of the baselines and our models
on the test sets. Our PoE model improves the performance on the hard test set by 1.1 points while
retaining in-domain accuracy.

2.4.3 Syntactic Bias in NLI

Dataset McCoy et al. (2019b) show that NLI models trained on MNLI can adopt superficial syntactic
heuristics. They introduce HANS, consisting of several examples on which the syntactic heuristics fail.

Base model We use BERT as our base model and train it on the MNLI dataset.
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BERT InferSent

Loss MNLI Hard ∆ MNLI Hard ∆
Development set results

CE 84.53 77.55 69.99 56.53
RUBi 85.17 78.63 +1.1 70.53 58.08 +1.5

DFL 84.85 78.92 +1.4 61.12 59.05 +2.5
PoE 84.85 79.23 +1.7 65.85 59.14 +2.6

Test set results
CE 83.51 75.75 — — —
PoE 83.47 76.83 +1.1 — — —

Table 2.3: Results on MNLI mismatched benchmark and MNLI mismatched hard set. ∆ are absolute
differences with CE loss.

Loss MNLI HANS ∆
CE 84.51 61.88 ±1.9
RUBi 84.53 61.76±2.7 -0.1
Reweight ❣ 83.54 69.19 +7.3
Learned-Mixin ❣ 84.29 64.00 +2.1
Learned-Mixin+H ❣ ✤ 83.97 66.15 +4.3

PoE 84.19 66.31±0.6 +4.4
DFL 83.95 69.26 ±0.2 +7.4
DFL✤ 82.76 71.95±1.4 +10.1

Table 2.4: Results on MNLI Matched dev set and HANS. ❣: results from Clark et al. (2019b). ✤:
perform hyper-parameter tuning. ∆ are differences with CE loss.

Bias-only model We consider the following features for the bias-only model. The first four features
are based on the syntactic heuristics proposed in McCoy et al. (2019b): 1) Whether all words in the
hypothesis are included in the premise; 2) If the hypothesis is the contiguous subsequence of the premise;
3) If the hypothesis is a subtree in the premise’s parse tree; 4) The number of tokens shared between
premise and hypothesis normalized by the number of tokens in the premise. We additionally include
some similarity features: 5) The cosine similarity between premise and hypothesis’s pooled token
representations from BERT followed by min, mean, and max-pooling. We consider the same weight for
contradiction and neutral labels in the bias-only loss to allow the model to recognize entailment from
not-entailment. During the evaluation, we map the neutral and contradiction labels to not-entailment.

Results McCoy et al. (2019a) observe large variability in the linguistic generalization of neural models.
We, therefore, report the averaged results across 4 runs with the standard deviation in Table 2.4. PoE and
DFL obtain 4.4 and 7.4 points gain (see Appendix 2.10 for accuracy on individual heuristics of HANS).
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Loss MNLI Hard ∆ HANS ∆
CE 84.53 77.55 61.88±1.9

PoE ♣ 84.85 79.23 +1.7 60.43 -1.5
DFL♣ 84.85 78.92 +1.4 60.63 -1.2

PoE ♥ 84.55 77.90±0.3 +0.4 66.31±0.6 +4.4
DFL♥ 84.30 77.66±0.6 +0.1 69.26±0.2 +7.4

PoE-Joint 84.39 78.61±0.1 +1.1 68.04±1.2 +6.2
DFL-Joint 84.49 78.36±0.4 +0.8 69.10±0.7 +7.2

Table 2.5: Results on MNLI mismatched dev set, MNLI mismatched hard set, and HANS when
training independently to debias against either hypothesis artifacts (♣) or syntactic biases (♥),
compared with jointly training to debias against both bias types. ∆: differences with baseline CE loss.

We compare our results with the concurrent work of Clark et al., who propose a PoE model similar to
ours, which gets similar results. The main difference is that our models are trained end-to-end, which
is convenient in practice, while Clark et al.’s method requires two steps, first training a bias-only model
and then using this pre-trained model to train a robust model. The Reweight baseline in Clark et al.
is a special case of our DFL with γ = 1 and performs similarly to our DFL method (using default
γ = 2). Their Learned-Mixin+H method requires hyperparameter tuning. Since the assumption is
not having access to any out-of-domain test data, and there is no available dev set for HANS, it is
challenging to perform hyper-parameter tuning. Clark et al. follow prior work (Grand and Belinkov,
2019; Ramakrishnan et al., 2018) and perform model selection on the test set.

To provide a fair comparison, we consequently also tuned γ in DFL by sweeping over {0.5,1,2,3,4}.
DFL✤ is the selected model, with γ =3. With this hyperparameter tuning, DFL is even more effective,
and our best result performs 2.8 points better than Clark et al. (2019b).

2.4.4 Jointly Debiasing Multiple Bias Patterns

To evaluate combating multiple bias patterns, we jointly debias a base model on the hypothesis artifacts
and syntactic biases.

Base model We use BERT as our base model and train it on the MNLI dataset.

Bias-only models We use the hypothesis-only and syntactic bias-only models as in §2.4.2 and §2.4.3.

Results Table 2.5 shows the results. Models trained to be robust to hypothesis biases (♣) do not
generalize to HANS. On the other hand, models trained to be robust on HANS (♥) use a powerful
bias-only model resulting in a slight improvement on MNLI mismatched hard dev set. We expect a
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slight degradation when debiasing for both biases since models need to select samples accommodating
both debiasing needs. The jointly debiased models successfully obtain improvements on both datasets,
which are close to the improvements on each dataset by the individually debiased models.

2.5 Transfer Performance

To evaluate how well the baseline and proposed models generalize to solving textual entailment in
domains that do not share the same annotation biases as the large NLI training sets, we take trained
NLI models and test them on several NLI datasets.

Datasets We consider a total of 12 different NLI datasets. We use the 11 datasets studied by Poliak
et al. (2018). These datasets include MNLI, SNLI, SciTail (Khot et al., 2018), AddOneRTE (ADD1)
(Pavlick and Callison-Burch, 2016), Johns Hopkins Ordinal Commonsense Inference (JOCI) (Zhang
et al., 2017), Multiple Premise Entailment (MPE) (Lai et al., 2017), Sentences Involving Compositional
Knowledge (SICK) (Marelli et al., 2014), and three datasets from White et al. (2017) which are
automatically generated from existing datasets for other NLP tasks including: Semantic Proto-Roles
(SPR) (Reisinger et al., 2015), Definite Pronoun Resolution (DPR) (Rahman and Ng, 2012), FrameNet
Plus (FN+) (Pavlick et al., 2015), and the GLUE benchmark’s diagnostic test (Wang et al., 2019c). We
additionally consider the Quora Question Pairs (QQP) dataset, where the task is to determine whether
two given questions are semantically matching (duplicate) or not. As in Gong et al. (2017), we interpret
duplicate question pairs as an entailment relation and neutral otherwise. We use the same split ratio
mentioned by Wang et al. (2017).

Since the datasets considered have different label spaces, when evaluating on each target dataset, we
map the model’s labels to the corresponding target dataset’s space. See Appendix 2.11 for more details.

We strictly refrained from using any out-of-domain data when evaluating on the unbiased split of the
same benchmark in §2.4. However, as shown by prior work (Belinkov et al., 2019a), since different
NLI target datasets contain different amounts of the bias found in the large-scale NLI dataset, we
need to adjust the amount of debiasing according to each target dataset. We consequently introduce
a hyperparameter α for PoE to modulate the strength of the bias-only model in ensembling. We follow
prior work (Belinkov et al., 2019a) and perform model selection on the dev set of each target dataset
and then report results on the test set.4 We select hyper-parameters γ, α from {0.4,0.6,0.8,2,3,4,5}.

Results Table 2.6 shows the results of the debiased models and baseline with BERT. As shown in
prior work (Belinkov et al., 2019a), the MNLI datasets have very similar biases to SNLI, which the
models are trained on, so we do not expect any improvement in the relative performance of our models
and the baseline for MNLI and MNLI-M. On all the remaining datasets, our proposed models perform
better than the baseline, showing a substantial improvement in generalization by using our debasing

4Since the test sets are not available for MNLI, we tune on the matched dev set and evaluate on the mismatched dev
set or vice versa. For GLUE, we tune on MNLI mismatched dev set.
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Data CE DFL ∆ PoE ∆
SICK 57.05 57.91 +0.9 57.28 +0.2
ADD1 87.34 88.89 +1.5 87.86 +0.5
DPR 49.50 50.68 +1.2 50.14 +0.6
SPR 59.85 61.41 +1.6 62.45 +2.6
FN+ 53.16 54.77 +1.6 53.51 +0.4
JOCI 50.06 51.13 +1.1 50.85 +0.8
MPE 69.50 70.2 +0.7 70.1 +0.6
SCITAIL 67.64 69.33 +1.7 71.40 +3.8
GLUE 54.08 54.80 +0.7 54.71 +0.6
QQP 67.78 69.28 +1.5 68.61 +0.8
MNLI 74.40 73.58 -0.8 73.61 -0.8
MNLI-M 73.98 74.0 0.0 73.49 -0.5

Table 2.6: Accuracy results of models with BERT transferring to new target datasets. All models
are trained on SNLI and tested on the target datasets. ∆ are absolute differences between our methods
and the CE loss baseline.

techniques. We additionally compare with Belinkov et al. (2019a) in Appendix 2.11 and show that
our methods substantially surpass their results.

2.6 Discussion

Analysis of Debiased Focal Loss As expected, improving the out-of-domain performance could come
at the expense of decreased in-domain performance since the removed biases are useful for performing
the in-domain task. This happens especially for DFL, in which there is a trade-off between in-domain
and out-of-domain performance that depends on the parameter γ, and when the baseline model is
not very powerful like InferSent. To understand the impact of γ in DFL, we train an InferSent model
using DFL for different values of γ on the SNLI dataset and evaluate its performance on SNLI test and
SNLI hard sets. As illustrated in Figure 2.2, increasing γ increases debiasing and thus hurts in-domain
accuracy on SNLI, but out-of-domain accuracy on the SNLI hard set is increased within a wide range
of values (see a similar plot for BERT in Appendix 2.12).

Correlation Analysis In contrast to Belinkov et al. (2019a), who encourage only the encoder to not
capture the unwanted biases, our learning strategies influence the parameters of the full model to reduce
the reliance on unwanted patterns more effectively. To test this assumption, in Figure 2.3, we report
the correlation between the element-wise loss of the debiased models and the loss of a bias-only model
on the considered datasets.

The results show that compared to the baselines, our debiasing methods, DFL and PoE, reduce the corre-
lation to the bias-only model, confirming that our models are effective at reducing biases. Interestingly,
on MNLI, PoE has less correlation with the bias-only model than DFL and also has better performance
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Figure 2.2: Accuracy of InferSent model trained with DFL, on the SNLI test and SNLI hard sets for
different γ.
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Figure 2.3: Pearson correlation between the element-wise cross-entropy loss of the debiasing models
and the bias-only model trained on each dataset.

on the unbiased split of this dataset. On the other hand, on the HANS dataset, DFL loss is less correlated
with the bias-only model than PoE and also obtains higher performance on the HANS dataset.

2.7 Conclusion

In this chapter, we propose two novel techniques, product-of-experts and debiased focal loss, to reduce
biases learned by neural models, which are applicable whenever one can specify the biases in the form
of one or more bias-only models. The bias-only models are designed to leverage biases and shortcuts
in the datasets. Our debiasing strategies then work by adjusting the cross-entropy loss based on the
performance of these bias-only models, to focus learning on the hard examples and down-weight the
importance of the biased examples. Additionally, we extend our methods to combat multiple bias
patterns simultaneously. Our proposed debiasing techniques are model agnostic, simple, and highly
effective. Extensive experiments show that our methods substantially improve the model robustness
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2.7 Conclusion

to domain-shift, including 9.8 points gain on FEVER symmetric test set, 7.4 on HANS dataset, and
4.8 points on SNLI hard set. Furthermore, we show that our debiasing techniques result in better
generalization to other NLI datasets. Future work may include developing debiasing strategies that
do not require prior knowledge of bias patterns and can automatically identify them.
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Appendix

2.8 Fact Verification

Base model We fine-tune all models using BERT for 3 epochs and use the default parameters and
default learning rate of 2e−5.

Bias-only model Our bias-only classifier is a shallow nonlinear classifier with 768, 384, 192 hidden
units with Tanh nonlinearity.

2.9 Natural Language Inference

Base model InferSent uses a separate BiLSTM encoder to learn sentence representations for premise
and hypothesis. It then combines these embeddings following Mou et al. (2016) and feeds them to the
default nonlinear classifier. With InferSent we train all models for 20 epochs as default without using
early-stopping. We use the default hyper-parameters and following Wang et al. (2019c), we set the
BiLSTM dimension to 512. We use the default nonlinear classifier with 512 and 512 hidden neurons
with Tanh nonlinearity. With BERT, we finetune all models for 3 epochs.

Bias-only model For debiasing models using BERT, we use the same shallow nonlinear classifier
explained in Appendix 2.8, and for the ones using InferSent, we use a shallow linear classifier with
512 and 512 hidden units.

Results Table 2.7 shows results on the MNLI matched development and hard test sets.

2.10 Syntactic Bias in NLI

Base model We finetune all models for 3 epochs.

Bias-only model We use a nonlinear classifier with 6 and 6 hidden units with Tanh nonlinearity.
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BERT InferSent

Loss MNLI Hard ∆ MNLI Hard ∆
Development set results

CE 84.41 76.56 69.97 57.03
RUBi 84.48 77.13 +0.6 70.51 57.97 +0.9

DFL 83.72 77.37 +0.8 60.78 57.88 +0.9
PoE 84.58 78.02 +1.5 66.02 59.37 +2.3

Test set results
None 84.11 75.88 — — —
PoE 84.11 76.81 +0.9 — — —

Table 2.7: Results on the MNLI matched benchmark and MNLI matched hard set. ∆ are absolute
differences with CE loss.

Loss HANS

Constituent Lexical Subsequence
gold label: Entailment

CE 98.98±0.6 96.41±0.8 99.72±0.1
RUBi 99.22±0.3 95.59±0.8 99.50±0.3

DFL 90.90±4.3 84.78±5.0 94.33±4.9
PoE 97.24±1.9 92.16±0.9 98.58±0.5

gold label: Non-entailment
CE 20.12±5.8 48.86±5.7 7.18±0.7
RUBi 21.89±7.0 46.82±12.5 7.58±2.3

DFL 50.20±9.2 71.06±3.1 24.28±4.4
PoE 36.08±5.1 59.18±8.0 14.63±3.0

Table 2.8: Accuracy for each label (entailment or non-entailment) on individual heuristics of HANS.

Results Table 2.8 shows the performance for each label (entailment and non_entailment) on individual
heuristics of the HANS dataset.

2.11 Transfer Performance

Mapping We train all models on SNLI and evaluate their performance on other target datasets. SNLI
contains three labels, contradiction, neutral, and entailment. Some of the datasets we consider contain
only two labels. In the case of labels entailed and not-entailed, as in DPR, we map contradiction and
neutral to the not-entailed class. In the case of labels entailment and neutral, as in SciTail, we map
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Data CE DFL ∆% PoE ∆% M1 ∆% M2 ∆%

SICK 54.09 55.00 1.68 55.79 3.14 49.77 -7.99 49.77 -7.99
ADD1 75.19 78.29 4.12 77.00 2.41 67.44 -10.31 67.44 -10.31
DPR 49.95 50.59 1.28 49.95 0.00 50.87 1.84 50.87 1.84
SPR 41.31 47.95 16.07 50.50 22.25 51.51 24.69 51.51 24.69
FN+ 48.65 49.58 1.91 49.35 1.44 53.23 9.41 53.23 9.41
JOCI 46.47 46.48 0.02 47.53 2.28 44.83 -3.53 44.83 -3.53
MPE 60.60 60.70 0.17 61.80 1.98 56.40 -6.93 56.40 -6.93
SCITAIL 64.25 65.19 1.46 63.17 -1.68 56.40 -12.22 56.40 -12.22
GLUE 48.73 46.83 -3.90 49.09 0.74 43.93 -9.85 43.93 -9.85
QQP 61.80 66.24 7.18 66.36 7.38 62.46 1.07 62.46 1.07
MNLI 56.99 56.70 -0.51 56.59 -0.70 51.72 -9.25 51.72 -9.25
MNLI-M 57.01 57.75 1.30 57.84 1.46 53.99 -5.30 53.99 -5.30

Average — — 2.57 — 3.39 — -2.36 — -2.36

Table 2.9: Accuracy results of models with InferSent transferring to new target datasets. All models
are trained on SNLI and tested on the target datasets. M1 and M2 are our re-implementation of
Belinkov et al. (2019a). ∆ are relative differences in percentage with respect to CE loss.

contradiction to neutral.

Comparison with Belinkov et al. (2019a) We modified the implementations of Belinkov et al.
(2019a) and corrected some implementation issues in the InferSent baseline Conneau et al. (2017).
Compared to the original InferSent implementation, the main differences in our implementation include:
(a) We incorporated the fixes suggested for the bugs in the implementation of mean/max-pooling over
BiLSTM in the InferSent baseline5 (b). We additionally observed that the aggregation of losses over
each batch was computed with the average instead of the intended summation and we corrected it.6

(c) We followed the implementation of InferSent and we removed out-of-vocabulary (OOV) words
from the sentence representation, while Belinkov et al. keep them by introducing an OOV token. We
additionally observed during the pre-processing of some of the target datasets in the implementation
of Belinkov et al., some of the samples are not considered due to the preprocessing issues. We fix the
pre-processing issues and evaluate our models and our reimplementations of Belinkov et al. (2019a)
on the same corpora. We set the BiLSTM dimension to 512 across all models. Note that Belinkov
et al. use BiLSTM dimension of 2048, and due to the mentioned differences in implementations
and datasets, the results reported in Belinkov et al. (2019a) are not comparable. However, we still on
average surpass their reported results substantially. Our reimplementations and scripts to reproduce
the results are publicly available in https://github.com/rabeehk/robust-nli-fixed.

As used in prior work to adjust the learning-rate of the bias-only and baseline models (Belinkov et al.,

5https://github.com/facebookresearch/InferSent/issues/51
6The same observation is reported in https://github.com/facebookresearch/InferSent/

pull/107.
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Figure 2.4: Accuracy of the BERT model trained with DFL, on SNLI and SNLI hard sets for different γ.

2019a), we introduce a hyperparameter β for the bias-only model to modulate the loss of the bias-only
model in ensembling. We sweep hyper-parameters γ, α over {0.02,0.05,0.1,0.6,2.0,4.0,5.0} and β

over {0.05,0.2,0.4,0.8,1.0}. Table 2.9 shows the results of our debiasing models (DFL, PoE), our
re-implementations of proposed methods in Belinkov et al. (2019a) (M1, M2), and the baseline with
InferSent (CE). The DFL model outperforms the baseline in 10 out of 12 datasets, while the PoE
model outperforms the baseline in 9 datasets and does equally well on the DPR dataset. As shown
in prior work (Belinkov et al., 2019a), the MNLI dataset has very similar biases to SNLI, which the
models are trained on, so we do not expect any improvement in the relative performance of our models
and the baseline for MNLI dataset. Interestingly, our methods obtain improvement on MNLI-M, in
which the test data differs from training distribution. Our proposed debiasing methods, PoE and DFL,
are highly effective, boosting the relative generalization performance of the baseline by 3.39% and
2.57% respectively, significantly surpassing the prior work of Belinkov et al. (2019a). Compared to
M1 and M2, our methods outperform them on 9 datasets, while they do better on two datasets of SPR
and FN+, and slightly better on the DPR dataset. However, note that DPR is a very small dataset and
all models perform close to random-chance on this dataset.

2.12 Analysis of Debiased Focal Loss

Figure 2.4 shows the impact of γ on BERT trained with DFL.
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3 Variational Information Bottleneck for
Effective Low-Resource Fine-Tuning

While large-scale pretrained language models have obtained impressive results when fine-tuned on
a wide variety of tasks, they still often suffer from overfitting in low-resource scenarios. Since such
models are general-purpose feature extractors, many of these features are inevitably irrelevant for a given
target task. In this chapter, we propose to use Variational Information Bottleneck (VIB) to suppress
irrelevant features when fine-tuning on low-resource target tasks, and show that our method successfully
reduces overfitting. Moreover, we show that our VIB model finds sentence representations that are more
robust to biases in natural language inference datasets, and thereby obtains better generalization to out-
of-domain datasets. Evaluation on seven low-resource datasets in different tasks shows that our method
significantly improves transfer learning in low-resource scenarios, surpassing prior work. Moreover,
it improves generalization on 13 out of 15 out-of-domain natural language inference benchmarks.1

3.1 Introduction

Transfer learning has emerged as the de facto standard technique in natural language processing (NLP),
where large-scale language models are pretrained on an immense amount of text to learn a general-
purpose representation, which is then transferred to the target domain with fine-tuning on target task
data. This method has exhibited state-of-the-art results on a wide range of NLP benchmarks (Devlin
et al., 2019; Liu et al., 2019b; Radford et al., 2019). However, such pretrained models have a huge
number of parameters, potentially making fine-tuning susceptible to overfitting.

In particular, the task-universal nature of large-scale pretrained sentence representations means that
much of the information in these representations is irrelevant to a given target task. If the amount of
target task data is small, it can be hard for fine-tuning to distinguish relevant from irrelevant informa-
tion, leading to overfitting on statistically spurious correlations between the irrelevant information and
target labels. Learning low-resource tasks is an important topic in NLP (Cherry et al., 2019) because
annotating more data can be very costly and time-consuming, and because in several tasks access to
data is limited.

1Our code is publicly available in https://github.com/rabeehk/vibert.
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Figure 3.1: VIBERT compresses the encoder’s sentence representation fφ(x) into representation z
with mean µ(x) and eliminates irrelevant and redundant information through the Gaussian noise with
variance Σ(x).

In this chapter, we propose to use the Information Bottleneck (IB) principle (Tishby et al., 1999) to
address this problem of overfitting. More specifically, we propose a fine-tuning method that uses Vari-
ational Information Bottleneck (VIB; Alemi et al. 2017) to improve transfer learning in low-resource
scenarios.

VIB addresses the problem of overfitting by adding a regularization term to the training loss that
directly suppresses irrelevant information. As illustrated in Figure 3.1, the VIB component maps the
sentence embedding from the pretrained model to a latent representation z, which is the only input to
the task-specific classifier. The information that is represented in z is chosen based on the IB principle,
namely that all the information about the input that is represented in z should be necessary for the
task. In particular, VIB directly tries to remove the irrelevant information, making it easier for the task
classifier to avoid overfitting when trained on a small amount of data. We find that in low-resource
scenarios, using VIB to suppress irrelevant features in pretrained sentence representations substantially
improves accuracy on the target task.

Removing unnecessary information from the sentence representation also implies removing redundant
information. VIB tries to find the most concise representation which can still solve the task, so even if
a feature is useful alone, it may be removed if it isn’t useful when added to other features because it is
redundant. We hypothesize that this provides a useful inductive bias for some tasks, resulting in better
generalization to out-of-domain data. In particular, it has recently been demonstrated that annotation
biases and artifacts in several natural language understanding benchmarks (Kaushik and Lipton, 2018;
Gururangan et al., 2018; Poliak et al., 2018; Schuster et al., 2019) allow models to exploit superficial
shortcuts during training to perform surprisingly well without learning the underlying task. However,
models that rely on such superficial features do not generalize well to out-of-domain datasets, which do
not share the same shortcuts (Belinkov et al., 2019a). We investigate whether using VIB to suppress
redundant features in pretrained sentence embeddings has the effect of removing these superficial
shortcuts and keeping the deep semantic features that are truly useful for learning the underlying task.
We find that using VIB does reduce the model’s dependence on shortcut features and substantially
improves generalization to out-of-domain datasets.
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3.2 Fine-tuning in Low-resource Settings

We evaluate the effectiveness of our method on fine-tuning BERT (Devlin et al., 2019), which
we call the VIBERT model (Variational Information Bottleneck for Effective Low-Resource Fine-
Tuning). On seven different datasets for text classification, natural language inference, similarity, and
paraphrase tasks, VIBERT shows greater robustness to overfitting than conventional fine-tuning and
other regularization techniques, improving accuracies on low-resource datasets. Moreover, on NLI
datasets, VIBERT shows robustness to dataset biases, obtaining substantially better generalization to
out-of-domain NLI datasets. Further analysis demonstrates that VIB regularization results in less biased
representations. Our approach is highly effective and simple to implement, involving a small additional
MLP classifier on top of the sentence embeddings. It is model agnostic and end-to-end trainable.

In summary, we make the following contributions: 1) Proposing VIB for low-resource fine-tuning
of large pretrained language models. 2) Showing empirically that VIB reduces overfitting, resulting
in substantially improved accuracies on seven low-resource benchmark datasets against conventional
fine-tuning and prior regularization techniques. 3) Showing empirically that training with VIB is more
robust to dataset biases in NLI, resulting in significantly improved generalization to out-of-domain
NLI datasets.

3.2 Fine-tuning in Low-resource Settings

The standard fine-tuning paradigm starts with a large-scale pretrained model such as BERT, adds a task-
specific output component which uses the pretrained model’s sentence representation, and trains this
model end-to-end on the task data, fine-tuning the parameters of the pretrained model. As depicted in
Figure 3.1, we propose to add a VIB component that controls the flow of information from the represen-
tations of the pretrained model to the output component. The goal is to address overfitting in resource-
limited scenarios by removing irrelevant and redundant information from the pretrained representation.

Problem Formulation We consider a general multi-class classification problem with a low-resource
dataset D={xi,yi}N

i=1 consisting of inputs xi ∈X , and labels yi ∈Y. We assume we are also given
a large-scale pretrained encoder fφ(.) parameterized by φ that computes sentence embeddings for the
input xi. Our goal is to fine-tune fφ(.) on D to maximize generalization.

Information Bottleneck To specifically optimize for the removal of irrelevant and redundant infor-
mation from the input representations, we adopt the Information Bottleneck principle. The objective
of IB is to find a maximally compressed representation Z of the input representation X (compression
loss) that maximally preserves information about the output Y (prediction loss),2 by minimizing:

2In this work, Z, X, and Y are random variables, and z, x and y are instances of these random variables.
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LIB = βI(X, Z)︸ ︷︷ ︸
Compression Loss

− I(Z, Y )︸ ︷︷ ︸
Prediction Loss

, (3.1)

where β ≥ 0 controls the balance between compression and prediction, and I(., .) is the mutual
information.

Variational Information Bottleneck Alemi et al. (2017) derive an efficient variational estimate
of (3.1):

LVIB =β E
x
[KL[pθ(z|x), r(z)]]+ E

z∼pθ(z|x)
[−logqϕ(y|z)], (3.2)

where qϕ(y|z) is a parametric approximation of p(y|z), r(z) is an estimate of the prior probability
p(z) of z, and pθ(z|x) is an estimate of the posterior probability of z. During training, the compressed
sentence representation z is sampled from the distribution pθ(z|x), meaning that a specific pattern
of noise is added to the input of the output classifier qϕ(y|z). Increasing this noise decreases the
information conveyed by z. In this way, the VIB module can block the output classifier qϕ(y|z) from
learning to use specific information. At test time, the expected value of z is used for predicting labels
with qϕ(y|z). We refer to the dimensionality of z as K, which specifies the bottleneck size. Note that
there is an interaction between decreasing K and increasing the compression by increasing β (Shamir
et al., 2010; Harremoës and Tishby, 2007). K and β are hyper-parameters (Alemi et al., 2017).

We consider parametric Gaussian distributions for prior r(z) and pθ(z|x) to allow an analytic
computation for their Kullback-Leibler divergence,3 namely r(z) = N (z|µ0,Σ0) and pθ(z|x) =
N (z|µ(x),Σ(x)), where µ and µ0 are K−dimensional mean vectors, and Σ and Σ0 are diagonal
covariance matrices. We use the reparameterization trick (Kingma and Welling, 2013) to estimate the
gradients, namely z=µ(x)+Σ(x)⊙ϵ, where ϵ∼N (0,I). To compute the compressed sentence repre-
sentations pθ(z|x), as shown in Figure 3.1, we first feed sentence embeddings fφ(x) through a shallow
MLP. It is then followed by two linear layers, each with K hidden units to compute µ(x) and Σ(x) (after
a softplus transform to ensure non-negativity). We also use another linear layer to approximate qϕ(y|z).

3.3 Experiments

Datasets We evaluate the performance on seven different benchmarks for multiple tasks, in partic-
ular text classification, natural language inference, similarity, and paraphrase detection. For NLI,
we experiment with two well-known NLI benchmarks, namely SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018). For text classification, we evaluate on two sentiment analysis datasets,
namely IMDB (Maas et al., 2011) and Yelp2013 (YELP) (Zhang et al., 2015). We additionally evaluate

3KL(N (µ0,Σ0)∥N (µ1,Σ1))= 1
2(tr(Σ−1

1 Σ0)+(µ1−µ0)T Σ−1
1 (µ1−µ0)−K+log(det(Σ1)

det(Σ0))).

36



3.3 Experiments

on three low-resource datasets in the GLUE benchmark (Wang et al., 2019c):4 paraphrase detection
using MRPC (Dolan and Brockett, 2005), semantic textual similarity using STS-B (Cer et al., 2017),
and textual entailment using RTE (Dagan et al., 2005). For the GLUE benchmark, SNLI, and Yelp,
we evaluate on the standard validation and test splits. For MNLI, since the test sets are not available,
we tune on the matched dev set and evaluate on the mismatched dev set (MNLI-M) or vice versa. See
Appendix 3.7 for datasets statistics and Appendix 3.8 for hyper-parameters of all methods.

Base Model We use the BERTBase (12 layers, 110M parameters) and BERTLarge (24 layers, 340M
parameters) uncased (Devlin et al., 2019) implementation of Wolf et al. (2020) as our base models,5

known to work well for these tasks. We use the default hyper-parameters of BERT, i.e., we use a
sequence length of 128, with batch size 32. We use the stable variant of the Adam optimizer (Zhang
et al., 2021b; Mosbach et al., 2021) with the default learning rate of 2e−5 through all experiments.
We do not use warm-up or weight decay.

Baselines We compare against prior regularization techniques, including previous state-of-the-art,
Mixout:

• Dropout (Srivastava et al., 2014), a widely used stochastic regularization techniques used in
multiple large-scale language models (Devlin et al., 2019; Yang et al., 2019; Vaswani et al., 2017)
to mitigate overfitting. Following Devlin et al. (2019), we apply dropout on all layers of BERT.

• Mixout (Lee et al., 2019) is a stochastic regularization technique inspired by Dropout with the
goal of preventing catastrophic forgetting during fine-tuning. Mixout regularizes the learning
to minimize the deviation of a fine-tuned model from the pretrained initialization. It replaces the
model parameters with the corresponding value from the pretrained model with probability p.

• Weight Decay (WD) is a common regularization technique to improve generalization (Krogh
and Hertz, 1992). It regularizes the large weights w by adding a penalization term λ

2∥w∥ to
the loss, where λ is a hyperparameter specifying the strength of regularization. Chelba and
Acero (2004) and Daumé III (2007) adapt WD for fine-tuning of the pretrained models, and
propose to replace this regularization term with λ∥w−w0∥, where w0 are the weights of the
pretrained models. Recently, Lee et al. (2019) demonstrated that the latter formulation of WD
works better for fine-tuning of BERT than conventional WD and can improve generalization
on small training sets.

4We did not evaluate on WNLI and CoLA due to the irregularities in these datasets and the reported instability during
the fine-tuning https://gluebenchmark.com/faq.

5To have a controlled comparison, all results are computed with this PyTorch implementation, which might slightly
differ from the TensorFlow variant (Devlin et al., 2019).
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Table 3.1: Average results and standard deviation in parentheses over 3 runs on low-resource data
in GLUE. ∆ shows the absolute difference between the results of the VIBERT model with BERT.

MRPC STS-B RTE

Model Accuracy F1 Pearson Spearman Accuracy
BERTBase 87.80 (0.5) 83.20 (0.6) 84.93 (0.1) 83.53 (0.0) 67.93 (1.5)
+Dropout (Srivastava et al., 2014) 87.33 (0.2) 81.90 (0.7) 84.33 (0.9) 82.73(1.0) 65.80 (1.5)
+Mixout (Lee et al., 2019) 87.03 (0.2) 82.63 (0.3) 85.23 (0.4) 83.80(0.4) 67.70 (0.9)
+WD (Lee et al., 2019) 87.57(0.2) 82.83(0.3) 85.0(0.3) 83.6(0.2) 68.63(1.3)

VIBERTBase 89.23 (0.1) 85.23 (0.2) 87.63 (0.3) 86.50 (0.4) 70.53 (0.5)
∆ +1.43 +2.03 +2.7 +2.97 +2.6

BERTLarge 88.47 (0.7) 84.20 (1.3) 86.87 (0.2) 85.70 (0.1) 68.67 (0.8)
+Dropout (Srivastava et al., 2014) 87.77 (0.4) 82.97 (0.2) 86.47 (0.1) 85.33 (0.2) 65.77 (0.6)
+Mixout (Lee et al., 2019) 88.57 (0.7) 84.10 (1.1) 86.70 (0.2) 85.43 (0.3) 70.03 (1.0)
+WD (Lee et al., 2019) 88.97(0.5) 84.87(0.4) 86.9(0.1) 85.67(0.1) 69.27(0.9)

VIBERTLarge 89.10 (0.4) 85.13 (0.6) 87.53 (0.8) 86.40 (0.9) 71.37 (0.8)
∆ +0.63 +0.93 +0.66 +0.7 +2.7

3.3.1 Results on the GLUE Benchmark

Table 3.1 shows results on the low-resource datasets in GLUE.6 We find that a) Our VIBERT model
substantially outperforms the baselines on all the datasets, demonstrating the effectiveness of the
proposed method. b) Dropout decreases the performance on low-resource datasets. We conjecture that
regularization techniques relying on stochasticity without considering the relevance to the output, in
contrast to VIB, can make it more difficult for learning to extract relevant information from a small
amount of data. Igl et al. (2019) observe similar effects in another application. c) Similar to the results
of Zhang et al. (2021b), we find less pronounced benefits of the previously suggested methods than
the results originally published. This can be explained by using a more stable version of Adam (Zhang
et al., 2021b) suggested by the very recent work in our experiments, which decreases the added benefits
of previously suggested regularization techniques on top of a stable optimizer. In contrast, our VIBERT
model still substantially improves the results and surpasses the prior work in all settings for both
BERTBase and BERTLarge models. Due to the computational overhead of BERTLarge, for the rest of
this chapter, we stick to BERTBase.

Impact of Random Seeds Following Dodge et al. (2020), we examine the choice of random seed
and evaluate the performance of VIBERT and BERT by fine-tuning them across 50 random seeds on
GLUE. To comply with the limited access to the GLUE benchmark online system, we split the original
validation sets into half and consider one half as the validation set and use the other half as the test set.
We first perform model selection on the validation set to fix the hyper-parameters and then fine-tune the

6Note that the test sets are not publicly available and the prior work reports the results on the validation set of the GLUE
benchmark (Lee et al., 2019; Dodge et al., 2020). We, however, report the results of their methods and ours on the original
test sets by submitting to an online system.
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Figure 3.2: Expected test performance (solid lines) with standard deviation (shaded region) over
the number of random seeds allocated for fine-tuning. Our VIBERT model consistently outperforms
BERT. We report the accuracy for RTE and MRPC and the Pearson correlation coefficient for STS-B.

selected models for 50 different seeds. Figure 3.2 shows the expected test performance (Dodge et al.,
2019) as the function of random trials. The results demonstrate that our VIBERT model consistently
obtains better performance than BERT on all datasets. As anticipated, the expected test performance
monotonically increases with more random trials (Dodge et al., 2020) till it reaches a plateau, such
as after 30 trials on STS-B.

3.3.2 Varying-resource Results

To analyze the performance of our method as a function of dataset size, we use four large-resource
NLI and sentiment analysis datasets, namely SNLI, MNLI, IMDB, and YELP to be able to subsample
the training data with varying sizes. Table 3.2 shows the obtained results. VIBERT consistently
outperforms all the baselines on low-resource scenarios, but the advantages are reduced or eliminated
as we approach a medium-resource scenario. Also, the improvements are generally larger when the
datasets are smaller, showing that our method successfully addresses low-resource scenarios.

3.3.3 Out-of-domain Generalization

Besides improving fine-tuning on low-resource data by removing irrelevant features, we expect VIB
to improve on out-of-domain data because it removes redundant features. In particular, annotation
artifacts create shortcut features, which are superficial cues correlated with a label (Gururangan et al.,
2018; Poliak et al., 2018) that do not generalize well to out-of-domain datasets (Belinkov et al., 2019a).
Since solving the real underlying task can be done without these superficial shortcuts, they must be
redundant with the deep semantic features that are truly needed. We hypothesize that many more
superficial shortcut features are needed to reach the same level of performance as a few deep semantic
features. If so, then VIB should prefer to keep the concise deep features and remove the abundant
superficial features, thus encouraging the classifier to rely on the deep semantic features, and therefore
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Table 3.2: Test accuracies in the low-resource setting on text classification and NLI datasets under
varying sizes of training data (200, 500, 800, 1000, 3000, and 6000 samples). We report the average
and standard deviation in parentheses across three runs. We show the highest average result in each
setting in bold. ∆ shows the absolute difference between the results of VIBERT with BERT.

Data Model 200 500 800 1000 3000 6000

SNLI

BERT 58.70 (1.3) 68.12 (1.5) 73.29 (0.9) 74.69 (1.1) 79.57 (0.4) 80.85 (0.4)
+Dropout 58.95 (0.4) 69.33 (1.1) 73.22 (1.2) 74.20 (0.5) 79.48 (0.7) 81.71 (0.6)
+Mixout 58.52 (1.3) 68.26 (1.7) 72.81 (1.0) 74.09 (0.5) 78.7 (0.3) 80.61 (0.5)
+WD 59.23 (1.5) 68.54 (1.9) 73.72 (1.0) 74.78 (0.8) 79.83 (0.5) 81.32 (0.5)

VIBERT 61.42 (1.3) 70.75 (0.6) 74.71 (0.5) 75.84 (0.1) 79.56 (0.3) 81.29 (0.4)
∆ +2.72 +2.63 +1.42 +1.15 -0.01 +0.44

MNLI

BERT 49.93 (1.4) 59.76 (2.0) 63.63 (1.6) 65.21 (1.4) 70.67 (0.7) 73.11 (0.9)
+Dropout 50.74 (2.1) 59.58 (2.1) 62.82 (0.8) 65.71 (1.4) 71.11 (0.8) 72.88 (1.1)
+Mixout 50.05 (1.8) 58.69 (2.8) 63.31 (1.7) 64.58 (1.5) 70.60 (0.8) 72.56 (0.7)
+WD 49.92 (1.4) 60.36 (2.0) 64.41 (1.5) 65.3 (1.0) 71.47 (0.8) 72.94 (0.7)

VIBERT 53.58 (0.9) 63.04 (1.1) 64.87 (0.6) 66.41 (1.2) 71.86 (0.9) 74.22 (0.3)
∆ +3.65 +3.28 +1.24 +1.2 +1.19 +1.11

IMDB

BERT 78.96 (1.9) 83.68 (0.2) 84.04 (0.9) 84.80 (0.0) 86.17 (0.2) 86.98 (0.4)
+Dropout 81.19 (1.6) 83.30 (0.2) 84.52 (0.3) 85.01 (0.3) 86.20 (0.2) 87.31 (0.2)
+Mixout 79.17 (4.2) 83.55 (0.3) 84.37 (0.3) 84.50 (0.1) 86.15 (0.1) 86.97 (0.1)
+WD 79.78 (2.2) 83.95 (0.2) 84.29 (0.6) 84.97 (0.2) 86.13 (0.3) 87.2 (0.1)

VIBERT 83.05 (0.3) 84.46 (0.4) 84.83 (0.4) 85.03 (0.4) 86.27 (0.4) 87.15 (0.3)
∆ +4.09 +0.78 +0.79 +0.23 +0.1 +0.17

YELP

BERT 41.60 (0.9) 44.12 (1.4) 45.67 (1.6) 46.77 (0.5) 50.14 (0.7) 51.86 (0.4)
+Dropout 41.30 (0.3) 44.37 (0.6) 46.49 (0.8) 46.21 (1.5) 51.09 (0.2) 52.39 (0.5)
+Mixout 41.52 (0.9) 43.60 (1.1) 45.65 (1.9) 46.98 (1.1) 50.68 (0.5) 51.51 (0.3)
+WD 41.66 (0.6) 44.43 (1.2) 46.26 (1.4) 47.37 (0.6) 50.7 (0.5) 51.9 (0.6)

VIBERT 42.30 (0.2) 46.65 (0.5) 46.60 (0.1) 48.03 (0.6) 50.37 (0.4) 51.34 (0.4)
∆ +0.7 +2.53 +0.93 +1.26 +0.23 -0.52

resulting in better generalization to out-of-domain data. To evaluate out-of-domain generalization, we
take NLI models trained on medium-sized 6K subsampled SNLI and MNLI in §3.3.2 and evaluate
their generalization on several NLI datasets.

Datasets We consider a total of 15 different NLI datasets used in Mahabadi et al. (2020), including
SICK (Marelli et al., 2014), ADD1 (Pavlick and Callison-Burch, 2016), JOCI (Zhang et al., 2017),
MPE (Lai et al., 2017), MNLI, SNLI, SciTail (Khot et al., 2018), and three datasets from White et al.
(2017) namely DPR (Rahman and Ng, 2012), FN+ (Pavlick et al., 2015), SPR (Reisinger et al., 2015),
and Quora Question Pairs (QQP) interpreted as an NLI task as by Gong et al. (2017). We use the same
split used in Wang et al. (2017). We also consider SNLI hard and MNLI(-M) Hard sets (Gururangan
et al., 2018), a subset of SNLI/MNLI(-M) where a hypothesis-only model cannot correctly predict
the labels and the known biases are avoided. Since the target datasets have different label spaces,
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Table 3.3: Test accuracy of models transferring to new target datasets. All models are trained on SNLI
or MNLI and tested on the target datasets. ∆ are absolute differences with BERT.

SNLI MNLI

Data BERT VIBERT ∆ WD ∆ BERT VIBERT ∆ WD ∆
SICK 48.47 54.68 +6.2 48.37 -0.1 59.16 69.17 +10.0 63.87 +4.7
ADD1 78.81 84.75 +5.9 80.62 +1.8 66.15 82.95 +16.8 67.18 +1.0
DPR 50.78 50.14 -0.6 50.41 -0.4 49.95 49.95 0.0 49.95 0.
SPR 50.21 65.68 +15.5 51.90 +1.7 59.16 65.61 +6.5 57.21 -1.9
FN+ 50.78 53.44 +2.7 50.58 -0.2 46.28 49.94 +3.7 46.34 +0.1
JOCI 42.03 50.66 +8.6 43.91 +1.9 45.60 53.94 +8.3 46.49 +0.9
MPE 58.30 58.10 -0.2 58.10 -0.2 55.10 50.30 -4.8 58.2 +3.1
SCITAIL 62.32 74.84 +12.5 65.10 +2.8 72.58 75.68 +3.1 75.73 +3.2
QQP 65.19 70.67 +5.5 65.90 +0.7 67.88 70.50 +2.6 68.75 +0.9

SNLI Hard 65.72 68.35 +2.6 66.82 +1.1 56.98 60.29 +3.3 57.8 +0.8
MNLI Hard 46.31 53.17 +6.9 47.42 +1.1 59.74 61.19 +1.4 60.08 +0.3
MNLI-M Hard 46.12 52.38 +6.3 46.82 +0.7 60.55 61.03 +0.5 59.77 -0.8

SNLI 80.54 81.81 +1.3 81.26 +0.7 64.32 67.87 +3.6 65.44 +1.1
MNLI-M 60.51 64.88 +4.4 62.11 +1.6 72.42 73.06 +0.6 72.76 +0.3
MNLI 61.79 66.76 +5.0 63.42 +1.6 72.73 74.67 +1.9 72.89 +0.2

Average — — +5.51 — +0.99 — — +3.83 — +0.93

during the evaluation, we map predictions to each target dataset’s space (Appendix 3.9). Following
prior work (Belinkov et al., 2019a; Mahabadi et al., 2020), we select hyper-parameters based on the
development set of each target dataset and report the results on the test set.

Results Table 3.3 shows the results of VIBERT and BERT. We additionally include WD, the baseline
that performed the best on average on SNLI and MNLI in Table 3.2. On models trained on SNLI,
VIBERT improves the transfer on 13 out of 15 datasets, obtaining a substantial average improvement
of 5.51 points. The amount of improvement on different datasets varies, with the largest improvement
on SPR and SciTail with +15.5, and +12.5 points respectively, while WD on average obtains only
0.99 points improvement. On models trained on MNLI, VIBERT improves the transfer on 13 datasets,
obtaining an average improvement of 3.83 points. The improvement varies across the datasets, with
the largest on ADD1 and JOCI with 16.8 and 8.3 points respectively, substantially surpassing WD.
Interestingly, VIBERT improves the results on the SNLI and MNLI(-M) hard sets, resulting in models
that are more robust to known biases. These results support our claim that VIBERT motivates learning
more general features, rather than redundant superficial features, leading to an improved generalization
to datasets without these superficial biases. In the next section, we analyze this phenomenon more.

41



Chapter 3. Variational Information Bottleneck for Effective Low-Resource Fine-Tuning

Table 3.4: Hypothesis-only accuracy when freezing the encoder from models trained on SNLI/MNLI
in Table 3.2 and retraining a hypothesis-only classifier (BERT, VIBERT), and baseline results when
the encoder is not frozen (H-only). Lower results show more successful debiasing.

Model SNLI MNLI

Train Dev Test Train Dev Test
H-only 81.3 61.89 62.17 87.15 53.46 53.63

BERT 66.40 53.73 53.17 58.5 44.68 44.03
VIBERT 38.20 36.65 37.10 42.03 36.43 35.75

3.4 Analysis

Analysis of the Removed Features Elazar and Goldberg (2018) propose a challenging framework
to evaluate if debiasing methods have succeeded in removing biases from the sentence representation.
After debiasing, the trained encoder is frozen and the classifier is retrained to try to extract the biases.
If the classifier reaches high accuracy given only bias features, then the encoder’s representation has
not been successfully debiased. We follow the framework of Elazar and Goldberg (2018) to analyze
whether known biases in NLI data have been removed in the trained sentence representations. In
particular, following Belinkov et al. (2019b), we train a classifier which only sees the representation of
the hypothesis sentence and see if it can predict the class of the sentence pair, which is an established
criterion to measure known biases in NLI datasets (Gururangan et al., 2018). Thus, we freeze the
trained encoders from our model and the BERT baseline and retrain a hypothesis-only classifier on
hypotheses from the SNLI and MNLI datasets.7 For reference, we compare to a hypothesis-only model
with a BERT encoder trained end-to-end. Table 3.4 shows the results. With the baseline (BERT), the
retrained classifier is not able to recapture all the biases (H-only), but it captures much more than
with our method (VIBERT). VIBERT is so successful at reducing biases that performance of the
hypothesis-only classifier is close to chance (33%).

Impact of VIB on Overfitting To analyze the effect of VIB on reducing overfitting, we analyze
the effect of the β parameter on training and validation error since β controls the trade-off between
removing information from the sentence embedding (high β) and keeping information that is predictive
of the output (low β). We fix the bottleneck size (K) based on the models selected in §3.3.1, and we
train VIBERT on the GLUE benchmark for varying values of β and plot the validation and training
loss in Figure 3.3.

For small values of β, where VIB has little effect, the validation loss is substantially higher than the
training loss, indicating overfitting. This is because the network learns to be more deterministic (Σ≈0),
thereby retaining too much irrelevant information. As we increase β, where VIB has an effect, we
observe better generalization performance with less overfitting. As β becomes too large, both the

7Note that with VIBERT, the frozen encoder pθ(z|x) outputs a distribution, and the hypothesis-only classifier is trained
on samples from this distribution.
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Figure 3.3: Validation and training losses of VIBERT for varying β and a fixed bottleneck size on
GLUE.

Table 3.5: Performance evaluation for all methods. ∆% are relative differences with BERT.

Model Memory ∆% #Parameters ∆% Time ∆%

BERT 290.91 GB — 109.48 M — 4.50 min —
+Mixout 407.65 GB 40.13 % 109.48 M 0% 5.15 min 14.44%
+WD 331.78 GB 14.05% 109.48 M 0% 4.91 min 9.11%
+Dropout 290.91 GB 0% 109.48 M 0% 4.68 min 4%

VIBERT 292.57 GB 0.57 % 110.83 M 1.22% 4.67 min 3.77%

training and validation losses shoot up because the amount of preserved information is insufficient
to differentiate between the classes. This pattern is observable in the MRPC and RTE datasets, with
a similar pattern in the STS-B dataset.

Efficiency Evaluation Table 3.5 presents the efficiency evaluation in terms of memory, number of pa-
rameters, and time for all the methods measured on RTE. Our approach has several attractive properties.
First, while our method is slightly larger in terms of parameters compared to the other standard regular-
ization approaches due to an additional MLP layer (Figure 3.1), the difference is still marginal, and for
BERTBase model with 109.48M trainable parameters, that is less than 1.22% more parameters. Second,
our approach presents a much better memory usage with low-overhead, close to Dropout, while WD
and especially Mixout cause substantial memory overhead. In dealing with large-scale transformer mod-
els like BERT, efficient memory usage is of paramount importance. Third, in terms of training time, our
method is similar to Dropout and much faster than the other two baselines. Relative to BERT, VIBERT
increases the training time by 3.77%, while WD and Mixout cause the substantial training overhead
of 9.11% and 14.44%. Note that our method and other baselines require hyper-parameter tuning.

Ablation Study As an ablation, Table 3.6 shows results for our model without the compression loss
(VIBERT (β =0)), in which case there is no incentive to introduce noise, and the VIB layer reduces to
deterministic dimensionality reduction with an MLP. We optimize the dimensionality of the MLP layer
(K) as a hyper-parameter for both methods. This ablation does reduce performance on all considered
datasets, demonstrating the added benefit of the compression loss of VIBERT.
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Table 3.6: Average ablation results over 3 runs with std in parentheses on GLUE. BERT and VIBERT’s
results are from Table 3.1.

MRPC STS-B RTE

Model Accuracy F1 Pearson Spearman Accuracy
BERT 87.80 (0.5) 83.20 (0.6) 84.93 (0.1) 83.53 (0.0) 67.93 (1.5)

VIBERT (β=0) 88.57 (0.6) 84.27 (0.7) 87.10 (0.4) 86.00 (0.5) 69.63 (1.3)
VIBERT 89.23 (0.1) 85.23 (0.2) 87.63 (0.3) 86.50 (0.4) 70.53 (0.5)

3.5 Related Work

Low-resource Setting Recently, developing methods for low-resource NLP has gained atten-
tion (Cherry et al., 2019). Prior work has investigated improving on low-resource datasets by injecting
large unlabeled in-domain data and pretraining a unigram document model using a variational au-
toencoder and use its internal representations as features for downstream tasks (Gururangan et al.,
2019). Other approaches propose injecting a million-scale previously collected phrasal paraphrase
relations (Arase and Tsujii, 2019) and data augmentation for translation task (Fadaee et al., 2017). Due
to relying on the additional source and in-domain corpus, such techniques are not directly comparable
to our model.

Information Bottleneck IB has recently been adopted in NLP in applications such as parsing (Li and
Eisner, 2019), and summarization (West et al., 2019). Voita et al. (2019) use the mutual information
to study how token representations evolve across layers of a Transformer model (Vaswani et al., 2017).
Our method – to the best of our knowledge – is the first attempt to study VIB as a regularization
technique to improve the fine-tuning of large-scale language models on low-resource scenarios.

Regularization Techniques for Fine-tuning Language models In addition to references given
throughout, Phang et al. (2018) proposed to perform an extra data-rich intermediate supervised task
pretraining followed by fine-tuning on the target task. They showed that their method leads to improved
fine-tuning performance on the GLUE benchmark. However, their method requires pretraining with
a large intermediate task. In contrast, our goal is to use only the provided low-resource target datasets.

3.6 Conclusion and Future Directions

In this chapter, we propose VIBERT, an effective model to reduce overfitting when fine-tuning large-
scale pretrained language models on low-resource datasets. By leveraging a VIB objective, VIBERT
finds the simplest sentence embedding, predictive of the target labels, while removing task-irrelevant
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3.6 Conclusion and Future Directions

and redundant information. Our approach is model agnostic, simple to implement, and highly effective.
Extensive experiments and analyses show that our method substantially improves transfer performance
in low-resource scenarios. We demonstrate our obtained sentence embeddings are robust to biases and
our model results in a substantially better generalization to out-of-domain NLI datasets. Future work
includes exploring incorporating VIB on multiple layers of pretrained language models and using it
to jointly learn relevant features and relevant layers.
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Appendix

3.7 Experimental Details

Datasets Statistics Table 3.7 shows the statistics of the datasets used in our experiments.

Computing Infrastructure We run all experiments on one GTX1080Ti GPU with 11 GB of RAM.

VIBERT Architecture The MLP module used to compute the compressed sentence representations
(Figure 3.1) is a shallow MLP with 768, 2304+K

4 , 768+K
2 hidden units with a ReLU non-linearity, where

K is the bottleneck size. Following Alemi et al. (2017), we average over 5 posterior samples, i.e., we
compute p(y|x)= 1

5Σ5
i=1qϕ(y|zi), where zi ∼pθ(z|x). Similar to Bowman et al. (2016), we use a linear

annealing schedule for β and set it as min(1, epoch×β0) in each epoch, where β0 is the initial value.

3.8 Hyper-parameters

The GLUE Benchmark Experiment Results on GLUE benchmark are reported in Table 3.1. We
fine-tune all the models for 6 epochs to allow them to converge. We use early stopping for all models
by choosing the model performing the best on the validation set with the evaluation criterion of average
F1 and accuracy for MRPC, accuracy for RTE, and average Pearson and Spearman correlations
for STS-B. For VIBERT, we sweep β over {10−4,10−5,10−6} and K over {144,192,288,384}.
For dropout, we use dropping probabilities of {0.25,0.45,0.65,0.85}. For Mixout, we consider
mixout probability of {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For WD, we consider weight decay of
{10−6,10−5,10−4,10−3,10−2,10−1,1}.

Varying-resource Experiment Results on varying sizes of training data are reported in Table 3.2. We
fine-tune all models for 25 epochs to allow them to converge. We use early stopping for all models
based on the performance on the validation set. We also perform hyper-parameter tuning on the
validation set. Since we consider datasets of a different number of training samples, we need to account
for a suitable range of bottleneck size and we sweep K over {12,18,24,36,48,72,96,144,192,288,384}
and β over {10−4,10−5}. For dropout, we consider dropping probabilities of {0.25,0.45,0.65,0.85}.
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Table 3.7: Datasets used in our experiments.

Dataset #Labels Train Val. Test

Single-Sentence Tasks

IMDB 2 20K 5K 25K
YELP 5 62.5K 7.8K 8.7K

Inference Tasks

SNLI 3 550K 10K 10K
MNLI 3 393K 9.8K 9.8K
RTE 2 2.5K 0.08K 3K

Similarity and Paraphrase Tasks

MRPC 2 3.7K 0.4K 1.7K
STS-B 1 (Similarity score) 5.8K 1.5K 1.4K

For Mixout, we consider mixout probability of {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For WD, we
consider weight decay of {10−6,10−5,10−4,10−3,10−2,10−1,1}.

Ablation Experiment Ablation results are shown in Table 3.6. For VIBERT (β=0), we sweep K over
the same range of values as VIBERT, i.e., {144,192,288,384}

3.9 Mapping

We train all models on SNLI or MNLI datasets and evaluate their performance on other target datasets.
The SNLI and MNLI datasets contain three labels of contradiction, neutral, and entailment. However,
some of the considered target datasets have only two labels, such as DPR or SciTail. When the target
dataset has two labels of entailed and not-entailed, as in DPR, we consider the predicted contradiction
and neutral labels as the not-entailed label. In the case the target dataset has two labels of entailment
and neutral, as in SciTail, we consider the predicted contradiction label as neutral.
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4 Parameter-efficient Multi-task Fine-
tuning for Transformers via Shared
Hypernetworks

State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between
the layers of a pretrained language model. However, such modules are trained separately for each task
and thus do not enable sharing information across tasks. In this chapter, we show that we can learn
adapter parameters for all layers and tasks by generating them using shared hypernetworks, which
condition on task, adapter position, and layer id in a transformer model. This parameter-efficient
multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge
across tasks via hypernetworks while enabling the model to adapt to each individual task through
task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance
in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate
substantial performance improvements in few-shot domain generalization across a variety of tasks.1

4.1 Introduction

Transfer learning from pretrained large-scale language models yields state-of-the-art results in a variety
of tasks (Devlin et al., 2019; Radford et al., 2018; Liu et al., 2019b). As a highly expressive and
abstract framework, Raffel et al. (2020) explored the landscape of transfer learning by converting
text-based natural language processing (NLP) problems into a sequence-to-sequence format to train
a unified model on several tasks simultaneously. Multi-task learning with pretrained language models
(Ruder, 2017) is appealing for multiple reasons: 1) Training individual models per task results in
higher computational costs, which hinders deployment and maintenance. These costs are substantially
reduced by training a single model. 2) Fine-tuning the model across multiple tasks allows sharing
information between the different tasks and positive transfer to other related tasks. Specifically, when
target datasets have limited training data, multi-task learning improves the performance compared to
individually trained models (Liu et al., 2019a; Ratner et al., 2018). However, multi-task fine-tuning

1Our code is publicly available in https://github.com/rabeehk/hyperformer.
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Figure 4.1: Left: Adapter integration in the T5 model. Right: Our HYPERFORMER adapter architecture.
Following Houlsby et al. (2019), we include adapter modules after the two feed-forward layers. The
Adapter hypernetwork hl

A produces the weights (U l
τ and Dl

τ ) for task-specific adapter modules
conditioned on an input task embedding Iτ . Similarly, the layer normalization hypernetwork hl

LN

generates the conditional layer normalization parameters (βτ and γτ ). During training, we only update
layer normalizations in T5, hypernetworks, and task embeddings. The compact HYPERFORMER++
shares the same hypernetworks across all layers and tasks and computes the task embedding based
on task, layer id, and position of the adapter module (§4.2.4).

can result in models underperforming on high-resource tasks due to constrained capacity (Arivazhagan
et al., 2019; McCann et al., 2018). An additional issue with multi-task fine-tuning is the potential
for task interference or negative transfer, where achieving good performance on one task can hinder
performance on another (Wang et al., 2019d).

As an alternative to fine-tuning (Howard and Ruder, 2018), adapter layers (Houlsby et al., 2019) insert
a small number of additional parameters per task into the model. During fine-tuning, only the adapter
modules, layer normalizations, and parameters of the final classification layer are updated, while the
original pretrained model parameters remain frozen. Such task-specific adapters eliminate negative task
interference by encapsulating task-specific information (Pfeiffer et al., 2020). However, so far there
has not been an effective and parameter-efficient way to share information across multiple adapters
to enable positive transfer to low-resource and related tasks.

To address this problem and to enable sharing information across tasks while reaping the benefits of
adapter layers, as depicted in Figure 4.1, we propose HYPERFORMER++, which employs a compact
hypernetwork (Ha et al., 2017; Oswald et al., 2020) shared across tasks and layers. The hypernetwork
learns to generate task and layer-specific adapter parameters, conditioned on task and layer id em-
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beddings. The hypernetwork is jointly learned between all tasks and is thus able to share information
across them, while negative interference is minimized by generating separate adapter layers for each
task. For each new task, our model only requires learning an additional task embedding, reducing the
number of trained parameters.

We use the encoder-decoder T5 model (Raffel et al., 2020) as the underlying model for our experiments
and evaluate on the standard GLUE benchmark (Wang et al., 2019c). We achieve strong gains over
both the T5BASE model as well as adapters (Houlsby et al., 2019). To our knowledge, this is the first time
that adapters have been successfully integrated into a state-of-the-art encoder-decoder model beyond
machine translation (Bapna and Firat, 2019), demonstrating that our method effectively balances
sharing information across tasks while minimizing negative transfer.

In summary, we make the following contributions: (1) We propose a parameter-efficient method for
multi-task fine-tuning based on hypernetworks and adapter layers. (2) We demonstrate that our method
scales more efficiently than prior work. (3) We provide empirical results on GLUE demonstrating
the effectiveness of the proposed method on multi-task learning. (4) We perform extensive few-shot
domain transfer experiments, which reveal that the captured shared knowledge can positively transfer
to unseen in-domain tasks.

4.2 HYPERFORMER

In this section, we present our HYPERFORMER model, which integrates hypernetwork-based adapter
layers into a multi-task transformer model. In §4.2.4, we introduce a parameter-efficient variant of
this model, called HYPERFORMER++.

Problem formulation We consider a general multi-task learning problem, where we are given the
data from a set of tasks {Dτ}T

τ=1, where T is the total number of tasks and Dτ ={(xi
τ ,yi

τ)}Nτ
i=1 shows

the training data for τ-th task with Nτ samples. We assume we are also given a large-scale pretrained
language model fθ(.) parameterized by θ that computes the output for input xi

τ . Standard multi-task
fine-tuning minimizes the following loss on the training set:

L(θ,{Dτ}T
τ=1)=

T∑
τ=1

∑
(xi

τ ,yi
τ )∈Dτ

wτ l
(
fθ(xi

τ ),yi
τ

)
, (4.1)

where l is typically the cross-entropy loss, and wτ shows the sampling weight for τ-th task. Our goal
is to finetune the pretrained model in a multi-task learning setup efficiently, while allowing sharing
information across tasks and at the same time, enabling the model to adapt to each individual task.

The key idea of our approach, depicted in Figure 4.1, is to learn a parametric task embedding {Iτ}T
τ=1

for each task, and then feed these task embeddings to hypernetworks parameterized by ν that generate
the task-specific adapter layers (Houlsby et al., 2019). We insert adapter modules within the layers of a
pretrained model, making the final model of Xν(xi

τ ,θ,Iτ ) parameterized by ν that computes the output
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for input xi
τ . During training, we only train hypernetwork parameters ν, task embeddings {Iτ}T

τ=1,
and layer normalizations in fθ(.), while the rest of the pretrained model parameters θ are fixed:

L(ν,{Iτ}T
i=1,{Dτ}T

τ=1)=
T∑

τ=1

∑
(xi

τ ,yi
τ )∈Dτ

wτ l
(
Xν(xi

τ ,θ,Iτ ),yi
τ

)
, (4.2)

The hypernetworks capture the shared information across tasks in a multi-task learning model enabling
positive transfer between related domains and transferable tasks, while adapters are reducing negative
interference, encapsulating task-specific information.

Base model All of our models are built on top of the state-of-the-art T5 transformer model (Raffel et al.,
2020). This model frames text-based language tasks as sequence-to-sequence problems. T5 consists of
an encoder-decoder Transformer (Vaswani et al., 2017) with minor modifications (Raffel et al., 2020).
The model is trained simultaneously on multiple tasks, obtaining state-of-the-art performance across
a diverse set of tasks. We use the T5 framework as it enables training a universal model that interfaces
with many language tasks. Our model has three main components: 1) task conditional adapter layers;
2) task conditional layer normalizations; and 3) hypernetworks that generate task-specific parameters.
We next describe these components.

4.2.1 Task Conditional Adapter Layers

Prior work has shown that fine-tuning all parameters of the model can result in a sub-optimal solution,
particularly for resource-limited datasets (Peters et al., 2019). As an alternative to fine-tuning all the
model’s parameters, prior work (Houlsby et al., 2019; Rebuffi et al., 2018; Stickland and Murray,
2019) inserted small modules called adapter layers within layers of a pretrained model, as shown in
Figure 4.1. Adapters introduce no change to the structure or parameters of the original model.

In this chapter, we propose conditional adapter modules, in which we generate the adapters weights
based on input task embeddings using shared hypernetworks (Ha et al., 2017), which capture infor-
mation across tasks that can be used to positively transfer to other relevant tasks.

Each layer of a transformer model consists of an attention block and a feed-forward block, each
followed by a skip connection. Following Houlsby et al. (2019), as depicted in Figure 4.1, we introduce
a conditional adapter layer after each block before the skip connection. The conditional adapter layer
Al

τ for layer l consists of a down-projection, Dl
τ ∈Rh×d, GeLU non-linearity (Hendrycks and Gimpel,

2016), and up-projection U l
τ ∈Rd×h, where h is the input dimension, and d is the bottleneck dimension

for the adapter layer, mathematically defined as:

Al
τ(x)=LN l

τ

(
U l

τ (GeLU(Dl
τ (x)))

)
+x, (4.3)

where x is the input hidden state and LN l
τ is the conditional layer norm defined in the next section.

We generate adapter weights (U l
τ , Dl

τ ) through a hypernetwork described in §4.2.3.
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4.2.2 Task Conditional Layer Normalization

Conventional layer normalization (Ba et al., 2016) is defined as:

LN l
τ(xi

τ )=γl
τ ⊙xi

τ −µτ

στ
+βl

τ , (4.4)

where ⊙ is the element-wise multiplication between two vectors, and γl
τ and βl

τ are learnable param-
eters with the same dimension as xi

τ . Values of µτ and στ show the mean and standard deviation
of training data for the τ-th task.

To allow the layer normalization inside adapters to adapt to each task, inspired by Perez et al. (2018);
De Vries et al. (2017), we generate γl

τ , βl
τ via a hypernetwork as a function of task embeddings (§4.2.3).

4.2.3 Task Conditioned Hypernetworks

In order to have a model that can share information while being able to adapt to each individual task, we
generate the parameters of task conditional adapter layers and layer normalization using hypernetworks.
A hypernetwork is a network that generates the weights of another network (Ha et al., 2017).

The hypernetworks capture the shared information, while the generated task conditional adapters and
layer normalization allow the model to adapt to each individual task to reduce negative task interference.

Learned task embedding We first compute a task embedding Iτ ∈Rt for each individual task using
a task projector network hI(.), which is a multi-layer perceptron consisting of two feed-forward layers
and a ReLU non-linearity:

Iτ =hI(zτ ), (4.5)

where zτ ∈Rt′
can be a learnable parameter or any pretrained task features (Vu et al., 2020), and the

task projector network hI(.) learns a suitable compressed task embedding from input task features. In
this chapter, we consider a parametric zτ to allow end-to-end training which is convenient in practice.2

Removing task prefixes The T5 model prepends task-specific prefixes to the input sequence for
conditioning. For instance, when training on CoLA (Warstadt et al., 2019), cola sentence: is prepended
to each sample. Instead, we remove task prefixes and use task embeddings for conditioning.

Task conditioned hypernetworks We consider simple linear layers as hypernetworks that are func-
tions of input task embeddings Iτ . We introduce these hypernetworks in each layer of the transformer.
We define hypernetwork hl

A(.) that generates task conditional adapter weights (U l
τ , Dl

τ ):

(U l
τ ,Dl

τ ):=hl
A(Iτ )=

(
W Ul

,W Dl
)
Iτ , (4.6)

2We ran some pilot experiments with pretrained task embeddings (Vu et al., 2020), but did not observe extra benefits.
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where W Ul ∈ R(d×h)×t and W Dl ∈ R(h×d)×t are the respective hypernetwork parameters. We
additionally define the hypernetwork hl

LN(.) that computes the layer normalization parameters:

(γl
τ ,βl

τ ):=hl
LN(Iτ )=

(
W γl

,W βl
)
Iτ , (4.7)

where W γl ∈Rh×t and W βl ∈Rh×t.

4.2.4 HYPERFORMER++

A downside of introducing a separate hypernetwork in each layer of the Transformer is that it increases
the overall number of parameters. We, therefore, propose to share hypernetworks across transformer
layers. By having a shared hypernetwork that is reusable, this strategy results in a substantial reduction
in the number of parameters. However, reapplying the same hypernetwork across all the layers
introduces weight sharing across target parameters, which may not be desirable. To allow for a flexible
parameterization of task conditional adapters/layer normalization, for a transformer of L layers, we
introduce a set of layer id embeddings I ={li}L

i=1, and adapter position embeddings P ={pj}2
j=1,

which specify the position of adapter layers in each transformer block (after the attention layer or
feed-forward layer), which are used as additional inputs to the hypernetworks. For simplicity, we
consider li ∈ Rt, pj ∈ Rt, and zτ ∈ Rt. We feed a concatenation of (zτ ,li,pj) to a similar task
projector network h′

I as in Eq. (4.5):

Iτ =h′
I(zτ ,li,pj), (4.8)

which is then followed by a shared layer normalization to compute final task embeddings Iτ ∈Rt to the
hypernetwork. This way, the hypernetwork is able to produce distinct weights for each task, adapter po-
sition, and layer of a transformer. Furthermore, layer id and adapter position embeddings are parameters
that are learned via back-propagation, allowing us to train the whole model end-to-end conveniently.

4.3 Experiments

Datasets Following Raffel et al. (2020), we evaluate the performance of the models on the GLUE
benchmark (Wang et al., 2019c). This benchmark covers multiple tasks of paraphrase detection (MRPC,
QQP), sentiment classification (SST-2), natural language inference (MNLI, RTE, QNLI), and linguistic
acceptability (CoLA).3 The original test sets are not publicly available, and following Zhang et al.
(2021b), for datasets fewer than 10K samples (RTE, MRPC, STS-B, CoLA), we divide the original
validation set in half, using one half for validation and the other for the test. For the other larger datasets,
we split 1k samples from the training set as our validation data and test on the original validation set.

Experimental details We use the HuggingFace implementation (Wolf et al., 2020) of the T5
model (Raffel et al., 2020). We fine-tune all models with a constant learning rate of 0.0003 and

3Following Raffel et al. (2020); Devlin et al. (2019), as a common practice, due to the adversarial nature of WNLI with
respect to the training set, we do not experiment with WNLI.
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Model #Total
params

#Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Single-Task Training

T5SMALL 8.0× 100% 46.81 90.47 86.21/90.67 91.02/87.96 89.11/88.70 82.09 90.21 59.42 82.06
AdaptersSMALL ❣ 1+8×0.01 0.74% 40.12 89.44 85.22/89.29 90.04/86.68 83.93/83.62 81.58 89.11 55.80 79.53

T5BASE 8.0× 100% 54.85 92.19 88.18/91.61 91.46/88.61 89.55/89.41 86.49 91.60 67.39 84.67
AdaptersBASE ❣ 1+8×0.01 0.87% 59.49 93.46 88.18/91.55 90.94/88.01 87.44/87.18 86.38 92.26 68.84 84.88

Multi-Task Training

T5SMALL ♠ 1.0× 12.5% 50.67 91.39 84.73/88.89 89.53/86.31 88.70/88.27 81.04 89.67 59.42 81.69
Adapters†SMALL 1.05× 0.68% 39.87 90.01 88.67/91.81 88.51/84.77 88.15/87.89 79.95 89.60 60.14 80.85
HYPERFORMERSMALL 1.45× 5.80% 47.64 91.39 90.15/92.96 88.68/85.08 87.49/86.96 81.24 90.39 65.22 82.47
HYPERFORMER++SMALL 1.04× 0.50% 53.96 90.59 84.24/88.81 88.44/84.46 87.73/87.26 80.69 90.39 71.01 82.51

T5BASE ♠ 1.0× 12.5% 54.88 92.54 90.15/93.01 91.13/88.07 88.84/88.53 85.66 92.04 75.36 85.47
Adapters†BASE 1.07× 0.82% 61.53 93.00 90.15/92.91 90.47/87.26 89.86/89.44 86.09 93.17 70.29 85.83
HYPERFORMERBASE 1.54× 6.86% 61.32 93.80 90.64/93.33 90.13/87.18 89.55/89.03 86.33 92.79 78.26 86.58
HYPERFORMER++BASE 1.02× 0.29% 63.73 94.03 89.66/92.63 90.28/87.20 90.00/89.66 85.74 93.02 75.36 86.48

Table 4.1: Performance of all models on the GLUE tasks. For each method, we report the total number
of parameters across all tasks and the number of parameters that are trained for each task as a multiple
and proportion respectively of the corresponding single-task T5 model. For MNLI, we report accuracy
on the matched validation set. For MRPC and QQP, we report accuracy and F1. For STS-B, we report
Pearson and Spearman correlation coefficients. For CoLA, we report Matthews correlation. For all
other tasks, we report accuracy. Adapters† refers to our proposed variant of adapters with shared layer
normalizations. Our HYPERFORMER++ obtains a better score on average compared to full fine-tuning
and Adapters†, while being more parameter-efficient. ♠: Our re-implementation of Raffel et al. (2020),
❣: Applying method of Houlsby et al. (2019) on T5. Bold fonts indicate the best results in each block.

following Raffel et al. (2020), we use 218 =262144 steps in all experiments. We save a checkpoint
every 1000 steps for all models (see also §4.7). Raffel et al. (2020) report the results based on the best
checkpoint for each task independently. In contrast, we focus on the more realistic setting where we
report the results on a single checkpoint with the highest average validation performance across all
tasks. The hyperparameters are selected in the same manner. In contrast to prior work (Houlsby et al.,
2019), we do not learn a separate output layer for each task but instead share a frozen output layer for
all the tasks, which makes our setting more parameter-efficient than prior work and is an advantage
of multi-task learning with encoder-decoder models.4

Baselines We compare to the strong adapter baseline (Houlsby et al., 2019). Following Houlsby et al.
(2019), we add adapters modules for each task after the two feed-forward modules in each transformer
block of the T5 model. As suggested in Houlsby et al. (2019), we train the layer normalization
parameters inside the T5 model, per task. We refer to this method as Adapters. We additionally propose
a variant of this model, in which we share all layer normalization parameters (T5 and adapters) across
all tasks. We refer to this model as Adapters†. We compare our models to the state-of-the-art T5
model, in which we fine-tune all parameters of the model on all tasks. We refer to this method as
T5SMALL/T5BASE in experiments.

4According to our initial experiments, fine-tuning the final output layer did not improve performance for adapter-based
methods.
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Sampling tasks During training, we sample tasks with conventional temperature-based sampling
with temperature T = 10 for all methods. We sample different tasks proportional to p

1/T
τ where

pτ = Nτ∑T

i=1Nτ
and Nτ is the number of training samples for the τ-th task. We did not experiment with

more complex sampling strategies (Raffel et al., 2020) or tuning of T .

4.3.1 Results on the GLUE Benchmark

Table 4.1 shows the results on GLUE for single-task and multi-task training. We experiment with
reduction factors of r={8,16,32} for all adapter-based methods, where r= h

d . We report the results
both with T5SMALL (6 layers and 60M parameters) and T5BASE models (12 layers and 222M parameters).

Overall, our proposed HYPERFORMER++ obtains strong gains over Adapters (82.51 versus 79.53
for T5SMALL and 86.48 versus 84.88 for T5BASE) while being more parameter-efficient.

Our variant of Adapters†, which shares layer norms across tasks, outperforms prior work (Houlsby
et al., 2019), which does not share such information (80.85 versus 79.53 for T5SMALL and 85.83 versus
84.88 for T5BASE). This demonstrates that in encoder-decoder models such as T5 more sharing of
information across tasks is beneficial.

Our proposed HYPERFORMER obtains consistent improvement over our proposed Adapters† method.
We attribute this improvement to the ability to learn the shared information across tasks through our
hypernetworks. Interestingly, HYPERFORMER++ obtains similar performance as HYPERFORMER

while being more than an order of magnitude more parameter-efficient. Adapter modules thus seem
to be similar enough so that much of their information can be modeled by a single, appropriately
conditioned network.

Compared to single-task fine-tuning of all parameters, our methods on average improve the results
by 0.45 for T5SMALL and 1.81 for T5BASE with substantial improvement on low-resource datasets like
CoLA (63.73 versus 54.85) and RTE (75.36 versus 67.39) due to shared hypernetworks that capture
the shared information and enable positive transfer effects.

We also report the total number of parameters and trainable parameters for all methods in Table 4.1.
For adapter-based methods, the number of parameters varies based on the adapter size (we report all
numbers with r=32). The multiple in terms of the number of parameters of HYPERFORMER++BASE

with regard to T5BASE is 1.02× with only 0.29% trainable parameters per task. Note that by keeping
the output layer frozen for AdaptersSMALL and AdaptersBASE, they require 5.51× and 2.53× fewer
parameters respectively compared to a direct application of prior work (Houlsby et al., 2019). Despite
using more efficient baselines, compared to AdaptersBASE, HYPERFORMER++BASE requires 3× fewer
trainable parameters.
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4.3.2 Few-shot Domain Transfer

Finally, we assess how well a trained HYPERFORMER can generalize to new tasks. We evaluate
performance on 5 tasks and 7 datasets. In particular, we consider 1) the natural language inference
(NLI) datasets SciTail (Khot et al., 2018), and CB (De Marneffe et al., 2019) from SuperGLUE (Wang
et al., 2019b) 2) the question answering (QA) dataset BoolQ (Clark et al., 2019a); 3) the sentiment
analysis datasets IMDB (Maas et al., 2011) and Yelp Polarity (Zhang et al., 2015); and 4) the paraphrase
detection dataset PAWS (Baldridge et al., 2019); 5) the question classification dataset TREC (Li and
Roth, 2002).

For CB and BoolQ, since test sets are not available, we divide the validation sets in half, using one
half for validation and the other for testing. For Yelp polarity, TREC, and IMDB, since validation sets
are not available, we similarly divide the test sets to form validation sets. For the rest, we report on
the original test sets.

We consider the models trained on GLUE reported in Table 4.1 and evaluate them on the test set
after the few-shot fine-tuning on each target training data. For Adapters† and our method, we use the
adapter and the task embedding respectively trained on the most similar GLUE task for initialization,
i.e. MNLI for NLI, QNLI for QA, SST-2 for sentiment analysis, and QQP for paraphrase detection.
Following prior evidence of positive transfer from NLI to other tasks (Conneau and Kiela, 2018; Yin
et al., 2020; Phang et al., 2018), we initialize the out-of-domain TREC from MNLI. We show the
results of full fine-tuning of all model’s parameters, Adapters†, and HYPERFORMER++5 in Table 4.2.
Our method significantly surpasses the baselines on the majority of settings.

4.3.3 Low-resource Fine-tuning
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Figure 4.2: Results on GLUE for the various number of training samples per task
(100,500,1000,2000,4000). We show mean and standard deviation across 5 seeds.

Given that our model HYPERFORMER++BASE has substantially fewer trainable parameters than T5BASE,

5We finetune hypernetworks and task embeddings parameters. We also tried only fine-tuning the task embedding but
found that this achieves lower performance in the few-shot setting and comparable performance with more samples.
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Dataset # Samples T5BASE Adapters†BASE HYPERFORMER++BASE

Natural Language Inference

SciTail

4 79.60±3.3 79.54±2.8 82.00±4.9

16 80.03±2.3 83.25±1.7 86.55±1.4

32 81.97±1.3 85.06±1.1 85.85±1.4

100 84.04±0.7 88.22±1.3 88.52±0.7

500 88.07±0.7 91.27±0.8 91.44±0.6

1000 88.77±1.0 91.75±0.8 92.34±0.5

2000 91.01±1.0 92.72±0.5 93.40±0.2

CB

4 57.78±10.9 51.11±9.2 60.74±16.66

16 77.04±7.2 74.81±5.4 76.29±4.45

32 80.0±7.6 74.81±5.9 81.48±6.2

100 85.93±5.4 80.74±7.6 87.41±2.96

250 85.19±4.7 86.67±5.0 89.63±4.32

Question Classification

TREC

4 28.11±5.9 23.61±7.7 28.85±6.9

16 40.08±12.6 43.45±14.0 49.40±9.5

32 62.49±6.2 59.6±7.0 68.94±7.5

100 87.79±0.7 78.07±3.8 88.42±1.7

500 93.57±1.3 93.65±1.7 94.78±1.4

1000 95.5±0.9 96.06±0.4 96.72±1.3

2000 96.87±1.3 97.03±0.7 96.92±0.9

Question Answering

BoolQ

4 50.49±11.1 53.48±2.8 48.03±4.8

16 56.50±7.1 51.37±6.5 50.21±7.9

32 58.43±4.9 54.52±5.1 58.37±3.7

100 60.10±2.4 58.60±1.6 62.03±2.0

500 66.49±1.2 66.72±0.7 70.04±1.4

1000 69.01±1.1 70.21±1.3 72.35±1.7

2000 71.58±0.8 73.60±0.8 74.94±0.6

Sentiment Analysis

IMDB

4 77.23±3.0 81.55±1.9 81.77±1.8

16 82.74±1.7 82.54 ±1.0 84.06±0.7

32 83.42±1.0 83.39 ±0.8 84.64±0.4

100 84.58±0.6 83.35 ±0.8 84.74±0.4

500 84.99±0.3 85.37±0.5 86.00±0.2

1000 85.50±0.1 86.27±0.4 86.37 ±0.4

2000 86.01±0.2 86.57±0.2 86.60±0.1

Yelp polarity

4 76.85±14.3 81.37±13.1 90.25±1.0

16 87.84±1.5 91.08±0.2 90.36±1.2

32 89.22±0.7 91.09±0.5 91.15±0.5

100 90.19±0.7 90.15±0.7 91.06±0.6

500 90.92±0.2 91.52±0.2 92.09±0.4

1000 91.32±0.2 92.26±0.6 92.50±0.2

2000 91.68±0.1 92.36±0.4 92.70±0.1

Paraphrase Detection

PAWS

4 53.89±3.6 55.69±9.0 55.58±7.5

16 54.18±1.0 63.38±5.3 72.71±1.1

32 55.23±3.2 68.78±1.5 73.39±2.1

100 71.51±2.4 73.82±1.6 78.24±2.1

500 82.81±1.0 85.36±0.6 86.3±1.1

1000 85.67±0.7 87.89±0.6 89.12±0.5

2000 88.33±0.6 90.41±0.6 90.87±0.3

Table 4.2: Few-shot domain transfer results of the models trained on GLUE averaged across 5 seeds.
We compute accuracy for all datasets.
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4.4 Analysis

we investigate whether it generalizes better in a low-resource setting. We subsample each individual
task in GLUE for varying training sizes. We train the models for 15,000 steps, which we found to be
sufficient to allow them to converge. Figure 4.2 shows the results. HYPERFORMER++BASE substantially
improves results with limited training data, indicating more effective fine-tuning in this regime.

4.4 Analysis

4.4.1 Parameter Efficiency

In this section, we compare the number of parameters of HYPERFORMER++ with Adapters.

Adapters parameters The standard setting (Houlsby et al., 2019) employs two adapters per layer
for each task. Each adapter layer has 2hd parameters for projection matrices (U l

τ and Dl
τ ) and 2h

parameters for the layer normalization. The total number of parameters for Adapters for L Transformer
layers in both an encoder and a decoder across T tasks is, therefore, 4TL(2hd+2h), which scales
linearly with the number of tasks times the number of layers.

HYPERFORMER++ parameters: Our approach learns a task feature embedding per task, consisting
of Tt parameters. We additionally employ layer id and adapter position embeddings in the encoder
and decoder, which require 2(2+L)t parameters, with a fixed embedding size of t for all these feature
embeddings. We consider a separate task projector networks h′

I for encoder and decoder, which is in
both cases a two-layer MLP, consisting of a total of 2(3te+et) parameters, where e=128 is the hidden
dimension for the task-projector network. Our hypernetwork for adapters in encoder/decoder consists
of 2(2thd) parameters and our layer normalization hypernetwork consists of 2(2th) parameters. In
total, this results in t(T +4+2L)︸ ︷︷ ︸

Task features

+8te+2t(2hd+2h)︸ ︷︷ ︸
Hypernetworks

parameters. The total number of parameters for

hypernetworks remains constant, while the task feature parameters scale with the number of tasks or
layers times t, where t=64 in our experiments.

In settings with a large number of layers and a large number of tasks, since t≪2hd+2h and T+L≪
TL, our method is much more parameter-efficient compared to Adapters. In the current setting, the term
hd is the largest term, and the factor 2TL for Adapters is larger than the factor t for HYPERFORMER++.

4.4.2 Do Extra Parameters Make a Difference?

While our HYPERFORMER++ is more parameter-efficient than the baselines, the number of parameters
of HYPERFORMER per task is higher compared to Adapters†. To confirm that the improvements of
HYPERFORMER are due to its capability of sharing information across tasks and not the number of
parameters, as an ablation, we run the Adapters† with r={2,4} and choose the model performing the
best on the validation set. This allows Adapters† to have a higher number of parameters compared to
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Model GLUE #Total
params

#Trained
params/task

Adapters† SMALL 80.97 1.83x 10.44%
HYPERFORMER SMALL 82.47 1.45x 5.80 %

Adapters† BASE 85.84 2.02x 12.73%
HYPERFORMER BASE 86.58 1.54x 6.86%

Table 4.3: Averaged test results on GLUE for HYPERFORMER and Adapters†, where Adapters† has
a higher number of parameters compared to HYPERFORMER.

Model variant GLUE
HYPERFORMERSMALL 82.47
− Adapter blocks 68.37
− Conditional layer norm 79.83
− Task projector 81.56
− T5 Layer norm 81.29
− Conditional layer norm, T5 Layer norm 78.92

Table 4.4: Impact when removing different components of our framework. We report the average
results on GLUE.

HYPERFORMER. We report the results in Table 4.3 and compare them with results of HYPERFORMER

in Table 4.1. The results demonstrate that even with an increased number of parameters, Adapters† is not
able to reach the performance of HYPERFORMER, and HYPERFORMER performs substantially better.

4.4.3 Impact of the Framework Components

We investigate the impact of the components of our framework including: (1) task conditional adapter
blocks; (2) task conditional layer normalization; (3) task projection network; (4) fine-tuning of layer
normalizations in the T5 model; (5) task conditional layer normalization in adapter modules and
fine-tuning of layer normalizations inside the T5 model. We consider our small model of Table 4.1 and
train different variants of it. Table 4.4 shows the results on GLUE, demonstrating that each component
of the model contributes positively to its final performance.

4.4.4 Visualization of Task Embeddings

To analyze what HYPERFORMER++BASE has learned about the relations between different tasks, we
visualize the learned task embeddings for the models trained with the largest number of samples in
Table 4.1 and 4.2. Figure 4.3 illustrates the 2D vector projections of task embeddings using PCA (Wold
et al., 1987). Interestingly, the observed groupings correspond to similar tasks. This shows that learned
task embeddings by HYPERFORMER++BASE are meaningful. For CB, an NLI dataset despite being
initialized from MNLI, after few-shot training the task embedding is closest to RTE, another NLI
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Figure 4.3: Visualization of learned task embeddings by HYPERFORMER++BASE.

dataset. This is plausible as premises and hypotheses in both the discourse-based CB and the news and
Wikipedia-based RTE are more complex compared to MNLI. The sentence similarity dataset STS-B is
grouped close to the MRPC paraphrase dataset. CoLA, which focuses on linguistic acceptability is very
different from other tasks and is not grouped with any of the observed task embeddings. In addition,
the task embeddings for 1) all the sentiment analysis datasets namely SST-2, Yelp polarity, and IMDB;
2) the two large-scale NLI datasets namely MNLI and SciTail; 3) question answering datasets, i.e.
BoolQ and QNLI; and 4) paraphrase datasets namely QQP and PAWS are each grouped together.

4.5 Related Work

Multi-task learning Multi-task learning, i.e., learning a unified model to perform well on multiple
different tasks, is a challenging problem in NLP. It requires addressing multiple challenges such as
catastrophic forgetting, and handling disproportionate task sizes resulting in a model overfitting in
low-resource tasks while underfitting in high-resource ones (Arivazhagan et al., 2019). Liu et al. (2019a)
proposed Multi-Task Deep Neural Network (MTDNN) for learning from multiple NLU tasks. Although
MTDNN obtains impressive results on GLUE, it applies multi-task learning as a form of pretraining
followed by task-specific fine-tuning. Concurrently with us, Tay et al. (2021) propose a multi-task learn-
ing method by training task-conditioned hyper networks; however, their method is 43x less parameter
efficient compared to ours. In another line of research, Clark et al. (2019c) proposed to learn multi-task
models with knowledge distillation. Houlsby et al. (2019) trained adapters for each task separately,
keeping the model fixed. Stickland and Murray (2019) share the model parameters across tasks and
introduce task-specific adapter parameters, which is more parameter-inefficient than our method.
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Hypernetworks and contextual parameter generation Our work is closely related to hypernet-
works (Ha et al., 2017). In a continual learning setup, where tasks are learned sequentially, Oswald
et al. (2020) proposed a task-conditioned hypernetwork to generate all the weights of the target model.
Our method is substantially more efficient as we do not generate all the weights of the target model but
a very small number of parameters for adapter modules to allow the model to adapt to each individual
task efficiently. Similarly, Jin et al. (2020) generate the full model from task-specific descriptions in
different domains whereas we efficiently generate only small adapter modules for each task.

Prior work also proposed meta-learning or Bayesian approaches to generate softmax layer parameters
for new settings (Bansal et al., 2020; Ponti et al., 2020). Meta-learning approaches are notoriously
slow to train. In addition, generating softmax parameters requires a substantially higher number
of parameters, leaves the method unable to adapt the lower layers of the model, and restricts their
application to classification tasks.

In contemporaneous work, Üstün et al. (2020) proposed a multilingual dependency parsing method
based on adapters and contextual parameter generator networks (Platanios et al., 2018) where they
generate adapter parameters conditioned on trained input language embeddings. Their study is limited
to multilingual dependency parsing, while our work studies multi-task learning and applies to several
tasks thanks to the general sequence-to-sequence nature of our model. Moreover, their number of
trainable parameters is 2.88× larger than their base model since they employ a contextual parameter
generator in each layer. In contrast, we use a single compact hypernetwork allowing us to efficiently
condition on multiple tasks and layers of a transformer model.

4.6 Conclusion

In this chapter, we propose a parameter-efficient method for multi-task fine-tuning. Our approach
is to train shared hypernetworks to generate task-specific adapters conditioned on the task, layer id,
and adapter position embeddings. The shared hypernetworks capture the knowledge across tasks and
enable positive transfer to low-resource and related tasks, while task-specific layers allow the model to
adapt to each individual task. Extensive experiments show that our method obtains strong improvement
over multi-task learning on the GLUE benchmark, and substantially improves the in-domain task
generalization.
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Appendix

4.7 Experimental Details

Computing infrastructure We run the experiments in Table 4.1 on 4 GPUs, and the rest of the
experiments on 1 GPU on a heterogeneous cluster with Tesla V100, Tesla A100, Tesla P4, and
GTX1080ti GPUs.

Hyperparameters We use a batch size of 64 for T5SMALL and 32 for T5BASE to fit the GPU memory.
We set the dimension of the task feature embedding (zτ ) to t′ =512, and the dimension of the task em-
bedding (Iτ ) to t=64. For low-resource fine-tuning in §4.3.3, we use reduction factors of {16,32,64}.

Data pre-processing We download all datasets from the HuggingFace Datasets library Lhoest et al.
(2021). Following Raffel et al. (2020), we cast all datasets into a sequence-to-sequence format, and re-
cast STS-B as a 21-class classification task by rounding its target scores to their nearest increment of 0.2.

Performance evaluation Table 4.5 and 4.6 present the efficiency evaluation in terms of memory, and
time for all the methods measured on the GLUE benchmark. We report the time for 1000 training steps.

Our approach has several attractive properties. Our HYPERFORMER++BASE approach offers a much
better memory usage with low-overhead, while HYPERFORMERBASE and T5BASE cause substantial
memory overhead. In dealing with large-scale transformer models like T5, efficient memory usage is of
paramount importance. Second, in terms of training time, our method is much faster than Adapters†BASE.
Relative to T5BASE, HYPERFORMER++BASE increases the training time by 30.49%, while Adapters†BASE

causes the substantial training time overhead of 84.93%.
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Model Memory ∆%
T5BASE 7.76 (GB) -
Adapters†BASE 5.95 (GB) -23.32%
HYPERFORMERBASE 7.60 (GB) -2.06%
HYPERFORMER++BASE 5.81 (GB) -25.13

Table 4.5: The required memory for all methods. ∆% is the relative difference with respect to T5BASE.

Model Time ∆%

T5BASE 5.51 (min) -
Adapters†BASE 10.19 (min) 84.93%
HYPERFORMERBASE 7.92 (min) 43.74%
HYPERFORMER++BASE 7.19 (min) 30.49%

Table 4.6: Training time for all methods. ∆% is the relative difference with respect to T5BASE.

Impact of adapter’s bottleneck size on the performance Similar to (Houlsby et al., 2019), adapter’s
reduction factor needs to be set per dataset. Table 4.7 shows the validation performance of HYPER-
FORMER++ on the GLUE tasks for different adapters’ reduction factors. While the pattern may not
be always consistent, generally, smaller datasets seem to benefit more from smaller bottleneck size,
i.e., less parameters for adapters, while the opposite is the case for larger datasets, which require more
modeling capacity.

Model r CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg
HYPERFORMER++SMALL 8 42.13 98.60 82.76/87.72 90.69/87.55 84.92/84.18 82.3 95.40 78.83 83.19
HYPERFORMER++SMALL 16 42.60 97.8 84.73/89.12 88.99/85.33 85.69/85.12 81.96 93.69 75.91 82.81
HYPERFORMER++SMALL 32 49.90 96.00 83.74/88.50 89.29/85.79 85.99/85.41 81.28 91.79 72.99 82.79

HYPERFORMER++BASE 8 54.86 97.30 88.18/91.55 94.59/92.91 89.77/89.69 85.89 96.10 84.67 87.77
HYPERFORMER++BASE 16 53.83 98.00 88.18/91.61 94.89/93.33 90.12/89.65 85.94 96.50 83.94 87.82
HYPERFORMER++BASE 32 55.58 97.20 89.66/92.42 93.19/91.08 88.96/88.57 85.82 94.19 81.75 87.13

Table 4.7: Validation performance of HYPERFORMER++ on the GLUE tasks for different reduction
factors r={8,16,32}. For MNLI, we report accuracy on the matched validation set. For MRPC and
QQP, we report accuracy and F1. For STS-B, we report Pearson and Spearman correlation coefficients.
For CoLA, we report Matthews correlation. For all other tasks, we report accuracy.
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5 COMPACTER: Efficient Low-Rank
Hypercomplex Adapter Layers

Adapting large-scale pretrained language models to downstream tasks via fine-tuning is the standard
method for achieving state-of-the-art performance on NLP benchmarks. However, fine-tuning all
weights of models with millions or billions of parameters is sample-inefficient, unstable in low-resource
settings, and wasteful as it requires storing a separate copy of the model for each task. Recent work
has developed parameter-efficient fine-tuning methods, but these approaches either still require a
relatively large number of parameters or underperform standard fine-tuning. In this chapter, we propose
COMPACTER, a method for fine-tuning large-scale language models with a better trade-off between
task performance and the number of trainable parameters than prior work. COMPACTER accomplishes
this by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex
multiplication layers.

Specifically, COMPACTER inserts task-specific weight matrices into a pretrained model’s weights,
which are computed efficiently as a sum of Kronecker products between shared “slow” weights
and “fast” rank-one matrices defined per COMPACTER layer. By only training 0.047% of a pre-
trained model’s parameters, COMPACTER performs on par with standard fine-tuning on GLUE and
outperforms standard fine-tuning on SuperGLUE and low-resource settings.1

5.1 Introduction

State-of-the-art pretrained language models
(PLMs) in natural language processing (NLP) have
used heavily over-parameterized representations
consisting of hundreds of millions or billions of
parameters to achieve success on a wide range of

With four parameters I can fit an elephant,
and with five I can make him wiggle his
trunk.

John von Neumann

NLP benchmarks (Devlin et al., 2019; Raffel et al., 2020; Liu et al., 2019b). These models are generally

1Our code is publicly available at https://github.com/rabeehk/compacter.
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Figure 5.2: Left: Adapter integration
in a pretrained transformer model.
Right: Adapter architecture. Follow-
ing Houlsby et al. (2019), we include
adapters after the attention and feed-
forward modules. During training,
we only update layer normalizations
and adapters (shown in yellow),
while the pretrained model is fixed.

applied to downstream tasks via fine-tuning (Howard and Ruder, 2018), which requires updating all
parameters and storing one copy of the fine-tuned model per task. This causes substantial storage
and deployment costs and hinders the applicability of large-scale PLMs to real-world applications.
Additionally, fine-tuning of over-parameterized models on low-resource datasets has been shown to
be subject to instabilities and may lead to poor performance (Peters et al., 2019; Dodge et al., 2020).

Inspired by John von Neumann’s quotation, we ask, given that we have already learned general-purpose
language representations via a PLM (i.e. we have fit our elephant), how many more parameters do we
need to reach state-of-the-art performance on standard NLP tasks. Specifically, we aim to develop prac-
tical, memory-efficient methods that train a minimum set of parameters while achieving performance
on par or better than full fine-tuning for state-of-the-art NLP models.

Recent literature has introduced parameter-efficient fine-tuning methods. These approaches generally
keep the pretrained model’s parameters fixed and introduce a set of trainable parameters per task,
trading off the number of trainable parameters with task performance. At one end of the spectrum,
prompts, i.e. natural language descriptions of a task, together with demonstrations have been used to
achieve reasonable performance without any parameter updates on some benchmarks (Brown et al.,
2020) but their performance generally lags behind fine-tuned models. They also require huge models
to work well but choosing good prompts becomes harder with larger model sizes (Perez et al., 2021).
Soft prompt methods treat prompts as trainable continuous parameters, which are prepended to the
inputs at the input layer or intermediate layers (Li and Liang, 2021; Hambardzumyan et al., 2021;
Lester et al., 2021). Such methods, however, often require large models to achieve good performance
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and are very sensitive to initialization and unstable during training.

The theoretically motivated low-rank methods train a small number of parameters that lie in a low-
dimensional subspace using random projections (Li et al., 2018; Aghajanyan et al., 2021). However,
storing the random projection matrices causes substantial memory overhead and leads to slow training
times. At the other end of the spectrum, adapter methods (Rebuffi et al., 2018; Houlsby et al., 2019)
that insert trainable transformations at different layers of the pretrained model require more param-
eters than the aforementioned approaches but are more memory-efficient and obtain performance
comparable to full fine-tuning (Houlsby et al., 2019; Lin et al., 2020).

In this work, we propose COMPACTER, a method for fine-tuning large-scale language models with
an excellent trade-off between the number of trainable parameters, task performance, and memory
footprint, compared to existing methods (see Figure 5.1). COMPACTER builds on ideas from adapters
(Houlsby et al., 2019), low-rank methods (Li et al., 2018), as well as recent hypercomplex multipli-
cation layers (Zhang et al., 2021a). Similar to adapters, COMPACTER inserts task-specific weight
matrices into a pretrained model’s weights. Each COMPACTER weight matrix is computed as the
sum of Kronecker products between shared “slow” weights and “fast” rank-one matrices defined per
COMPACTER layer (see Figure 5.3). As a result, COMPACTER achieves a parameter complexity of
O(k+d) compared to O(kd) for regular adapters, where the adapters are of size k×d. In practice,
COMPACTER trains 0.047% of a PLM’s parameters. On the standard GLUE (Wang et al., 2019c) and
SuperGLUE (Wang et al., 2019b) benchmarks, COMPACTER outperforms other parameter-efficient
fine-tuning methods and obtains performance on par or better than full fine-tuning. On low-resource
settings, COMPACTER outperforms standard fine-tuning.

In summary, in this chapter, we make the following contributions: 1) We propose COMPACTER

(Compact Adapter) layers, a parameter-efficient method to adapt large-scale language models. 2)
We show that COMPACTER obtains strong empirical performance on GLUE and SuperGLUE. 3)
We demonstrate that COMPACTER outperforms fine-tuning in low-resource settings. 4) We provide a
parameter complexity analysis of COMPACTER, showing that it requires dramatically fewer parameters
than adapters and fine-tuning. 5) We provide a systematic evaluation of recent parameter-efficient
fine-tuning methods in terms of training time and memory consumption.

5.2 Background

We start by introducing the required background on the Kronecker product and adapter layers (Houlsby
et al., 2019; Rebuffi et al., 2018).
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5.2.1 Kronecker Product

The Kronecker product between matrix A∈Rm×f and B ∈Rp×q, denoted by A⊗B ∈Rmp×fq, is
mathematically defined as:

A⊗B=


a11B ··· a1fB

...
. . .

...
am1B ··· amfB

, (5.1)

where aij shows the element in the ith row and jth column of A.

5.2.2 Adapter Layers

Recent work has shown that fine-tuning all parameters of a language model can lead to a sub-optimal
solution, particularly for low-resource datasets (Peters et al., 2019). As an alternative, Rebuffi et al.
(2018) and Houlsby et al. (2019) propose to transfer a model to new tasks by inserting small task-
specific modules called adapter layers within the layers of a pretrained model, as depicted in Figure 5.2.
They then only train adapters and layer normalizations, while the remaining parameters of the pretrained
model remain fixed. This approach allows pretrained language models to efficiently adapt to new tasks.

Each layer of a transformer model is composed of two primary modules: a) an attention block, and b) a
feed-forward block. Both modules are followed by a skip connection. As shown in Figure 5.2, Houlsby
et al. (2019) suggest to insert an adapter layer after each of these blocks before the skip connection.

Adapters are bottleneck architectures. By keeping the output dimension similar to their input, they
cause no change to the structure or parameters of the original model. The adapter layer Al for layer
l consists of a down-projection, Dl ∈Rk×d, GeLU non-linearity (Hendrycks and Gimpel, 2016), and
up-projection U l ∈Rd×k, where k is the input dimension, and d is the bottleneck dimension for the
adapter layer. Adapters are defined as:

Al(x)=U l(GeLU(Dl(x)))+x, (5.2)

where x is the input hidden state.

5.3 Method

In this section, we present COMPACTER, a compact and efficient way to adapt large-scale PLMs.

Problem formulation We consider the general problem of fine-tuning large-scale language models,
where we are given the training data D={(xi,yi)}P

i=1 with P samples. We assume we are also given
a large-scale pretrained language model fθ(.) parameterized by θ that computes the output for input
xi. Our goal is to fine-tune fθ(.) efficiently to enable the model to adapt to new tasks.
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Figure 5.3: Illustration of generating weights of two different COMPACTER layers: W1 ∈ Rd×k

(first row) and W2 ∈Rd×k (second row). We generate W1 and W2 using Wj =
∑n

i=1Ai⊗Bi
j =∑n

i=1Ai⊗(si
jti

j⊤) (5.5), by computing the sum of Kronecker products of shared matrices Ai and
adapter-specific matrices Bj

i , with i∈{1,...,n} and adapter index j ∈{1,2}. We generate each Bj
i

by multiplying independent rank one weights. In this example n=2, d=6, and k=8.

5.3.1 Compact and Efficient Adapter Layers

In this section, we introduce an efficient version of adapter layers, building on top of recent advances
in parameterized hypercomplex multiplication layers (PHM) (Zhang et al., 2021a). To the best of our
knowledge, we are the first to exploit PHM layers for efficient fine-tuning of large-scale transformer
models. The PHM layer has a similar form as a fully-connected layer, which converts an input x∈Rk

to an output y∈Rd:

y=Wx+b, (5.3)

where W ∈Rk×d. The key difference is that in a PHM layer, W is learned as a sum of Kronecker
products. Assume that k and d are both divisible by a user-defined hyperparameter n∈Z>0. Then,
the matrix W in (5.3) is computed as the sum of n Kronecker products as follows:

W =
n∑

i=1
Ai⊗Bi, (5.4)

where Ai ∈Rn×n and Bi ∈R
k
n

× d
n . The PHM layer has a parameter complexity of O(kd

n ), reducing
parameters by at most 1

n (Zhang et al., 2021a) (see §5.4).

5.3.2 Beyond Hypercomplex Adapters

Prior work indicates that some of the information captured in pretrained models can be ignored for
transfer (Zhang et al., 2021b; Chung et al., 2021). Similarly, redundancies have been observed in the
information captured by adapters, with adapters in lower layers being less important (Houlsby et al.,
2019). In addition, sharing adapters across layers leads to a comparatively small drop of performance
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for some tasks (Rücklé et al., 2021). Motivated by these insights, we propose the following two
extensions to make hypercomplex adapters more efficient.

Sharing information across adapters Sharing all adapter parameters across layers is overall too
restrictive and is not able to perform on par with fine-tuning or using regular adapters (Rücklé et al.,
2021); however, our decomposition of adapters into Ai and Bi matrices as in Eq. (5.4) allows us to
be more flexible. Consequently, we divide our adaptation weights into shared parameters that capture
general information useful for adapting to the target task and adapter-specific parameters that focus
on capturing information relevant for adapting each individual layer. Specifically, we define Ai as
shared parameters that are common across all adapter layers while Bi are adapter-specific parameters.

Low-rank parameterization Low-rank methods (Li et al., 2018; Aghajanyan et al., 2021) have
demonstrated that strong performance can be achieved by optimizing a task in a low-rank subspace.
Similarly, we hypothesize that a model can also be effectively adapted by learning transformations in a
low-rank subspace. To this end, we propose to parameterize Bi ∈R

k
n

× d
n as a low-rank matrix, which

is the product of two low-rank weights si ∈R
k
n

×r and ti ∈Rr× d
n , where r is the rank of the matrix.2

Putting both extensions together, we propose the low-rank parameterized hypercomplex multiplication
layer (LPHM):

W =
n∑

i=1
Ai⊗Bi =

n∑
i=1

Ai⊗(sit
⊤
i ). (5.5)

In general, we set r=1 so that Bi is a rank-one matrix. Depending on the complexity of the target task,
r can be set to a higher value.3 Figure 5.3 illustrates our method. Overall, the LPHM layer reduces
complexity further to O(k+d) (see §5.4). The LPHM layer can also be seen as leveraging “slow”
weights Ai that are shared across adapters and capture general information and “fast” weights Bi that
learn adapter-specific information for adaptation of each individual layer (Wen et al., 2020).

COMPACTER Based on the above formulation, we introduce COMPACTER layers, which replace
the down-projection and up-projection layers in adapters as follows:

Al(x)=LPHMUl(GeLU(LPHMDl(x)))+x,

where the up-projection weights LPHMUl
are computed as in (5.5), replacing the layer U l in (5.2).

Similarly, down-projection weights LPHMDl
replace the layer Dl. While the two adapters in each

layer of a transformer have their own si and ti rank-one weights, we share the Ai across all layers
and positions of the adapter layers.

5.4 Parameter Efficiency

In this section, we compare the number of parameters of COMPACTER with adapters.

2We do not factorize Ai as they are small, shared between all layers, and factorization hurts performance.
3If factors are over-parameterized, COMPACTER can be used for overcomplete knowledge distillation (Arora et al., 2018).
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Adapters parameters In the standard setting, two adapters are added per layer of a transformer
model (Houlsby et al., 2019). Each adapter layer consists of 2kd parameters for the down and up-
projection matrices (U l, Dl) respectively where k is the size of the input dimension and d is the
adapter’s bottleneck dimension. The total number of parameters for adapters for a transformer model
with L layers of both an encoder and a decoder is, therefore, 2L(2kd), which scales linearly with all
three variables.

PHM-ADAPTER parameters In the conventional PHM layer (Zhang et al., 2021a), as depicted
in Eq. (5.4), parameters of Ai ∈ Rn×n and Bi ∈ R

k
n

× d
n define the degree of freedom for W as

n(kd
n2 +n2) = kd

n +n3. With the mild condition that kd > n4, then kd
n dominates and the overall

parameter size of the PHM layer in (5.4) is O(kd
n ). This condition is satisfied for typical values for

adapters, PHM layers, and large-scale PLMs such as T5-large, with hidden size k = 1024, adapter
hidden size d∈{24,32,48,96}, and n=2,4,8,12. Hence, the PHM layer offers a parameter reduction
of almost 1

n compared to standard fully-connected layers, which are O(kd).4

Similarly, employing PHM layers for modeling down and up-projection matrices offers a parameter
reduction of almost 1

n . Each adapter with a PHM layer has in total 2(kd
n +n3) parameters. For a

Transformer model with L layers, the total number of parameters of PHM-ADAPTER is 4L(kd
n +n3).

COMPACTER parameters COMPACTER shares the trained weight matrices {Ai}n
i=1 in (5.5) consist-

ing of n3 parameters across all layers. COMPACTER also has two rank-one weights for each adapter,
si,ti in (5.5) consisting of k

n + d
n parameters, resulting in a total of 2n(k

n + d
n) parameters for down and

up-projection weights. Therefore, the total number of parameters of COMPACTER is 4L(k+d)+n3

for a transformer with L layers in the encoder and decoder.

In settings with a large number of layers, the dominant term is 4L(k+d). Therefore, with a mild
condition that 4L(k+d)>n3, COMPACTER has a complexity of O(k+d), which is far more efficient
compared to adapters’ O(kd) and PHM-ADAPTER’s O(kd

n ) complexity respectively. In settings where
n is large, the number of parameters for shared weight matrices {Ai}n

i=1 for all layers remain constant
in COMPACTER with a total of n3 parameters while this scales linearly with the number of layers L

for PHM and adapter layers. As an example, in the T5BASE model with 222M parameters (Raffel et al.,
2020), COMPACTER only learns 0.047% of the parameters, and maintains comparable performance
to full fine-tuning.

5.5 Experiments

Datasets Following Raffel et al. (2020), we evaluate the performance of the methods on the
GLUE (Wang et al., 2019c) and SUPERGLUE (Wang et al., 2019b) benchmarks. These benchmarks
cover multiple tasks of paraphrase detection (MRPC, QQP), sentiment classification (SST-2), natural
language inference (MNLI, RTE, QNLI, CB), linguistic acceptability (CoLA), question-answering

4Even for smaller models where the n4 term dominates, we observe a substantial reduction of parameters compared
to adapters.

71



Chapter 5. COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers

(MultiRC, ReCoRD, BoolQ), word sense disambiguation (WiC), and sentence completion (COPA).5 As
the original test sets are not publicly available, we follow Zhang et al. (2021b) and split off 1k samples
from the training set that we use for validation, while we use the original validation data as the test set.
For datasets with fewer than 10k samples (RTE, MRPC, STS-B, CoLA, COPA, WiC, CB, BoolQ, Mul-
tiRC), we divide the original validation set in half, using one half for validation and the other for testing.

Experimental details We use the state-of-the-art encoder-decoder T5 model (Raffel et al., 2020)
as the underlying model for all methods in our experiments. For computational efficiency, we report
all results on T5BASE models (12 encoder and decoder layers and 222M parameters). We use its
HuggingFace PyTorch implementation (Wolf et al., 2020). We fine-tune all methods for 3 epochs on
large datasets and 20 epochs for low-resource datasets of GLUE (MRPC, CoLA, STS-B, RTE, BoolQ,
CB, COPA, WiC) to allow the models to converge (Zhang et al., 2021b). For all adapter-based methods,
we experiment with adapters of bottleneck size of {96,48,24}. We save a checkpoint every epoch for
all models and report the results for the hyper-parameters performing the best on the validation set
for each task. For the PHM layers, we use the PyTorch implementation of Le et al. (2021). We include
low-level details in Appendix 5.8. For our methods, we experiment with n={4,8,12} and report the
model performing the best. We include the results for all values of n in Appendix 5.9.

Following Mahabadi et al. (2021b), we freeze the output layer of the pretrained model for all tasks
across all methods.6 We show the results with fine-tuning the output layer in Appendix 5.10. Fol-
lowing Houlsby et al. (2019), we update the layer normalization parameters for all methods where
applicable.7

5.5.1 Baselines

We compare against several recently proposed parameter-efficient fine-tuning methods:

T5BASE We compare our method to the standard practice of fine-tuning T5, where we fine-tune all
parameters of the model on each individual task.

Adapters We compare to a strong adapter baseline (Houlsby et al., 2019), which adds adapters for
each task after the feed-forward and attention modules in each transformer block of T5.

PFEIFFER-ADAPTER Pfeiffer et al. (2021) propose a more efficient adapter variant, which keeps only
one of the adapters in each layer for better training efficiency. We experimented with keeping either
adapter and found keeping the adapter after the self-attention module in each layer to perform the best.

ADAPTER-LOWRANK We parameterize each adapter’s weight as a product of two rank-one weights.

5Following Raffel et al. (2020); Devlin et al. (2019), as a common practice, we do not experiment with WNLI (Levesque
et al., 2012) due to its adversarial nature with respect to the training set.

6This is much more efficient as the output layer includes 11.1% of the parameters of T5BASE. Tasks are formulated
in a text-to-text format so the model can be applied to them without learning a new output layer (Raffel et al., 2020). We
note that this is in contrast to the original adapter setting, which used an encoder-only masked PLM (Houlsby et al., 2019).

7For BITFIT, we only update the biases. For PROMPT TUNING, the entire model is frozen.
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PROMPT TUNING Prompt tuning (Lester et al., 2021) is the successor variant of Li and Liang (2021),
which prepends a randomly initialized continuous prompt to the input (PROMPT TUNING-R). We also
compare to a variant, which initializes prompts using token embeddings of the pretrained language
model’s vocabulary (PROMPT TUNING-T) (Lester et al., 2021).

INTRINSIC-SAID The Structure Aware Intrinsic Dimension (Aghajanyan et al., 2021) fine-tunes
the model by reparameterizing the parameters in a lower-dimensional subspace θd′

(d′ ≪D): θD
i =

θD
i,0+λiPθd′−m

i where parameter θD
i,0 are the pretrained model’s parameters and P ∈Rd′−m →RD

is a random linear projection via the Fastfood transform (Le et al., 2013). They then consider the total
number of weight matrices in the PLM, m, and attribute a weight to each of them, resulting in λ∈Rm

in total by trading m parameters from the low dimensional space θd′ ∈Rd′
. Then, the total trainable

parameters are θd′−m ∈Rd′−m and λ.

ADAPTERDROP We apply the method of Rücklé et al. (2021), which drops the adapters from lower
transformer layers for a better training efficiency to T5 with Adapters. Consequently, we drop adapters
from the first five layers of both the encoder and the decoder in T5BASE.

BITFIT Cai et al. (2020) propose to freeze the weights and only train the biases. By not storing
intermediate activations, this method enables substantial memory savings. Ravfogel et al. (2021) study
a similar method for PLMs that fine-tunes only the biases and the final output layer.8

5.5.2 Our Methods

PHM-ADAPTER We learn the weights of adapters using PHM layers as in (5.4). To our knowledge,
we are the first who exploit the idea of PHM (Zhang et al., 2021a) for efficient fine-tuning of large-scale
language models.

COMPACTER We learn adapter weights using LPHM layers as described in (5.5). We also explore
a variant where we only keep the COMPACTER layer after the feed-forward layer in each transformer
block (COMPACTER++).9

5.5.3 Results on the GLUE Benchmark

Table 5.1 shows the results on GLUE with T5BASE (see Appendix 5.12 for results on T5SMALL). COM-
PACTER and COMPACTER++ outperform all previous parameter-efficient methods and perform on
par with full fine-tuning while only training 0.07% and 0.047% of parameters respectively. We now
discuss the different methods in detail.

Adapter-based methods For ADAPTER, not fine-tuning the classifier hurts the performance substan-
tially (85.78 versus 86.48; cf. Appendix 5.10). PFEIFFER-ADAPTER, which adds adapters only after the

8Note that in the HuggingFace T5 implementation, the biases in layer normalizations, linear layers, the output layer
and self-attention layers are removed. We re-introduce these biases for BITFIT.

9We found this to slightly outperform keeping the COMPACTER layer after the self-attention layer instead.
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Table 5.1: Performance of all models on the GLUE tasks. For each method, we report the total number
of parameters across all tasks and the number of parameters that are trained for each task as a multiple
and proportion of T5BASE model (Raffel et al., 2020). For MNLI, we report accuracy on the matched
validation set. For MRPC and QQP, we report accuracy and F1. For STS-B, we report Pearson and
Spearman correlation coefficients. For CoLA, we report Matthews correlation. For all other tasks, we
report accuracy. Bold fonts indicate the best results. For the results with †, due to insatiability during
training, we restarted experiments with 6 random seeds and report the best. For INTRINSIC-SAID,
d′ is set to 20K.

Method #Total
params

Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Baselines

T5BASE 8.0×1 100% 61.76 94.61 90.20/93.06 91.63/88.84 89.68/89.97 86.78 93.01 71.94 86.50

ADAPTER 1.065 0.832% 64.02 93.81 85.29/89.73 90.18/87.20 90.73/91.02 86.49 93.21 71.94 85.78
PFEIFFER-ADAPTER 1.032 0.427% 62.9 93.46 86.76/90.85 90.14/87.15 91.13/91.34 86.26 93.30 76.26 86.32
ADAPTERDROP 1.038 0.494% 62.7 93.58 86.27/90.60 90.2/87.25 91.37/91.61 86.27 93.23 71.22 85.85
ADAPTER-LOWRANK 1.004 0.073% 59.19 93.69 88.24/91.49 90.23/87.01 90.8/91.33 85.8 92.9 73.38 85.82

PROMPT TUNING-R 1.003 0.034% 0.47† 87.61 68.14/81.05 88.93/85.55 90.25/90.59 46.83† 92.33 54.68 71.49
PROMPT TUNING-T 1.003 0.034% 10.59 90.94 68.14/81.05 89.69/86.14 89.84/90.21 81.46 92.75 54.68 75.95

INTRINSIC-SAID 1.001 0.009% 58.69 94.15 88.24/91.78 90.28/87.13 90.06/90.45 85.23 93.39 70.50 85.45
BITFIT 1.010 0.126% 58.16 94.15 86.76/90.53 90.06/86.99 90.88/91.26 85.31 92.99 67.63 84.97

Our Proposed Methods

PHM-ADAPTER (n=12) 1.013 0.179% 57.35 94.50 91.67/93.86 90.25/87.05 90.45/90.84 85.97 92.92 75.54 86.40

COMPACTER (n=4) 1.004 0.073% 63.75 93.00 89.22/92.31 90.23/87.03 90.31/90.74 85.61 92.88 77.70 86.62

COMPACTER++ (n=4) 1.002 0.047% 61.27 93.81 90.69/93.33 90.17/86.93 90.46/90.93 85.71 93.08 74.82 86.47

self-attention module outperforms the standard Adapters while being more parameter-efficient. ADAP-
TERDROP obtains lower performance than fine-tuning, demonstrating that adapting the lower layers of
an encoder-decoder T5 model is important for its performance. Additionally, ADAPTER-LOWRANK

is not expressive enough to perform well on this benchmark.

Prompt tuning and BitFit For PROMPT TUNING, we observe high sensitivity to initialization and
learning rate, as also confirmed in Li and Liang (2021). We experimented with multiple random seeds
but performance lags behind fine-tuning substantially, in particular on low-resource datasets. This
can be explained by the low flexibility of such methods as all the information needs to be contained
in the prefixes. As a result, the method only allows limited interaction with the rest of the model
and good performance requires very large models (Lester et al., 2021). In addition, increasing the
sequence length leads to memory overhead (see §5.5.5) and the number of prompt tokens is limited
by the number of tokens that can fit in the model’s maximum input length, which makes such methods
less flexible and unsuitable for dealing with large contexts. Similarly, BITFIT performs worse than
fine-tuning, especially on low-resource datasets.

Intrinsic-SAID Interestingly, the average performance of INTRINSIC-SAID, which fine-tunes only
0.009% of a model’s parameters is only 1.05 points below the fine-tuning baseline. However, this
method has two practical drawbacks: a) storing the random projection matrices results in a substantial
memory overhead; b) it is very slow to train (see §5.5.5). Despite this, INTRINSIC-SAID provides in-
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sights regarding the effectiveness of low-rank optimization of pretrained language models (Aghajanyan
et al., 2021), which motivates the development of parameter-efficient methods such as COMPACTER.

COMPACTER For our proposed methods, we observe fine-tuning the output layer for both PHM-
ADAPTER and COMPACTER++ does not provide much performance difference (see Appendix 5.10).
PHM-ADAPTER reduces the parameters of ADAPTER from 0.83% to 0.179% (with n=12), being
4.64× more parameter-efficient. COMPACTER reduces the number of parameters to the remarkable
rate of 0.073% while obtaining comparable results to full fine-tuning. By removing the COMPACTER

layer after self-attention, COMPACTER++ obtains similar performance, while reducing the parameters
to 0.047%. Adaptation without updating the layer normalization can be a promising direction to reduce
the parameters further, for instance by building on recent advances in normalization-free models (Brock
et al., 2021), which we leave to future work.

5.5.4 Results on the SUPERGLUE Benchmark

Table 5.2 shows the performance of the methods on SUPERGLUE (Wang et al., 2019b). We include
the results for all values of n in Appendix 5.11. We observe a similar pattern as on GLUE in Table 5.1.
COMPACTER and COMPACTER++ perform substantially better compared to other parameter-efficient
fine-tuning methods and even outperform full fine-tuning while only training 0.073% and 0.048% of
the parameters.

5.5.5 Efficiency Evaluation

In this section, we compare the efficiency of our proposed methods with various recently proposed
parameter-compact fine-tuning methods under the same computation budget. To this end, we train
all methods for 1 epoch on the MNLI dataset. For each method, we select the largest batch size that
fits a fixed budget of the GPU memory (24 GB). For all adapter-based methods, we fix the adapter
size to 24. For PROMPT TUNING, we set the number of prefix tokens to 100. For INTRINSIC-SAID,
we set d′ =1400. Finally, we set n=4. In Table 5.3, we report the percentage of trained parameters
per task, training time per epoch, and memory usage of each method. Moreover, Figure 5.1 shows the
trade-off between quantitative performance, percentage of trained parameters, and memory footprint.

Our approaches have several attractive properties. Based on our analysis in Table 5.1, COMPACTER

and COMPACTER++ obtain the best combination of high GLUE score averaged across all tasks,
plus a substantially lower number of parameters (0.073% and 0.047% respectively). In addition to
COMPACTER++ performing well, its memory requirement is the second best among all methods,
reducing memory usage by -41.94% compared to T5BASE. COMPACTER and COMPACTER++ also
speed up training substantially, by -13.41% and -26.51% relative to T5BASE. On the other hand, BITFIT,
by not storing intermediate activations, has the lowest memory requirement (-64.2% relative to T5BASE)
and is the fastest (-35.06% relative to T5BASE) at the cost of lower quantitative performance (1.53 points
lower; see Table 5.1).
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Table 5.2: Performance of all methods on the SUPERGLUE tasks. For each method, we report the total
number of parameters across all tasks and the percentage of parameters that are trained for each task as
a multiple and proportion of T5BASE model (Raffel et al., 2020). For CB, we report accuracy and F1. For
MultiRC, we report F1 over all answer-options (F1a) and exact match of each question’s set of answers
(EM) Wang et al. (2019b). For ReCoRD, we report F1 and EM scores. For all other tasks, we report
accuracy. For INTRINSIC-SAID, d′ is set to 20K. Bold fonts indicate the best results in each block.

Method #Total
params

Trained
params /
per task

BoolQ CB COPA MultiRC ReCoRD WiC Avg

Baselines

T5BASE 6.0×1 100% 81.10 85.71/78.21 52.0 68.71/47.0 74.26/73.33 70.22 70.06
Adapters 1.049 0.832% 82.39 85.71/73.52 52.0 72.75/53.41 74.55/73.58 67.08 70.55
PFEIFFER-ADAPTER 1.024 0.427% 82.45 85.71/75.63 54.0 72.53/51.76 74.69/73.70 68.65 71.01
ADAPTERDROP 1.028 0.494% 82.26 85.71/75.63 42.0 72.92/53.30 74.68/73.70 68.34 69.84
ADAPTER-LOWRANK 1.003 0.073% 80.31 78.57/55.37 54.0 72.58/51.98 74.77/73.87 64.58 67.34

PROMPT TUNING-R 1.002 0.034% 61.71 67.86/46.99 48.0 59.23/16.33 75.27/74.36 48.90 55.41
PROMPT TUNING-T 1.002 0.034% 61.71 67.86/46.89 52.0 57.66/19.44 75.37/74.41 48.90 56.03

INTRINSIC-SAID 1.001 0.009% 78.72 75.00/51.83 54.0 69.98/52.78 74.86/73.91 65.83 66.32
BITFIT 1.008 0.126% 79.57 78.57/54.40 56.0 70.73/48.57 74.64/73.64 69.59 67.30

Our Proposed Methods

PHM-ADAPTER (n=4) 1.013 0.240% 80.31 85.71/73.52 44.0 71.99/51.65 74.62/73.60 67.40 69.20
COMPACTER (n=12) 1.003 0.073% 78.59 96.43/87.44 48.0 70.80/49.67 74.49/73.54 65.20 71.57

COMPACTER++ (n=12) 1.002 0.048% 78.84 92.86/84.96 52.0 70.68/50.99 74.55/73.50 68.03 71.82

Table 5.3: Percentage of trained parameters per task, average peak memory and training time for all
methods. ∆% is the relative difference with respect to full fine-tuning (T5BASE). Lower is better.

Method
Trained
params/
per task

Memory
(MB) ∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 167.99 — 42.13 —
ADAPTER 0.832% 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 119.41 -40.68% 28.08 -33.35%
ADAPTER-LOWRANK 0.073% 123.8 -35.69% 32.71 -22.36%
PROMPT TUNING 0.034% 222.27 24.42% 44.54 5.72%
INTRINSIC-SAID 0.009% 285.40 41.14% 144.01 241.82%
BITFIT 0.126% 102.31 -64.20% 27.36 -35.06%

PHM-ADAPTER 0.179% 123.93 -35.55% 35.55 -15.62%
COMPACTER 0.073% 123.91 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 118.35 -41.94% 30.96 -26.51%
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Methods relying on pruning adapters, i.e., PFEIFFER-ADAPTER and ADAPTERDROP reduce the
memory overhead and improve training time. However, their number of parameters is almost an order
of magnitude more compared to COMPACTER++, with 9.1× and 10.5× more parameters respectively.
Moreover, although, PFEIFFER-ADAPTER performs on par with full fine-tuning with a slight degrada-
tion (Table 5.1), ADAPTERDROP obtains a lower performance (-0.65 less on average across all tasks.).
We note that dropping adapters from transformer layers is a general technique and could be applied to
COMPACTER for improving efficiency even further, which we leave to future work. Similarly, although
ADAPTER-LOWRANK reduces the memory overhead and improves the training time, it obtains a
lower performance (Table 5.1) (-0.68 less on average across all tasks.).

At the other end of the spectrum, INTRINSIC-SAID and PROMPT TUNING methods have the lowest
number of parameters. However, they both come with high memory overhead (41.14% and 24.42%
relative to full fine-tuning (T5BASE) respectively), are slowest to train, and their performance substantially
lags behind full fine-tuning (see Table 5.1). For PROMPT TUNING, high memory costs are due to
the fact that the computational complexity of self-attention, which requires storing the full attention
matrix for gradient computation, scales quadratically with the sequence length Wang et al. (2020). For
INTRINSIC-SAID, the high memory requirement is due to storing large random projection matrices,
which limits the application of INTRINSIC-SAID for fine-tuning large-scale PLMs. Moreover, com-
puting projections via FastFood transform, although theoretically possible in O(Dlogd′) (Le et al.,
2013), is slow in practice even with a CUDA implementation. For pretrained language models with
a large number of parameters, allocating random projections for the full parameter space is intractable.
While using Fastfood transform partially ameliorates this issue by reducing the memory usage from
O(Dd′) to O(D), the memory issue with such methods remains unresolved.

Overall, given the size of large-scale transformer models with millions and billions of parameters, such
as T5 (Raffel et al., 2020), efficient memory usage is of paramount importance for practical applications.
COMPACTER and COMPACTER++ offer a great trade-off in terms of performance, memory usage,
and training time. With regard to our inspiration of von Neumann’s quotation, we thus find that only
a comparatively small number of additional parameters are necessary for the practical and efficient
adaptation of PLMs.

5.5.6 Low-resource Fine-tuning

COMPACTER++ has substantially fewer parameters compared to T5BASE. In this section, we inves-
tigate whether this could help COMPACTER++ to generalize better in resource-limited settings. We
subsample each dataset of GLUE for varying sizes in the range {100,500,1000,2000,4000}. Figure
5.4 shows the results. COMPACTER++ substantially improves the results in the low-resource setting,
indicating more effective fine-tuning in this regime.
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Figure 5.4: Results on GLUE for the various number of training samples per task
(100,500,1000,2000,4000). We show mean and standard deviation across 5 seeds.

5.6 Related Work

Adapters Adapters have recently emerged as a new paradigm for fine-tuning pretrained language
models (Houlsby et al., 2019). In another line of work, Üstün et al. (2020) proposed a multilingual
dependency parsing method based on adapters and contextual parameter generator networks (Pla-
tanios et al., 2018), where they generate adapter parameters conditioned on trained input language
embeddings. This, however, leads to a large number of additional parameters compared to the base
model. Contemporaneously, Mahabadi et al. (2021b) use a single compact hypernetwork allowing
to generate adapter weights efficiently conditioned on multiple tasks and layers of a transformer model.
Pilault et al. (2021) also proposed a task-conditioned transformer for multi-task learning which is
less parameter-efficient. The aforementioned work is complementary to COMPACTER, and one could
potentially combine COMPACTER with contextual parameter generation to generate adapter modules.
Compared to Mahabadi et al. (2021b), COMPACTER++ reduces the parameters by 6.2×.

Hypercomplex representations Deep learning advances in the hypercomplex domain are in a nascent
stage, and most work is fairly recent (Gaudet and Maida, 2018; Parcollet et al., 2018b,a; Zhu et al., 2018;
Tay et al., 2019). Replacing matrix multiplications in standard networks with Hamilton products that
have fewer degrees of freedom offers up to a 4× saving of parameter size in a single multiplication oper-
ation (Parcollet et al., 2018a; Tay et al., 2019). Very recently, Zhang et al. (2021a) extend such methods
in a way that they could reduce the parameters of a fully connected layer under a mild condition to 1/n,
where n is a user-specified parameter. To the best of our knowledge, there is no previous work that
attempts to leverage the hypercomplex space for efficient fine-tuning of large-scale language models.

Other parameter-efficient models Li et al. (2018) and Aghajanyan et al. (2021) study training models
in a low-dimensional randomly oriented subspace instead of their original parameter space. Another
recent line of work has shown that pretrained models such as BERT are redundant in their capacity,
allowing for significant sparsification without much degradation in end metrics (Chen et al., 2020;
Prasanna et al., 2020; Desai et al., 2019). Such methods, however, remain not well supported by current
hardware and often perform worse compared to dedicated efficient architectures (Blalock et al., 2020).
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5.7 Conclusion

We have proposed COMPACTER, a light-weight fine-tuning method for large-scale language models.
COMPACTER generates weights by summing Kronecker products between shared “slow” weights
and “fast” rank-one matrices, specific to each COMPACTER layer. Leveraging this formulation,
COMPACTER reduces the number of parameters in adapters substantially from O(kd) to O(k+d).
Through extensive experiments, we demonstrate that despite learning 2127.66× fewer parameters than
standard fine-tuning, COMPACTER obtains comparable or better performance in a full-data setting and
outperforms fine-tuning in data-limited scenarios.
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Appendix

5.8 Experimental Details

Datasets We run all experiments on the standard GLUE benchmark (Wang et al., 2019c) with
Creative Commons license (CC BY 4.0) and the SUPERGLUE benchmark Wang et al. (2019b). These
benchmark consist of multiple datasets: CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013),
MRPC (Dolan and Brockett, 2005), QQP10, STS-B (Cer et al., 2017), MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016), and RTE, which is a combination of data from RTE1 (Dagan et al.,
2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), RTE5 (Bentivogli et al., 2009),
COPA (Roemmele et al., 2011), CB (De Marneffe et al., 2019), MultiRC (Khashabi et al., 2018),
ReCoRD (Zhang et al., 2018), BoolQ (Clark et al., 2019a), and WiC (Pilehvar and Camacho-Collados,
2019) where sentences are selected from VerbNet (Schuler, 2005), WordNet (Miller, 1995), and
Wiktionary. We download all datasets from the HuggingFace Datasets library (Lhoest et al., 2021).

Low-resource fine-tuning For the experiment conducted in §5.5.6, we set the number of epochs to
1000, 200, 100, 50, 25, for datasets subsampled to size 100, 500, 1000, 2000, and 4000 respectively.
Based on our results, this is sufficient to allow the models to converge. We save a checkpoint every
250 steps for all models and report the results for the hyper-parameters performing the best on the
validation set for each task.

Data pre-processing Following Raffel et al. (2020), we cast all datasets into a sequence-to-sequence
format. We recast STS-B as a 21-class classification task by rounding its target scores to their nearest
increment of 0.2.

Computing infrastructure We run the experiments in Table 5.1, 5.2, 5.9, and 5.3 on one NVIDIA

GEFORCE RTX 3090, and experiments in §5.5.6 on one GEFORCE GTX 1080 TI GPU.

Training hyper-parameters For the experiments on GLUE, we set the maximum sequence length
to 128 and batch size to 100. Following Raffel et al. (2020), we use maximum sequence length of

10https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Table 5.4: Selected learning rates for all methods.

Method Learning rate

T5BASE 3e−4
ADAPTER 3e−4
PFEIFFER-ADAPTER 3e−4
ADAPTERDROP 3e−4
ADAPTER-LOWRANK 3e−3
PROMPT TUNING-R 3e−2
PROMPT TUNING-T 3e−1
INTRINSIC-SAID 3e−2
BITFIT 3e−4
PHM-ADAPTER 3e−3
COMPACTER 3e−3
COMPACTER++ 3e−3

Table 5.5: Selected learning rates for all methods,
when we also fine-tune the output layer.

Method Learning rate

Adapters 3e−3
PFEIFFER-ADAPTER 3e−4
ADAPTERDROP 3e−4
ADAPTER-LOWRANK 3e−3
BITFIT 3e−4
PHM-ADAPTER 3e−3
COMPACTER 3e−3
COMPACTER++ 3e−3

256 for the tasks in SUPERGLUE, and for ReCoRD, we set it to 512. We used batch size of 32 for
SUPERGLUE, and for ReCoRD, we set it to 16 due to the GPU memory limit. For results in §5.5.6,
we set the batch size to 40 to match the lower GPU memory of GEFORCE GTX 1080 TI GPU. For
setting the learning rates, we trained all methods with 3e−5, 3e−4, 3e−3, 3e−2, and 3e−1 and use
the learning rate performing the best on the validation set for each method. Table 5.4 shows the final
selected learning rate for each method reported in Table 5.1. For the method variants where we also
fine-tune the final output layer (Table 5.7), we report the selected learning rate in Table 5.5. We train
all models with the AdamW optimizer from the HuggingFace library (Wolf et al., 2020) with default
hyper-parameters of β1 =0.9, β2 =0.999, ϵ=1e−8. We set warm-up steps to 500 for all methods in
Table 5.1 and 5.7. We set the warm-up steps to 0 for all methods in Table 5.2 and 5.9, which based
on our experiments, improved the results for all methods.

5.9 Impact of Hyper-parameters

In this section, we study the impact of hyper-parameters for each method reported in Table 5.1. We
report the results in Table 5.6.

Impact of dimension (d′) on INTRINSIC-SAID Increasing the dimension d′ for INTRINSIC-SAID
method often improves results. Though, as discussed in (Aghajanyan et al., 2021), d′ is task-dependent
so needs to be tuned for every new dataset to achieve optimal performance.

Impact of n on PHM-ADAPTER Table 5.6 shows the results for varying values of n={4,8,12}. We
experiment with adapters of bottleneck size d∈{24,48,96}.

For the T5BASE model with k=768, the condition kd>n4 discussed in §5.4 is partially satisfied for
d = 24 and n = 4,8 and fully satisfied for d ∈ {48,96} and n = 4,8,12. Note that this condition is
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satisfied for larger versions of the T5 model, i.e., T5-large (770 million parameters, k=1024), T5-3B
(2.8 billion parameters, k=1024), and T5-11B (11 billion parameters, k=1024) with adapter hidden
size d∈{24,32,48,96} and n=2,4,8,12. Due to the huge computational costs of training these models,
we could not run experiments on such a large scale. Nevertheless, we observe substantial parameter
reduction using PHM-ADAPTER.

In Table 5.6, we report the number of parameters for d=24 for all methods. Compared to Adapters,
PHM-ADAPTER with n=8 reduces the parameters substantially by 5.2×.

Impact of n on COMPACTER For COMPACTER and COMPACTER++, we observe that the number
of trainable parameters is almost constant across different values of n. This is due to the fact that the
number of trainable parameters in layernorms (LN) and biases (B) in each LPHM layer make up a high
proportion of parameters for our methods. For instance for n=4, for COMPACTER with 0.073% of
trainable parameters, LN and B make up 28.49% and 23.51% respectively of its trainable parameters;
for COMPACTER++ with 0.047% of trainable parameters, LN and B make up 44.01% and 18.15%
respectively of its parameters; while for PHM-ADAPTER with 0.239% of trainable parameters, LN and
B make up only 8.63% and 7.12% respectively of its parameters. Consequently, simply removing biases
from adapters, and exploring ideas of training language models without layer normalizations (Brock
et al., 2021) can be promising directions on reducing parameters further, which we leave to future work.

COMPACTER has more than an order of magnitude fewer parameters compared to Adapters, with
a parameter reduction at a remarkable rate of 11.4×. COMPACTER++ even reduces the parameters
further by 17.7× in total.

5.10 Results with Fine-tuning the Output Layer

Table 5.7 shows the results for the methods in Table 5.1 with fine-tuning the output layer. The parame-
ters of the output layer dominate the parameters of each method and thus reduce the relative parameter
savings. The standard adapter obtains the largest improvement in performance when fine-tuning the
output layer compared to the results in Table 5.1. In contrast, our proposed methods perform well with
or without fine-tuning the output layer.

5.11 Results on SUPERGLUE

Table 5.8 shows the performance of our proposed methods on SUPERGLUE for different values of
n. We include the learning rate obtaining the best validation performance for all methods reported in
Table 5.2 in Table 5.11.
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Table 5.6: Performance of all methods on the tasks in GLUE for different values of hyper-parameters.
For each method, we report the total number of parameters across all tasks and the number of
parameters that are trained for each task as a multiple and proportion of T5BASE model (Raffel et al.,
2020). For MNLI, we report accuracy on the matched validation set. For MRPC and QQP, we report
accuracy and F1. For STS-B, we report Pearson and Spearman correlation coefficients. For CoLA,
we report Matthews correlation. For all other tasks, we report accuracy. Bold fonts indicate the best
results in each block.

Method #Total
params

Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

INTRINSIC-SAID (d′ =0.4K) 1.001 0.0002% 0.0 92.55 78.43/85.62 90.25/87.19 90.43/90.66 69.93 89.31 58.99 75.76
INTRINSIC-SAID (d′ =1.4K) 1.001 0.0006% 52.40 93.35 89.22/92.41 90.44/87.31 89.86/90.23 82.01 93.12 67.63 84.36
INTRINSIC-SAID (d′ =2.5K) 1.001 0.0011% 45.78 93.92 89.22/92.20 90.43/87.37 90.32/90.90 82.86 93.17 64.03 83.65
INTRINSIC-SAID (d′ =10K) 1.001 0.0045% 56.13 93.58 88.73/91.99 90.34/87.18 90.63/90.99 84.84 93.36 71.22 85.36
INTRINSIC-SAID (d′ =20K) 1.001 0.0090% 58.69 94.15 88.24/91.78 90.28/87.13 90.06/90.45 85.23 93.39 70.50 85.45

PHM-ADAPTER (n=4) 1.018 0.239% 59.21 93.69 87.25/90.91 90.23/86.99 90.55/90.73 85.93 93.04 69.78 85.30
PHM-ADAPTER (n=8) 1.011 0.160% 61.84 93.58 91.18/93.57 90.25/87.08 90.74/91.07 85.74 92.93 70.50 86.23
PHM-ADAPTER (n=12) 1.013 0.179% 57.35 94.50 91.67/93.86 90.25/87.05 90.45/90.84 85.97 92.92 75.54 86.40

COMPACTER (n=4) 1.004 0.073% 63.75 93.00 89.22/92.31 90.23/87.03 90.31/90.74 85.61 92.88 77.70 86.62
COMPACTER (n=8) 1.004 0.073% 61.78 93.81 90.20/93.10 90.23/87.03 90.16/90.44 85.78 93.08 74.10 86.34
COMPACTER (n=12) 1.004 0.073% 61.38 93.69 91.18/93.71 90.11/86.88 90.53/90.98 85.76 93.12 70.50 86.17

COMPACTER++ (n=4) 1.002 0.047% 61.27 93.81 90.69/93.33 90.17/86.93 90.46/90.93 85.71 93.08 74.82 86.47
COMPACTER++ (n=8) 1.002 0.047% 62.79 92.55 88.24/91.95 90.16/86.94 90.43/90.78 85.36 92.82 73.38 85.95
COMPACTER++ (n=12) 1.002 0.048% 63.01 93.92 91.18/93.75 90.23/87.01 90.40/90.65 85.46 92.88 71.22 86.34

5.12 Impact of Model Size

Table 5.9 shows the results of methods using T5SMALL (60M parameters) on GLUE. For all adapter-
based methods, we experiment with adapters of bottleneck size of {16,32,64}. For our methods, we
experiment with n={4,8,16}.

All parameter-efficient fine-tuning methods are performing worse than full fine-tuning with this small
model size. This is in contrast to the results of Table 5.1 and 5.2, where some parameter-efficient fine-
tuning methods were able to perform on par or outperform full fine-tuning with the larger model size of
T5BASE (222M parameters). Among all methods, adapters, and our proposed methods perform the best.
We report the learning rate performing the best on the validation set of each method in Table 5.10.
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Table 5.7: Performance of all methods on the tasks in GLUE, where the output layer is tuned. For each
method, we report the total number of parameters across all tasks and the percentage of parameters that
are trained for each task as a multiple and proportion of T5BASE model (Raffel et al., 2020). For MNLI,
we report accuracy on the matched validation set. For MRPC and QQP, we report accuracy and F1.
For STS-B, we report Pearson and Spearman correlation coefficients. For CoLA, we report Matthews
correlation. For all other tasks, we report accuracy. Bold fonts indicate the best results in each block.

Method #Total
params

Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Baselines

Adapters 1.065 11.89% 61.80 94.15 88.24/91.67 90.27/87.05 91.51/91.71 86.02 92.64 76.26 86.48
PFEIFFER-ADAPTER 1.032 11.49% 64.76 93.58 87.75/91.58 90.16/87.17 91.21/91.50 86.16 93.30 73.38 86.41
ADAPTERDROP 1.038 11.56% 61.67 93.69 84.80/89.20 90.14/87.17 90.92/91.34 86.24 93.23 73.38 85.62
ADAPTER-LOWRANK 1.004 11.13% 62.82 93.81 88.73/91.99 90.34/87.19 90.51/90.58 85.81 92.93 74.82 86.32
BITFIT 1.010 11.19% 57.13 94.15 89.71/92.78 90.07/87.02 90.91/91.22 85.34 93.06 68.35 85.43

Our Proposed Methods

PHM-ADAPTER (n=4) 1.017 11.30% 62.79 93.58 89.22/92.41 90.23/87.01 90.61/90.81 86.06 92.95 75.54 86.47
PHM-ADAPTER (n=8) 1.011 11.22% 61.24 94.38 88.73/91.99 90.28/87.08 90.53/90.98 85.94 93.03 73.38 86.14
PHM-ADAPTER (n=12) 1.013 11.24% 65.25 93.69 88.73/92.04 90.34/87.16 90.75/90.89 85.74 92.92 72.66 86.38

COMPACTER (n=4) 1.004 11.13% 61.27 93.58 88.24/91.67 90.25/87.08 90.67/91.02 85.82 92.92 73.38 85.99
COMPACTER (n=8) 1.004 11.13% 60.31 93.81 89.71/92.63 90.23/87.02 90.49/90.85 85.19 93.08 71.94 85.93
COMPACTER (n=12) 1.004 11.13% 59.25 93.12 91.18/93.75 90.31/87.16 90.37/90.82 85.33 92.97 75.54 86.35

COMPACTER++ (n=4) 1.002 11.11% 64.28 94.27 90.20/92.96 90.23/87.04 90.27/90.61 85.80 92.97 73.38 86.55
COMPACTER++ (n=8) 1.002 11.11% 63.78 93.58 90.20/93.01 90.19/87.02 90.12/90.56 85.57 92.84 70.50 86.12
COMPACTER++ (n=12) 1.002 11.11% 62.05 93.23 87.75/91.58 90.19/86.97 90.08/90.48 85.52 92.75 79.86 86.41

Table 5.8: Performance of our proposed methods on the tasks in SUPERGLUE for different values
of n. For each method, we report the total number of parameters across all tasks and the percentage
of parameters that are trained for each task as a multiple and proportion of T5BASE model (Raffel et al.,
2020). For CB, we report accuracy and F1. For MultiRC, we report F1 over all answer-options (F1a)
and exact match of each question’s set of answers (EM) Wang et al. (2019b). For ReCoRD, we report F1
and EM scores. For all other tasks, we report accuracy. Bold fonts indicate the best results in each block.

Method #Total
params

Trained
params /
per task

BoolQ CB COPA MultiRC ReCoRD WiC Avg

PHM-ADAPTER (n=4) 1.013 0.24% 80.31 85.71/73.52 44.0 71.99/51.65 74.62/73.60 67.40 69.20
PHM-ADAPTER (n=8) 1.008 0.160% 79.39 82.14/69.87 44.0 71.49/50.77 74.46/73.48 67.71 68.15
PHM-ADAPTER (n=12) 1.009 0.179% 79.33 78.57/75.43 52.0 70.48/50.66 74.14/73.14 68.65 69.16

COMPACTER (n=4) 1.003 0.073% 79.88 89.29/82.51 42.0 71.87/51.98 74.64/73.59 65.83 70.18
COMPACTER (n=8) 1.003 0.073% 79.57 85.71/80.06 56.0 70.75/49.67 74.56/73.57 70.85 71.19
COMPACTER (n=12) 1.003 0.073% 78.59 96.43/87.44 48.0 70.80/49.67 74.49/73.54 65.20 71.57

COMPACTER++ (n=4) 1.002 0.047% 79.94 85.71/80.06 50.0 72.16/50.33 74.63/73.60 68.34 70.53
COMPACTER++ (n=8) 1.002 0.047% 78.23 82.14/70.87 48.0 71.61/51.43 74.62/73.64 67.71 68.69
COMPACTER++ (n=12) 1.002 0.048% 78.84 92.86/84.96 52.0 70.68/50.99 74.55/73.50 68.03 71.82
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Table 5.9: Performance of all methods on the tasks in GLUE. For each method, we report the total
number of parameters across all tasks and the percentage of parameters that are trained for each task
as a multiple and proportion of T5SMALL model (Raffel et al., 2020). For MNLI, we report accuracy
on the matched validation set. For MRPC and QQP, we report accuracy and F1. For STS-B, we
report Pearson and Spearman correlation coefficients. For CoLA, we report Matthews correlation.
For all other tasks, we report accuracy. Bold fonts indicate the best results in each block. We repeat
the experiments marked with ∗ multiple times for different seeds, but they were not successful.

Method #Total
params

Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Baselines

T5SMALL 8×1 100% 46.90 91.74 87.25/90.97 90.07/86.68 88.75/89.20 82.20 90.59 65.47 82.71
Adapters 1.054 0.698% 36.88 90.83 88.73/91.93 88.09/84.06 88.98/89.34 80.50 89.75 62.59 81.06
ADAPTERDROP 1.009 0.139% 34.73 89.91 83.33/88.36 87.96/83.89 88.73/88.80 79.33 89.86 61.87 79.71
PFEIFFER-ADAPTER 1.027 0.363% 38.86 90.48 85.78/89.90 87.82/84.26 89.24/89.56 80.63 89.84 57.55 80.36
ADAPTER-LOWRANK 1.005 0.090% 40.55 90.60 84.80/89.20 88.01/83.98 88.04/88.27 79.92 89.95 61.15 80.41
PROMPT TUNING-R 1.007 0.085% 0.0∗ 86.35 68.14/81.05 87.48/83.91 87.35/87.87 76.27 88.49 50.36 72.48
PROMPT TUNING-T 1.007 0.085% 0.0∗ 79.59 71.08/82.18 87.76/83.55 87.48/87.76 74.65 89.02 57.55 72.78
BITFIT 1.015 0.190% 25.59 90.48 84.80/89.42 88.01/83.77 87.58/87.89 78.15 88.94 63.31 78.90
INTRINSIC-SAID 1.003 0.033% 0.0∗ 90.25 84.80/89.05 88.07/84.00 87.81/88.08 79.02 89.90 52.52 75.77

Our Proposed Methods

PHM-ADAPTER (n=4) 1.015 0.216% 40.08 90.60 86.27/90.21 88.26/84.25 89.56/89.88 80.73 90.10 60.43 80.94
PHM-ADAPTER (n=8) 1.011 0.170% 37.85 90.48 82.84/87.72 88.08/84.07 89.07/89.46 80.68 89.64 61.87 80.16
PHM-ADAPTER (n=16) 1.031 0.414% 36.27 90.83 83.82/88.34 88.03/84.02 87.94/88.44 80.04 89.95 58.99 79.70

COMPACTER (n=4) 1.005 0.090% 44.65 89.45 84.80/89.20 88.00/83.96 88.19/88.47 79.54 89.66 64.03 80.90
COMPACTER (n=8) 1.005 0.091% 42.90 89.56 84.31/89.12 88.01/83.95 88.51/88.79 79.60 89.68 66.19 80.97
COMPACTER (n=16) 1.006 0.097% 40.12 89.22 85.29/89.86 88.08/84.06 89.28/89.60 79.87 89.71 59.71 80.44

COMPACTER++ (n=4) 1.003 0.059% 39.89 90.37 84.31/89.26 88.04/83.99 88.69/88.98 79.45 89.05 63.31 80.49
COMPACTER++ (n=8) 1.003 0.059% 34.98 90.37 83.82/88.50 88.02/83.99 88.87/89.30 79.39 89.57 64.03 80.08
COMPACTER++ (n=16) 1.003 0.065% 37.54 89.79 85.78/89.90 88.01/83.96 88.93/89.30 79.35 89.40 64.75 80.61

Table 5.10: Selected learning rates for all methods
with T5SMALL

Method Learning rate

T5SMALL 3e−4
Adapters 3e−3
PFEIFFER-ADAPTER 3e−4
ADAPTERDROP 3e−3
ADAPTER-LOWRANK 3e−3
PROMPT TUNING-R 3e−2
PROMPT TUNING-T 3e−1
INTRINSIC-SAID 3e−2
BITFIT 3e−3
PHM-ADAPTER 3e−3
COMPACTER 3e−3
COMPACTER++ 3e−3

Table 5.11: Selected learning rates for all methods
with T5BASE on SUPERGLUE.

Method Learning rate

T5BASE 3e−4
Adapters 3e−4
PFEIFFER-ADAPTER 3e−4
ADAPTERDROP 3e−4
ADAPTER-LOWRANK 3e−3
PROMPT TUNING-R 3e−2
PROMPT TUNING-T 3e−1
BITFIT 3e−4
INTRINSIC-SAID 3e−3
PHM-ADAPTER 3e−3
COMPACTER 3e−3
COMPACTER++ 3e−3
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6 PERFECT: Prompt-free and Efficient
Few-shot Learning with Language Mod-
els
Current methods for few-shot fine-tuning of pretrained masked language models (PLMs) require
carefully engineered prompts and verbalizers for each new task to convert examples into a cloze-format
that the PLM can score. In this work, we propose PERFECT, a simple and efficient method for few-shot
fine-tuning of PLMs without relying on any such handcrafting, which is highly effective given as few
as 32 data points. PERFECT makes two key design choices: First, we show that manually engineered
task prompts can be replaced with task-specific adapters that enable sample-efficient fine-tuning and
reduce memory and storage costs by roughly factors of 5 and 100, respectively. Second, instead of
using handcrafted verbalizers, we learn new multi-token label embeddings during fine-tuning, which
are not tied to the model vocabulary and which allow us to avoid complex auto-regressive decoding.
These embeddings are not only learnable from limited data but also enable nearly 100x faster training
and inference. Experiments on a wide range of few shot NLP tasks demonstrate that PERFECT, while
being simple and efficient, also outperforms existing state-of-the-art few-shot learning methods. Our
code is publicly available at https://github.com/facebookresearch/perfect.git.

6.1 Introduction

Recent methods for few-shot language model tuning obtain impressive performance but require careful
engineering of prompts and verbalizers to convert inputs to a cloze-format (Taylor, 1953) that can
be scored with pre-trained language models (PLMs) (Radford et al., 2018, 2019; Brown et al., 2020;
Schick and Schütze, 2021a,b). For example, as Figure 6.1 shows, a sentiment classifier can be designed
by inserting the input text x in a prompt template “x It was [MASK]” where verbalizers (e.g., ‘great’
and ‘terrible’) are substituted for the [MASK] to score target task labels (‘positive’ or ‘negative’). In
this Chapter, we show that such engineering is not needed for few-shot learning and instead can be
replaced with simple methods for data-efficient fine-tuning with as few as 32 end-task examples.

More specifically, we propose PERFECT, a Prompt-free and Efficient paRadigm for FEw-shot Cloze-
based fine-Tuning. To remove handcrafted patterns, PERFECT uses task-specific adapter layers
Houlsby et al. (2019); Pfeiffer et al. (2020) (§6.3.1). Freezing the underlying PLM with millions or
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[CLS] The restaurant had excellent foods. It was [MASK] [SEP]

Pretrained Language Model

Input Pattern

MLM Head
 terrible

great
Verbalizers

positive

negative

Labels

Figure 6.1: Existing few-shot fine-tuning methods require manual engineering to reduce new tasks
to masked language modeling. PERFECT does not rely on any handcrafting, removing both patterns
and verbalizers (see Figure 6.3).

billions of parameters (Liu et al., 2019b; Raffel et al., 2020), and only tuning adapters with very few
new parameters saves on memory and storage costs (§6.4.2), while allowing very sample-efficient
tuning (§6.4). It also stabilizes the training by increasing the worst-case performance and decreasing
variance across the choice of examples in the few shot training sets (§6.4.3).

To remove handcrafted verbalizers (with variable token lengths), we introduce a new multi-token
fixed-length classifier scheme that learns task label embeddings which are independent from the
language model vocabulary during fine-tuning (§6.3.2). We show (§6.4) that this approach is sample
efficient and outperforms carefully engineered verbalizers from random initialization (§6.4). It also
allows us to avoid previously used expensive auto-regressive decoding schemes (Schick and Schütze,
2021b), by leveraging prototypical networks (Snell et al., 2017) over multiple tokens. Overall, these
changes enable up to 100x faster learning and inference (§6.4.2).

PERFECT has several advantages: It avoids engineering patterns and verbalizers for each new task,
which can be cumbersome. Recent work has shown that even some intentionally irrelevant or mis-
leading prompts can perform as well as more interpretable ones Webson and Pavlick (2021). Unlike
the zero-shot or extreme few-shot case, where prompting might be essential, we argue in this Chapter
that all you need is tens of training examples to avoid these challenges by adopting PERFECT or a
similar data-efficient learning method. Experiments on a wide variety of NLP tasks demonstrate that
PERFECT outperforms state-of-the-art prompt-based methods while being significantly more efficient
in inference and training time, storage, and memory usage (§6.4.2). To the best of our knowledge, we
are the first to propose a few-shot learning method using the MLM objective in PLMs that provide
state-of-the-art results while removing all per-task manual engineering.

6.2 Background

Problem formulation We consider a general problem of fine-tuning language models in a few-shot
setting, on a small training set with K unique classes and N examples per class, such that the total num-
ber of examples is |D|=N×K. Let D=∪K

k=1Dk be the given training set, where Dk ={(xi
k,yi

k)}N
i=1

shows the set of examples labeled with class k and yi
k ∈Y is the corresponding label, where |Y|=K.
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6.2 Background

We additionally assume access to a development set with the same size as the training data. Note that
larger validation sets can grant a substantial advantage (Perez et al., 2021), and thus it is important to
use a limited validation size to be in line with the goal of few-shot learning. Unless specified otherwise,
in this work, we use 16 training examples (N =16) and a validation set with 16 examples, for a total
of 32-shot learning.

6.2.1 Adapters

Recent work has shown that fine-tuning all parameters of PLMs with a large number of parameters
in low-resource datasets can lead to a sub-optimal solution (Peters et al., 2019; Dodge et al., 2020).
As shown in Figure 6.2, Rebuffi et al. (2018) and Houlsby et al. (2019) suggest an efficient alternative,
by inserting small task-specific modules called adapters within layers of a PLMs. They then only train
the newly added adapters and layer normalization, while fixing the remaining parameters of a PLM.

Each layer of a transformer model is composed of two primary modules: a) an attention block, and b) a
feed-forward block, where both modules are followed by a skip connection. As depicted in Figure 6.2,
adapters are normally inserted after each of these blocks before the skip connection.

Adapters are bottleneck architectures. By keeping input and output dimensions the same, they intro-
duce no additional architectural changes. Each adapter, A(.) ∈RH , consists of a down-projection,
D(.)∈RH×B, a non-linearity, such as GeLU (Hendrycks and Gimpel, 2016), and an up-projection
U(.) ∈ RB×H , where H is the dimension of input hidden states x, and B is the bottleneck size.
Formally defined as:

A(x)=U(GeLU(D(x)))+x, (6.1)

6.2.2 Prompt-based Fine-tuning

Standard Fine-tuning In standard fine-tuning with PLMs (Devlin et al., 2019), first a special [CLS]
token is appended to the input x, and then the PLM maps it to a sequence of hidden representa-
tions h = (h1,...,hS) with hi ∈ RH , where H is the hidden dimension, and S is the maximum
sequence length. Then, a classifier, softmax(W T h[CLS]), using the embedding of the classification
token (h[CLS]), is trained end-to-end for each downstream task. The main drawback of this approach
is the discrepancy between the pre-training and fine-tuning phases since PLMs have been trained to
predict mask tokens in a masked language modeling task (Devlin et al., 2019).

Prompt-based tuning To address this discrepancy, prompt-based fine-tuning (Schick and Schütze,
2021a,b; Gao et al., 2021) formulates tasks in a cloze-format (Taylor, 1953). This way, the model
can predict targets with a masked language modeling (MLM) objective. For example, as shown in
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Feed forward down
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Nonlinearity
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Layer norm
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up projection

+

Figure 6.2: Left: Adapter integration in a PLM. Right: An adapter architecture. Adapters are usually
inserted after the feed-forward and self-attention modules. During training, we only optimize the green
components

Figure 6.1, for a sentiment classification task, inputs are converted to:

xprompt = [CLS] x . It was︸ ︷︷ ︸
pattern

[MASK] . [SEP]

Then, the PLM determines which verbalizer (e.g., ‘great’ and ‘terrible’) is the most likely substitute
for the mask in the xprompt. This subsequently determines the score of targets (‘positive’ or ‘negative’).
In detail:

Training strategy Let M :Y →V be a mapping from target labels to individual words in a PLM’s
vocabulary. We refer to this mapping as verbalizers. Then the input is converted to xprompt =T (x)
by appending a pattern and a mask token to x so that it has the format of a masked language modeling
input. Then, the classification task is converted to a MLM objective (Tam et al., 2021; Schick and
Schütze, 2021a), and the PLM computes the probability of the label y as:

p(y|x)=p([MASK]=M(y)|xprompt)

=
exp(W T

M(y)h[MASK])∑
v′∈Vexp(W T

v′ h[MASK])
, (6.2)

where h[MASK] is the last hidden representation of the mask, and Wv shows the output embedding
of the PLM for each verbalizer v∈V. For many tasks, verbalizers have multiple tokens. Schick and
Schütze (2021b) extended (6.2) to multiple mask tokens by adding the maximum number of mask
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6.3 Method

tokens M needed to express the outputs (verbalizers) for a task. In that case, Schick and Schütze
(2021b) computes the probability of each class as the summation of the log probabilities of each token
in the corresponding verbalizer, and then they add a hinge loss to ensure a margin between the correct
verbalizer and the incorrect ones.

Inference strategy During inference, the model needs to select which verbalizer to use in the given
context. Schick and Schütze (2021b) predicts the verbalizer tokens in an autoregressive fashion. They
first trim the number of mask tokens from M to each candidate verbalizer’s token length and compute
the probability of each mask token. They then choose the predicted token with the highest probability
and replace the corresponding mask token. Conditioning on this new token, the probabilities of the
remaining mask positions are recomputed. They repeat this autoregressive decoding until they fill all
mask positions. This inference strategy is very slow, as the number of forward passes increases with
the number of classes and the number of verbalizer’s tokens.

This formulation obtained impressive few-shot performance with PLMs. However, the success of this
approach heavily relies on engineering handcrafted patterns and verbalizers. Coming up with suitable
verbalizers and patterns can be difficult (Mishra et al., 2021). Additionally, the performance is sensitive
to the wording of patterns (Zhao et al., 2021; Perez et al., 2021; Schick and Schütze, 2021a; Jiang
et al., 2020) or to the chosen verbalizers (Webson and Pavlick, 2021).

In addition, handcrafted verbalizers cause problems for efficient training: a) they require updating
the PLM embedding layer, causing large memory overhead; b) fine-tuning PLMs also requires a very
small learning rate (usually 10−5), which slows down tuning the parameters of the verbalizers; c)
modeling verbalizers as one of the tokens of the PLM vocabulary (perhaps unintentionally) impacts
the input representation during tuning; d) verbalizers have variable token lengths, complicating the
implementation in a vectorized format, thereby making it challenging to efficiently fine-tune PLMs.

6.3 Method

We propose PERFECT, a verbalizer and pattern free few-shot learning method. We design PERFECT

to be close to the pre-training phase, similar to the PET family of models (Schick and Schütze, 2021b;
Gao et al., 2021), while replacing handcrafted patterns and verbalizers with new components that are
designed to describe the task and learn the labels. As shown in Figure 6.3, we first convert each input
xinput to its masked language modeling (MLM) input containing M mask tokens [MASK]1 with
no added patterns, denoted as xmasked =T ′(xinput).2 PERFECT then trains a classifier per-token and
optimizes the average multi-class hinge loss over each mask position.

Three main components play a role in the success of PERFECT: a) a pattern-free task description, where
we use task-specific adapters to efficiently tell the model about the given task, replacing previously

1We discuss the general case with inserting multiple masks; for some datasets this improves performance (§6.4.3).
2We insert mask tokens after the input string in single-sentence benchmarks, and after the first sentence in the case

of sentence-pair datasets and encode both sentences as a single input, which we found to perform the best (Appendix 6.9).
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Figure 6.3: We remove handcrafted patterns and verbalizers. We replace patterns using task-specific
adapters and design label embeddings for the classes. We only train the green blocks (the label
embeddings, adapters, and layer norms).

manually engineered patterns (§6.3.1), b) multi-token label-embedding as an efficient mechanism
to learn the label representations, removing manually designed verbalizers (§6.3.2). c) an efficient
inference strategy building on top of the idea of prototypical networks (Snell et al., 2017) (§6.3.4),
which replaces prior iterative autoregressive decoding methods (Schick and Schütze, 2021b).

As shown in Figure 6.3, we fix the underlying PLM model and only optimize the new parameters that
we add (green boxes). This includes the task-specific adapters to adapt the representations for a given
task and the multi-token label representations. We detail each of these components below.

6.3.1 Pattern-Free Task Description

We use task-specific adapter layers to provide the model with learned, implicit task descriptions.
Adapters additionally bring multiple other benefits: a) fine-tuning all weights of PLMs with millions or
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billions of parameters is sample-inefficient, and can be unstable in low-resource settings (Dodge et al.,
2020); adapters allow sample-efficient fine-tuning, by keeping the underlying PLM fixed, b) adapters
reduce the storage and memory footprints (§6.4.2), c) they also increase stability and performance
(§6.4), making them an excellent choice for few-shot fine-tuning. To our knowledge, this is the first
approach for using task-specific adapters to effectively and efficiently remove patterns in few-shot
learning. Experimental results in §6.4 show its effectiveness compared to handcrafted patterns and
soft prompts (Li and Liang, 2021; Lester et al., 2021).

6.3.2 Multi-Token Label Embeddings

We freeze the weights of the PLM’s embedding layer and introduce a separate label embedding L∈
RK×M×H , which is a multi-token label representation where M is the number of tokens representing
each label, K indicates the number of classes, H is the input hidden dimension. Using a fixed number
of tokens M for each label, versus variable-token length verbalizers used in prior work (Schick and
Schütze, 2021a,b) substantially simplifies the implementation and accelerates the training (§6.4.2).

6.3.3 Training PERFECT

As shown in Figure 6.3, we optimize label embeddings so that the PLM predicts the correct label,
and optimize adapters to adapt the PLM for the given task. For label embeddings, PERFECT trains
a classifier per token and optimizes the average multi-class hinge loss over all mask positions. Given
xmasked, let h[MASK]i

be the embedding of its i-th mask token from the last layer of the PLM encoder.
Additionally, let f(.):RH →RK be a per-token classifier that computes the predictions by multiplying
the mask token embedding with its corresponding label embedding. Formally defined as:

ti =f(h[MASK]i
)=LT

i h[MASK]i
,

where Li ∈RK×H shows the label embedding for the i-th mask position. Then, for each mask position,
we optimize a multi-class hinge loss between their scores ti and labels. Formally defined as:

L(x,y,i)=
∑K

k=1,k≠ymax(0,m−tiy+tik)
K

,

where tik shows the k-th element of ti, representing the score corresponding to class k, and m is the
margin, which we fix to the default value of m=1. Then, the final loss is computed by averaging the
loss over all mask tokens and training samples:

L= 1
M |D|

∑
(x,y)∈D

M∑
i=1

L(x,y,i) (6.3)
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6.3.4 Inference with PERFECT

During evaluation, instead of relying on the prior iterative autoregressive decoding schemes (Schick
and Schütze, 2021b), we classify a query point by finding the nearest class prototype to the mask token
embeddings:

y=argmax
y∈Y

max
i∈{1,...,M}

(
exp−d(hq

i
,ciy)

)
, (6.4)

where d is squared euclidean distance,3 hq
i indicates the embedding of the i-th mask position for the

query sample q, and ciy ∈RD is the prototype representation of the i-th mask token with class label
y, i.e., the mean embedding of i-th mask position in all training samples with label y:

ciy = 1
|Dy|

∑
b∈Dy

hb
i , (6.5)

where hb
i shows the embedding of i-th mask position for training sample b, and Dy is the training

instances with class y. This strategy closely follows prototypical networks (Snell et al., 2017), but
applied across multiple tokens. We choose this form of inference because prototypical networks are
known to be sample efficient and robust (Snell et al., 2017), and because it substantially speeds up
evaluation compared to prior methods (§6.4.2).

6.4 Experiments

We conduct extensive experiments on a variety of NLP datasets to evaluate the performance of
PERFECT and compare it with state-of-the-art few-shot learning.

Datasets We consider 7 tasks and 12 datasets: 1) the sentiment analysis datasets SST-2 (Socher et al.,
2013), SST-5 (Socher et al., 2013), MR (Pang and Lee, 2005), and CR (Hu and Liu, 2004), 2) the
subjectivity classification dataset SUBJ (Pang and Lee, 2004), 3) the question classification dataset
TREC (Voorhees and Tice, 2000), 4) the natural language inference datasets CB (De Marneffe et al.,
2019) and RTE (Wang et al., 2019b), 5) the question answering dataset QNLI (Rajpurkar et al., 2016), 6)
the word sense disambiguation dataset WiC (Pilehvar and Camacho-Collados, 2019), 7) the paraphrase
detection datasets MRPC (Dolan and Brockett, 2005) and QQP.4 See datasets statistics in Appendix 6.7.

For MR, CR, SST-5, SUBJ, and TREC, we test on the original test sets, while for other datasets, since
test sets are not publicly available, we test on the original validation set. We sample 16 instances per
label from the training set to form training and validation sets.

Baselines We compare with the state-of-the-art few-shot learning of PET and fine-tuning:

3We also tried with cosine similarity but found a slight improvement with squared Euclidean distance (Snell et al., 2017).
4https://quoradata.quora.com/
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Method SST-2 CR MR SST-5 Subj TREC Avg

Single-Sentence Benchmarks

FINETUNE 81.4/70.0/4.0 80.1/72.9/4.1 77.7/66.8/4.6 39.2/34.3/2.5 90.2/84.1/1.8 87.6/75.8/3.7 76.0/67.3/3.4

PET-Average 89.7/81.0/2.4 88.4/68.8/3.0 85.9/79.0/2.1 45.9/40.3/2.4 88.1/79.6/2.4 85.0/70.6/4.5 80.5/69.9/2.8

PET-Best 89.1/81.0/2.6 88.8/85.8/1.9 86.4/82.0/1.6 46.0/41.2/2.4 88.7/84.6/1.8 85.8/70.6/4.4 80.8/74.2/2.4

Logan IV et al. (2021) 89.8/84.1/1.7 89.9/87.2/1.1 84.9/76.2/3.2 45.7/41.6/2.3 81.8/73.5/4.0 84.7/81.8/1.6 79.5/74.1/2.3

PERFECT-rand 90.7/88.2/1.2 90.0/85.5/1.4 86.3/81.4/1.6 42.7/35.1/2.9 89.1/82.8/2.1 90.6/81.6/3.2 81.6/75.8/2.1

Ablation

PERFECT-init 90.9/87.6/1.5 89.7/87.4/1.2 85.4/75.8/3.3 42.8/35.9/3.5 87.6/81.6/2.8 90.4/86.6/1.8 81.1/75.8/2.4

prompt+mte 70.6/56.0/8.3 71.0/55.8/8.2 66.6/49.6/7.3 32.2/26.5/3.2 82.7/69.6/3.9 79.6/66.8/6.5 67.1/54.0/6.2

bitfit+mte 89.5/81.7/3.0 90.1/87.8/1.0 85.6/80.5/1.9 42.3/36.8/3.3 89.1/82.4/2.4 90.4/85.0/1.4 81.2/75.7/2.2

Method CB RTE QNLI MRPC QQP WiC Avg

Sentence-Pair Benchmarks

FINETUNE 72.9/67.9/2.5 56.8/50.2/3.5 62.7/51.4/7.0 70.1/62.7/4.7 65.0/59.8/3.6 52.4/46.1/3.7 63.3/56.4/4.2

PET-Average 86.9/73.2/5.1 60.1/49.5/4.7 66.5/55.7/6.2 62.1/38.2/6.8 63.4/44.7/7.9 51.0/46.1/2.6 65.0/51.2/5.6

PET-Best 90.0/78.6/3.9 62.3/51.3/4.5 70.5/57.9/6.4 63.4/49.3/6.5 70.7/55.2/5.8 51.6/47.2/2.3 68.1/56.6/4.9

Logan IV et al. (2021) 91.0/87.5/2.7 64.4/58.5/3.9 71.2/66.5/2.6 63.9/53.7/5.3 70.4/62.7/3.4 52.4/48.4/1.8 68.9/62.9/3.3

PERFECT-rand 90.3/83.9/3.5 60.4/53.1/4.7 74.1/60.3/4.6 67.8/54.7/5.7 71.2/64.2/3.5 53.8/47.0/3.0 69.6/60.5/4.2

Ablation

PERFECT-init 87.9/75.0/4.9 60.7/52.7/4.5 72.8/56.7/6.8 65.9/56.6/6.0 71.1/65.6/3.5 51.7/46.6/2.8 68.4/58.9/4.8

prompt+mte 73.0/62.5/6.1 56.9/50.7/4.1 55.4/50.2/4.6 60.0/51.5/5.8 54.3/46.2/5.6 51.3/46.7/2.8 58.5/51.3/4.8

bitfit+mte 89.6/82.1/4.3 61.3/53.8/5.2 70.6/51.9/5.9 68.5/57.4/5.1 69.4/63.0/3.9 52.9/47.8/2.7 68.7/59.3/4.5

Table 6.1: Performance of all methods on single-sentence and sentence-pair benchmarks. We report
average/worst-case accuracy/standard deviation. PERFECT obtains the state-of-the-art results. Bold
fonts indicate the best results.

PET (Schick and Schütze, 2021a,b) is the state-of-the-art few-shot learning method that employs
carefully crafted verbalizers and patterns. We report the best (PET-best) and average (PET-average)
results among all patterns and verbalizers.5

FINETUNE The standard fine-tuning (Devlin et al., 2019), with adding a classifier on top of the [CLS]
token and fine-tuning all parameters.

Our method We study the performance of PERFECT and perform an extensive ablation study to show
the effectiveness of our design choices:

PERFECT-rand We randomly initialize the label embedding L from a normal distribution N (0,σ)
with σ=10−4 (chosen based on validation performance, see Appendix 6.10) without relying on any
handcrafted patterns and verbalizers. As an ablation, we study the following two variants:

5For a controlled study, we use the MLM variant shown in (6.2), which has been shown to perform the best (Tam et al.,
2021).
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PERFECT-init We initialize the label embedding with the token embeddings of manually designed
verbalizers in the PLM’s vocabulary to study the impact of engineered verbalizers.

prompt+mte To compare the impact of adapters versus soft prompt-tuning for few-shot learning, we
append trainable continuous prompt embeddings to the input (Lester et al., 2021). Then we only tune
the soft prompt and multi-token label embeddings (mte).

bitfit+mte Following Cai et al. (2020) and Ravfogel et al. (2021), we tune biases as an alternative to
adapters. We additionally tune multi-token label embeddings.

Logan IV et al. (2021) Following Logan IV et al. (2021), we remove patterns and tune the biases
in the PET.

Experimental details We use the RoBERTa large model (Liu et al., 2019b) (355M parameters) as
the underlying PLM for all methods. We use the HuggingFace PyTorch implementation (Wolf et al.,
2020). For the baselines, we used the carefully manually designed patterns and verbalizers in Gao et al.
(2021), Min et al. (2021), and Schick and Schütze (2021b) (usually 5 different options per datasets;
see Appendix 6.8).

We evaluate all methods using 5 different random samples to create the training/validation sets and 4
different random seeds for training. Therefore, for PET-average, we report the results on 20 x 5 (number
of patterns and verbalizers) = 100 runs, while for PET-best and our method, we report the results over
20 runs. The variance in few-shot learning methods is usually high (Perez et al., 2021; Zhao et al., 2021;
Lu et al., 2021). Therefore, we report average, worst-case performance, and standard deviation across
all runs, where the last two values can be important for risk-sensitive applications (Asri et al., 2016).

6.4.1 Experimental Results

Table 6.1 shows the performance of all methods. PERFECT obtains state-of-the-art results, improving
the performance compared to PET-average by +1.1 and +4.6 points for single-sentence and sentence-
pair datasets respectively. It even outperforms PET-best, where we report the best performance of
PET across multiple manually engineered patterns and verbalizers. Moreover, PERFECT generally
improves the minimum performance and reduces standard deviation substantially. Finally, PERFECT is
also significantly more efficient: reducing the training and inference time, memory usage, and storage
costs (see §6.4.2).

PET-best improves the results over PET-average showing that PET is unstable to the choice of patterns
and verbalizers; this difference is more severe for sentence-pair benchmarks. This might be because the
position of the mask highly impacts the results, and the patterns used for sentence-pair datasets in Schick
and Schütze (2021b) exploits this variation by putting the mask in multiple locations (see Appendix 6.8).

Removing patterns and tuning biases in Logan IV et al. (2021) is not expressive enough and performs
substantially worse than PERFECT on average.
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Metric PET PERFECT ∆%
Trained params (M) 355.41 3.28 -99.08%
Peak memory (GB) 20.93 16.34 -21.93%
Training time (min) 23.42 0.65 -97.22%

+ PET in batch 0.94 0.65 -30.85%
Inference time (min) 9.57 0.31 -96.76%

Table 6.2: Percentage of trained parameters, average peak memory, training, and inference time. ∆%
is the relative difference with respect to PET. Lower is better.

As an ablation, even if we initialize the label embedding with handcrafted verbalizers in PERFECT-init,
it consistently obtains lower performance, demonstrating that PERFECT is able to obtain state-of-the-art
performance with learning from pure random initialization. We argue that initializing randomly close
to zero (with low variance σ = 10−4), as done in our case, slightly improves performance, which
perhaps is not satisfied when initializing from the manually engineered verbalizers (see Appendix 6.10).

As a second ablation, when learning patterns with optimizing soft prompts in prompt+mte, we observe
high sensitivity to learning rate, as also confirmed in Li and Liang (2021) and Mahabadi et al. (2021a).
We experimented with multiple learning rates but performance consistently lags behind PERFECT-
rand. This can be explained by the low flexibility of such methods as all the information regarding
specifying patterns needs to be contained in the prefixes. As a result, the method only allows limited
interaction with the rest of the model parameters, and obtaining good performance requires very large
models (Lester et al., 2021). In addition, increasing the sequence length leads to memory overhead
(Mahabadi et al., 2021a), and the number of prompt tokens is capped by the number of tokens that
can fit in the maximum input length, which can be a limitation for tasks requiring large contexts.

As a third ablation, tuning biases with optimizing soft prompts in bitfit+mte obtains lower performance
compared to PERFECT, showing that adapters are a better alternative compared to tuning biases to
learn task descriptions for few-shot learning.

We include more ablation results on design choices of PERFECT in Appendix 6.11.

6.4.2 Efficiency Evaluation

In this section, we compare the efficiency of PERFECT with the state-of-the-art few-shot learning
method, PET. To this end, we train all methods for ten epochs on the 500-sampled QNLI dataset. We
select the largest batch size for each method that fits a fixed budget of the GPU memory (40 GB).

Due to the auto-regressive inference strategy of PET (Schick and Schütze, 2021b), all prior work
implemented it with a batch size of 1 (Perez et al., 2021; Schick and Schütze, 2021b; Tam et al., 2021).
Additionally, since PET deals with verbalizers of variable lengths, it is hard to implement their training
phase in batch mode. We specifically choose QNLI to have verbalizers of the same length and enable
batching for comparison purposes (referred to as PET in batch). However, verbalizers are still not of
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Dataset PET-Average Pattern-Free

SST-2 89.7/81.0/2.4 90.5/87.8/1.2
CR 88.4/68.8/3.0 89.8/87.0/1.4
MR 85.9/79.0/2.1 86.4/83.0/1.8
SST-5 45.9/40.3/2.4 44.8/40.0/2.4
SUBJ 88.1/79.6/2.4 85.3/74.7/3.8
TREC 85.0/70.6/4.5 87.9/84.6/1.8
CB 86.9/73.2/5.1 93.0/89.3/1.9
RTE 60.1/49.5/4.7 63.7/56.3/4.1
QNLI 66.5/55.7/6.2 71.3/65.8/2.5
MRPC 62.1/38.2/6.8 66.0/54.4/5.6
QQP 63.4/44.7/7.9 71.8/64.3/3.7
WiC 51.0/46.1/2.6 53.7/50.3/2.0

Avg 72.8/60.6/4.2 75.4/69.8/2.7

Table 6.3: Average performance of PET with five different patterns vs. Pattern-Free that replaces
handcrafted patterns with task-specific adapters. We report the average/worst-case performance/and
the standard deviation.

fixed-length for most other tasks, and this speed-up does not apply generally to PET.

In Table 6.2, for each method we report the percentage of trained parameters, memory usage, training
time, and inference time. PERFECT reduces the number of trained parameters, and therefore the storage
requirement, by 99.08%. It additionally reduces the memory requirement by 21.93% compared to PET.
PERFECT speeds up training substantially, by 97.22% relative to the original PET’s implementation,
and 30.85% to our implementation of PET. This is because adapter-based tuning saves on memory and
allows training with larger batch sizes. In addition, PERFECT is significantly faster during inference
time (96.76% less inference time relative to PET).

Note that although prompt+mte and bitfit+mte can also reduce the storage costs, by having 0.02M
and 0.32 M trainable parameters respectively, they are not expressive enough to learn task descriptions,
and their performance substantially lags behind PERFECT (see Table 6.1).

Overall, given the size of PLMs with millions and billions of parameters (Liu et al., 2019b; Raffel et al.,
2020), efficient few-shot learning methods are of paramount importance for practical applications.
PERFECT not only outperforms the state-of-the-art in terms of accuracy and generally improves the
stability (Table 6.1), but also is significantly more efficient in runtime, storage, and memory.

6.4.3 Analysis

Can task-specific adapters replace manually engineered patterns? PERFECT is a pattern-free
approach and employs adapters to provide the PLMs with task descriptions implicitly. In this section,
we study the contribution of replacing manual patterns with adapters in isolation without considering
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Dataset PERFECT -Adapters

SST-2 90.7/88.2/1.2 88.2/81.9/2.3
CR 90.0/85.5/1.4 89.2/83.1/1.7
MR 86.3/81.4/1.6 82.5/78.2/2.5
SST-5 42.7/35.1/2.9 40.6/33.6/3.3
SUBJ 89.1/82.8/2.1 89.7/85.0/1.9
TREC 90.6/81.6/3.2 89.8/74.2/4.3
CB 90.3/83.9/3.5 89.6/83.9/2.8
RTE 60.4/53.1/4.7 61.7/53.8/5.1
QNLI 74.1/60.3/4.6 73.2/56.3/5.8
MRPC 67.8/54.7/5.7 68.0/54.2/6.1
QQP 71.2/64.2/3.5 71.0/62.0/3.7
WiC 53.8/47.0/3.0 52.5/46.9/3.0

Avg 75.6/68.1/3.1 74.7/66.1/3.5

Table 6.4: Performance of PERFECT w/o adapters, -Adapters. We report the average performance/worst-
case performance/and the standard deviation.

our other contributions in representing labels, training, and inference. In PET (Schick and Schütze,
2021a,b), we replace the handcrafted patterns with task-specific adapters (Pattern-Free) while keeping
the verbalizers and the training and inference intact6 and train it with a similar setup as in §6.4. Table
6.3 shows the results. While PET is very sensitive to the choice of prompts, adapters provide an
efficient alternative to learn patterns robustly by improving the performance (average and worst-case)
and reducing the standard deviation. This finding demonstrates that task-specific adapters can effec-
tively replace manually engineered prompts. Additionally, they also save on the training budget by
at least 1/number of patterns (normally 1/5) by not requiring running the method for different choices
of patterns, and by freezing most parameters, this saves on memory and offers additional speed-up.

Impact of Removing Adapters To study the impact of adapters in learning patterns, we remove
adapters, while keeping the label embedding. Handcrafted patterns are not included and we tune all
parameters of the model. Table 6.4 shows the results. Adding adapters for learning patterns contributes
to the performance by improving the average performance, and making the model robust by improving
the minimum performance and reducing the standard deviation. This is because training PLMs with
millions of parameters is sample-inefficient and unstable on resource-limited datasets (Dodge et al.,
2020; Zhang et al., 2021b; Mosbach et al., 2021). However, by using adapters, we substantially reduce
the number of trainable parameters, allowing the model to be better tuned in a few-shot setting.

Impact of the number of masks In Table 6.1, to compare our design with PET in isolation, we fixed
the number of mask tokens as the maximum number inserted by PET. In table 6.5, we study the impact

6Since we don’t have patterns, in the case of multiple sets of verbalizers, we use the first set of verbalizers as a random
choice.
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Datasets 1 2 5 10
CR 90.1 90.2 89.0 87.8
MR 86.9 86.1 85.4 85.6
MRPC 67.4 68.2 70.1 72.3
QNLI 73.7 73.9 73.0 65.1
RTE 60.0 57.3 56.2 56.0
TREC 90.0 90.9 88.9 88.8

Avg 78.0 77.8 77.1 75.9

Table 6.5: Test performance for the varying number of mask tokens. Bold fonts indicate the best
results in each row.

of varying the number of inserted mask tokens for a random selection of six tasks. For most tasks,
having two mask tokens performs the best, while for MR and RTE, having one, and for MRPC, inserting
ten masks improves the results substantially. The number of required masks might be correlated with
the difficulty of the task. PERFECT is designed to be general, enabling having multiple mask tokens.

6.5 Related Work

Adapter Layers Mahabadi et al. (2021b) and Üstün et al. (2020) proposed to generate adapters’
weights using hypernetworks (Ha et al., 2017), where Mahabadi et al. (2021b) proposed to share a
small hypernetwork to generate conditional adapter weights efficiently for each transformer layer and
task. Mahabadi et al. (2021a) proposed compacter layers by building on top of ideas of parameterized
hyper-complex layers (Zhang et al., 2021a) and low-rank methods (Li et al., 2018; Aghajanyan et al.,
2021), as an efficient fine-tuning method for PLMs. We are the first to employ adapters to replace
handcrafted patterns for few-shot learning.

Few-shot Learning with PLMs Le Scao and Rush (2021) showed that prompting provides substantial
improvements compared to fine-tuning, especially in low-resource settings. Subsequently, researchers
continuously tried to address the challenges of manually engineered patterns and verbalizers: a)
Learning the patterns in a continuous space (Li and Liang, 2021; Qin and Eisner, 2021; Lester et al.,
2021), while freezing PLM for efficiency, has the problem that, in most cases, such an approach only
works with very large scale PLMs (Lester et al., 2021), and lags behind full fine-tuning in a general
setting, while being inefficient and not as effective compared to adapters (Mahabadi et al., 2021a).
b) Optimizing patterns in a discrete space (Shin et al., 2020; Jiang et al., 2020; Gao et al., 2021) has
the problem that such methods are computationally costly. c) Automatically finding verbalizers in a
discrete way Schick et al. (2020); Schick and Schütze (2021a) is computationally expensive and does
not perform as well as manually designed ones. d) Removing manually designed patterns (Logan IV
et al., 2021) substantially lags behind the expert-designed ones. Our proposed method, PERFECT, does
not rely on any handcrafted patterns and verbalizers.
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6.6 Conclusion

We proposed PERFECT, a simple and efficient method for few-shot learning with pre-trained language
models without relying on handcrafted patterns and verbalizers. PERFECT employs task-specific
adapters to learn task descriptions implicitly, replacing previous handcrafted patterns, and a continuous
multi-token label embedding to represent the output classes. Through extensive experiments over
12 NLP benchmarks, we demonstrate that PERFECT, despite being far simpler and more efficient
than recent few-shot learning methods, produces state-of-the-art results. Overall, the simplicity and
effectiveness of PERFECT make it a promising approach for few-shot learning with PLMs.
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Appendix

6.7 Experimental Details

Datasets Table 6.6 shows the stastistics of the datasets used. We download SST-2, MR, CR, SST-5,
and SUBJ from Gao et al. (2021), while the rest of the datasets are downloaded from the HuggingFace
Datasets library (Lhoest et al., 2021). RTE, CB, WiC datasets are from SuperGLUE benchmark
(Wang et al., 2019b), while QQP, MRPC and QNLI are from GLUE benchmark (Wang et al., 2019c)
with Creative Commons license (CC BY 4.0). RTE (Wang et al., 2019b) is a combination of data
from RTE1 (Dagan et al., 2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Giampiccolo et al., 2007),
and RTE5 (Bentivogli et al., 2009). For WiC (Pilehvar and Camacho-Collados, 2019) sentences are
selected from VerbNet (Schuler, 2005), WordNet (Miller, 1995), and Wiktionary.

Computing infrastructure We run all the experiments on one NVIDIA A100 with 40G of memory.

Training hyper-parameters We set the maximum sequence length based on the recommended values
in the HuggingFace repository (Wolf et al., 2020) and prior work (Min et al., 2021; Schick and Schütze,
2021b), i.e., we set it to 256 for SUBJ, CR, CB, RTE, and WiC, and 128 for other datasets. For all meth-
ods, we use a batch size of 32. For FINETUNE and PET, we use the default learning rate of 10−5, while
for our method, as required by adapter-based methods (Mahabadi et al., 2021a), we set the learning rate
to a higher value of 10−4.7 Through all experiments, we fix the adapter bottleneck size to 64. Following
Pfeiffer et al. (2021), we experimented with keeping one of the adapters in each layer for better training
efficiency and found keeping the adapter after the feed-forward module in each layer to perform the best.
For tuning label embedding, we use the learning rate of {10−1,10−2,10−3,10−4,10−5} and choose
the one obtaining the highest validation performance. For PERFECT-prompt, we tune the continuous
prompt for learning rate of {10−1,10−2,10−3}.8Following Lester et al. (2021), for PERFECT-prompt,
we set the number of prompt tokens to 20, and initialize them with a random subset of the top 5000
token’s embedding of the PLM. We train all methods for 6000 steps. Based on our results, this is
sufficient to allow the models to converge. We save a checkpoint every 100 steps for all methods and
report the results for the hyper-parameters performing the best on the validation set for each task.

7We have also tried to tune the baselines with the learning rate of 10−4 but it performed worst.
8We also tried tuning prompts with learning rates of {10−4,10−5} but it performed worst, as also observed in prior

work (Mahabadi et al., 2021a; Min et al., 2021).
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Dataset Task #Train #Test K

Single-Sentence Benchmarks

MR Sentiment analysis 8662 2000 2
CR Sentiment analysis 1774 2000 2
SST-2 Sentiment analysis 6920 872 2
SST-5 Sentiment analysis 8544 2210 5
SUBJ Subjectivity classification 8000 2000 2
TREC Question classification 5452 500 6

Sentence-Pair Benchmarks

CB Natural language inference 250 56 3
RTE Natural language inference 2490 277 2
WiC Word sense disambiguation 5428 638 2
MRPC Paraphrase detection 3668 408 2
QNLI Question answering 104743 5463 2
QQP Paraphrase detection 363846 40430 2

Table 6.6: Statistics of datasets used in this work. We sample N×|Y| instances (with multiple seeds)
from the original training set to form the few-shot training and validation sets. The test column shows
the size of the test set.

6.8 Choice of Patterns and Verbalizers

For SST-2, MR, CR, SST-5, and TREC, we used 4 different patterns and verbalizers from Gao et al.
(2021). For CB, WiC, RTE datasets, we used the designed patterns and verbalizers in Schick and
Schütze (2021b). For QQP, MRPC, and QNLI, we wrote the patterns and verbalizers inspired by the
ones in Schick and Schütze (2021b). The used patterns and verbalizers are as follows:

• For sentiment analysis tasks (MR, CR, SST-2, SST-5), given a sentence s:

s A <MASK> one.

s It was <MASK>.

s All in all <MASK>.

s A <MASK> piece.

with "great" as a verbalizer for positive, "terrible" for negative. In case of SST-5 with five labels,
we expand it to "great", "good", "okay", "bad", and "terrible".

• For SUBJ, given a sentence s:
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s This is <MASK>.

s It’s all <MASK>.

s It’s <MASK>.

s Is it <MASK>?

with "subjective" and "objective" as verbalizers.

• For TREC, given a question q, the task is to classify the type of it:

q <MASK>:

q Q:<MASK>:

q why<MASK>?

q Answer: <MASK>.

with "Description", "Entity", "Expression", "Human", "Location", "Number" as verbalizers for
question types of "Description", "Entity", "Abbreviation", "Human", "Location", and "Numeric".

• For entailment task (RTE) given a premise p and hypothesis h:

"h" ? | <MASK>, "p"

h? | <MASK>, p

"h" ? | <MASK>. p

with "Yes" as a verbalizer for entailment, "No" for contradiction.

p question: h True or False? answer: <MASK>

with "true" as a verbalizer for entailment, "false" for contradiction.

• For entailment task (CB) given a premise p and a hypothesis h:

"h" ? | <MASK>, "p"
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h? | <MASK>, p

"h" ? | <MASK>. p

with "Yes" as a verbalizer for entailment, "No" for contradiction, "Maybe" for neutral.

p question: h true, false or neither? answer: <MASK>

with "true" as a verbalizer for entailment, "false" for contradiction, "neither" for neutral.

• For QNLI, given a sentence s and question q:

s. Question: q? Answer: <MASK>.

with "Yes" or "true" as verbalizers for entailment and "No" or "false" for not entailment.

s. Based on the previous sentence, q? <MASK>.

with "Yes" or "true" as verbalizers for entailment and "No" or "false" for not entailment.

Based on the following sentence, q?<MASK>.s

with "Yes" and "No" as verbalizers for entailment and not entailment respectively.

• For QQP, given two questions q1 and q2:

Do q1 and q2 have the same meaning?<MASK>.

with "Yes" or "true" as verbalizers for duplicate and "No" or "false" for not duplicate.

q1. Based on the previous question, q2? <MASK>.

with "Yes" or "true" as verbalizers for duplicate and "No" or "false" for not duplicate.

Based on the following question, q1?<MASK>.q2

with "Yes" and "No" as verbalizers for duplicate and not duplicate respectively.

• For MRPC, given two sentences s1 and s2:

Do s1 and s2 have the same meaning?<MASK>.

with "Yes" or "true" as verbalizers for equivalent and "No" or "false" for not equivalent.
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s1. Based on the previous sentence, s2? <MASK>.

with "Yes" or "true" as verbalizers for equivalent and "No" or "false" for not equivalent.

Based on the following sentence, s1?<MASK>.s2

with "Yes" and "No" as verbalizers for equivalent and not equivalent respectively.

• For WiC, given two sentences s1 and s2 and a word w, the task is to classify whether w is used
in the same sense.

"s1" / "s2". Similar sense of "w"? <MASK>.

s1 s2 Does w have the same meaning in both sentences? <MASK>

With "No" and "Yes" as verbalizers for False, and True.

w . Sense (1) (a) "s1" (<MASK>) "s2"

With "2" and "b" as verbalizers for False, and True.

6.9 Impact of the Position of Masks in Sentence-pair Datasets

We evaluate the impact of the position of mask tokens in sentence-pair benchmarks. Given two
sentences s1 and s2, we consider the following four locations for inserting mask tokens, where in the
case of encoding as two sentences, input parts to the encoder are separated with |:

1. s1 s2 <MASK>

2. s1 <MASK> s2

3. s1 | <MASK> s2

4. s1 | s2<MASK>

Table 6.7 shows how the position of masks impact the results. As demonstrated, pattern 2, inserting
mask tokens between the two sentences and encoding both as a single sentence obtains the highest
validation performance. We use this choice in all the experiments when removing handcrafted patterns.

6.10 Impact of Initialization

We initialize the label embedding matrix with random initialization from a normal distribution N (0,σ).
In table 6.8, we show the development results for different values of σ. We choose the σ obtaining
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Datasets 1 2 3 4
CB 89.8 91.6 88.9 86.5
RTE 69.1 69.1 64.5 65.3
QNLI 72.0 83.3 77.7 73.1
MRPC 71.6 69.5 66.4 72.0
QQP 79.2 82.8 72.5 70.2
WiC 60.3 59.5 60.2 59.5

Avg 73.7 76.0 71.7 71.1

Table 6.7: Validation performance for sentence-pair benchmarks for different locations of mask tokens.
Bold fonts indicate the best results in each row.

Datasets 10−2 10−3 10−4 10−5

CB 90.0/82.5 92.2/85.0 91.6/87.5 91.6/87.5

MRPC 69.8/56.2 70.8/56.2 69.5/56.2 70.8/56.2

QNLI 83.3/71.9 82.7/71.9 83.3/71.9 83.1/68.8

QQP 82.8/78.1 82.7/75.0 82.8/75.0 83.0/75.0

RTE 69.8/62.5 69.2/59.4 69.1/62.5 68.3/62.5

WiC 62.2/50.0 59.7/46.9 59.5/53.1 58.9/50.0

Avg 76.3/66.9 76.2/65.7 76.0/67.7 76.0/66.7

Total Avg 71.6 71.0 71.8 71.3

Table 6.8: Validation performance for different values of σ. We show mean performance/worst-case per-
formance across 20 runs. The last row shows the average of mean performance/worst-case performance.

the highest performance on average over average and worst case performance, i.e., σ=10−4.

6.11 Ablation Results

To study the impact of different design choices in PERFECT, we considered the following experiments:

• -Hinge Loss: In this variant, we replace the hinge loss with multi-class cross entropy loss.

• +Label Emb: We use the trained label embeddings during the inference, substituting the
computed prototypes in (6.5).

• -Prototypical: Instead of using prototypical networks, during inference, we use the same
objective as training, i.e., (6.4).

Results are shown in Table 6.9. Experimental results demonstrate that PERFECT obtains the best
results on average. Using multi-class cross-entropy instead of hinge loss, obtains substantially lower
minimum performance (67.4 versus 68.1), demonstrating that training with hinge loss makes the
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6.11 Ablation Results

Dataset PERFECT -Hinge Loss +Label Emb -Prototypical

SST-2 90.7/88.2/1.2 90.0/85.9/1.7 90.6/87.6/1.1 90.4/85.2/1.6
CR 90.0/85.5/1.4 90.1/88.6/0.9 89.7/86.6/1.4 89.9/86.8/1.4
MR 86.3/81.4/1.6 85.2/78.6/2.4 85.8/82.4/1.4 85.7/78.0/2.0
SST-5 42.7/35.1/2.9 43.3/36.8/3.1 41.8/37.1/2.5 41.2/35.9/2.4
SUBJ 89.1/82.8/2.1 89.4/83.1/2.2 90.0/86.0/1.8 89.7/86.0/1.8
TREC 90.6/81.6/3.2 89.9/76.8/4.2 89.7/71.6/6.1 89.6/76.2/4.9
CB 90.3/83.9/3.5 89.2/80.4/4.8 89.6/82.1/3.6 89.3/80.4/3.9
RTE 60.4/53.1/4.7 60.7/54.5/4.0 58.6/50.9/4.0 58.5/50.9/4.5
QNLI 74.1/60.3/4.6 72.9/64.4/3.9 74.9/66.7/3.6 74.7/67.5/3.5
MRPC 67.8/54.7/5.7 67.0/49.8/5.5 68.1/56.9/4.8 68.1/56.9/4.8
QQP 71.2/64.2/3.5 69.9/63.0/4.1 70.3/62.2/4.0 70.2/62.2/4.0
WiC 53.8/47.0/3.0 53.7/46.7/3.3 53.6/50.2/2.4 53.6/50.0/2.6

Avg 75.6/68.1/3.1 75.1/67.4/3.3 75.2/68.4/3.1 75.1/68.0/3.1

Table 6.9: Ablation results on the impact of different design choices in PERFECT. We report the
average performance/worst-case performance/and the standard deviation.

model more stable. Using the trained label embeddings (+Label Emb) obtains very close results
to PERFECT (slightly worse on average and slightly better on the minimum performance). Using
the similar objective as training with replacing prototypical networks (-Prototypical), obtains lower
performance on average (75.1 versus 75.6). These results confirm the design choices for PERFECT.
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7 Conclusions

This chapter summarizes the contributions of this thesis and suggests possible directions for future
research. This thesis has reported progress in five important aspects of transfer learning in NLP:

• Training models robust to biases in datasets

• Reducing overfitting, especially in a low-resource setting

• Learning from multiple resources and generalizing to unseen domains

• Efficient fine-tuning methods for pretrained language models

• Few-shot learning with pretrained language models

In Chapter 2, we propose two novel techniques, product-of-experts, and debiased focal loss, to reduce
biases learned by neural models, which are applicable whenever one can specify the biases in the form
of one or more bias-only models. The bias-only models are designed to leverage biases and shortcuts
in the datasets. Our debiasing strategies then work by adjusting the cross-entropy loss based on the
performance of these bias-only models, to focus learning on the hard examples and down-weight the
importance of the biased examples. Additionally, we extend our methods to combat multiple bias
patterns simultaneously. Our proposed debiasing techniques are model agnostic, simple, and highly
effective. Extensive experiments show that our methods substantially improve the model robustness
to domain-shift, including 9.8 points gain on FEVER symmetric test set, 7.4 on the HANS dataset,
and 4.8 points on SNLI hard set. Furthermore, we show that our debiasing techniques result in better
generalization to other NLI datasets. Future work may include developing debiasing strategies that
do not require prior knowledge of bias patterns and can automatically identify them.

In Chapter 3, we propose VIBERT, an effective model to reduce overfitting when fine-tuning large-
scale pretrained language models on low-resource datasets. By leveraging a VIB objective, VIBERT
finds the simplest sentence embedding, predictive of the target labels, while removing task-irrelevant
and redundant information. Our approach is model agnostic, simple to implement, and highly effective.
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Chapter 7. Conclusions

Extensive experiments and analyses show that our method substantially improves transfer performance
in low-resource scenarios. We demonstrate our obtained sentence embeddings are robust to biases and
our model results in a substantially better generalization to out-of-domain NLI datasets. Future work
includes exploring incorporating VIB on multiple layers of pretrained language models and using it
to jointly learn relevant features and relevant layers.

In Chapter 4, we propose a parameter-efficient method for multi-task fine-tuning. Our approach is
to train shared hypernetworks to generate task-specific adapters conditioned on the task, layer id, and
adapter position embeddings. The shared hypernetworks capture the knowledge across tasks and
enable positive transfer to low-resource and related tasks, while task-specific layers allow the model to
adapt to each individual task. Extensive experiments show that our method obtains strong improvement
over multi-task learning on the GLUE benchmark, and substantially improves the in-domain task
generalization.

In Chapter 5, we have proposed COMPACTER, a light-weight fine-tuning method for large-scale
language models. COMPACTER generates weights by summing Kronecker products between shared
“slow” weights and “fast” rank-one matrices, specific to each COMPACTER layer. Leveraging this
formulation, COMPACTER reduces the number of parameters in adapters substantially from O(kd)
to O(k+d). Through extensive experiments, we demonstrate that despite learning 2127.66× fewer
parameters than standard fine-tuning, COMPACTER obtains comparable or better performance in a
full-data setting and outperforms fine-tuning in data-limited scenarios.

In Chapter 6, we proposed PERFECT, a simple and efficient method for few-shot learning with pre-
trained language models without relying on handcrafted patterns and verbalizers. PERFECT employs
task-specific adapters to learn task descriptions implicitly, replacing previous handcrafted patterns, and a
continuous multi-token label embedding to represent the output classes. Through extensive experiments
over 12 NLP benchmarks, we demonstrate that PERFECT, despite being far simpler and more efficient
than recent few-shot learning methods, produces state-of-the-art results. Overall, the simplicity and
effectiveness of PERFECT make it a promising approach for few-shot learning with pretrained language
models. PERFECT handles a wide variety of classification tasks; extending PERFECT to generation
tasks, such as machine translation and summarization, is an interesting future direction.

In summary, this thesis has contributed a variety of methods for more effective transfer learning.
Transfer learning is a crucial topic in NLP, radically improving the state-of-the-art results in a variety of
benchmarks (Raffel et al., 2020; Chowdhery et al., 2022; Du et al., 2022; Brown et al., 2020; Hoffmann
et al., 2022).

There is still a wide range of issues for future work that are not touched in this thesis, such as coming
up with more complex benchmarks to evaluate the performance of language models (Wang et al.,
2019b), collecting more clean unlabeled datasets for better pretraining (Raffel et al., 2020), improving
the efficiency of language models (Dettmers et al., 2022; Rajbhandari et al., 2019; Smith et al., 2022),
coming up with better pretraining objectives (Dai and Le, 2015; Ramachandran et al., 2017; Radford
et al., 2018; Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019a; Wang et al., 2019a; Song et al.,
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2019; Dong et al., 2019; Joshi et al., 2020) allowing to capture general-purpose knowledge from the
unlabeled data, and many others.

This thesis contributes to progress towards the goal of achieving efficient neural models of general-
purpose language understanding for any NLP task.
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