Files

Abstract

The ternary Cr-Fe-Si system was investigated with X-ray diffraction, energy dispersive X-ray spectrometry, scanning and transmission electron microscopy, and electron diffraction. Samples melted at 1723 K were examined right after cooling or after annealing at 1073 K for 3 days to determine phases, grain sizes, and interphase interfaces. During annealing, a polymorphic transformation of the tetragonal alpha-FeSi2 to the orthorhombic beta-FeSi2 phase occurs, while CrSi2 retains its hexagonal structure at high-temperature treatment. Thin layers of epsilon-FeSi with a cubic structure were observed and identified within the CrSi2 grains. Crystallographic orientation relationships are determined at the interphase interfaces. The contributions of lattice mismatch and thermal expansion coefficient misfit to deformation are discussed.

Details

PDF