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Perspective Aware Road Obstacle Detection
Krzysztof Lis, Sina Honari, Pascal Fua, and Mathieu Salzmann

Abstract—While road obstacle detection techniques have be-
come increasingly effective, they typically ignore the fact that, in
practice, the apparent size of the obstacles decreases as their
distance to the vehicle increases. In this paper, we account
for this by computing a scale map encoding the apparent
size of a hypothetical object at every image location. We then
leverage this perspective map to (i) generate training data by
injecting onto the road synthetic objects whose size corresponds
to the perspective foreshortening; and (ii) incorporate perspective
information in the decoding part of the detection network to guide
the obstacle detector. Our results on standard benchmarks show
that, together, these two strategies significantly boost the obstacle
detection performance, allowing our approach to consistently
outperform state-of-the-art methods in terms of instance-level
obstacle detection.

Index Terms—Computer Vision for Transportation, Data Sets
for Robotic Vision, Deep Learning for Visual Perception, Object
Detection, Segmentation and Categorization.

I. INTRODUCTION

V ISION-BASED driving assistance is now commercially
available [1] and enables vehicles to plan a path within

the predicted drivable space while avoiding other traffic.
However, unusual and unexpected obstacles lying on the
road remain a potential danger. Since not every vehicle has
stereo cameras or a LiDAR sensor to detect them in 3D,
much effort has recently been made to achieve detection
in a monocular fashion via learning-based strategies. Such
road obstacle detection can also be beneficial for robots in
novel environments. Given that such objects are non-exclusive,
obtaining exhaustive datasets of real images annotated with
such obstacles for training purposes is impractical. Hence,
many state-of-the-art deep learning approaches [2], [3], [4], [5]
rely on synthetically-generated training data, e.g., by cutting
out objects and inserting them into individual frames of the
Cityscapes dataset.

However, these methods fail to leverage, both while gen-
erating training data and performing the actual detection, the
predictable perspective foreshortening in images captured by
vehicles’ front-facing cameras. It is a standard practice [4], [6],
[7] to insert objects of arbitrary sizes at any image location
in the training data and to detect objects at multiple-scales
irrespective of where they appear in the image. This does not
exploit the well-known fact that more distant objects tend to
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Figure 1: Far and relevant vs close and irrelevant. (a) Original
image. The green circle denotes a real obstacle far away, and the red
circle indicates nearby but harmless leaves. (b) The perspective map
indicates, at each pixel, the size in pixels of a hypothetical meter-wide
object at that location. (c) Our approach uses the perspective map to
distinguish relevant objects from irrelevant ones. It correctly flags
in red the pixels of the real obstacle while ignoring the leaves. (d)
Without the perspective aware training set, a network with a similar
architecture flags them all.

be smaller and that, given a calibrated camera, the relationship
between real and projected sizes is known.

In this work, we show that leveraging the perspective
information substantially increases performance. To this end,
as shown in Fig. 1, we compute a scale map, whose pixel
values denote the apparent size in pixels of a hypothetical
meter-wide object placed at that point on the road. We then
exploit this information in two complementary ways:

• Perspective-Aware Synthetic Object Injection. Instead
of uniformly injecting synthetic objects into road scenes
to synthesize training data, as in [4], [6], [7], we use the
perspective map to appropriately set the projected size of
the objects we insert.

• Perspective-Aware Architecture. We feed the perspec-
tive map at multiple levels of a feature pyramid network,
enabling it to learn the realistic relationship between
distance and size embodied in our training set and in
real road scenes.

The bottom portion of Fig. 1 illustrates the benefits of our
approach. It not only detects small far-away obstacles but also
avoids false alarms arising from small irregularities near the
car, such as the leaves here, because their size at this image
location does not match that of real threats to the vehicle.
Our results show that these strategies together contribute to
significantly improving the accuracy of road obstacle detec-
tion, particularly in terms of instance-level detection, which is
critical for a self-driving car that need to identify all potential
hazards on the road.

We evaluate our approach on the Segment Me If You Can [8]
benchmark’s obstacle track and the Lost&Found [9] test sub-
set. We demonstrate that it significantly outperforms state-
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of-the-art techniques that use architectures similar to ours,
but without explicit perspective handling. The implementation
of our method is available at https://github.com/cvlab-epfl/
perspective-aware-obstacles.

II. RELATED WORK

A complete overview of state-of-the-art road anomaly de-
tection methods can be found in [8]. In short, many of the
most effective monocular methods, as ours, generate synthetic
training data to palliate for the lack of a sufficiently diverse
annotated road obstacle dataset. We therefore focus on these
methods, and then discuss other attempts at exploiting per-
spective information for diverse tasks.

A. Synthetic Training Data for Obstacle Detection

There is an intractable variety of unexpected objects that can
pose a collision threat on roads. To handle this diversity, most
existing obstacle detection methods rely on creating synthetic
data for training purposes. It is often created from background
traffic frames, often from Cityscapes [10], into which synthetic
obstacles are inserted.

In [2], the synthetic anomalies are generated by altering the
semantic class of existing object instances and synthesizing an
image from those altered labels. In [3], this is complemented
by adding the Cityscapes void regions as obstacles. However,
many of the objects exploited by these techniques are located
above or away from the road, and the resulting training data
only yields limited performance for small on-road obstacles.
Our results show that we outperform these methods.

In [7], synthetic obstacles are obtained by cropping random
polygons within the background frame and copying their con-
tent onto the road, or filling them with a random color. Other
methods [4], [6], [11] inject object instances extracted from
various image datasets. While this can be done effectively, it
remains suboptimal because the objects are placed at random
locations, without accounting for their size or for the scene
geometry. This is what we address here by explicitly exploiting
perspective information, and we demonstrate that it yields a
substantial performance boost.

B. Exploiting Perspective Information

Earlier works [12], [13] propose a lightweight sliding-
window classifier of drivable space using a pyramid of input
patches whose dimension depends on their distance from the
horizon. These patches are then rescaled according to their
distance to the camera, ensuring that the similar obstacles
have similar pixels sizes when presented to the classifier,
regardless of the effects of perspective in the original image.
This application of perspective information to overcome scale
variance is effective, but it can not be easily combined with
standard CNNs which operate on the whole image rather than
individually rescaled patches.

For any perspective camera, distortion depends on image
position. A popular approach to enabling a deep network
to account for this in its predictions is to provide it with
pixel coordinates as input. In [14], [15], [16], this is achieved

by treating normalized pixel coordinates as two additional
channels. In [17] the pixel coordinates are used to compute
an attention map, to exploit the fact that the class distribution
correlates with the image height, for example the sky class
is predominantly at the top of the image. Another way to
implicitly account for perspective effects is to introduce extra
network branches that process the image at different scales
and fuse the results [18], [19]. However, this strategy, as
those relying on pixel coordinates, does not explicitly leverage
the perspective information available when working with a
calibrated camera, as is typically the case in self-driving.

None of obstacle-detection algorithms explicitly accounts
for the relationship between projected object size and distance.
This can be done by creating scale maps that encode the
expected size in the world of an image pixel depending on
its position. Scale maps have been used for obstacle and
anomaly detection [20], [21]. In [20], the scale information
is used to crop and resize image regions before passing them
to a vehicle detection network, which then gets to view the
cars at an approximately constant scale. This requires running
the detector multiple times on the crops. By contrast, our
method processes the whole image at once, and the model
learns how to leverage the perspective information to adjust
the features. In [21], the scale maps are used to rectify the road
surfaces, and obstacles are then detected in the rectified views.
Unlike these methods, we exploit perspective maps as input to
our network, instead of using them for image pre-processing.
This prevents the creation of visual artifacts caused by image
warping, which yields higher accuracy, as we will show in
experiments.

Scale maps have also been extensively investigated for
crowd counting purposes [22], [23], [24], [25], [26], [27].
In [22], [23], the models predict perspective information based
on observed body and head size. In [24], an unsupervised
meta-learning method is deployed to learn perspective maps,
which are then used to warp the input images so that they
depict a uniform scale as in [25]. In [26], a scale map serves
as an extra channel alongside the RGB image and is passed
through the backbone feature extractor, whereas in [27] an
additional branch is added to the backbone to process the
single-channel scale map and to concatenate the resulting
features afterwards. In short, perspective information is used
during feature computation. In this paper, we follow a different
track and incorporate the scale map at different levels of a
feature pyramid network. Our experiments show this to be
more effective. Furthermore, we argue and demonstrate that,
for anomaly detection, incorporating perspective information
into the network is not enough; one must also exploit it when
synthesizing training data.

C. Fusing RGB and Depth for Road Obstacle Detection

When depth information is available, from stereo camera
disparity or RGB-D sensors, it can be fused with the RGB
appearance to improve obstacle detection. For example, [28]
combines semantic segmentation with stereo-based detections;
MergeNet [29] extracts complementary features from RGB-D;
RFNet [30]’s two-stream backbone extracts RGB and depth

https://github.com/cvlab-epfl/perspective-aware-obstacles
https://github.com/cvlab-epfl/perspective-aware-obstacles
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Figure 2: Perspective map. Left: A 1-meter length overlaid at
different image heights on an image from the Lost&Found dataset.
Right: The corresponding perspective map.
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Figure 3: Building the perspective map. Geometry of a front-facing
camera viewing a planar road surface. Here, the y coordinate of the
orange point is negative because it is below the optical axis.

features and uses them to output joint segmentation of known
classes and unusual obstacles. Depth (or disparity) contains
important geometric cues about the obstacles, which protrude
from the road plane, and the above-mentioned methods exploit
these cues to detect the obstacles. By contrast, we do not use
stereo images and the associated precise scene geometry; our
perspective map is generated using a flat-road assumption and
contains no information about the obstacles. Our architecture
uses perspective as context for analyzing obstacle appearance,
by taking it as an extra feature channel without any processing.

III. APPROACH

Our approach relies on a perspective map that captures scale
change of objects on the road plane. Therefore, we also refer
to it as a scale map. In this section, we first describe its
construction and then how we use it both to control training
data synthesis and as an input to our detection network.

A. Computing the Perspective Map

A perspective map is a scalar field whose value at a given
pixel denotes the width in pixels of a hypothetical meter-wide
object placed at that point on the road. Fig. 2 depicts one. We
compute it from the camera calibration parameters, which are
known in a self-driving setup because a vehicle’s camera can
be calibrated during its production. The camera parameters are
f , the camera’s focal length in pixels, H , its elevation above
the ground in meters, and θ, its pitch angle.

We assume the road to be planar, which, locally, is a good
approximation in the majority of real driving scenarios. Let us
consider a 3D road point B = [x, y, z] in camera coordinates,
which projects onto [u, v] in the image space, as shown in
Fig. 3. For simplicity, we denote by [0, 0] the principal point
that lies at the center of the image, which is also known in a
calibrated camera. Assuming the road to be planar, the pinhole
camera model dictates that

v = f
y

z
. (1)

Figure 4: Left: Anchor points distributed along the road surface. We
place obstacles at a random subset of anchor points. Right: Frame
with injected obstacles.

As B lies on the road plane, which is inclined by an angle θ
w.r.t. the camera’s optical axis, we can write

y = z tan(θ)− h0 , (2)

where h0 = H
cos θ , with H being the perpendicular distance

from the camera to the road. Solving for z by replacing y in
Eq. 1 by its definition in Eq. 2 yields

z([u, v]) = h0
f

f tan(θ)− v
, (3)

where we indicate that z depends on the pixel location [u, v]
by z([u, v]). The visible scale is inversely proportional to the
z coordinate in the camera frame, and so the scale value
P ([u, v]) in the perspective map P is equal to

P ([u, v]) = f
1

z([u, v])
=

cos(θ)

H
(f tan(θ)− v) . (4)

Note that this requires the pitch angle θ of the camera optical
axis with respect to the road surface to be known. When the
car is stable on its four wheels, it only depends on how the
camera is mounted, which is known. If the pitch changes while
driving, an online camera calibration module, e.g., one that
relies on vanishing points [31], could be used to update the
value of θ. We also assume that various distortions have been
corrected so that a pinhole camera model applies.

B. Perspective-Aware Synthetic Object Injection

Collecting a training database of all items that could po-
tentially be left on the road and pose a collision threat is
impractical. Effective obstacle detection can thus only be
achieved via handling previously unseen objects. To this
end, existing methods [4], [7], [6] generate synthetic training
frames by injecting objects into the road scenes. However, they
use random object sizes and locations. Instead, we leverage the
perspective map so that the inserted object sizes are consistent
with their locations on the road plane.

a) Placement: We generate a rectangular grid on the road
plane, with grid lines being 3.5 meters apart in the direction
along the road and 1 meter apart in the width direction. Once
this grid is projected onto the image, each grid intersection
yields an anchor point offset from the grid point by a random
vector whose coordinates are drawn from a zero-centered
normal distribution with standard deviation of 0.5 meter. The
anchor points are shown in Fig. 4. We then place obstacles at
a random subset of these anchor points.
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Perspective Aware Uniform [4]

Figure 5: Distribution of injected object sizes. Left: Our Perspective
Aware Strategy selects object sizes based on the perspective map to
ensure that objects look smaller when they are further away. There are
clusters because we inject objects at discrete grid points on the road-
plane projected to the image. Right: The Uniform Strategy chooses
random objects from the whole instance database.

b) Size: We extract object instances – vehicles, pedestri-
ans, traffic signs and lights – from the Cityscapes dataset [10].
These yield image cut-outs of diverse shapes, ranging from
thin poles to wide vehicles. We take an object’s overall pixel
size pixobj to be the average of three values: the square root
of its pixel area, and its bounding box width and height. We
aim to generate synthetic objects within a range of physical
sizes [phmin, phmax] in meters. To simulate the corresponding
visible pixel size of an object seen at an image point [u, v],
we multiply the physical range by the scale map value at
[u, v]: pix(min,max)([u, v]) = ph(min,max)P ([u, v]). Then, we
randomly select an object from the training set whose size
satisfies pixmin([u, v]) ≤ pixobj ≤ pixmax([u, v]) and paste it at
[u, v]. Since we use known classes, such as humans or cars,
to later detect unknown classes, such as bottles or tires, we
ignore the original size of the known items, and instead choose
the object size as a hyper-parameter using the validation-
set. Fig. 4-right depicts the resulting object insertion. Note
that this does not involve scaling the original cut-out objects.
Instead, we simply select objects of the appropriate size, thus
avoiding scaling artifacts. In Fig. 5, we visualize the resulting
relationship between object size and perspective map for both
our perspective-aware approach and a uniform injection one.
We will compare these two approaches quantitatively.

C. Perspective-Aware Architecture

To distinguish obstacle pixels from the road surface ones,
we rely on a U-Net type network architecture, which we
train using negative binary cross-entropy loss of pixel clas-
sification between the model’s prediction and the ground
truth segmentation map. The input image is first processed
by a ResNeXt101 [32] feature extractor, pre-trained on Ima-
geNet [33] and frozen at training time. We extract four levels
of features with increasing receptive fields.

In each block of our up-convolution pyramid, we concate-
nate the perspective map to the backbone features, and we
use it again before the transposed convolution, as depicted in
Fig. 6. With such an insertion, the scale information presented
to each level of the pyramid can then influence the interpreta-
tion of the backbone features at different receptive fields and
hence locally adjust the effective receptive field of the detector.
In practice, this allows the network to distinguish between
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Figure 6: Perspective-aware architecture. The perspective map is
injected into the decoding blocks at different resolutions. In each
block it is appended twice; first to the backbone features, and second
to the intermediate activations preceding the transpose convolution
for upsampling.

distant obstacles and small but harmless irregularities, such as
wet patches, leaves, or tile edges, which ought to be ignored.
As evidenced below, our perspective-aware architecture shows
its full advantage when used together with the perspective-
aware object injection.

In our experiments, the perspective map is scaled by 1
400

before being passed to the network, following the normaliza-
tion applied in [27], to bring it to an approximate value range
between 0 and 1, which improves convergence.

IV. EXPERIMENTS

In this section, we present the datasets and metrics, and
compare our method with the state-of-the-art ones.

A. Datasets

We train our network on Cityscapes. During training, we
sample patches of 768 × 384 pixels, with random horizontal
flipping. We also perform noise augmentation so that the net-
work generalizes to road surfaces rougher than those found in
Cityscapes. We follow the evaluation protocol of the Segment
Me If You Can[8] obstacle detection benchmark and test our
network using the following two datasets.

a) Lost & Found - Test No Known: Lost & Found [9] is
an established obstacle dataset captured by placing objects on
the road and taking images from an approaching vehicle. The
No Known variant excludes objects present in the Cityscapes
training set, such as pedestrians or bicycles, to focus on the
methods’ ability to generalize to previously unseen obstacles.
It contains 1043 frames with 1709 occurrences of 7 unique
lost cargo items placed in 12 parking lot and street scenes.
The camera calibration parameters required to compute the
perspective map are part of the dataset.

b) RoadObstacle21: RoadObstacles21 is the obstacle
track of the recent Segment Me benchmark [8]. Like Lost &
Found, it contains photos of obstacles placed on roads, but it
expands the number of unique objects and the diversity of the
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Road Obstacles 21 Lost&Found - Test No Known
requires Component-level Pixel-level Component-level Pixel-level

Method OOD F1 ↑ sIoU ↑ PPV ↑ AuPRC ↑ F1 ↑ sIoU ↑ PPV ↑ AuPRC ↑
Ours No 67.1 ± 1.7 65.2 ± 0.6 60.2 ± 2.7 75.2 ± 0.1 68.6 ± 0.4 49.8 ± 0.6 87.6 ± 1.2 87.4 ± 0.4
DenseHybrid [11] Yes 50.7 45.7 50.1 87.1 52.3 46.9 52.1 78.7
Maximized Entropy [5] Yes 48.5 47.9 62.6 85.1 49.9 45.9 63.1 77.9
SynBoost [3] Yes 37.6 44.3 41.8 71.3 48.7 36.8 72.3 81.7
Road Inpainting [4] No 36.0 57.6 39.5 54.1 52.3 49.2 60.7 82.9
JSRNet [7] No 11.0 18.6 24.5 28.1 36.0 34.3 45.9 74.2
ODIN [34] No 9.4 21.6 18.5 22.1 34.5 39.8 49.3 52.9
Image Resynthesis [2] No 8.4 16.6 20.5 37.7 19.2 27.2 30.7 57.1
Maximum Softmax [35] No 6.3 19.7 15.9 15.7 10.3 14.2 62.2 30.1
Void Classifier [36] Yes 5.4 6.3 20.3 10.4 1.9 1.8 35.1 4.8
Mahalanobis [37] No 4.7 13.5 21.8 20.9 22.1 33.8 31.7 55.0
Embedding Density [36] No 2.3 35.6 2.9 0.8 27.5 37.8 35.2 61.7
Ensemble [38] No 1.3 8.6 4.7 1.1 2.7 6.7 7.6 2.9
MC Dropout [39] No 1.0 5.5 5.8 4.9 13.0 17.4 34.7 36.8

Table I: Obstacle detection scores on RoadObstacle21 and Lost&Found datasets. Both component-level and pixel-level metrics are reported
on each dataset. The primary metric is average component detection F1 score. Requires OOD column indicates if a model is using out of
distribution data by training on additional datasets. Other methods train only on Cityscapes dataset.

Road Obstacles 21 Lost&Found - Test No Known
Architecture Object Injection F1 ↑ AuPRC ↑ F1 ↑ AuPRC ↑
1 Ours (perspective-aware) Ours (perspective-aware) 67.1 ± 1.7 75.2 ± 0.1 68.6 ± 0.4 87.4 ± 0.4
2 No perspective channel Ours (perspective-aware) 52.5 ± 6.7 70.6 ± 1.0 63.5 ± 3.9 86.0 ± 0.8
3 P-map backbone branch [27] Ours (perspective-aware) 65.0 ± 2.2 74.6 ± 1.2 63.5 ± 2.4 85.5 ± 0.7
4 P-map along RGB [26] Ours (perspective-aware) 58.2 ± 4.1 64.6 ± 2.8 66.2 ± 3.5 73.9 ± 8.3
5 XY channels Ours (perspective-aware) 54.8 ± 4.2 71.1 ± 2.3 63.8 ± 0.8 86.1 ± 0.1
6 Image warping [21], [25] Ours (perspective-aware) 45.2 ± 0.5 65.5 ± 0.7 20.3 ± 0.6 43.5 ± 1.3
7 Ours (perspective-aware) Uniform [4] 56.1 ± 1.7 77.1 ± 0.9 52.4 ± 2.6 82.1 ± 3.3
8 No perspective channel Uniform [4] 43.7 ± 6.6 73.3 ± 1.7 48.5 ± 6.4 74.5 ± 10.2
9 P-map backbone branch [27] Uniform [4] 53.3 ± 4.3 76.8 ± 0.5 55.2 ± 1.5 84.3 ± 0.2
10 P-map along RGB [26] Uniform [4] 50.8 ± 1.6 69.0 ± 2.4 50.6 ± 5.8 79.7 ± 1.5
11 XY channels Uniform [4] 51.9 ± 1.4 75.7 ± 0.5 53.7 ± 2.1 78.7 ± 1.7

Object size [m] Road Obstacles 21 - Validation Lost&Found - Train
phmin phmax F1 ↑ AuPRC ↑ F1 ↑ AuPRC ↑

0.1 - 0.3 59.3 ± 3.4 80.2 ± 1.6 66.1 ± 1.1 77.5 ± 0.5
0.25 - 0.55 65.1 ± 3.0 95.7 ± 0.7 62.5 ± 0.3 89.4 ± 0.8

0.5 - 0.9 65.6 ± 1.4 96.6 ± 0.4 57.5 ± 0.1 87.6 ± 0.4
0.75 - 1.25 49.5 ± 1.7 94.2 ± 0.1 50.3 ± 2.4 86.8 ± 1.4

all sizes [4] 56.1 ± 1.7 77.1 ± 0.9 52.4 ± 2.6 82.1 ± 3.3

Table II: Ablation study. Left) We compare different variants of utilizing the perspective map and show their impact while using either
uniform or our perspective-aware object injection. Right) Effect of the size of the injected training objects.

scenes to include more road textures and weather conditions. It
comprises 327 frames containing 388 occurrences of 31 unique
objects placed in 8 scenes. There are no camera calibration pa-
rameters. We therefore estimated them as follows. We assume
f = 2265pix, that is, the same focal length as in the Cityscapes
training set, and H = 1.5m because the dataset was captured
using handheld cameras. We estimate the camera’s pitch angle
by approximating the horizon level - the image-space position
of the road plane’s vanishing line. In the considered datasets,
the camera has no side-to-side roll, so we assume the line to
be horizontal. The sides of the road and not regular enough
to fit lines to them, but with the images depicting forward
views along the roads, the horizon is slightly above the end of
the visible road. Hence, we first segmented the road using the
semantic segmentation PSP network [40], and then took the
approximate horizon level to be 16 pixels above its uppermost
edge. Given vhoriz, the number of pixels between the image
midpoint and the horizon level, the pitch angle is retrieved as

θ = tan−1(
vhoriz

f
) .

Such an estimate is obviously very rough, but it is sufficient
to inform our model of the scale changes on the road, as we
will empirically show when comparing to other variants of our
model that do not leverage perspective information.

B. Metrics

The Segment Me benchmark [8] measures the methods’
performance at both pixel and component levels. The pixel
classification task involves distinguishing pixels belonging to
obstacles from those of the road surface. It is primarily evalu-
ated with the area under the precision-recall curve (AuPRC).
However, pixel metrics give more importance to nearby and
big obstacles than to distant or small ones, because of the

image area they occupy. For the purpose of driving safety, it
thus is more relevant to reason in terms of obstacle instances
and their detection regardless of distance and image size. This
is addressed by component-level metrics, such as F1, sIoU and
PPV, proposed in [8].

C. Quantitative Evaluation

In Table I, we compare our approach to the state-of-the-
art methods featured in the Segment Me benchmark. The
requires OOD (out of distribution) column indicates whether
the method was trained using additional data beyond the
commonly-used Cityscapes training set, for example by using
objects from COCO [41] as obstacles. Our method outper-
forms the baselines in terms of instance metrics, and only
performs worse than [5] and [11] on two metrics, which
leverages OOD, thereby demonstrating the good generalization
of our approach without resorting to extra training data.

D. Ablation study

1) Impact of Perspective: In Table II-left, we report the
results of an ablation study in which we altered either our
architecture to use the perspective map in different ways or
the perspective-aware synthetic object insertion strategy.

In particular, we consider the following variants:
• Ours (perspective-aware): Our full architecture using the

perspective map as described in Section III-C.
• No perspective channel : This variant omits the perspec-

tive map from our complete architecture.
• P-map backbone branch : We provide the perspective

map as input to the network but process it in a feature
extractor separately from the RGB feature extractor, as
in the architecture of [27].
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• P-map along RGB: We provide the perspective map along
with RGB as input to the network, following [26]. In
this variant, we unfreeze the backbone feature extractor
weights during training to let the network train on the
perspective inputs.

• XY channels : We provide the image coordinates as
two additional channels instead of the perspective map,
applying the idea from [14], [17].

• Image warping: We follow the idea of [21], [25] and use
the perspective map to transform the image into a top-
down view of the road.

For synthetic object insertion, we consider two variants; one
with perspective-aware object injection as described in Section
III-B, and another with uniform object insertion that injects
objects uniformly from the full object pool, without restricting
it to the objects whose size are inversely proportional to the
location where they will be placed. In this variant, the obstacles
are placed uniformly in image space rather than on a grid in
the road plane. This strategy is identical to [4].

In each setup we provide the mean and standard deviations
over three training runs. As observed in Table II-left, using
our perspective-aware objection injection together with our
perspective-aware network architecture yields the best per-
formance (row 1), and dropping each one of them reduces
the accuracy (rows 2, 7, 8). It is worth noting that using
the P-map backbone branch architecture with our perspective-
aware object insertion (row 3) also yields close, yet still
inferior results, which indicates that, while there can be other
ways of using the perspective map in the architecture, the
perspective-aware object insertion plays a key role. The No
perspective channel variant shows a noticeable drop (row
7), indicating that the network benefits from exploiting the
perspective maps. While using the XY image coordinates (row
5) yields reasonable results in Lost&Found, whose camera
angle matches that of the training set, its performance drops
when faced with the different camera setup of Road Obstacles.
The P-map along RGB and Image warping variants also show
a significant drop (rows 4, 6), which indicates that the way the
perspective map is used plays a role in the network accuracy.
In particular, the performance of Image warping, where the
network operates on the warped image, is much lower.

The results show that training with a uniform injection
strategy (rows 7-11) yields a much lower F1 score than with
our perspective-aware approach (rows 1-5). However, the pixel
classification AuPRC values of the uniform strategy tend to
be higher. We observe that the networks trained with the
uniform object insertion technique often better segment the
large objects (predicting more pixels on the object), but miss
small objects and introduce small false positive instances. By
contrast, the higher F1 scores obtained with our perspective-
aware injection approach evidence the resulting networks’
reliability in detecting obstacles more accurately and avoiding
false-positives, which is more critical for self-driving cars.

We show qualitative examples in Fig. 7. The first two
columns evidence how the perspective map helps the model
to distinguish distant obstacles from nearby harmless details,
which can span similar pixel sizes in the image. In the
rightmost column, we show a difficult case where Max-

entropy [5] obtains higher AuPRC but lower F1 than us. While
such models can segment more pixels of the found objects,
they entirely miss some of the objects on the road. Overall,
our network detects the obstacles more reliably, and learns to
ignore small irregular regions.

This effect is quantified in Fig. 8 where we plot the number
of false-positives and true-positives as a function of the dis-
tance to the camera, estimated as the inverse of the perspective
map. Using our training set and architecture strongly decreases
the number of nearby false-positives compared to a system
without those contributions, and slightly increases the number
of correctly detected obstacles.

2) Object size: In Table II-right, we show how the chosen
range Obj[min,max] for synthetically injected objects affects
detection performance. To avoid overfitting to the benchmarks,
we performed this study using public validation sets, Road
Obstacles 21 - Validation and Lost & Found - Train, featuring
different obstacles and scenes than the test sets.

As described in Section III-B, the minimum and maximum
sizes in meters are multiplied by the local perspective-map
value at the site of injection, to determine how big the
injected object can be in pixels. We then select at random
an object fitting within this pixel range. The results in the
table indicate that there is no size range that ideally fits all the
circumstances; the small 0.1-0.3 meter range is best for the
Lost & Found - Train set, while the 0.5-0.9 m range prevails
in Road Obstacles 21 - Validation, presumably due to these
ranges matching the typical object sizes in those datasets. We
choose the intermediate 0.25-0.55 meter range, behaves well
in both datasets. One might conclude that including objects
of all sizes would be best for generalization, but that would
prevent expressing the perspective-size relationship, as shown
in the bottom row. Indeed, such a strategy, used in [2], yields
lower performance than our narrower ranges.

Inference Speed. Our network achieves inference at 12.1
frames of size 1920 × 1080 per second on an Nvidia V100
GPU; it can be further sped up by network distillation,
quantization or TensorRT.

V. CONCLUSION

We have shown that perspective-aware obstacle injection to
generate training data, together with incorporating perspective
information in the decoding stages of a network outperforms
the state-of-the-art road obstacle detection methods. Our re-
sults indicate that the perspective information can guide the
model to reduce false positives for small nearby irregularties
while still detecting small and far-away objects.
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Figure 7: Left, center: Perspective information guides our detector to ignore nearby small irregularities on the road surface, while the
variants without perspective map and perspective-aware object insertion exhibit false positives in that area. The nearby false-positives and
distant obstacles are of similar pixel sizes, so the perspective map allows differentiating between them. Right: Our method finds both obstacle
instances despite imperfect segmentation. While Max entropy [5] achieves a better pixel-classification score by perfectly segmenting the
bigger object, it misses the smaller object.
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Figure 8: Number of false positives (left) and true positives (right) as a function of the distance from the camera for the Obstacle Track -
test dataset. Our training set and architecture (Ours) yield much fewer nearby false-positives and slightly more true-positives than a variant
without the perspective map (No perspective channel, p-synth) or one trained with the uniformly-injected synthetic obstacles (No perspective
channel, uniform). FP and TP are calculated for an IOU threshold of 0.5.
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