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Abstract

The frequency response data of a system is used to design fixed-structure controllers for the H2 and H∞ synthesis problem.
The minimization of the two and infinity norm of the transfer function between the exogenous inputs and performance
outputs is approximated by a convex optimization problem involving Linear Matrix Inequalities (LMIs). A very general
controller parametrization is used for continuous and discrete-time controllers with a matrix transfer function or state-space
representation. Numerical results indicate that the proposed data-driven method gives equivalent performance to model-based
approaches when a parametric model is available.
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1 Introduction

With recent advancements in computational power and
sensor technologies, data-driven control approaches are
becoming valuable alternatives to the classical model-
based control approach. These methods are extremely
useful in situations where system models are either
unavailable or involve considerable uncertainties. The
methods under consideration usually minimize a control
criterion given as a function of the measured data, thus
no parametric plant model is needed. The measure-
ment noise is the only significant source of uncertainty,
which can be significantly reduced by optimizing over
a large enough measurement data set. It can be shown
that direct data-driven control can outperform two-step
methods where a model is identified in the first step,
and a model-based design is used in the second step [8].

Data-driven methods use either time-domain or
frequency-domain data. In this paper, the frequency
response data, which can be directly obtained from a
Fourier Transform of the time-domain data, is used to
design a controller. The frequency response function
(FRF) and its use for controller design have a well-
established place in control. In classical loop-shaping
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methods, it is used to compute (often manually) simple
lead-lag or PID controllers for SISO stable plants and,
in Quantitative Feedback Theory (QFT), to compute
robust controllers. More recent techniques using only
the FRFs have renewed the interest in such techniques.
In [14], the set of all stabilizing PID controllers with
H∞ performance is obtained using only frequency-
domain data. In [19], a convex-concave optimization
algorithm is used to design robust PID controllers in
the QFT framework. In [9,24], the use of the FRF for
computing SISO-PID controllers by convex optimiza-
tion is proposed. These methods use the same type
of linearization of the constraints as in [11]. In [6], an
extension of the method in [9] for the design of MIMO-
PID controllers by linearization of quadratic matrix
inequalities is proposed. A similar approach, with the
same type of linearization, is used in [25] for designing
linearly parameterized MIMO controllers (including
PID controllers as a special case). In [2], a non-smooth
optimization technique is used to compute fixed struc-
ture H∞ controllers for infinite dimensional systems
(represented by their FRFs). In [13], a frequency-based
data-driven control design methodology with H∞ con-
trol objective based on coprime factorization of the con-
troller is proposed and applied to the current controllers
in power converters for particle trajectory control in
CERN’s accelerators [20,21], control of a hard disk [4]
and a multi-actuator drive [26]. An extension of this
method to linear parameter-varying MIMO systems is
given in [5]. Finally, a fixed-structure data-driven con-
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troller design method for multivariable systems with
mixed H2/H∞ sensitivity performance is proposed in
[12] and applied to the distributed control of microgrids
[18] and Atomic Force Microscopes [10,22].

In this paper, a solution for generalized systems is devel-
oped for the design of a fixed-structure controller using
only the FRFs. H2 and H∞ control problems are solved
by convex optimization algorithms for continuous and
discrete-time systems. The contributions of the paper
can be summarized as follows: (1) Design of fixed struc-
tured (e.g., centralized, decentralized, and distributed)
controllers for closed-loop systems described by a Lin-
ear Fractional Representation (LFR). (2) Introduction
of new controller structures: both right and left factoriza-
tions, enabling more flexible parameterization for non-
square controllers. (3) Design of state-space controllers
(fixed-order controllers) with improved numerical scal-
ing. (4) Development of a new stability theorem with
less restrictive assumptions compared to [12], applicable
to both continuous-time and discrete-time systems.

The rest of the paper is organized as follows: prelimi-
naries and the description of the problem are given in
Section 2. The main results are developed in Section 3
and several controller parameterizations are proposed in
Section 4. Implementation considerations are discussed
in Section 5. Numerical examples and comparisons are
presented in Section 6. Experimental results are given in
Section 7 and concluding remarks in Section 8.

2 Preliminaries

Notation: The set of real numbers is denoted R and
the set of complex numbers C. The set of real rational
stable transfer functions with bounded infinity norm is
denoted by RH ∞. M ≻ (⪰)N indicates that M −N
is a positive (semi) definite matrix, and M ≺ (⪯)N in-
dicates M −N is negative (semi) definite. The zero and
identity matrix of appropriate size is denoted 0 and, I re-
spectively. The conjugate transpose of a complex matrix
M is denoted by M∗. The conjugate transpose of the di-
agonally opposed element in a square matrix is denoted
⋆. If M ∈ Cn×m has full row rank, its right inverse is de-
fined asMR := M∗(MM∗)−1. It is clear thatMMR = I
andMRM are Hermitian. IfM is full column rank, then
its left inverse is defined as ML := (M∗M)−1M∗. Then,
MLM = I, and MML is Hermitian. If M is square and
full rank, then MR = ML = M−1.

2.1 Problem description

A generalized Linear Time-Invariant (LTI) system, map-
ping exogenous disturbances w ∈ Rnw and control in-
puts u ∈ Rnu to performance channels z ∈ Rnz and

G11 G12

G21 G22

z w

K

y u

Fig. 1. Lower fractional transform interconnection of system
and controller

measurements y ∈ Rny is given as follows:

z = G11w +G12u (1a)

y = G21w +G22u (1b)

We assume that only the FRF of the generalized system

G(jω) =

G11(jω) G12(jω)

G21(jω) G22(jω)

 (2)

is available, where Gij(jω) are FRFs of appropriate
size. The frequency response of the (discrete-time) plant
G22 = −P can be estimated using the Fourier analysis
method from nu sets of finite input/output sampled
data as [23]:

P (ejω) =

[
N−1∑
k=0

Y(k)e−jωTsk

][
N−1∑
k=0

U(k)e−jωTsk

]−1

(3)

where N is the number of data points for each experi-
ment and Ts is the sampling period. The FRF of P (ejω)
can be computed ∀ω ∈ [0, π/Ts) using (3). Each column
of U(k) and Y(k) represents respectively the inputs and
the outputs at sample k from one experiment, and nu

different experiments are needed to extract P (ejω) from
data. It is assumed that the input signal is persistently
exciting, and the synthesis process takes into account
the estimation errors caused by truncation and noise in
the plant’s frequency response.

The synthesis objective is to design a fixed-structure
feedback controller K that regulates the effect of the ex-
ogenous disturbances w onto the performance channels
z. The corresponding block-diagram, shown in Figure 1,
is commonly referred to as a lower fractional transfor-
mation (LFT) and is given by

Fl(G,K) = G11 +G12K(I −G22K)−1G21. (4)

The controller is assumed to be part of a set of structured
controllers K that will be detailed in Section 4.

This paper will focus on both H2 and H∞ norm of
Tzw = Fl(G,K). In contrast to the standard literature
on H2 or H∞, it is not necessary to have knowledge of
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a state-space representation of G; only its FRF is re-
quired. Under the assumption that the closed-loop sys-
tem is stable, the norm of Tzw can be expressed using
only its FRF:

∥Tzw∥22 =
1

2π

∫
Ω

trace (Tzw(jω)T
∗
zw(jω)) dω (5a)

∥Tzw∥2∞ = sup
ω∈Ω

σ (Tzw(jω)T
∗
zw(jω)) (5b)

where σ(·) is the maximum singular value and Ω the fre-
quency spectrum. For continuous-time (CT) systems, Ω
is given by Ω := R ∪ {∞} and for discrete-time systems
(DT) by Ω := [−π/Ts, π/Ts). G(jω) will be used to de-
note the frequency response of G in both cases.

The controller design problem can be formulated as the
minimization of an upper bound on the system norms

min
K∈K ,Γ

γ

subject to : K stabilizes the closed-loop

Tzw(jω)T
∗
zw(jω) ⪯ Γ(jω), ∀ω ∈ Ω

(6)

where Γ(jω) is a Hermitian matrix. For the H∞ norm,
Γ(jω) = γI, where γ ∈ R and for the H2 norm, we have:

γ =
1

2π

∫
Ω

trace (Γ(jω)) dω (7)

3 Developments

The following assumptions will be made for the general-
ized plant model:

(A1) One of the following is true
(A1.a) G21(jω) has full row rank ∀ω ∈ Ω.
(A1.b) G12(jω) has full column rank ∀ω ∈ Ω.

(A2) G(jω) is bounded for all ω ∈ Ω.

Remark: (A1) is related to the control performance spec-
ifications, and similar equivalent assumptions exist on
the rank of somematrices in the state-space model-based
approaches [28]. (A1.a) is made to ensure that any pos-
sible disturbances have an effect on the measurements.
Such a situation, from a control design perspective, in-
dicates that either more sensors or better placement is
required for the desired objective. Similarly, (A1.b) en-
sures that any possible control input has an effect on the
performance channels, and its relaxation indicates the
need for a better selection of performance channels.

In this paper, right or left factorization (RF or LF) of the
controllerK is considered asK = XY −1 orK = Y −1X,
where X ∈ X ⊂ RH ∞ and Y ∈ Y ⊂ RH ∞. X
and Y are parametrizations, linear in the optimization

variables and should be chosen such that XY −1 for the
RF, or Y −1X for the LF, reflects the choice of the desired
structure in K . Examples of controller structures are
given in Section 4.

3.1 Right factorization of the controller

Assume that G21 has full row rank and the controller
K = XY −1 is right factorized (RF).

Then, the transfer function Tzw can be rewritten as

Tzw = G11 +G12X (Y −G22X)
−1

G21 (8)

Since G21 has full row rank, its right inverse GR
21 exists,

and we can define

Φ = GR
21 (Y −G22X) (9)

which is linear in controller parameters. If Φ has full
column rank, i.e., the feedback interconnection is well-
posed, its left inverse ΦL is given by (Y −G22X)

−1
G21.

Denoting Ψ = I − ΦΦL = I −GR
21G21, then the closed-

loop transfer function can be written as

Tzw = G11 +G12XΦL = G11(ΦΦ
L +Ψ) +G12XΦL

= (G11Φ+G12X) ΦL +G11Ψ (10)

The inequality in (6) can then be reformulated as

TzwT
∗
zw = (G11Φ+G12X) (Φ∗Φ)

L
(G11Φ+G12X)

∗
+

(G11Ψ) (G11Ψ)
∗ ⪯ Γ (11)

using the fact that ΦLΨ∗ = ΦLΨ = ΦL − ΦLΦΦL = 0.
Since G21 was assumed to have full row rank, Φ∗Φ is a
full rank square matrix and (Φ∗Φ)

L
= (Φ∗Φ)

−1
. Using

the Schur complement lemma on (11) results in[
Γ− Λ (G11Φ+G12X)

⋆ Φ∗Φ

]
⪰ 0 (12)

where Λ = (G11Ψ) (G11Ψ)
∗
. A lower-bound of Φ∗Φ can

be obtained by developing (Φ− Φc)
∗(Φ− Φc) ⪰ 0, for

any arbitrary Φc as Φ∗Φ ⪰ Φ∗Φc + Φ∗
cΦ − Φ∗

cΦc. The
choice of Φc is an important factor in guaranteeing
closed-loop stability, and will be discussed in Section 3.3.

Subject to closed-loop stability, the synthesis problem
can be written as the following convex optimization
problem:

min
X∈X , Y ∈Y ,Γ

γ

subject to[
Γ− Λ (G11Φ+G12X)

⋆ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc

]
(jω) ⪰ 0,∀ω ∈ Ω

(13)
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3.2 Left factorization of the controller

It is assumed that G12 has full column rank and the
controller K = Y −1X is left-factorized. In this case, the
following equivalent problem is defined:

min
K∈K ,Γ

γ

subject to : K stabilizes the closed-loop (14)

T ∗
zw(jω)Tzw(jω) ⪯ Γ(jω), ∀ω ∈ Ω

Then, considering K(I − G22K)−1 = (I −KG22)
−1K,

the transfer function Tzw can be rewritten as

Tzw = G11 +G12 (I −KG22)
−1

KG21

= G11 +G12 (Y −XG22)
−1

XG21 (15)

In contrast to Section 3.1, here G12 has full column rank
and its left inverse exists. Define, Φ = (Y −XG22)G

L
12,

which has full row rank and therefore its right inverse
is given by ΦR = G12 (Y −XG22)

−1
. The closed-loop

transfer function can be rewritten as

Tzw = G11 +ΦRXG21 = (ΦRΦ+Ψ)G11 +ΦRXG21

= ΦR (ΦG11 +XG21) + ΨG11 (16)

where Ψ = I − ΦRΦ = I − G12G
L
12. The inequality in

(14) can then be reformulated as,

T ∗
zwTzw = (ΦG11 +XG21)

∗
(ΦΦ∗)

R
(ΦG11 +XG21)

+(ΨG11)
∗(ΨG11) ⪯ Γ (17)

using the fact that Ψ∗ΦR = ΨΦR = ΦR − ΦRΦΦR = 0.
Since G12 was assumed to have full column rank, ΦΦ∗ is
a full rank square matrix and (ΦΦ∗)

R
= (ΦΦ∗)

−1
. Using

the Schur complement lemma on (17),[
Γ− Λ (ΦG11 +XG21)

∗

⋆ ΦΦ∗

]
⪰ 0 (18)

where Λ = (ΨG11)
∗(ΨG11). Similar to Section 3.1, a

lower bound on the quadratic term ΦΦ∗ can be obtained.
Subject to closed-loop stability, the controller can be
designed by the following convex optimization problem:

min
X∈X , Y ∈Y ,Γ

γ

subject to[
Γ− Λ (ΦG11 +XG21)

∗

⋆ ΦΦ∗
c +ΦcΦ

∗ − ΦcΦ
∗
c

]
(jω) ⪰ 0,∀ω ∈ Ω

(19)

3.3 Stability analysis

The H2 or H∞ norm can only be computed using the
spectral formulation in (5a) or (5b) when the closed-

loop system is stable. As no parametric (e.g. state-space,
transfer-function, etc) model is available, the closed-loop
poles cannot be computed to assess the stability. Instead,
stability will be proven using the Nyquist stability crite-
rion [27], which relates the Nyquist plot of det(I−G22K)
to the stability of the closed-loop system.

To proceed, we need to define a new function, wno, and
its properties. Let f(δ) : C 7→ C be a real rational poly-
nomial function with no poles and zeros on a simple
closed contour. Then, wno{f} is the number of counter-
clockwise encirclements of f(δ) around the origin when
δ traverses the contour. Two important properties of the
winding number are

wno{f∗} = wno{f−1} = −wno{f} (20)

wno{fg} = wno{f}+wno{g} (21)

where g(δ) : C 7→ C is also a real rational polynomial
function, with no poles and zeros on the contour.

Through Cauchy’s argument principle, wno{f} can be
related to the number of poles and zeros of f inside the
contour. This is used for the stability analysis of the
closed-loop systems using the Nyquist stability criterion
by defining an adequate Nyquist contour.

For continuous-time systems, the Nyquist contour is cho-
sen as the union of the imaginary axis and a semicir-
cle with an infinite radius enclosing the right-half plane.
Since this contour is chosen clockwise oriented, wno{f}
will be equal to the number of unstable poles minus the
number of unstable zeros. Note that, for a proper trans-
fer function, the image of the semicircle with infinite ra-
dius will be constant and therefore the winding number
when traversing the Nyquist contour or only the imagi-
nary axis will be the same.

For discrete-time systems, the Nyquist contour is chosen
as the counterclockwise-oriented unit circle. Therefore,
the winding number is equal to the number of stable ze-
ros minus the number of stable poles. However, if f is
bi-proper, the difference in the number of stable zeros
and stable poles is equal to the difference in the num-
ber of unstable poles and unstable zeros.Although the
Nyquist contours are oriented differently in continuous-
and discrete time, the wno in both cases is the number of
unstable poles minus the number of unstable zeros. As
a result, a single theorem can be used for the stability
analysis of continuous- and discrete-time systems.

Theorem 1 Given the frequency response G(jω) of
a generalized model satisfying the assumptions (A1.a)
and (A2), the closed loop system with controller
K = XY −1 is stable if

(C1) det(Y ) and det(Yc) has no zeros on the stability
boundary.
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(C2) Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc ⪰ 0 ∀ω ∈ Ω,
where Φ is defined in (9) and

Φc = GR
21 (Yc −G22Xc) (22)

with Xc, Yc ∈ RH ∞ such that Kc = XcY
−1
c is

a stabilizing controller.

PROOF. The winding number of the determinant of
Φ∗Φc is given by

wno{det(Φ∗Φc)} = wno

{
n∏

i=1

λi

}
=

n∑
i=1

wno{λi} (23)

where λi are the eigenvalues of Φ
∗Φc. If the LMI in (C2)

holds, and given (A1.a), Φ∗Φc will be a non-Hermitian
strictly positive definite matrix and all its eigenvalues
have strictly positive real parts. Therefore, λi cannot
wind around the origin and we must have wno{λi} = 0.
As a result W{Φ∗Φc} = 0, where for conciseness W{·}
is defined as W{·} := wno{det(·)}.

On the other hand, W{Φ∗Φc} can be rewritten as:

W{Φ∗Φc}︸ ︷︷ ︸
=0

= −W{Y −G22X}+W{GR∗
21G

R
21}

+W{Yc −G22Xc}
= −W{I −G22K} −W{Y }+W{GR∗

21G
R
21}

+W{I −G22Kc}+W{Yc} (24)

By (A1.a) and (A2) and condition (C1), the Nyquist con-
tour does not cross any zeros or poles, and the winding
numbers in (24) are well-defined. From (A1.a), GR∗

21G
R
21

is a strictly positive definite matrix in all frequencies as
GR

21 has full column rank. Therefore,

W{GR∗
21G

R
21} = 0 (25)

SinceKc is a stabilizing controller, based on the Nyquist
theorem, W{I −G22Kc} = NG22

+NKc
, where NG22

is
the number of unstable poles of G22, and NKc

is the
number of unstable poles of Kc. Furthermore, since
Y, Yc ∈ RH ∞, W{Y } = −NK and W{Yc} = −NKc

,
where NK is the number of unstable poles of the con-
troller K. Now using (24) and (25), we obtain

W{I −G22K} = W{I −G22Kc} −W{Y }+W{Yc}
= NG22

+NK (26)

thus K stabilizes the closed-loop system. 2

If the LMI (13) holds, then condition (C2) must also
hold, as the last minor in (13) must also be positive.
Thus, closed-loop stability is ensured with the choice Φc

as described in (22). The following remarks are in order:

Remark 1: condition (C1) can be removed with some
(infinitely small) detours on the Nyquist contour, avoid-
ing all zeros of det(Y ) and det(Yc). However, there is no
need to evaluate W{Φ∗Φc} on the new contour because
its variation around the zeros of det(Y ) and det(Yc) is
small and can be ignored. Similarly, (A2) can be relaxed
if G22 has some poles on the stability boundary by some
detours on the Nyquist contour, avoiding these poles.
Again, there is no need to evaluate W{Φ∗Φc} on the ad-
ditional detours because the contribution of Y −G22X
and Yc − G22Xc are equal (dominated by G22 around
these poles) and therefore cancelled.

Remark 2: Note that any controller leading to unstable
pole-zero cancellation in G22K corresponds to a point
in the space of the controller parameters, which is not
part of the interior of the convex set represented by the
LMI in condition (C2). Because of a small variation of
the controller parameters, the number of unstable poles
of G22K changes, and the closed-loop system becomes
unstable. The only possible case is to have pole-zero can-
cellations on the stability boundary, which are avoided
by condition (C2):

• A zero of G22 on the stability boundary cannot be
canceled as otherwise Y − G22X factors the same
zero, Φ becomes rank deficient at the frequency of
the cancelled zero, and therefore Φ∗Φc cannot be
strictly positive.

• If (A2) is relaxed, a pole of G22 on the stability
boundary cannot be canceled, as otherwise there
exists a vector e1 such that Φe1 = v is bounded
but Φce1 = w is unbounded when ω approaches
the frequency of the pole on the stability boundary.
This leads to a contradiction in condition (C2) as

e∗1 (Φ
∗Φc +Φ∗

cΦ− Φ∗
cΦc) e1 = v∗w+vw∗−∥w∥2 < 0

for ω sufficiently close to the frequency of the can-
celed pole.

Remark 3: Building Φc requires an initial stabilizing
controller. For stable plants, it is always possible to
choose Kc = 0. For unstable systems, in a data-driven
setting, it is reasonable to assume that a stabilizing con-
troller is known since it is required for data collection.
Note that other data-driven approaches also require an
initial stabilizing controller [2,14], or closed-loop data
[20]. In model-based approaches, such as [1,7], a stabi-
lizing controller is also required, and is used as a start-
ing point for the optimization routines. The difference
w.r.t. other approaches is that the initial controller is
used explicitly when building the constraints, not just
as a starting point.

For the left factorization of the controller, the stabil-
ity theorem is omitted because it is almost identical
to Theorem 1, requiring (A1.b) instead of (A1.a), and
Φc = (Yc −XcG22)G

L
12.
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4 Controller parametrization

In this section, δ will be used to denote both the Laplace
variable in the continuous-time case and the z-transform
variable in the discrete-time case. In [12], the controller
has the structure K = X(δ)Y −1(δ) where X(δ) and
Y (δ) are defined as matrix polynomials affine in the con-
troller parameters:

X(δ) =

n∑
k=0

Xk · δk, Y (δ)=

n∑
k=0

Yk · δk (27)

There are two problems with this parametrization.
When solving for continuous-time systems, powers of
the Laplace variable δk = sk evaluated on jω will result
in coefficients with large magnitudes in the constraints
at high frequencies. This creates numerical problems,
and most convex numerical solvers fail to give a mean-
ingful solution. Moreover, as indicated in [2], using poly-
nomials of degree n will generally result in controllers
with much higher order in the state-space representa-
tion of multivariable systems (the order will be equal to
the degree of det(Y )).

In this paper, two important controller structures are in-
vestigated: (1) controllers with a fixed degree, where the
degree is defined as the highest power of δ in the matrix
transfer function representation of Y (δ), and (2) con-
trollers with a fixed order, where the order is defined by
the number of states in the state-space representation of
the controller. Since the optimization problem is formu-
lated directly as minimizing a function of the controller
parameters, additional structure can be imposed to sat-
isfy design requirements. It is shown how this can be used
to design multivariable PID and distributed controllers.

4.1 Fixed-degree controller

To obtain an RH ∞ parametrization of the controller, it
is possible to divide both X and Y matrix polynomials
in (27) by a stable polynomial p(δ), resulting in:

X =

{
X

∣∣∣∣∣ X =

n∑
k=0

Xk · δk

p(δ)

}
(28a)

Y =

{
Y

∣∣∣∣∣ Y =

n∑
k=0

Yk · δk

p(δ)
, Yk diagonal

}
(28b)

where a possible choice is p(δ) = (δ − α)n, α < 0 for
continuous-time, or |α| < 1 for discrete-time systems.
Moreover, Y is restricted to be diagonal to avoid in-
creasing the degree of Y when inverted. Unlike the ma-
trix polynomials, this RH ∞ structure leads to better
numerical conditioning for continuous-time systems: the
variables Xk and Yk are not multiplied by powers of the
Laplace variable δk = sk, which have too large magni-
tude on the imaginary axis. The final controller is not

sensitive to the choice of α as it will be canceled when
forming XY −1. However, its main role is to normalize
the constraints and improve the numerical accuracy of
the optimization solver. Here, we give some examples of
possible controller structures.

PIDController: In CT, a multivariable PID controller
K = Kp+Ki/s+Kd s (Tfs+I)−1 can be obtained with
a right factorization using (28) with n = 2, and Y0 = 0
in (28b). The PID coefficients can be retrieved as fol-
lows: Tf = Y2Y

−1
1 , Ki = X0Y

−1
1 , Kp = X1Y

−1
1 −KiTf

and Kd = X2Y
−1
1 −KpTf .

Distributed Controller: Different actuators may be
located physically far apart, and the various control in-
puts should only be computed using a subset of all mea-
surements. Controllers for a distributed system with ℓ
nodes can be designed by choosing Yk as block diagonal
matrices with ℓ×ℓ partitions which lead to a block diag-
onal Y . X is chosen such that the off-diagonal block Xij

k
is 0 if there is no communication of information from
node j to node i. For purely decentralized controls, all
off-diagonal blocks would be zero.

For example, consider a distributed control system with
3 nodes and a communication infrastructure providing
bidirectional communication between nodes 1 and 2, and
between nodes 2 and 3. Then the partitioned Xk and Yk

in (28) for k ∈ {0, 1, . . . , n} are given by

Xk =


X11

k X12
k 0

X21
k X22

k X23
k Distributed

0 X32
k X33

k Local

 (29a)

Yk = blockdiag(Y 11
k , Y 22

k , Y 33
k ) (29b)

where blockdiag(·) is the matrix formed by diagonally
stacking the input arguments, and with zeros elsewhere.

4.2 Fixed-order controllers

For designing a state-space controller of order n with
right factorization K = XY −1, we have:

X = {X | X = C1(δI −A)−1B +D1} (30a)

Y = {Y | Y = C2(δI −A)−1B +D2} (30b)

The optimization variables areC1 ∈ Rnu×n,C2 ∈ Rny×n,
D1 ∈ Rnu×ny , and D2 ∈ Rny×ny , which leads to affine
parametrization of X and Y . A ∈ Rn×n and B ∈ Rn×ny

are fixed and can be freely chosen, provided that A is
stable, the pair (A,B) is controllable, with B having
full column rank. A minimal realization of K = XY −1

is given by

K =

 A−BD−1
2 C2 BD−1

2

C1 −D1D
−1
2 C2 D1D

−1
2

 (31)
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If a left factorization K = Y −1X is required, we have:

X = {X | X = C(δI −A)−1B1 +D1} (32a)

Y = {Y | Y = C(δI −A)−1B2 +D2} (32b)

where B1 ∈ Rn×ny , B2 ∈ Rn×nu , D1 ∈ Rnu×ny , and
D2 ∈ Rnu×nu are optimization variables, andA ∈ Rn×n,
and C ∈ Rnu×n are constants that can be freely cho-
sen, with the only requirement that A is stable, the pair
(A,C) is observable and C full row rank. A minimal re-
alization of K = Y −1X is given by

K =

A−B2D
−1
2 C B1 −B2D

−1
2 D1

D−1
2 C D−1

2 D1

 (33)

and has order n, irrespective of the values of the op-
timization variables {B1, B2, D1, D2}. Similar to the
fixed-degree, additional structure can be imposed in
fixed-order controllers.

Distributed Controller: For the distributed control
systemswith ℓ nodes, a distributed state-space controller
with left factorization (LF) can be designed by choosing
{A, B2, C, D2} as block diagonal matrices with ℓ × ℓ
partitions which lead to a block diagonal Y . On the other
hand, {B1, D1} are chosen such that Bij

1 and Dij
1 are 0

if controller for node i has no information from node j.
For the decentralized controller, B1 and D1 would also
end up being block-diagonal matrices. Similarly, for RF,
{A,B,C2, D2} should be block diagonal, and the off-
diagonal blocks ij of {C1, D1} should be zero when there
is no communication link from node j to i. For the same
example at the end of Section 4.1, the controller struc-
ture in LF representation can be obtained by adding
constraints on A,B1, B2, C,D1 and D2 in (32):

A = blockdiag(A11, A22, A33) (34a)

C = blockdiag(C11, C22, C33) (34b)

B1 =


B11

1 B12
1 0

B21
1 B22

1 B23
1 Distributed

0 B32
1 B33

1 Local

 (34c)

D1 =


D11

1 D12
1 0

D21
1 D22

1 D23
1 Distributed

0 D32
1 D33

1 Local

 (34d)

B2 = blockdiag(B11
2 , B22

2 , B33
2 ) (34e)

D2 = blockdiag(D11
2 , D22

2 , D33
2 ) (34f)

5 Implementation remarks

Frequency sampling: The optimization problems pre-
sented in this paper are formulated as frequency domain

inequalities and correspond to solving a convex semi-
infinite program (SIP). A common approach to solve
such SIP is to sample the infinite number of constraints
for all points in Ω at a reasonably large finite set of fre-
quencies ΩN = {ω1, . . . , ωN} ⊂ Ω. Then Γ(jω) can be
replaced by a hermitian matrix variable Γk at the cor-
responding frequency ωk. The integral in (7) can be ap-
proximated using a numerical integration scheme like
the trapezoidal rule. Since all constraints are applied on
Hermitian matrices, constraints will also be satisfied for
all negative frequencies. The formulated optimization
problems are convex, and large values N can be handled
by numerical solvers.

Iterative procedure: To ensure a solution to (13) or
(19), the existence of the controller parameters such that
X = Xc and Y = Yc should be guaranteed. If this holds,
a solution always exists, namely the initial controller.
The controller obtained after solving (13) or (19) will
depend on the choice of Kc, the resulting controller can
be of poor performance. It is proposed to solve the prob-
lem iteratively, using the optimal controller as the initial
controller for the next iteration. The objective is non-
increasing, as the initial controller is always a feasible
solution and the problem is convex in the optimization
parameters. The final controller will converge to a local
minimum or saddle point of (6).

Remark: For the fixed-order controllers, it is useful, after
each iteration, to compute a balanced realization [15] of
the initial controller, then compute the coprime factor-
ization [28] to obtain Xc and Yc for the next iteration.
This will also avoid convergence to a factorization where
D2 is singular, as D2 is normalized at each iteration.

Implementation Algorithm: As a token implemen-
tation example, it is desired to solve a mixed H2/H∞
synthesis problem

min
K∈K

γ

∥Fl(G,K)∥2 ≤ γ,
∥∥Fl(G,K)

∥∥
∞ ≤ 1 (35)

with a fixed-order controller, using the formulation pro-
posed in Section 3.1. Given the two generalized plants
G, G, an initial stabilizing controller Kc = XcY

−1
c and

the frequency grid ΩN , the mixed norm problem can
be implemented as described in Algorithm 1, where the
variables Φ,Φc and Λ are defined using G(jωk).

6 Simulation Results and Comparisons

In this section, benchmarks are employed to compare the
performance of our proposed approach with other struc-
tured controller synthesis methods that utilize paramet-
ric models. However, it is important to note that our ap-
proach is not limited to parametric models. It can also
be applied when the frequency response function is ob-
tained in a data-driven manner.
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Algorithm 1 Example H2/H∞ mixed synthesis prob-
lem implementation with fixed-order controller

1: From input/output data, compute P (ejω), e.g., us-
ing (3). Construct G,G, corresponding to the de-
sired objectives, e.g., (40) for H2 closed-loop model-
matching with an additional H∞ constraint.

2: If the system is stable, useXc = 0, Yc = I. If the sys-
tem is unstable, factorize the stabilizing controller
used for data acquisition as Kc = XcY

−1
c .

3: Solve the sampled-frequency version of the optimiza-
tion problem

min
X∈X , Y ∈Y

N∑
k=2

(ωk − ωk−1) · trace(Γk)

subject to[
Γk − Λ (G11Φ+G12X)

⋆ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc

]
(jωk) ⪰ 0[

I − Λ
(
G11Φ+G12X

)
⋆ Φ

∗
Φc +Φ

∗
cΦ− Φ

∗
cΦc

]
(jωk) ⪰ 0

∀ωk ∈ {ω1, . . . , ωN}

(36)

4: Compute a minimal realization of K = XY −1. If
K is a local minimum of (35) stop, otherwise define
Kc as a balanced realization of K, factorize Kc =
XcY

−1
c and go to step 3.

6.1 Comparison with non-smooth optimization

The problem of interest is a mixed-sensitivity problem:

min
K∈K

∥∥∥∥∥
[

W1(I + PK)−1

W3K(I + PK)−1

]∥∥∥∥∥
∞

(37)

where W1 = (s+3)/(3s+0.3) and W2 = (10s+2)/(s+
40). The process model and corresponding generalized
system are given by:

P =


1

s+1
0.2
s+3

0.3
s+0.5

0.1
s+2

1
s+1

1
s+1

0.1
s+0.5

0.5
s+2

1
s+1

, G =


W1I −W1P

0 W2I

I −P

 (38)

The control objective is to minimize ∥Fl(G,K)∥∞. This
problem is studied in [2] and [12]. In [12], the controller
has a polynomial structure as given in (27), and could
not be fairly compared with the non-smooth optimiza-
tion algorithm in [2]. Here, using state-space parame-
terization, low-order state-space controllers can be de-
signed, and the algorithm is numerically improved, lead-
ing to the results in Table 1. The initial stabilizing con-
trollerKc = 0 is used as the process model is stable. The
problem is implemented using Yalmip [17], and solved at

Table 1
Fixed-order comparison.

Controller
order

Method

[12] [2] Proposed

1 na 6.27 6.27

2 na 5.13 5.13

3 1.52 1.43 1.43

4 na 1.22 1.22

5 na 1.22 1.22

6 1.25 1.21 1.21

400 logarithmically spaced frequencies in [10−4, 104] us-
ing the convex solver mosek (http://www.mosek.com).
The results show the improvement over [12].

6.2 Comparison with HIFOO and SYSTUNE

The proposed approach is now compared with model-
based fixed-structure controller design approaches called
HIFOO [7] and SYSTUNE in MATLAB [3] (which implements
HINFSTRUCT [1] in the H∞ case). The objective of the
presented approach is not to replace such methods, but
rather propose an efficient alternative when specialized
solvers and parametric models are not available, but
only the frequency domain data. The examples are taken
from the COMPleib library [16]. This library regroups a
collection of control-relevant problems arising from the
engineering literature or real-life problems and is made
available to test and compare different algorithms. Im-
portantly, many of the examples could not be solved us-
ing [12], as most of the provided examples cannot be cast
as a mixed-sensitivity problem. An effort is made to se-
lect at least one system from all categories. In particular,
the systems chosen have no feed-through, such that the
H2 norm can be finite, and taken in ascending order.

Similar to the proposed method, HIFOO and SYSTUNE re-
quire an initial stabilizing controller. For stable systems,
the controller Kc = 0 is used. For unstable systems, the
same initializationmethod as employed by HIFOO is used.
A frequency grid is chosen as 400 logarithmically spaced
points between [10−4, 104] for all H∞ examples and 100
logarithmically spaced points for the H2 examples. The
optimization time can be significantly reduced using a
better selection of the frequencies, e.g. as proposed in [2].
The class of controllers K is chosen as 2nd order con-
trollers. The iterative procedure described in Section 5
is used to converge to a local minimum, where at each
iteration, first a balanced realization is computed, then
an appropriate controller factorization to obtain Xc, Yc.
The iterative approach is stopped when the objective
decreases less than 10−4 between two consecutive itera-
tions. The final objective value can be found in Table 2
and in Table 3 for theH∞ andH2 case, respectively. The
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Table 2
H∞ performance on some COMPleib problems. Solve time:
time spent in the convex solver (in seconds).

Problem
Second-order Controller Full

order
optimal

Solve
time
(sec.)Proposed HIFOO SYSTUNE

AC1 0.0000 0.0000 0.0000 0.0000 1.29

AC2 0.1115 0.1115 0.1115 0.1115 4.15

AC3 2.9683 3.2972 3.1164 2.9675 12.0

AC5 662.41 667.74 664.06 657.10 19.1

HE1 0.0740 0.0930 0.0897 0.0736 1.88

JE1 4.2970 22.163 4.1101 3.8537 118

REA1 0.8617 0.8617 0.8617 0.8617 2.92

DIS1 4.1597 4.1650 4.1602 4.1593 7.55

DIS2 0.9476 0.9571 0.9531 0.9474 4.49

TG1 3.4652 3.4653 3.4652 3.4652 32.9

AGS 8.1732 8.1732 8.1732 8.1732 2.21

WEC1 3.6363 3.6363 3.6363 3.6363 3.96

WEC2 3.5981 3.6103 3.5981 3.5981 3.84

HF1 0.4472 0.4472 0.4472 0.4472 0.20

BDT1 0.2663 0.2662 0.2662 0.2662 0.75

MFP 4.3314 4.3862 4.8393 4.1866 9.29

PSM 0.9202 0.9202 0.9202 0.9202 0.69

results of optimal full-order controllers are also reported,
showing that the local optimal solutions achieved by
reduced-order controllers are very close to the full-order
solution. The proposed method achieves equivalent per-
formance to model-based methods but requires longer
optimization times. The proposed approach is not in-
tended to replace the synthesis methods when a para-
metric model is available, but is useful when only the
frequency response is given.

6.3 Impact of initial controller

As mentioned in Section 5, the choice of the initial con-
troller is essential for solving the optimization prob-
lem. When following the iterative procedure, it is shown
through an example, the final achieved performance is
not sensitive to the choice of the initial controller. The
example AC4 from COMPleib is considered, and the
corresponding H∞ problem is solved. As reported in
[7], HIFOO reliably finds an optimal controller of order
0 (with objective value 0.935), but it sometimes fails
to find the optimal controller for orders 1 and 2 (both
achieving an objective value of 0.557). For each controller
order, 100 different random initial controllers have been
chosen. Using the same heuristic as they employ to find a
stabilizing initial controller, the proposed approach em-
pirically converges every time to a local minimum with

Table 3
H2 performance on some COMPleib problems. Solve time:
time spent in the convex solver (in seconds).

Problem
Second-order Controller Full

order
optimal

Solve
time
(sec.)Proposed HIFOO SYSTUNE

AC1 0.0000 0.0000 0.0000 0.0000 0.32

AC2 0.0500 0.0491 0.0492 0.0491 5.22

AC3 4.2721 4.2717 4.2717 4.2717 8.15

AC5 1342.0 1342.1 1342.1 1339.7 6.74

HE1 0.0904 0.0870 0.0876 0.0855 0.40

JE1 43.517 42.891 42.901 42.860 144

REA1 1.5041 1.5041 1.5041 1.5041 2.67

DIS1 2.6603 2.6601 2.6600 2.6600 1.24

DIS2 1.4044 1.4016 1.4016 1.4016 0.91

TG1 9.7945 9.7060 9.7060 9.1817 65.3

AGS 6.7274 6.6587 6.6580 6.6303 11.4

WEC1 5.7267 5.7175 5.7609 5.6931 87.0

WEC2 5.8987 5.8920 5.8863 5.8671 184

HF1 0.0581 0.0581 0.0581 0.0580 0.11

BDT1 0.0096 0.0100 0.0098 0.0094 0.47

MFP 3.9168 3.9148 3.9148 3.9148 6.12

PSM 1.4557 1.4425 1.4355 1.4191 2.06

objective value 0.935 for order 0, and 0.557 for order 1
or 2, as can be seen in Figure 2.

0 10 20 30 40 50

Iteration

100

102

104

O
b
je

ct
iv

e
va

lu
e

Order 0
Order 1
Order 2

Fig. 2. Objective achieved for different controller orders.

7 Experimental Results

In this section, real data from a laboratory setup is col-
lected and used to design a discrete-time controller sam-
pled at Ts = 0.002 s. It is shown how the proposed ap-
proach can deal with multimodel uncertainty, measure-
ment noise, and mixed H2/H∞ synthesis. This example
focuses on the velocity control of a DCmotor with a flex-
ible element attached on top. Different weights can be
attached to the flexible element, at different positions,
resulting in multimodel uncertainty.
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Fig. 3. Plant magnitude frequency response and variance
(two standard deviations).

The frequency function is obtained from input-output
data at 4 positions of the weights, leading to differ-
ent models P (ejω) = {P1(e

jω), . . . , P4(e
jω)}. For every

model Pi, a multiplicative uncertainty filter Wi is ob-
tained, corresponding to two times the standard devia-
tion of the FRF estimate. Both are obtained using spec-
tral analysis, see Chapter 2 in [23]. The FRF of P and
its confidence interval are shown in Figure 3.

The objective is to obtain a closed-loop similar to a given
reference closed-loop model Tr obtained by squaring a
first-order low-pass filter with DC-gain 1 and bandwidth
11.5 rad/s. The problem is formulated as H2 closed-loop
matching, minimizing the worst performance over the
different models:

min
K

max
i=1,...,4

∥F (ω) · (Tr − Ti)∥2 (39)

where F (ω) = 1 + 1/ω is a weighting filter and Ti is
the closed-loop transfer function using the model Pi.
Additionally, the closed-loop system must satisfy a ro-
bust stability condition: ∥WiTi∥∞ ≤ 1 corresponding
to multiplicative noise-originated uncertainty, which can
be formulated as ∥Fl(Gi,K)∥∞ ≤ 1 i = 1, . . . , 4. The
generalized systems are

Gi =

 F · Tr −F · Pi

1 −Pi

 , Gi =

 0 WiPi

1 −Pi

 (40)

Finally, a discrete-time controller K = X(z)Y −1(z)
of order 8 is designed using (30) parametrization. To
ensure integral action in the controller, the constraint
Y (z = 1) = 0 is added to the problem. The optimization
problem to solve is therefore

min
X∈X , Y ∈Y

max
i=1,...,4

γi (41)∥∥Fl(Gi, XY −1)
∥∥
2
≤ γi, i = 1, . . . , 4∥∥Fl(Gi, XY −1)

∥∥
∞ ≤ 1, i = 1, . . . , 4

Y (z = 1) = 0

The problem is sampled at 500 logarithmically spaced
ω ∈ [10−2, π/Ts], with both LFTs implemented as de-
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Fig. 4. Closed-loop tracking at different operating points.

scribed in Algorithm 1. The closed-loop tracking of a
square waveform reference, obtained after tuning, is
shown in Figure 4, along with the desired output of the
reference model Tr. As can be seen, the different closed-
loop using different loads follow the reference model.

8 Conclusion

This paper presents a novel synthesis method for design-
ing structured H∞ or H2 controllers using frequency-
domain data of a generalized plant model. The con-
trol problem is formulated as a convex-concave opti-
mization problem, leveraging an appropriate controller
parametrization. By utilizing an initial stabilizing con-
troller and frequency sampling, the problem is trans-
formed into a tractable SDP and efficiently solved. Com-
pared to [12], the proposed method offers several ad-
vantages, including applicability to generalized plants,
the ability to design fixed-order state-space controllers,
and improved numerical precision. Despite utilizing only
frequency response data, the proposed method yields
comparable results to state-of-the-art model-based ap-
proaches and global optimal solutions.
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