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Abstract
Censuses are structured documents of great value for social and demographic history, which became widespread from the
nineteenth century on. However, the plurality of formats and the natural variability of historical data make their extraction
arduous and often lead to ungeneric recognition algorithms. We propose an end-to-end processing pipeline, based on opti-
mization, in an attempt to reduce the number of free parameters. The layout analysis is based on semantic segmentation using
neural networks for a generic recognition of the explicit column structure. The implicit row structure is deduced directly from
the position of the text segments. The handwritten text detection is complemented by an intelligent framing method which
significantly improves the quality of the HTR. In the end, we propose to combine several post-correction approaches, neural
networks, and language models, to further improve the performance. Ultimately, our flexible methods make it possible to
accurately detect more than 98% of the columns and 88% of the rows, despite the lack of graphical separator and the diversity
of formats. Thanks to various reframing and post-correction strategies, HTR results reach the excellent performance of 3.44%
character error rate on these noisy nineteenth century data. In total, more than 18,831 pages were extracted in 72 censuses
over a century. This large historical dataset, as well as training data, is made open-access and released along with this article.

Keywords Historical document processing · Layout analysis · Tabular document understanding · Handwritten text
recognition · OCR post-correction

1 Introduction

Historical census records are dense, structured and massive
sources of demographic data, whose extraction has been
regarded as a goal ofmajor importance for the humanities and
social sciences [1,2]. Indeed, from the early eighteenth cen-
tury,with the rise of the administration, this kind of document
multiplied in many areas. Population censuses in Europe and
North America are typically structured in columns indicating
the names of the inhabitants of each household, their age,
their occupation, and sometimes their religious affiliation.
If this high-level structure facilitates historical analyses, the
extraction of tabular documents implies high requirements
in terms of quality so as not to bias subsequent analyses.
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In point of fact, while one might think that the structure
of tables, generally repeated from page to page, makes them
a relatively generic document, the physical reality is often
quite different. The columns are full of additions, remarks,
abbreviations, arrows and various brackets, erasures and cor-
rections. In addition, the writing was usually the work of
many different censors, each with their ownway of interpret-
ing and reporting the data, often with ill-defined instructions.
In Lausanne, for instance, until 1898, censuses were taken
twice a year by district commissioners, who also performed
numerous tasks to preserve public order. It was not uncom-
mon to forget a section of street or a few apartments, and the
administrative documents of the time cast a critical eye on
the diligence of these commissioners [3].

While attempts to automatically extract censuses have
been presented in the past, research has naturally focused
on the more regular sources of the early twentieth century,
benefiting from a regular structure. These projects include
the study of French genealogy [4] and US Census Records
from the 1930s and 1940s [5,6]. In both of these cases, the
tabular documents were structured in a uniformmanner, with
uniformly sized cells and a constant number of cells on each
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page. The text extraction problem therefore simply comes
down to a cell extraction issue. Another strategy to reduce
the complexity of the extraction problem is to focus on a sin-
gle column, thus avoiding offset issues. In this way, Pedersen
has achieved the extraction of the occupational codes from
nineteenth–twentieth-century Norwegian Historical Popula-
tionRegisters [7]. In that case, the valueswere corresponding
to a limited number of solutions. However, to manage the
natural variability of historical tabular documents, some stud-
ies have also suggested the adoption of a fully probabilistic
perspective [8,9]. For instance, [9] use character n-gram
embedding to address keyword spotting problem. While a
probabilistic approach is certainly the most relevant for this
particular task, it does not permit to produce deterministic
extraction results for research in historical demography.

Regardless of the method used, processing historical tab-
ular documents can be decomposed into several successive
steps, including document layout analysis (DLA), handwrit-
ten text detection (HTD), and recognition (HTR). In this
article, HTR post-correction will also be discussed.

Text detection itself is a complex problem, especially in
the case of tabular historical documents, since the text can
easily overflow into another column and the text lines in the
table are almost systematically interrupted by long empty
spaces, contrary to a continuous text. Moreover, in the case
of registers, the text lines extend over two different pages,
which is not the case for classical texts. The primary chal-
lenge is therefore to reconstruct these lines. For these reasons,
the flexibility required for HTD favors the use of methods
based on neural networks. These technologies have already
proven their performance on HTD problems in the past, for
example in the context of ICDAR2017 competition [10]. This
potential has also been demonstrated in the processing of tab-
ular documents, such as the cBAD track b corpus [11]. More
recently, specific approaches have been developed for better
managing the detection of the text segments overlappingwith
vertical separators and even use the latter as a lever [12,13].

The analysis of the structure of the document, such as the
separation of the document into columns and rows, is the
object of layout analysis. While some methods rely on hor-
izontal and vertical rulings and their intersections to detect
cells, many historical documents, such as those to be dis-
cussed here, do not contain a graphical separation of rows.
In this case, row detection must be based on regularity pat-
terns and logical rules [14]. Therefore, row detection in itself
is a particularly difficult problem. Indeed, unlike a continu-
ous line of text, the row in a table can contain several empty
cells. Moreover, a single cell may actually span several suc-
cessive rows, in which the content is continued. To solve
these graphical and hierarchical issues, several approaches
combine graphs and neural networks [15–17]. Other meth-
ods include clustering techniques [18].

To detect columns in tabular documents, traditional DLA
methods rely on successive image filtering, transforms, bina-
rizationmethods, and/ormachine learning classifiers [19,20].
More recently, several approaches have relied on seman-
tic segmentation methods [21–23], or object detection [24]
based on convolutional neural networks (CNNs). Tools based
on these technologies are generally more generic and easily
adaptable. This is relevant in the case of historical sources
that may express different typologies and variability, which
requires the use of a robust algorithm.

In terms of HTR, several methods have recently achieved
very respectable results on various benchmarks. However,
it is necessary to differentiate between the raw performance
of these algorithms and their performance after applying a
language model or other spelling correction. For the present
study,wehavepre-selected three competitivemodels in terms
of raw performance for which an open-source implementa-
tion is available [25–27]. Some studies suggest that transfer
learning, which consists in bootstrapping the learning by
first pre-training the model on a generic dataset, before fine-
tuning it on a more specific one, might be key in the context
of HTR. If this is confirmed on more complex and irregular
datasets, it could lead to a significant reduction of the number
of annotations needed. According to [28], pretraining with a
large and standard database can decrease the character error
rate (CER) on small datasets by more than half for the same
number of annotations. In that study, CER ranged from 3 to
9% depending on the parameters. Alternatively to standard
HTR,Clawson has proposed a systemof glyph library specif-
ically designed for the extraction of censuses, in which HTR
is treated as a glyph classification problem. They achieved
very high accuracy on repetitive entries (such as gender or
birthplace) [6].

However, as good as HTR algorithms can be, reading
ancient-digitized documents remains challenging and the
output is usually noisy. For this reason, OCR post-correction
is a highly regarded topic. In particular, it was the subject of
a dedicated competition at ICDAR 2017 and 2019 [29]. The
simplest approaches rely on computing a Levenshtein’s dis-
tance [30] between the predicted tokens and a dictionary of
candidate types [31–33]. However, this method only works
in the case where a rich and near-exhaustive dictionary is
available. Moreover, it does not take into account the con-
text in which the word is found. As this can be problematic
for some data types, many studies [34–36] prefer to use lan-
guagemodels instead. These languagemodels can be derived
from statistical models [37] and/or neural networks [38,39].
The attention scale can vary from the token to the charac-
ter. However, with the exception of character-based models,
word embedding-based algorithms are not directly relevant
for the specific case of censuses, as they rely on the concept
of contextual co-occurrence and meaning. Several studies
also includemorphological features, derived from the longest
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Fig. 1 Second page of the 1832 census of Lausanne

common subsequence ratio (LCSR), or n-grams characters,
at certain stages of the process [40]. In general, the main
limitation of language models is the need for large and clean
corpora for training. Like dictionary-based models, they do
not handle well the presence of new words. In a different
perspective, Cao has presented a density-based approach for
the post-correction of surnames in recent census data, based
on a hidden Markov model [41].

In this study, we propose a flexible and generic processing
pipeline to handle the entire processing chain of tabular his-
torical documents.Althoughwe recognize that a combination
of deep learning with traditional computer vision methods
is often necessary for the processing of complex documents,
such as censuses, the introduction of conventional algorithms
is often accompanied with logical criteria and free parame-
ters, which are specific to the document. In this research, on
the contrary, we seek to reinforce the generic character of
deep learning by post-processing the prediction with flexible
computer vision algorithms, optimized automatically to the
specificity of the corpus.

To develop our algorithm, we rely on a naturally protean
corpus. Our corpus consists of 72 censuses of the city of
Lausanne, drawnup between 1805 and 1898 (see Fig. 1). This
corpus has the advantage of changing typology and structures
several times over the years, whichmakes it possible to verify

the robustness and genericity of the extraction pipeline. In
total, more than 18,831 pages were extracted in 72 censuses.

2 Methods

The document processing pipeline can be divided into 5
phases. First, the structure of the pages, and more specifi-
cally the columns, is extracted using semantic segmentation
and computer vision. Second, the text segments are detected
using a generic baseline detection algorithm and a novel
intelligent framingmethod. Third, the text segments are tran-
scribed after selecting an efficientHTRalgorithm.Fourth, the
results are structured in a tabular database, after detecting the
rows. Finally, the HTR results are post-corrected using sta-
tistical models and neural network-based approaches.

2.1 Layout analysis

The structure of the censuses changed nine times between
1805 and 1898, with columns appearing or disappearing, and
changing format, width, and position, over time. Among the
main changes, one can note the introduction of the name,
surname, and origin of the residents in 1813, the removal of
the date of arrival of the family in the commune in 1849, the
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addition of a column corresponding to the year of birth of
the residents in 1859, and the first name of the wife in 1883.
In 1886, a more important reorganization took place, with
the appearance of the days and months of birth, as well as
the residence permit numbers for the members of the house-
hold, and finally the occupation of the children. Following
these reorganizations, the corpus could be roughly separated
into 6 main types that display some structural proximity:
1805 (St. Laurent section), 1805-1810, 1813-1848, 1849-
1858, 1859-1885, and 1886-1898. The number of columns
varies between 18 and 22.

2.1.1 Projection profiles

Projection profiles are used as a baselinemethod, for compar-
ison. In this classical approach, the images are thresholded
withOtsu algorithm [42]. The page is slightly tilted to correct
rotation when necessary, by maximizing the ratio between
maximum and minimum values on the vertical projection
profile, so that the column separators become vertical. The
vertical projection profile is then computed on each page. An
adaptive threshold is used to detect the column separators,
until the number of separators reaches the expected num-
ber of column separators, plus the sides of the page and the
central binding, i.e., all main vertical lines.

2.1.2 Semantic segmentation

The structure extraction is mainly based on a CNN-based
semantic segmentation using a torch implementation of
dhSegment [22]. In a second step, a flexible post-processing
is applied to improve the extraction.

First, the images are downsized to a vertical size of 1000
px. A proportional sample, with respect to the 6 structural
types mentioned above, totaling 135 pages, is annotated on
CVAT (cvat.org) software. The annotation ontology has 3
classes: header, even columns, and odd columns. A UNet
[43] CNN using ResNet101 as encoder, is pretrained on Ima-
geNet. Training is then performed using Adam optimizer
[44], with a minibatch of 8, and a learning rate of 5 ×
10−5. The data are randomly augmented with several filters
(blur 3×3, rotate ±3◦, shear 5%, contrast-limited adaptive
histogram equalization (CLAHE, [45]), elastic transform,
random shadow), with an independent probability of 20%
each time. A 12% validation subset is manually selected and
the remaining 88% are used to train the CNN during 400
epochs, with early-stopping patience of 50 epochs. In a sec-
ond step, the weights of this second network are used to train
more specific networks for each of the 6 structural types.

The output probability map is used for post-processing.
The page rotation is corrected when necessary. The angle
is estimated as the tilt of the minimum area bounding rect-
angle corresponding to the ’columns’ semantic class. The

column contours are extracted with a Canny filter applied
to the probability map restricted to background and column
classes. Linear vertical separations between columns are then
identified by Hough transform. The closest lines are par-
tially clustered together by KMeans, where K is based on the
number n ε [19, 23] of expected columns in the considered
structure (K = n+5). The n+3 widest columns with regard
to the separators are then extracted, i.e., the n columns, plus
the empty spaces to the left and right of the document, and
at the middle binding. In a second step, the median widths
between the columns separation are calculated for each year.
For each page, the extracted columnwidths are automatically
compared with the expected median width over the year, to
check the accuracy of the extraction. When the difference
between the expected position of a column separation (mea-
sured from the previous separation) and the position of the
closest separation actually found is greater than δmax pixels
(here δmax = 20px), the position is considered to be impre-
cise or incorrect. In that case, it is automatically corrected,
based on the median width for the year, for this particular
column. Indeed, the width of the columns must be relatively
constant for the same year since the tables are printed. The
width of the central binding, which is highly variable, is
ignored. The position of the header is simply established
where the probability of this semantic class is maximal.

2.2 Extraction of text segments

An approach based on baseline identification is adopted [12].
In a second stage, an intelligent framing method is used to
delineate the text segment boundaries (Fig. 2). Two areas
are defined for each text segment: the patch area and the
core area. The patch area is created by applying a padding
x1, x2, y1, y2 on the baseline in the 4 directions (up, down,
left, right). The core area is defined similarly by a padding
x3, x4, y3, y4, where x3 < x1, x4 < x2, y3 < y1, and
y4 < y2.

The image patch area is then binarized using Otsu’s
method [42]. When the patch is vertically overlapping with
the core area of a neighboring segment, it is cropped accord-
ingly, to avoid any overlap. An overlap is detected only if
the neighboring core area is horizontally encroaching by a
proportion greater than t1, in order to avoid diagonal or side
overlaps to be taken into consideration. Finally, the empty
(white) areas of the patch are removed and the patch is tight-
ened around the text pixels. Any visible column separator,
detectable when the proportion of vertically aligned black
pixels in a patch exceeds a threshold t2, is also removed
to restrict the area to the text pixels. Finally, a slight uni-
form padding z is applied in all 4 directions. The above
11 parameters are entirely optimized using Tree-structured
Parzen Estimator (TPE, [46]) on 34,888 manually annotated
text segments (see next section). The optimization problem
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Fig. 2 Visual summary of the intelligent framing method

is max (J (X ,Y )), where J (X ,Y ) = ∣
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the Jaccard index, X is the area covered by the predicted
text segments on the page, and Y is the area covered by the
manually annotated text segments.

2.3 Handwritten text recognition

A total of 34,888 text segments, corresponding to a sam-
ple of 83 pages, from which at least one per census year,
were manually annotated by an expert using the open-source
software CVAT [47]. Text segments were delineated and
transcribed literally during this process. The transcription
includes punctuation, hyphens, and abbreviations. Diacriti-
cal signs (arrows, brackets) were however not considered.

The intelligent framing method described in the previ-
ous section was applied to standardize the format of the
detected text segments. For handwritten text recognition, the
transcription labels are reduced to 46 unaccented charac-
ters, including the unaccented lowercase letters of the French
alphabet, the numbers 0-9, and 9 symbols, plus the space.
This LausanneHistorical Censuses Dataset 35k [48] ismade
open-access and released along with this article. The dataset
is split into 85% for training, 10% for validation, and 5% for
testing. The Bentham dataset [49] is used for pretraining the
network. The network is then trained for 1000 epochs, with
an early stopping clause fixed at 25 epochs, a batch size of 16
and a degressive learning rate starting from 5 × 10−4, then
decreasing by a factor 1

2 at each plateau.
After comparisonwith two other architectures [25,27], the

model described by Puigcerver [26] is finally selected. The
model is trained separately for the period 1832-98, which is
overperforming compared to the entire period 1813-98.

2.4 Structuration in a tabular database

To structure the registers in a tabular database, one of the cru-
cial issues is the separation into rows. In the present corpus,
for instance, the data are organized by household, and the
baseline theoretically always contains the name and/or sur-
name of the head of the household, and several other fields,
such as occupation, origin, etc.When the household includes

several children or other occupants, the first one is usually
also on the baseline, next to the head of the household, and
the others follow below, one per row. The height of the rows
is irregular, as is the number of households per page.

To begin with, the relative vertical position of each text
segment on the page is calculated with respect to the vertical
position of the table header, detected by semantic segmen-
tation during the layout analysis step. More precisely, the
header position is approximated by a sliding median, com-
puted over a window of a few pixels, from the position of the
lower bound of the header. Text segments that are above this
bound are ignored. This can typically comprise the header
titles themselves, or the page numbers, as well as various
side annotations. For the following steps, this relative verti-
cal position, with respect to the header, is used.

Thevertical position of the baselines (i.e., of the household
heads) is estimated according to the relative position of the
text segments with regard to the column header. The position
of each baseline is computed iteratively and relatively, with
respect to the position of the previous baseline. A minimum
threshold t3, corresponding to 50% of the average height of
the rows in the corpus, is applied. The position estimation is
thus flexible and relative.

Once the baseline position is recovered, the remaining seg-
ments on the page are assigned, column by column, starting
from the column containing the household head. The vertical
position of the baseline is slightly readjusted for each new
column, so as to take into account the effective tilt of the row.
When a column contains a list of segments (e.g., list of chil-
dren), they are separated horizontally, on the same principle
as the baselines.

In a post-correction step, the numeric columns are cleaned
from the alphabetic elements, and vice versa. However, when
the ’intruder’ string is long enough l1 ≥ 3, the segment is not
necessarily considered as an error, but if coherent with the
alphanumeric type of the neighboring column, the element is
considered to have undergone a shift and is therefore replaced
in that column. The laterality of the shift is determined with
regard to the position (beginning or end) of the ’intruder’
segment in the string.
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2.5 HTR Post-correction

The HTR post-correction methods are trained (when nec-
essary) and evaluated on 14,571 text segments divided into
three separate subsets (70% train, 20% validation, 10% test),
taken from the corpus annotated for HTR training. The
segments selected are those belonging to the columns first
names, surnames, origins, and occupations, on which the
post-correction step is developed and deployed. As the pre-
dictions on the HTR training data are naturally better than
those that would be obtained on independent data, a random
noise is applied to increase the CER from 3.07% to 5.14%,
similar to the error observed on test set (see Table 2). Thus,
using actual HTRpredictions as a base permits to createmore
plausible mistakes in the data, while adding additional noise
stimulates the sensitivity of post-correction models.

2.5.1 Dictionary realignment

First, the possibility of correcting the data against special-
ized dictionaries or lexicons is assessed. This is a common
baseline approach for correcting noisy and topical OCR data,
which consists in mapping the tokens from the noisy extrac-
tion on the closest type from the lexicon. This experiment
both aims at providing a baseline for comparison with the
other methods deployed and assessing the relevance of such
approach when working with local historical demographic
data. In this perspective, the Register of Swiss Surnames
from the Historical Dictionary of Switzerland [50] was used
to build a database of 44,664 surnames and 593 places of
origin, including a list of the historical villages of the canton
of Vaud, as well as all the Swiss cantons and the nearby his-
torical European states. Moreover, a list of 11,414 historical
occupations in French from the database of the International
Institute of Social History is retrieved [51]. We also include
the dataset of the National Institute of Statistics and Eco-
nomic Studies (Insee, [52]) of France to retrieve some 5,410
first names attributed in France until 1939, supplemented
manually with 625 additional first names observed in the
censuses.

The realignment of the text segments is performed
column-wise. A maximum Levenshtein distance l2 is auto-
matically fitted on the training subset, so as to maximize
the true-positive corrections and minimize the false-positive,
when matching a word with a correction-candidate.

2.5.2 Statistical models and neural network-based
approaches

In a first step, the OCR predictions are subjected to a sim-
ple precleaning, by normalizing spaces (e.g., double spaces)
and removing most punctuation marks. Indeed, punctuation
can be very useful for formatting dates for instance, but is

carrying a negligible amount of information for the columns
concerned by the precleaning (first names, surnames, origins,
occupations). In fact, they multiply the number of types in
a an undesirable way, when it comes to post-correction. In
the case of historical censuses such as this one, the spellings
’jean-samuel’ and ’jean samuel’ do not carry different his-
torical or linguistic information; they are simply the result or
an arbitrary choice made by the censor.

In a second step, five popular post-correction strategies,
three based on statistical models [53–55], and two based
on neural networks [56,57] are tested, compared and com-
bined with precleaning step described above. In a first set of
experiments, the effectiveness of these methods in terms of
CER reduction is assessed individually. In a second step, the
total performance of the post-correction, when successively
applying the precleaning, and the external method from the
literature is evaluated. In the last experiment, the HTR pre-
cleaning is applied first, followed by a majority vote of the
three best algorithms in the literature. That is, at least two
methods must agree on the post-correction for the intermedi-
ate token to be effectively modified in its final post-corrected
form. An open-access implementation is used to train the five
methods from the literature [58].

3 Results

3.1 Layout analysis

First, the method based on projection profile is evaluated
manually, on a sample of 0.7% of the pages, drawn randomly,
i.e., 125 pages. In the end, this baseline approach permits to
successfully detect 87.5% of the column separators, against
98.0% for the method based on semantic segmentation.
Besides, the percentage of pages that are extracted without
any error is 16.8% when using projection profile, against
92.2% with semantic segmentation. The performance of the
semantic segmentation approach and the typology of errors
encountered is detailed hereafter.

The segmentation CNN (Fig. 3a) optimized on the whole
training data shows a high performance, with a mean inter-
section over union (mIoU) of 94.3%. The fine-tuned models
trained specifically on the corresponding structural sub-
corpora perform better, with a mIoU of 97.3% for 1805-13,

Table 1 Column separator detection assessment

Typology of error Prevalence

LE1 - false positive 0.17 %

LE2 - false negative 0.23 %

LE3 - offset 1.59%
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Fig. 3 Results from the main steps of the extraction pipeline on the second page of the 1832 census

97.1% for 1832-1848, 98.3% for 1849-58, 97.8% for 1859-
85, and 98.0% for 1886-98.

For assessing the quality of column detection in more
details (Fig. 3b), circa 2% of the pages are randomly selected
and validated manually. Three typologies of errors are
encountered. The first one (LE1) is the column separator false
positive, meaning that the algorithm has detected too many
column separators. The second one (LE2) is the column sepa-
rator false negative, i.e., one ormore columns are not detected
by the algorithm. The third error typology (LE3) is the col-
umn separator offset, where the correct number of columns
is detected, but an offset of more than 20 pixels between the
predicted separation and the ground truth is observed. These
errors are not mutually exclusive and can be encountered on
the same page, for different columns.

The most frequent errors are offsets (LE3). Most of the
time, LE1 and LE2 occur on the same page, compensating
each other. A frequently identified source of mistake is the
central binding of the document, which can hide the whole
or a portion of a column (LE2). Sometimes, a dark and sharp
central binding itself canbe confusedwith a column separator
(LE1). Other times, slight pencil lines are found in addition to

the printed ones (e.g., to separate the dates into DD/MM/YY
format), and this can lead to false positive (LE2) and offsets
(LE3). However, this occurs mostly in the late censuses and
does not account for themajority ofLE2/LE3 errors. It should
be noted, however, that the error rate is not relative to the
number of pages that contain misdetected columns, since it
is much more common for there to be multiple errors on one
page. Of the 409manually assessed pages, there are 32 pages
with incorrectly detected columns, which represents 7.82%
of all pages.

3.2 Extraction of text segments

In order to validate the extraction of text segments (Fig. 3c),
the hyperparameters are optimized on 80% of the anno-
tated pages (66 pages, c.a. 27,800 text segments). Then, the
segment-wise mIoU is computed on the remaining 20% (17
pages, c.a. 7,100 text segments). Our approach shows amIoU
of 66.6% (median 72.8%),which is considered rather high. In
comparison, the software Transkribus [59], also using Grün-
ing’s algorithm [12] to detect baselines, obtains a mIoU of
only 15.9% (median 10.7%).
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Most importantly, the better fit induced by the intelligent
framing method results in a clear increase in HTR inference
performance (Table 2). For the period 1832-98, the error for
the Puigcerver model is reduced by 14% (from 5.74 to 4.93
CER) and by 21% for Flor (from 6.73 to 5.34 CER). For the
Bluche model however, the error stagnates at a high level,
with even a slight increase.

3.3 Handwritten text recognition

It can be noted in Table 2 that incorporating the first years of
the censuses lowers the performance of the optical character
recognition (OCR). For this reason, the years 1832-98 were
extracted with a specific model. The raw HTR/OCR perfor-
mance reaches a character error rate (CER) of 4.93%, in the
best case, using the Puigcerver architecture [26].

A milestone output of the project is also the release of the
LausanneHistorical CensusesDataset 35k [48]. This quality
dataset can foster research on historical registers and more
globally on the transcription of French historical sources.
In comparison, the IAM dataset has only 13k training exam-
ples, and the Bentham-R1 dataset only 12k, although the text
segments are longer.

3.4 Structuration in a tabular database

The quality evaluation of the structure, and primarily the
quality of row detection (Fig. 3d), relies on manual data ver-
ification. One random page is assessed for each slice of 200
pages in a yearly census. The errors are sorted in three typolo-
gies. The first typology of structural error (SE1) is related to
missingwords and induced ’inner’ offsets.More specifically,
it accounts for offset errors due to an undetected or missing

Table 2 HTR performance with various network architectures, mea-
sured with the character error rate (CER %) and word error rate (WER
%) on test set, given with a 95% confidence interval (CI). The datasets
marked with a star (*) did benefit from the intelligent framing method

Data Arch. CER % ±CI WER % ±CI

1805-98* Flor 6.02 ± 0.65 21.33 ± 1.92

Puigcer. 5.36 ± 0.66 17.84 ± 1.79

Bluche 11.60 ± 0.91 37.30 ± 2.28

1832-98* Flor 5.34 ± 0.65 20.52 ± 2.05

Puigcer. 4.93 ± 0.65 17.79 ± 1.94

Bluche 10.80 ± 0.90 36.76 ± 2.47

1832-98 Flor 6.73 ± 0.70 24.84 ±2.07

Puigcer. 5.74 ± 0.66 20.83 ±1.97

Bluche 10.55 ± 0.88 35.71 ±2.27

Bentham Flor 9.58 ± 0.86 38.65 ± 1.89

Puigcer. 10.12 ± 0.94 39.15 ± 1.87

Bluche 15.64 ± 1.20 47.29 ± 1.95

Table 3 Table layout assessment

Typology of error Prevalence

SE1 - Words fn / inner offset 3.47 %

SE2 - Rows structural incoherences 3.22 %

SE3 - Rows offset 6.09 %

word and offsets within a household. This often concerns
the residents columns, or the children columns, for instance
when the name of a child is matched with the wrong birth
year. The second type (SE2) is linked to structural inconsis-
tencies within a household. In this category, we consider any
error that is directly due to inconsistency in the source. This
can be caused by the commissioner using an unexpected and
uncommon format, such as brackets, arrows, or other forms
of indication to correct or change the assignment of a group
of information to another household. Concretely, the chil-
dren’s names may for example be written on multiples rows,
at the same height as another (unrelated) household, and a
bracket or another diacritical signs is used to show where
the names actually belong. As the brackets are not detected,
this leads to mismatched items. The third typology of error
(SE3) represents the offsets between rows, i.e., some part of
a household is attributed to another household. This kind of
error can happen, among other things, because of the central
binding, when both pages are not well aligned.

Table 3 summarizes the results of the manual assessment.
One can notice that SE3 is almost twice as frequent as the
other two types of errors. The structural incoherences (SE2),
which corresponds to human errors, concern 1 in 30 house-
holds. This is about the same proportion as SE1. The low
prevalence of type SE2 errors is explained as they are only
observed in some years of the censuses, probably due to
poorly trained commissioners.

3.5 HTR Post-correction

The character error rates (CER) resulting from the various
post-correction strategies are gathered in Table 4. Despite
the relatively low CER after HTR, the realignment on spe-
cialized lexicon, used as a baseline approach for comparison,
is ineffective at improving the CER further, no matter how
low the threshold on the Levenshtein distance is set.

In raw performance, with a CER ranging from 3.89% to
4.18%, the standard algorithms perform well. On average,
15.3% of the errors are corrected and up to 18.6% for Luong.
However, one can notice that the results of the different algo-
rithms are systematically better when they are applied after
HTR precleaning (21.8% on average, and up to 25.3% for
the best algorithm). The relative performance of the standard
algorithms is quite similar when applied directly on the raw
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Table 4 CER of the different post-correction algorithms applied on the
validation and test sets, given with a 95% confidence interval (CI)

CER % ±CI � w. HTR

HTR 4.78 ± 0.45 –

Preclean (Pc) 4.47 ± 0.43 −6.5%

Garbe [53] 4.18 ± 0.47 −12.6%

Norvig [54] 3.99 ± 0.46 −16.5%

Stefanovic et al. [55] 4.01 ± 0.45 −16.1%

Bahdanau et al. [56] 4.17 ± 0.46 −12.8%

Luong et al. [57] 3.89 ± 0.45 −18.6%

Pc + Garbe 3.88 ± 0.45 −18.8%

Pc + Norvig 3.68 ± 0.44 −23.0%

Pc + Stefanovic 3.71 ± 0.44 −22.4%

Pc + Bahdanau 3.85 ± 0.44 −19.5%

Pc + Luong 3.57 ± 0.43 −25.3%

Pc + Luong ∩ Norvig ∩ Stefanovic 3.44 ± 0.42 −28.0%

OCR (−15.3%), or after precleaning (−14.5%), so the two
steps add up. Both statistical and neural network-basedmeth-
ods show a substantially similar performance on our dataset,
despite the relatively repetitive nature of the data.

Finally, the last experiment is the one that results in the best
performance. Applying precleaning followed by a major-
ity vote of several algorithms combined achieves a CER of
3.44%, which is a reduction of more than a quarter of the
error rate.

3.6 Output of the extraction pipeline

As an example, the result of the extraction of the first
households and columns of Fig. 1 is presented in Table 5.
Overall, the output is readable and structured. The qualita-
tive analysis of this excerpt shows that, in situ, errors are not
necessarily surprising and also reflect the expected limita-
tions of automatic approaches.

Looking more precisely at the mistakes found in Table 5,
we notice for example that two entries are found in row 2,
under ‘Name of the Spouse‘: ‘sprant‘ and ‘schmotz.‘ In the
corresponding image, there are indeed two text segments at
this place. However, the one below, which might in fact be
read as ‘schwarz‘ or ‘schuatz,‘ is heavily crossed out. It also
hinders the readability of the upper one, probably ‘schrantz.‘
Another example is the particular inscription under the street
names, detected as ‘fose‘ and which we interpret rather as
‘fsno‘ or ‘sno‘ (probably an abbreviation of ‘sans numero,‘
withmeanswithout number). A typical example of a SE3 row
detection error is the presence of a child named ‘louis‘ in the
Chapallaz household (l. 6). This child is actually listed on
the bottom household (Baudel-Favrat), but is located clearly
above the baseline, although it does not really overlap with

the upper cell either (which would be counted as an SE2
error). In the Bonnet-Cevey household (l. 9) a segment of
text was not detected in the column of children’s birth years
(SE1). The algorithm identifies this gap and introduces a
midpoint (·), to indicate an empty field. However, the gap is
not detected at the correct position, and the third child (the
second Louise) receives the birth year 1819, while it is actu-
ally the birth year of her sister (Elise). The attribution is then
compensated for the following children in that household.

4 Discussion

Simple and inflexible methods like projection profiles fail
to accurately render the tabular layout and detect column
separators. However, our results show that an excellent
performance can be achieved using a common semantic seg-
mentation model, trained on few annotation examples. In
fact, our results demonstrate that a semantic segmentation
model can be efficiently fine-tuned with less than a dozen
samples, as long as it has already learned a general idea of
the structure. For instance, the mIoU reaches 97.3% when
post-training on the 1805-13 data based on a subset of only
7 training samples. An adequate data augmentation is prob-
ably one of the reasons for this good result. In general, the
results of the layout analysis show that column detection is
not a problem when it can be based on clear separators. The
visual separators are both solid markers for the computer
vision methods, but they also reinforce the intrinsic structure
of the document. Indeed, the columns are in the vast major-
ity of cases respected by the commissioners, although some
overruns have been spotted in the corpus. As stated in the
results section, the most frequent errors (1.59%) concerning
the detection of column separators are by far imprecisions, or
offsets (LE3). This is expected as the algorithm includes the
expected number of columns for each year, therefore lim-
iting cases of failure LE1 and LE2 (0.4%). The balance is
explained by the presence of important graphical challenges,
such as the partial disappearance of columns in the central
binding (see Fig. 4b).

In a global way, the intelligent framing method leads to a
very noticeable increase in similarity between the automati-
cally detected text segments and themanual annotations. This
step appeared to be essential for the generalization of the
HTR performance, when validating the inference capacity
on the test set. Adequate framing of the text segments plays
an important role in the quality of the HTR. For documents
such as censuses, the risk of several text segments encroach-
ing on each other, or with other elements, especially column
separators, is important. Moreover, some letters, in particu-
lar capital letters in cursive script, may be poorly detected
due to disparity in height, or width (see Fig. 4). Overall, with
a decrease of 14% to 21% CER for the best HTR models,
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Fig. 4 Examples illustrating some of the difficulties of the extraction
task. a Material damages, tears, fading ink, chaotic erasures. b Partial
disappearance of the columns in the central binding. c Spatial disconti-

nuity of the rows, reassignment braces. dOverlapping text, inconsistent
line spacing and text size, challenging handwriting

it represents a clear improvement over [12]. Pragmatically,
knowing that a large part of the remaining text recognition
errors can probably be avoided only by improving the HTR
models themselves, we believe that the effect of applying
the intelligent framing heuristics is substantial. Besides, the
performance of text segments extraction also impacts the
detection of rows and households, which is probably themost
challenging task of the pipeline.

In the end, the HTR achieves 4.93% CER, which seems
excellent, especially in comparison with the Bentham ref-
erence dataset, whose complexity is similar. The repetition
of words in the censuses, however, as well as the large size
of our training dataset probably contributes to this perfor-
mance. Moreover, the limited number of classes (characters)
also plays a role. Obviously, the quality of the HTR varies
according to the regularity of the censor’s handwriting and its
representation or not in the random sample used for training.
While some parts of the document are easily readable, others
are more noisy (see Fig. 4a, 4d).

The structuration in a tabular database, which involves
the detection of rows and households, is the most challeng-
ing step. The difficulty in solving this problem is mainly due
to the variability of the formats. The way in which children
and residents are listed was identified as a frequent source of
mistakes. On the one hand, the text in lists is sometimes writ-
ten quite smaller, which can cause issues with row detection
(see Fig. 4d). On the other hand, the row spacingwith the next
household is not always respected, which can obviously lead
to allocation errors since the name on the list is physically
already overlapping with the next household. Additionally,
household detection is sensitive to the presence of diacritical
signs. For instance, the meaning of quotation marks, added
by the commissioner, is not always clear: they are some-
times used to indicate a repetition (ibidem), sometimes on
the contrary to indicate an empty datapoint. Moreover, as the
censuses were historically used as a support for the admin-
istrative management of the city, the pages are covered with

numerous diacritical signs, like crosses, arrows, reassign-
ment braces, or erasures, related to administrative changes,
or notes (see Fig. 4a, c). These marks are detected as text
segments, and their presence can complicate the detection of
the segments relevant to locate the household, for instance
the head of the household or the list of children.

Finally, the HTR post-correction step is conclusive. If the
results indicate that the use of dictionaries, even topical ones,
seems not to be relevant for historical data of this type, other
strategies can be effective to reduce theHTR errors. The inef-
fectiveness of approaches based on string distance seems to
be mostly induced by the difficulty to find relevant and fairly
exhaustive dictionaries, as this strategy is found to be effec-
tive in other contexts [60]. Beyond the historical and cultural
differences, the intrinsic variability of historical documents
is also an issue. Consequently, for every topic analyzed here
(first names, surnames, places, professions), the risk of dis-
torting the data even exceeds the probability of correcting it.
Statistical or neural network-based methods, however, show
promising results. In the end, we notice that the combination
of several methods, through a conservative majority vote, a
strategy that limits false positives, is the most effective set-
ting.

In general, the pipeline is designed to limit the cascad-
ing impact of errors on other steps of the process. However,
many dependencies remain. For instance, the detection of
columns is independent from the detection of text segments
and HTR. It may, however, slightly impact the detection of
rows and households, although the latter was designed to
be robust to missing fields, natively present in the docu-
ment. Conversely, the detection of rows heavily relies on
the detection of text segments. This double dependency may
explain the lower performance of the row detection since pre-
vious errors are accumulated in this step. The importance of
optimizing text segment detection for HTR was emphasized
above. Similarly, the performance of post-correction seems
proportionally better when the initial CER is lower, as was
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illustrated by measuring the impact of preprocessing. This is
due to a higher type-token ratio and a lower variance in the
HTR data, which improve the statistical separability of the
variants.

The overall qualitative analysis of the output shows
the nature of the errors encountered in the final results.
The quality of the database is satisfying, as it is read-
able and exploitable for research in historical demogra-
phy, with an adequate research protocol and methodology.
The data are also readily usable for ordinary historical
research or genealogy. The legibility is probably above
that of the original documents, for people who are not
trained in paleography, nor familiar with local patronyms
and toponyms.

5 Conclusion

The various validation steps highlighted the main challenges
of an automatic extraction. Among these, the natural vari-
ability of the raw historical data, due to the length of the
period covered by the corpus, but also differences in layout
between commissioners, changes in the table structure, as
well as corrections and notes added a posteriori. Digitization
flaws, such as columns disappearing in the central binding,
also contribute to the complexity of the problem.

To conclude, the pipeline allowed the extraction of over
6.2 million datapoints from 18,831 pages of historical cen-
suses using a robust algorithm, leveraging optimization
strategies to dynamically adapt to structural changes. Our
method can handle both explicit (e.g., printed separators) and
implicit (e.g., cells consisting of multiple lines of free text
without separators) layouts. HTR, combined with an effi-
cient pre-processing of text segments, and complemented
with a combination of post-correction strategies, reaches
the excellent character error rate of 3.44%. These various
improvements allow us to obtain quality data that can be
exploited for research in demography or social history.
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