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Abstract
1.	 Social media has created new opportunities to map cultural ecosystem services 

(CES) related to biodiversity at large scales. However, using these novel data to 
understand people's preferences in relation to these CES remains a challenge.

2.	 To address this, we trained a deep learning model to capture people's interactions 
with selected flora and fauna on Flickr as a cultural service related to biodiversity 
and compared this with citizen science data on iNaturalist, with photos of indi-
vidual species considered as human–species interactions.

3.	 After mapping the distribution of people's interactions in Great Britain on Flickr 
and iNaturalist, we find significant spatial differences in people's preferences on 
the two platforms.

4.	 Using a second, pretrained deep learning model, we were also able to identify dif-
ferent preferences for species groups such as birds on social media versus citizen 
science.

5.	 To better understand people's preferences, we also compared peoples' interac-
tions with species richness and abundance for a group of 36 bird species, some-
times finding large differences between people's interactions and these ecological 
measures.

6.	 Our findings demonstrate that social media can be used to include a wider range 
of preferences in CES assessments along-side citizen science data. However, 
these preferences reflect only a limited first-hand experience of biodiversity.

K E Y W O R D S
AI, biodiversity, citizen science, conservation, cultural ecosystem services, machine learning, 
social media
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1  |  INTRODUC TION

The importance of biodiversity for human well-being is widely rec-
ognised (Bowler et al., 2010; Cardinale et al., 2012). Alongside its 
intrinsic value, biodiversity generates a great amount of value for 
people through its contributions to a variety of instrumental and re-
lational benefits (Chan et al., 2016). For example, contact with living 
species can improve an individual's mental health (Bratman et al., 
2012; Hartig et al., 2003; Remme et al., 2021) while also contribut-
ing to better social relations (Kuo & Sullivan, 2001; Strevey, 2008; 
Weinstein et al., 2015) and a stronger sense of collective identity 
(Chan et al., 2018; Hausmann et al., 2016). These contributions 
represent cultural ecosystem services (CES) which can be broadly 
defined as ecosystems' contributions to the nonmaterial benefits 
arising from human–ecosystem relationships (Chan, Guerry, et al., 
2012; United Nations et al., 2021).

The complex socioecological relationships that determine the 
provision of CES by ecosystems require a wide range of methods to 
measure these services (Chan, Satterfield, et al., 2012; Daniel et al., 
2012), all of which help encourage the inclusion of cultural values 
in environmental assessments and policy-making (Satz et al., 2013). 
For example, participatory mapping and deliberative approaches 
employing qualitative methods from the social sciences have been 
used to examine CES in local settings (Kenter et al., 2016; Klain & 
Chan, 2012). These approaches are able to represent the context-
specific and situated knowledges in which ecosystems generate 
cultural value (Gould, Adams, & Vivanco, 2020). However, to in-
form decision-making at large scales, a level of generalisation is still 
needed (Gould et al., 2019; Norton et al., 2012). The generalising 
perspective put forward by the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES) therefore 
suggests a universally applicable set of CES categories (Díaz et al., 
2018), as does the System of Environmental-Economic Accounting 
Ecosystem Accounting (SEEA EA) framework which aims to better 
represent ecosystem value in national statistics (Edens et al., 2022; 
Hein et al., 2020).

Generally, such large-scale applications require quantitative, 
spatially explicit methods to measure CES (Gould et al., 2019; 
Havinga et al., 2020). The spatial representation of CES supports 
assessments at multiple scales (Hernández-Morcillo et al., 2013), 
addresses issues of double-counting (Bagstad et al., 2013) and 
enables the identification of CES ‘hotspots’ to focus management 
efforts (Allan et al., 2015). However, these methods are still faced 
with the challenge of capturing the large variety of preferences 
that underpin CES (Bieling & Plieninger, 2013) and in determining 
which ecosystem attributes are generating these services (Gould 
et al., 2019). In particular, the connection between CES and bio-
diversity remains an underexplored area of research (Echeverri 
et al., 2020; Hevia et al., 2017; McGinlay et al., 2017), especially on 
a spatially explicit basis (Gould et al., 2019; Plieninger et al., 2013). 
Consequently, more investigation of CES provision and biodiver-
sity is needed to better understand the complex interplay between 
CES and land management policies (Gould, Bremer, et al., 2020), 

including those related to conservation (Echeverri et al., 2021; King 
et al., 2017).

In this context, spatial methods using social media data have 
gained an increasing amount of attention in CES applications 
(Ghermandi & Sinclair, 2019; Havinga et al., 2020). This is because 
social media data enable large-scale analyses of CES based on a wide 
range of self-reported, revealed preferences, with the level of detail 
necessary to identify specific ecosystem attributes as contributing 
factors (Havinga et al., 2021a; Richards & Friess, 2015; van Zanten 
et al., 2016). Still, research on people's spatial interactions with bio-
diversity on social media has so far been limited (August et al., 2020). 
More specific data for these purposes are available such as the data 
generated by eBird and iNaturalist, two citizen science platforms 
through which millions of amateur naturalists record their interac-
tions with individual species (Havinga et al., 2020). Nevertheless, 
human–species interactions occur in numerous ways and citizen 
science initiatives do not capture the full range of people's interac-
tions with biodiversity (Schröter et al., 2017). For example, a holiday 
trip can facilitate interactions with local biodiversity through wildlife 
photography (Hausmann et al., 2018). Closer to home, a walk in the 
park can lead to a number of casual interactions related to social 
and physical activities which are then shared via social media (Lopez 
et al., 2020). Different interactions may also occur on social media 
due to variations in the socio-demographic characteristics of users 
versus citizen science (Ghermandi & Sinclair, 2019).

Social media platforms therefore present themselves as prom-
ising sources of data in capturing a wider range of CES related to 
biodiversity. Flickr, an image-led platform, has already been broadly 
utilised in environmental research, offering a wide range of photog-
raphy including images of individual species (Ghermandi & Sinclair, 
2019). To process these data in large quantities, however, requires 
machine learning methods (Pan et al., 2022; Richards & Tunçer, 
2018). Here, deep learning, which uses artificial neural networks to 
generate image predictions, has proven to be especially useful in ex-
amining CES and the biophysical elements generating these services 
(Egarter Vigl et al., 2021; Havinga et al., 2021a; Lee et al., 2022). 
In some recent examples using Flickr, deep learning models have 
accurately identified plant species (August et al., 2020), detected 
birdwatching activities (Koylu et al., 2019) and classified the prefer-
ences of national park visitors (Väisänen et al., 2021). Crowdsourcing 
constitutes an important part of these new techniques to capture 
a broad range of cultural preferences (Ghermandi & Sinclair, 2019). 
Meanwhile, deep learning is being directly integrated into citizen 
science platforms to support species classifications (McClure et al., 
2020), enabling the release of pretrained models for species detec-
tion (Van Horn et al., 2018).

These technological developments now enable large-scale CES 
analyses using social media. By utilising such large social datasets 
alongside citizen science data, large-scale CES assessments re-
lated to biodiversity can potentially include a greater diversity of 
individual preferences both due to demographic variations and the 
core purpose of different platforms (Fox et al., 2021; Scowen et al., 
2021). At the same time, the detail with which particular aspects 
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    |  3People and NatureHAVINGA et al.

of biodiversity can be identified using deep learning, including spe-
cific species of flora and fauna, means that better connections can 
be made between biodiversity and CES (Echeverri et al., 2020). For 
example, Cardoso et al. (2022) categorised CES related to biodi-
versity by identifying images of species on social media using deep 
learning and a training dataset labelled by the authors themselves. 
These techniques also allow predictions of very specific ecological 
characteristics, such as the class of species (Jarić et al., 2020). Such 
detailed information can ultimately shed new light on the types of 
preferences being expressed on different platforms, including social 
media, and how these relate to specific biophysical features, such as 
individual species and biodiversity measures, thus enabling a bet-
ter understanding of the types of individual preferences available 
to CES assessments (Gould, Bremer, et al., 2020; Satz et al., 2013). 
Drawing on crowdsourced data will in turn incorporate a larger sam-
ple of preferences versus those labelled by a small group of people 
(Dubey et al., 2016), therefore allowing CES assessments to scale at 
regional and country levels.

The objective of our study is to assess the potential of deep 
learning and social media to measure people's appreciation of bio-
diversity as a cultural service. We focus on Great Britain as our case 
study area and use iNaturalist data to compare activity between 
social media and citizen science. In doing so, we seek to answer 
the following research questions: (1) How can deep learning and 
crowdsourced data capture a broad range of human–species in-
teractions on Flickr? (2) What is the distribution of human–species 
interactions using Flickr data as a measure of CES related to biodi-
versity? (3) What species and species groups are users interacting 
with? (4) How do users' species interactions compare with biodi-
versity metrics as an indicator of wider cultural value? Answering 
these research questions will help create a better understanding of 

the types of preferences being expressed on social media in rela-
tion to biophysical features, an important aim of CES assessment. 
We hypothesised that Flickr users would have preferences for dif-
ferent species to users of citizen science data (Hausmann et al., 
2018; Levin et al., 2017) and that these revealed preferences would 
not necessarily match ecological measures of biodiversity (Dallimer 
et al., 2012).

2  |  METHODS

2.1  |  Study design

Our study focused on examining people's interactions with spe-
cies using deep learning and Flickr images (Figure 1). We defined 
a human–species interaction as an image depicting an individual 
species as its main subject and broadly conceptualised these 
interactions as a cultural service related to the cognitive enjoy-
ment of biodiversity (Havinga et al., 2020). To capture people's 
interactions on social media, we first trained and applied a deep 
learning model using a novel training technique designed to iden-
tify images of taken by users with the intention of documenting 
individual species, which we classed as human–species interac-
tions. To determine what species users were interacting with, we 
applied a second, pretrained deep learning model to generate in-
dividual species classifications. For each of these steps, we com-
pared our results to iNaturalist user activity to better understand 
social media as an alternative source of data. Finally, we compared 
users' interactions with bird population density data to examine 
the connection to biodiversity metrics as indicators of wider cul-
tural value.

F I G U R E  1  The overall study design. (a) Training data were collected using a random sample of Flickr and iNaturalist images within Europe. 
These were used to (b) (i) train a deep learning model to detect human–species interactions in Flickr images, defined as images depicting 
an individual species as their main subject. Then, (b) (ii) the species depicted in these images were classified by a second, pretrained deep 
learning model. Predictions were generated for (c) Great Britain. These were used to examine and compare (d) spatial interactions with 
species and (e) biodiversity indicators using modelled bird population data.

 25758314, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/pan3.10466 by B

ibliothèque D
e L

'E
pfl-, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |   People and Nature HAVINGA et al.

2.2  |  Study area data

To apply our deep learning approach at national scale in Great Britain, 
we used a Flickr image dataset created in previous research which 
provided 9.8 million geo-located images depicting outdoor scenes 
(Havinga et al., 2021a). These images were downloaded using meta-
data records retrieved through the Flickr Application Programming 
Interface (API) and filtered to outdoor images using the Places365 
deep learning model (Zhou et al., 2017). At the same time, for com-
parison, we compiled a new dataset of research-grade iNaturalist 
observation metadata, including image urls, by using the rinat pack-
age in R to access the iNaturalist API. In total, we downloaded 1.1 
million iNaturalist records for Great Britain. The image correspond-
ing to each record was accessed using the image urls during model 
prediction. Additional taxonomic information was downloaded using 
the taxize package in R. Ethical approval was not required for this 
study.

2.3  |  Species interaction model

2.3.1  |  Training and test data

To identify human–species interactions in images, we compiled a 
large dataset of images from iNaturalist and Flickr to train our deep 
learning-based species interaction model. For training, we used im-
ages uploaded to iNaturalist as a representation of people's interac-
tions with individual species and Flickr images as a representation of 
all other, ‘generic’ types of interactions to train our model. To down-
load the images, we used the ‘flickrapi’ library in Python to access 
the Flickr API and the rinat package in R to access the iNaturalist 
API. We downloaded images using a randomly generated sample 
grid, representing a 10% random sample of a 25 km resolution grid 
over the whole of Europe (Supporting Information Figure S1). Within 
each grid cell, we downloaded an equal number of images from each 
source by randomly downsampling the greater image set in the case 
of imbalances. This produced a 50/50 training dataset of 1.3 million 
Flickr and iNaturalist images. Finally, the images were split into train-
ing (70%), validation (10%) and test (20%) sets using a block holdout 
approach so that spatial overlap between training, validation and 
testing samples was prevented by drawing from nonoverlapping grid 
cells.

2.3.2  |  Model architecture

Our model consisted of a ResNet-18 with an additional five lay-
ers replacing the two final layers (He et al., 2016). The model was 
developed using the ‘PyTorch’ library in Python. Using PyTorch's 
built-in model library, we downloaded the original architecture with 
the model weights pretrained on the ImageNet database. We then 
adapted the model to produce a binary output, each converted to a 
0–1 range using a softmax transformation. This output represented 

either a human-species interaction, such as those observed on iN-
aturalist, or a generic interaction, consisting of any other kind of in-
teraction. Generic interactions were only observable in the Flickr 
data and included, for example, images of buildings, sporting events, 
transport and landscapes.

2.3.3  |  Model training

The first step was to train the model to distinguish between images 
depicting human–species interactions and generic interactions. All 
iNaturalist images were labelled as human–species interactions and 
all Flickr images were labelled as generic interactions. We set our 
deep learning model to train on the image dataset for 10 epochs 
with an initial learning rate of 1e05 for the weights of the final two 
layers and 1e04 for the rest of the network. The learning rate was 
halved every epoch. If the model failed to converge, we also tried 
halving the initial learning rates. We used Adam as our optimisation 
algorithm and a cross-entropy learning loss (Kingma & Ba, 2014). 
Therefore the standard, cross-entropy loss for a single image during 
model training was calculated as:

with  denoting the loss calculated over y, the training labels, and 
ŷ , the model predictions, for C number of classes (two), with a soft-
max applied to the model class predictions before calculating the 
loss.

During normal training, the model is penalised if it identifies a 
Flickr image as a human–species interaction because all Flickr im-
ages are labelled as generic interactions. However, the Flickr image 
may still be of an individual species, in which case it is beneficial to 
introduce a level of leniency into the training scheme by adding noise 
robustness to the image training label. This supports the inclusion of 
this type of Flickr image within the species image decision boundary 
of the final model (Figure 2). To do this, we applied a special minimum 
entropy dilution technique in the training scheme to adjust the influ-
ence of the model's predictions versus the training labels in the case 
of generic-labelled images (Marcos et al., 2022; Reed et al., 2015; 
Yves & Yoshua, 2006). Keeping the cross-entropy learning loss un-
changed for species-labelled images, we integrated a β dilution co-
efficient in the learning loss for generic-labelled images as follows:

with  denoting the loss calculated over y, the training labels, and 
ŷ , the model predictions, with each training label yi adjusted for 
the β coefficient. For example, if β = 0.1, this places a 10% empha-
sis on the original training labels, putting more trust in the predic-
tions of the current model. On the other hand, if β = 1 this would 
represent the baseline model with only the training labels consid-
ered in the training. Model accuracy on the test set is reported in 
the results.

(1)
(

y, ŷ
)

=
∑C

i=1
yi ∙ log

(

ŷi
)

.

(2)
(

y, ŷ
)

=
∑C

i=1

(

� ∙ yi + (1 − �) ∙ ŷi
)

∙ log
(

ŷi
)

.
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    |  5People and NatureHAVINGA et al.

2.3.4 | Selecting the dilution coefficient

To help identify the most optimal β dilution coefficient, we calculated the 
entropy across the species classification scores predicted by the species 
classification model (introduced in Section 2.4) in Flickr and iNaturalist 
observation images in Great Britain. A much larger entropy across Flickr 
images predicted as human–species interactions as compared to generic 
image predictions and iNaturalist images would indicate a significant 
drop in model confidence and suggest the inclusion of irrelevant images 
as human–species interactions. We calculated entropy as:

with H denoting the entropy across the 8142 individual species 
classification scores ŷ. As an additional accuracy measure, we also 
conducted a visual check of the images predicted as human–species 
interactions in the test dataset at 0.1 softmax intervals for each model 
with a dilution coefficient. We report these results in Supporting 
Information Table S1. Based on the model test accuracy statistics, 
the entropy across the species classification model's predictions and 
visual inspection of the predictions, the most optimal species inter-
action model was selected. This model was then used to predict the 
distribution of human–species interactions on Flickr in Great Britain.

2.4  |  Species classification model

To better understand the types of human–species interactions oc-
curring on social media versus citizen science, we applied a second 
deep learning model to classify the individual species in Flickr im-
ages identified as human–species interactions and compared this 
with iNaturalist. Using the species classification model's predictions, 
we examined what the most frequently photographed species were 
at the genus level on Flickr versus iNaturalist. To make the fairest 

comparison and control for biases between datasets, we also ran 
the model on the images of the iNaturalist observations and used its 
predictions to compare the two datasets.

To classify species in images, we applied the pretrained 2018 
iNaturalist competition winner model, which is capable of detect-
ing 8142 species. The model consists of a fine-tuned Inception V3 
deep learning model, pretrained on ImageNet.1 Because the model is 
trained to identify species sampled from a global geographic range, 
we were not primarily interested in using the individual species clas-
sifications as many would not be present in Great Britain. Rather, 
we were interested in their corresponding genus, family and species 
class classifications, hypothesising that their accuracy would be suf-
ficient to analyse the types of human–species interactions occurring.

Still, we felt it necessary to apply a second filtering step when 
conducting our analysis at the genus and family levels because 
model accuracy was found to be fairly low at these classification 
levels versus the taxonomic data associated with iNaturalist obser-
vations (Supporting Information Table S2 and S3). This second image 
filter excluded all species images with a classification score entropy 
higher than 2.42. This cut-off point was identified based on the 
entropy distribution across the iNaturalist image predictions, 2.42 
reflecting the mean entropy of image classification scores in the 
dataset (Supporting Information Figure S2). At species class level this 
filter was not needed because accuracy at phylum level was already 
found to be high at 89%. However, at genus and family level, accu-
racy needed to be improved to support the reliability of the results.

2.5  |  Comparison to biodiversity

2.5.1  |  Bird species richness

Bird biodiversity in Great Britain is of high cultural value, with particular 
emphasis placed on it through nationwide conservation efforts (Burns 

(3)H =
∑n=8142

i=1
P
(

ŷi
)

∙ logP
(

ŷi
)

.

F I G U R E  2  The effect of the β dilution 
coefficient on the species interaction 
model's decision boundary. By placing a 
less strict emphasis on the training labels, 
applying the β coefficient allows more 
images within the Flickr dataset to be 
identified as human–species interactions. 
For example, image (a) joins image (b) as 
a human–species interaction as a result 
of the decision boundary being moved 
versus the baseline model, while image (c) 
is still predicted as a generic interaction.
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et al., 2020). To gain a better understanding of the cultural preferences 
being expressed on social media, we compared human–species interac-
tions on Flickr with ecological measures of biodiversity as an indicator of 
wider cultural value. This wider value includes the intrinsic and relational 
values of nature associated with stewardship and the living existence of 
species irrespective of any in situ interactions with people (Anderson 
et al., 2022). To do this, we compared perceived bird species richness 
based on the number of species in Flickr images with a measure gen-
erated using modelled species density data. To better understand the 
variation in species richness versus citizen science, we also compared the 
predictions of the species classification model for iNaturalist observa-
tions and, as an additional point of reference, human population density 
which was sourced from the Office for National Statistics (ONS) and the 
Scottish Statistical Office (ONS, 2019; Statistics Scotland, 2019).

The bird species abundance maps were generated in previous work 
using generalised additive models (GAMs; Massimino et al., 2015). 
These modelled species abundance per km2 at 1 km resolution using 
explanatory variables including the percentage of different land cover 
types such as forest, grassland, coastal and urban land cover, as well as 
a three-dimensional thin plate penalised spline with longitude, latitude 
and elevation. The models also accounted for the detectability of bird 
species. We calculated the total number of birds at 10 km resolution 
and then, to compensate for the high variability in population density 
across species, we counted a species as present if the density per bird 
species was greater than its median density. As such, our indicator of 
species richness using modelled abundance data can be regarded as a 
high-likelihood measure of species presence on a grid cell basis.

We selected 36 bird species. This included a wide range of spe-
cies from a number of different habitats including Kestrels, Swallows, 
Goldfinchs, Mallards, Curlews, Great Tits and Swifts. In some cases we 
grouped the modelled densities of individual bird species within the same 
genus to enable a better comparison with the species classification mod-
el's predictions at genus level. This was because the model's predictions 
were more reliable at this taxonomic classification level. As with the bird 
density maps, we counted the number of Flickr images of bird species per 
10 km grid cell using the species classification model's predictions.

In most cases, we used the predictions of the model at the genus 
level for comparison with individual species. However, in some cases 
the visual variety within the genus was deemed to be too great to 
accurately capture the individual species in the bird density maps. In 
this case, we excluded some of the species model's predictions for 
individual species classifications within the genus. In other cases, it 
was more appropriate to group the model's predictions at the fam-
ily taxonomic level. A full list of the bird species densities used, the 

corresponding species classification model classes and justifications 
can be viewed in Supplementary Table S4.

2.6  |  Bird species abundance

To examine the relationships between people and bird species in more 
detail, we also compared the total number of human–species interac-
tions on Flickr with the 36 selected bird species and their total popula-
tion. In doing so, we sought to gain an insight into the most frequently 
photographed bird species versus their relative abundance. We did this 
by summing the modelled bird population densities per 10 km grid cell 
and comparing this to the total number of Flickr interactions per spe-
cies. To better understand the individual relationships between species 
interactions and total population, we fitted a linear model to capture 
the overall relationship between the two variables. At the same time, 
we also considered their conservation status in Britain to understand 
whether this had an effect on the preferences of Flickr users, adding 
this as a categorical variable to the linear model to test for significance.

2.7  |  Threatened migratory species

Finally, we also examined interactions over time on Flickr and iNatural-
ist with threatened migratory bird species. In doing so, we sought to 
understand people's preferences for a set of culturally significant and 
highly valued species from a conservation perspective. At the same 
time, this also allowed us to validate the interactions against known 
migratory periods as well as verified iNaturalist observation data. Four 
migratory bird species were examined: the Nightingale (Luscinia mega-
rhynchos), Swifts (Apodidae), Turnstones (Arenaria) and Wheatears 
(Oenanthe). All species feature on Britain's Birds of Conservation 
Concern Red or Amber List (Stanbury et al., 2021). We filtered the spe-
cies classification model predictions using these individual and taxo-
nomic groups with a species model class entropy score < 2.42.

3  |  RESULTS

3.1  |  Species interaction model

The accuracy of the species interaction models trained using dif-
ferent β coefficients is shown in Table 1. The overall accuracy of 
the models on the test dataset decreased with the value of the β 

Model
Test: 
overall

Test: generic 
interactions

Test: species 
interactions

Entropy: 
species 
interactions

Entropy: 
generic 
interactions

β = 1 97.8% 98.0% 97.6% 2.85 5.20

β = 0.1 97.6% 99.2% 96.0% 2.81 5.25

β = 0.01 95.6% 99.8% 91.4% 3.06 5.34

β = 0.001 90.0% 100% 79.0% 3.87 5.42

TA B L E  1  Overall accuracy of the 
species interaction model on the 
test dataset using different β dilution 
coefficients and the species classification 
entropy associated with each models' 
predictions for the Flickr image dataset 
in Great Britain. In comparison, a mean 
entropy of 2.42 was reported against the 
iNaturalist observation dataset.

 25758314, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/pan3.10466 by B

ibliothèque D
e L

'E
pfl-, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7People and NatureHAVINGA et al.

coefficient. The overall accuracy of the baseline (β = 1) model was 
high, at 97.8%. The β = 0.1 model achieved a similarly high 97.6% 
accuracy, followed by the β = 0.01 model with a 95.6% accuracy and 
the β = 0.001 model, with an accuracy of 90%. Increasing the value 
of the β coefficient by another factor of 10 to β = 0.0001 failed to 
produce a working model.

The drop in accuracy in detecting generic interactions in Flickr 
images can be directly related to the human–species interactions 
that are also found within the Flickr dataset. This was also reflected 
in the ability of the β = 0.001 model to predict images from iNatu-
ralist as human–species interactions with almost perfect accuracy. 
This shows how the dilution coefficient enables the model to detect 
a wider range of human–species interactions. However, there was a 
much larger drop in accuracy in detecting generic interactions rel-
ative to this accuracy improvement and versus the accuracy of the 
baseline model. We therefore found the β = 0.01 model to be the 
most optimal in terms of its accuracy on the test dataset, maximising 
its ability to detect human–species interactions while maintaining a 
high level of overall accuracy.

For each β model's image predictions of human–species interac-
tions, we also calculated the mean entropy across the species class 
scores predicted by the species classification model. We found en-
tropy to increase from 2.85 for the baseline model to 3.87 for the β 
= 0.001 model. This amounted to a 36% increase. For the β = 0.1, 
a much smaller increase of 1% to 2.89 was observed, with a small 
increase of 7% for the β = 0.01 model. The entropy recorded against 
the models' generic image predictions stayed relatively similar, only 
increasing from 5.20 for the baseline to 5.42 for the β = 0.001 model. 
In comparison, the entropy recorded for the species model predic-
tions on the iNaturalist dataset for Great Britain was 2.42.

A full set of randomly sampled images of each β models' predic-
tions at different confidence levels can be found in Supporting infor-
mation Table S1 online. Overall, we observed a good ability by the β 
= 0.01 model to identify species images, even at low confidence lev-
els, with a very small amount of generic-type images present among 
the models' predictions and the most and least confident predictions 
staying consistent. Based on these results, the test accuracy and 
species model entropy, we selected the β = 0.01 model to predict 
human–species interactions using Flickr images in Great Britain.

3.2  |  Human–species interactions

Table 2 shows the total number of species interactions and interac-
tions per user on Flickr for the main taxonomic groups. In all cases, 
the median number of images per user was quite low at one to two 
images. Birds were the most popular species with 349,522 images 
taken by 24,912 users. These saw the highest average amount of 14 
images per user with one user taking 21,086 images. Plants were the 
second most popular species, with 254,852 images taken by 24,352 
users, similar to birds. The maximum number of images taken by one 
user was much lower at 3064 images.

Insects were captured in 135,596 images by 12,616 users, about 
half of the level of activity for plants, with a similar average number 
of images per user. Mammals were captured by more users than in-
sects, with 16,146 users, but there were less images at 92,032 in-
teractions. Reptiles and Fungi saw a further drop in the number of 
interactions and users. In total, the species interaction model iden-
tified 941,812 images, representing 44,523 users. These took on 
average 21.2 species images each with one highly active user taking 
27,930 images.

Figure 3 shows the spatial distribution of species images on 
Flickr in Great Britain, and is compared to iNaturalist observations 
at a more local scale for different species groups in the Peak District 
and Greater London area. At national scale, human–species inter-
actions were concentrated around urban areas with large cities 
such as London, Birmingham, Manchester, Edinburgh and Glasgow 
showing some of the largest concentrations of interactions. On the 
other hand, higher elevation areas such as Snowdonia National Park 
in Wales, the North Pennines in England and the Scottish Highlands 
showed very little amounts of interaction.

At a more local scale, differences in the types of human–species 
interactions occurring on Flickr versus iNaturalist could be observed. 
Flickr users appeared to have a stronger preference for mammals, 
as observed in the Peak District, with similar levels of interaction 
with bird species in both the Peak District and Greater London area, 
although in different areas. For plant species, Flickr users showed 
lower levels of interest as compared to iNaturalist, both in the Peak 
District and Greater London area. This difference was even more 
pronounced for insects, as observed in the Greater London area, 

Species
Number of 
images

Number 
of users

Images 
per user 
(median)

Images per 
user (mean)

Images 
per user 
(max)

Birds 349,522 24,912 2 14 21,086

Plants 254,852 24,352 2 10.5 3064

Insects 135,596 12,616 2 10.7 4546

Mammals 92,032 16,146 1 5.7 4431

Reptiles 31,402 9167 1 3.43 957

Fungi 19,866 5202 1 3.82 1133

Other 58,542 23,058 1 2.54 470

Total 941,812 44,523 2 21.2 27,930

TA B L E  2  The total number of 
human–species interactions per user and 
taxonomic class on Flickr.
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8  |   People and Nature HAVINGA et al.

F I G U R E  3  Distribution of (a) all human–species interactions on Flickr in Great Britain at 10 km resolution, (b) human–species interactions 
by taxonomic class on Flickr and iNaturalist in the Peak District at 2.5 km resolution, as well as (c) human–species interactions by class and 
source in the Greater London area at 1 km resolution. A full species count comparison between Flickr and iNaturalist at the national level can 
be found in Supporting Information Figure S3.
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    |  9People and NatureHAVINGA et al.

with a much larger number of interactions on iNaturalist versus 
Flickr.

The tendency of Flickr users to capture large, common species 
was also evident at the genus classification level (Figure 4). Flickr 
users took the most pictures of swans, ducks and robins. Herons 
were also popular, as were squirrels, black geese, deer, gulls, 
thrushes and white/grey geese. In comparison, iNaturalist users 
took the most pictures of butterflies with three genera appearing 
in the top 10 most popular classes. Geraniums, lady bugs, honey 
bees and clover where also popular, again reflecting a much larger 
interest in plants and insects versus Flickr users. However, similar to 
Flickr, ducks, swans and thrushes were also captured a large number 
of times. Notably, the number of images per species was also more 
evenly distributed on iNaturalist than on Flickr.

3.3  |  Comparison to biodiversity

3.3.1  |  Bird species richness

Figure 5 shows a comparison of species richness based on models of 
species abundance versus perceived species richness on Flickr and 
iNaturalist for a selected group of 36 bird species. Most of England 
and Wales saw a high level of species richness, with reductions in 
large urban areas such as London, Birmingham and Manchester. On 
the other hand, very low species richness was recorded in higher alti-
tude areas such as Snowdonia National Park in Wales, the Yorkshire 
Dales and the Peak and Lake Districts. Similarly, the high altitude 
areas of Scotland including the Scottish Highlands also saw low 

bird species richness. However, richness increased further south in 
Scotland around key urban centres such as Edinburgh and Glasgow.

In contrast, the perceived species richness on Flickr was mainly 
concentrated in areas with large human populations such as London 
and other big cities in the north including Birmingham, Sheffield 
and Leeds. Coastal cities also saw a large variety of species cap-
tured by Flickr users, including Portsmouth and Exeter in the south. 
Two notable exceptions were the coastal and wetland areas on the 
northern coastline of Norfolk, England which saw a concentration 
of perceived richness away from a major urban centre. Also nota-
ble was the moderate amount of species richness perceived in some 
higher elevation areas such as in the Peak and Lake Districts, even in 
the northern part of the Cairngorms national park, in contrast to the 
species richness based on models of species abundance.

Higher perceived species richness in urban areas also occurred 
on iNaturalist and in similar cities such as in London and Edinburgh 
as well as the large cities in the north including Birmingham and 
Sheffield. However, notably, a much larger number of species were 
observed in and around the cities of Liverpool and Manchester. 
Higher elevation areas including the Lake and Peak Districts as well 
as similar parts of the Cairngorms, like Flickr, saw moderate amounts 
of perceived species richness. The higher level of perceived richness 
on the north coast of Norfolk was also observed for iNaturalist.

3.4  |  Bird species abundance

Figure 6 shows the comparison between people's interactions on 
Flickr with 36 bird species and species population as well as their 

F I G U R E  4  The most popular genera 
predicted by the species classification 
model in (a) Flickr species images and (b) 
iNaturalist observation images. Photos 
(top left to bottom right) © sagesolar, 
Peter Trimming, Peter Trimming, Gareth 
Williams, Steve G Jones, Steve Parker, 
Peter Hurford, Daniel, Ron Knight, 
Julian Burgess, Daniel Cahen, William 
Stephens, Barry Walter, William Stephens, 
Stephen McWilliam, Daniel Cahen, 
Barry Walter, Jon Mortin, Alec Mcclay, 
Don Loarie (cc-by-2.0 and cc-by-4.0, 
cropped from originals). Species model 
accuracy statistics against the iNaturalist 
observation dataset can be found in 
Supplementary Table S3.
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10  |   People and Nature HAVINGA et al.

conservation status. A weak relationship was found between the 
two variables based on the linear model (R2 = 0.17). A general divide 
can also be observed, as highlighted by the line of best fit, which 
shows two general groups of species. One group, below the line 
of best fit, see less interactions relative to their overall abundance 
while another group, above the line of best fit, see more interactions 

relative to their abundance. This pattern is most prominently fea-
tured towards the left side of the figure with large, charismatic and 
visible birds such as the Kestrel, Buzzard, Great Spotted Woodpecker 
and Nuthatch experiencing a large number of interactions relative 
to their population. Similarly, coastal and wetland birds such as the 
Curlew, Moorhen and Mallard also see a much larger amount of in-
teractions versus their population.

Bird species that experienced similar levels of interactions ver-
sus their population included the Goldcrest, Magpie, Goldfinch, 
Great and Blue Tit as well as Thurshes, Crows, the House Sparrow 
and Pigeons. On the other hand, other small birds such as the Long-
tailed Tit, Coal Tit, Meadow Pipit and Warblers saw less interac-
tions relative to their abundance. Similarly, the Skylark saw a lower 
relative amount of interaction versus its total population. Swifts 
and the Green Woodpecker experienced very little amounts of in-
teraction relative to their small population sizes. Overall, conser-
vation status did not determine any kind of relationship between 
interactions and species abundance as an additional categorical 
variable to the linear model (Amber, p-value = 0.4 and Red, p-value 
= 0.7, R2 = 0.14).

3.5  |  Threatened migratory species

The total monthly interactions on Flickr and iNaturalist with four 
threatened migratory species are shown in Figure 7. The Nightingale 
saw no or less than one interaction per month from October to 
February. Interactions started increasing from March up till May 
at which point interactions began falling again to September. 

F I G U R E  5  Species richness for a selection of 36 bird species calculated using models of species abundance, in comparison to the 
perceived species richness observed on Flickr (R2 = 0.14) and iNaturalist (R2 = 0.12) using the deep learning model predictions. Human 
population density is shown as an additional point of reference. The maps show different perceptions of species richness on Flickr and 
iNaturalist (R2 = 0.49), with activity linked to high population areas.

F I G U R E  6  The total interactions on Flickr for a selection of 
36 bird species compared to their total modelled population and 
conservation status in Britain. The grey line shows the line of best 
fit between interactions and total population with 95% confidence 
intervals (R2 = 0.17). This shows a weak overall relationship and 
highlights a division between species more or less frequently 
photographed relative to their abundance. Conservation status 
was not found to be significant when it was added as an additional 
categorical variable to the linear model (Amber, p-value = 0.4 and 
Red, p-value = 0.7, R2 = 0.14).
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    |  11People and NatureHAVINGA et al.

There were a much larger number of interactions on Flickr versus 
iNaturalist.

Swifts saw a similar pattern of monthly interactions with in-
teractions increasing from a very low baseline in April up into the 
summer months of June and July, before dropping off in August. In 

this case, there were similar amounts of interactions on Flickr ver-
sus iNaturalist with interactions on Flickr weighted towards the 
spring months and iNaturalist observations towards the summer 
months.

A different pattern in monthly interactions was observed for the 
Turnstone. In contrast, interactions peaked twice in the year. June 
and July saw the lowest amount of interactions, with interactions in-
creasing up to the late summer and early winter months, before de-
creasing to a lower level, although higher than the lows in June and 
July. Interactions then peaked again around February and March. As 
with Nightingales, there were a much larger number of interactions 
on Flickr than on iNaturalist.

Lastly, for the Wheater, two peaks in the number of interactions 
were also observed which were again much more pronounced on 
Flickr than on iNaturalist. The first peak occurred in April/May and 
the second in August/September. This time, a slightly different pat-
tern was observed in the interactions occurring on iNaturalist with 
much more interaction occurring on iNaturalist in June and July in 
comparison to Flickr.

4  |  DISCUSSION

4.1  |  Predicting cultural preferences for 
biodiversity using deep learning

Previous research has categorised images on social media related 
to human–species interactions using deep learning (Cardoso et al., 
2022; Edwards et al., 2021; Lee et al., 2022). However, our study 
represents one of the first studies to do this at scale, using crowd-
sourced data and with spatial metrics linked to specific species, a key 
research frontier in the field of CES research (Gould, Bremer, et al., 
2020), especially in relation to biodiversity (Echeverri et al., 2020). 
Drawing on such a large dataset of images from iNaturalist meant 
the interactions of a wide range of people could be incorporated into 
the species interaction model. In turn, the inherent noise in the Flickr 
data could be better accounted for with the implementation of the 
β dilution coefficient. This meant the scope of cultural interactions 
with individual species could be expanded to include a broader rep-
resentation of interest on Flickr without the need for manual label-
ling by the authors themselves.

The implementation of the β dilution coefficient drew on previ-
ous work in the machine learning literature surrounding noisy labels 
(Marcos et al., 2022; Reed et al., 2015). As a technical solution for 
deep learning applications, this limits overfitting and enables mod-
els to generalise better across new datasets (Song et al., 2020). We 
have used this technique to capture a broader set of interactions, 
and therefore preferences, between the two datasets, with accu-
racy improvements reflecting back on the percentage of species 
images captured by the model in the iNaturalist dataset. Further vi-
sual inspection confirmed the predictions as reliable. However, this 
also revealed that the β model approach did not solve the problem 
completely, as a small number of more generic images in the model's 

F I G U R E  7  Total monthly interactions on Flickr and iNaturalist 
with migratory bird species of conservation concern.
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12  |   People and Nature HAVINGA et al.

species image predictions remained such as images of stone carvings 
or people in natural settings. Nevertheless, the model's most con-
fident predictions remained consistent. To further validate its pre-
dictions, the image tags and descriptions could be used which often 
contain information related to the purpose of the image (Havinga 
et al., 2021b). To address this issue, a more conservative β coefficient 
may also be utilised, as the β = 0.1 model revealed. Nevertheless, 
the level of entropy associated with the β = 0.01 model's species 
image predictions versus the baseline model did not show a substan-
tial increase (7%) which suggests the β = 0.01 is still a valid choice 
in capturing the cultural preferences being expressed for individual 
species on social media.

The application of the species classification model connected 
cultural preferences to specific ecosystem features in the form of 
individual species classes. This is an important focus of CES research 
(Gould, Bremer, et al., 2020) and has also been highlighted in re-
search linked to social media (Gould et al., 2019; Lee et al., 2022). 
However, some uncertainties associated with the species classifica-
tion model's predictions should still be considered. Overall, across 
8142 species classes, the accuracy of the species model at the genus 
level was fairly low without a filter and led to an overall accuracy 
of 32% (Supporting Information Table S2). This improved to 50% by 
applying the entropy filter. A more conservative entropy filter could 
further improve accuracy at the expense of reducing the size of the 
obtained dataset. However, the accuracy of the model varied with 
the genus (Supplementary Table S3). The majority of the most fre-
quently captured genera were identified with 70% accuracy or more 
and the observed drop only concerned a limited amount of genera. 
This can be attributed to the great visual similarities between some 
species classes, such as in the case of the American deer Odocoileus 
genus, which was predicted as one of the most frequently captured 
species in Flickr images. This species is very similar in visual appear-
ance to the European fallow deer Dama dama. In these cases, accu-
rate model predictions at the family, order and phylum level can still 
provide useful information about how people are expressing prefer-
ences for specific species.

4.2  |  Differences in user preferences between 
social media and citizen science

The results of our study reveal key differences between the inter-
actions occurring on social media and citizen science. This was in 
line with our hypothesis that Flickr and iNaturalist users would ex-
press different preferences for individual species and supports calls 
to include a wider variety of big social datasets in CES assessment 
(Ghermandi & Sinclair, 2019; Scowen et al., 2021). Accurate informa-
tion on the demographics of social media users is very difficult to 
obtain, especially at large scales (Lenormand et al., 2018). In the ab-
sence of such information, a greater number of datasets represent-
ing the cultural preferences of a wider range of people can produce 
a more representative picture of the CES being generated by nature, 
so-called ‘data mashups’ (Ghermandi & Sinclair, 2019). This would 

begin to account for the various motivations and preferences of peo-
ple using different platforms such as Flickr and iNaturalist (Samani 
et al., 2018). For example, iNaturalist users have been found to up-
load a higher proportion of interactions than Flickr users in conser-
vation spaces, suggesting a greater interest in ecology (Lopez et al., 
2020).

In our study, Flickr users mostly shared their interactions with 
large, charismatic species, common to urban areas, with birds as 
the most popular type of species. This was in contrast to iNaturalist 
users, who were most interested in smaller species, including plants 
and insects. This trend was also visible at a spatial level, with users' 
activity concentrated in different areas. For example, in the case of 
people's interactions with bird and plant species in the Peak District 
(Figure 3). Our results are similar to those of other studies that show 
large-bodied mammals and birds are more frequently captured on 
Flickr versus iNaturalist, as well as other social media sites and sur-
veyed preferences (Hausmann et al., 2018; Lopez et al., 2020). This 
may be because Flickr users can more easily capture these type of 
animals from a distance with high-specification cameras (Singla & 
Weber, 2011). Different user groups active on both platforms may 
be driving these differences, such as the active digiscoping commu-
nity on Flickr (Lee & Tsou, 2018). As a result, Flickr can be a good 
additional source of data alongside citizen science data due to the 
number and variety of interactions occurring in the same locations 
(August et al., 2020; Mancini et al., 2018). While people of differ-
ent ages and genders have been found to be active on Flickr (Cox 
et al., 2008; Kipp et al., 2017; Lenormand et al., 2018), citizen science 
volunteers are often middle aged, white and male (Aristeidou et al., 
2021; Cooper et al., 2021).

Nevertheless, although we found differences in user preferences 
between platforms, these may only reflect the varying preferences 
of a small number of people (Mancini et al., 2019; Tenkanen et al., 
2017). We discovered strong user biases within our results such as 
the 27,930 human–species interactions occurring through one user, 
about 3% of the total number of interactions (Table 2). For large-
scale assessments, including national assessments, it is important 
that a representative sample is collected (Hein et al., 2020; Raymond 
et al., 2014). These biases therefore present a key challenge in cap-
turing a complete range of preferences using these new methods 
(Ghermandi & Sinclair, 2019). Still, these biases highlight the impor-
tance of using a combination of data sources as these may prove to 
be complementary in gaining a more representative measure of CES 
(Tenkanen et al., 2017; Wilkins et al., 2022). Our study also high-
lighted how combining multiple data sources with a spatial approach 
can help in identifying a greater number of potential CES hotspots 
despite user biases (van Zanten et al., 2016).

4.3  |  Comparison with bird biodiversity indicators

A large number of environmental policy and conservation efforts in 
Great Britain are focused on bird biodiversity (Burns et al., 2020). The 
importance placed on bird biodiversity through these efforts reflects 
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the intrinsic and relational values of people (Anderson et al., 2022). 
This value, however, was not captured by people's activity on social 
media in our study with a mismatch between user–bird interactions 
and modelled abundance data. While some studies have found a con-
nection between higher levels of biodiversity and first-hand cultural 
appreciation (King et al., 2017; Lindemann-Matthies et al., 2010), our 
comparisons at national level did not. For example, the perceived spe-
cies richness of the 36 selected species on Flickr and iNaturalist was 
highest in urban areas. A misalignment between people's first-hand 
experiences and actual biodiversity has been reported in similar stud-
ies at smaller scales (Belaire et al., 2015; Dallimer et al., 2012; Graves 
et al., 2017). Preferences for bird species also showed no clear rela-
tionship with conservation status, nor were interactions necessarily 
related to species abundance. This further highlighted the effect of 
species visibility in terms of size, charisma and preferred habitat on 
the level of interaction, including factors such as the quality of pho-
tography equipment needed to capture some species (Singla & Weber, 
2011). For example, the large number of interactions with Kestrels and 
Buzzards relative to their total population can be related to their iconic 
status, size and presence in the skies above open farmland. Mallards 
and Robins are also very visible and commonly found in urban areas. 
In contrast, other birds with less amounts of interaction such as the 
Meadow Pipit and the Skylark, besides its brief song flight, are mostly 
inconspicuous on the ground in agricultural areas, or Warblers, which 
are fast-moving and prefer woodland (Sharrock, 1976).

On the other hand, the monthly analysis of interactions with a set 
of threatened migratory species matched known migratory periods. 
Both Nightingales and Swifts begin arriving in Britain in April and 
May and start to leave in July and August (Holt et al., 2012; Hurrell, 
1951). Turnstones and Wheatears see two key migratory periods in 
the spring and autumn months, as large populations make their way 
through Britain (Bairlein, 2008; Branson et al., 1978). This shows 
how the use of social media data can still enable an accurate analysis 
of how people express preferences for highly valued species from a 
conservation perspective (Di Minin et al., 2015). Notably, interac-
tions were also much higher on Flickr versus iNaturalist. Generally, 
however, the weak connection between interactions and species 
conservation status shows how social media only reveals very spe-
cific interactions between people and biodiversity and therefore can 
only be directly related to a limited set of cultural preferences as 
they relate to biodiversity. Nevertheless, we only considered species 
richness in terms of the 36 bird species we selected. Considering a 
larger group of species across different taxonomic classes may re-
veal stronger relationships. For bird species richness, the use of a 
median threshold to count a bird species as present using the mod-
elled data may also have affected our comparison as this value may 
not be appropriate for all species (Nenzén & Araújo, 2011).

4.4  |  Application in large-scale CES assessments

The specificness with which cultural preferences for biodiversity 
can be measured using social media and deep learning presents 

both challenges and opportunities in conducting large-scale CES as-
sessments. The key challenge facing decision-makers in ecosystem 
management is how to integrate culture in a way that both reveals 
its diversity and makes it amendable to systematic appraisal (Fish 
et al., 2016). The scale and level of detail provided by social media 
and deep learning enable the systematic appraisal of CES at large 
scales (Egarter Vigl et al., 2021). Such appraisals can support the 
quantification of CES beyond simple scoring methods (Boerema 
et al., 2017) and better link ecosystem condition and processes to 
CES (Gould, Bremer, et al., 2020). For example, we were able to 
identify specific species and locations generating CES in our study, 
and capture changes related to threatened bird species through the 
seasons. This is especially relevant to ecosystem service assessment 
frameworks such as the SEEA EA which aim to connect CES meas-
urements to national statistics while monitoring ecosystem service 
supply and ecosystem condition over time (Hein et al., 2015, 2020). 
Making such information available, and in a format compatible with 
frameworks such as the SEEA EA, is one important way in which 
to make the ecosystem service concept more relevant to decision-
making (Mandle et al., 2021).

However, in seeking to capture CES at large scales, deep learning 
and social media-based methods take on a reductionist approach to 
CES assessment which may ignore important context-specific mean-
ings (Gould, Adams, & Vivanco, 2020). We approached our study of 
CES in very broad terms, relating human–species interactions to the 
cognitive enjoyment of biodiversity (Havinga et al., 2020). Still, there 
are many different individual, collective and sometimes overlapping 
contexts in which CES are generated and these may have varying de-
grees of value (Chan, Satterfield, et al., 2012; Fish et al., 2016). Much 
of this value may not be measurable through the quantification of 
single human–species interactions because not all are recorded on 
social media (Calcagni et al., 2019) or because they only emerge 
through deliberative approaches (Kenter et al., 2016). Nevertheless, 
the data that are available through social media do make it possible 
to untangle some of this cultural variation. For example, the text data 
associated with Flickr images can contain quite specific motivations 
for people's interactions (Havinga et al., 2021b). At the same time, 
social media also offers the opportunity to examine collective expe-
riences through the presence of virtual communities (Langemeyer 
& Calcagni, 2022). It is therefore still important to use a variety of 
approaches to CES assessment with different epistemological un-
derpinnings (Raymond et al., 2014; UK NEA, 2014).

5  |  CONCLUSION

Our findings show that social media and deep learning capture 
unique cultural preferences for biodiversity, complementing 
data from citizen science. These data can therefore be used to 
broaden the range of preferences reflected in CES assessments. 
At the same time, using deep learning, these preferences can also 
be linked to specific ecological features, such as individual spe-
cies classes, further enriching the information available to CES 
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assessments. Nevertheless, social media, as well as the citizen 
science data available on iNaturalist, represent preferences for 
species that do not align with measures of bird species richness 
and abundance. Interactions with a set of threatened migratory 
species did, however, align with known migratory patterns over 
time. This shows how the data available through these platforms 
only captures part of the cultural value of biodiversity, highlight-
ing the benefit of these novel techniques in capturing specific 
interactions linked to individual species classes but not overall 
biodiversity. Finally, the advantages of these techniques are espe-
cially useful to large-scale CES assessments related to biodiversity 
which require large amounts of spatial data on people's interac-
tions with nature. Because of this, the application of social media 
and deep learning can support a wider and more detailed range 
of CES in ecosystem service assessments, potentially supporting 
much-needed future efforts in CES assessment at national scale.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. European sample grid at 25 km resolution to download 
the Flickr and iNaturalist image training dataset showing the block-
out approach used to test, train and validate the model.
Figure S2. Distribution of iNaturalist observation image entropy 
scores based on the species classification models' predictions.
Figure S3. The percentage of images per species “supercategory” in 
Flickr species images and the images of iNaturalist observations, as 
predicted by the species classification model.
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Figure S4. Prediction confidence score distribution on the Flickr 
data in Great Britain using the beta = 0.01 model for human-species 
interactions (1.0 = most confident).
Table S1. Randomly sampled images (hyperlinks) of the species 
interaction model's predictions using different beta coefficients. 
Confidence bands reflect the confidence of the image being a 
species image (species image => 0.5, max = 1). Figure S4 shows the 
distribution of scores for the beta = 0.01 model.
Table S2. Overall accuracy of the species classification model at 
different taxonomic levels.
Table S3. Overall accuracy of the species classification model with 
a <2.42 entropy filter on the iNaturalist observation dataset for the 

most frequent genera predicted on Flickr and iNaturalist.
Table S4. Bird density and species model class groupings to conduct 
the biodiversity comparison.
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