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The important thing is not to stop questioning. Cu-
riosity has its own reason for existing. One cannot
help but be in awe when he contemplates the mys-
teries of eternity, of life, of the marvelous structure of
reality. It is enough if one tries merely to comprehend
a little of this mystery every day. Never lose a holy
curiosity. — Albert Einstein
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Abstract

The miniaturization of integrated circuits (ICs) and their higher performance and energy
efficiency, combined with new machine learning algorithms and applications, have paved
the way to intelligent, interconnected edge devices. Many domains could benefit from their
global higher efficiency —in costs, energy, performance, and environmental impact. In the
medical domain, they could revolutionize how healthcare services are delivered to people.
For example, continuous monitoring of a person’s biosignals could help detect mental
or physiological health conditions earlier and better prevent their potential degradation.
It also enables more personalized treatments based on the data of a patient. Ultimately,
these data could create a digital twin of a person used to simulate multiple treatments and
find the optimal one.

Some systems already take advantage of today’s ICs computation power and energy
efficiency by providing long-term monitoring of some biosignals. For example, medically
certified patches that can record throughout days and weeks exist, while this was only
possible in medical centers before and for a short period. However, the stringent con-
straints due to the current certification regulations limit their optimizations. Therefore,
their use is reserved for advanced monitoring of patients with a high suspicion of certain
diseases, not for prevention purposes. On the other hand, publicly available devices that
record various biosignals already exist, such as smartwatches and fitness trackers. These
devices, connected together, could create wireless body area networks (WBANs) that could
democratize personalized and preventive healthcare services. However, these devices
usually require, in the best case, a daily charge which limits their monitoring capability.
Additionally, these devices must approach the high quality of clinical devices used in
hospitals. This is the key to providing proper monitoring and diagnosis in daily situations
that reduce healthcare costs.

Therefore, higher efficiency is required, but tasks embedded systems with two opposite
goals: low-power operation and high performance. The current trend to reach these goals
is toward heterogeneous platforms, including multi-core architectures with heterogeneous
cores and hardware accelerators. The latter can be divided into custom non-programmable
accelerators and flexible (programmable) domain-specific cores. Fixed-function or custom
accelerators, referred to as application-specific integrated circuits (ASICs) in this thesis,
are very efficient at implementing a particular functionality for a given set of constraints
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(e.g., fast Fourier transform (FFT) or finite impulse response (FIR) filter engines). However,
they are inflexible when facing application-wide optimizations or functionality upgrades.
Conversely, programmable cores, referred to as domain-specific instruction-set processors
(DSIPs) in this thesis, offer higher flexibility but often with a penalty in area, performance,
and, above all, energy consumption.

This thesis explores the performance versus flexibility tradeoff at the architecture
level to advance the Pareto front of current solutions. In particular, the goal is to find
innovative architectural features that improve the energy efficiency of embedded devices
while maintaining (or increasing) their throughput. This exploration has led to VWR2A, an
heterogeneous DSIP architecture template targeting the biomedical domain that integrates
high computational density and low-power memory structures (i.e., very-wide registers
and scratchpad memories). Compared to two state-of-the-art programmable architectures
targeting the biomedical domain, an ARM Cortex-M4 based system-on-chip (SoC) and a
baseline coarse-grained reconfigurable array (CGRA), the VWR2A instance displayed an
energy-delay product (EDP) improvement of 104.8× and 19.8×, respectively.

In addition, VWR2A enables the generation of architectures that narrow or close the
energy and performance gap at the kernel level with respect to ASICs. In particular, one
VWR2A instance has shown similar or better performance on FFT and FIR filter kernels
compared to an FFT and a matrix processor ASICs, respectively. In terms of energy, at
the kernel level, the VWR2A instance is still 4.9× less efficient than the FFT ASIC, but
consumes 22.7% less energy than the matrix processor. However, VWR2A provides the
flexibility to accelerate multiple kernels, resulting in significant energy savings at the
application level compared to ASIC-based designs, with an EDP improvement of 4.4×.
These results support the main hypothesis of this thesis: that programmable accelerators
(i.e., DSIPs) can increase the energy efficiency of embedded devices, particularly in the
biomedical domain.

Finally, as VWR2A remains fully programmable, it can execute most of the source code.
In particular, control-intensive kernels, which are often present at the application level
and usually left to be executed by the CPU (i.e., a general-purpose processor (GPP)), can
be mapped. One VWR2A instance optimized for such code has demonstrated higher
performance and energy efficiency compared to an ARM Cortex-M4 processor and a
RISC-V Ibex processor. At the application level, the overhead of the programmability
(compared to ASICs) is largely compensated with higher code coverage. This results in an
EDP improvement as significant as 27.6× when both control-intensive and data-intensive
(e.g., FFT, FIR filter, median) kernels are executed by a VWR2A instance compared to an
SoC using a GPP+ASICs combination.
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Résumé

La miniaturisation des circuits intégrés (integrated circuits (ICs)) a permis une augmenta-
tion de leurs performances et de leur efficacité énergétique. Combinées à de nouveaux
algorithmes et applications basées sur l’apprentissage automatique (machine learning),
ces circuits ont ouvert la voie à des dispositifs de périphérie (edge devices) intelligents et
interconnectés. De nombreux domaines pourraient bénéficier de leur meilleure efficacité
globale en termes de coûts, d’énergie, de performances et d’impact environnemental.
Dans le domaine médical, ils pourraient révolutionner la manière dont la population ac-
cède aux services de santé. Par exemple, la surveillance continue des signaux biologiques
d’une personne pourrait aider à détecter plus tôt des problèmes de santé mentale ou
physiologique et à mieux prévenir leurs dégradations potentielles. Ces appareils pour-
raient également permettre des traitements plus personnalisés basés sur les données des
patients. L’ultime but étant de créer un jumeau numérique d’une personne, reposant
sur ses données biologiques, sur lequel plusieurs traitements peuvent être simulés pour
trouver celui qui est optimal.

Certains systèmes tirent déjà parti de la puissance de calcul et de l’efficacité énergétique
des circuits intégrés existants et permettent une surveillance à long terme de certains
signaux biologiques. Par exemple, des patchs médicaux existent et peuvent enregistrer sur
plusieurs jours, voir semaines, alors que, précédemment, cela n’était possible que dans
des centres médicaux et pour une courte période. Cependant, les réglementations en
vigueur imposent des contraintes importantes qui limitent l’optimisation de ces appareils
requérant une certification médicale. De ce fait, leur utilisation est réservée pour un
suivi médical des patients avec une forte suspicion de certaines maladies, et non à des
fins de prévention. D’un autre côté, il existe des appareils qui sont accessibles au grand
public et qui enregistrent divers signaux biologiques, tels que les montres intelligentes
(smartwatches) et les traqueurs de fitness. Ces appareils, connectés ensemble, pourraient
créer des réseaux de capteurs corporels sans fil (wireless body area networks (WBAN)) qui
pourraient démocratiser les services de santé personnalisés et préventifs. Cependant, ces
appareils nécessitent généralement, dans le meilleur des cas, une recharge journalière
ce qui limite leur capacité de surveillance. De plus, ces appareils doivent fournir une
information d’une précision aussi proche que possible des appareils cliniques utilisés dans
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les hôpitaux. C’est le point essentiel pour assurer une prévention efficace au quotidien et
ainsi réduire les coûts des systèmes de santé.

Pour atteindre ces objectifs, il est nécessaire d’atteindre une plus grande efficacité glo-
bale, mais cela confronte les systèmes portatifs (embedded systems) avec deux objectifs
opposés : un fonctionnement à faible consommation d’énergie et des performances éle-
vées. La tendance actuelle pour atteindre ces objectifs est de développer des plates-formes
hétérogènes, avec des architectures multicœurs et des cœurs hétérogènes ainsi que des
accélérateurs matériels (hardware accelerators). Ces derniers peuvent être divisés en accé-
lérateurs spécialisés non programmables et en accélérateurs flexibles (programmables)
spécifiques à un domaine. Les accélérateurs avec une fonction dédiée ou spécialisée,
appelés circuits intégrés spécifiques à l’application (application-specific integrated cir-
cuits (ASIC)) dans cette thèse, sont très efficaces pour exécuter une certaine fonctionnalité
sous des contraintes données (par exemple, une transformée de Fourier rapide (FFT)
ou des filtres à réponse impulsionnelle finie (FIR)). Cependant, ce type d’accélérateur
est inadapté aux optimisations ou aux potentielles mises à niveau d’une application à
cause de sa non-programmabilité. À l’inverse, les accélérateurs programmables, appelés
processeurs à jeu d’instructions spécifiques au domaine (domain-specific instruction-set
processors (DSIP)) dans cette thèse, offrent une plus grande flexibilité mais souvent avec
une pénalité en termes de dimensions, de performances et, surtout, de consommation
d’énergie.

Cette thèse explore le compromis entre performance et flexibilité au niveau de l’ar-
chitecture matérielle dans le but d’améliorer les architectures programmables existantes.
En particulier, l’objectif est de trouver des fonctionnalités architecturales innovantes qui
améliorent l’efficacité énergétique des dispositifs portatifs tout en maintenant (ou en
augmentant) leur puissance de calcul. Cette exploration a conduit à VWR2A, un modèle
d’architecture DSIP hétérogène ciblant le domaine biomédical et qui intègre une densité
de puissance de calcul élevée et des structures de mémoire à faible puissance (c’est-à-dire
des registres très larges et des mémoires scratchpad). Par rapport à deux architectures
programmables de pointe ciblant le domaine biomédical, un système-sur-puce (system-
on-chip (SoC)) basé sur un processeur ARM Cortex-M4 et une matrice reconfigurable
à gros grains (coarse-grained reconfigurable array (CGRA)), une instance de VWR2A a
démontré une amélioration du produit énergie-délai (energy-delay product (EDP)) de
104.8× et 19.8×, respectivement.

De plus, VWR2A permet la génération d’architectures qui réduisent ou comblent
l’écart de performances et de consommation d’énergie au niveau d’un noyau (kernel) par
rapport aux ASICs. En particulier, une instance de VWR2A a montré des performances
similaires ou meilleures sur les noyaux de FFT et filtre FIR par rapport à un accélérateur
spécialisé (c’est-à-dire un ASIC) pour exécuter des FFTs et un pour le calcul matriciel.
En termes d’énergie, au niveau du noyau, l’instance basée sur VWR2A est toujours 4.9×
moins efficace que l’ASIC spécialisé pour les FFTs, en revanche il consomme 22.7% moins
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d’énergie que le processeur matriciel. Cependant, VWR2A offre la flexibilité d’accélérer
plusieurs noyaux, ce qui entraîne des économies d’énergie significatives au niveau d’une
application par rapport aux systèmes basés sur des ASICs, avec une amélioration de
l’EDP de 4.4×. Ces résultats soutiennent l’hypothèse principale de cette thèse : que
les accélérateurs programmables (c’est-à-dire les DSIPs) peuvent augmenter l’efficacité
énergétique des dispositifs portatifs, en particulier dans le domaine biomédical.

Enfin, comme VWR2A est entièrement programmable, il peut exécuter la majeure partie
du code source d’un domaine. En particulier, les noyaux à forte intensité de contrôle (c’est-
à-dire avec beaucoup d’instructions de contrôle), qui sont souvent présents au niveau
d’une application, peuvent aussi être exécuté par VWR2A, alors que généralement ils le
sont par un processeur à usage général (general-purpose processor (GPP)). Une instance
de VWR2A optimisée pour un tel code a démontré des performances et une efficacité
énergétique supérieures à celles d’un processeur ARM Cortex-M4 et d’un processeur RISC-
V Ibex. Au niveau d’une application, le coût supplémentaire de la programmabilité (par
rapport aux ASICs) est largement compensé par une couverture plus élevée du code d’une
application. Cela se traduit par une amélioration de l’EDP aussi élevée que 27.6× lorsque
les noyaux à forte intensité de contrôle (control-intensive kernels) et à forte intensité de
données (data-intensive kernels) sont exécutés par une instance de VWR2A par rapport à
un SoC utilisant une combinaison GPP+ASICs.
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1 Introduction

Intelligent and autonomous systems are becoming increasingly present in our daily lives:
smart buildings [1, 2], autonomous vehicles [3, 4], smartphones, and wearable devices [5,
6] (e.g., for medical or security purposes). These domains benefit from the promise of
better global efficiency and cost enabled by these smart devices [7]. In addition, I believe
they are one inevitable answer (from the technology side) to the climate crisis by creating
a more sustainable society in which human development and the prosperity of our planet
are not opposed. Some domains have already embraced these devices and see their
benefits, but many more could also take advantage of them. There are different reasons
why some areas have not yet incorporated such devices: law restrictions, societal change
resistance, or a lack of reasonable engineering solutions.

1.1 Intelligent devices in the biomedical domain

The biomedical domain is one example that could greatly benefit from intelligent devices.
First, their use could help prevent some diseases by detecting early abnormal conditions
thanks to continuous monitoring of biological signals (biosignals). This could trigger
preventive treatment or even prevent death. According to the World Health Organization
(WHO) 2019 statistics [8], persons aged between 30 and 69 years old have the most chance
(i.e., 40.0%) of dying of cardiovascular diseases (e.g., ischaemic heart disease, stroke). They
are part of what is called noncommunicable diseases (NCDs), which account for 77.0% of
the total deaths, as shown in Figure 1.1. For this reason, NCDs drive much research on
the medical and engineering sides to understand their causes and effects, and provide
technological solutions to prevent, detect, and monitor such diseases.

The early prevention of health conditions would also positively impact the cost of our
health care system by preventing costly and heavy treatments that often occur at later
stages of diseases. Figure 1.2 shows the total health expenditure as a percentage of a
country’s gross domestic product (GDP) from 1970 to 2021 as provided by the Organisation
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Figure 1.1: 2019 world death causes as reported by the WHO [8] for persons aged between
30 and 69 years old. (a) Three principal groups of death causes. (b) NCD death causes
breakdown.
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Figure 1.3: Wireless Body Area Network (WBAN) concept with multiple sensor nodes com-
municating through a wireless channel and to the internet through a network coordinator
unit. Copied from [11], with the courtesy of Grégoire Surrel.

for Economic Co-operation and Development (OECD) [9]. This topic is critical, especially
in countries with an aging population and a low birth rate. Additionally, the use of wearable
devices could also lower the environmental impact of the healthcare system. For example,
according to an analysis of the United States Energy Information Agency (EIA) [10], on
the commercial energy consumption of buildings, hospitals are the third largest energy
consumer (per square meter) after food service and food sales facilities in the United
States. Avoiding extended hospitalization periods (or re-hospitalization) through better
prevention would reduce the hospital’s energy consumption.

In this context, smart wearables and wireless body area networks (WBANs) are par-
ticularly promising by enabling continuous monitoring and personalized healthcare for
everyone. Figure 1.3 shows the concept of WBAN, where multiple sensors record various
biosignals, such as electrocardiogram (ECG), blood oxygen saturation, or body motion,
and communicate through a wireless channel to create a WBAN. These devices should
be worn in daily life situations to allow long monitoring periods and provide efficient
healthcare services at home (i.e., not in a hospital). Therefore, these nodes should be as
small as possible to reduce their discomfort. This limits their battery capacity, thus, their
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processing power, as such devices should ideally be able to operate for multiple days or
weeks without having to be recharged.

Ultimately, the collected data could create a digital twin: a virtual biological represen-
tation of a person. Combined with a human body’s behavioral and prediction models, this
could offer a virtual solution to evaluate various treatments and estimate their impact on
a person to find the optimal solution [12, 13]. Without going this far, this thesis proposes
solutions to the less disruptive home diagnosis situation where information is gathered
and locally processed to provide continuous monitoring, preventive diagnosis, and alerts.

1.1.1 Embedded biosignal processing platforms

There are two main classes of devices with different requirements and goals: medically cer-
tified and recreational (available to the general public). The formers provide very accurate
measurements that comply with medical standards and are often legally required to have
a recognized diagnosis and access to the corresponding treatments. Recent devices, such
as the Phillips ePatch [14] or the Smartcardia 7-Lead ECG patch [15], are examples of the
potential change WBANs could produce in the biomedical field. These devices simplify the
recording of ECG signals and extend the monitoring time compared to previous solutions,
where such monitoring was only possible in medical centers (with bulky devices) and
for a limited recording time. For example, the Smartcardia patch allows up to 14 days of
monitoring and storage on the device, and seven days of real-time connectivity with the
cloud [16].

However, medically certified systems have to respect many constraints that limit their
optimization. For example, the ePatch and Smartcardia only record and transmit data
with minimal processing on the platform, and the analysis is performed on the cloud.
One reason is that full disclosure of data is still required for medical-grade devices. In this
case, processing the data in the cloud is the best option, as the data must be transmitted.
Nevertheless, such a scenario is reserved when a particular disease is suspected, and
medical certification is required.

On the contrary, more preventive situations have different requirements. For example,
recreational wearable devices that measure different biosignals exist. Smartwatches or
fitness trackers are the most common example of such devices. They typically measure
the heart rate (HR), the blood oxygen saturation (SpO2), and the body’s motion. Coupled
with a cardiac monitoring belt, they can also monitor a person’s ECG. These devices offer
continuous monitoring of various biosignals and enable the early detection or preventive
monitoring of various health conditions. For example, many NCDs, including some types
of diabetes, hypertension, and cardiovascular diseases, are linked to unhealthy lifestyles,
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such as a lack of physical activities or an improperly balanced food regime. These devices
provide daily monitoring that could help each individual be aware of unhealthy behaviors
and try to minimize them to lower the risks of certain diseases. The research mainly
focuses on ECG-based detection methods targeting cardiovascular diseases [17–19] as
they represent the highest death risk, as shown in Figure 1.1. These devices have different
constraints than the medically certified ones and can be further optimized by moving the
computational load toward the edge and reducing the communication energy overhead.
However, to provide helpful monitoring and accurate diagnosis, they must approach the
high-quality information delivered by clinical devices and professionals. This scenario
confronts embedded systems with two opposite goals: low-power operation and high
performance.

1.1.2 Low-power architectures and limitations

Low-power architecture exploration is an active area of research, as we still need to obtain
higher energy efficiencies to enable long-lasting operation between battery recharges.
An avenue to reach these goals is toward heterogeneous platforms, including multi-core
architectures with heterogeneous cores and hardware accelerators. The latter can be
divided into custom accelerators, or application-specific integrated circuits (ASICs), and
flexible (programmable) cores, or domain-specific instruction-set processors (DSIPs).

In the literature, ASICs are often presented as the most efficient architecture and as
the solution to overcome existing embedded systems’ computational power and energy
efficiency bottleneck. The justification is shown in Figure 1.4, where the performance
versus programmability tradeoff is illustrated for various architectures. This trend is quite
intuitive as a circuit customized for a task and a given set of constraints is usually more
efficient than a more flexible architecture. In this context, implementing ASICs seems to
be the ideal solution. Unfortunately, this conclusion is based on simplified scenarios, and
other constraints arise when complete applications and real-life scenarios are considered
making ASICs suboptimal designs.

Three main factors limit the design and integration of ASICs in today’s low-power
commercial designs, the first being their lack of flexibility. While Figure 1.4 shows that
ASICs are the optimal solution in terms of global performance (i.e., area, latency, and
energy), this conclusion is mostly true at the kernel level. When complete applications are
considered, many different kernels are executed, and an ASIC can accelerate only a few in
the best case and none in the worst case. This limits the impact of ASICs at the application
level, as described by Amdahl’s Law [20] and formulated in Equation 1.1, to the weight of
the accelerated kernels in the total execution time of the complete application. This gives
an upper bound limit of 1

(1−p) for the maximum possible speed-up the acceleration of a
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Figure 1.4: Common architectures’ flexibility vs performance trade-off.

kernel can produce at the application level. For example, accelerating a kernel representing
10% of the total execution time of an application cannot speed-up the application more
than a factor of 1.1×.

{
appspeedup(s, p) =

1
(1−p)+ p

s

lims→∞ appspeedup(s, p) =
1

(1−p)

(1.1)

where:

• appspeedup is the speed-up at the application level.

• s is the speed-up at the kernel level.

• p is the proportion of execution time the kernel represents originally at the applica-
tion level.

In addition, applications are susceptible to functionality changes and the evolution
of their algorithms, while ASIC designs are fixed. This could make them quickly obsolete.
However, some commercial platforms integrate ASICs, particularly when low-power exe-
cution is required for computationally expensive kernels such as in deep neural network
(DNN) applications. For example, the MAX78000 system-on-chip (SoC) [21] integrates a
convolutional neural network (CNN) accelerator, the Greenwave’s GAP8 chip a HardWare
Convolution Engine (HWCE) [22, 23], and the Kendryte K210 a layer-based CNN accelera-
tor [24]. While these accelerators increase the overall performance, they might become
less efficient if the CNN generic model changes or even ineffective if the model becomes
obsolete (e.g., replaced by a new and more accurate type of model).
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Finally, the nonrecurring engineering (NRE) costs are growing with scaled technolo-
gies [25]. Therefore, massive production volume is necessary to reach profitability, while
the inflexibility of ASICs restricts their range of applicability, hence their use cases. For all
these reasons, ASICs are an economical show-stopper for their broad deployment inside
integrated circuits (ICs) using scaled nanometer technologies.

On the other hand, programmable architectures offer higher flexibility but at the cost
of much lower global performance. General-purpose processors (GPPs) are the most
flexible architecture and cover any possible use case. A large variety of GPP architectures
exist, ranging from ultra-low power to high-performance computing (HPC). Because of
their limited-resource environment, embedded systems favor low-power designs at the
cost of reduced performance. Two major trends have been proposed to increase their
computational power and retain flexibility: tightly coupled co-processors (in-processor
extensions) and multi-core systems. One example of the former is the DSP extension of
the ARM Cortex-M4 processor [26]. It enables packed-single instruction multiple data
(SIMD) execution and improves the performance of the GPP, especially for kernels using
lower-bit representation (e.g., 16- or 8-bit). For a workload that can be parallelized, multi-
core architectures offer a simple solution to further increase the computational power.
Combining different types of processors and implementing a power-gating strategy offers
a significant performance improvement while limiting the power and energy overhead by
switching off part of the system when it is not needed [27]. However, the performance and
energy efficiency of GPP-based designs are still orders of magnitude lower than ASICs [28–
31].

In this context, it seems the performance gap between commercial platforms that favor
programmable architectures and custom circuits that offer optimal performance (at the
kernel level) is to remain. This work proposes and supports a way out of this fundamental
dilemma.

1.2 Thesis contribution

In this thesis, I advocate another direction by designing DSIPs: the development of het-
erogeneous processors that do not contain any customized components and remain fully
programmable for any source code that could be targeted. The difference with a GPP is
that the compiled assembly code runs more efficiently for the target domain than for code
outside this domain.

A DSIP enables optimizing the architecture for a target domain (i.e., a large set of
possible use cases), which translates to high performance and energy efficiency while
remaining programmable. This flexibility allows most of the kernels of the application
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domain to be executed more efficiently than with GPP-based designs, which translates to
higher application-level performance than ASIC-based designs.

To support and prove this idea, I conducted a DSIP architectural exploration for the
biomedical domain. Then, I performed comparisons with other types of architectures (e.g.,
ASICs, GPPs) both at the kernel and application levels to have a fair and complete overview
of the design space. The results of my experiments back up the main contributions of this
thesis that are:

• A DSIP template called VWR2A: a very-wide-register reconfigurable-array that com-
bines high computational density and a low-energy memory hierarchy. This template
is meant to be optimized for a given set of requirements in area, power, energy, and
throughput. It results from a design space exploration focused on innovative archi-
tectural features to advance the Pareto front of existing programmable architectures.
VWR2A targets the biomedical domain’s ultra-low power and energy applications
while maintaining the required high throughput/latency performance.

The main architectural features of the template are based on the state-of-the-art
in different domains: the memory hierarchy (from many studies in embedded sys-
tems), computational density (from coarse-grained reconfigurable arrays (CGRAs)),
instruction decoding efficiency (from CGRAs), and increased instruction parallelism
(from very-long instruction word (VLIW) processors). In particular, these features
are:

1. A reconfigurable array based on the CGRA template that uses reconfigurable
cells (RCs) with a high computational density.

2. Specialized slots, which are loosely inspired by the brain regions and their focus
on specific tasks (e.g., motor control, vision) and similar to the functional units
(FUs) of a VLIW processor to increase the instruction level parallelism (ILP) by
freeing the RCs from executing simple instructions unrelated to the actual data
processing (e.g., loop control, branches). These specialized slots can perform
the simple operations for which they are designed using less energy than the
RCs.

3. An energy-efficient instruction decoding scheme based on the CGRA template
with a context memory containing pre-decoded instructions loaded to local
program memories close to the processing elements (i.e., the RCs and the
specialized slots).

4. A low-energy wide memory hierarchy including:

(a) Wide memories with reduced decoding energy, high bandwidth, and low
switching in large output transistors.
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(b) Single-ported memories to reduce their energy consumption to a mini-
mum.

(c) A scratchpad memory (SPM) to reduce energy consumption by targeting
most data accesses to a small memory closer to the processing elements
(i.e., the RCs).

The complete template is presented and discussed in detail with examples based on
two instances of VWR2A. The important optimizable parameters are examined, and
typical values based on experiments are provided to guide the design of an instance
based on the template. The mapping of kernels is illustrated with an example to
better explain the specificities of the template.

I evaluate quantitatively the innovative architectural features introduced in VWR2A
to assess their role in the template’s high performance and energy efficiency. In par-
ticular, I compare the proposed architecture with two state-of-the-art programmable
architectures targeting the biomedical domain: a low-power SoC [32] featuring a
single-core general-purpose ARM Cortex-M4 processor and a CGRA based on two ex-
isting implementations [33, 34]. First, I analyze the assembly code of a typical kernel
used in the biomedical domain: a fast Fourier transform (FFT). Three architectures
are evaluated to provide a qualitative comparison of their efficiency in executing
instructions, particularly their degree of ILP. Then, the three implementations were
simulated in register transfer level (RTL) to get the cycle-accurate execution times
of different FFT kernels. In addition, all the architectures have been synthesized,
and their cell-switching activity (post-synthesis) was measured to estimate their
respective energy consumption.

• A DSIP versus ASICs comparison. First, the design of a DSIP instance based on the
VWR2A template is implemented, and design parameter choices are justified. This
instance tries to minimize the performance and energy gap compared to ASICs and
is optimized for data-intensive kernels.

Two ASICs are used for comparison: an FFT accelerator and a matrix processor. They
are two characteristic accelerators for the biomedical domain as they can execute
typical biomedical kernels such as FFTs and finite impulse response (FIR) filters.
The three implementations (the VWR2A instance and the two ASICs) have been
simulated in RTL to get cycle-accurate execution times and synthesized to estimate
their energy consumption from their post-synthesis netlist cell switching activity.

The comparison is first conducted at the kernel level, the optimal scenario for ASICs.
Then, a complete application is evaluated with an SoC integrating the ASICs and the
VWR2A instance. The kernel and application level evaluations provide a complete
and fair view of the design space and its tradeoffs. Based on these experiments, the
higher energy efficiency of the specific features introduced into VWR2A is assessed
and discussed in detail.
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Finally, the template’s parameters and impact on performance and energy consump-
tion are evaluated and discussed to show the design tradeoffs when designing an
instance based on VWR2A.

• The evaluation of a DSIP instance for control-intensive code. This type of code is
usually not evaluated as research focuses on data-intensive kernels. However, such
code is often present (and sometimes dominant) at the application level. This work
proposes optimizing a DSIP instance based on VWR2A to improve the execution of
control-intensive kernels and increase the coverage of efficiently executed code. First,
the VWR2A instance is presented, and the specific features introduced to improve
the execution of control-dominated kernels are presented and justified. Various
control-intensive kernels and applications are evaluated on the VWR2A instance.
In particular, the mapping of queues is evaluated. Such structures are an excellent
example of control-intensive code used in many kernels and usually not executed by
accelerators.

A comparison with two state-of-the-art GPPs is made to assess the efficiency of
these features. The first processor is an ARM Cortex-M4 optimized for executing
data-intensive kernels at low power. The second processor is a RISC-V Ibex ultra-
low power core explicitly optimized for control-dominated code. These two GPPs,
optimized for different scenarios, are representative of typical architectures used for
control-intensive code.

The VWR2A instance and the two GPPs have been simulated in RTL to get cycle-
accurate timing and synthesized to extract their cell switching activity post-synthesis
and estimate their power consumption. The experiments have been conducted at
the kernel and application levels. The results obtained demonstrate quantitatively
the VWR2A instance’s higher efficiency. In addition, the main parameters of the tem-
plate that influence the execution of control-intensive code are examined, and their
optimization is discussed qualitatively to guide the design of an instance focusing
on such code.

1.3 Thesis outline

The rest of this thesis is organized as illustrated in Figure 1.5 and as follows. Each chapter
of this thesis contains an introduction to provide the necessary background information
and a review of the related works based on the context of the chapter.

Chapter 2 presents VWR2A: a very-wide-register and reconfigurable-array template for
DSIPs targeting the biomedical domain. This template is proposed as a better alternative
compared to existing programmable architectures, such as GPPs and CGRAs. VWR2A
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Figure 1.5: Chapters of the thesis and their summarized content to help readers navigate
through this work.

combines a CGRA compute core fabric and a low-energy wide memory hierarchy made of
an SPM and very-wide registers (VWRs). It is augmented with specialized slots, namely
a load-and-store unit (LSU), a multiplexer-control unit (MXCU), and a loop-control unit
(LCU). The human brain and its regions specialized for distinct tasks (e.g., motor control,
vision, coordination) loosely inspire these specialized slots that are optimized for specific
tasks (e.g., loop control) and increase the ILP of the architecture. The optimizable pa-
rameters of the VWR2A template are discussed and illustrated with examples from actual
instances of the template. The specificities of VWR2A are shown through a simple kernel
example mapped on one instance of the template. Finally, to showcase the innovative
architecture features introduced in VWR2A (e.g., the specialized slots) and assess their
impact on performance, one instance is compared to two state-of-the-art architectures:
an ARM Cortex-M4 low-power GPP and a CGRA design, both optimized for the biomedical
domain. The main differences and better performance of the VWR2A instance compared
to these two architectures are discussed in detail to show the advantage of VWR2A’s fea-
tures from a high-level perspective. These features are at the heart of the architecture
template, and their advantages will be visible in any instance based on it.

Chapter 3 presents one instance of VWR2A focusing on data-intensive code. The
specific values of the template’s parameters used in this instance are explained to provide
insights into the design choices required when creating a new instance. To assess the
performance of this VWR2A instance, an SoC targeting the biomedical domain [32] is
considered. It features an ARM Cortex-M4 low-power processor and hardware accelerators
or ASICs, such as an FFT accelerator and a matrix processor engine. The VWR2A instance
is integrated inside the SoC and compared at the kernel level with the ASICs. Then, the
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performance at the application level is evaluated considering the best possible mapping
on the original SoC (i.e., using its hardware accelerators) and on the SoC augmented with
the VWR2A instance (i.e., replacing the original SoC ASICs with the VWR2A instance).

Chapter 4 presents one instance of VWR2A focusing on control-intensive code. While
ASICs focus on data-intensive kernels because they often represent most of the workload,
other types of code are usually present at the application level. Compared to data-intensive
kernels, control-dominated code has a significantly higher number of branch instructions
and irregular memory accesses. Traditionally, this type of code is usually left to be exe-
cuted by the processor (i.e., a GPP) as no accelerator is primarily designed for it, which
translates to poor performance when this code is dominant. This can happen because
an application is control-dominated by nature or because all the data-intensive kernels
have been accelerated. This chapter shows the advantage of having a programmable
architecture in this situation, allowing both data-intensive and control-intensive code to
be accelerated. The VWR2A instance is compared to two state-of-the-art low-power pro-
cessors: an ARM Cortex-M4 [26] and a RISC-V Ibex core [35], which is optimized explicitly
for control-intensive code.

Chapter 5 concludes this thesis and resumes the main results of the previous chapters.
Finally, the most promising research directions to continue and improve on this work are
discussed.
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2 Low-Power Domain-Specific
Instruction-set Processor architecture

2.1 Introduction

In 2030, 24 billion Internet of things (IoT) devices are expected to be used worldwide [36].
Edge devices —being IoT, wearable, or embedded devices—, could benefit many domains
with their promise of better efficiency and lower costs [7]. Smart autonomous vehicles
(SAV) [3, 4], such as cars and drones, are revolutionizing the transport infrastructure [2].
Smart buildings and cities improve the energy efficiency of our habitats, working places,
and manufacturing plants, paving the way to a sustainable society [1]. In the healthcare
domain, wireless body area networks (WBANs) could help monitor and detect health prob-
lems sooner and lower the high economic and environmental costs of today’s healthcare
systems [5, 6]. However, existing platforms have not yet achieved long-lasting battery oper-
ation and often require a daily charge. In order to improve the overall energy efficiency of
IoT systems —from the edge to the cloud— the computational load is pushed towards the
edge. This reduces communication energy but tasks embedded systems with two opposite
goals: low-power operation and high performance. Moreover, the current trend of growing
machine learning application complexity is putting more pressure on embedded devices.
Optimizations from the application to the circuit level are now mandatory to cope with
this computation complexity and achieve higher energy efficiencies.

In particular, hardware architecture exploration for such devices is an active area of
research. One avenue to reach these goals is toward heterogeneous platforms, including
multi-core architectures with heterogeneous cores and co-processors (e.g., hardware
accelerators). The inclusion of the latter has become a standard for computing platforms
in recent years. These accelerators, or co-processors, can execute repetitive operations
that account for a significant amount of the processing time (i.e., computational kernels)
in a more efficient way than a general-purpose processor (GPP) or a generic graphics
processing unit (GPU). The development of computing platforms and accelerators follows
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two main trends: application-specific integrated circuits (ASICs)1 or custom accelerators,
and domain-specific instruction-set processors (DSIPs)2 or flexible (programmable) cores.

Fixed-function accelerators (i.e., ASICs) are often the most efficient way of imple-
menting a particular functionality for a given set of constraints. They are generally not
programmable and are thus focused on a single task or a small family of related tasks.
One example of a custom accelerator integrated inside a system-on-chip (SoC) targeting
the biomedical domain is the fast Fourier transform (FFT) accelerator included in [32],
which can execute FFTs of different sizes much more efficiently than the platform ARM
Cortex-M4 core. On the other hand, it is possible to build fully programmable cores tai-
lored specifically for algorithms from a given vast application domain (i.e., DSIP) without
becoming general-purpose processors.

Figure 1.4 shows the programmability versus performance tradeoff of the main classes
of architectures. Although ASICs offer the best performance at the kernel level, their
main disadvantage is their very targeted specific context. This limits their impact on
performance at the application level and, from an economic point-of-view, inevitably
reduces their target market domain, reducing the yearly production volumes of the in-
tegrated circuits (ICs) that contain these accelerators. These platforms include the so-
called application-specific instruction-set processors (ASIPs) [37, 38]. Given the huge
nonrecurring engineering (NRE) costs of modern scaled technology nodes [25], this is
an economical show-stopper for the broad deployment of such ICs. Hence, this chapter
advocates another direction by designing DSIPs: the development of fully programmable
heterogeneous processors that do not contain any customized components and remain
fully programmable for any source code that could be targeted. The crucial difference with
a GPP is that the compiled assembly code runs more efficiently for the target domain than
for code outside this domain.

2.1.1 Low-power architectures and limitations

Traditional knowledge from the literature says that DSIPs and programmable cores are less
efficient than fixed-function ones and that the latter should be preferred to improve the
energy efficiency of the systems. Figure 1.4 shows the well-known and intuitive flexibility-
performance tradeoff of different generic architectures at the kernel level [29, 31]. Based on
this figure, designing ASICs or ASIPs as accelerator components seems to be the obvious
solution to solve the aforementioned challenges of embedded systems. However, three
main reasons limit the design and integration of ASICs in today’s low-power real chips:

1The term ASICs refers here to any custom circuits and not necessarily to full chips.
2The ASIP term has been used in the past to refer to a similar concept, but its name implies some

application-specific optimizations. Therefore, the term DSIP, which refers to optimizations for a complete
domain, is more precise and appropriate to the ideas articulated by this thesis.
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1. Their lack of flexibility:

(a) Limits their range of applications, therefore, restricting their use cases.

(b) Limits their source code coverage, thus, their impact at the application level, as
described by Amdahl’s Law [20] and formulated in Equation 1.1, to the weight of
the accelerated kernels in the total execution time of the complete application.

(c) Prevents potential application updates making them unadapted to rapidly evolv-
ing fields such as machine learning applications.

2. Although the literature has demonstrated the optimal performance of ASIC designs
on very specialized computation kernels (e.g., FFTs, matrix multiplications, convo-
lutional neural networks (CNNs)) [39, 40], their impact at the complete application
level (i.e., in a real-life scenario encompassing the entire context) is often not evalu-
ated.

3. Custom design development costs are growing with scaled technologies, and massive
production volume is necessary to reach profitability, which might not represent an
actual market demand. Moreover, custom designs might have limited reusability,
further increasing their costs.

Considering these drawbacks, low-power commercial platforms usually prefer the
flexibility of programmable general-purpose processors at the cost of lower overall perfor-
mance, although most of the literature advocates for ASIC designs [39, 41, 42]. To reduce
the performance gap between GPPs and ASICs, ARM, for example, proposes a range of low-
power general-purpose processor architectures —Cortex-M0 to Cortex-M4— with various
extensions (e.g., digital signal processing, floating-point unit (FPU)). However, compared
to ASICs, general-purpose processors, even with their extensions, are still multiple orders
of magnitude less efficient in all performance metrics. The literature proposed many
different architectures —some of which are used in commercial chips— in the mid-range
of the flexibility-performance tradeoff (see Figure 1.4): field-programmable gate arrays (FP-
GAs) [43, 44], coarse-grained reconfigurable arrays (CGRAs) [31, 45], or ASIPs [46, 47], for
example. Although better in performance than GPPs and digital signal processors (DSPs),
they are usually at least one order of magnitude less performant than ASICs [28–31]. The
limitations of these architectures are of two natures: their lack of advanced architectural
optimizations to maintain high flexibility and their high cost, either in energy or latency,
for data accesses and movements. In this context, it would seem we are fated to choose
between the limited applicability of high-performance and energy-efficient ASIC designs
proposed by the literature and the existing commercial platforms that trade flexibility for
lower performance and efficiency. This thesis proposes and supports a way out of this
fundamental dilemma.
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2.1.2 Contributions and outline of the chapter

In this chapter, I advocate for the development of DSIP architectures instead of ASICs in
order to tackle the aforementioned challenges and overcome the current limitations of
low-power and low-energy embedded systems. To show the benefit of such an approach, I
propose the Very-Wide-Register and Reconfigurable Array (VWR2A) template, a combina-
tion of two concepts: a very-wide register (VWR) as foreground memory and a CGRA as
processor core fabric. CGRAs have demonstrated good performance and energy efficiency,
particularly for the biomedical domain [33, 34, 45]. Additionally, the CGRA template is a
programmable architecture making it an excellent building block for creating a DSIP. A
VWR is a low-energy memory designed for data with high spatial locality (e.g., arrays of
data), which makes it a perfect candidate for biosignal processing.

Both these elements have been proposed in earlier literature from a conceptual point
of view [33, 48], but they have not been combined and instantiated for the biomedical
target domain. VWR2A enables designs with significantly better key metrics —in both
latency/throughput and energy— compared to state-of-the-art low-power instruction-
set processor architectures (e.g., GPPs) and programmable accelerators (e.g., CGRAs).
Designing an instruction set processor that supports most of the source code of a complete
application domain to be compilable forces it to be flexible by nature (i.e., amenable to
a potential application or functionality upgrades) while allowing advanced architectural
optimizations based on the specificities of this domain (i.e., workload complexity, type of
code, timing constraints). When carefully designed, a DSIP can efficiently cover a large
portion of possible source code, translating to high performance at the application level
compared to an ASIC that only accelerates specific kernels, as demonstrated in Chapters 3
and 4. Moreover, such DSIP still covers all the other code sections with a reasonable,
though not optimal, efficiency. In particular, the key contributions of this chapter are:

1. VWR2A: a DSIP architecture template targeting the biomedical domain’s ultra-
low power and energy applications while maintaining a required high through-
put/latency performance.

2. An analysis of the VWR2A template through a kernel mapping and execution exam-
ple.

3. A performance and energy comparison against two representative state-of-the-art
architectures targeting the biomedical domain: a low-power SoC [32] featuring a
single-core general-purpose ARM Cortex-M4 processor and a CGRA [33].

The rest of this chapter is organized as follows. First, I discuss related architectures for
low-power computing in Section 2.2. Then, the proposed VWR2A template is presented
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and illustrated with examples in Section 2.3. The mapping of kernels on the template
is illustrated and discussed with one example in Section 2.4. The experimental setup
used to evaluate an instance of the VWR2A template is presented in Section 2.5. The
detailed evaluation and comparison against two state-of-the-art low-power architectures
are completed in Section 2.7. Finally, Section 2.8 finishes the chapter by drawing the main
conclusions.

2.2 Related work

Many low-power programmable designs have been proposed in the literature. From the
architecture point of view, two central elements can be optimized: the computing and
the memory parts. Existing solutions from the academic community are reviewed first:
low-power computing architectures are discussed in Chapter 2.2.1, and low-power and
low-energy memory organizations are reviewed in Chapter 2.2.2. Finally, commercial
platforms are presented in Chapter 2.2.3.

2.2.1 Low-power and low-energy CPU architectures

General-Purpose Processors

The complex instruction set computer (CISC) vs. reduced instruction set computer (RISC)
instruction set architectures (ISAs) debate has been going on for decades, and recent stud-
ies [49–51] tend to show they do not have much impact on performance (energy, latency,
area). Nevertheless, RISC ISAs are usually preferred for low-power applications and CISC
ISAs for high-performance ones. More importantly, architectural design choices, such as
simpler architectures with in-order shallow pipelines, have been demonstrated to be a
better compromise for low-power embedded devices [52]. The last decade has seen the
rise of the open RISC-V ISA widely adopted in academia and many processors based on it.
In the low-power domain, the PULP project significantly impacted the research commu-
nity with the proposal of the lowRISC Ibex processor (formerly Zero-riscy [53]) and the
OpenHW Group CORE-V CV32E40P (formerly RI5CY [54]), two state-of-the-art low-power
processors (which are even used in some commercial platforms today). For data-intensive
workload edge applications, ultra-low power cores, such as Ibex or Bellevue [55], are in-
appropriate as they lack fast computing resources. To tackle this issue, low-power and
high-performance processors usually possess extensions. For example, the RI5CY core
supports packet-single instruction multiple data (SIMD) and has a zero-overhead loop
feature (hardware loop support) [56]. It also takes advantage of the extensible RISC-V ISA
option and provides custom instructions with hardware support, such as fixed-point arith-
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metic or bit manipulation operations. These extensions increase power consumption, but
when they are correctly designed (and adapted to the workload), the gain in performance
is even higher, and the total energy consumption is reduced [54]. These extensions can
be integrated inside a GPP, as for the two examples presented above, or as a co-processor
(e.g., a hardware accelerator) to improve their efficiency. The latter option is discussed
later in this section.

However, GPPs, even with extensions, are still orders of magnitude less efficient than
ASICs. The authors of [57] have evaluated the overhead of programmable architectures
compared to ASICs and proposed solutions to reduce the energy gap, while maintaining
programmability, within a factor 3× compared to an ASIC. Starting from a GPP, they
optimized it for one application (similar to an ASIP), but they acknowledged the need to
add flexibility to the custom features they introduced in order to enable the coverage of
other similar applications and increase the use case of the architecture. This idea is at the
center of a DSIP design (discussed in the next section). Finally, their main conclusion is
that a memory organization tailored to the application need is the key to reducing to a
minimum the energy gap between programmable and ASIC designs. The dedicated wide
memory hierarchy of the architecture template proposed in this chapter (see Section 2.3.2)
has been proposed for the same reason, and the experimental results show, similar to [57],
the large improvement such an optimized memory organization enables.

Domain-specific Instruction-set processors

The DSIP acronym is not widely spread in the literature, and very few architectures have
been proposed. DSIPs originate from ASIPs. Although relatively close, the original idea of
an ASIP was to build a platform —with a central processing unit (CPU), memory, hardware
modules, and peripherals— for an application (or a small set of applications) using high-
level synthesis and a compiler supporting this platform [37]. The hardware modules
comprise CPU extensions and hardware accelerators or co-processors, for example. The
work that followed usually focused on a few aspects of the original concept. Similar to an
ASIC, an ASIP implies application-specific optimizations, while this chapter is interested
in architectures with a broader range of applications, hence the use of the DSIP acronym,
which is more precise. To my knowledge, the term was first proposed in [58], where the
authors presented the Flexible Extremely ENergy Efficient Configurable System (FEENECS):
an architectural template for DSIP. The VWR2A template is partially based on FEENECS,
particularly regarding the wide memory hierarchy (see Chapter 2.2.2). The other parts
of the template are similar from a high-level perspective. However, our proposal is more
specific regarding the compute core fabric block of the template, while FEENECS is very
generic. Moreover, no actual instantiation of the complete FEENECS template has ever
been evaluated, only sub-blocks. Another DSIP (although not explicitly presented in such a
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term) is the TamaRISC low-power core [59]. It is a custom design ISA optimized for the bio-
signal processing application domain that uses a minimal subset of the microchip PIC24
ISA [60]. TamaRISC features a 3-stage pipeline, a 16-bit datapath, and a 24-bit instruction
encoding width. A multi-core version based on this core has also been proposed to
accommodate for higher workloads. As the DSIP template proposed in this chapter targets
the same domain, its base ISA presented in Section 2.3 (and the ISAs of the instances in
Chapters 3 and 4) is similar to that of TamaRISC regarding the supported instructions.

Homogeneous multi-core architectures

Low-power homogeneous multi-core architectures have been proposed in the last decade
to improve the performance and efficiency of any processor (e.g., GPPs, DSIPs). Similarly
to the concept of extension, it increases computing power by augmenting the number
of processors. However, compared to GPP extensions (e.g., digital signal processing,
packet-SIMD), adding one or more processors represents a higher power overhead. All
recently proposed architectures use power domains to limit the power consumption
overhead, in particular, the leakage power during idle periods, as in [61], for example.
Such architectures have shown excellent performance and energy efficiency compared
to single-core designs [59, 61]. Nonetheless, their efficiency is still limited due to their
memory hierarchy (see Chapter 2.2.3) and the commonly unoptimized GPP template used
to design their multi-core system. In VWR2A, the multi-processing paradigm is leveraged
in the form of multiple processing elements (see Chapter 2.3).

Very Long Instruction Word Processors

Pipelining [62] is used inside a CPU to enable the concurrent execution of multiple instruc-
tions, increasing its throughput and maximum frequency due to the shortened logic paths
in each of the stages of the pipeline. However, the pipelining concept does not define how
many instructions can start at a time and their order of execution. The class of processors
mentioned above (i.e., the Cortex-M0/M4, Ibex, and RI5CY) are known as in-order scalar
or single-instruction, single-data (SISD) processors where the instructions are executed
in the compiler-generated order and a single instruction starts every cycle, working on a
single data.

Two concepts have been proposed to improve performance: out-of-order execution [62,
63] and superscalar or multiple issue processors [62, 64, 65]. Although both concepts are
closely related and developed simultaneously, their nature is different. A superscalar pro-
cessor enables multiple instructions to be issued simultaneously to take advantage of the
instruction level parallelism (ILP) present in many algorithms. It has multiple functional
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units (FUs) that can execute in parallel multiple instructions within the compiler-generated
order (in-order execution). This allows a clock per instruction (CPI) less than one, but
data-dependencies limit instructions parallelization on the FUs. An out-of-order processor
verifies the dependencies between instructions at runtime and dynamically schedules
them on the available FUs regardless of their compiler-generated order, allowing multiple
out-of-order instructions to execute in parallel. However, the runtime dependency check
and scheduling represent significant hardware, hence, power overhead. Both concepts are
orthogonal and can be applied to build out-of-order superscalar processors, usually used
for high-performance applications.

Very-long instruction word (VLIW) processors propose an alternative in which the de-
pendencies are identified at compile time (instead of runtime), and the parallel execution
of the instructions is scheduled explicitly by the compiler. It removes the hardware and
power overheads of out-of-order superscalar processors while exploiting ILP. VLIW pro-
cessors are often used for digital signal processing applications as most of these algorithms
exhibit high ILP. In a VLIW architecture, or in a superscalar processor, all the functional
units (FUs) share a common register file requiring a multi-port design which consumes
much energy [48]. This limitation is further discussed in Chapter 2.2.2, where memory
hierarchies are reviewed.

Low-power co-processor architectures

Incorporating co-processors and hardware accelerators in the computing platform has
become standard practice in recent years. They can be integrated into a platform as
tightly-coupled or loosely-coupled accelerators. GPP extensions, such as the digital signal
processing unit in the ARM Cortex-M4 [26], are an example of tightly-coupled accelerators.
They improve performance, but their integration within the processor limits their maxi-
mum gains, as shown in [66]. Loosely-coupled co-processors, or hardware accelerators,
are circuits external to the CPU, enabling further performance improvement (in latency
and energy) by taking advantage of private memory blocks tailored to their needs [66].
These accelerators rely on a direct memory access (DMA) to transfer data from the system’s
main memory to the accelerators’ private memory.

The development of accelerators follows two main trends: custom accelerators, or
ASICs, and more flexible (partly programmable) cores. Although providing the best per-
formance at the kernel level, ASICs are less desirable in real-life applications (see Chap-
ter 2.1.1), and therefore not considered here. Conversely, existing partly programmable
accelerators are more interesting in the context of this chapter. Although flexible, these
accelerators still have a limited code coverage compared to the DSIP solution proposed in
this thesis.
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Figure 2.1: CGRA architecture template.

CGRAs have often been used as they provide good flexibility with reasonable energy
overhead compared to ASICs [31, 67]. Additionally, their efficiency for biomedical applica-
tions has been demonstrated several times [33, 34, 45]. CGRAs offer flexibility thanks to
their datapath that is reconfigurable at runtime. The concept is somewhat similar to an
FPGA, but the configuration is done at a coarser granularity, namely the datapath level,
limiting the required hardware overhead to control the reconfiguration, hence improving
the overall energy efficiency compared to an FPGA. Figure 2.1 shows the CGRA template
and its typical integration inside a platform. Its main components are:

• A context memory

• A reconfigurable array made of multiple reconfigurable cells (RCs) (or processing
elements (PEs))

• An interconnection between the RCs

• An interconnection with the system data bus (e.g., DMA)

• A synchronization mechanism with the host processor

A context switch can reconfigure the array of RCs at runtime. This is done by loading
new configuration words from the context memory to the local program memory of the
RCs. One major advantage of the CGRA architecture template, which is kept in the pro-
posed DSIP template, is the high computation density because the bits of the configuration
words correspond directly to the control signals in the cell datapaths, without an actual
decoding process. Figure 2.1 shows one possible interconnection called a torus closest
neighbors interconnect, but other schemes are possible.
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Many platforms have integrated a CGRA alongside the CPU to improve performance
and energy efficiency. Morphosys [68] is made of a single-core RISC GPP, augmented
with a CGRA that executes computation-intensive kernels. Although this architecture has
shown better performance than ASICs, in some cases, it focuses on high performance
and not low-power execution. Its high number of RCs (up to 256) and memory hierarchy
using caches is not optimized for embedded systems. Healwear [45] is a multi-core DSIP
platform implementing eight TamaRISC cores [59] and a CGRA optimized for biosignal
processing on embedded devices. However, because of the limited code coverage of the
CGRA, the authors’ experimentation shows minimal energy savings at the application
level. In [34], the authors proposed a similar platform using the PULP platform [27] (a
single-core with a multi-core cluster, both using RISC-V cores) and a CGRA. Compared
to Healwear, the savings from the CGRA are even lower due to the better performance of
the multi-core system. The compute fabric core of the DSIP template proposed in this
chapter uses the CGRA architecture template, but it is augmented with specialized slots
(see Chapter 2.3) in order to improve its performance and energy efficiency, and increase
its code coverage.

2.2.2 Low-power and low-energy memory organization

The memory organization can be divided into two parts: the background or L2 memory
and the foreground or L0 memory. The L2 background memory is usually the biggest and
slowest on-chip memory block which contains the entire set of data (e.g., variables, input
signals, constants, instructions), and all the processing elements share it. The background
memory can also contain an L1 memory that acts as a buffer between the L2 and the
foreground memory. This optional L1 background memory is smaller and can be shared
by all the processing elements or be private. Finally, the foreground memory is the smallest
and closest memory to the processing element(s) and is private. Ultra-low power and
low-performance systems usually have a two-level memory hierarchy (i.e., L2+L0) as each
level is relatively small (i.e., a few hundred kilobytes maximum) and the processing system
is made of a single-core (i.e., no data bus access contentions due to many masters). The
power and energy consumption of the background and foreground memories account for a
large amount of the total consumption of any embedded device. The reason is that reading
data from memory, particularly background memory, requires significantly more energy
than the energy used to process these data (e.g., addition or multiplication). Therefore,
optimizing the memory organization and hierarchy is essential to design low-power and
energy systems. To this end, in my work, I proposed using a dedicated low-energy memory
hierarchy in the DSIP template.
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Background memory: L1 and L2

A system’s main memory (i.e., L2) is the lowest on-chip memory block in the hierarchy.
This memory block is usually implemented with static random access memory (SRAM) for
low-power devices and goes from a few kilobytes to a few megabytes. It is usually made
of smaller, concatenated single-port memory banks (for a memory larger than 32KiB to
64KiB) that can be clock gated, put in retention mode, or even power-gated to reduce
power consumption.

The VWR2A template is meant to be integrated inside a platform as a loosely-coupled
co-processor. Therefore, the definition of the main memory is done at the platform level
and not embedded inside the template (i.e., not elaborated in this thesis). Nevertheless, the
template requires access to this memory to store and share data with the other components
of the platform.

Low-power architectures, especially single-core GPPs, do not consistently implement
an L1 memory hierarchy level, as there is usually a single master accessing a relatively
small main memory (<512KiB). Multi-core systems (of any nature) could also access the
main memory directly through the system bus. However, in this case, the performance of
algorithms with many data accesses depends on the system bus latency and bandwidth,
which can negatively impact the overall performance, as shown in [66] for the specific
case of loosely-coupled accelerators. Moreover, data access through the system bus is
costly in energy and can be reduced by including a private background (i.e., L1) memory,
particularly for data.

This L1 memory can be private or shared depending on the requirements. A typical
approach is to use caches, but they incur a significant energy penalty due to their inherent
control overhead, therefore, privileged for high-end multi-core edge devices. Scratchpad
memories (SPMs) are an alternative that offers similar performance at lower energy as the
control is moved to the software side [69], at the cost of making the software responsible
for the explicit placement of data. For these reasons, an L1 shared SPM is proposed in
VWR2A to achieve high performance while limiting the power overhead (compared to a
cache).

Foreground memory: L0

The foreground memory is the smallest and closest memory to the processing elements,
hence the fastest and most energy-efficient memory regarding data access. Register files
(RFs) are a common solution to implement this memory. Small RFs of a few tens to
hundreds of bytes are usually built with standard cells (i.e., flip-flops). Depending on the
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computing architecture, the RFs can be single- or multi-ported to provide parallel access
to the same memory block and enable an easy way to share data between the multiple
processing elements. RFs, in particular multi-ported ones, represent a significant part of
the total power consumption according to [48, 70, 71].

An asymmetrical RFs, based on very wide registers (VWRs), was introduced in the
FEENECS template [58] as a better alternative, in terms of energy, to standard multi-
ported register files. The first reason is that the cells of the VWRs are single-ported, while
those of the register files are often multi-ported. Second, their wide interface still allows
multiple words to be loaded at once, leading to a lower overall energy per word access
than traditional register files. To fully benefit from the VWRs, the background memory
needs to match the VWR width, allowing it to fill a VWR in one cycle. It has been proposed
to use a SPM as the background memory [48]. This effectively makes the VWR interface
asymmetric with respect to the SPM side and the datapath side. The authors of [48, 72]
also show that such a design is better for place and route, as both memories (i.e., the SPM
and the VWR) can be aligned, and the wire length of the most active connection is reduced
to a minimum.3 Indeed, only the outputs of the multiplexers switch in every cycle, not the
outputs of the VWRs themselves, reducing energy consumption.

2.2.3 Commercial low-power platforms

Many commercial low-power and high-performance platforms integrating numerous of
the concepts presented above exist. For single-core systems, the ARM Cortex-M family
of processors [26] dominates the market. Many platform providers, such as Texas Instru-
ments [73], ST [74], or Silicon Labs [75], use this family of cores in their designs to provide
low-power, high-performance solutions. The ARM Cortex-M processors range from ultra-
low-power architecture, with the Cortex-M0 (ARMv7E-M) or Cortex-M23 (ARMv8-M), to
low-power, high-performance architecture with the Cortex-M4 (ARMv7E-M) or Cortex-
M33 (ARMv8-M). The Cortex-M0 is similar to the Ibex core [53] presented before and is not
adapted to computationally intensive applications for the same reasons (low computation
resources and no extensions such as SIMD or DSP). The Cortex-M4 core has a digital signal
processing module enabling 32-bit wide packet-SIMD operation on four 8-bit values or
two 16-bit values and a single-cycle multiplier and MAC unit. While better in performance
and energy, it is still far from competing with ASICs. The next processor in the Cortex M
family is the M7, a 6-stage pipeline superscalar processor with branch prediction. While
providing higher performance, the energy efficiency depends on multiple parameters such
as the targeted workload. Finally, none of these platforms explicitly target the biomedical
domain, but the Cortex-M4 processor is the most common GPP used when low-power
and high performance are required.

3This point is discussed in 5.2.1 as a future work direction.
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To improve performance (and possibly energy efficiency), multi-core platforms, such
as the Greenwave GAP-8 board [22] (originating from the PULP project [27]) or the TI
AM57x SoCs exist. Although targeting high energy efficiency execution, they use the GPP
template for their cores and traditional memory hierarchies based on caches or multi-
ported memories, limiting their overall efficiency. Moreover, they target domains with
higher performance requirements (e.g., edge AI applications), making them unadapted to
ultra-low power biomedical embedded systems.

2.3 VWR2A: a template for low power and energy Domain Specific
Instruction-set Processors

Very-Wide-Register Reconfigurable-Array (VWR2A) is the low power and energy DSIP
architecture template proposed to advance the current state-of-the-art embedded devices
targeting the biomedical domain and fill the current gap in existing commercial platforms.
It combines various previously presented concepts to further improve the current state-
of-the-art low-power designs’ performance and energy efficiency. Figure 2.2 shows the
main features of the VWR2A template, which integrates high computational density (i.e., a
CGRA-like architecture) and low power memory structures (i.e., VWRs and SPMs). The
reconfigurable array is made of multiple independent columns that can be reconfigured at
runtime by a context switch from the context memory. Each column has multiple RCs to
compute on data stored in VWRs and three specialized slots: a load-and-store unit (LSU),
a loop-control unit (LCU), and a multiplexer-control unit (MXCU). The LSU is responsible
for the data movement within a VWR (i.e., shuffling unit) and between the VWRs or the
scalar register file (SRF) (of one column) and the shared SPM. The LCU manages the
kernels’ execution by issuing, for example, branch or jump instructions and controls the
program counter (PC) shared by all the units in a column (i.e., RCs and specialized slots).
Finally, the MXCU generates the addresses to access the VWRs and the SRF from the RCs’
side. The kernels are executed upon request from the host platform in which an instance
of VWR2A is integrated. The synchronizer manages these requests and schedules their
execution on the available columns. The DMA transfers data between the shared SPM of
VWR2A and the platform’s main memory.

The high performance and energy efficiency of VWR2A architectural features are in-
spired by our brain structure and its different regions responsible for specific functions
(e.g., vision and motor control). All these regions are optimized (e.g., with different neu-
rons) and work in parallel, enabling us to achieve complex tasks very efficiently. The
VWR2A units (i.e., the specialized slots and the RCs) are very similar, from a high-level
perspective, by enabling the parallel execution of multiple instructions. Additionally,
they are heterogeneous units that are each optimized (e.g., datapath width, supported
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Figure 2.2: VWR2A architecture template block diagram for low power and energy DSIP
design. The RCs and the context memory are detailed in Section 2.3.1. The wide memory
hierarchy (SPM and VWRs) is discussed in Section 2.3.2, and the shuffle unit in Section 2.3.3.
The specialized slots (LCU, MXCU, and LSU) are presented in Section 2.3.4.

instruction set) for the specific set of tasks they are designed for. This makes VWR2A a
high-performance and energy-efficient architecture.

VWR2A provides high-level features (e.g., specialized slots, a specific memory hierar-
chy) meant to be optimized in an actual instance targeting a particular set of applications.
The DSIP concept proposes to design architectures (e.g., ISAs, memory hierarchies) tai-
lored to a specific domain to improve energy efficiency, but it does not define what makes
a domain of application. The definition of a domain relies chiefly on the area or cost,
latency, and energy performance a designer wants to achieve. For example, from an eco-
nomic perspective, a domain is defined by the minimal production volume required to
make a product viable. Based on this information, the design of the architecture can be
explored to reach the optimal power, performance, and area (PPA) tradeoff for a given set
of requirements.

In particular, the VWR2A template is proposed as a starting point for the architecture
exploration and final implementation of DSIP designs targeting biomedical applications.
In this chapter, the VWR2A template is presented in detail and illustrated with some
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design choice examples to better demonstrate the template’s use. For a complete and
detailed review and analysis of two instances of the VWR2A template —one focused on
data-intensive code and the other on control-intensive code— refer to Chapters 3 and 4,
respectively.

2.3.1 Reconfigurable Array

The compute core fabric of VWR2A is based on the CGRA architecture template. It is
made of RCs that are specialized for data processing. Each RC has an arithmetic logic
unit (ALU), a local program memory, a register file, and an output register used for the
RCs’ interconnection, as shown in Figure 2.3. To reduce control overhead, the RCs are
grouped in columns (see Figure 2.2), where all the RCs of a column are synchronized
through a shared PC. This defines the minimum number of RCs that work in parallel (i.e.,
the number of RCs in a column). The columns are independent, allowing as many kernels
as the number of columns to run in parallel. The columns can also execute kernels in
synchronization (e.g., one kernel on two columns). In this case, the program counters of
the columns are synchronized.

As in VWR2A the specialized slots execute all the extra computations not directly
related to data (see Section 2.3.4), the RCs’ design can be optimized compared to that of a
standard CGRA. First, the operations supported by the ALU will significantly impact the
performance of a specific instantiation. For example, the VWR2A instance proposed in
Chapter 3, which is optimized for biomedical data-intensive applications, implements a
single-cycle multiplier with two working modes: a standard mode, where the lowest 32
bits are kept, and a fixed-point mode, where the lower 16 bits are discarded and the next
32 bits are kept. This enables single-cycle fixed-point multiplication in q17.15 format and
good performance for algorithms that require decimal representation, such as the FFT.

The datapath width is another optimization parameter of the template. In this thesis,
all the template instances have a 32-bit datapath width for the RCs, which simplifies the
data exchange with the system CPU (which is most of the time a 32-bit processor). The
input of the ALU operand multiplexers can also be customized; however, they usually
depend on other parameters of an instantiation (e.g., RCs’ interconnection, number of
VWRs). The last important parameter is the depth of the local RFs of the RCs. Although
the architecture has VWRs (see next section), having a small local RFs is more efficient
for storing locally partial results, scalar variables, or a variable accessed many times, for
example.

The number of RCs in a column and the number of columns are additional parameters
of the template and a tradeoff between performance and power consumption. Increasing
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their number increases performance but also power consumption. Regarding the number
of RCs in a column, as long as the workload can be parallelized on the additional RCs,
energy consumption will be lower, especially if the reconfigurable array can be power
gated after its work is finished. The minimal throughput of the targeted domain is also
important and might force the number of required processing elements. The number of
columns defines how many different kernels can execute concurrently and depends on
the potential parallelization of the workload at the application level. For the biomedical
domain, many parallelization opportunities exist [34], especially when multiple biosignals
or/and multiple leads are monitored.

The RCs have direct connections with one another through their interconnect network.
Although the template does not enforce any specific scheme, the closest neighbors’ inter-
connection is a good tradeoff between low-power, high-performance, and flexibility [33].
This network is usually synchronous (i.e., passing through a register) and enables fast
and energy-efficient data exchange between the RCs (without going through the memory
subsystem) and allows the creation of a data computation flow between the RCs. Similar
to the RCs’ interconnection for data, the RCs can select their internal flags (i.e., zero and
sign flags) or those from their neighboring RCs. In both cases, the flag refers to the result
of the operation executed in the previous cycle. These flags can be used, for example, to
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Table 2.1: Main optimizable parameters of the VWR2A template related to the RCs and a
non-exhaustive range of plausible values.

Parameter Typical values
Number of RCs in a column 2, 4, 8
Number of columns 2, 4
Program memory depth (words) 16, 32, 64, 128
Scalar register file depth (words) 2, 4, 8
Datapath width (bits) 16, 32
RCs’ interconnection closest neighbors (with or w/o diagonal)
ISA example: single-cycle multiplier

select one of the two ALU input operands as output in order to implement locally (i.e., in
the RCs) simple if conditions (see Chapters 3 and 4).

CGRAs are reconfigurable thanks to their context switching mechanism. The configu-
ration words (i.e., instructions to configure the RCs) are stored in a context memory. The
CGRA architecture template offers a high computation density because the bits of the
configuration words correspond directly to the control signals in the cell datapaths, saving
the cost of the decoding logic of GPPs. When a kernel execution starts, its configuration
words are loaded to the RCs’ local program memory. The size of the context memory and
local program memory are domain-specific parameters that can be optimized. Because of
the shared program counter of a column, this architecture has evident parallelism with
a VLIW processor template in which all the execution slots are equivalent. Indeed, the
instructions of the different RCs can be seen as a wide (predecoded) instruction word.

The configuration word length is different depending on the specific value of the
parameters of the template. The bottom of Figure 2.3 shows a generic configuration word
for the RCs and the most common fields required by any application domain. Table 2.1
summarizes the main optimizable parameters of the template related to the RCs and
provides a non-exhaustive range of plausible values. The scalability of the VWR2A template,
especially regarding the number of columns, depends on the limitations of the physical
layout implementation (see Chapter 5.2.1). Although not explored in this thesis, multiple
instances of the VWR2A template could exist within a single chip to scale further than the
value proposed in Table 2.1 if a higher throughput is required, for example. These instances
could be identical or optimized for a subset of the algorithms used in the application
domain.
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2.3.2 Ultra-low energy memory organization

VWR2A is currently meant to be integrated as a co-processor or a programmable hardware
accelerator. As discussed in Section 2.2.2, a proper memory hierarchy design is needed
to avoid the limitations of the platform bus in which a VWR2A instance is integrated.
Therefore, to accommodate for workloads with high data access needs, VWR2A integrates
a low-energy wide memory hierarchy made of a dedicated SPM and VWRs [72], as shown
in Figure 2.4. Such a memory hierarchy is perfectly suited for the biomedical domain as
most of the applications gather multiple biosignals over a defined sampling period and
then process these data in blocks. During the processing, many data reads and writes are
performed, and the wide memory hierarchy offers a fast and energy-efficient solution. The
SPM serves as an L1 memory for data, and the VWRs as L0 or foreground memories. The
SPM is shared between the columns and has a double interface: on the system side, it
has the system bus width. On the accelerator side, it has the same width as the VWRs. A
DMA performs the data transfers between the SPM and the system’s main memory (i.e.,
L2 memory), while the LSU (see Chapter 2.3.4) moves the data between the SPM and the
VWRs. The VWRs act as a buffer between the SPM and the RCs, which can access the
elements in the wide registers word by word. The SPM size depends on the amount of data
used by the applications of the targeted domain. If its size is restricted (e.g., due to power
or area limitations), a double buffering scheme can be implemented between the SPM
and the system’s main memory (see Chapter 4.6).

The RCs and the VWRs are connected through a network of multiplexers, allowing
multiple RCs to work in parallel on different sections of a VWR (i.e., each RC can only
access a fixed range of each VWR to maintain their single-port nature). Theoretically, wider
VWRs reduce the access energy per word (see Section 2.2.2). However, the size of the VWRs
has to consider the application target domain and the datapath width consuming the
data words. On the one hand, the VWRs need to be large enough to minimize the energy
access per word and the frequency at which new data must be loaded. On the other hand,
wider VWRs have higher leakage, and their usage might be suboptimal depending on the
amount of data to process and the timing constraints of the targeted domain. As shown
in Chapter 3, an analysis of the targeted domain gives an approximate range, and design
exploration is required to fine-tune this value.

The number of VWRs is also an important design choice, although the possible range of
values is smaller than their possible bitwidth. The need for multiple VWRs originates from
their single-port nature. Two VWRs are required at a minimum to access two operands.
A third VWR avoids overwriting one of the input VWRs when writing back the result.
Therefore, this design choice is often limited to two or three VWRs. For the two instances of
Chapters 3 and 4, three VWRs are used. A fourth VWR would significantly increase power
consumption without necessarily improving performance, as a VWR can be refilled with
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Figure 2.4: Wide memory hierarchy organization as proposed by the FEENECS template
of [58].

new data from the wide SPM in one cycle, but could potentially be required and beneficial
for some domains.

VWRs are meant for data with strong spatial locality, such as data arrays of biosignals.
For this reason, it has been proposed to use a dedicated SRF for scalar variables that do not
exhibit enough access regularity to combine with the vectorized access to data arrays [48].
The SRF depth depends on the applications. It can be single- or multi-ported as it is usually
small compared to the SPM and VWRs, therefore almost not contributing to the total area
and power consumption (see Chapters 3 and 4). The SRF contains scalar values, such
as constants, mask values (e.g., to compute addresses), or loop sizes. These values are
initially stored in the SPM and loaded inside the SRF at runtime. This further limits the
required size of the SRF as new values can be loaded during execution.

2.3.3 Shuffle unit

The architecture is completed with the integration of a shuffle unit, as proposed in [72]. As
each RC only accesses a fixed slice of a VWR, data reordering is needed to move the data
inside the full VWR. Such reordering is possible through the RCs interconnection matrix,
but it is only efficient if it can be integrated into the computation flow without any cycle
penalty. Otherwise, that would be highly inefficient in terms of performance and energy,
whereas the shuffle unit enables fast and energy-efficient data reordering [48].
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Figure 2.5: Data re-ordering inside VWRs: (a) each RC computes on its own slice of the
VWRs and passes the result over the interconnection to the other RC (efficient only if no
cycle penalty) and (b) the shuffle unit is used to re-order the data inside the VWRs before
each RC computes on its own slice. Using the RCs’ interconnection in (b) would add a lot
of latency and using the shuffle is more efficient.

Figure 2.5 shows two examples, one where the data reordering can be efficiently imple-
mented with the RCs’ interconnection (Figure 2.5.a) and one where the shuffle unit is more
efficient (Figure 2.5.b). In the first case, Figure 2.5.a, RC0 can only access a0, a1, b0, and
b1, while RC1 can only access a2, a3, b2, and b3 (because of the VWRs single-port nature).
However, RC0 needs to store the sum of a1, b1, a2, and b2 in a1, and RC1 the sum of a0,
b0, a3, and b3 in a3. In this specific example, RC0 and RC1 can take advantage of the RCs’
interconnection to share the data of their slice without any cycle penalty. On the contrary,
Figure 2.5.b, cannot do it without penalty cycles in which RC0 and RC1 would only load one
data to share it with the other RC. In this case, using the shuffle unit to reorder the data is
more efficient. These are simplified examples with only two RCs, random operations, and
two small VWRs, but they illustrate scenarios encountered multiple times while mapping
kernels on instances of the template. This becomes more problematic with more realistic
designs (i.e., more RCs and larger VWRs) such as the ones in Chapters 3 and 4.

The shuffle unit takes as input the data contained in one or more VWRs, applies a
hardcoded shuffle operation on the data, and stores the result in a VWR. Various specific
implementations are possible. The template instances of Chapters 3 and 4 use the same
design based on three VWRs: the input data inside the first two VWRs are shuffled and
stored in the third VWR. The shuffling operations are limited to a few hardcoded schemes
to limit power consumption. Some examples of data shuffling are words interleaving, even
or odd index pruning, and circular shifting (see Chapters 3 and 4 for more details).
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2.3.4 Specialized slots

The concept of specialized slots, borrowed from the VLIW architecture, is introduced with
an LSU, an LCU, and an MXCU on top of the RCs of each column, as shown in Figure 2.6.
They all have their own instruction stream synchronized with the RCs in the column via the
shared PC. Similar to the RCs, all the specialized slots have a local program memory that
can be reconfigured at runtime by loading configuration words from the context memory.
The specialized slots further enable leveraging the ILP inherent to any code. Inspired by
the brain organization and its region’s distinct roles (e.g., speech, vision, motor control),
the specialized slots and the RCs of a column work in parallel on a common task but with
their own dedicated functions.

Each specialized slot is optimized for its specific set of tasks (see Figure 2.6) with a
dedicated ISA, datapath, and register file. This allows performant and energy-efficient
execution of different types of kernels. However, while the slots are designed for certain
tasks, they can also execute certain general instructions. For example, the LSU usually
takes care of incrementing an address pointer. However, if the LSU is already executing
another instruction at a certain cycle, the address pointer incrementation can be offloaded
to another slot, as long as the ISA of that slot supports it. Such a scenario uses the SRF to
share data between the slots and improves performance by increasing ILP. Here I describe
each specialized slot, its tasks, and the related optimizations.

LSU: Load-and-Store Unit

The LSU controls the data transfers between the SPM and the VWRs or the SRF. The data
arrays are allocated to VWRs while scalar values (e.g., loop size) are stored in the SRF. The
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Figure 2.7: Block diagram of the LSU in the architectural template.

main task of the LSU is to generate addresses, and its datapath is optimized for such a
task. Advanced arithmetic operations (e.g., multiplications, divisions) are rarely required
to generate addresses. Therefore an ALU implementing logical bit operations (and, or,
xor), addition/subtraction, and left/right logical bit shift is often sufficient. Depending on
the targeted domain, it can be extended with other specific instructions. For example, the
instantiation of Chapter 4 has a bit reversal operation to improve the performance of FFT
computation. The template does not recommend integrating an immediate field inside
the configuration words as it uses many bits and would increase the local program memory
size and the context memory size. More efficient solutions exist, such as fixed input to zero
or any other constant value. The SPM depth fixes the datapath width of the LSU because
it has to generate these SPM addresses. The register file depth is also adjustable and its
optimal value is domain-dependent. Nevertheless, based on experimentation, an eight
entries RFs seems to be a good design starting point in many cases. Figure 2.7 shows the
template of the LSU specialized slots and some of the optimizable parameters.
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Figure 2.8: Block diagram of the MXCU in the architectural template.

MXCU: MultipleXer-Control Unit

The MXCU computes the addresses of the VWRs’ words passed to the RCs. To achieve
high performance, the number of instructions of the innermost loop mapped on the
architecture is critical, and the MXCU usually plays an essential role. As all RCs access their
own VWR slice, they could access a different word of that slice. However, such a design
would require one address to be generated per RC, and the MXCU should have multiple
FUs in order to generate these addresses fast enough. Consequently, it would require
wider instructions (to control all the FUs), and larger local program memory and context
memory. To avoid this important power and complexity overhead, the VWR2A template
proposes a unique address generation shared by the RCs to access their VWR slice. This
address is also used to write the data back to any of the VWRs. Although this structure adds
some constraints to the kernel mapping, they can be solved with careful data placement
and proper use of the shuffling unit. Like the LSU, the MXCU’s main task is to generate
addresses, and its ALU is optimized for it by executing addition/subtraction, logical bit
operations (and, or, xor), and left/right logical bit shift. Depending on the targeted domain,
more supported operations might be relevant. The implementation of an immediate field
is also discouraged, and the use of a few constant entries for the ALU’s input multiplexers
is preferred. For example, the instance in Chapters 3 has entries fixed to 0, 1, and 2. These
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values are enough to create most of the access patterns. The address range of the VWRs
fixes the datapath width of the MXCU (taking into account that the RCs access only a slice
of the VWRs). For example, a column with 4 RCs and a VWR bitwidth of 4096 bits (i.e., 128
32-bit words) gives a datapath width of 5 bits. The reason is that the width of the VWRs
in 32-bit words (i.e., 128) divided by four slices (one per RC) gives each RC access to 32
words, and 5 bits (25 = 32) are required to access them. Figure 2.8 shows the template of
the MXCU specialized slots and recapitulates the optimizable parameters.

LCU: Loop-Control Unit

Compared to a common CGRA using modulo scheduling and hardware kernel execu-
tion control —with a prologue, steady-state, and epilogue scheme [4]— the LCU is pro-
grammable. Its primary task is to handle loop control (e.g., counter increments, branches)
and conditions (e.g., if-else blocks). Therefore, its generic ISA includes jump, conditional
jump, signed addition/subtraction, logical bit operations (and, or, xor), and left/right
logical shifts. The jump and branch instructions update the PC register shared by all the
units in a column (i.e., the RCs and the specialized slots). When multiple columns execute
one kernel conjointly, their respective PCs are synchronized. The LCU is the only unit for
which the template recommends an immediate field to store the destination address of the
conditional branch instructions. Therefore, the minimum bitwidth of this field depends
on the depth of the program memory.

In theory, the LCU can implement any nested loop depth; however, an instantiation is
limited by its internal data register file and local program memory size. Therefore, these
two parameters must be optimized based on the application domain. However, thanks to
the intrinsic flexible nature of a DSIP, an instantiation can often adapt to unexpected or
rare scenarios. For example, the potential loop depth limitation of a specific LCU design
can be overcome by using more columns or the SRF. The LCUs of the VWR2A instances in
Chapters 3 and 4 have a four entries local register file and execute kernels that have up
to three level nested for loops, all executing on two columns which means two register
files (one per LCU) are available. However, the two columns are mainly used to increase
the number of RCs. For example, data-intensive kernels with simple control structures
(e.g., for loops, as in the finite impulse response (FIR) Filter evaluated in chapter 3), could
be executed in one column even with a three-nested loop implementation. In this case,
each loop size is stored in the SRF and loaded to the LCU local register file whenever the
loop is initialized. Then, the LCU decrements each register every iteration accordingly and
compares them with its constant zero input to decide whether to jump.

The datapath width of the LCU is not fixed by other parameters compared to the
LSU or the MXCU. However, a lower bound value can be defined based on the VWR’s
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Figure 2.9: Block diagram of the LCU in the architectural template.

size. In the previously used example with a column containing four RCs and VWRs with
128 words (i.e., 32 words per RC), the loop size is usually limited to a maximum of 32
iterations. This is due to the size of a VWR slice (i.e., 32 words per RC) and the fact that in
each iteration usually each RC consumes at least one data element. Therefore, after 32
iterations, the loop is exited to load the next batch of data using the LSU. Additionally, the
LCU is able to generate PC values to access all the configuration words stored in the local
program memory of all the RCs and specialized slots. Therefore, its minimum datapath
width is defined as: dp_widthmin = max(clog2(slicesize), clog2(prog_mem_depth)). A loose
upper bound value can be defined similarly: considering the worst-case scenario where
only one RC consumes one data element at a time, the loop would take 128 iterations
corresponding to the VWRs size. While the lower bound value is precise, the latter gives
more of an approximation to help the designer. Figure 2.9 shows the template of the LCU
specialized slots and recapitulates the optimizable parameters.

2.4 Illustrative kernel mapping analysis

The high-level mapping of a C code example is illustrated here to explain better the use of
an instance generated from the template. For conciseness and clarity, a simple instance of
one column with four RCs is used, and a simple kernel adding two vectors is considered.
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void vec_add (

       int32_t *v0,

       int32_t *v1,

       int16_t size) {

 int16_t i;

 for(i=0; i<size; i++) {

   v0[i] = v0[i]+v1[i];

 }}

  for(i=0; i<size/VWR_SIZE; i++)
    for(j=0; j<VWR_SLICE_SIZE; j++)

LCU

load(vwr_0, v0[...])
load(vwr_1, v1[...])
store(v0[...], vwr_0)

LSU

vwr_0[i]
vwr_1[i]

MXCU

RC0: vwr_0[i]+vwr_1[i]

RC1: vwr_0[i+VWR_SLICE_SIZE]+vwr_1[i+VWR_SLICE_SIZE]

RC2: vwr_0[i+2*VWR_SLICE_SIZE]+vwr_1[i+2*VWR_SLICE_SIZE]

RC3: vwr_0[i+3*VWR_SLICE_SIZE]+vwr_1[i+3*VWR_SLICE_SIZE]

Reconfigurable Cells

void vec_add (

        int32_t *v1,

        int32_t *v2,

        int16_t size) {

  int16_t i, j;

  for(i=0; i<size/VWR_SIZE; i++) {

    load(vwr_0, v0[i*VWR_SIZE:(i+1)*VWR_SIZE])

    load(vwr_1, v1[i*VWR_SIZE:(i+1)*VWR_SIZE])

    for(j=0; j<VWR_SLICE_SIZE; j++) {

        vwr_0[i] = vwr_0[i]+vwr_1[i];

    }

    store(v0[i*VWR_SIZE:(i+1)*VWR_SIZE], vwr_0)

  }}

Original C code VWR2A pseudocode VWR2A mapping

(a) (b) (c)

Figure 2.10: Illustrative kernel mapping analysis with the original C code for two vectors
element-wise addition (a), its translation to pseudocode for the VWR2A instance (b), and
the distribution of the tasks to the specialized slots and RCs (c).

Figure 2.10 shows the C code kernel, its translation to pseudocode for the VWR2A instance,
and finally, the high-level distribution of the various tasks to the different units (from left
to right). It shows how the specialized slots increase the ILP of the design. In this case, the
innermost loop (i.e., adding two elements from v0 and v1) would take only one cycle:

• The LCU updates the counter (i) and checks the loop condition (considering a single
cycle counter update and conditional branch instruction is supported).

• The MXCU generates the addresses to access the two VWRs (i.e., vwr_0 and vwr_1).

• The RCs add the two elements of their respective VWR slice. In this example, four
additions happen in parallel as there are four RCs.

A similar high-level decomposition can be found in almost any code, which is why
the template proposes the implementation of these three specialized slots in particular.
Nevertheless, the actual computations are domain-dependent and have to be optimized
accordingly. For example, in the C code example of Figure 2.10, the access pattern of
the VWRs is simple (continuous addresses), which simplifies the addresses generated by
the MXCU. Depending on the complexity of the access patterns, the MXCU can support
different operations, or the shuffle unit can support a re-ordering scheme that simplifies
the access pattern.

Figure 2.10 shows the effects of the wide memory hierarchy on the original C code.
The first one is the abstraction of the load and store operations outside the original loop.
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Instead of loading data every iteration, the LSU loads a batch of data to the VWRs, and then
the RCs compute on these data. The results are written back to the background memory
(i.e., the SPM) only when all the data inside the VWRs have been consumed. The second
effect, not occurring in the simple example of Figure 2.10, is the data placement constraints
imposed by the single-port nature of the VWRs. From the datapath side (i.e., the RCs), the
VWRs are decomposed in private memory slices (one per RC). It becomes a problem when
one RC requires data stored in another slice. The FFT kernel (see Section 2.6.2) was the
most challenging in that regard, although it has a very regular access pattern. The problem
is that this pattern changes every stage, and at every new stage, the RCs require data stored
in another slice. Such a problem requires intelligent use of the RCs interconnection to
share data between the RCs efficiently, but more is needed. As discussed in Section 2.3.3,
the shuffle unit is there to help with this problem. However, to limit its power and area
overhead, the supported shuffling operations must be carefully evaluated to cover multiple
scenarios and kernels instead of a single use case.

2.5 Comparative evaluation of the VWR2A template with respect
to other programmable architectures

To illustrate the flexibility and performance advantages of the proposed VWR2A template,
this section proposes a quantitative comparison with two representative state-of-the-art
programmable low-power architectures: a low-power SoC and a baseline CGRA architec-
ture, both targeting the biomedical domain. In this case, the template uses the instance
proposed in Chapter 3 targeting data-intensive kernels of the biomedical domain. Al-
though a VWR2A instance can hypothetically execute any C code, a particular instance has
some practical limitations. The first one is the size of the units’ local program memory. Al-
though it is theoretically possible to increase its size, there exist limitations, such as power
consumption. The second is the currently missing compiler support that makes it chal-
lenging to map complete applications. Therefore, VWR2A is integrated inside platforms as
a hardware accelerator or a co-processor.

2.5.1 Evaluated architectures

Low-power SoC

To demonstrate the advantages of the proposed DSIP architecture, I compare it with a
low-power SoC intended for biomedical signal acquisition and processing [32]. As shown
in Figure 2.11, this platform features an ARM Cortex-M4F (CM4F) processor, 192 KiB of
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Figure 2.11: Low-power SoC for biomedical signal acquisition and processing architecture
proposed in [32].

SRAM (divided into six banks that can be individually power gated), an analog front end
for the acquisition of biosignals (e.g., electrocardiogram (ECG), photoplethysmogram
(PPG)), a DMA, and several fixed-function accelerators. The ARM CM4F processor is a
middle-class, low-power 3-stage pipeline core with VFPv4-SP (single-precision FPU) and
digital signal processing extensions. The FPU extension is not relevant in the context of
this thesis as floating-point arithmetic operations have not been considered, although the
VWR2A template does not exclude them. The digital signal processing extension is more
important in our context as it optimizes the execution of fixed-point operations. It enables
32-bit wide SIMD operation on four 8-bit values or two 16-bit values. The ARM CM4 also
supports 32-bit integer multiplication and MAC operations in one cycle and 32-bit integer
division in 2-12 cycles.

Baseline CGRA

Figure 2.12 shows the baseline CGRA used for comparison. Its design is based on two very
similar architectures optimized for the biomedical domain introduced in [33] and [34]. It
features a 4-by-4 reconfigurable array organized in four columns of four RCs. Similarly to
VWR2A, all the RCs of a column have a shared PC, and the columns can work independently
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Figure 2.12: CGRA architecture baseline based on [33] and [34]. The RCs nearest neighbors
interconnection torus is only shown for a few cells at the edges (RC0-RC12 and RC12-RC15)
to simplify the figure, but all the other RCs at the edges have similar connections.

on different kernels or in synchronization on one kernel. This architecture does not have
any dedicated data memory and relies on the platform memory in which it is integrated.
The instruction flow (e.g., branch, data computations, addresses generation) is entirely
handled by the RCs since there are no specialized slots. All the RCs have the same design:
a 32-bit datapath, a program memory of 32 words of 32 bits, and a four-entry RFs. The RCs
are interconnected with their closest neighboring cells in a torus fashion (see Figure 2.12).

This architecture has been integrated inside the low-power SoC described above. Each
column possesses a master port connected to the AMBA-AHB bus of the platform, limiting
the data access request to one RC per column (all the RCs can issue a load or store request,
but only one at a time per column).

VWR2A

The VWR2A instance used for the experiments is taken from Chapter 3 and shown in
Figure 3.3 of that chapter. This instantiation is described in detail in its corresponding
chapter and it is used here to illustrate the proposed VWR2A template. Its main features are
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a 4-by-2 reconfigurable array (i.e., two columns of four RCs), three VWRs and one SRF per
column, and a 32KiB shared SPM. The goal is to show the template’s high-level features,
their impact on the mapping, and how they can significantly improve performance. VWR2A
is integrated inside the SoC similarly to the baseline CGRA.

2.6 Experimental setup

2.6.1 Performance and energy characterization

The complete SoC, either including the baseline CGRA or the VWR2A instance, is synthe-
sized with the Cadence genus tool [76] using the TSMC 40 nm LP CMOS technology [77] at
80MHz (the original SoC frequency) and post-synthesis simulations are run with Cadence
Incisive Verification Platform [76] to compare the performance and the energy of all the
implementations. This allows cycle-accurate simulations from which the switching activity
of the cells is extracted and used for power estimation with Synopsys PrimePower [78].

2.6.2 Benchmark kernel

The Fourier transform is a good example of a kernel used in many biomedical applica-
tions [79–81] as it enables analysis and feature extraction in the frequency domain. This
kernel is used throughout this chapter as a representative example of code used in the
biomedical domain (complete applications are evaluated in Chapters 3 and 4). It repre-
sents a significant workload —in terms of data computation and data access— for low-
power architectures and therefore is an excellent kernel to compare the three considered
architectures and illustrate the use of VWR2A. The Fourier transform is usually computed
with an optimized algorithm called FFT, which reduces the computation complexity from
O(n2) to O(n log n), where n is the number of points. A common implementation is the
in-place radix-2 FFT algorithm [82]. The radix-2 algorithm divides the computation into k

stages, where 2k = N and N is the number of input points, as shown in Figure 2.13 (with
N = 8). Therefore, a radix-2 FFT expects a power-of-two input size. Other variants of
radix-M FFT, where M is a power-of-two index (e.g., radix-4), are also possible, but they
expect a power-of-M input size, limiting their use. It is also possible to mix different radix
implementations, but we focus only on the radix-2 version for simplicity and clarity.

All the stages of a radix-2 FFT execute the same flow of operations. The only changes are
the coefficients and the data ordering. The basic block of operation is called a butterfly (see
Figure 2.13). The output of the radix-2 algorithm is in bit-reversed order (i.e., the output
signal indexes are in bit-reversed order), as shown in Figure 2.13, and an extra reordering
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Figure 2.13: 8 points radix-2 FFT computation graph and butterfly computation.

step is required to obtain the correct output order according to the definition of the Fourier
transform. This step can also be performed before the radix-2 execution without any
impact on the algorithm complexity as it only changes the order of the computations.

An optimized version is used for real-valued FFTs (i.e., the imaginary part is null).
The N real values sequence is transformed into an N/2 complex sequence. Then, the
regular radix-2 implementation is used. This technique reduces the computations of
the FFT kernel but requires some additional operations to recover the correct output.
The overall gain is approximately a factor of 2 compared to a complex FFT of size N

where the imaginary part is zero. The three evaluated architectures use the radix-2 FFT
algorithm (sometimes a radix-4 implementation for the common microcontroller software
interface standard digital signal processing (CMSIS-DSP) library), but the mapping on
each architecture is different (see Chapter 2.7.1).

The recursive C implementation of the radix-2 FFT algorithm is shown in Figure 2.14.
This specific implementation expects the input signal to be in bit-reversed order. This fig-
ure shows that for each butterfly step, 10 accesses to the memory are required (6 reads and
4 writes), 6 addresses have to be generated, and 10 arithmetic operations are performed
(considering the fxp_mult() function as one operation). For a single-core scalar processor,
it represents a theoretical minimum of 26 instructions (much more in reality as each of
these high-level instructions is typically made of multiple real machine instructions).
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00: int n_group = FFT_SIZE/2;

01: int offset = 1;

02: for(int i=1; i<=LOG2(FFT_SIZE); i++){

03:    for(int k=0; k<n_group; k++){

04:       int base_idx = k << i;

05:       for (int j=0; j<offset; j++){

06:          fxp even_real = Real_Out[base_idx+j];

07:          fxp even_imag = Imag_Out[base_idx+j];

08:          fxp odd_real = Real_Out[base_idx+j+offset];

09:          fxp odd_imag = Imag_Out[base_idx+j+offset];

10:          fxp w_r = factors_real_fxp[j*n_group];

11:          fxp w_i = factors_imag_fxp[j*n_group];

12:          fxp p_sum_r = fxp_mult( w_r, odd_real ) - fxp_mult( w_i, odd_imag );

13:          fxp p_sum_i = fxp_mult( w_i, odd_real ) + fxp_mult( w_r, odd_imag );

14:          Real_Out[base_idx+j] = even_real + p_sum_r;

15:          Real_Out[base_idx+j+offset] = even_real - p_sum_r;

16: Imag_Out[base_idx+j] = even_imag + p_sum_i;

17:          Imag_Out[base_idx+j+offset] = even_imag - p_sum_i;

18:       }

19:    }

20:    n_group >>= 1;

21:    offset <<= 1;

22: }

6 data reads

10 arithmetic ops

4 data writes

Figure 2.14: C code of the FFT radix-2 algorithm and inner loop analysis.
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2.7 Experimental results

2.7.1 Software mapping comparison

The radix-2 FFT is used as an example kernel used in the biomedical domain to show the
different mapping of kernels on the three evaluated architectures. The ARM Cortex-M4
low-power SoC, referred to as the CM4 architecture, has two implementations: one using
the plain C code of Figure 2.14 and one using the CMSIS-DSP library of ARM[83]. The
disassembly of the former is shown in Figure 2.15. Only the innermost loop is shown as it
is the most relevant to understand the performance differences. Each call to the fxp_mult
function takes four instructions. Because of these calls, the compiler enforces the use of
r0 and r1 to pass the two functions’ arguments (i.e., the two numbers to multiply). If the
function was inlined, a few instructions could be saved (at the cost of extended code),
but it would not significantly impact performance. The most important fact to notice
is the large number of load (ldr) and store (str) instructions. This significantly impacts
performance and energy consumption. Each of these instructions accesses the memory
and makes the long wires of the bus switch every time. They also consume cycles of the
processor.

The disassembly of the version using the CMSIS-DSP library is not shown here because
its complexity does not allow a simple analysis. Although this version is much faster than
the plain C version of Figure 2.14, it is not due to the actual use of the CM4 digital signal
processing extensions. From the disassembly analysis, there is no use of any packed-SIMD
instructions, because 32-bit input data are used. Therefore, the performance improvement
is only due to the manually optimized code of the CMSIS-DSP by using, for example, loop
unrolling. This is at the cost of a much larger code (6.7× more bytes of code compared to
the plain C for a 512-point real FFT). Based on the size of the FFT, the library uses either
the radix-2 or the radix-4 algorithm.

The mapping on the baseline CGRA, referred to as the CGRA architecture, can exploit
the radix-2 algorithm ILP and data-level parallelism thanks to its multiple RCs. For sim-
plicity, the mapping of the FFT has been limited to two columns of the reconfigurable
array. Figure 2.16 shows the disassembly code of the innermost loop of the code mapped
on the CGRA. It clearly shows the benefit of having multiple processing elements (i.e., the
RCs), as the innermost loop size is reduced to 7 instructions per RC. A second advantage
of the CGRA is that it supports fixed-point multiplication in hardware, reducing the four
instructions of the CM4 to only one. The first column (i.e., RC0-3) works on the real part
of the complex input data, while the second column (i.e., RC4-7) works on the imaginary
part.
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void fft_cplx_radix2_iter (fxp *Real_Out, fxp *Imag_Out, int fft_s, int nbits){
...

00:  ldr  
01:  str  
02:  ldr.w
03:  str  
04:  ldr.w
05:  str  
06:  ldr.w
07:  str  
08:  ldr.w
09:  str  
10:  ldr  
11:  ldr  
12:  ldr  
13:  ldr  
14:  ldr  
15:  str  
16:  mov  
17:  str  
18:  bl   
19:  ldr  
20:  mov  
21:  ldr  
22:  bl   
23:  ldr  
24:  sub.w
25:  ldr  
26:  bl   
27:  ldr  
28:  str  
29:  ldr  
30:  mov  
31:  bl   
32:  ldr  
33:  ldr  
34:  add  
35:  mov  
36:  ldr  
37:  add  
38:  str.w
39:  ldr  
40:  ldr  
41:  sub.w
42:  str.w
43:  ldr  
44:  add  
45:  str.w
46:  ldr  
47:  subs 
48:  str.w
49:  adds 
50:  ldr  
51:  cmp  
52:  add  
53:  bgt.n
...
}

r3, [sp, #0]
r2, [sp, #60]
r3, [r3, r4, lsl #2]
r3, [sp, #12]
r3, [fp, r4, lsl #2]
r3, [sp, #16]
r3, [r2, r4, lsl #2]
r3, [sp, #20]
r3, [sl, r4, lsl #2]
r3, [sp, #24]
r3, [sp, #44]
r2, [sp, #48]
r3, [r3, r7]
r2, [r2, r7]
r1, [sp, #20]
r2, [sp, #28]
r0, r3
r3, [sp, #56]
<fxp_mult>
r1, [sp, #24]
r9, r0
r0, [sp, #28]
<fxp_mult>
r1, [sp, #20]
r9, r9, r0
r0, [sp, #28]
<fxp_mult>
r3, [sp, #56]
r0, [sp, #20]
r1, [sp, #24]
r0, r3
<fxp_mult>
r3, [sp, #20]
r2, [sp, #0]
r3, r0
r0, r3
r3, [sp, #12]
r3, r9
r3, [r2, r4, lsl #2]
r3, [sp, #12]
r2, [sp, #60]
r3, r3, r9
r3, [r2, r4, lsl #2]
r3, [sp, #16]
r3, r0
r3, [fp, r4, lsl #2]
r3, [sp, #16]
r0, r3, r0
r0, [sl, r4, lsl #2]
r4, #1
r3, [sp, #40]
r8, r4
r7, r3
00

Figure 2.15: Cortex-M4 ARMv7E-M ISA disassembly code for the radix-2 FFT algorithm
(plain C code of Figure 2.14) innermost loop.
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void fft_cplx_radix2_iter (fxp *Real_Out, fxp *Imag_Out, int fft_s, int nbits)

RC0:
      ...
 L0:mvs      r1, data
      nop
      fxpmul  self, rct, r1
      ld          self, [r0]
      adds     r1, self, rcr
      str         r1, [r0]
      adds     r0, #4
      ...

RC1:
      ...
 L0:nop
      nop
      nop
      nop
      nop
      mvs      self, rcb
      str         rcr, [rcb]
      ...

RC2:
      ...
 L0:ld          self, data
      mvs      self, rcr
      fxpmul  self, rcb, self
      adds     self, rcr, self
      subs     self, rcr, self
      mvs      self, r0
      adds     r0, #4
      ...

RC3:
      ...
 L0:adds     r3, #1
      ld          self, [r0]
      nop
      mvs      self, r1
      adds    r0, r0, self
      mvs      self, r3
      nop
      ...

RC4:
      ...
 L0:ld          r1, [r0]
      nop
      fxpmul  self, rct, r1
      subs     self, rcl, self
      subs     self, rcl, self
      mvs      self, r0
      adds     r0, #4
      ...

RC5:
      ...
 L0:nop
      nop
      nop
      nop
      nop
      mvs      self, rct
      str         rcl, [rct]
      ...

RC6:
      ...
 L0:mvs      self, data
      mvs      self, rcl
      fxpmul  self, rcb, self
      ld         self, [r0]
      adds     r1, rcl, self
      str         r1, [r0]
      adds     r0, #4
      ...

RC7:
      ...
 L0:nop
      ld          self, [r0]
      nop
      nop
      adds    r0, r0, rcl
      nop
      blt        rcl, r3, L0
      ...

rct

rcb

self

rcr

rcl

RC0

RC1

RC2

RC3

RC0

RC1

RC2

RC3

rctrcb

Figure 2.16: CGRA disassembly code for the radix-2 FFT algorithm innermost loop.

The disassembly clearly shows the use of the RCs’ interconnection (i.e., rc[t/b/l/r]
and self), which enable fast data sharing between the RCs. This reduces the number of
accesses to the memory. However, Figure 2.14 shows that six load and four store operations
are required at least per iteration for the data transfer only. Although the mapping on
the CGRA has two ports to the memory bus (i.e., one per column), as they both access
the same memory bank, they cannot happen in parallel. Using more columns would
not improve performance as the bus throughput —and not the processing power— is
the bottleneck. The SoC has multiple banks and a multilayer AHB bus, which enables
parallel access to all the banks. However, to take advantage of it, the data have to be placed
knowing the access pattern of the algorithm, the FFT in this case, which changes every
iteration (every outer loop iteration for the FFT). Without hardware support for such a
re-ordering, implementing it in software would take more time than the bus contention
penalty of the current mapping.

Figure 2.17 shows the disassembly of the VWR2A instance, referred to as the VWR2A
architecture for simplicity. The VWR2A implementation executes the bit-reversal reorder-
ing after the FFT computation. The mapping also uses two columns, as for the CGRA,
but it is very different due to the use of the VWRs. While the CGRA and the CM4 imple-
mentations treat the data one by one, the VWR2A first loads a batch of data inside the
VWRs (lines 03, 04, 09, and 11 in Figure 2.17) and processes it (lines 06, 07, 10, 13, and 14 in
Figure 2.17) before loading the next one. As each RC has access to its own VWR slice, all
the RCs of a column can access data in parallel, removing the bus throughput bottleneck.
The previously mentioned data re-ordering problem is also present with the memory
hierarchy of VWR2A. It is solved using the shuffle unit after each outer loop iteration to
re-order the data and the FFT weights inside the VWRs. Finally, as the specialized slots
take care of all the necessary extra computations not directly linked to the input data (e.g.,
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void fft_cplx_radix2_iter (fxp *Real_Out, fxp *Imag_Out, int fft_s, int nbits)

LCU:
00:       ...
01: L0: nop
02:       nop
03:       nop
04:       nop
05:       nop
06:       nop
07: L4: nop
08:       beq     r1, #0, .L1
09:       beq     r1, #1, .L3
10: L5: nop
11: L1: beq     r1, #0, .L2
12:       beq     r1, #1, .L3
13: L6: nop
14:       nop
15: L2: nop
16:       bgepd r2, #0, .L0
17:       ...

LSU:
00:       ...
01: L0: li       r1, #0
02:       sadd r0, r1, r2
03:       sadd r7, srf[3], r0 / ld.vwr #1, [r7]
04:       sadd r7, srf[3], r1 / ld.vwr #0, [r7]
05:       sadd r1, r0, #1
06:       nop
07: L4: nop
08:       sadd r7, srf[4], r3 / str.vwr #2, [r7]
09:       sadd r7, srf[5], r3 / ld.vwr  #1, [r7]
10: L5: nop
11: L1: sadd r7, srf[3], r0 / ld.vwr  #1, [r7]
12:       land  r1, r1, r4
13: L6: nop
14:       nop
15: L2: sadd r3, r3, r6
16:       land  r3, r3, srf[1]
17:       ...

MXCU:
00:       ...
01: L0: mv    r4, r6
02:       li        r6, #31
03:       li        r0, #0
04:       nop
05:       nop
06:       nop
07: L4: sadd r0, r0, #1
08:       li       r0, #0
09:       mv    r6, r4
10: L5: sadd r0, r0, #1
11: L1: li       r0, #0
12:       nop
13: L6: nop
14:       sadd r0, r0, #1
15: L2: nop
16:       nop
17:       ...

RC0-3:
00:       ...
01: L0: nop
02:       nop
03:       nop
04:       nop
05:       nop
06:       sadd vwrc, vwra, vwrb
07: L4: ssub vwra, vwra, vwrb
08:       nop
09:       nop
10: L5: smul vwrc, vwra, vwrb
11: L1: nop
12:       nop
13: L6: smul self, vwra, vwrb
14:       ssub vwra, vwrc-rcr
15: L2: nop
16:       nop
17:       ...

COLUMN 0

LCU:
00:       ...
01: L0: nop
02:       nop
03:       nop
04:       nop
05:       li         r3, #31
06:       nop
07: L4: bgepd r3, #0, .L4
08:       li         r3, #31
09:       li         r1, #0
10: L5: bgepd r3, #0, .L5
11: L1: li         r3, #31
12:       li         r1, #1
13: L6: nop
14:       bgepd r3, #0, .L6
15: L2: nop
16:       nop
17:       ...

LSU:
00:       ...
01: L0: li       r1, #0
02:       sadd r0, r1, r2
03:       sadd r7, srf[3], r0 / ld.vwr #1, [r7]
04:       sadd r7, srf[3], r1 / ld.vwr #0, [r7]
05:       sadd r1, r0, #1
06:       nop
07: L4: nop
08:       sadd r7, srf[4], r3 / str.vwr #2, [r7]
09:       sadd r7, srf[5], r3 / ld.vwr  #1, [r7]
10: L5: nop
11: L1: sadd r7, srf[3], r0 / ld.vwr  #1, [r7]
12:       land  r1, r1, r4
13: L6: nop
14:       nop
15: L2: sadd r3, r3, r6
16:       land  r3, r3, srf[1]
17:       ...

MXCU:
00:       ...
01: L0: mv    r4, r6
02:       li        r6, #31
03:       li        r0, #0
04:       nop
05:       nop
06:       nop
07: L4: sadd r0, r0, #1
08:       li       r0, #0
09:       mv    r6, r4
10: L5: sadd r0, r0, #1
11: L1: li       r0, #0
12:       nop
13: L6: nop
14:       sadd r0, r0, #1
15: L2: nop
16:       nop
17:       ...

RC0-3:
00:       ...
01: L0: nop
02:       nop
03:       nop
04:       nop
05:       nop
06:       sadd vwrc, vwra, vwrb
07: L4: ssub vwra, vwra, vwrb
08:       nop
09:       nop
10: L5: smul vwrc, vwra, vwrb
11:       nop
12:       nop
13: L6: smul self, vwra, vwrb
14:       ssub vwra, vwrc-rcl
15: L2: nop
16:       nop
17:       ...

COLUMN 1

Figure 2.17: VWR2A instance disassembly code for the radix-2 FFT algorithm innermost
loop. rc[t,l] refers to the RC[right,left] connection from the RCs’ interconnection, and self
to the output register of an RC that is connected to this interconnection network.
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Figure 2.18: Graphical illustration of a few steps of the FFT radix-2 kernel mapping on the
VWR2A.

loop counters, address generation), the eight RCs can entirely focus on the computation
of the FFT butterfly elements. These are the reasons for the performance improvement
of the VWR2A architecture compared to the CGRA architecture, in particular the use of
specialized slots.

Figure 2.18 illustrates in a more readable way the first few instructions of Figure 2.17
for a 256 point complex FFT. The different steps are the following:

1. The LSU loads the real part (ri) of the data from the SPM in VWRs A and B.

2. The RCs add the entries of VWRs A and B into the VWR C and subtract them into
VWR A.

3. The LSU stores VWR C in the SPM and loads the real weights (wri) in VWR B.

4. The RCs multiply the entries of VWRs A and B into VWR C.

5. . . . (kernel execution continues)

The shuffle unit is used between the stages to reorder the data. For example, in Fig-
ure 2.18, r0 is added to r128, but in the next stage r0 needs to be added to r64. At the end
of the current stage, r0 and r64 will be in the same VWR, which is not possible if we reuse
the same code for all the stages. Therefore, the shuffle unit applies the “VWR words inter-
leaving” shuffling to create the correct data layout for the next stage. Fig. 2.18 shows the
execution for one column of RCs. The second column executes the same instructions but
on the imaginary part (ik) of the data. The output of the kernel is in bit-reversed order, and
the shuffle unit is again used to reorder the data.
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Table 2.2: Comparison of the radix-2 FFT algorithm mapping on the Cortex-M4 SoC (CM4)
plain C version, the baseline CGRA (CGRA), and the VWR2A instance (VWR2A).

CM4 CGRA VWR2A
inner loop #instructions 73 7 16

inner loop #cycles (est.) 91 15 181

middle+inner loop #iterations FFT_SIZE
2

FFT_SIZE
2

FFT_SIZE
VWR_SIZE∗2

Total cycles6 1 outer loop 23 296 3840 362

Speed-up 1.0× 6.1× 64.4×

Table 2.2 shows the number of instructions and estimated cycles4 per inner loop it-
eration for the three implementations. Because of the code structure on the VWR2A
architecture, a fair comparison is only possible at the outer loop level. Table 2.2 shows
how many times the middle and inner loops are repeated. For the CGRA and CM4 imple-
mentations, this value is fixed to the FFT size divided by two.5 For the VWR2A architecture,
this value is fixed to FFT_SIZE/VWR_SIZE ∗ 2 because it processes a batch of data
equal to the VWRs’ size. The total number of cycles of one outer loop iteration of a 512
point complex value FFT is given for the three implementations. The absolute values are
only estimations, but their ratios are aligned with the results of the following experiments
section and perfectly explain the performance improvement of the CGRA and the VWR2A
implementations compared to the CM4 one. The CGRA enables ILP over the RCs, and
the VWR2A further improves it by integrating specialized slots. In addition, the VWR2A
removes the bus bottleneck with its wide memory hierarchy based on VWRs, further
improving performance. This analysis is based on the radix-2 FFT algorithm example.

2.7.2 Performance and energy consumption comparison

The performance of the three evaluated architectures is shown in Table 2.3 for three
different FFT sizes and for complex and real sequences. For the CGRA and VWR2A imple-
mentations, the time to configure the platform is included (i.e., loading the configuration
words from the context memory to the local program memories of all the units). For
VWR2A, the data copy from the SoC SRAM to the VWR2A SPM (and back) is also taken into
account. The index bit-reversal step (see Chapter 2.6.2) and the split operations (recovery
operations after a real-valued FFT) are also executed by the CGRA and VWR2A.

4For simplicity, the number of cycles are estimated using 1.5 cycles for a load or store operation (as they
usually take more than 1 cycle, but the request can be pipelined) and 1 cycle for any other operation.

5The implementation uses two loops, but their total cumulated size is fixed to FFT_SIZE/2 as shown in
Figure 2.14

6For a 512 points complex FFT.
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Table 2.3: FFT kernel performance comparison for various sizes.

CM4 CM4 CGRA VWR2A
(plain C) (CMSIS)

Cplx-valued cycles cycles speed-up cycles speed-up cycles speed-up

512 351 450 142 497 2.5× 48 556 7.2× 7211 48.7×
1024 742 872 279 576 2.7× 106 424 7.0× 14 610 50.8×
2048 1 624 455 670 594 2.4× 213 446 7.6× 29 908 54.3×

Real-valued

512 196 024 102 148 1.9× 31 780 6.2× 3795 51.7×
1024 403 821 233 705 1.7× 66 759 6.0× 7259 55.6×
2048 878 053 459 784 1.9× 141 354 6.2× 14 528 60.4×

Compared to the CM4 plain C code, the CMSIS-DSP library gives an average speed-up
of 2.2×, the CGRA an average speed-up of 6.7×, and the VWR2A an average speed-up of
53.6×. The CGRA and VWR2A use both 8 RCs, but the latter is 8.1× faster on average. The
wide memory hierarchy explains part of this performance improvement, and the rest is
due to the specialized slots, which demonstrates their relevance and crucial role in the
performance of VWR2A. These speed-ups also translate into energy savings as shown
in Table 2.4. As the CM4 power consumption is almost constant, using the CMSIS-DSP
library reduces the energy by 46.6% on average. The energy savings for the CGRA and the
VWR2A instance are limited by their higher power consumption compared to the CM4, but
they are still significant: 67.3% and 86.5%, respectively. The energy-delay product (EDP)
combines both metrics (latency and energy) and provides a better overall comparison
factor between the different implementations. Compared to the baseline CM4 plain C
code implementation, the CM4+CMSIS, the CGRA, and the VWR2A instance have and
EDP improvement of 4.4×, 20.8×, and 397.6×, respectively. Compared to the optimal
implementation using the CMSIS-DSP library for the CM4, the CGRA, and the VWR2A
instance have and EDP improvement of 5.1×, and 104.8×, respectively.

Mapping. The first observation is that all three implementations (CM4+CMSIS, CGRA,
VWR2A) have optimized code, while the CM4 plain C is a straightforward implementation
of the radix-2 algorithm, showing the importance of mapping to reach optimal execution.
The flexibility-performance tradeoff discussed in Chapter 1 and 2.1 and shown in Figure 1.4
is validated for the CGRA and VWR2A architectures compared to the CM4: they are faster
and more energy efficient, but they are not as flexible or programmable as the CM4 (e.g.,
they support a smaller ISA and only 32-bit integer data). The comparison of the CGRA and
VWR2A instances is also interesting to investigate. They have a similar architecture, as
the VWR2A uses a CGRA design for its compute core fabric, and can, in theory, execute
the same kernels, thus can be considered equivalently programmable, but the VWR2A is
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Table 2.4: FFT kernel energy consumption comparison for various sizes.

CM4 CM4 CGRA VWR2A
(plain C) (CMSIS)

Energy Energy Savings Energy Savings Energy Savings
Cplx-valued (µJ) (µJ) (µJ) (µJ)

512 2.93 1.31 −55.3% 0.88 −69.9% 0.41 −86.1%
1024 6.43 2.55 −60.4% 1.93 −70.0% 0.88 −86.3%
2048 13.95 6.00 −57.0% 4.29 −69.3% 1.91 −86.3%

Real-valued

512 1.69 1.13 −33.2% 0.61 −64.0% 0.23 −86.4%
1024 3.61 2.44 −32.3% 1.29 −64.3% 0.49 −86.4%
2048 8.27 4.83 −41.6% 2.77 −66.5% 1.04 −87.4%

faster and more energy efficient. Therefore, one crucial contribution of VWR2A is that it
advances the Pareto front of the flexibility-performance tradeoff.

VWR2A performance. The main features of VWR2A are evaluated and compared to
the baseline CGRA architecture to explain the higher efficiency and to provide insights
that could be transposed to other architectures. One important reason for the improved
performance of VWR2A is the use of a dedicated memory tailored to the need of the
accelerator, as recommended in [57, 66]. For VWR2A, the SPM plays this role by providing
a dedicated data memory close to the RCs (i.e., short wires) and a wide interface to enable
multiple words to be accessed in parallel. In comparison, the CGRA uses the SoC limited
bus bandwidth (32-bit) and main memory that is far (i.e., long wires), which increases the
latency and energy consumption. Figure 2.19 shows the power consumption reduction
in the SoC bus and main memory when VWR2A is used compared to the CGRA. As
expected, this figure also shows that the VWR2A consumes more power because it contains
a SPM. In total, the wide memory hierarchy —the SPM and the VWRs (with the decoding
multiplexers)— is responsible for more than 90% of the power consumption increase
compared to the CGRA. Although it seems part of the power consumption has only moved
from the SoC main memory and bus to the VWR2A instance, this organization is more
energy efficient for two reasons: 1) the wide memory hierarchy is 1.7× more energy
efficient on average compared to using the SoC main memory and bus,7 and 2) VWR2A is
much faster thanks to this memory hierarchy. The VWR2A instance speed improvement
compared to the CGRA is due to the wide memory hierarchy and the specialized slots
that increase the ILP. The impact of the specialized slots can be estimated by considering
the RCs would have to execute their instructions. For the FFT kernels evaluated in this

7This is evaluated in post-synthesis simulation. In a real chip or post-layout simulation, the long bus wires
should penalize the CGRA implementation even more.
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Figure 2.19: Normalized comparison of VWR2A main features on power and performance
compared to the CGRA.

chapter, this would increase the execution time by approximately a factor of 2.1×. This
shows the massive benefit of the specialized slots as they only account for 5.1% of the
VWR2A instance power consumption on average. Without them, it would be less than 20%

more energy efficient than the CGRA, compared to the actual 58.3%. Considering the ILP
and the wide memory hierarchy are the main contributors to the speedup compared to
the CGRA (as both architectures are using the same number of RCs), it means the wide
memory hierarchy contributes to a factor 3.9× improvement in speed. When energy and
execution time are combined, the VWR2A instance has an EDP improvement of 19.8×
compared to the CGRA. If the area is considered in an energy-delay-area8 product, the
VWR2A is still 3.5× better compared to the CGRA.

Comparing performance with state-of-the-art architectures from the literature is often
not trivial because the experimental setup must be standardized for a fair comparison,
especially for energy numbers. The technology and the frequency used to synthesize a
design, the considered benchmarks, or the maturity of the architecture (e.g., complete
SoC or a simplified platform) are, for example, parameters that considerably modify the
performance and energy consumption of a design. The Ultra-Low Power Samsung Re-
configurable Processor (ULP-SRP) [84], a recent instantiation of the ADRES template [85]

8Post-synthesis area estimation.
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that uses the same technology node (i.e., TSMC 40 nm LP) is a good comparison point.
Compared to it, VWR2A exhibits significant performance and energy gains. The authors
reported an execution time of 839.1 µs at 100MHz and an energy consumption of 19.9 µJ
for a 256-Point FFT,9 while VWR2A executes that same kernel in 35.6 µs at 80MHz and con-
sumes 0.3 µJ. These numbers correspond to a factor 23× improvement in performance
(without considering the frequency difference) and a factor of 66× in terms of energy. It is
important to note that post-layout simulation has been done for the ULP-SRP, while I ran
post-synthesis simulation, which can explain part of the significant difference in energy.

2.8 Summary and conclusions

This chapter presented VWR2A: a low-power and high-performance template to design
DSIPs for the biomedical domain. It is proposed as a better alternative, at the application
level, in terms of energy and costs than low-power ASICs or GPPs. VWR2A is an architecture
template combining the high computational density of the CGRA template and the low
energy of a wide memory hierarchy based on VWRs and a wide SPM. To further increase
the ILP, specialized slots, namely an LSU, MXCU, and LCU, are introduced for several
basic blocks common to many algorithms. Each specialized slot is assigned to a set of
tasks and can be optimized for it. The LSU handles the data movement between the
background memory (i.e. the SPM) and the foreground memories (i.e., the VWRs). The
MXCU generates the addresses for the RCs to access the VWRs, and the LCU controls the
execution flow of the kernel (e.g., conditions, jumps) through the program counter. The
RCs are optimized for the computations directly related to data as all the other tasks are
executed by the specialized slots.

VWR2A is a template that can be used as a basis to implement a DSIP for the biomedical
domain. The tunable parameters of the template, such as the number of RCs, their con-
figuration (i.e., number of columns), or the specialized slots’ datapath width, have been
presented and illustrated with concrete examples based on the two instances of Chapters 3
and 4. The restriction imposed by the VWRs and the wide memory hierarchy has been
discussed and illustrated with some examples to help the design of new instances.

One instance of the template (based on the one of Chapter 3) has been compared
against two state-of-the-art low-power, high-performance architectures: an ARM Cortex-
M4 GPP and a baseline CGRA. The experiment results show the better latency and energy
efficiency of an instance based on VWR2A and the central role of the specialized slots.
Compared to the ARM Cortex-M4 and the baseline CGRA, the VWR2A instance showed

9The authors do not specify if they implement a complex-valued or a real-valued FFT. A 256-Point complex-
valued FFT is considered, corresponding to the worst case for VWR2A.
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an EDP improvement of 104.8× and 19.8×, respectively. The results also demonstrate
that judicious architectural optimization can advance the Pareto front of the flexibility-
performance tradeoff and further improve the energy efficiency of embedded systems.
This brings us closer to the long-lasting operation of low-power edge devices and to the
full potential of edge computing and IoT systems, particularly for the biomedical domain.
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3 Acceleration of Data-intensive
Applications for Embedded Systems

3.1 Introduction

The general idea of edge computing (e.g., Internet of things (IoT), wearables, embedded
systems) could revolutionize our world in many domains (e.g., smart cities, self-driving
vehicles, industry). To fully embrace this concept, we still need to obtain higher energy
efficiency for today’s embedded devices. The workload paradigm shift from the cloud to
the edge reduces the communication energy and the reaction latency and increases data
privacy. On the other hand, this increases the computational load on edge devices, making
it challenging to design high-performance and energy-efficient embedded systems.

The biomedical domain is one example that could benefit from this revolution. Wear-
able biosignal-processing embedded systems are poised to become an essential tool
toward the goals of personalized medicine and preventive healthcare. However, to achieve
these goals, we still need to obtain higher energy efficiencies that enable long-lasting oper-
ation between battery recharges. The inclusion of co-processors or hardware accelerators
in the computing platform has become standard in recent years. These accelerators can
execute repetitive operations that account for a significant amount of the processing time
(i.e., computational kernels) more efficiently than a general-purpose processor (GPP).

The development of co-processors follows two main trends: custom accelerators,
or application-specific integrated circuits (ASICs), and flexible (programmable) cores
without any fully custom components, usually considered as domain-specific instruction-
set processor (DSIP) [86]. Fixed-function accelerators are often the most efficient way of
implementing a particular functionality for a given set of constraints. They are generally
not programmable and are thus focused on a single task or a small family of related tasks.
One example of a custom accelerator is an fast Fourier transform (FFT) accelerator. The
FFT is a crucial transformation used in the biomedical domain, and platforms targeting this
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domain have proposed to use an ASIC for its computation [32, 87] to improve its execution
compared to GPPs. However, as it has been proposed in the literature, it is possible to
build programmable cores which have instruction sets that are tailored specifically for
algorithms from a given application domain (i.e., DSIPs) without becoming GPPs [86].
Traditional knowledge says that these flexible cores are less efficient than fixed-function
accelerators and that the latter should be preferred to improve the energy efficiency of
the systems. This chapter demonstrates that the opposite is valid at the application level
by using the VWR2A template proposed in Chapter 2 to build a DSIP instance that is
more performant and energy efficient than ASICs. The reason is that a programmable
accelerator covers larger portions of the source code which translates to higher savings at
the application level (although less efficient than an ASIC at the kernel level).

3.1.1 Low-power architectures for biomedical applications and their limita-
tions

Existing low-power commercial platforms for biomedical applications are limited by their
processing capability and their power/energy consumption. The reason is that they mostly
rely on GPP(s) as the principal processing element(s), translating to poor performance,
both in latency and energy, as demonstrated in Chapter 2. The adoption of more cus-
tomized circuits (i.e., ASICs) inside commercial platforms is limited because of three main
reasons:

1. Their inflexibility limits their code coverage and adaptation to potential application
updates.

2. Their optimized circuit design translates into high development costs, further in-
creasing their limited reusability.

3. Having a set of ASICs to cover various applications (i.e., multiple kernels) is even
more expensive, and defining this set is usually challenging.

Therefore, to keep high flexibility, commercial platforms only integrate accelerators or
co-processors that cover almost any application, such as a graphics processing unit (GPU),
digital signal processing extensions, or a direct memory access (DMA), limiting the overall
performance gain.

The considerable computation requirement of the latest machine learning algorithms,
in particular Deep Neural Networks (deep neural networks (DNNs)), has forced platforms
to integrate custom accelerators (i.e., ASICs). The reason is that they are currently the only
solution to provide good performance at reasonable power consumption. One example is
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the MAX78000 system-on-chip (SoC) [21] that integrates a convolutional neural network
(CNN) accelerator, the Greenwave’s GAP8 chip and its HardWare Convolution Engine
(HWCE) [22, 23] or the layer-based CNN accelerator of the Kendryte K210 [24]. While these
accelerators increase the overall performance, they might become less efficient if the CNN
generic model changes or even ineffective if the model becomes obsolete (e.g., replaced
by a new and more accurate type of model).

In the biomedical domain, no such optimized platforms (i.e., including ASICs) have
been commercialized, although several solutions have been proposed in the literature.
One example is the SoC presented by the authors of [32]. It includes many hardware
accelerators, particularly an FFT accelerator and a matrix processor. These two ASICs
are significantly more energy efficient than the Cortex-M4 GPP at the kernel level (i.e.,
executing an FFT and matrix computations, respectively). However, their impact is limited
at the application level —as described by Amdahl’s law (see Equation 1.1)— or even inexis-
tent in the worst case (e.g., if there is no FFT or matrix computation in the application).
This analysis at the application level is usually not done, and many papers limit their
experiments to kernels, concluding ASICs are the optimal solution.

3.1.2 Contributions and outline of the chapter

In this chapter, I propose to use the Very-Wide-Register Reconfigurable-Array (VWR2A)
template presented in Chapter 2 to build a DSIP targeting the data-intensive applications
in the biomedical domain. This instance of the VWR2A template shows how to move in
the flexibility-performance tradeoff and build flexible domain-specific cores that close
or narrow the efficiency gap in terms of energy and performance with respect to custom
ones for individual computation kernels. Moreover, as these cores still have an instruction
set covering a broad domain, they can be used in more parts of the application. As a
consequence, they achieve larger improvements when the complete application —rather
than individual kernels— is taken into account. In particular, the key contributions of this
chapter are:

1. The design of a DSIP instance based on the VWR2A template proposed in Chapter 2
targeting the data-intensive biomedical applications domain.

2. An analysis of the target domain and its translation into design parameter choices
for the instance of the VWR2A template.

3. An energy and performance comparison at the kernel level of VWR2A with two ASICs:
an FFT accelerator and a matrix processor.
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4. An energy and performance comparison at the application level with a low-power
GPP and an SoC optimized for biomedical applications.

The rest of this paper is organized as follows. First, the typical data-intensive biomedical
application and the existing computing architecture targeting this domain are discussed
in Chapter 3.2. Then, VWR2A instance is presented and analyzed in Chapter 3.3. In
Chapter 3.4, I describe the experimental setup used to evaluate our proposals, whereas
in Chapter 3.5, the obtained results are analyzed. Finally, in Section 3.6, I draw the main
conclusions of my study.

3.2 Related work

As this chapter focuses on the data-intensive biomedical applications domain, the typical
processing steps of such applications are discussed here. Figure 3.1 shows the different
steps of a biomedical application: signal filtering and enhancement, delineation, feature
extraction, and inference. This thesis does not cover the signal acquisition phase as it
implies other kinds of optimizations (e.g., power-gating, low-power analog front-end) that
are not covered by the proposed DSIP template of Chapter 2. However, these optimizations
can be combined to the ones discussed here and can be applied on top of the DSIP
template.

3.2.1 Biomedical applications

Filtering and enhancement

Digital filtering removes or enhances specific frequencies from the acquired biosignals.
Depending on the signal nature, there exist different filtering techniques [88]. For example,
a raw electrocardiogram (ECG) signal contains an undesirable low-frequency harmonic
(called baseline wander) and high-frequency noises. A typical technique is to apply a
band-pass filter using a finite impulse response (FIR) filter. A FIR filter order corresponds
to the number of weights and previous samples used to compute the filter’s output. This
algorithm is very data intensive as it loads many input data and weights (corresponding to
the filter’s order), multiplies them (one by another), and takes their mean value. The access
pattern is usually very regular, as all the data are contiguous. Other methods exist, such
as morphological filtering (MF), but this code is more control-intensive and discussed in
Chapter 4. Signal enhancement techniques can be applied on top of filtering to improve
the input signals further. For example, the root-mean-square (RMS) combines multiple
leads, or the signal derivative can be extracted.
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Figure 3.1: Typical steps of a biomedical application and examples of algorithms used for
each of these steps.

Delineation

Biosignal delineation is a crucial step in many biomedical applications as it extracts the
fiducial points of a signal (i.e., the signal’s main characteristics). For example, Figure 3.2
shows an ECG and a respiration signal with their respective fiducial points. This step
is highly control-intensive as the points are detected through multiple nested if-else
conditions. Therefore, this phase is not discussed here but is evaluated in Chapter 4.

Feature extraction

Based on the fiducial points, the waveform or its frequency, or any other characteristics,
the relevant features of a biosignal can be computed [88]. Figure 3.2 shows some features
that can be extracted from the delineated points of an ECG and a respiration signal. Other
examples are: mean or median point-to-point value, mean frequency, bandpower (e.g.,
0.32 to 0.4 Hz), and average power. These features use data-intensive kernels, but their
workload varies significantly. For example, computing a mean value is an addition of
values (usually in contiguous memory locations) followed by a division and can be consid-
ered a data-intensive kernel. However, the computational workload is almost negligible
compared to calculating an FFT, for example.
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Figure 3.2: (a) Electrocardiogram (ECG) biosignal fiducial points (PQRST) and feature
example (RR interval). (b) Respiration (RSP) biosignal fiducial points and feature examples
(respiration period, expiration time, inspiration time).

Inference

The inference step allows an automatic diagnosis of a medical condition and can trigger
an appropriate response (e.g., medication, alert, or deeper analysis). In the biomedical do-
main, the selection of features can often be based on practitioners’ knowledge or existing
studies, thanks to the tremendous past and ongoing research on the human body. This re-
sults in high-quality features used for the inference phase (i.e., classification or regression)
and allows low- to middle-complexity machine learning algorithms (e.g., support-vector
machine (SVM), Random Forest, or Fuzzy classifier) to obtain high classification preci-
sion [81, 89–91]. DNNs have been proposed in some research [92, 93], mainly for ECG
applications, but they do not always provide higher accuracy than the standard approaches
mentioned above [94]. In addition, the high computational workload of current models
is usually unsuitable for low-power embedded systems. More importantly, their current
nonexistent or low interpretability nature discards their use for real-life medical applica-
tion certification. Therefore, DNNs are currently not considered a typical workload in the
biomedical domain for embedded systems, but the aforementioned problems are being
investigated, and future work could change the current situation. This would require the
re-evaluation of the proposed template and probably a redefinition of it to consider such
workloads.

3.2.2 Low-power architecture for biomedical embedded systems

Only a few low-power processing architectures have been proposed for biomedical ap-
plications in the literature. In [59], the authors proposed TamaRISC, a custom-designed
RISC architecture supporting a subset of the PIC24H/F instruction set architecture (ISA)
with a Harvard memory model. This ISA subset, the datapath width (16 bits), and the
instruction width (24 bits) are all optimized for the biomedical domain, hence making it a
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DSIP architecture. As this ISA has proven its efficiency for its domain, the VWR2A instance
proposed in this chapter supports a very similar set of instructions (XOR, AND, OR, shift
operations, . . . ) as TamaRISC. One main difference is related to the memory hierarchy:
while TamaRISC implements an x-bar interconnect for accessing data in its multi-core
version, VWR2A uses a low-energy wide memory hierarchy (see Chapter 2).

Duch et al. [33] proposed a multi-core reconfigurable architecture: a multi-core sys-
tem (based on TamaRISC) augmented with a coarse-grained reconfigurable array (CGRA)
hardware accelerator to improve further energy efficiency. The CGRA accelerator executes
computationally intensive kernels. At the kernel level, it enables an average energy saving
of 73.3% compared to the multi-core architecture. The reason is that the CGRA is faster
thanks to its 16 reconfigurable cells (RCs), while the multi-core system has eight proces-
sors. Moreover, the design of the RCs is simpler than the processors translating to higher
energy efficiency. However, because of its simple architecture, this CGRA can only execute
basic kernels (e.g., no nested loops or complex if-else conditions). This limits its code
coverage at the application level, with a maximum of 18.6% energy savings reported for
one application and around 10% for two other applications. The DSIP template proposed
in Chapter 2 and the instance of this chapter try to cover a larger fraction of the code of a
domain to have similar energy savings and speed-up both at the kernel and application
level.

To address this issue of limited code coverage, Mei et al. proposed the ADRES frame-
work [85]: an architectural template composed of a very-long instruction word (VLIW)
processor and a CGRA. The VLIW allows efficient execution of control-intensive code,
and the CGRA still accelerates the computation-intensive kernels. Although this chapter
focuses on data-intensive kernels and applications, the goal of the proposed DSIP template
is to cover a domain. Therefore, compared to the ADRES template, the VWR2A template
regroups all the processing elements in a single block. This allows a large portion of an
application to be executed on an instance of the VWR2A template, removing the need for
custom hardware accelerators or advanced general-purpose processors like the VLIW of
the ADRES platform, thus reducing the overall system energy consumption. In [84], the
authors proposed ULP-SRP, an instantiation of the ADRES template for the biomedical
domain. However, as demonstrated in Chapter 2.7, VWR2A is significantly faster and
more energy efficient thanks to its low-energy wide memory hierarchy and single flexible
processing system.

More recently, Song et al. proposed a single-chip SoC optimized for biomedical ap-
plications known as MUSEIC [32]. Compared to all the architectures presented above,
MUSEIC has a single-core ARM Cortex-M4F GPP and a set of ASICs (e.g., FFT accelerator,
matrix processor, DMA) to improve its performance in latency and energy. While the goals
—high-performance and low-power/energy— are similar to the DSIP template advocated
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in this thesis, the methods are diametrically opposed: MUSEIC tries to cover the applica-
tion domain with multiple ASICs, while I propose to build DSIP architectures that cover
most of the code related to a domain. The disadvantages of ASICs over DSIPs have been
discussed in Chapter 2.1.1, and this chapter provides a quantitive comparison to fully
demonstrate the advantages of DSIPs.

3.3 VWR2A instance for data-intensive biomedical applications

The detailed implementation of the VWR2A instance used in this chapter is described
here and its main features are shown in Figure 3.3. It illustrates how the template is used
and optimized within the biomedical domain. The VWR2A template is meant to cover
the complete biomedical domain, but an instance is optimized for particular constraints.
These can be the specific biosignal being processed, the required throughput, the power
envelope, or the area (i.e., cost). Any instance based on the VWR2A template, which is
optimized for the biomedical domain (e.g., CGRA-like processing system, wide memory
hierarchy), can potentially execute any code of this domain. However, there exist many ap-
plications and use cases. Therefore, depending on the computational demand, the VWR2A
template flexibility allows the design of instances targeting higher or lower workloads.

3.3.1 Reconfigurable array

The reconfigurable array is the core processing system of the VWR2A template. Defin-
ing the number of RCs and columns, their interconnection, and their ISA is a domain-
dependent process and the key to overall high performance and energy efficiency. Some
parameters have been defined based on the literature best practices for the template
instance presented in this chapter. For example, [84] and [33], two architectures using
the CGRA template and targeting the biomedical domain, have 9 and 16 RCs, respectively.
Eight RCs are used in the proposed instance, a value close to these numbers. This choice
is also related to the very-wide register (VWR) width, as discussed in Chapter 2.3, and
further developed in the next section. The RCs are divided into two columns of 4 RCs
each. This enables the execution of two independent kernels (one on each column). The
RCs’ interconnection scheme of the closest neighbors is also based on [33], as they have
shown an excellent performance-energy tradeoff. ULP-SRP [84] also proposes to connect
the closest diagonal neighbors, but this has not been implemented as the current design
already offers high performance.

The RCs’ ISA is limited to a few operations: logical bitwise operations (AND, OR, XOR),
selection operations, signed addition, subtraction, multiplication, and logic and arithmetic
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Figure 3.3: VWR2A instance for data-intensive biomedical applications.

bitshift operations. All operations happen in one clock cycle. The selection operations
pick one of the two arithmetic logic unit (ALU) input operands as output based on the
value of the sign flag or the zero flag. Similarly to the RCs’ data interconnection, the
sign and zero flags are also shared between the RCs. While these instructions are more
critical for control-intensive code (see Chapter 4), they help the execution of division
or square-root operations in software (as they are not supported in hardware), used in
some data-intensive kernels. The multiplier has two working modes: a standard mode,
where the lowest 32 bits are kept, and a fixed-point mode, where the lower 16 bits are
discarded, and the next 32 bits are kept (i.e., q17.15 format). For example, this enables
fast multiplication of decimal numbers used in an FFT. The datapath width is 32 bits to
stay generic and compatible with standard processors, and each RC has a two-entry local
register file (RF) for data.

Table 3.1 shows the instruction format of the RCs. To accommodate the execution of
large kernels, such as an FFT, the local program memory of the RCs (and the specialized
slots) has a depth of 64 instructions. The reconfiguration of the RCs (and the specialized
slots) happens in parallel by loading their respective instructions from the context memory.
Only one column can be configured at a time. In the case of two columns running (in
synchronization or on different kernels), their configuration happens sequentially in case
they both receive a request simultaneously. The number of cycles depends on the size
of the kernel that is loaded (1 cycle per instruction) into the reconfigurable array with a
maximum of 64 cycles (corresponding to the local program memory depth), or 128, when
one, respectively two, columns are used, as all the RCs and specialized slots are loaded in
parallel.
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Table 3.1: RC configuration word format and size (see Figure 2.3 for the RC internal
architecture).

Field muxAsel muxBsel muxFsel aluOp rfWe rfSel
Bits 16:13 12:9 8:5 4:2 1 0

Configuration word width 17 bits

Table 3.2: Typical biosignals of biomedical application with their number of channels (or
leads) and sensor frequency range.

Biosignal Description #Channels Sensor Sampling
Frequency

ECG Heart electrical activity 1–12 125-1000 Hz
EEG Brain electrical activity 2–32 250-2000 Hz
EMG Muscular electrical activity 1–4 100-300 Hz
GSR Skin conductance 1–2 5-500 Hz
SpO2 Blood oxygen 1 100-1000 Hz

3.3.2 Low-energy memory organization

An important design parameter of the DSIP template is the scratchpad memory (SPM) and
VWRs width. This number is estimated on an analysis of the target domain and fine-tuned
experimentally. In the case of biosignals, the acquisition frequency range goes from a few
Hz to approximately 1 kHz, as shown in Table 3.2, and data are processed in windows of
a few seconds to tens of seconds. This creates a variety of scenarios ranging from tens
of samples up to thousands being processed at once. The present instantiation, which
targets this domain, has a 4096 bitwidth for the VWRs and the SPM (512B), allowing 128
words of 32 bits to be transferred in a single cycle. This bitwidth (i.e., 4096) has been found
experimentally to achieve a good tradeoff between performance and power consumption.
It is highly related to the number of data that has to be processed. In this case, the kernels
are extracted from an application that uses a 5 Hertz respiration sensor and a 1-minute
and 40 seconds sampling window, which generates 512 samples. Consequently, four loads
(from the SPM to the VWRs) are needed for all the data to be accessed once, which adds
negligible delay as a load takes one cycle compared to the many cycles required to compute
on these data. This parameter also depends on the number of RCs processing the data
of the VWRs. For example, from the energy point of view, it is inefficient to have a very
high bitwidth with a very small datapath (i.e., the number of RCs). It would result in data
not being accessed very often and only increasing the leakage. In this instance of the
VWR2A template, the four RCs can access 32 words (one-fourth of a VWR), and the data
are consumed relatively fast, but loading new data from the SPM has a latency cost of one
cycle.
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One current limitation to the maximum bitwidth is the use of standard cell libraries
and memory macros supplied by the technology provider to build the wide interface.
A custom design for these memories will undoubtedly reduce power consumption and
enable wider VWRs to be designed. This limitation and potential solutions are discussed
in Chapter 5.2.1. The number of VWRs per column is fixed to 3, called VWR A, B, and C, as
shown in Figure 3.3. This covers all the RC operations, which operate on a maximum of 3
variables (two input operands and one result).

The SPM is single-ported but shared between columns and the DMA. As this VWR2A
instance has only two columns, a simple arbitration mechanism is used: the DMA has the
highest priority, followed by column 0 and then column 1. Although such a design favors
column 0, it has not created unbalanced access in any experiments. The reason is that
both columns are synchronized (through their program counters (PCs)) when executing
a kernel in coordination, forcing both columns to be granted access to the SPM if they
request it simultaneously. In case both columns run two kernels in parallel, column 0 has
a higher priority than column 1, but accesses to the SPM are rare, and column 1 will be
granted access relatively quickly. This also avoids stalling the execution of the two columns
when they require multiple subsequent load or store operations. For example, if column
0 requires three loads from the SPM before resuming its execution, it will be granted the
accesses in a row while column 1 is stalled (if it requests access to the SPM). Then column
0 starts processing the data, and column 1 can access the SPM multiple times as column 0
does not have to access it for many cycles.

Each column of the reconfigurable array also has a shared scalar register file (SRF) of 8
32-bit entries. The SRF is used for scalar variables (e.g., loop size, address mask, kernel
constant) and sometimes to share data between the different units (i.e., the RCs and the
specialized slots). To limit its power consumption, the SRF is single ported, and its output
is broadcasted to all the units. All the specialized slots can write to it (one at a time), and
because the RCs are principally reading values from it, only the top RC of a column (i.e.,
RC0 in Figure 3.3) can write to it.

Finally, a shuffle unit is integrated into the VWRs. This unit is essential to overcome the
single-port limitation of the VWRs by enabling fast and energy-efficient data reordering.
The inputs of the shuffle unit are always VWR A and B, and the output is stored in VWR C to
reduce the hardware control overhead. The load-and-store unit (LSU) controls the shuffle
unit, and the supported shuffling operations are listed in the LSU description paragraph.
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3.3.3 Specialized slots

Optimizing the specialized slots for the targeted domain is important, but their respective
tasks are more generic and less dependent on the workload than for the RCs. Moreover,
some parameters are fixed by other design choices (see below). For data-intensive kernels,
the multiplexer-control unit (MXCU) and the LSU are particularly important to achieve
good performance.

MXCU: MultipleXer-Control Unit

Data-intensive kernels are characterized by many data accesses, therefore requiring many
addresses. While many data access patterns are regular for data-intensive kernels, gen-
erating these addresses is still challenging. A fast address generation is essential as the
number of instructions of the innermost loop mapped on the architecture is critical for
high performance.

The MXCU has an instruction width of 27 bits (see Table 3.3), and a RF of eight 5-bit
entries. Its first register (r0) controls the VWRs slice entry passed to the RCs datapath (i.e.,
the word address of the VWRs slice). The configuration words do not have an immediate
field, but the ALU’s input multiplexers have entries hardcoded to 0, 1, and 2. It also has
two values hardcoded to the middle address and last address of a VWR slice (i.e., 32 words),
respectively, 15 and 31. These values are enough to create most of the access patterns. The
ALU can execute signed addition and subtraction, logical bitwise operations (AND, OR,
XOR), and left/right logical bitshift. The datapath width of 5 bits is fixed by the address
range of the VWR slice: 25 = 32 (i.e., the VWRs word width, 128, divided by four slices,
one per RC). As shown in Figure 3.4, the MXCU registers 5 to 7 (r5 to r7) are used to
mask the VWR slice address (held in r0) for the three VWRs (respectively, VWR A to C) to
provide more flexibility in the data access pattern. For example, setting r7 to zero, as in
Figure 3.4, forces the RCs to access only the first value of their slice for VWR C, regardless
of the value of r0. This allows the RCs to access different addresses of the three VWRs
while only one value is used as the base address. Without this masking feature, accessing
different addresses would require three values to be generated (one per VWR), limiting the
performance of many kernels.

As proposed in Chapter 2.3, the MXCU can control which RCs are writing their results
and to which VWR (vwr_we and vwr_sel fields in Table 3.3) to further improve the flexibility,
as illustrated in Figure 3.4. Finally, the MXCU controls the read and write single-port access
to the SRF, through the srf_we and srf_sel fields (the same address is used for reading
and writing).
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Table 3.3: MXCU configuration word format and size (see Figure 2.8 for the MXCU internal
architecture).

Field muxAsel muxBsel aluOp rfWe rfSel
Bits 26:23 22:19 18:16 15 14:12

Field srfWe srfSel srfWmux vwrSel vwrWe
Bits 11 10:9 8:6 5:4 3:0

Configuration word width 27 bits
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Figure 3.4: MXCU r0 (VWRs’ slice address) and the mask registers (r5 to r7) to allow
different words to be access in different VWRs. The write back to the VWRs is controlled by
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Table 3.4: LSU configuration word format and size (see Figure 2.7 for the LSU internal
architecture).

Field muxAsel muxBsel aluOp rfWe rfSel vwr/srfOp vwr/srfSel
Bits 19:16 15:12 11:9 8 7:5 4:3 2:0

Configuration word width 20 bits

LSU: Load-and-Store Unit

The LSU is particularly relevant for data-intensive kernels as many loads and stores be-
tween the VWRs and the SPM are necessary. The LSU has an instruction width of 19 bits
(see Table 3.4), and a RF of eight 6-bit entries. Its last register (r7) holds the SPM address
for load and store operations. Similarly to the MXCU, the LSU has no immediate field,
but the ALU’s input multiplexers have entries hardcoded to 0, 1, and 2. The ALU supports
logical bitwise operations (AND, OR, XOR), signed addition and subtraction, logical left
and right bitshift, and a bit-reversal operation. The latter reverses the bit order of operand
a and shifts it by the amount indicated in operand b. This operation is used, for example,
for the FFT kernel.

To increase the instruction level parallelism (ILP), the LSU has two operation fields:
vwr_op and alu_op, as shown in Table 3.4. The latter corresponds to the ALU operation
listed above. The vwr_op specifies a load, store, or shuffling operation. This enables,
for example, to issue a load request to the SPM while the address of the next request is
computed, allowing subsequent loads, or stores, requests to different addresses. For a load
or store, r7 is the read address, respectively the write address, of the SPM. The destination
VWR, respectively the source VWR, is specified in the field vwr_sel (0=VWR A, 1=VWR B,
2=VWR C). For a shuffling operation, the vwr_op field holds the data shuffling operation
to execute:

• Words interleaving : VWR A and B words are interleaved. The result is twice the size
of a VWR, and the upper or lower half can be selected as the output.

• Even or odd index pruning : prunes the even/odd elements of VWRs A and B, and
outputs the remaining elements (of both A and B).

• Bit-reversal: applies bit-reversal shuffling to the concatenation of VWRs A and B. The
result is twice the size of a VWR, and the upper or lower half can be selected as the
output.

69



Table 3.5: LCU configuration word format and size (see Figure 2.9 for the LCU internal
architecture).

Field muxAsel muxBsel aluOp rfWe rfSel immediate
Bits 18:16 15:13 12:9 8 7:6 5:0

Configuration word width 19 bits

LCU: Loop-Control Unit

The loop-control unit (LCU) principally controls loop execution for data-intensive kernels,
which does not require complex hardware support. It has an instruction width of 19 bits
(see Table 3.5), and a RF of four 7-bit entries. The ALU can execute conditional branch
operations, signed addition and subtraction, logical bitwise operations (AND, OR, XOR),
and left/right logical bitshift. The supported conditional branch operations are branch-
if-equal, branch-if-not-equal, branch-if-less-than, and branch-if-greater-or-equal. The
latter implements a pre-decrement of the counter before executing the greater-or-equal
comparison, enabling a single-cycle counter update and branch condition solving. The
LCU is the only slot with an immediate field. It is essentially used to store the destination
address for conditional branch operations. Because the immediate field holds the branch
destination address, the ALU’s input multiplexers have entries hardcoded to 0 and 1,
mainly used for comparison purposes during branch operations. The LCU also controls
the end of the kernel execution with its exit operation.

The PC shared by all the units of a column —the RCs and the specialized slots— is
controlled by the LCU. By default, the PC is incremented by one, and the LCU provides a
new value only when the flow of execution changes. The PC of both columns are synchro-
nized when they execute together one kernel. The LCU of any columns can issue a branch
instruction for both PCs to be updated.

3.4 Experimental setup

3.4.1 Biosignal processing ultra-low power embedded platform

In Chapter 2, we demonstrated the performance improvement of this VWR2A instance
over an existing state-of-the-art CGRA architecture and a low-power, high-performance
ARM Cortex-M4 GPP, all of them targeting the biomedical domain. In this chapter, we
focus on showing the advantage of our DSIP template, particularly its VWR2A variation,
over ASIC designs. Therefore, an instance of the VWR2A template is integrated into an
ultra-low power SoC intended for biomedical signal acquisition and processing [32]. This
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Figure 3.5: Low-power SoC for biomedical signal acquisition and processing architecture
proposed in [32].

platform, shown in Figure 3.5, features an ARM Cortex-M4F processor, 192KiB of static
random access memory (SRAM) (divided into six banks that can be individually power
gated), an analog front end for the acquisition of biosignals (e.g., ECG, photoplethysmo-
gram (PPG)), a DMA, and several fixed-function accelerators. The SoC elements (e.g.,
accelerators, memories, processor) are connected through a multi-layer AMBA-AHB bus
interface enabling parallel access of multiple masters to many slaves. The SoC has mul-
tiple power domains that can be turned on and off during execution to optimize energy
consumption further. The FFT and matrix fixed-function (i.e., ASIC) accelerators are used
for comparison.

FFT ASIC

It computes FFTs and inverse FFTs up to 4096 points, with an optimized flow for real-
valued inputs (see Chapter 2). The FFT weights are stored in internal ROMs, whereas a
dual-port local memory is used to store the data. At the beginning of an acceleration, the
input signal is copied from the SoC SRAM to this dual-port internal memory (similarly to
VWR2A, which first copies the signal to its internal SPM). Once the data are copied, the
FFT computations start, using the radix-2 or radix-4 algorithm, depending on the FFT size.
During the last stage, the data are directly copied back to the SoC SRAM once the final
value is ready, so there is almost no write-back penalty time at the end of the execution.
The hardware is highly optimized for FFTs. Its high-level representation is very similar to
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the proposed DSIP template, with an address generation unit, a loop controller unit, and
one radix-4 butterfly computing element (12 additions and three multiplications). Their
main difference is that one is optimized for an application or a kernel (i.e., an FFT) with
highly customized hardware, whereas the other (i.e., the DSIP) does not have any custom
operation to maintain high flexibility and cover a domain of applications. One example
of a custom optimization is the FFT accelerator datapath width of 18 bits with dynamic
scaling to avoid overflow. The FFT execution flow is a 4-stage process decomposed into
address generation, data load, butterfly computation, and results write back. When the
execution is done, the FFT accelerator issues an interrupt to the processor. Such a design
will normally be faster and more energy-efficient than any more flexible architecture but
will only be able to execute FFTs.

Matrix processor ASIC

Compared to the FFT ASIC, the matrix processor implementation is rather simple. It
has three master ports on the SoC AMBA-AHB bus: 2 for input data and one for output
data, and it has no internal memories (it uses the SoC SRAM to read and write data). The
execution flow is a 4-stage pipelined process: addresses generation, input data read, data
computation, and output data write. It reaches maximum efficiency when multiple banks
are used for the three different master ports because it removes bus conflicts and reduces
latency, as evaluated in [95]. Although matrix-vector operations are pretty generic and
used in many different applications, this accelerator is still considered an ASIC because it
can only execute matrix-vector operations. The matrix processor supports signed addition,
subtraction, and multiplication, logical bitwise operations (AND, OR, XOR) on matrix
and/or vectors of 8-, 16-, or 32-bit. It also implements accumulation and bitshift operations
that are applied at the output. It can execute 22 different operations in total, such as
element-wise multiplication of 2 matrices/vectors, adding a constant to a matrix/vector,
or the sum of differences between 2 matrices/vectors. The matrix processor is used in the
experiments to compute a FIR filter, a typical kernel used in biomedical to filter the raw
input biosignal data. When the execution is done, the matrix processor issues an interrupt
to the processor.

3.4.2 Integration of our programmable core

The VWR2A instance is connected to the AMBA-AHB bus interface (see Figure 3.3), pre-
cisely like the other hardware accelerators, to have a fair comparison within the original
SoC design. The VWR2A instance has one master port, controlled by its DMA, to transfer
data between the SoC SRAM and its SPM. The kernel acceleration and DMA transfer
requests from the central processing unit (CPU) are received through an additional slave
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port. The VWR2A instance informs the processor when a kernel execution, or a DMA
transfer, is finished through an interrupt line. It is included in the same power domain as
the other accelerators and can therefore be power gated.

3.4.3 Performance and energy characterization

The complete SoC is synthesized, including the VWR2A instance, with the TSMC 40 nm

LP CMOS technology at 80MHz (the original SoC frequency), and post-synthesis simula-
tions are run with Cadence Incisive Verification Platform [76] to compare the performance
and the energy of all the implementations. (i.e., custom accelerators versus programmable
core). This allows cycle-accurate simulations from which the cells’ switching activity is
extracted and used for power estimation with Synopsys PrimePower [78].

3.4.4 Representative set of software benchmarks

Standalone kernels

Although we are interested in the comparison at the application level, an evaluation at the
kernel level is done to provide a complete analysis. The VWR2A instance is first compared
with the SoC FFT accelerator and the matrix processor using a standalone FFT kernel and a
FIR filter kernel, respectively, which are typical kernels used in biomedical applications [79–
81, 88]. Different FFT sizes have been implemented for both complex and real-valued
sequences. As discussed previously, the FFT accelerator uses a mixed radix-2 and radix-4
implementation. For the VWR2A instance, I used the radix-2 algorithm presented in
Chapter 2.7.1. The second kernel is an 11-order FIR filter. Three different input sizes have
been used to compare our VWR2A instance with the CPU and the matrix processor. Our
mapping uses two columns of the reconfigurable array that work on different slices of the
input array.

Biosignal application

To study the impact at the application level of the proposed programmable architecture, a
cognitive workload estimation application [81] is considered. This application comprises
four steps: preprocessing, delineation, feature extraction, and prediction. First, the pre-
processing applies a FIR filter over the raw input data. Second, the delineation detects the
maximums and minimums of the filtered signal to extract inspiration and expiration times.
Third, these values are used for the extraction of time features (mean, median, and RMS
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values), while the FFT of the filtered signal is employed for frequency feature extraction.
Finally, the cognitive workload is estimated using an SVM algorithm.

3.5 Experimental results

3.5.1 Performance on standalone kernels

FFT kernel

The performance and energy consumption results for various complex and real-valued
FFT sizes are reported in Table 3.6 and Fig. 3.6, respectively. Two versions have been evalu-
ated for the execution with the ARM Cortex-M4 (CM4) and the common microcontroller
software interface standard digital signal processing (CMSIS-DSP) library: one using a
32-bit representation (q31) and another one using a 16-bit format (q15). The latter allows
the digital signal processing extension of the CM4 to execute packet-single instruction
multiple data (SIMD) operations and significantly improves the performance. However,
the precision is lower, and its use depends on the application requirements. Both versions
are reported to provide a complete view of the different possibilities.

The results show that both the FFT accelerator (FFT ASIC) and the VWR2A instance
have similar performance and are 24.7×, respectively 26.2×, faster than the CM4-q31 on
average. Compared to the CM4-q15, the FFT ASIC and the VWR2A instance are still 7.0×
and 7.4× faster, respectively. The VWR2A instance is less performant for small FFT sizes
because the programming of the DMA transfers and the kernel parameters has a slightly
larger overhead than the FFT accelerator programming. As expected, Fig. 3.6 shows that
the FFT accelerator is 4.9× more energy-efficient on average than the VWR2A instance
when the specific kernel it was designed for is considered in isolation. Nevertheless, our
goal was to narrow as much as possible the energy gap between both implementations.

The FFT accelerator uses a mixed radix-2 and radix-4 implementation that depends
on the actual FFT size, resulting in different performance and power consumption, while
the VWR2A mapping is identical for all FFT sizes. This explains the variation of the energy
consumption ratio in Fig. 3.6. Finally, this figure only considers the accelerator energy
consumption. If the complete SoC is considered, the energy difference is between a factor
3.7× to 4.1×. In any case, compared to an FFT using only the Cortex-M4 processor and
the CMSIS-DSP library with 16-bit data in q15 format, both the FFT accelerator and our
architecture produce average energy savings of 84.2% and 39.1%, respectively.
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Table 3.6: FFT kernel performance comparison for various sizes.

CM4+ CM4+ FFT VWR2A
CMSIS (q31) CMSIS (q15) ASIC

Cplx-valued cycles cycles speed-up cycles speed-up cycles speed-up

512 142 497 47 926 3.0× 7099 20.1× 7125 20.0×
1024 279 576 84 753 3.3× 13 629 20.5× 12 405 22.5×
2048 670 594 219 667 3.1× 31 299 21.4× 30 217 22.2×

Real-valued

512 102 148 24 927 4.1× 3523 29.0× 3666 27.9×
1024 233 705 62 326 3.7× 8007 29.2× 7133 32.8×
2048 459 784 113 489 4.1× 16 490 27.9× 14 427 31.9×
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Figure 3.6: FFT kernel energy comparison for various sizes. Even if the performance of
the VWR2A instance (VWR2A) is equivalent to that of the custom FFT accelerator (FFT
ASIC), as expected, the gap in energy consumption is still significant in the case of isolated
kernels.
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Table 3.7: FFT accelerator and VWR2A power breakdown while executing a 512-point
real-valued FFT.

FFT ASIC VWR2A
Instance Power (mW) % Power (mW) % ratio

DMA 1.07× 10−2 1% 7.47× 10−2 2% 7.0
Memories 6.68× 10−1 68% 2.93× 100 67% 4.4
Control 6.25× 10−2 6% 2.59× 10−1 6% 4.2
Datapath 2.42× 10−1 25% 1.08× 100 25% 4.5

Total 9.83× 10−1 100% 4.34 100% 4.4

Table 3.7 presents the power consumption breakdown per subcomponent, i.e., for the
FFT accelerator and the VWR2A instance. It is interesting to see that both designs have
an almost identical power distribution. The main contributors to our architecture are the
memories and the datapath (i.e., the RCs). This means that the overhead of the instruction
control, which is non-negligible in typical instruction-set processors [96], is removed
in the VWR2A instance. The Memories category contains the VWR2A SPM (32KiB), the
VWRs (3KiB), and the context memory (5.4KiB), accounting for 36%, 30%, and 1% of
the total power, respectively. In contrast, the FFT accelerator has 17KiB of memory in
total. To build the SPM wide interface, smaller memory macros of the width supplied by
the technology provider were concatenated. The VWRs were built using latches of the
standard cell library. A custom design for these memories will undoubtedly reduce power
consumption. Regarding the Datapath category, the available optimizations are more
limited because the FFT accelerator is specialized for FFTs, with an 18-bit-wide datapath,
while our RCs have a more general-purpose 32-bit ALU. One solution could be to have a
16-bit mode with two simultaneous 16-bit operations instead of one 32-bit operation (see
Chapter 5.2.2).

Compared to the Ultra-Low Power Samsung Reconfigurable Processor (ULP-SRP) [84],
a recent instantiation of the ADRES template that also uses the TSMC 40 nm LP technology,
the VWR2A instance exhibits significant performance and energy gains. The authors
reported an execution time of 839.1 µs and an energy consumption of 19.9 µJ for a 256-
Point FFT,1 while the VWR2A instance executes that same kernel in 35.6 µs and consumes
0.3 µJ. These numbers correspond to a factor of 23× improvement in performance and a
factor of 66× in terms of energy. It is important to note that post-layout simulation has
been done for the ULP-SRP, while I ran post-synthesis simulation, which can explain part
of the significant difference in energy.

1The authors do not specify if they implement a complex-valued or a real-valued FFT. A 256-Point complex-
valued FFT is considered, corresponding to the worst case for the VWR2A instantiation.
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Table 3.8: FIR filter kernel performance and energy comparison for different numbers of
points and 11 taps.

CM4+CMSIS q31 Matrix ASIC VWR2A
cycles cycles speed-up cycles speed-up

256 pts 21 269 11 598 1.8× 1866 11.4×
512 pts 42 298 23 118 1.8× 3280 12.9×

1024 pts 84 245 46 158 1.8× 6108 13.8×

FIR filter kernel

Table 3.8 reports the experimental results for three different input sizes for the FIR filter
with 11 taps. I compared the performance of the processor (CM4) and the matrix processor
(Matrix ASIC) with that of our VWR2A instance (VWR2A). All implementations use 32-bit
data, and the CM4 uses the optimized CMSIS-DSP library.2

Table 3.8 shows that our accelerator is on average 12.7 times faster than the proces-
sor and 6.9 times faster than the matrix ASIC. In terms of energy, the VWR2A instance
consumes 79.0% less energy than the processor and 22.7% less than the matrix ASIC. In
this case, the DSIP instance is even better than the ASIC in terms of both throughput and
energy. The main reason for the higher energy efficiency is the dedicated wide memory
hierarchy of VWR2A, which has a lower energy per access cost than the SoC main memory
accesses through the bus. As the matrix ASIC does not have any local data memory, it
relies on the latter, translating to poor overall performance and energy consumption. The
higher number of processing elements (8 RCs vs. one core) does not play a significant role
as they translate to more transistors that consume more power, and the VWR2A instance
consumes 14.0× more power than the matrix ASIC. However, the energy is better as it is
faster and consumes less energy per data access than the ASIC.

Compared to the FFT ASIC, which is still more energy efficient than the DSIP instance
at the kernel level, the matrix ASIC is not. It is only more efficient in terms of hardware
overhead: it uses 47.8 times less area than the VWR2A instance in a direct comparison
(ASIC vs. DSIP), but only 1.1 times less area if the complete SoC is considered.3 However,
in the eventuality that the area overhead (i.e., the extra cost) of the VWR2A instance is
too high, a slower instance of the template can be generated with fewer RCs or smaller

2The experiments using the CMSIS-DSP q15 format exhibited a much slower execution than the q31
implementation, but the reason could not be explained. Therefore, considering the opposite should be
observed (q15 is faster than q31), only the results for the q31 version are presented.

3The area estimation is based on a post-synthesis netlist, and the net area is estimated using the Cadence
Genus physical layout estimation (PLE) engine that uses the library lef files. Therefore, these numbers
reasonably estimate the difference in the order of magnitude, but they are not accurate values.
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Figure 3.7: FIR filter kernel energy comparison for various sizes.

data memories (i.e., SPM and VWRs) for example (as long as the energy and throughput
constraints allow it).

3.5.2 Performance on biosignal application

Table 3.9 reports the performance and energy consumption for the different steps of the
application. Most of the application has been ported on the VWR2A instance, whereas the
processor executes only the delineation step and manages the high-level control of the
application.

Preprocessing

The CPU+VWR2A implementation is 13.2 times faster than the Cortex-M4 (CPU), which
translates into energy savings of 61.8%. The CPU+ASICs version is 1.4 times faster than
the CPU version because the matrix processor can execute the preprocessing FIR filter.
These values are similar to the comparison at the kernel level (see Table 3.8) because the
FIR filter represents most of the preprocessing step time, and the difference is due to the
extra code present at the application level (e.g., function calls, data movements, execution
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Table 3.9: Performance and energy comparison of the complete biomedical application
for the ARM Cortex-M4 only (CPU), the ARM Cortex-M4 plus the FFT and Matrix ASICs
(CPU+ASICs), and the ARM Cortex-M4 plus the VWR2A instance (CPU+VWR2A).

CPU CPU + CPU +
ASICs VWR2A

Cycles savings savings

Preprocessing 49 760 34 402 30.9% 3763 92.4%
Delineation 32 716 32 716 0.0% 32 716 0.0%
Feat. extraction + SVM 70 639 54 255 23.2% 9002 87.3%

Total 153 115 121 373 20.7% 45 481 70.3%

Energy (µJ)

Preprocessing 0.68 0.47 30.7% 0.26 61.8%
Delineation 0.54 0.54 0.0% 0.54 0.0%
Feat. extraction + SVM 1.1 0.98 10.9% 0.40 63.2%

Total 2.32 1.99 14.2% 1.20 48.1%

control). Still, the CPU+VWR2A implementation is 9.1 times faster and 44.8% more energy
efficient than the CPU+ASICs.

Delineation

The delineation step is not considered in this chapter, as its code structure (i.e., control-
intensive code with complex if-else conditions) is very different from the other more
data-intensive steps. This limits the gain of VWR2A at the application level because
data have to be moved back and forth between the SoC SRAM (i.e., main memory) and
the VWR2A SPM for the delineation step to be executed by the CPU. The possibility of
executing this step and the impact at the application level are explored in Chapter 4.

Feature extraction and SVM prediction

The feature extraction and SVM prediction steps are grouped into a single step because
their mapping on the VWR2A is a mix of multiple kernels without a clear distinction
between the two steps. The FFT ASIC computes a real-valued 512-Point FFT during this
step, which translates to a 10.9% gain in energy compared to the CPU version. However,
the FFT represents only a portion of the application code, of which the custom accelerator
cannot execute anything else. In contrast, the VWR2A instance can execute all the code of
this step (i.e., feature extraction step and SVM prediction), with a corresponding energy
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saving of 63.2% compared to the CPU version. It is also 6.0× faster than the CPU+ASICs
version and saves 58.7% of energy. The VWR2A instance benefits from its large code
coverage and the possibility to apply application-level optimizations. For example, the
FFT ASIC has to copy the input data into its local memory and copy the complete output
back to the system’s main memory. For the VWR2A instance, this can be optimized thanks
to its programmability. First, only part of the FFT output is used by the application, and the
VWR2A instance can partially skip the unnecessary computations related to the unused
output. In addition, as the rest of the code is also executed by the VWR2A instance, it
copies only the estimated state by the SVM back to the system’s main memory, while the
FFT accelerator has to copy back the 512 FFT output values.

Discussion

Figure 3.8 summarize the energy results, normalized to the CM4 consumption, of both
the kernels and the complete application. This figure supports the central claim of this
work and shows that larger savings can be obtained from a reconfigurable architecture
(i.e., a DSIP) with respect to custom accelerators (i.e., ASICs) when complete applications
— rather than individual kernels — are considered. Although the FFT ASIC is 4.9× more
energy efficient on average than the VWR2A instance at the kernel level (i.e., executing
FFTs), it is 2.4× less energy efficient at the application level (considering only the feature
extraction and SVM prediction step). For the matrix ASIC, which was already less efficient
at the kernel level, the results at the application level are even worst because of the extra
code required in an actual application.

At the complete application level, the CPU+ASICs is 1.3× faster and 1.2× more en-
ergy efficient than the CPU version. For the VWR2A instance, these values are higher,
respectively 3.4× faster and 1.9× more energy efficient. This translates to an energy-delay
product (EDP) improvement of 6.5× and 4.4× compared to the CPU (i.e., the Cortex-M4)
and CPU+ASICs implementations, respectively.

Two essential features explain the better efficiency of the VWR2A instance: its low-
power processing elements and its dedicated wide memory hierarchy. In particular, the
specialized slots are responsible for an estimated speed-up factor of 2, while their power
consumption represents less than 6% of the total. In addition, the low-power design of the
RCs enables a high throughput to relatively low power, translating to high energy efficiency.
For example, one RC consumes 3.8× less power than the CM4 for a 512-point 11-order
FIR filter. The wide memory hierarchy allows fast parallel access to the data tailored to the
RCs’ throughput. Moreover, these data accesses are more energy efficient than accessing
the system’s main memory through the bus. On average, the VWR2A instance reduces the
energy consumption of the main memory and the bus by 0.24 µJ when executing the FIR
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Figure 3.8: Normalized energy comparison for the kernels, the application steps, and the
complete application.

filter kernels compared to the matrix ASIC. However, the wide memory hierarchy is only
responsible for increasing the energy consumption of the VWR2A instance by 0.09 µJ.

The VWR2A template provides flexibility through its design parameters and allows the
design of instances targeting different requirements. There are three main parameters to
set: the total number of RCs, the data memory (SPM and VWRs), and the local program
memory size. The total number of RCs and their organization (i.e., the number of columns)
impact the throughput and the number of tasks that can run in parallel. In the VWR2A
instance of this chapter, the RCs (of both columns) represent between 20% to 40% of the
total power consumption. The rest is primarily shared between the SPM and the VWRs.
Therefore, increasing the number of RCs in the columns improves performance and energy
efficiency as long as the workload can be parallelized over the additional RCs. For example,
doubling the RCs (i.e., 8 RCs per column) does not double the total power consumption
but could potentially double, in the best case, the execution speed, hence the energy
efficiency. However, this would increase the area (i.e., the cost). In this instance, the RCs of
the two columns represent 8% of the total area.

The data memory design (i.e., the wide memory hierarchy) is also fundamental. The
main parameters are the width of the SPM and the VWRs, and the depth of the SPM. The
width fixes the batch size of processed data and should be set according to the amount of
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Table 3.10: Statistics of the units’ local program memory considering all the data-intensive
kernels.

LCU LSU MXCU RC0 RC1 RC2 RC3
avg instructions4 14 19 14 18 17 17 15
min instructions5 2 3 3 4 2 2 3
max instructions6 28 41 29 42 43 38 38
avg active instructions7 39.7% 49.4% 37.9% 50.6% 44.1% 44.3% 41.7%

avg/min/max kernel size8 32 / 8 (mean) / 55 (rsp_params)

data that has to be processed. As mentioned in Section 3.3.2, the 4096-bitwidth interface
of this instance is a good performance-power tradeoff for the considered application (i.e.,
with a 5 Hz sampling frequency and a 1-minute and 40 seconds sampling window). A
wider interface might be better for other scenarios with more data (i.e., with a higher
sampling frequency and/or a shorter sampling window). However, one current limitation
to the VWRs’ width is their design based on standard cells that consume significant power.
Therefore, it is usually better to pay a minor cycle penalty by reloading data from the SPM
instead of increasing the VWRs’ size. This conclusion is based on post-synthesis power
and energy estimation, and after layout, it could change. The SPM depth defines how
much data can be stored locally by a VWR2A instance. It should minimize the need for
data transfer with the system’s main memory to reduce the energy cost of data transfer
through the long bus wires. For biomedical applications, the data are often processed
in windows that can be discarded once processed. Therefore, the SPM should be large
enough to contain all the data of one sampling window plus the extra data that are kept
between two windows (e.g., some features, data that have not been processed, constant
values such as the weights used by an FFT).

Finally, the units’ local program memory size defines the maximum size of the kernels
that can be executed. Table 3.10 shows the statistics of this memory for the different units.
It shows a significant variation in kernel size, with less than five instructions for all the
units at a minimum and up to 43 instructions for RC1 for one kernel. The smallest kernel
(mean) computes the mean value of a vector and requires up to 8 instructions (i.e., the
maximum PC address), while the largest one (rsp_params) needs 55 instructions. However,
the latter could be decomposed into multiple kernels. The undividable kernel that forced
the local program memory to 64 addresses is the FTT, which uses 39 instructions. This
shows the importance of analyzing the type of kernels that will be encountered, especially
the long ones that cannot be divided into smaller sub-kernels. Table 3.10 also shows
that the different units have different needs in terms of maximum size. However, as the
program counter is shared, all the units must have the same local program memory depth,
while the LCU or the MXCU never have more than 28, respectively, 29 active instructions.
This problem is discussed, and an alternative is proposed in Chapter 5.2.3.
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3.6 Summary and conclusions

This chapter presented an instance of the VWR2A DSIP template proposed in Chapter 2
that focuses on data-intensive kernels of the biomedical domain. It features a 4-by-2 re-
configurable array organized in two columns, a 32KiB SPM with a 4096-bitwidth interface
toward the VWRs, enabling 128 words of 32-bit to be transferred in a single cycle. The opti-
mized ISA of the RCs, in particular its single-cycle fixed point multiplication instruction,
translate to high performance.

The VWR2A instance (referred to as VWR2A below) performance and energy consump-
tion have been first compared against two ASICs at the kernel level. Compared to the FFT
and matrix ASICs, VWR2A is 1.1× and 6.7× faster on average, respectively. This proves the
feasibility of using a domain-specific programmable core as an accelerator instead of a
fixed-function accelerator and achieving similar or even better performance. Regarding
energy consumption, fixed-function accelerators typically perform better on specific tasks.
The experiments at the kernel level showed that VWR2A was 4.9× less energy efficient
than the FFT ASIC, but 1.3× more efficient than the matrix ASIC.

The full potential of VWR2A is best seen at the application level, where it significantly
surpasses GPPs and ASICs in both performance and energy with an EDP improvement
of 6.5× and 4.4×, respectively. In detail, the evaluated VWR2A instance showed an 3.4×
speed-up and 48.1% energy consumption reduction compared to an ARM Cortex-M4
GPP and an 2.7× speed-up and 39.5% energy consumption reduction compared to an
ARM Cortex-M4 GPP augmented with two ASICs (i.e., the FFT and matrix ASICs) at the
application level. The reason is that more code is eligible for acceleration with a flexible
architecture, which leads to better overall performance and energy efficiency, as long
as the energy gap with respect to the fixed-function accelerator has been sufficiently
reduced. In addition, programmable architectures can also accommodate application-
specific optimizations that are impossible with custom accelerators. These results show
the benefit of designing a single DSIP instance covering a large domain of applications
and the higher performance improvement gained at the application level compared to
ASICs.

4Static average of instructions that are not a nop.
5Static minimum number of instructions that are not a nop.
6Static maximum number of instructions that are not a nop.
7Average percentage of instructions that are not nops based on each kernel length (not the total program

memory size of 64 instructions).
8This value correspond to the highest PC address in which an active instruction is stored, not to the

maximum numbers of active instruction in a unit.
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4 Acceleration of Control-intensive
Applications for Embedded Systems

4.1 Introduction

Computing at the edge is challenging because of the limited resources environment and
the always-increasing workload of new applications. The biomedical domain, particularly
wearable biosignal-processing devices, is an excellent example of edge computing revolu-
tionizing our daily life, but where the required energy efficiency is not yet accomplished.
Embedded systems have to be optimized all across the stack in order to reach this energy
efficiency.

At the hardware level, the recent trend in research is towards heterogeneous platforms
containing multi-core architectures with heterogeneous processors and hardware acceler-
ators. These systems can adapt their performance and power consumption based on their
current operating state (e.g., their workload and battery load), enabling high-performance
and energy-efficient execution. In this context, co-processors or hardware accelerators
have become a standard in state-of-the-art platforms [22, 32, 45] because of their better ef-
ficiency at executing repetitive operations compared to a general-purpose processor. The
flexibility-performance tradeoff of hardware accelerator design has led to two categories
of accelerators:

a) domain-specific instruction-set processors (DSIPs) or programmable cores (e.g.,
coarse-grained reconfigurable arrays (CGRAs) [45]).

b) application-specific integrated circuits (ASICs) or custom accelerators (e.g., fast
Fourier transform (FFT)[32], convolutional neural network (CNN) [97]).

However, most of the literature focuses on evaluating the performance and energy
tradeoffs for data-intensive kernels (e.g., FFTs, finite impulse response (FIR) filters, mean
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or RMS computation), as done in Chapter 3. This approach is valid only if the considered
workload is dominated by such code. Besides data-intensive code, applications usually
have control-intensive kernels. Control-intensive kernels contain a significant number of
operations related to control (e.g., loop, if-else structure) compared to arithmetic opera-
tions performed on data (some examples of such code are shown in Figures 4.4 and 4.6
and discussed later in Sections 4.4 and 4.5.3). Data-dominated kernels usually have multi-
level nested loops and minimal data dependencies enabling the parallel computation
of different data points (e.g., FIR, FFT, convolution). Conversely, control-intensive code
originates from algorithms that have data-dependent paths. An extreme example is the
usual implementation of a decision tree based on a tree of if-else conditions. Therefore,
parallelization is often not possible at the data level, and other mechanisms are required
to improve the execution of such code. The proportion in execution time of data- and
control-intensive code is essential to optimize the hardware.

4.1.1 Low-power architectures for control-intensive code and limitations

Data-intensive code often represents most of the execution time, which is why the litera-
ture focuses on it. Nonetheless, this can limit the performance improvement of hardware
accelerators at the application level [85] in two cases: (a) the application is dominated by
control-intensive code by nature, or (b) most of its data-intensive kernels have already
been accelerated by the hardware. In both cases, the non-accelerated code (i.e., the
control-intensive kernels), which represents a significant portion of the total execution, is
executed by a general-purpose processor (GPP). Therefore, energy-efficiency can only be
enhanced further by improving the execution of the control-intensive code.

The biomedical domain is a perfect illustration of this potential limitation. In Table 3.9
of Chapter 3, the original application (i.e., executed by the GPP) has data- and control-
intensive code representing 79% and 21%, respectively, of its processing time. In this
case, optimizing the execution of data-intensive code is the best option to increase overall
efficiency. However, once this code is accelerated with the proposed DSIP of Chapter 3, for
example, it represents only 28% of the total execution time, while the control-intensive
code now represents 72%. In this specific example, the remaining code is a delineation
algorithm, shown in Figure 4.1, which extracts the main characteristics point of a biosignal.

The literature does not focus much on control-intensive code and its energy-efficient
execution on low-power architectures. Some techniques have been proposed to increase
the performance of GPPs executing such code. For example, zero-overhead loops [56] or
branch prediction [98] can improve the performance of processors, but they do not always
translate into energy savings [52] if they increase the circuit area too much.
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Additionally, for control-intensive kernels, workload parallelization at the data level
is often not possible, and other mechanisms, such as instruction level parallelism (ILP),
are required to improve the execution of such code. Very-long instruction word (VLIW)
processors can exploit code ILP and increase instructions-per-cycle (IPC) with a higher
energy efficiency compared to superscalar GPPs because part of the work is relayed to the
compiler rather than to runtime logic [85]. In [84], the authors combined a VLIW processor
with a CGRA to optimize performance on both data- and control-intensive code. However,
such a design is not the most optimal in terms of area as it contains a VLIW processor and
a CGRA. Therefore, replacing these two elements with a single one would be more area-
and cost-effective and save energy because of the reduced wiring.

4.1.2 Contributions and outline of the chapter

This chapter explores the performance and energy efficiency of accelerators based on
domain-specific programmable cores for control-intensive code on energy-constrained
embedded systems. Based on the DSIP architecture template proposed in Chapter 2
and the variation presented in Chapter 3 for data-intensive biomedical applications, I
propose a new instance focusing on control-intensive code for the biomedical domain.
Its performance and energy consumption on control-intensive code are compared to
two general-purpose baseline processors: an ARM Cortex-M4 [99] and a RISC-V based
lowRISC Ibex [35] (formerly known as the Zero-riscy [53]). The Cortex-M4 is a middle-class
processor with simple branch prediction (branch forwarding) and DSP extensions, while
the Ibex is optimized for control-dominated code [53]. The main contributions of this
chapter are:

• An instantiation of the DSIP template proposed in Chapter 2 targeting control-
intensive biomedical kernels and applications.

• An analysis of the target domain and of the template design parameters used for the
VWR2A instance.

• An evaluation of its performance and energy consumption on control-intensive
kernels and applications.

• A comparison with two general-purpose processors, one of which is optimized for
executing control-intensive code.

The rest of this chapter is organized as follows. First, the existing solutions and their
limitations are discussed in Section 4.2. Then, I present the architecture features for
control-intensive code execution of the DSIP template instance in Section 4.3 and evaluate
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its power consumption on control-intensive kernels in Section 4.4. The experimental
setup to evaluate the architecture is described in Section 4.5, and the results are presented
and analyzed in Section 4.6. Finally, the main conclusions of this chapter are drawn in
Section 4.7.

4.2 Related work

4.2.1 Low-power architecture for control-intensive code

Hardware accelerators are primarily designed for data-intensive code, as it usually repre-
sents most of the execution time. However, once this code is accelerated, control-intensive
code or control flow (e.g., branches, conditions) becomes predominant, limiting the im-
pact of the accelerator [85], especially at the application level. Reconfigurable architectures
are usually preferred as their flexibility can offer good performance for multiple kernels.
In particular, CGRAs are often used in low-power platforms because of their proven perfor-
mance and energy efficiency [33, 45, 100]. However, the traditional modulo scheduling
(software pipelining) [101] for kernel mapping fails to convert nested loops and complex
if-else structures to static code for CGRAs. This situation implies a CGRA has to rely on
its host processor for complex control code (e.g., if-else blocks) and outer loop control
(i.e., nested loops). Some software-pipelining solutions or mapping techniques have been
proposed to partially solve this problem [102, 103], but this work focuses on solutions at
the architecture level.

At the system level, different solutions have been proposed. For example, the Mor-
phoSys platform [68] combines a reduced instruction set computer (RISC) processor and
a CGRA. Despite the excellent performance of the CGRA on data-intensive kernels, the
control code (inherent to any application) is left to the RISC processor, limiting the perfor-
mance gain at the application level. The authors of [85] proposed the ADRES framework
to solve this problem. ADRES combines a VLIW and a CGRA to efficiently execute control-
intensive and data-intensive code, respectively. While the authors of ADRES improved the
overall performance, they did not focus on energy consumption. VWR2A, the proposed
DSIP template in Chapter 2 is a CGRA-like architecture augmented with low-power mem-
ory structures, made of a scratchpad memory (SPM) and very-wide registers (VWRs), and
integrating VLIW concepts, such as specialized slots (e.g., a load-and-store unit (LSU)).
The VWR2A variation of Chapter 3 has shown better energy efficiency on data-intensive
code than ULP-SRP [84], an instantiation of the ADRES framework.

The authors of [100] proposed an Integrated Programmable Array (IPA): a 4x4 recon-
figurable array of reconfigurable cells (RCs). Similar to the VWR2A template, some RCs
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have an LSU, but it is connected to a shared multi-bank tightly coupled data memory
(TCDM) through a logarithmic interconnect (while VWR2A proposes a low-energy wide
memory hierarchy). Additionally, the RCs are augmented with jump and conditional
branch instructions to execute nested loop structures. VWR2A integrates a loop-control
unit (LCU) for the same reason, and because the RCs do not handle these instructions, the
performance should be better. Both IPA and VWR2A demonstrated good energy efficiency
for data-intensive kernels with nested loops (e.g., FIR, FFT, convolution), but the former
has not been evaluated on control-intensive kernels.

SNAFU [104], an ultra-low-power CGRA generation framework, proposes an architec-
ture with heterogeneous processing elements that are specialized for specific tasks, similar
to the specialized slots of VWR2A. SNAFU introduces the spatial vector-dataflow execution
model to reduce energy consumption. This model is conceived to map the complete data
flow graph (DFG) of an innermost kernel to the complete accelerator array, configuring
each processing element (PE) to perform one single operation. This model, conceptually
closer to that of a super-systolic array, contrasts with the programming model of VWR2A,
in which each PE has a small instruction memory to implement a small program.

VWR2A and SNAFU present two additional significant differences: first, SNAFU uses a
traditional memory hierarchy with multiple master ports connected to the platform’s bus
and main memory. On the contrary, VWR2A has a wide memory hierarchy that offers a high
bandwidth and low energy solution compared to SNAFU. SNAFU implements scratchpad
memories to limit costly accesses to the platform’s main memory (in latency and energy),
particularly between reconfigurations of the array. The latter is due to the second main
difference: VWR2A has a specialized slot, namely an LCU, enabling the mapping of multi-
level nested loops. As this allows VWR2A to cover longer fragments of code independently,
the GPPs present in the system can sleep for longer periods or perform other unrelated
tasks. In comparison, SNAFU is limited to the innermost loop, relying on the GPP and
possibly multiple reconfigurations for the outer loops within one kernel. Finally, similar
to the IPA, SNAFU has demonstrated chiefly its efficiency on data-intensive kernels (e.g.,
FFTs, DWT) but not for control-intensive code.

Other proposals offer architecture solutions, but they target high performance rather
than energy efficiency. For example, Elastic CGRAs [105] introduce elasticity in the PEs’
interconnection network to enable efficient use of PEs with operations that have varying
latency (e.g., memory access vs. ALU operation). However, for low-power CGRAs, the
environment is typically more constrained, and the latency of each operation is known
at compilation time, allowing efficient scheduling. Techniques for conditionals, partial
and full predication have been proposed for CGRAs [106, 107]. However, while such
techniques improve performance, they are usually worse in energy [52, 53]. Moreover,
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these methods have been applied in the context of modulo scheduling, therefore, limited
to the condition(s) present in the innermost loop of a kernel.

This chapter evaluates the extensions introduced explicitly in a VWR2A instance to
improve the execution of control-intensive kernels and applications and assess its resulting
higher efficiency compared to a central processing unit (CPU) for that type of code. Two
state-of-the-art baseline GPPs for low-power applications are considered. The first one is
an ARM Cortex-M4 processor [99], the host processor of the system-on-chip (SoC) used for
the experiment in Chapter 3 and in which a VWR2A instance was integrated. However, this
middle-class processor may not be the most energy-efficient for control-dominated code.
Therefore, for generality, I also compare the architecture with a lowRISC Ibex processor [35]
optimized for control-intensive kernels [35, 53]. The Ibex implements the RISC-V RVC32IM
instruction set architecture (ISA) with a two-stage pipeline.

4.2.2 Biomedical applications

Wearable bio-signal processing devices often have at least one control-intensive step called
delineation1. In this step, the characteristic points of a bio-signal are extracted to provide
direct information to a specialist (e.g., a doctor) or to extract features for autonomous
diagnosis from the device (see Chapter 3.2.1). Figure 4.1 shows the filtered respiration bio-
signal of a person, its delineation, and the corresponding C code made of complex if-else
structures used to perform this delineation (instructions inside the conditions are removed
for clarity). It illustrates the intrinsic control nature of delineation. This step is highly
dependent on the nature of the signal and a person’s physiologic characteristics. Designing
an ASIC for such a code would make it very efficient, but such a circuit would not be a
viable commercial solution as a different circuit is required for different bio-signals and
sometimes even for different people. Therefore, relying on programmable hardware is the
only solution. Delineation is a control-intensive step particular to biomedical applications,
but more generic examples (e.g., median, morphological filtering (MF)) are shown and
discussed in Sections 4.4 and 4.5.3.

4.3 Very-Wide Register Reconfigurable-Array architecture

The VWR2A instance proposed for control-intensive code for the biomedical domain
is shown in Figure 4.2. It is very similar from a high-level perspective to the instance
proposed for data-intensive code in Chapter 3. The modified hardware blocks to enable

1Delineation often refers to the extraction of the P, QRS, and T waves of an ECG signal, but it is used here to
refer to any bio-signal characteristic points extraction.
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Filtered respiration bio-signal

0

Signal derivative

for(int16_t i=0; i<signalLength; i++) {
  if (rsp_derivative[i]==0 && valley_search) {
    if (first_search) {
      ...
    } else {
      ...
      if (exp_time>=MIN_EXP_TIME && 
          exp_time<=MAX_EXP_TIME && 
          resp_valleys_time>=MIN_RESP_TIME && 
          resp_valleys_time<=MAX_RESP_TIME) {
        ...
      } else if (exp_time>MAX_EXP_TIME ||
                     resp_valleys_time>MAX_RESP_TIME) {
        ...
  }}}
  else if (rsp_derivative[i]==0 && !valley_search) {
    ...
    if (first_search) {
      if (insp_time>=MIN_INSP_TIME && 
          insp_time<=MAX_INSP_TIME) {
        ...
      } else if (insp_time>MAX_INSP_TIME) {
        ...
      }
    } else {
      ...
      if (insp_time>=MIN_INSP_TIME && 
           insp_time<=MAX_INSP_TIME && 
           resp_peaks_time>=MIN_RESP_TIME && 
           resp_peaks_time<=MAX_RESP_TIME) {
        ...
      } else if (insp_time>MAX_INSP_TIME || 
                     resp_peaks_time>MAX_RESP_TIME) {
        ...
}}}}

True valley/peak

Rejected valley/peak

Figure 4.1: Respiration bio-signal delineation (left) and if-else C code structure for valid
valley-peak pairs detection (right).
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Figure 4.2: VWR2A instance for control-intensive biomedical applications and used for
experiments. The modified hardware blocks (compared to the instance of Chapter 3
focusing on data-intensive code) are highlighted in red (LCU, LSU, and the shuffle unit).
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efficient mapping of control-intensive code (compared to the instance of Chapter 3) are
highlighted in red in Figure 4.2. It features a 4x2 reconfigurable array organized in two
columns of 4 RCs. The specialized slots and the RCs of a column are all programmed in
parallel at the beginning of a kernel execution by loading a maximum of 64 instruction
words from the context memory to their internal instruction memory.

The same memory hierarchy design as Chapter 3.3 is reused because it targets the
same domain. It has a 32KiB shared SPM between the columns with a 4096 bits width
(128 words of 32 bits). Each column has three VWRs with a dual interface: 4096 bits on
the SPM side and 128 bits on the RCs’ side (i.e., one 32-bit word per RC). This enables
the transfer of a wide line (i.e., 4096 bits) between the SPM and the VWRs in one cycle,
whereas the RCs can consume data in 32-bit words. These transfers are controlled by
the LSU with an optimized ISA for this task. The VWRs are divided into four slices to
enable concurrent access from the RCs of one column. The details of the SPM, the VWRs,
and the scalar register file (SRF) are not discussed further in this chapter as they are less
relevant for control-intensive code, and the same design has been presented in Chapter 3.
However, their low-power features and single-cycle transfer play an essential role in the
overall performance and energy efficiency of the architecture.

The specialized slots LCU and multiplexer-control unit (MXCU) were included in the
VWR2A architecture template specifically to tackle control-intensive code. These slots
enable separating the control instructions from the main stream of instructions, which
exposes more parallelism to the platform in general and to the RCs in particular.

4.3.1 Reconfigurable array

In this specific case, the target domain is the same as Chapter 3 (i.e., the biomedical
domain), and the ideal DSIP should be able to execute both types of code. Therefore, the
reconfigurable array is similar to Chapter 3. Nevertheless, the possibility of optimizing the
architecture for one or the other type of code (i.e., control- or data-intensive) is discussed
in Section 4.6.7. The RC configuration words have no immediate field but hardcoded
values for two multiplexer inputs: 0 and 1, reducing the instruction width to 17 bits (see
Table 3.1). A small register file of two entries per RC is enough, and a datapath width of 32
bits to stay generic and compatible with standard processors is implemented. A minor
change compared to Chapter 3 is the addition of two output flags directly connected to
the LCU. These are the equal and greater-or-equal flags based on the results of the four
RCs and OR-ed to produce a single flag for both conditions. This enables fast and efficient
mapping of data-dependent conditions on the architecture (see the LCU section below for
more details).
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The performance of the RCs is not crucial for control-intensive code. For example,
the RCs implement a one-cycle signed or fixed-point multiplier; however, control code
usually consists of simpler operations, such as addition and subtraction. For a different
target domain, having a multi-cycle multiplier or even no multiplier might be a better
option, particularly if control-intensive kernels are dominant. These optimizations are
further discussed in Section 4.6.7. Two essential operations for control-intensive code
are operand selection based on the sign and the zero flags. These operations select one
of the two arithmetic logic unit (ALU) input operands as output based on the value of
the sign flag —movs.sf instruction— or the zero flag —movs.zf instruction. Similar to the
RCs’ interconnection for data, the RCs can select their internal flags or those from their
neighboring RCs. The flag value refers to the previous cycle operation result in both cases.
These instructions enable efficient mapping of simple if-else conditions (i.e., without any
dependencies on data outside an RC) to be executed locally by the RCs.

4.3.2 Specialized slots for control-intensive code

The specialized slots are optimized for a subset of tasks and can run in parallel to take
advantage of the ILP inherent to any code, particularly control code. Each slot is optimized
for its specific set of tasks with a custom ISA, datapath, and register file. These slots are
inspired by the brain’s regions that are optimized for certain tasks (e.g., vision, motor
control) and allows the efficient execution of different tasks in parallel. For a VWR2A
instance, this translates to performant and energy-efficient execution of different types
of kernels. Similarly to the rest of the VWR2A instance of this chapter, the specialized
slots are the same as Chapter 3 with a few changes to better support the execution of
control-intensive code.

Loop-Control Unit

The primary task of the LCU is to handle loop control (e.g., counter increments, branches)
and conditions (e.g., if-else blocks). The design proposed in Chapter 3 supports conditional
branch, signed addition/subtraction, logical bit operations (and, or, xor), and left/right
logical and arithmetic shift. The branch-if-greater-or-equal operation implements pre-
decrementation of the counter by one, enabling a single-cycle counter update and branch.
The conditional branch instructions update the program counter (PC) register shared by
all the units in a column (i.e., the four RCs and the specialized slots). While this design
is sufficient for simple data-independent conditions, it is not the case for more complex
conditions, which may require multiple data-dependent comparisons, for example. To
accommodate for such a scenario, the LCU can execute a conditional branch based on the
RCs’ condition flags (i.e., equal and greater-or-equal flags). The flags of the four RCs of a
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RC0 - output
is_zero_flag

is_greater_or_equal_flag

RC1 - output
is_zero_flag

is_greater_or_equal_flag

RC2 - output
is_zero_flag

is_greater_or_equal_flag

RC3 - output
is_zero_flag

is_greater_or_equal_flag

LCU

is_zero_flag
is_greater_or_equal_flag

ALU

PC

branchMode

branchAddr

Figure 4.3: RCs’ flags OR-ed and LCU conditional branch flags selection (branchMode).

column are OR-ed to produce a single flag for both conditions that are connected to the
LCU, as discussed above. Figure 4.3 shows the block diagram of these connections.

In addition, the LCU is augmented with a jump instruction (without condition) that
uses the sum of the two ALU operands as the destination PC address. This dynamic
address generation helps map control-intensive code characterized by irregular data
access patterns on the single-ported VWRs. For example, the kernels that implement a
queue (see Section 4.5.3) benefit from it by jumping dynamically to the address that uses
the correct VWRs’ slice and RC to access specific data in the queue. Table 4.1 shows the
LCU configuration word format with the additional branchMode field of 1 bit to select
between the LCU’s and the RCs’ flags.

Without this simple feature, some kernels can still be executed but have to use the
shared SRF to transmit data between the RCs —where the data are compared— and the
LCU —where the branch decision is taken. This results in penalty cycles that would
increase, for example, the execution time of the Median and Delineation kernels (see
Section 5) by 6% and 28%, respectively. For the MF kernels (see Section 4.5), it is even
more critical as they could not be mapped on the VWR2A instance without these features.
In this case, the additional instructions required to use the shared SRF do not fit in the
internal instruction memory of the LCU. For the biomedical domain, these extra features
are a better alternative in terms of performance and energy, but if such solutions are not
conceivable, increasing the size of the units’ local program memory is possible. However,
it would represent a significant power overhead.
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Table 4.1: LCU configuration word format and size updated for control-intensive code (see
Figure 2.9 for the LCU internal architecture).

Field muxAsel muxBsel aluOp branchMode rfWe rfSel immediate
Bits 19:17 16:14 13:10 9 8 7:6 5:0

Configuration word width 20 bits

Table 4.2: MXCU configuration word format and size (see Figure 2.8 for the MXCU internal
architecture).

Field muxAsel muxBsel aluOp rfWe rfSel
Bits 26:23 22:19 18:16 15 14:12

Field srfWe srfSel srfWmux vwrSel vwrWe
Bits 11 10:9 8:6 5:4 3:0

Configuration word width 27 bits

MultipleXer-Control Unit

The MXCU computes the addresses of the VWRs’ words passed to the RCs. While many data
accesses with very regular patterns are usually seen for data-intensive code, the inverse is
often true for control-intensive code: few data accesses with irregular patterns. In both
scenarios, the number of instructions of the innermost loop mapped on the architecture
is critical for high performance, and the MXCU plays a crucial role.

The MXCU has an instruction width of 27 bits, as shown in Figure 4.2, and an eight-
entry register file. The instructions do not have an immediate field, but the ALU’s input
multiplexers have entries hardcoded to 0, 1, and 2. These values are enough to create most
of the access patterns. The ALU can execute addition/subtraction, logical bit operations
(and, or, xor), and left/right logical bit shift. The datapath width of 5 bits is fixed by the
address range of the VWRs: 25 = 32 (i.e., the VWRs word width, 128, divided by four slices,
one per RC). These parameters are the same as Chapter 3 and proved to be enough for
typical control-intensive kernels of the biomedical domain.

Load-and-Store Unit

The LSU is less critical for control-intensive kernels as they usually require less frequent
data movements. The only change related to the LSU is the addition of one shufling
operation to the existing words interleaving, bit-reversal, and even/odd index pruning :

• Circular shift : the concatenation of VWRs A and B is shifted by 32 words up in a
circular manner (i.e., the upper 32 words are moved to the lower 32 words). The
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Table 4.3: LSU configuration word format and size (see Figure 2.7 for the LSU internal
architecture).

Field muxAsel muxBsel aluOp rfWe rfSel vwr/srfOp vwr/srfSel
Bits 19:16 15:12 11:9 8 7:5 4:3 2:0

Configuration word width 20 bits

result is twice the size of a VWR, and the upper or lower half can be selected as the
output.

This shuffling operation helps execute code that cannot be parallelized at the data level,
such as during delineation. Because each RC can access only one-fourth of the VWRs, the
circular shift enables the sequential processing of all the elements inside a VWR with the
same instruction flow. Table 4.3 shows the configuration word format of the LSU. No extra
bit is required to support the additional shuffling operation because the corresponding
field (i.e., vwr_op field in Table 4.3) is already large enough to support it.

4.4 Illustrative kernel mapping analysis

The specialized slots are the main reason for the architecture’s performance and energy
efficiency. They remove the latency of control-related instructions from the RCs, increasing
the ILP of the architecture. Their design relies on the fact that many kernels can be divided
into four —usually independent— tasks: execution control, data loading and storing, data
address update, and data computation. These tasks are mapped on the LCU, the LSU, the
MXCU, and the RCs, respectively, maximizing the architecture ILP.

To illustrate the use of the architecture, the mapping of an ascending sorting algorithm
that is part of the median kernel discussed in Section 4.5 is analyzed. This example
highlights the key features of the architecture and helps to understand the performance
results of Section 4.6. The detailed analysis at the instruction level is done in Appendix A.

Figure 4.4 shows the C code of the ascending sorting algorithm and its high-level map-
ping on the architecture. The LCU manages the 2-level nested loop. The counting direction
is reversed to take advantage of the single-cycle counter decrement and branch (see 4.3.2).
Moreover, the size of the loops is divided by two because the sorting is parallelized over
the RCs of one column. This allows using all the four available RCs, therefore improving
performance. The MXCU generates the addresses for accessing the i-th element and the
j-th element of the data array. In this particular example, the MXCU only needs to increase
the address by one for every inner loop iteration. The LSU loads the input data array to the
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void sort(int16_t *data, int16_t size) {
 int16_t i, j, temp;
 for(i=0; i<size-1; i++) {

for(j=i+1; j<size; j++) {
     if(data[j] < data[i]) {
       temp = data[i];
       data[i] = data[j];
       data[j] = temp;
 }}}}

for(i=size/2; i>=0; i--)
  for(j=i-1; j>=0; j--)  

LCU

load data in VWRs 
LSU

minVal = data[i]
minIdx = i
if(data[j] < minVal) {
  minVal = data[j]
  minIdx = j;
}
data[minIdx] = data[i]
data[i] = minValdata[i]

data[j]

MXCU

RCs
RC0/2
RC1/3
RC0/2
RC0/2
RC1/3

RC0/2
RC0/2

OUTER
LOOP

OUTER
LOOP

INNER
LOOP

Figure 4.4: Sorting algorithm C code (left) and its high-level mapping on VWR2A (right).

foreground memory (i.e., the VWRs). Depending on the size of the array, the LSU may be
used more than once.

Figure 4.4 details how the code is adapted for the architecture. Because the condition
is simple, it can be executed locally by the RCs (i.e., without the LCU) by using the movs.sf
instruction (see Section 4.3.1). The RCs assigned to each line of code are given on the right
side of the block. For example, RCs 0 and 2 start by loading the data[i] value (minVal) in
one of their internal registers, while RCs 1 and 3 store its index (minIdx). The array is split
in two: RCs 0 and 1 sort the lower part of the array, and RCs 2 and 3 the upper part. The
performance improvement of the parallelization offsets the overhead required at the end
to recover the complete output. This is not always the case and should be evaluated for
every kernel.

Table 4.4 compares the outer and inner loop size of the ascending sorting algorithm for
different architectures: a Cortex-M4 processor (CM4), an Ibex processor, and the VWR2A
instance. For the inner loop, the two cases for a true and a false if-condition are evaluated.
The outer and inner loops are highlighted in the RCs block of Figure 4.4. While the outer
loop is two instructions longer for the VWR2A instance than for the Cortex-M4 and the
Ibex processors, the inner loop is much faster. In terms of performance, the latter is usually
the most important. The performance improvement of the VWR2A instance comes from
the instruction parallelization over the specialized slots (ILP) as depicted in Figure 4.4.
Moreover, as long as there are no data dependencies over the iterations, the RCs can
execute the condition independently using the mov.sf instruction (see Section 4.3.1).

2The number of iterations is reduced by 1 for every outer loop iteration.
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Table 4.4: Sorting algorithm outer- and inner-loop length (in cycles) comparison between
ARM Cortex-M4 (CM4), Ibex, and VWR2A architectures.

CM4 Ibex VWR2A

outer loop
#instructions 6 6 8
#iterations 31 31 15

inner loop
#instructions true 10 9 2
#instructions false 8 7 2
#iterations2 30 30 15

4.5 Experimental setup

4.5.1 Ultra-low power embedded platform

The same experimental setup as Chapter 3 is used: the VWR2A instance is integrated into
an ultra-low power SoC, as shown in Figure 4.5a, intended for biomedical applications [32]
(referred to as the ARM Cortex-M4 SoC in this chapter). The main features of that SoC
are an ARM Cortex-M4 processor and 6 static random access memory (SRAM) banks of
32KiB (192KiB in total) that can be accessed in parallel and individually power gated. The
platform has multiple custom accelerators (e.g., FFT, matrix processor); however, such
fixed-function accelerators do not have the flexibility to execute control-intensive code.

In order to better demonstrate the efficiency of a programmable accelerator architec-
ture, I also implemented a platform featuring an Ibex core, 192KiB of SRAM divided into
six banks, and the VWR2A instance of this chapter (Figure 4.5b) for comparison with the
ARM Cortex-M4 SoC. The performance of the different implementations can be directly
compared as the platforms are simulated at the cycle-accurate RTL level. However, the
Ibex platform is simplified (i.e., not an actual SoC), and the energy numbers presented
in Section 4.6 are lower-bound values. Therefore, a direct comparison between the ARM
Cortex-M4 SoC and the Ibex platform is not completely fair. The main difference between
the Ibex platform and the ARM Cortex-M4 SoC is the consumption of the bus intercon-
nection. While the Ibex platform has a custom 3-masters and 7-slaves interconnection
bus, the ARM Cortex-M4 SoC has an 19-masters and 14-slaves AMBA AHB multilayer
interconnection bus.

Table 4.5 compares the main features of the Cortex-M4 and the Ibex processors. These
are two representative cases of state-of-the-art programmable processors that target low-
power devices, with the Ibex targeting specifically control-intensive workloads. As long as
the code is dominated by control and the Ibex core can execute as fast as the Cortex-M4
processor, it will be more energy efficient because of its simpler architecture (even if the
overhead in power mentioned previously is removed).
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Figure 4.5: (a) VWR2A instance implementation and integration inside a low-power SoC
for biomedical applications [32]. (b) Ibex platform augmented with the VWR2A instance
used for comparison.

Table 4.5: Main features comparison between the ARM Cortex-M4 and the RISC-V Ibex
processors.

ARM Cortex-M4 RISC-V Ibex
ISA ARMv7-M RVC32IM

pipeline 3 stages 2 stages
32-bit integer multiplier 1 cycle 3-4 cycles

32-bit integer divider 2-12 cycles 37 cycles
branch prediction target forwarding pipeline stall

FPU hardware NA (software)
Extension(s) SIMD, 1 cycle MAC NA
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4.5.2 Performance and energy evaluation methodology

The ARM Cortex-M4 SoC and the Ibex platform, both including the VWR2A instance,
have been synthesized with the TSMC 40 nm LP CMOS technology at 80MHz (the original
frequency of the ARM SoC). I ran post-synthesis simulations with Cadence Incisive Verifi-
cation Platform [76] to get cycle-accurate execution times and measure the cell’s switching
activity used for power estimation with Synopsys PrimePower tool [78].

4.5.3 Representative set of software benchmarks for the biomedical target
domain

In this Section, the link between the characteristics of the control-intensive benchmarks
analyzed in Section 4.6 and the architectural features of the VWR2A instantiation are
discussed. The software benchmarks are divided into standalone kernels and applications.
Standalone kernels are extracted from existing biomedical applications to evaluate the
architectures at the kernel level. The impact at the application level is evaluated on three
biosignal applications. Only the processing steps are considered, not the acquisition
phase. The standalone kernels are generic and can be included in applications of various
domains, not just the biomedical one. For the evaluation of the standalone kernels on the
VWR2A instance, the overhead time to transfer the data to its internal SPM (before kernel
execution) and back to the SoC SRAM (after the execution) is accounted for, as well as the
reconfiguration time (i.e., loading the corresponding kernel instructions from the context
memory to the RCs and the specialized slots).

Control-intensive kernels spend most of their time executing control-related instruc-
tions. Table 4.6 shows this by comparing control- and data-intensive kernels. The pro-
portion of arithmetic and logic operations (ALU column in Table 4.6) is not enough for
distinguishing control-intensive from data-intensive code. However, the analysis of the
assembly code produced for each kernel shows that most of these operations are devoted
to controlling tasks (e.g., counter incrementation, conditions) for the former and direct
computation on data to produce an output (e.g., input data multiplication, addition) for
the latter. Load and store instructions hint at the type of code executed, and data-intensive
kernels usually have a significant proportion of them. However, some control-intensive
kernels, such as the median, can also have a high proportion of them. In the end, the
best indicator is the number of branch instructions executed (e.g., branch-if-equal, jump,
branch-if-not-equal). Table 4.6 shows a clear difference between control-intensive and
data-intensive kernels. For this analysis, control-intensive code is defined as having more
than 25% of branch instructions at execution time.
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Table 4.6: Control-intensive and data-intensive kernels’ instructions profiling using the
RVC32IM ISA.

Kernel
INSTRUCTION

ALU Load/Store Branch

Control-intensive
median 29% 30% 41%
delineation 54% 19% 27%

Data-intensive
FFT radix-2 48% 42% 10%
FIR Filter 51% 31% 18%

Three examples of control-intensive code in C language are shown in Figure 4.6.
The respiration signal delineation (Figure 4.6a) and the morphological low-pass filter
(Figure 4.6b) examples only show part of the code for conciseness. The FILT_WIN and
WIN_SIZE variables of the morphological low-pass filter and dilation queue examples
(Figures 4.6b, and 4.6c) are the sizes of the structuring elements: 5 and 75 elements,
respectively.

Similarly to the sorting algorithm code analyzed in Section 4.4, these examples can be
divided into four tasks: execution control, data loading and storing, data address update,
and data computation. Each of these tasks corresponds to one specialized slot of the
VWR2A architecture, which improves the ILP. Moreover, the RCs enable parallelization at
the data level when possible. For example, lines 14 and 15 of the respiration delineation
code (Figure 4.6a), which compute the input signal derivative, take two clock cycles as
instructions can be parallelized over the slots. Moreover, in this particular case, the
derivative computation can be parallelized by unrolling the loop over the 8 RCs as this
kernel uses both columns.

Standalone kernels

The first kernel, Median, takes an input array of up to 28 values, sorts them in ascending
order, and obtains the middle value (i.e., the median). As discussed in Section 4.4, this
kernel is dominated by control instructions to reorder the array. The second kernel is
Delineation (Figure 4.6a), which is a typical step of many biomedical applications that
extracts the fiducial points of a signal (e.g., ECG, EEG). These points are later used to
extract features. Delineation is a highly irregular code. It includes complex nested if-
else structures that are not predictable because of their data dependency. Therefore, the
workload cannot be parallelized, and the data are processed one by one. The Median and
Delineation kernels are extracted from a cognitive workload estimation application [81],
from the respiration (RSP) signal features extraction and delineation steps, respectively.
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void rsp_delineation(int16_t *data) {
00:  static int16_t first_win=1, lastValleyIndexRSP=0;
01:  static int16_t lastSigDiff=1, lastVal=0;
02:  static int16_t sig_diff[DATA_LENGTH];
03:
04:  if (first_win==1) {
05:    sig_diff[0]=0;
06:  } else {
07:    sig_diff[0]=data[0]-lastVal;
08:  }
09:
10:  if(sig_diff[0]==0) {
11:    sig_diff[0]=lastSigDiff;
12:  }
13:
14:  for(int16_t i=1; i<DATA_LENGTH; i++) {
15:    sig_diff[i] = data[i]-data[i-1];
16:  }
17:
18:  for(int16_t i=1; i<DATA_LENGTH; i++) {
19:    if(sig_diff[i]>0) {
20:      sig_diff[i] = 1;
21:    } else if (sig_diff[i]<0) {
22:      sig_diff[i] = -1;
23:    } else {
24:      sig_diff[i] = sig_diff[i-1];
25:    }
26:  }
27:
28:  first_win=0; lastSigDiff=sig_diff[DATA_LENGTH-1];
29:  last_val=data[DATA_LENGTH-1];
30:  
...

}

(a)

void mf_lp_filter(int16_t *data) {
00:  static int16_t B[FILT_WIN*FILT_WIN] = {
01:    0, 0, 1, 5, 1,
02:    1, 0, 0, 1, 5,
03:    5, 1, 0, 0, 1,
04:    1, 5, 1, 0, 0,
05:    0, 1, 5, 1, 0
06:  };
07:  static int16_t original[HF_FILT_250HZ_WIN];
08:  static int16_t dilation[HF_FILT_250HZ_WIN];
09:  static int16_t erosion[HF_FILT_250HZ_WIN];
...     ...

17:  for(int16_t i=0; i<DATA_LENGTH; i++) {
18:    int16_t* Bi = B + FILT_WIN*i;
19:    original[i] = data[i];
20:    dilation[i] = original[0] + Bi[0];
21:    erosion[i]  = original[0] - Bi[0];
22:    for (int16_t j=1; j<FILT_WIN; j++) {
23:      if (original[j] + Bi[j] > dilation[i]) {
24:        dilation[i] = original[j] + Bi[j];
25:      }
26:      if (original[j] - Bi[j] < erosion[i]) {
27:        erosion[i] = original[j] - Bi[j];
28:      }
29:    }
...     ...

40:  }
}

(b)

void mf_dilation_queue(int16_t *data) {
00:  static int16_t q_val[WIN_SIZE], q_pos[WIN_SIZE];
01:  static int16_t front=0, back=0;
02:
03:  for (int16_t i=0; i<DATA_LENGTH; i++) {
04:    while (front != back && data[i] > q_val[back]) {
05:      back = (back-1)&(WIN_SIZE-1);
06:    }
07:    back = (back+1)&(WIN_SIZE-1);
08:    q_pos[back] = i;
09:    q_val[back] = data[i];
10:    if (WIN_SIZE <= 
11:          ((i - q_pos[(front+1)&(WIN_SIZE-1)])&(WIN_SIZE-1))) {
12:      front = (front+1)&(WIN_SIZE-1);
13:    }
14:    input = q_val[(front+1)&(WIN_SIZE-1)];
15:  }
}

(c)

Figure 4.6: Examples of control-intensive code in C language. (a) Respiration delineation
(partial code). (b) Morphological filtering low-pass filter (partial code). (c) Morphological
filtering dilation queue.

Morphological filters are used in many signal processing applications [88, 108]. In
the biomedical domain, MF is used for two purposes: biosignal baseline removal and
filtering (e.g., low-pass filter) [108]. Biosignals often contain low-frequency harmonics
known as the baseline. MF can be used to remove this baseline by sequentially applying an
erosion, a dilation (Figure 4.6c), and again an erosion filter. The output is the baseline and
can be subtracted from the original input. The implementation uses three queues (one
per morphological filter), which require many control instructions. The data-dependent
nature of a queue does not allow efficient parallelization at the data level. Therefore the
input data are processed sample by sample. The analyzed VWR2A instance can manage
the three queues on its own, thanks to its flexibility. This data-structure based functionality
is quite unusual for hardware accelerators but is used in many applications, which creates
huge opportunities for programmable architectures such as VWR2A.

The second example code using MF is a low-pass filter that uses closing and opening
morphological operators to produce a low-pass filter (Figure 4.6b) [108]. Due to the small
size of the structure element (i.e., the weights matrix), the implementation does not use
queues and can be parallelized at the data level with a small computation penalty to
recover the correct output. The two MF kernels are extracted from a heartbeat classifier
application [108].
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Biosignal applications

The first application is a heartbeat classifier that acquires a 3-leads ECG signal and classifies
the beats into normal and abnormal to detect arrhythmia [108]. The beat classification
is performed on a single lead. If a heartbeat is classified as abnormal, the two additional
leads are also processed. Therefore, the application processes either a 1-lead or a 3-leads
ECG signal, referred to as 1-lead and 1+2-leads, respectively, in Section 4.6. Depending on
the health condition of the monitored patient, the second scenario (1+2-leads) is activated
more or less often. This application uses the MF baseline removal and the MF low-pass
filter kernels to preprocess the ECG signals before executing the rest of the application
(classifier, features extraction, . . . ). The results are shown for the processing time of one
window of 768 samples (3 seconds of ECG signal).

The second application processes the complete set of 12-leads ECG signals as required
for medical standards (e.g., devices in hospitals). This application applies the MF baseline
removal and low-pass filtering kernels before combining the leads and extracting the
fiducial points. The results are also shown for the processing time of one window of 768
samples.

The last application, which contains the Median and the Delineation kernels, is a
multi-signal cognitive workload estimation application [81]. For this chapter, I focused
on analyzing the performance and energy consumption of these two control-intensive
kernels at the application level. The performance of the related VWR2A instance on the
data-intensive kernels has already been presented in Chapter 3. The results correspond to
the processing of a window of 512 samples (102 seconds of respiration signal).

4.6 Experimental results

4.6.1 Architecture power analysis

The power breakdown of the architecture is first evaluated, notably the power consump-
tion of the specialized slots optimized for control-intensive code in order to assess their
low-power nature and understand better the architecture’s performance and energy ef-
ficiency. Table 4.7 shows the average and standard deviation of the power breakdown of
the VWR2A components when executing the standalone kernels that use two columns
of the architecture (i.e., Median 2x, Delineation, MF – Baseline removal 2-leads, and MF
– Low-pass filter 2-leads). The RCs and the data memories consume 87.5% of the total
power on average, while the specialized slots (i.e., LCUs, LSUs, and MXCUs) account only
for 7.9%. The energy overhead of the specialized slots is minimal, therefore justifying their
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Table 4.7: Average power consumption and breakdown of kernels that use two columns
for the components of the VWR2A instance focusing on control-intensive.

VWR2A Power (µW)
Component avg % σ

Context memory (5.4KiB) 64 2.7% ±1.3%
Synchronizer 45 1.9% ±14.2%
LCUs 46 2.0% ±34.0%
LSUs 84 3.6% ±21.7%
MXCUs 55 2.3% ±25.0%
RCs 407 17.4% ±28.2%

ALUs (182) (7.8%) (±34.8%)
instruction memories (123) (5.2%) (±30.7%)
RCs interconnection (69) (3.0%) (±34.7%)
register files (33) (1.4%) (±34.1%)

Data memory (35KiB) 1644 70.1% ±21.5%
SPM (32KiB) (636) (27.1%) (±8.8%)
VWRs (3KiB) (1000) (42.7%) (±31.5%)
SRFs (64B) (8) (0.3%) (±106.8%)

Total 2344 100% ±20.6%

use as they drastically increase the performance by improving ILP. Without them, the RCs
would have to handle also their instruction flow, increasing the overall number of cycles to
execute a kernel.

In addition, the specialized slots are more efficient than the RCs. Table 4.8 compares
the average power consumption of different processing elements while executing control-
intensive code. First, this table shows that RCs offer a high power efficiency compared to
GPPs as their total power consumption is 9.3× lower than the ARM Cortex-M4 (CM4), for
example. The specialized slots further improve the power efficiency of VWR2A compared
to a traditional CGRA by providing processing elements more energy efficient than the
RCs to execute specific tasks. The LCU, LSU, and MXCU consume on average 2.2×,1.2×,
and 1.2× less power than an RC, and 20.4×,11.3×, and 11.3× less power than the CM4.

The RCs power consumption is divided between the ALUs, the internal instruction
memories —64 words of 17 bits per RC—, the reconfigurable array interconnection, and the
internal register files —2 words of 32 bits per RC. The datapaths (i.e., ALUs, interconnection,
and register files) account for 69.8% of the RCs power consumption. This shows that most
of the RCs’ power is consumed for actual data computation (i.e., the datapaths).
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Table 4.8: Average power consumption comparison of the ARM Cortex-M4 (CM4), an RC,
and the specialized slots (LCU, LSU, and MXCU) considering the Median 2x, Delineation,
MF – Baseline removal 2-leads, and MF – Low-pass filter 2-leads kernels.

CM4 RC LCU LSU MXCU
Average Power (uW) 4713 514 235 426 427

Power reduction 1.0× 9.3× 20.4× 11.3× 11.3×

The context memory, which holds the kernel configuration words, is implemented
using standard-cell flip-flops to perfectly match the bitwidth of the units’ configuration
words (e.g., 27 bits for the MXCUs). These flip-flops are active only during the configuration
phase of the columns and clock-gated during the execution of a kernel. The latter takes at
least a few thousand cycles, while the configuration phase takes a maximum of 64 cycles.
Therefore, the context memory power consumption is very small.

The data memory hierarchy consumes 70.1% of the total power on average. While the
SPM uses memory macros, the VWRs are implemented with standard cell libraries’ latches.
This partially explains why the VWRs represent 42.7% of the total power consumption
while the SPM accounts only for 27.1%. A custom design where larger cells and a pragma-
guided regular floorplan are imposed, as proposed in [48, 72, 109], would undoubtedly
reduce their power consumption further. The power consumption of the SRFs is almost
negligible because of their relative small size compared to the SPM and VWRs.

The average power of each component as shown in Table 4.7 presents a marked vari-
ability, which is due to the specific instructions executed by each kernel on each slot. For
example, the duty-cycle of the LCU is 64% for the Median 2x kernel, whereas it reaches
76% for the MF – Baseline removal 2-leads kernel. This difference translates into a higher
relative average power for the LCU when executing the latter. Nevertheless, the absolute
average power of the specialized slots is so small that the variation on the total system
power is very small.

The SRFs have the highest variability, ±106.8%, because some kernels, like the Delin-
eation, rely mostly on the SRF of one column only. However, the power consumption of the
SRFs has almost no impact at the system level because it represents only 0.3% of the total
power on average. The ±20.6% variation at the architecture level is mainly dependent on
the variability of the VWRs power consumption. Some kernels, like the Median 2x, do not

3Only the ARM Cortex-M4 processor, not the full SoC.
4RCs average power consumption of Table 4.7 (407) divided by 8 RCs.
5LCUs average power consumption of Table 4.7 (46) divided by 2 LCUs.
6LSUs average power consumption of Table 4.7 (84) divided by 2 LSUs.
7MXCUs average power consumption of Table 4.7 (55) divided by 2 MXCUs.

104



access the VWRs so much, while others heavily use them, like the MF – Baseline removal
2-leads that stores not only the input data but the queues as well.

4.6.2 Standalone kernels results

Tables 4.9 and 4.10 show the performance and energy consumption for the four evaluated
architectures on seven computational kernels present in biomedical applications. The
VWR2A instance exhibits similar performance on both the Cortex-M4 SoC and the Ibex
platform as their memory and bus architecture are similar (only the processors differ).

Median

The mapping of the Median kernel uses only one column of the reconfigurable array. Two
cases are evaluated: 1 median executed in one column (the other one is idle) and two
medians computed in parallel over two columns. The latter is the best case for the VWR2A
instance as the execution time is almost similar to computing one median, improving its
energy efficiency compared to the processors.

The good performance of the VWR2A architecture is mainly due to the improvements
in the sorting algorithm discussed in Section 4.4. Table 4.4 shows that the outer and inner
loops of the sorting algorithm have two times fewer iterations than the Cortex-M4 and the
Ibex implementations, entirely due to the architectural innovations of the VWR2A template
(i.e., for the same algorithm). Moreover, the inner loop size is only two instructions, while
the Cortex-M4 and the Ibex use at least 8 and 7 instructions, respectively. This should
give approximately a 16× performance improvement for the VWR2A instance. However,
the overhead of the acceleration request from the host processor and the data transfer
limit its overall performance. Moreover, the parallelization of the sorting algorithm on
the VWR2A instance requires a recovery step (executed on the VWR2A instance) to get the
correct output, reducing the performance improvement to a final factor of 8.5× and 9.6×
compared to the Cortex-M4 and the Ibex, respectively, for the Median 2x case.

Delineation

This kernel uses the two columns of the accelerator. The first step of the kernel consists of
the input signal derivative computation and extraction of local minimums and maximums.
This step is easily parallelizable at the algorithmic and instruction level, which translates to
a 19× performance improvement compared to the Cortex-M4. The second step consists
of analyzing the local minimums and maximums and selecting the valid ones. This is done
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Table 4.9: Standalone kernels performance and energy comparison for the ARM Cortex-M4
SoC (CM4) and the ARM Cortex-M4 SoC including the VWR2A instance (CM4+VWR2A).

CM4 CM4 + CM4 vs.
Cycles VWR2A CM4+VWR2A

Median 1x 5015 1098 4.6×
Median 2x 10 007 1183 8.5×
Delineation 32 113 2723 11.8×
MF – Baseline removal 1-lead 98 228 30 664 3.2×
MF – Baseline removal 2-leads 205 768 31 577 6.5×
MF – Low-pass filter 1-lead 96 784 8642 11.2×
MF – Low-pass filter 2-leads 191 515 10 121 18.9×

Average speed-up 9.2×

Energy (µJ)

Median 1x 8.23× 10−2 3.05× 10−2 −62.9%
Median 2x 1.70× 10−1 3.97× 10−2 −76.7%
Delineation 5.74× 10−1 1.30× 10−1 −77.3%
MF – Baseline removal 1-lead 1.72× 100 8.79× 10−1 −48.9%
MF – Baseline removal 2-leads 3.70× 100 1.35× 100 −63.5%
MF – Low-pass filter 1-lead 1.70× 100 3.10× 10−1 −81.8%
MF – Low-pass filter 2-leads 3.36× 100 5.28× 10−1 −84.3%

Average energy saving −70.8%

through a three-level nested if-else structure. This structure selects the next valid point
based on data-dependent conditions (see Figure 4.1), which limits parallelization at the
algorithmic level. However, this step can take advantage of the ILP of the architecture and
achieves an 8× performance improvement compared to the Cortex-M4. This translates to
an overall 11.8× performance improvement at the kernel level compared to the Cortex-M4
(Table 4.9). For the Ibex platform, the results are very similar.

MF - Baseline removal

The morphological filter for baseline removal is the kernel in which the VWR2A instance
obtains the lowest speed-up with respect to the two CPUs. The reason is that the im-
plementation of the queues is only parallelized at the instruction level, as the algorithm
cannot be parallelized at the data level without significant overhead. The mapping is
limited to one column, so two executions can run in parallel, improving performance.
The two scenarios, 1-lead and 2-leads, are reported in Tables 4.9 and 4.10, using one, or
two columns, respectively. As this kernel is the worst in terms of speed-up, it also gives
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Table 4.10: Standalone kernels performance and energy comparison for the Ibex platform
(Ibex) and the Ibex including the VWR2A instance (Ibex+VWR2A).

Ibex Ibex + Ibex vs.
Cycles VWR2A Ibex+VWR2A

Median 1x 6101 1087 5.6×
Median 2x 12 169 1264 9.6×
Delineation 32 194 2713 11.9×
MF – Baseline removal 1-lead 103 288 30 448 3.4×
MF – Baseline removal 2-leads 208 611 31 212 6.7×
MF – Low-pass filter 1-lead 152 333 8523 17.9×
MF – Low-pass filter 2-leads 304 649 9783 31.1×

Average speed-up 12.3×

Energy (µJ)

Median 1x 8.00× 10−2 2.53× 10−2 −68.4%
Median 2x 1.60× 10−1 3.51× 10−2 −78.0%
Delineation 4.74× 10−1 9.03× 10−2 −81.0%
MF – Baseline removal 1-lead 1.52× 100 6.85× 10−1 −54.9%
MF – Baseline removal 2-leads 3.08× 100 9.79× 10−1 −68.2%
MF – Low-pass filter 1-lead 1.63× 100 2.24× 10−1 −86.3%
MF – Low-pass filter 2-leads 3.27× 100 3.57× 10−1 −89.1%

Average energy saving −75.1%

the lowest energy savings for the VWR2A instance compared to the ARM Cortex-M4 SoC
and the Ibex platform: 48.9% and 54.9%, respectively, for the 1-lead case, and 63.5% and
68.2%, respectively, for the 2-leads case.

MF - Low-pass filter

This kernel also uses a single column, and the results for the cases of 1-lead, using one
column, and 2-leads, using two columns, are reported (Tables 4.9 and 4.10). This kernel is
the best in terms of performance and energy savings for the VWR2A instance because it
contains more computation on data than the other kernels, although it is still dominated
by control instructions. Moreover, because of the small size of the morphological struc-
turing elements, an implementation using queues is not the most efficient. Therefore,
a straightforward implementation that can be parallelized with a small overhead on the
VWR2A instance is used. This translates into energy savings up to 84.3% and 89.1% for the
2-leads case compared to the ARM Cortex-M4 SoC and the Ibex platform, respectively.
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4.6.3 Standalone kernels analysis

The VWR2A instance is the fastest implementation for all the kernels. This corrobo-
rates that an adequately designed reconfigurable architecture can also accelerate control-
intensive kernels, in this case, when optimized for the biomedical domain. In terms of
energy, although the VWR2A instance uses more power than the two considered proces-
sors, its speed-up translates to significant savings in energy consumption, particularly
when the complete architecture is used (i.e., the two columns).

While the increase in energy consumption is equal to the increase in execution time for
the CM4 and the Ibex (e.g., executing two leads requires two times more cycles and energy),
it is not valid for the VWR2A instance. If the extra work (e.g., a second lead) can be executed
in parallel by another column, the energy consumption will not increase by a factor of
two. The reason is that some elements are shared, such as the SPM. Moreover, the leakage
power of both columns is always present even when a single column is used. Utilizing the
second column only adds its dynamic power to the overall consumption. These reasons
explain why the CM4 SoC and the Ibex platform double their energy consumption when
executing the MF – Baseline removal 2-leads and MF – Low-pass filter 2-leads kernels
compared to the single lead versions, while the CM4+VWR2A only increases its energy
consumption by a factor 1.6×.

As only the kernels themselves are studied here, the performance and energy consump-
tion of the VWR2A instance can be analyzed in isolation and compared directly with the
execution on the two CPUs. Compared to the Cortex-M4 processor (not the SoC, only
the CPU), the VWR2A instance alone uses 5.8× more power but is 9.2× faster on average,
hence it is more energy efficient. Moreover, the VWR2A instance uses its internal memory
structure to access the data (i.e., SPM and VWRs), which is more energy-efficient than
the SoC AMBA AHB interconnection. This leads to a 70.8% energy saving on average at
the SoC level, which is combined with the higher performance leading to an energy-delay
product (EDP) improvement of 43.8×.

Compared to the Ibex core (only the CPU), the VWR2A instance alone requires 8.7×
more power but is 12.3× faster, leading to an average energy saving of 75.1% at the plat-
form level (Ibex+VWR2A vs. Ibex). This translates to an EDP improvement of 81.2× for
the Ibex+VWR2A platform compared to the Ibex platform. Interestingly, although the Ibex
processor is optimized for control-intensive code and has better energy efficiency than
the ARM Cortex-M4 SoC, it is on average 1.2× slower, translating to an EDP decrease of
1.1× for our biosignal processing target domain.
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4.6.4 Biosignal applications results

The performance and energy consumption of the three evaluated designs are shown in
Tables 4.11 and 4.12. The code executed on the VWR2A instance was limited to the control-
intensive kernels presented in Tables 4.9 and 4.10 to evaluate the impact of control code
acceleration at the application level. However, it has been substantiated in Chapter 3 that
a VWR2A instance can also execute most of the data-intensive kernels of the evaluated
applications. Therefore, the numbers reported in Tables 4.11 and 4.12 are the minimum
energy savings that can be achieved using the VWR2A instance of this chapter (Section 4.6.6
evaluates the case where both data- and control-intensive kernels are executed by a VWR2A
instance).

Heartbeat classifier

Two scenarios have been considered: 1-lead and 1+2-leads. The second one is the optimal
case for the VWR2A instance, as it can execute the two leads in parallel. For the first
case (1-lead), only half of the VWR2A architecture is used (i.e., one column), reducing its
energy efficiency. The execution is dominated by the MF —baseline removal and low-
pass filter— of the leads, which takes more than 65% and 75% of the total processing
time, for the 1-lead and 2-leads cases, respectively (for both the ARM Cortex-M4 SoC and
the Ibex platform). At the application level, gains are limited compared to those at the
kernel level (see Tables 4.9 and 4.10). The reason is that the lead window size is bigger
than the one used for the standalone kernels, and the SPM of the VWR2A instance is not
large enough to hold all the data simultaneously, requiring some backup to the platform
SRAM (using a double-buffering strategy). This increases the bus interconnection energy
consumption and limits the gain of the VWR2A instance compared to both processors.
Moreover, the acceleration is limited to the control-intensive kernels of the application
while the processors execute the remaining part, limiting the overall savings of the VWR2A
instance.

Medical standard 12-leads

Like the previous application, executing the morphological filter for 12 leads requires
some adaptation as the VWR2A internal memory is not large enough to store all the values
(input data and kernel parameters) at once. Therefore, additional data transfers are needed
to back up these values in the ARM Cortex-M4 SoC and the Ibex platform SRAM. This
induces a penalty in performance and energy but using the VWR2A instance is still more
energy-efficient. This application is even the best regarding energy savings: the VWR2A
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Table 4.11: Biosignal applications performance and energy comparison for the ARM Cortex-
M4 SoC (CM4) and the ARM Cortex-M4 SoC including the VWR2A instance (CM4+VWR2A).
The VWR2A instance is limited to execute only control-dominated kernels.

CM4 CM4 + CM4 vs.
Cycles VWR2A CM4+VWR2A

Heartbeat classifier 1-lead (ECG) 463 025 208 525 2.2×
Heartbeat classifier 1+2-leads (ECG) 1 278 191 465 366 2.7×
Medical standard 12-leads (ECG) 4 261 659 894 567 4.8×
Cognitive workload est. 1-lead (RSP) 153 115 123 122 1.2×

Average speed-up 2.7×

Energy (µJ)

Heartbeat classifier 1-lead (ECG) 4.4 3.9 −11.6%
Heartbeat classifier 1+2-leads (ECG) 10.9 8.6 −20.7%
Medical standard 12-leads (ECG) 40.3 25.1 −37.7%
Cognitive workload est. 1-lead (RSP) 2.3 1.9 −17.7%

Average energy saving −21.9%

instance consumes 37.7% and 71.6% less energy than the ARM Cortex-M4 SoC and the
Ibex platform, respectively. This is due to the even number of leads, which maximizes the
VWR2A utilization and, therefore, its energy efficiency.

Cognitive workload estimation

This application is the worst in terms of overall performance and energy savings, partic-
ularly compared to the Ibex platform, because it is dominated by data-intensive kernels
(as discussed previously) and, given the focus of this chapter, here our study is limited
to accelerate only the control-intensive kernels (Median and Delineation kernels). These
kernels account for less than 5% of the total processing time on the Ibex platform, limiting
the impact of the VWR2A instance. For the ARM Cortex-M4 SoC, these kernels represent
21% of the processing time, which translates to higher savings for the VWR2A instance.
For such application, having a programmable accelerator capable of accelerating both
data-intensive and control-intensive kernels would be the best. This scenario is evaluated
later in this chapter to show further the benefit of having a DSIP with broad kernel coverage
of a domain. Nevertheless, the VWR2A instance still exhibits 17.7% and 3.7% lower energy
consumption than the ARM Cortex-M4 SoC and the Ibex platform, respectively.
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Table 4.12: Biosignal applications performance and energy comparison for the Ibex plat-
form (Ibex) and the Ibex including the VWR2A instance (Ibex+VWR2A). The VWR2A
instance is limited to execute only control-dominated kernels.

Ibex Ibex + Ibex vs.
Cycles VWR2A Ibex+VWR2A

Heartbeat classifier 1-lead (ECG) 672 639 289 881 2.3×
Heartbeat classifier 1+2-leads (ECG) 1 773 784 579 513 3.1×
Medical standard 12-leads (ECG) 10 132 440 1 003 344 10.1×
Cognitive workload est. 1-lead (RSP) 645 677 616 570 1.0×

Average speed-up 4.1×

Energy (µJ)

Heartbeat classifier 1-lead (ECG) 7.4 3.7 −50.5%
Heartbeat classifier 1+2-leads (ECG) 20.4 8.6 −58.0%
Medical standard 12-leads (ECG) 78.4 22.2 −71.6%
Cognitive workload est. 1-lead (RSP) 8.4 8.1 −3.7%

Average energy saving −46.0%

4.6.5 Biomedical applications analysis

Compared to the results of the standalone kernels, the savings at the application level
are more limited. When complete applications are considered, there are inevitable data-
intensive steps that significantly worsen the performance and energy efficiency, particu-
larly for the Ibex core, which is optimized for low-power execution of control code. This is
particularly true for the Cognitive workload estimation application that is dominated by
data-intensive kernels, such as an FFT and a FIR filter. At the kernel level, the Ibex core is
slower but more energy efficient than the ARM Cortex-M4, but at the application level, it is
both slower and less energy efficient with an EDP 3.7× lower.

Similar to the case of standalone kernels, the VWR2A instance is the best implemen-
tation in terms of performance and energy. The VWR2A instance is 2.7× and 4.1× faster
than the ARM Cortex-M4 SoC and the Ibex platform, respectively, on average. In terms
of energy, the VWR2A instance consumes 21.9% and 46.0% less energy on average than
the ARM Cortex-M4 SoC and the Ibex platform, respectively. The performance and energy
combined give the VWR2A instance an improvement in EDP of 3.8× and 12.2× compared
to the ARM Cortex-M4 SoC and the Ibex platform, respectively.
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Table 4.13: Biosignal application performance and energy comparison when a VWR2A
instance is used for all the possible data- and control-intensive kernels.

CM4 CM4 + CM4 +
ASICs VWR2A

Cycles savings savings

Preprocessing 49 760 34 402 30.9% 2569 94.8%
Delineation 32 716 32 716 0.0% 2723 91.7%
Feat. extraction + SVM 70 639 54 255 23.2% 7915 88.8%

Total 153 115 121 373 20.7% 13 207 91.4%

Energy (µJ)

Preprocessing 0.68 0.47 30.7% 0.15 77.3%
Delineation 0.54 0.54 0.0% 0.13 75.9%
Feat. extraction + SVM 1.1 0.98 10.9% 0.38 65.5%

Total 2.32 1.99 14.2% 0.66 71.4%

4.6.6 Experiment including both data- and control-intensive code

The Cognitive workload estimation application (also used in Chapter 3) has been entirely
ported to the VWR2A instance of this chapter to show the full potential of such an archi-
tecture. In this case, all the application was executed by the VWR2A instance, further
improving the savings at the application level, as shown in Table 4.13. The experiments
have been done only with the ARM Cortex-M4 SoC, as the application is dominated by
data-intensive kernels (79% of the total execution time using only the ARM Cortex-M4
core). Executing this application on the Ibex platform will undoubtedly translate to poor
performance and energy efficiency (for the Ibex, not the VWR2A instance). Compared
to the ARM Cortex-M4 SoC (i.e., using its complete set of ASICs), the VWR2A instance is
9.2× faster and consumes 66.7% less energy. This translates to an improvement in EDP
of 27.6×. Compared only to the ARM Cortex-M4 processor (i.e., without the ASICs), the
improvement in EDP is 40.5×.

These results show the importance of evaluating architectures at the application level
and the advantages of the flexibility of a reconfigurable accelerator, allowing both data-
intensive and control-intensive code to be executed more efficiently, in terms of perfor-
mance and energy, than GPPs and their potential set of ASICs.
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4.6.7 Template instance optimization

The VWR2A instance used in this chapter is very similar to the one proposed in Chapter 3.
The specific features added in this chapter significantly impact the architecture capacity
and efficiency to execute control-intensive kernels, increasing its code coverage while
having a negligible impact on the overall power consumption. First, this shows the ad-
vantage of a programmable architecture that can adapt to different types of code with
minor changes. The instance of Chapter 3 is already capable of executing some of the
control-intensive kernels presented here, but not all of them (i.e., the MF kernels), and not
as efficiently as the instance proposed in this chapter. Therefore, these features should be
included inside an instance focusing on data-intensive code as they enlarge the covered
domain of applications with negligible hardware overhead.

However, the opposite is not necessarily true. For example, the single-cycle multiplier’s
huge area and leakage power consumption (not used in any control-intensive kernels)
can be removed in an instance targeting control-dominated applications only. Such an
instance would still support multiplication but with a higher cycle penalty, hence the
execution of data-intensive kernels but with lower energy efficiency. This design choice
depends on a deeper study of the application domain and a use case analysis to ensure
such an instance would cover enough scenarios. This thesis does not provide this analysis.
Nonetheless, the main parameters that can be optimized for an instance of the VWR2A
instance focusing on control-dominated applications are discussed below.

As shown in Table 4.7, the RCs and the data memories, particularly the VWRs and
the SPM, account for most of the power consumption of the VWR2A instance. Therefore,
changing the template’s parameters related to them will impact the power consumption
most. One option is to reduce the SPM size, but the minimum size depends on the actual
requirement of the applications. For the applications considered in this chapter, the
SPM is actually too small, and a double-buffering scenario is needed for the Heartbeat
classifier and the Medical standard 12-leads applications. In particular, the queues of a
morphological filter require a significant amount of memory, which is multiplied by the
number of leads. Therefore, if applications with a high number of leads are considered
(e.g., in medically certified devices), a bigger SPM may be a better option. In this case,
as discussed in Chapter 2, when a platform integrating a VWR2A instance is built from
scratch, it is essential to properly size the system’s main memory and the SPM size of the
VWR2A instance. In this chapter, the SoC used as a baseline has been originally designed
with a 192KiB main memory, and no co-optimization of the complete SoC has been done
with the integration of the VWR2A instance. Considering the VWR2A instance, it would
be better to increase the SPM size (e.g., to 64KiB) and reduce the main memory (e.g., to
160KiB). Moreover, building the SPM with multiple banks and enabling power-gating
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Table 4.14: Statistics of the units for all the control-intensive kernels.

LCU LSU MXCU RC0 RC1 RC2 RC3
avg instructions8 26 10 17 19 16 13 15
min instructions9 3 3 2 4 4 4 4
max instructions10 51 18 50 36 32 32 37
avg active instructions11 57.1% 24.3% 39.8% 49.4% 42.1% 34.1% 38.6%

avg/min/max kernel size12 44 / 22 (mf_baseline_removal) / 64 (mf_erosion)

(which has not been considered in the experiments) would allow more flexibility and
adaptability to the requirements of various applications.

The other optimizable parameter with a significant impact on power is the width of
the VWRs. For example, dividing the VWRs width by two is possible for control-intensive
applications with a negligible impact on performance because the data transfer frequency
between the VWRs and the SPM is very low. This would reduce power and energy con-
sumption (as the impact on performance is small). However, depending on the complete
set of targeted applications, changing the VWRs’ size will impact their performance if
data-intensive kernels are present. The final choice must consider the complete set of
applications targeted by a specific instance of the VWR2A template.

Table 4.14 shows some statistics related to the instructions and program memory of the
units. This table provides insights into the important template’s parameters to optimize
and their impact on performance. One crucial parameter is the operations supported by
the ISAs of the processing elements (i.e., the specialized slots and the RCs). One example
is the selection operation of the RCs that uses the status flags to select one of the input
operands. The number of RCs is also important, but not as much as for data-intensive
kernels, and having more than 4 RCs per column is irrelevant. The average active instruc-
tions13 row of Table 4.14 shows that the RCs mostly have nop instructions, particularly
RC2 and RC3, as the workload is primarily mapped into RC0 and RC1. Moreover, most
control-intensive kernels use only one column, while the opposite is true for the data-
intensive ones (mainly to increase the number of RCs, hence the computation resources).
However, having multiple columns is still interesting for control-intensive code, especially
for multi-lead applications that can be parallelized per lead. A more efficient design, in

8Static average number of instructions that are not a nop.
9Static minimum number of instructions that are not a nop.

10Static maximum number of instructions that are not a nop.
11Average percentage of instructions that are not nops based on each kernel length (not the total program

memory size of 64 instructions).
12This value correspond to the highest PC address in which an active instruction is stored, not to the

maximum numbers of active instruction in a unit.
13This row is not a profiling of the execution but just a measure of the content of the units’ program memory.

Therefore, a low percentage does not necessarily mean that the unit executes nops most of the time.
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this case, would probably be an instance with more columns and potentially fewer RCs
per column, for example, a two-by-four (i.e., four columns of two RCs).

Table 4.14 shows that the MXCU and the LCU are also crucial for control-intensive
kernels, while the LSU is less used. Therefore, optimizing the parameters related to
the LCU and MXCU have the most effect on performance. The branchMode control bit
proposed in this chapter (see 4.3.2) is one example. Moreover, as shown in Table 4.7, the
specialized slots represent a tiny portion of the total power consumption but provide
a significant performance benefit. Therefore any feature (that does not incur a notable
power overhead) or operation increasing their performance should also improve the overall
energy efficiency.

4.7 Summary and conclusions

This chapter has evaluated the performance and savings in energy consumption of an
instance of the VWR2A template with two general-purpose baseline processors for control-
intensive kernels and applications. The VWR2A instance is similar to the one proposed
in Chapter 3 but has been augmented with some features to execute control-intensive
code better. This perfectly illustrates the purpose of the template. The latter defines the
high-level features that a DSIP targeting the biomedical domain should have, but detailed
optimizations of the architecture that depend on specific requirements are done at the
instance level.

The results show that the DSIP instance is consistently faster and more energy-efficient
than two representative processors of state-of-the-art programmable processors targeting
low-power devices —an ARM Cortex-M4 processor and a RISC-V lowRISC Ibex processor—
for kernels and applications. The specialized slots play a crucial role, particularly the
MXCU and the LCU, and significantly improve the architecture performance on control-
dominated kernels by increasing the ILP of the VWR2A instance. In detail, the VWR2A
instance is 2.7× faster and consumes 21.9% less energy than the ARM Cortex-M4 SoC.
Compared to the Ibex platform, it is 4.1× faster and consumes 46.0% less energy. This
translates to an improvement in EDP of 3.8× and 12.2× compared to the ARM Cortex-M4
SoC and the Ibex platform, respectively.

The improvements above are lower bound values as the kernels executed on the VWR2A
instance have been limited to the control-intensive ones. One application has been entirely
ported, both the data- and control-intensive kernels, to the VWR2A instance to show its
full potential. In this case, the savings are even higher, with an execution 9.2× faster while
consuming 66.7% less energy compared to the ARM Cortex-M4 SoC (using its complete
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set of ASICs). This translates to an improvement in EDP of 27.6×. Compared only to the
ARM Cortex-M4 processor (i.e., without the ASICs), the improvement in EDP is 40.5×.

These results, similar to the previous chapters, strongly support the proposal of this
thesis to move toward DSIP architectures in order to achieve higher performance and
energy efficiency at the edge. In particular, the broad code coverage of DSIPs is the key to
improving energy efficiency in future heterogeneous embedded systems.
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5 Conclusions and Future work

5.1 Summary and contributions

In this thesis, I advocate for the design of domain-specific instruction-set processors
(DSIPs) to improve embedded systems’ energy efficiency and lower their development
costs. DSIPs are fully programmable heterogeneous processors that do not contain any
customized components and remain fully programmable for any source code that could
be targeted. The main difference with a general-purpose processor (GPP) is that the
compiled assembly code runs more efficiently for the target domain than for code outside
this domain. A DSIP integrated inside a system-on-chip (SoC) as a co-processor allows
large portions of applications within its target domain to be accelerated efficiently. This
translates to higher savings at the application level than more customized circuits, such as
application-specific integrated circuits (ASICs).

In Chapter 1, I have contextualized this work into the biomedical domain and showed
how actual problems, such as noncommunicable diseases (NCDs) monitoring and pre-
vention, could benefit from the architecture exploration presented in this thesis. It also
summarizes the main contributions of all the chapters and provides an outline of this
thesis to help readers navigate this work.

In Chapter 2, I have proposed VWR2A: a very-wide-register reconfigurable-array tem-
plate to build DSIPs for the biomedical domain. The main architectural features of the
template are based on the state-of-the-art in different domains: the memory hierarchy
(from many studies in embedded systems), computational density (from coarse-grained
reconfigurable arrays (CGRAs)), instruction decoding efficiency (from CGRAs), and in-
creased instruction parallelism (from very-long instruction word (VLIW) processors). In
particular, these features are:

• A compute fabric core based on the CGRA template that uses reconfigurable cells
(RCs) with a high computational density.
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• Specialized slots, which are loosely inspired by the brain regions and their focus on
specific tasks (e.g., motor control, vision) and similar to the functional units (FUs) of
a VLIW processor to increase the instruction level parallelism (ILP) by freeing the
RCs from executing simple instructions unrelated to the actual data processing (e.g.,
loop control, branches). These specialized slots can perform the simple operations
for which they are designed using less energy than the RCs.

• An energy-efficient instruction decoding scheme based on the CGRA template with
a context memory containing pre-decoded instructions loaded to local program
memories close to the processing elements (i.e., the RCs and the specialized slots).

• A low-energy wide memory hierarchy including:

1. A scratchpad memory (SPM) to reduce energy consumption by targeting most
data accesses to a small memory closer to the processing elements (i.e., the
RCs).

2. Wide memories —an SPM and very-wide registers (VWRs)— with reduced de-
coding energy, high bandwidth, and low switching in large output transistors.

3. Single-ported memories (the SPM and VWRs) to reduce their energy consump-
tion to a minimum.

The principal parameters of the template have been presented and illustrated with
concrete examples. The kernel mapping process and the constraint of the memory hier-
archy have been discussed with a simple two-vector element-wise addition example. A
more complex example using a fast Fourier transform (FFT) kernel, typical in biomedi-
cal applications, is also evaluated. This example demonstrated the proposed template’s
higher efficiency compared to two existing state-of-the-art architectures targeting the
biomedical domain: an ARM Cortex-M4 SoC [32] and a CGRA architecture based on the
designs proposed in [33, 34]. Moreover, it justifies the design choices of VWR2A, such as
the integration of specialized slots. Compared to the ARM Cortex-M4 and the baseline
CGRA, the VWR2A instance showed an average energy-delay product (EDP) improvement
of 104.8× and 19.8×, respectively, while executing FFTs.

In Chapter 3, I have presented one instance of the VWR2A template targeting data-
intensive kernels of the biomedical domain. To demonstrate the advantage of a DSIP
architecture, I compared the VWR2A instance to an SoC targeting the biomedical domain
composed of an ARM Cortex-M4 GPP and two ASICs: an FFT accelerator and a matrix
processor. At the kernel level, the VWR2A instance showed similar or better performance
than the ASICs compared to the execution on the ARM Cortex-M4 GPP. On average, the
FFT ASIC consumes 4.9× less energy than the VWR2A instance while executing FFTs.
Compared to the matrix processor ASIC, the VWR2A instance consumes, on average, 1.3×
less energy while executing a finite impulse response (FIR) filter.
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At the application level, the experiments showed that the VWR2A instance is always
the fastest and most energy-efficient solution compared to the ARM Cortex-M4 SoC (using
its ASICs whenever possible). The results showed an EDP improvement of 6.5× and 4.4×
compared to an execution using only the ARM Cortex-M4 core and the ARM Cortex-M4 SoC
(including the ASICs), respectively. These results show that ASICs are suboptimal solutions
when complete applications are considered and that DSIPs enable higher energy efficiency.
In addition, ASIC accelerators have a very targeted specific context that inevitably reduces
their target market domain, reducing the yearly production volumes of the integrated
circuits (ICs) containing these accelerators, and increasing their costs. On the contrary,
DSIPs cover a large domain of applications, hence their target market domain, making
them a viable solution, particularly for the modern scaled technology nodes with huge
nonrecurring engineering (NRE) costs.

In Chapter 4, I have further demonstrated the efficiency of DSIPs by considering control-
intensive kernels and proposing an instance of the VWR2A template optimized for such
code. Hardware accelerators are primarily designed for data-intensive code because it
usually represents most of the execution time. However, once this code is accelerated,
control-intensive code (e.g., branches, conditions) becomes predominant, limiting the
impact of the accelerator [85], especially at the application level. Because of the complex
nature of control-intensive code, its execution is usually left to GPPs, which translates to
poor performance. The programmability of DSIPs, compared to the fixed nature of ASICs,
allows them to execute such code. The specialized slots of VWR2A, which increase the ILP,
play a crucial role in efficiently executing control-intensive kernels. Two state-of-the-art
GPPs have been considered to compare the performance of a VWR2A instance. The first
is an ARM Cortex-M4 processor (used in Chapters 2 and 3) and the second is a RISC-V
Ibex processor that is optimized for control code. In all the considered scenarios —both
at the kernel and application level— the VWR2A instance has shown better performance
and energy efficiency. In detail, it demonstrated an improvement in EDP of 3.8× and
12.2× compared to the ARM Cortex-M4 SoC and the Ibex platform, respectively, at the
application level (without accelerating data-intensive kernels on VWR2A). Finally, an
entire application —both the data- and control-intensive kernels— has been mapped on
the VWR2A instance to demonstrate its full potential. In this case, the savings are even
higher, with an execution 9.2× faster while consuming 66.7% less energy compared to the
ARM Cortex-M4 SoC (using its complete set of ASICs). This translates to an improvement
in EDP of 27.6×. Compared only to the ARM Cortex-M4 processor (i.e., without the ASICs),
the improvement in EDP is 40.5×.

All the experimental results of these chapters strongly support the initial hypothesis of
this thesis that proposed the development of DSIPs to improve the energy efficiency of
embedded systems and reduce the production cost of modern low-power ICs. To conclude,
the main contributions of this thesis are listed below:
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1. Showing the benefit of using programmable architectures for embedded biosignal
processing platforms.

2. VWR2A: a very-wide registers and reconfigurable array template for DSIPs targeting
the biomedical domain.

3. A detailed analysis and justification through experiments of the architecture features
introduced in VWR2A.

4. The comparison of one instance of VWR2A with two ASICs at the kernel level to show
how judicious features at the architecture level can close or narrow the performance
gap between DSIPs and ASICs.

5. The comparison of one instance of VWR2A to an SoC containing an ARM Cortex-M4
processor and ASICs targeting the biomedical domain to showcase the superiority of
programmable architectures compared to custom circuits.

6. The evaluation of one instance of VWR2A on control-intensive code and its com-
parison with two state-of-the-art GPPs: an ARM Cortex-M4 and a RISC-V Ibex to
demonstrate the large code coverage of a DSIP and its higher performance on its
domain of applications compared to GPPs.

Publications. This work has resulted in three publications: the initial design space
exploration using a CGRA design (i.e., the baseline CGRA used in Chapter 2) was pre-
sented at the Embedded Systems Week (ESWEEK) conference [34]. This work allowed
me to discover the bottleneck at the architecture level that limits traditional CGRA design
performance and explore various solutions to improve it. This led to the publication of a
paper at the Design Automation Conference [110] presenting the DSIP instance focused
on data-intensive code (Chapter 3 of this thesis). Finally, the DSIP instance for control-
intensive code proposed in Chapter 4 is currently under revision for publication in the
IEEE Transactions on Computers journal [111].

5.2 Future work

In this thesis, I have proposed solutions and opened new questions and challenges to
investigate. The most interesting topics that could be explored are listed below, and hints
are given to provide starting ideas for those who may want to explore them.

120



5.2.1 Very-Wide-Register and wide memory hierarchy layout optimization

Table 4.7 shows that the SPM and the VWRs represent, on average, 69.8% of the total power
consumption for control-intensive kernels, while Table 3.7 shows a power consumption
accounting of 64.0%1 for a 512-point real-valued FFT (a data-intensive kernel). Therefore,
future efforts should focus on them to improve overall energy efficiency. This requires
multiple problems to be solved. First, the wide SPM is built from concatenated memory
macros because no existing memory compiler could produce its wide interface. Compared
to the current solution, the improved efficiency of such a compiler is hard to evaluate, and
a preliminary evaluation should be done to assess the potential benefits.

For the VWRs, a similar approach has been used but using cells from the standard
library –latches– provided by the technology supplier as no memory compiler exists for
such memories. The problem with this approach is the long wires produced during the
placement and routing of the cells, which significantly increases power consumption.
Although the experiments of this thesis have been done with a post-synthesis netlist (i.e.,
no place and route), the estimated wires’ load during synthesis impacts the sizing and type
(i.e., HVT, RVT, LVT) of the cells. Additionally, the Cadence Genus tool’s physical layout
estimation (PLE) engine has been used (instead of the traditional wireload models) to
provide more accurate results. PLE uses lef files to estimate the cells’ placement during
synthesis and better evaluate the required speed and drive strength of the cells. The team
who proposed the VWRs has already witnessed this problem. They have shown that this
problem can be solved during the place and route (using the TSMC 90 nm technology)
by guiding the tool to align VWRs cells to the wide SPM pitch, effectively reducing the
wires’ length to a minimum [72]. Figure 5.1 shows this long wire problem for one instance
of VWR2A that I have placed and routed with the TSMC 40 nm LP CMOS technology.
Quantifying the benefit of an optimized place and route of VWRs using standard-cells
for advanced technology nodes (<40 nm) would assess the energy efficiency of the VWR
approach for such technologies. Another solution would be to have a full-custom design.
While it would probably give the best energy efficiency, this solution is not easily portable
to new technologies or changeable for another width (e.g., for a new template instance).

5.2.2 Optimization of the RC datapath

The second largest contributors to total power consumption are the RCs. The main reason
is the presence of a single cycle 16-bit by 16-bit to 32-bit multiplier (per RC). Its implemen-
tation is left to the synthesis tool, and no optimization is done. Exploring other multiplier

1This value also contains the context memory and the scalar register files (SRFs), but they account only for
a tiny amount.
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(a)

(b)

SPM[31:29]SPM[29] SPM[30] SPM[31]

Figure 5.1: Place and route of the VWR2A instance of Chapter 3. The layout is very wide as
all the SPM macros are aligned to produce the wide 4096b interface. (a) Complete layout
displayed with the VWRs cells highlighted in white (24576 latches from the TSMC 40nm
LP CMOS library). (b) Layout zoomed to show the long wires of the SPM pins 29 to 31.
The corresponding latches should be placed as close as possible to the SPM macro pins to
reduce the wires’ lentght to a minimum.

designs and the power vs. performance tradeoff of a multi-cycle multiplier would provide
more guidance in designing a new instance of the VWR2A template.

Another possible optimization is the support for single instruction multiple data (SIMD)
operations. All the instances of this thesis have used a 32-bit datapath and data size.
However, many domains, such as the biomedical one, can use smaller representations
without losing accuracy. Adding SIMD support does not represent a massive power and
area overhead, as most of the existing hardware can be reused. For example, a 32-bit adder
can easily be transformed into four 8-bit adders with negligible hardware addition (only
the relevant carry bits have to be masked).

5.2.3 Instruction memories optimization

The local program memories of the RCs represent 7% of the total power consumption
on average. This is relatively small in the current instances. However, if the efficiency
of the SPM and the VWRs is improved or the local program memory size is increased
(e.g., for a specific domain), it will become more critical. In this case, considering the
implementation of a distributed loop buffer organisation [96] could be interesting. A
distributed loop buffer organization removes the need for explicit nop instruction by
using an activation trace (AT) table to activate or de-activate the units. This allows the
units to have program memories of different sizes but still controlled by a common PC.
In addition, it allows the compression of the kernel instructions, which increases the
number of concurrent kernels supported by the architecture. The efficiency of such a
design depends on the number of nops inside these program memories. Table 5.1 shows
the minimum and average percentage of nops for all the units considering all the kernels

122



Table 5.1: Minimum and average percentage of nops for all the units (with a program
memory depth of 64 configuration words) considering all the kernels of this thesis.

LCU LSU MXCU RC0 RC1 RC2 RC3
min % nops 20.3% 35.9% 21.9% 34.4% 32.8% 35.9% 35.9%

avg % nops 70.2% 74.5% 75.2% 69.5% 73.1% 74.9% 75.3%

presented in this thesis. The high average of nops means that most of the time, only a
few instructions inside the units’ program memory are actual instructions (i.e., not nops).
However, all the units require at least 69.5% of the program memory (i.e., 44 instructions)
at least for one kernel, as shown by the minimum percentage of nops row in Table 5.1.
Considering only program memories with a power-of-two size, it is impossible to reduce
any of the units’ program memory in this case. Therefore, a loop buffer would probably
not reduce the power consumption (at least not significantly).

5.2.4 Architectural template for various domains

The VWR2A template has been proposed for the biomedical domain. It has not been
evaluated outside this domain, but the efficiency shown on some generic kernels, such as
the FFT, median, or FIR filter ones, shows the potential of such design applied in other
areas. In particular, domains using digital signal processing algorithms and requiring low
power and high performance should benefit from the high-level features proposed in the
VWR2A template. In this context, using VWR2A as a baseline architecture is definitely a
good approach. For example, digital signal processing algorithms, such as the FFT and FIR
filter kernel evaluated in this thesis, are used in multimedia applications [112, 113] and
the wireless communication domain [114, 115]. On the contrary, domains with random
memory access over a large memory address space and highly irregular code will certainly
not benefit from VWR2A features. Additionally, applications that process data one by one
—as opposed to data processed in batch— will not benefit from the wide memory hierarchy
proposed in VWR2A.

It could also be transposable to domains further than low-power applications, such
as high-performance computing (HPC). While energy efficiency is mandatory for em-
bedded systems, it was not the case for HPC until recently. The growing environmental
crisis requires a more sustainable society, which forces HPC toward higher energy effi-
ciency. One example is the square kilometre array (SKA) project [116], which favored the
energy-to-completion rather than the time-to-completion to limit the system’s total energy
consumption. The interesting point about the SKA project is that FFTs, mainly 2D partial
FFTs, represent a considerable percentage of all the kernels executed. Considering the
higher performance requirement and all the types of kernels of the SKA project, the VWR2A
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template cannot be directly applied to this domain. However, its efficiency in computing
FFTs and programmability (i.e., capacity to potentially execute any kernel of a domain)
could inspire the design of an architecture for the astronomical domain.

5.2.5 Compiler support

The main drawback of exploration at the architecture level is the lack of compiler support.
All the evaluated kernels have been manually mapped, and this long process limits the
experiments to a few examples. Some compilers for CGRAs have been proposed, but
none is easily re-usable and extendable to an architecture like VWR2A. The mapping of
instructions on the RCs and the specialized slots is probably more an engineering effort
than an academic one. On the other hand, the data placement constraints caused by the
single-port nature of VWRs and their integration inside a compiler are more challenging
and require innovative solutions.
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A Sorting kernel mapping assembly
code analysis

This appendix details the execution of the sorting algorithm discussed in Chapter 4.4
at the instruction level for the ARM Cortex-M4 processor, the Ibex processor, and the
VWR2A. Figure A.1 shows the original C code of the sorting algorithm and the assembly
instructions for the three implementations. The ARM Cortex-M4 (Figure A.1b) and the
Ibex (Figure A.1c) assembly codes are very similar. The main difference is the single-cycle
compare and branch instruction feature of the Ibex platform (i.e. –bge a6,a2,.L4 in this
case–, while the ARM processor first compares the values, cmp r6,r5, and then branches
depending on the output, itt lt. This explains the smaller inner loop instruction size of
the Ibex compared to the ARM Cortex-M4 processor, with 9 and 10 instructions executed
when the if-condition is true, respectively. For the VWR2A, Figure A.1d shows the assembly
for all the different units (i.e., LCU, LSU, MXCU, and the RCs). The inner loop takes two
instructions per unit, ten instructions in total (without counting the nop instructions). As
all the units execute in parallel, the inner loop takes only two clock cycles, which is 5×
better than the processors.

Here, a detailed cycle-level walk-through of the VWR2A mapping is given to help the
reader understand the mapping better. The mapping over the RCs is adapted to the
architecture constraints and parallelization. The original data array is divided into two sub-
arrays that are sorted by RC0-RC3, and RC1-RC2. The following line numbers correspond
to Figure A.1d. Lines 00 to 02 are initialization instructions where, for example, the data
are loaded into VWR 0 (LSU - line 02: ld.vwr #0, [r7]). At line 03, RC0 and RC1 load the
current data (data[i] in Figure A.1a) from VWR 0 into r0 (RC0/1: movs r0, vwr #0). At the
same time, RC3 stores in r1 the value coming from RC2 (RC3 - movs r1, rct, where rc[t/b]
is for processing the top / bottom element). At line 04, RC0 and RC1 store a backup of
data[i] to r1, while RC2 and RC3 initialize r0 with the array index of the current data (i-th
element index). The MXCU increments by one the address of the VWRs (MXCU - line 04:
adds r0, r1, #1)). At line 05, the inner loop starts with RC0 and RC1 comparing the current
minimum value —data[i] stored in r0— with the next entry of the array —data[j] from VWR
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void sort(int16_t *data, int32_t size){

 int i, j, temp;

 for(i=0; i<size-1; i++) {

   for(j=i+1; j<size; j++) {

     if(data[j] < data[i]) {

       temp = data[i];

       data[i] = data[j];

       data[j] = temp;

     }

   }

 }

}

(a)

void sort(int16_t *data, int32_t size)

      push    {...}

      movs    r2, #0

      mov      r4, r0

      subs     r7, r1, #1

.L0:cmp     r7, r2

      bgt.n    .L1

      pop       {...}

.L1:adds    r2, #1

      mov       r3, r2

.L2:cmp     r3, r1

      bne.n    .L3

      adds      r4, #2

      b.n        .L0

.L3:ldrsh.w r6, [r0, r3, lsl #1]

      ldrsh.w  r5, [r4]

      cmp      r6, r5

      itt          lt

      strhlt     r6, [r4, #0]

      strhlt.w r5, [r0, r3, lsl #1]

      adds     r3, #1

      b.n       .L2

(b)

void sort(int16_t *data, int32_t size)

      li        a5,0

      addi    a7,a1,-1

.L0:blt     a5,a7,.L1

      ret

.L1:addi    a5,a5,1

      mv      a4,a0

      mv      a3,a5

.L2:bne     a3,a1,.L3

      addi    a0,a0,2

      j         .L0

.L3:lh      a6,2(a4)

      lh        a2,0(a0)

      bge     a6,a2,.L4

      sh       a6,0(a0)

      sh       a2,2(a4)

.L4:addi    a3,a3,1

      addi    a4,a4,2

      j         .L2

(c)

LCU:

00:      movs  r0, #16

01:      subs   r0, #1

02:      nop

03: L0:movs  r1, r0

04:      nop

05:.L1:nop

06:      bgepd r1, #1, .L1

07:      nop

08:      nop

09:      nop

10:      nop

11:      nop

12:      bgepd r0, #1, .L0

13:      ret

LSU:

00:      ld.srf #3, [r7]

01:      movs r7, SRF[2]

02:      ld.vwr #0, [r7]

03:.L0:nop

04:      nop

05:.L1:nop

06:      nop

07:      nop

08: nop

09:      nop

10:      nop

11:      nop

12:      nop

13:      str.vwr #0, [r7]

MXCU:

00:     movs r0, #0

01:     movs r1, #0

02:     movs r2, #0

03:.L0:nop

04:     adds r0, r1, #1

05:.L1:nop

06:     adds r0, r0, #1

07:     movs r0, r1

08:     adds r1, r1, #1

09:     nop

10:     movs r0, SRF[5]

11:      movs r0, SRF[5]

12:     movs r0, r1

13:     nop

RC0:

00:      nop

01:      nop

02:      nop

03:.L0:movs    r0, vwr #0

04:      movs    r1, vwr #0

05:.L1:cmp     vwr #0, r0

06:      movs.sf r0, vwr #0, r0

07:      nop

08:      movs    vwr #0, r0

09:      movs    SRF[5], rct

10:      movs    SRF[5], rcb

11:      movs    vwr #0, r1

12:      nop

13:      nop

RC1:

00:      nop

01:      nop

02:      nop

03:.L0:movs    r0, vwr #0

04:      movs    r1, vwr #0

05:.L1:cmp     vwr #0, r0

06:      movs.sf r0, vwr #0, r0

07:      nop

08:      movs    vwr #0, r0

09:      adds    rout, rcb

10:      nop

11:      nop

12:      movs    vwr #0, r1

13:      nop

RC2:

00:      nop

01:      nop

02:      movs    r1, #0

03:.L0:nop

04:      movs    r0, rcb

05:.L1:nop

06:      movs.sf r0, rcb, r0, rct

07:      nop

08:      adds    r0, #0

09:      nop

10:      nop

11:      nop

12:      adds    r1, r1, #1

13:      nop

RC3:

00:      nop

01:      nop

02:      nop

03:.L0:movs    r1, rct

04:      movs    r0, r1

05:.L1:adds    r1, r1, #1

06:      movs.sf r0, r1, r0, rcb

07:      nop

08:      adds    r0, #0

09:      nop

10:      nop

11:      nop

12:      nop

13:      nop

void sort(int16_t *data, int32_t size)

(d)

Figure A.1: Sorting algorithm assembly code. Red dashed ( ) boxes highlight outer loop
instructions, and green dashed-doted ( ) boxes inner loop instructions. (a) Original
C code. (b) ARM Cortex-M4 assembly code. (c) RISC-V Ibex assembly code. (d) VWR2A
assembly code for one column.
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0—, and RC3 increments the next entry address by one to keep track of the j index locally.
Based on the sign flag resulting from the previous comparison, RC0 and RC1 update their
local minimum value store in r0 (RC0 - line 06: movs.sf r0, vwr #0, r0, self ). RC2 and RC3
do the same, but keep track of the minimum value index by using the sign flag (movs.sf)
of rct (i.e., RC1) and rcb (i.e., RC0), respectively. At the same time, the MXCU updates the
address of the VWRs for the next iteration comparison, and the LCU decides whether or
not to branch for another iteration of the inner loop or exit it (LCU - line 06: bgepd r1, #1,
.L1).

The actual element swapping inside the array takes place only in the outer loop for
VWR2A, while this is done every time a new minimum value is found for the ARM Cortex-
M4 and the RISC-V Ibex (as shown in the C source code in Figure A.1a). The VWR2A
mapping only swaps the elements and their index in the RCs’ local register file (i.e., r0).
Once the inner loop is finished, RC0 and RC1 first store their local minimum value back
to VWR 0 (RC0/1 - line 08: movs vwr #0, r0). Then, their local backup, in r1, of the value
previously stored at this location is stored at the old index of the new minimum value.
As RC0 and RC1 process their half of the input array, two, often different, old indexes are
held by RC3 and RC2, respectively. These indexes are passed to RC0, which stores them,
one after the other, to the SRF (only RC0 can write into it). The MXCU updates the VWRs
address with these two values (MXCU - line 10-11), one after the other, and RC0 and RC1
store their local backup of the minimum value back to the VWR 0 (RC0/1 - line 11/12: vwr
#0, r1).

Finally, the MXCU increments the array address by one at line 08 and updates the
VWRs address with it at line 12 for the next iteration. This corresponds to incrementing
the i variable by one to access the next i-th element of the input data array (outer loop
in Figure A.1a). RC2 also keeps a local track of this address. It updates it on line 12 and
shares it with RC3 on line 03. RC0 and RC1 load the current data (data[i] in Figure A.1a)
VWR 0 into r0 (RC0/1 - line 03: movs r0, vwr #0) and another inner loop can start. Once
the outer loop reaches its limit, the LSU stores the sorted array back into the SPM at line
13. Dividing the original array into two sub-arrays allows the parallelization of the sorting
algorithm on the RCs. However, it requires an extra step to recover the complete sorted
array. In this specific case, the sorting algorithm is used to compute a median; therefore,
only half of the complete sorted array is necessary to obtain the median. This limits the
recovery step on the VWR2A. This step is not shown in Figure A.1d for conciseness.

The outer loop size for the VWR2A is larger compared to the ARM Cortex-M4 and
the Ibex processors because the RCs have to pass the index of the smallest values to the
MXCU through the single-port SRF. However, the impact of the outer loop on the overall
performance is limited. Moreover, the number of outer loop iterations is divided by two,
compared to the processors, thanks to the parallelization of the algorithm.
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