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Abstract 
Adipose tissue is a key metabolic and highly-dynamic organ whose dysregulation may cause clinical conditions of con-
cern such as obesity and lipodystrophy. Its function varies based on the anatomy, in fact, visceral adipose tissue expan-
sion carries a greater risk of life-threatening associated comorbidities than subcutaneous expansion. Among the respon-
sible for adipose tissue plasticity are the adipose-derived stem and progenitor cells (ASPCs) which can commit to form 
new mature adipocytes even in a post-developmental adult organism. The advent of scRNA-seq techniques allowed to 
delineate a clear and unbiased picture of the murine ASPC landscape across depots, unraveling subpopulations with 
distinct functional properties and even non- and anti-adipogenic features, however a similar depth of understanding is 
still lacking in humans.  

This work focuses on defining the human ASPC niche composition and equilibrium across four different depots (Subcu-
taneous (SC), Omental (OM), Perirenal (PR) and Mesocolic (MC)) and over more than 75 individuals of various BMIs. We 
took advantage of bulk and scRNA-seq techniques to explore hASPC heterogeneity then functionalize our findings in 
vitro over 30 donors.  

We found that two main populations, the highly-proliferative adipose stem cells and highly-adipogenic pre-adipocytes, 
are ubiquitously present in all analyzed depots but their relative proportions display a depot-specific and BMI-depend-
ent distribution. Despite their omnipresence, these subpopulations still exhibited depot-specific gene expression pat-
terns, likely reflecting distinct AT properties. Five minor subpopulations are also shared across depots and have specific 
gene expression patterns resembling populations previously described in mice. We further identified two OM-specific 
mesothelial cell populations, cobblestone in morphology, out of which one highly expresses and secretes IGFBP2 (Insu-
lin-like growth factor binding protein 2). This OM-specific IGFBP2+ population constitutes 2-5% of the non-immune, 
non-endothelial OM stromal vascular fraction depending on the donor’s BMI, appears to transition between mesothelial 
and mesenchymal cell states and inhibits the adipogenic capacity of hASPCs in a depot-specific manner through IGFBP2 
secretion and integrin receptor signaling.  

Altogether, our in-depth characterization of hASPC heterogeneity and function not only highlights the cellular unique-
ness of different adipose niches but also identifies a new mechanism underlying the limited adipogenic capacity of OM 
hASPCs by uncovering an OM-specific IGFBP2+ mesothelial-like cell population that negatively regulates hASPC adipo-
genesis through IGFBP2 signaling. Further dissecting the precise mechanism of negative regulation in adipogenesis may 
lead to the discovery of new druggable targets to combat excessive adipose tissue expansion.  

Keywords 

Obesity, adipogenesis, human, adipose stem and progenitor cells, mesothelial cells, mesothelial to mesenchymal tran-
sition, anti-adipogenic, omentum, IGFBP2, TM4SF1, MSLN, scRNA-seq 
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Résumé 
Le tissu adipeux est un organe clé et hautement dynamique du métabolique dont la dérégulation entraine des manifes-
tations cliniques préoccupantes telles que l'obésité et la lipodystrophie. Sa fonction varie en fonction de l'anatomie, en 
effet, l'expansion du tissu adipeux viscéral comporte un plus grand risque de comorbidités associées potentiellement 
mortelles que l'expansion du tissu adipeux sous-cutanée. Parmi les responsables de la plasticité du tissu adipeux figurent 
les cellules souches et progénitrices dérivées du tissu adipeux (adipose-derived stem and progenitor cells = ASPC) qui 
peuvent se différencier en nouveaux adipocytes matures même dans un organisme adulte qui n’est plus en phase de 
développement. L'avènement des techniques de séquençage du transcriptome de cellule unique (single-cell RNA se-
quencing = scRAN-seq) ont permis de définir une image claire et non-biaisée de la configuration des ASPC chez la souris 
dans différents dépôts. Ceci a permis d’identifier des sous-populations ayant des propriétés fonctionnelles distinctes 
allant jusqu’à des comportements non et anti-adipogéniques. Une telle compréhension de la constellation des ASPCs 
fait toujours défaut chez l'Homme.  

Ce travail se concentre sur la définition de la composition et de l'équilibre de la niche ASPC humaine dans quatre dépôts 
différents (sous-cutané (SC), omental (OM), périrénal (PR) et mésocolique (MC)) à partir de plus de 75 individus de divers 
IMC. Nous avons tiré parti d’analyses transcriptomiques pour explorer l'hétérogénéité des ASPC humaines, puis avons 
fonctionnalisé nos découvertes in vitro sur 30 donneurs.  

Nous avons établi que deux sous-populations principales, les cellules souches adipeuses hautement prolifératives et les 
pré-adipocytes hautement adipogéniques, sont omniprésentes à travers tous les dépôts analysés, mais leur abondance 
relative est spécifique à chaque dépôt et dépend de l'IMC du donneur. Malgré leur omniprésence, ces sous-populations 
présentaient toujours des profils d'expression génique spécifiques au dépôt, reflétant probablement des propriétés 
propres à chaque tissu adipeux. Cinq sous-populations mineures sont également réparties entre les dépôts et ont des 
modèles d'expression génique spécifiques ressemblant à des populations précédemment décrites chez la souris. Nous 
avons en outre identifié deux populations de cellules mésothéliales qui sont spécifiques à l'OM, rondes de morphologie, 
dont l’une exprime et sécrète fortement l'IGFBP2 (Insulin-like growth factor binding protein 2). Cette population, 
IGFBP2+ et spécifique à l'OM, constitue 2 à 5% de la fraction stromale et vasculaire non-immune et non-endothéliale et 
corrèle avec l'IMC du donneur. En outre, elle est susceptible de transitionner entre les cellules mésothéliales et mésen-
chymateuses et capable d’inhiber l’adipogénèse des hASPC d’une manière dépôt-spécifique grâce à la sécrétion 
d’IGFBP2 lui-même et sa signalisation via le récepteur d'intégrine.  

Dans l'ensemble, notre caractérisation approfondie de l'hétérogénéité et de la fonction des ASPC humaines met non 
seulement en évidence l'unicité cellulaire des différentes niches adipeuses, mais identifie également un nouveau mé-
canisme sous-jacent à la reluctance adipogénique de ASPC omentales en découvrant une population cellulaire de type 
mésothélial IGFBP2+ qui inhibe l'adipogénèse des ASPC humains via la signalisation liée à IGFBP2 lui-même. Disséquer 
davantage le mécanisme de régulation négative du tissu adipeux peut conduire à la découverte de nouvelles cibles 
médicamenteuses pour lutter contre l’obésité. 

Mots-clés 

Obésité, adipogénèse, humain, cellules souches et progénitrices adipeuses, cellules mésothéliales, transition mésothé-
liale à mésenchymateuse, anti-adipogénique, omentum, IGFBP2, TM4SF1, MSLN, scRNA-seq 
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MMT Mesothalial to mesenchymal transition 
MRI Magnetic resonnance imaging 
MSLN Mesothelin 
NA Numerical aperture 
NAFLD non-alchololic fatty liver disease 
NC1 Negative control 1 
NGS Next generation sequencing 
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NTP Nucleotides triphosphate 
OM Omenum 
OSAS Obstructive sleep apnea syndrome 
P Passage 
PB Pacific blue 
PBS Phosphate buffered saline 
PC Principal component 
PCA Principal component analysis 
PCOS Polycistic ovary syndrome 
PCR Polymerase chain reaction 
PDGF Platlet-derived growth factor 
PDGFR Platlet-derived growth factor receptor 
PFA Paraformaldehyde 
PR Perirenal 
RELM Regional Earthquake Likelihood Models 
RNA Ribonucleic acid 
RT Real-time 
RYGBP Roux-en-y gastric bypass 
SARS Severe acute respiratory syndrome 
SC Subcutaneous 
SCA1 Stem cells antigen-1 
SFM Serum free medium 
SFRP Soluble frizzled-related proteins 
SG Sleeve gastrectomy 
SNP Single nucleotide polymorphism 
SV Science de la vie 
SVF Stromal vascular fraction 
t-SNE t-distributed stochastic neighbor embedding 
T2DM Type 2 diabetes mellitus 
T2DM PA Type 2 diabete mellitus preadipocytes  
TGF-β Transforming growth factor beta 
TM4SF1 Transmembrane 4 L Six Family 1 
UCP1 Uncoupling protein 1 
UMAP Uniform Manifold Approximation and Projection 
UMI Unique molecular identifier 
UNIL Université de Lausanne 
VD Vaud 
VSMP Vascular smooth muscle progenitor cells 
WAT White adipose tissue 
WC Waist circumference 
WHR Waist to hip ratio 
WHtR Waist-to-height ratio 
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1.1 The relevance of studying adipose tissue plasticity 

Over thousands of years, humans have evolved leading a lifestyle where, getting food, mainly by hunting and 

gathering, was nearly as costly in energy as the energy that the food brought back. Throughout ages and 

civilizations, being overweight has been considered a privileged condition reserved only to the elite who 

could “afford it”.  The recent revolution in human lifestyle as well as the increasing availability and degrading 

quality of food, have contributed to the dramatic change in the world’s weight distribution landscape. In 

2016, more than 25% of the world’s population is overweight or obese1, regardless of gender, age, or social 

background2.  What is alarming about excessive fat accumulation in the human body though is the conse-

quences that it has for the metabolic health of patients.  

Insulin resistance followed by type 2 diabetes, dyslipidemia, and high blood pressure together with obesity 

form the clinical features of the metabolic syndrome which facilitates the insurgence of cardiovascular dis-

eases such as heart or brain stroke, as well as cancer3. Alone, cardiovascular diseases and cancer are the 

cause of a quarter of the world’s deaths4, and with it, obesity is thus one of the most widespread and pre-

ventable killers to be on earth. In addition, follow-up of these chronic and complex conditions such as meta-

bolic syndrome, cardiovascular disease, and cancer drains numerous healthcare resources with a consequent 

negative impact on the financing of healthcare systems5. Despite long-term efforts from the scientific com-

munity to understand the mechanisms underlying fat accumulation and to develop effective therapies, no 

treatment is currently available6, and exercise and lifestyle change are not always applicable, especially in 

severely affected patients.  

Efficient personalized medicine in the field of fat biology would permit a decrease in the excessive body fat 

burden both for patients and healthcare systems. If as shortly presented above, excess in adipose tissue mass 

can be highly detrimental to the human organism, it is not nevertheless a disposable organ as illustrated by 

the lipotoxic consequences of lipodystrophic conditions7. Overall, it is now well appreciated in the scientific 

community that adipose tissue constitutes a highly dynamic, endocrine-type organ playing an indispensable 

role in several biological processes including development, immunity, and energy homeostasis.   

1.2 Clinical pathologies of the human adipose tissue 

1.2.1 The overweight and obesity syndromes 

Excess in body fat mass leads first to overweight followed by obesity. In an average men population, fat 

weight accounts for 15%-20% of the total weight, while for 25-30% of the woman's total weight8,9. To 
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diagnose overweight and obesity conditions, physicians require reliable and convenient measurements to 

use on a daily basis.   

In clinical practice, the easiest metric to use is the Body Mass Index (BMI [kg/cm2]), defined as the weight of 

the individual divided by the square of their height. Empirically determined cutoffs define underweight, 

normoweight, overweight and obesity following the values shown in Table 1.1. BMI measurement however 

misses an important factor in the body weight distribution and can easily be biased by the ratio of “lean 

mass” = muscles versus “fat mass” = adipose tissue10. Moreover, it will not account for the anatomic distri-

bution of the adipose mass, and for equal BMIs, a person can have its fat accumulated in the subcutaneous 

compartment versus the visceral one with the first case having a lower risk for developing obesity-associated 

comorbidities10. To partially overcome BMI limitations in discriminating between metabolically unhealthy 

visceral obesity versus subcutaneous one11  the waist circumference (WC) and the waist-to-hip ratio (WHR) 

are often used as complementary quick and affordable diagnostic tools, with the WC outperforming the BMI 

ratio when it comes to predicting intraperitoneal adipose tissue mass, and outperforming WHR when pre-

dicting posterior subcutaneous adipose tissue mass12. Combining BMI and WC measures allows for identify-

ing normal risk, high risk and very high risk for developing associated lethal comorbidities as illustrated in 

Table 1.2. Finally, a recent study underly the importance of keeping waist circumference lower than half your 

height (Waist-to-height ratio (WHtR) ≤ 0.5) to prevent metabolic risk, out-performing the BMI and WC clas-

sification in terms of early detection of increased metabolic risk13.  

With technological advances, and limited to research purposes for practical reasons, several more sophisti-

cated methods have been used to precisely determine fat mass distribution in health and disease and to 

scientifically predict morbidity and mortality linked to overweight and obesity. Among those, bioelectric im-

pedance, hydrodensitometry and air displacement plethysmography are non-invasive investigative tech-

niques that rely on differences in conduciveness of hydrophobic adipose tissue and hydrophilic soft tissues14. 

The affordability and easy-to-use features of these devices justify their use in big population-based studies. 

However, the measure of adipose tissue being indirect and based on pre-set equations often calibrated on 

image-based quantification performed on white men reference population makes them inaccurate when 

transferred to different populations such as elders, children or women15. Dual-energy X-ray absorptiometry 

(DEXA)-scan relies on low-dose radiation exposure and attenuation of the electron beam based on the tissue 

it encounters in the body16. Although highly reproducible and relatively easy to perform, the output of the 

DEXA-scan measure is in two dimensions and thus cannot distinguish visceral fat from subcutaneous fat17,18. 

Once again, algorithms based on image-based adipose tissue measurements were developed to infer what 

percentage of the measured adipose mass is visceral19 and implemented in recent DEXA analysis software, 

however, the same limitation in transferability across populations described above apply in this case. Finally, 

image-based methods, such as computerized tomography (CT) and magnetic resonance imaging (MRI), 
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represent the highly technical albeit reference measuring tools to localize adipose tissue and accurately as-

sociate its anatomic distribution to morbidity20. 

Table 1.1 – Clinical definition of weight status based on BMI21 

 

Table 1.2 – Risk identification of developing health comorbidities based on combined BMI and waist circumference13 

 

Waist Circumference: Low (men <94 cm, women <80 cm); High (men 94–102 cm, women 80–88 cm); Very high (men >102 cm, women >88 cm). 

Etiology 

The number one cause of the onset of overweight and obesity is behavioral. On the one hand, are poor 

dietary habits such as eating large amounts of processed food and drinking sugary drinks for a daily calorie 

intake higher than 2000 kcal, on the other hand, reduced physical activity results in reduced energy expendi-

ture greatly contributing to weight gain over time.  

Some rare forms of obesity accounting for less than 0.001% of the overall prevalence are driven by mono-

genic mutations (mainly in the leptin and melanocortin endocrine axis22) and are at times associated with 

developmental delay Table 1.3, while several clinical syndromes with high familiarity prevalence including 

Polycystic Ovary Syndrome (PCOS), hypothyroidism and hypogonadism are characterized by early onset and 

resistant obesity23. 

Importantly, epigenetics seem to play a key role in obesity onset, and obese parents tend to give birth to 

obesity-predisposed offsprings24. Finally, among iatrogenic causes of weight gain are medications including 

atypical antipsychotics, anticonvulsants, mood stabilizers, hypoglycemic drugs, glucocorticoids, and antide-

pressants25. 
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Table 1.3 – Genetic obesity in human [adapted from Sadaf Farooqi and Stephen O’Rahilly26] 

 

Clinics 

In the context of excessive body weight, what is the most concerning are the linked comorbidities. Metabol-

ically, insulin resistance followed by type 2 diabetes typically onset early in the context of obesity, together 

with dyslipidemia and high blood pressure they constitute the dreadful triad of the metabolic syndrome27. 

The obstructive sleep apnea syndrome (OSAS) is typically linked to obesity and metabolic syndrome and con-

tributes to an overall increase in the risk for cardiovascular diseases including stroke and heart failure28. In 

the longer term, the metabolic imbalance also leads to non-alcoholic fatty liver disease and chronic kidney 

disease29. 

The osteoarticular system is also highly challenged by excessive weight. This results in a higher incidence of 

arthrosis, arthritis and sciatica events among obese patients30,31. Osteo-articular pathogenic conditions also 

contribute to a vicious circle where pain impedes exercise which in turn worsens the cause of pain. 

The onset of several cancers is facilitated by underlying obesity. Among the scientifically demonstrated ones 

are the esophagus adenocarcinoma, colorectal, pancreas, liver, gallbladder, kidney, thyroid, uterus, breast, 

ovary and blood (myeloma) cancers32,33. In the attempt to explain such a striking correlation between obesity 

and cancers, several adipokines have been put forward as critical drivers34. 

Finally, not only the body is affected by obesity, but also the mind. Depression and anxiety are typically more 

prevalent in the obese population than the normoweight population35. If the main explanation stems from 

the societal look that patients have to carry throughout their life, a physiologically detrimental impact of the 

high-sugar and high-lipids blood content on the brain is not to be excluded36,37. 

Treatments 

The first line of management of overweight and obesity syndromes is nutritional and physical education ac-

companied by motivational support in the context of weight-management programs. With such a 

Obesity Associated With Developmental Delay
Prader-Willi Syndrome

Fagile X Syndrome

Bardet-Biedl Syndrome

Borjeson-Forssman-Lehmann Syndrome

Wilson-Turner Syndrome

Albright's Hereditary Osteodystrophy (AHO)

BDNF and TRKB Deficiency

Obesity Without Developmental Delay
Alstrom Syndrome

Ulnar-Mammary Syndrome

Simpson-Golbi-Behmel, Type 2

Congenital Leptin Deficiency

Leptin Receptor Deficiency

POMC Deficiency

Prohormone Convertase 1 Deficiency

Malanocortin 4 Receptor Deficiency
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conservative approach physicians can hope to achieve 5%-10% body weight loss which is often sufficient to 

improve the underlying metabolic dysbalance38. The most challenging aspect of weight loss however is long-

term maintenance. Five years after the weight-loss intervention, only 3% of the weight loss is usually re-

tained39. 

When weight-management programs fail to significantly reduce the body weight of the patient, and the BMI 

remains above 30 kg/m2, Swiss physicians can count on three anti-obesity medications to achieve a supple-

mentary weight loss of 3 to 12% and improve the overall metabolic health40,41 (Table 1.4). Pancreatic lipase 

inhibitors (orlistat) induce malabsorption of free fatty acids and result in a median weight loss of 2.12kg42 

which is associated with a reduction of both type 2 diabetes mellitus and cardiovascular risk43. The unpleasant 

side effect of malabsorption often limits the therapy to a couple of years. The agonist of the Glucagon-like 

peptide-1 (GLP-1) receptor (Liraglutide, Semaglutide) acts as an appetite suppressor and slows the gastroin-

testinal transit down. The resulting weight loss is an average of 3.2kg44 and comes with positive effects on 

glycemia, blood pressure and cholesterol. Finally, a controverted combined medication (naltrexone/bu-

propion) analog of the amphetamine was approved by the European Medicine Agency in 2015 and at cost of 

several side effects such as headache, nausea and constipation has the potential of reducing the patients' 

weight up to 5%45. The American Food and Drug Administration approved in addition to the above-described 

drugs, several molecules acting on the brain (serotonin and opioid receptors), or physically taking space in 

the stomach to reduce caloric intake46 (Table 1.4). 

The last bullet clinicians have to improve the metabolic health of morbidly obese patients is bariatric surgery, 

also known as metabolic surgery. The most common methods of bariatric surgery are adjustable gastric band-

ing (AGB), sleeve gastrectomy (SG) and the Roux-en-y gastric bypass (RYGBP). The rationale stands on the 

one hand to restrict the stomach volume (AGB, SG and RYGBP), preventing excessive food intake, and/or on 

the other hand inducing malabsorption (RYGBP). If LAGB has been abandoned based on poor weight-loss 

outcomes in the long term47, LSG and LRYGBP, being both laparoscopic surgeries, are safe and associated 

with low risks of perioperative complications and minimal mortality (0.1 to 0.2%)48. Long-term (> 10 years) 

follow-up reveals that on average 20-30% of the initial weight is lost without relaps49. The weight loss is 

accompanied by significant improvement, at times complete remission, of several obesity-related comorbid-

ities, coupled with an increase in patients’ survival up to 30-40%50,51. 
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Table 1.4 – Anti-Obesity Medications [adapted from Tchang et al.46] 

 

1.2.2 Lipodystrophy 

Opposite to overweight and obesity are lipodystrophic syndromes, characterized by the inability to generate 

and maintain functional adipose tissue. Lipodystrophy mainly concerns the subcutaneous adipose tissue and 

localizes differentially based on the type of syndrome7 (Fig. 1.1). The condition can be congenital, generalized 

(autosomal recessive mutation of AGPAT2, BSCL2 and CAV1 genes) or familial partial (autosomal dominant 

mutation of LMNA, CIDEC, LIPE or recessive missense mutation of adipogenesis master regulators PPARG and 

PLIN-1 as well as zinc finger protein ZMPSTE24), or acquired, once again generalized, partial or even localized 

in the case of subcutaneous drug injections (recombinant insulin treatment in the context of diabetes for 

example)52 (Fig 1.1). Lipodystrophy can also occur under long-term anti-retroviral therapy in the context of 

HIV infection53. The prevalence of lipodystrophic syndromes is difficult to estimate but is in the range of 

extremely rare disorders (1-5 cases per million people)54. The progressive loss of mature adipocytes leads to 

a number of metabolic and endocrinologic impairments including leptin and adiponectin defects as well as 

lipotoxicity and insulin resistance. 

Name (Trade Names)

Year 

Approved Mechanism of Action / Clinical Effect

Average 

placebo-

subtracted 

weight loss (%) 

at 14 months

Achieved ≥5% 

Weight Loss, 

Intervention vs. 

placebo (%)

FDA 

approval

EMA 

approval

Approved for short-term use (3 months)

Phentermine (Adipex, Lomaira) 1959
Sympathomimetic / Suppresses 
appetite 4.4 at 28 weeks 49 vs.16 at 28 wks Yes No

Diethylpropion 1979
Sympathomimetic / Suppresses 
appetite 6.6 at 6 months 67.6 vs. 25.0 Yes No

Approved for long-term use

Orlistat (Alli, Xenical) 1999
Intestinal lipase inhibitor / Reduces fat 
absorption by up to 30% 3.8 50.5 vs. 30.7 Yes Yes

Phentermine-topiramate (Qsymia) 2012

Combination sympathomimetic and 
carbonic anhydrase inhibitor / 
Decreases appetite and binge eating 
behaviors 8.6 70 vs. 21 Yes No

Bupropion-naltrexone (Contrave) 2014

Combination of a dopamine and 
norepinephrine re-uptake inhibitor and 
mu-opioid receptor antagonist / 
Decreases appetite and cravings 4.8 48 vs. 16 Yes Yes

Liraglutide 3.0mg (Saxenda) 2014

GLP-1 receptor agonist / Decreases 
appetite, increases fullness, increases 
satiety 5.4 63.2 vs. 27.1 Yes Yes

Gelesis100 (Plenity) 2019

Superabsorbent hydrogel particles of a 
cellulose-citric acid matrix / Increases 
fullness. Considered a medical device 
but functions as a medication. 2.0 at 6 months 58.6 vs. 42.2 Yes No

Setmelanotide (Imciveree) 2020
Melanocortin-4-receptor agonist / 
Decreases appetite N.A. N.A. Yes No

Semaglutide 2.4 mg (Wegovy) 2021

GLP-1 receptor agonist / Decreases 
appetite, increases fullness, increases 
satiety 12.4 86.4 vs. 31.5 Yes Yes
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Clinics 

The inability to store free fatty acids in mature adipocytes results in diffuse lipotoxicity. Non-specialized or-

gans such as the liver, the pancreas and the heart will buffer the excessive circulating triglycerides at cost of 

having their function compromised55. Physically, patients have cadaveric facies, prominent muscles and veins 

as well as lytic skeletal changes. The associated hypo-leptinemia induces persistent hunger and voracious 

appetite. Metabolically, patients suffer from insulin-resistant diabetes mellitus coupled with hyperinsuline-

mia together with hypertriglyceridemia and low serum HDL levels. With disease progression, NAFLD followed 

by non-alcoholic steatohepatitis, pancreatitis, hypertrophic cardiomyopathy, nephropathy and organomeg-

aly take over and undermine patients’ life expectancy. For the congenital forms of lipodystrophy, the average 

lifespan is 65 years old56, namely 30 years less than a healthy individual. 

Treatments 

The management of lipodystrophic syndrome is directed to limit the metabolic burden of lipotoxicity. First 

are dietary and exercise measures to keep a balanced diet and avoid excessive food intake. Leptin analog 

therapy allows for decreasing the appetite, the serum levels of glycosylated HbA1c and triglycerides within 

4 months57,58 and is indicated for generalized lipodystrophic syndromes, while it is used off-label for the 

treatment of partial syndromes as it proved to be less effective in this context55. 
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Figure 1.1 – Lipodystrophy syndromes overview [adapted from https:/plasticsurgerykey.com/lipodystrophies-2/] 

1.3 The biology of the adipose tissue 

If we want to combat obesity, there is an urgent need to better understand fundamental biologic processes 

involving adipose tissue (AT) expansion. In this work, I decided to focus on characterizing cells at the very 

root of the AT expansion, i.e. the stem cells that reside within the AT and are able to regenerate it. In order 

to be as close as possible to human biology, I decided to work with human samples and explored similarities 

and differences in the composition of the stem cells across four different anatomic depots. To date, the com-

position and behavior of the adipose-derived stem and progenitor cells (ASPCs) have mainly been studied in 

the mouse model while studies including human material have been limited to computational analysis and 

little to no functionalization of the findings was so far performed59–61. In this section, I will present the state 
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of the art of ASPCs composition and function with a main focus on the murine model starting with a short 

overview of AT structure, function and anatomy. 

1.3.1 A common structure different depots and functions 

AT is the main center for long-term energy storage and lipids handling. Its conservation from simple inverte-

brates such as D. melanogaster all the way up to humans underlies its fundamental role for survival. It is 

defined as a connective tissue that arises from the mesenchymal layer of the embryo62 but, contrary to other 

connective tissues such as bone or cartilage it accounts for higher cellularity and a lower content of the ex-

tracellular matrix. Nested in a collagen net, adipocytes are the mature cells residing in the adipose tissue. 

Their size can vary from as little as 20 um to 300 um in diameter63, and although they account for less than 

30% of the absolute cell number of the adipose tissue64,65 they make up the biggest volume of the tissue and 

are therefore considered as the principal cell type in the tissue. Their main role is to store free fatty acids in 

the form of triglycerides, by doing so, they will increase their intracellular volume up to a point that becomes 

detrimental to the metabolic health of the entire individual. In fact, in the long term, this process, called 

hypertrophy, can lead to the exhaustion of the adipocyte itself which will start to secrete pro-inflammatory 

signals, eventually contributing to insulin resistance and metabolic syndrome. 

Surrounding and supporting adipocytes stands the stromal vascular fraction (SVF), which not only hosts res-

ident and transient immune cells and endothelial cells along blood vessels but is also the nest for a number 

of other poorly defined cell types, the so-called adipose-derived stem and progenitor cells (ASPCs). ASPCs are 

multipotent stem cells that are able to form a new functional adipose tissue when transplanted in lipo-

dystrophic mice and are able to accumulate intracellular lipid-filled vesicles when cultured in vitro66–68. Upon 

adipose tissue remodeling, ASPCs can commit and differentiate into mature adipocytes even in the adult 

organism. This process is called hyperplasia, and opposite to hypertrophy is associated with good metabolic 

health as it will allow to store free fatty acids in newly formed small and un-exhausted adipocytes. Hyper-

plasia likewise hypertrophy will eventually lead to the increase of the volume of the depot upon chronic 

excessive calory intake. 

If the structure is common to all ATs, when it comes to function, it is important to distinguish between depots 

that store lipids and the ones that burn the lipids to generate heat. As such, three functional types of adipose 

tissue exist white, brown or beige ATs69,70. Adipocytes of the white adipose tissue typically harbor a unique 

large lipid vesicle (unilocular) and are specialized in lipids storage. When it comes to brown AT, a vestigial 

adipose tissue in humans, but an important organ in mice, its main mission is to maintain body temperature 

homeostasis. It is in fact able to generate heat by highly expressing the uncoupling protein 1 (UCP-1). UCP-1 

allows for the dissipation of the energy needed to produce ATP from the electron transport chain in the 

mitochondria and generate heat. Adipocytes of the brown adipose tissue are typically smaller in size than 
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the ones from the white adipose tissue and harbor more than one (multilocular) small lipid droplet in their 

cytoplasm. Finally, beige AT is an in-between and adaptative tissue type that upon external stimulation, de-

velops within white adipose tissue and is able to generate heat. External stimulation is typically cold or ad-

renergic stimuli that result in the upregulation of the UCP-1 protein expression. Adipocytes of the beige adi-

pose tissue are unilocular and express UCP-1. Whether beige adipocytes arise from an interconversion of 

white adipocytes or from a differential commitment of ASPCs is still a debated concept, but finding means to 

reprogram white adipose tissue to become thermogenic is a valuable research avenue in the context of im-

proving the metabolic status of obese individuals. 

1.3.2 Anatomy dictates the function of adipose tissue 

A common way to define AT is based on its anatomy, which has been shown to correlate with metabolic 

health when overgrown. As such, “metabolically healthy” subcutaneous AT, using hyperplasia as a preferen-

tial mean of growth, is conventionally opposed to the “unhealthy” visceral one which typically expands 

through hypertrophy. However, the terms “visceral” and “subcutaneous” underlie several finer anatomic 

locations and, with it, potentially finer AT functions. For instance, visceral AT is the perirenal AT, which locates 

around the kidney and is attracting increasing attention being a site of dormant brown adipogenesis71,72. It’s 

possible that crosstalk with the kidney itself to undermine kidney function is also an interesting detrimental 

mechanism linked to perirenal adipose tissue expansion71. The mediastinal AT situated around the esophagus 

and the trachea is also considered as a visceral adipose tissue and a potential site for human brown-beige 

adipogenesis73,74, yet it is but at the same time like the perirenal one is not confined within a mesothelial 

layer contrary to for example the pericardial, mesenteric or omental ATs, with the latter being considered as 

the “golden standard” visceral adipose depot11. Pericardial adipose tissue and its anatomically close friend, 

epicardial adipose tissue are considered pro-inflammatory, proatherogenic, and cardiotoxic in the context of 

cardiometabolic disease, but also as an important source of energy for the myocardium when energy demand 

is increased75. The mesenteric adipose tissue, a fold connecting the intestine to the abdominal wall, contrib-

utes to buffering the intestinal intake in many ways, both as an immune barrier and a lipidic reservoir to 

prevent lipid hepatotoxicity76. Needless to say, that omental adipose tissue has consistently been linked to 

type 2 diabetes onset, cardiometabolic complications, and an overall proinflammatory status77. The same 

heterogeneity holds between subcutaneous ATs. For example, the abdominal SC AT is slightly different from 

the gluteal one78. So far, most of the functional analyses are restricted to subcutaneous and omentum, often 

taking advantage of the mouse model for practical reasons, however, evidence points to a regional speciali-

zation of every single adipose depot in the adult human body79, there is, therefore, need to take these re-

gional differences into account and better functionally characterize all existing adipose tissues. 
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1.4 The ASPC heterogeneity 

In mouse, SCA1 surface protein, encoded by the Ly6a gene, is well established as the main marker to enrich 

ASPCs for a precursor cell population that has enhanced in vitro adipogenic capacity80. However, not all SCA1+ 

cells give rise to adipocytes in vitro, implying that an even finer granularity of cell states or even cell types 

exist. Therefore, much effort has been devoted to uncover additional surface markers. For example, mesen-

chymal markers, such as CD34, CD29, CD24, and platelet-derived growth factor receptor (PDGFR)α/β, were 

also shown to enrich for adipogenic precursors, or a fraction of them81–84. Our integration confirmed that 

Cd34, Cd29, and Pdgfra are expressed by virtually all ASPCs, while Cd24 and Pdgfrb exhibit a nonuniform 

expression, as discussed later (Fig. 1.2D-E). However, while SCA1 is widely used for enriching ASPCs in mouse, 

there is no SCA1 ortholog in human. Consequently, the in toto Lin– fraction of adipose SVF tends to be con-

sidered as the best representation of human ASPCs (hASPCs). Markers, such as CD29, CD34, CD13, CD44, 

CD73, CD90, CD142, CD9, CD10, and CD20085,86, have been used to further enrich for adipogenic cells in hu-

man, but there is no consensus yet on the exact molecular signature of hASPCs. Until recently, the identifi-

cation of these markers was mostly based on flow cytometry and immunohistochemistry using hematopoi-

etic, endothelial, and neural tissues as reference, which tends to introduce marker selection bias. However, 

over the past few years, the single-cell technology revolution has allowed researchers to delineate ASPCs at 

an unprecedented resolution (Fig. 1.2 and 1.3). 

1.4.1 Three Main Subpopulations in White Adipose Tissue 

Numerous studies59,60,87–91 recently resolved ASPC heterogeneity in mouse subcutaneous (inguinal) white ad-

ipose tissue (WAT) and visceral (specifically epigonadal WAT) WAT (iWAT and eWAT, respectively). Despite 

differences in the utilized methodologies and/or mouse models (Table 1.5), all studies in mouse stratified 

ASPCs into two to three main subpopulations. Qualitative cross-comparison of the population-specific mark-

ers supports the notion that these populations are shared between subcutaneous and visceral depots, alt-

hough intrinsic differences remain that are far from being fully understood. To empirically validate this ASPC 

classification, we integrated public data sets (highlighted in gray in Table 1.5) using the standard integration 

workflow of Seurat92,93. This large, integrated meta-data set provides a powerful means to explore the ob-

served ASPC landscape across studies in an unbiased fashion. This is because it enables verification of the 

expression distribution and, thus, the specificity of previously established ASPC markers. In addition, it allows 

us to computationally explore parallels between the recently published scRNA-seq studies and to support 

the proposed population nomenclature. Specifically, our analyses revealed that the three populations (Adi-

pose Stem Cells (ASC), Pre-Adipocytes (PreAs), and Adipogenesis regulators (Aregs)) are robust since they: 1) 

are characterized by specific gene expression signatures; 2) were first independently detected in each of the 
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utilized data sets; 3) can be projected onto one another upon data integration (Fig. 1.2 A, and Fig. 1.3A,G); 

and 4) are consistently clustered in various subclusters upon analysis of the integrated data set (Fig. 1.2B, 

and Fig. 1.3B,H). Finally, we were able to confirm that the three populations align with populations published 

across different studies (Fig. 1.2C, and Fig. 1.3C,D,I,J). Altogether, the integration shows that ASCs are a dis-

tinct population compared with PreAs and Aregs, which are closer in terms of gene expression but still feature 

distinct transcriptomic profiles. Specific to visceral fat are the mesothelial cells which also populate the Lin– 

fraction of visceral SVF together with ASPCs80,88,89,94,95. 

For human, only a couple of scRNA-seq studies have been published 61,96,97, and these do not neces-

sarily reach the same conclusions. This renders it difficult to establish a clear picture of hASPC heterogeneity. 

However, a closer look at the reported findings does suggest that, based on shared gene signatures, at least 

two ASPC subpopulations are conserved between mouse and human, namely the ASCs and PreAs. 
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Table 1.5 – Methodological differences across scRNA-seq studies 

 
Abbreviations: APC, adipose progenitor cells; Aregs, adipogenesis regulators; ASC, adipose stem cells; CP, committed preadipocytes; 
Fibro, fibroblasts; FIP, fibro inflammatory progenitors; HSC, hematopoietic stem cells; IP, interstitial progenitors; Meso, mesothelial 
cells; PreA, preadipocytes; T2DM PA, type 2 diabetes-dependent preadipocytes; Gray boxes indicate data sets used in the integration 
analysis (see Fig. 1.2 and Fig. 1.3) ;  Schwalie et al.87, Burl et al.88, Hepler et al.98, Merrick et al.60, Cho et al.90, Spallanzani et al.99, Vijay 
et al.94. 

 
 

Study Model Technique Anatomical depot SVF enriching strategy Pop. names Populations markers Proposed nomenclature 

Schwalie et 
al. 

Adult 
Mouse 

Fluidigm  
C1 Inguinal* CD45-/CD31-/Ter119-/ 

CD29+/CD34+/Sca1+ 

P1  CD55+/IL13RA1+ ASCs 

P2 VAP1+/ADAM12+ PreAs 

P3 CD142+/ABCG1+ Aregs 

10x 
Genomics Inguinal* CD45-/CD31-/Sca1+ 

G1 Equivalent to P1 ASCs 

G2 Equivalent to P2 PreAs 

G3 Equivalent to P3 Aregs 

G4 Equivalent to P1 ASCs 

 
Burl et al. 

 
Adult 

Mouse 

 
10x 

Genomics 

 
Inguinal* 

Whole SVF CTL ASC1 Unsorted PreAs Aregs 
 

b3AR agonist stim ASC2 Unsorted ASCs 

Epigonadalº 

 
Whole SVF CTL 

  
 

b3AR agonist stim  
  

ASC1 Unsorted PreAs Aregs 

ASC2 Unsorted ASCs 

Fibro Unsorted Mesothelial 

Hepler et al. Adult 
Mouse 

10x 
Genomics Epigonadalº PDGFRβ+ 

APC LY6C-/CD9- PreAs 

FIP LY6C+ ASCs 

Meso LY6C-/CD9+ Mesothelial 

Merrick et 
al. 

Adult 
Mouse 

 
Pups 

Mouse 

10x 
Genomics Inguinal* CD45- 

IP DPP4+/CD142- ASCs 

CP ICAM1+/CD142- PreAs 

CD142+ CD142+ Aregs 

Human 
obese 

10x  
Genomics 

 
Abdominal  
and flanc* 

CD45- 

IP DPP4+/CD142- ASCs 

CP ICAM1+/CD142-  

CD142+ CD142+  

 
Cho et al. 

Adult 
Mouse 

control & 
under 
diet-

induced 
obesity 

 
10x 

Genomics 
 

Epigonadalº 
CD45-/CD31-/ 
Ter119-/Sca1+ 

Cluster 1 CD55highCD81low ASCs 

Cluster 5 CD55highCD81high ASCs 

Cluster 2 CD55lowCD9low-midCD81low PreAs Aregs 

Cluster 4 CD55lowCD9low-midCD81high PreAs Aregs 

Cluster 6 CD55lowCD9high PreAs Aregs 

Spallanzani 
et al. 

Adult 
Mouse 

10x 
Genomics Epigonadalº 

CD45-/CD31-/ 
PDGFRα+/Sca1+/ 

PDPN+ 

VmSC1 PPARG-/THY1- Mesothelial cells 

VmSC2 THY1+/CD55+ Adipose stem cells 

VmSC3 THY1+/CD55- Aregs 

VmSC4 PPARG+/THY1- PreAs 

VmSC5 PPARG+/THY1+ PreAs  

Vijay et al. Human  
obese 

10x 
 Genomics 

Abdominal* CD34+ 

T2D PA Unsorted  

Fibro Unsorted  

HSC Unsorted  

Omentalº CD34+ 

T2D PA Unsorted  

Fibro Unsorted  

HSC Unsorted  

Meso Unsorted Mesothelial cells 
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Figure 1.2 – Integrated scRNA-seq data of SVF isolated from eWAT and iWAT. 

Publicly available scRNA-seq data of SVF that was isolated from eWAT (6645 cells) 100,101 and iWAT (17608 cells) 96,100,102 were inte-
grated using the standard workflow of Seurat 103,104. 

A. t-distributed stochastic neighbor embedding (tSNE) 2D cell map displaying the clustering of each dataset, analyzed individ-
ually.  

B. tSNE 2D cell map colored by cell cluster identification.  
C. Boxplot showing the distribution of scores of populations defined in different studies across cells. The score is calculated 

as the sum of scaled integrated expression of the top 100 DE genes of ASPC populations (Schwalie et al. 102, Burl et al. 100 
(aggregate Mouse eWAT and iWAT), Hepler et al. 101) or of a shorter list of specific markers (Merrick et al. 96) since the DE 
genes were not publicly available (Group1: Pi16, Dpp4, Dact2, Gpr1, Ptgs2, Bmp7, Wnt2, Stmn4, Wnt10b; Group2: Fabp4, 
Pparg, Icam1, Cd36, Dlk1, Gsc, Cyp1b1; Group3: F3, Fmo2, Clec11a)  

D. Boxplot showing the distribution of log normalized expression of selected markers (Ly6a: Stem cell antigen 1 SCA1)  
E. tSNE colored by the log normalized expression of selected markers. (Aoc3: VAP1; F3: CD142). The colors reflect population 

specificity (Green: ASCs, Red: PreAs, Blue: Aregs, Purple: Mesothelial cells).  
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1.5 The Adipose Stem Cell Population 

1.5.1 ASCs in inguinal WAT 

A first population of ASPCs that was uncovered using scRNA-seq (P1 in 87, Group1 in 60, and ASC2 in 88) was 

most stem-like in nature. This is why we propose to refer to this population as ASCs60,87,88 (Fig. 1.2A-C). Not 

only do ASCs express stem-related genes, such as Ly6a105, Dpp4106–108, Cd55109,110, and Wnt signaling pathway 

inhibitor Sfrp4111, but they also lack others (e.g., F3, encoding for CD14260,87,112,113) (Fig. 1.2D-E), and are also 

highly proliferative in vitro60. From a functional perspective, when ASCs [CD142–/DPP4+ (dipeptidyl peptidase 

4)] are in vitro stimulated with insulin alone, they tend to be refractory to adipogenesis and barely express 

adipocyte-specific genes60. However, when stimulated with a complete adipogenic cocktail (CAC), ASCs 

(CD142–/DPP4+60 or SCA1+/CD55+87) exhibit relatively high adipogenic potential, although its extent varied 

among studies60,87. This suggests that ASCs require key factors to unlock their commitment and differentia-

tion potential and/or that they give rise to distinct cell states with different adipogenic potentials. Thus, ASCs 

likely represent a pool of mesenchymal stem cells that commit to adipogenesis only when exposed to the 

right mix of factors (i.e., CAC). In addition, their conserved capacity to form osteoblasts and induce osteo-

blast-specific markers (Alpl, Bsp, Osx, and Ocn) underscores their multipotency60.  

Altogether, Lin–/SCA1+/CD55+ and Lin–/CD142–/DPP4+ cells, described in two different studies60,87, repre-

sent two cell populations with similar molecular and functional properties that are indicative of a stem-like 

nature. So far, the molecular mechanisms underlying the stemness of ASCs remain poorly understood. 

However, the known antiadipogenic factor, transforming growth factor (TGF)β70,114, is able to regulate the 

identity and function of DPP4+ cells60. In fact, treatment with TGFβ increased the proliferative capacity of 

ASCs, inhibited adipocyte formation (even when using a CAC), and upregulated the expression of ASC-spe-

cific markers, whereas the inhibition of TGFβ signaling had opposite effects. Noteworthy, neither TGFβ ago-

nists nor antagonists had any effect on other ASPC subpopulations, underscoring the specificity of TGFβ sig-

naling to DPP4+ cells. The antiadipogenic Wnt signaling pathway70 also appears to have a role in regulating 

neoadipogenesis. This is because cells tend to maintain their stem state when β-catenin levels exceed those 

of TCF7L2, whereas the inverse balance induces adipogenesis115. Collectively, these findings point to the 

involvement of multiple signaling pathways in ASC maintenance, but the exact underlying molecular mech-

anisms remain poorly understood, including to which extent these pathways crosstalk, what triggers them, 

and how they influence overall cell state. 

In human, even if a first low resolution study reported “homogeneity” amongst hASPCs97, it nevertheless 

showed, similar to mouse, that genes such as CD55 and THY1 were not uniformly expressed. Indeed, there-

after, it has been shown that one hASPC subpopulation expresses DPP4, CD55 and MFAP5 and 
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transcriptionally resembles mouse ASCs96. In addition and again similar to mouse, human ASCs showed full 

adipogenic potential only when stimulated by a combination of several adipogenic triggers, as opposed to 

insulin alone96. Interestingly, a mesenchymal stem population characterized by THY1 expression has been 

described as responsible for adipogenic degeneration of the muscle in individuals suffering from type 2 dia-

betes116. If this population transcriptomically resembles hASCs remains to be robustly proven. 

1.5.2 ASCs in epigonadal WAT 

A population with molecular and functional properties similar to ASCs has been uncovered in the scRNA-seq 

data sets from mouse eWAT (called ASC288 and Clusters 1 and 590) (Fig. 1.2B-E, and Fig. 1.3G-J). Visceral ASCs 

(Lin–/SCA1+/CD55highcells), for instance, showed higher proliferation and lower adipogenic differentiation 

capacity than the rest of visceral ASPCs90. Furthermore, visceral ASCs (Lin–/CD142–/DPP4+ cells) exhibited 

lower adipogenic potential and responded to TGFβ treatment in a similar fashion as subcutaneous ASCs60. 

Interestingly, the relative abundance of ASCs was lower in eWAT than in iWAT, suggesting that visceral WAT 

(visWAT) features a smaller early-stem cell pool60.  

From a mechanistic perspective, the PDGF pathway has a key role in adipose commitment and ASC pool 

maintenance and has been mostly studied in eWAT84,117,118. PDGF receptors have been linked to stemness 

maintenance and need to be downregulated to initiate adipogenesis118. It has been suggested that all mature 

adipocytes in major fat depots derive from Pdgfra+ cells83 and that the expression of PDGFRα precedes that 

of PDGFRβ119. It has also been reported that adipocytes emerge from PDGFRβ+ preadipocytes in response to 

a high-fat diet (HFD)84. Based on our integration of scRNA-seq data sets, Pdgfra is virtually positive in all 

ASPCs, while Pdgfrb is only very lowly expressed by ASCs (compared with the rest of the ASPC pool) (Fig. 

1.2D, Fig. 1.3E,K). These collective observations support the notion that ASCs are the ‘real’ ASCs that give rise 

to more committed progenitors, which in turn differentiate into adipocytes.  

The implication of the PDGF pathway in stemness and adipogenesis prompted the community to specifically 

characterize the PDGFRβ+ progenitor pool using scRNA-seq(Hepler et al. 2018). A PDGFRβ+ population that 

shares many markers with ASCs was identified in such a way(Hepler et al. 2018) (Fig. 1.3I). Such cells were 

termed fibro inflammatory progenitors (FIPs) by the authors and were isolated as PDGFRβ+/LY6C+ cells. In 

line with previous observations in ASCs60, analysis of the gene expression profile of FIPs revealed an active 

TGFβ signaling signature, and TGFβ treatment further upregulated FIP-specific markers, especially collagen 

(hence ‘Fibro’). At the same time, FIPs also exhibited a functional proinflammatory phenotype, expressing 

several cytokine genes, such as Il6, Cxcl2, and Cxcl10, and showing an ability to activate macrophages in vitro 

(hence ‘Inflammatory’). Finally, it was shown that FIPs are reluctant to undergo adipogenesis depending on 
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the culturing conditions, which supports the hypothesis that FIPs are similar to ASCs(Hepler et al. 2018). 

Nevertheless, the authors also revealed that FIPs exert antiadipogenic properties through a yet-to-be deter-

mined secreted factor. Thus, even if visceral FIPs share important markers with ASCs (Fig. 1.2A,C, and Fig. 

1.3I), distinct phenotypic characteristics also appear to differentiate them from subcutaneous ASCs, making 

it difficult to establish a clear and definite analogy. Indeed, subcutaneous ASPCs cannot be stratified based 

on the markers that were used to sort FIPs since all subcutaneous PDGFRβ+ cells are also LY6C+. Therefore, 

FIPs currently constitute a rather mysterious cell population that may reflect an inherent ability of (visceral) 

ASCs to alter their own cell state and possibly function in response to specific immunological stimuli or phys-

iological conditions 

1.6 The Pre-adipocycte Population 

1.6.1 PreAs in inguinal WAT 

The second and most abundant ASPC population uncovered through scRNA-seq, which we define here as 

PreAs, features cells that are marked by the expression of Icam1 and Aoc3 and several collagen and extracel-

lular matrix remodeling factors (Fig. 1.2E, and Fig. 1.3F). So far, no study has primarily focused on PreAs. 

However, the molecular signatures as well as initial, functional characterization all point to a more committed 

adipogenic state compared with ASCs: first, several genes involved in adipogenesis-related functions, such as 

Pparg, Fabp4, Lpl, Plin2, or Cd36, are significantly upregulated in this population (P2 in 87, Group 2 in 60, and 

ASC1 in 88; Fig. 1.2E, and Fig. 1.3F); second, PreAs show lower proliferation compared with ASCs60, while 

exhibiting a high adipogenic capacity60,87, even when stimulated by insulin only, as opposed to ASCs. Taken 

together, Lin–/CD142–/ICAM1+ (intercellular adhesion molecule 1) cells60 and Lin–/SCA1+/VAP1+ (vascular 

adhesion protein 1) cells 87 appear to constitute similar cell populations that are in a committed adipogenic 

state. From a mechanistic perspective, PreAs are also the most refractory to the antiadipogenic effect of 

TGFβ60, which further supports the hypothesis that they are lineage-committed ASPCs.  

In humans, a population resembling mouse PreAs, defined, among others, by the expression of ICAM1, PPARg 

and GGT5, was equally identified 96. Human PreAs seem to behave like mouse PreAs in vitro 96. 

1.6.2 PreAs in epigonadal WAT 

Burl et al.88 identified a population (ASC1) in both visceral and subcutaneous depots that resembles the PreA 

population (Fig. 1.2B-E, and Fig. 1.3G-J). In our analysis of this published data set, the fraction identified as 

ASC1 shares top markers with both PreAs and Aregs (CD142+) and could consequently further be stratified 

(Fig. 1.2C, and Fig. 1.3C,I). Although the latter study88 was largely computational, a parallel study98 uncovered 
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a population defined by Lin–/PDGFRβ+/LY6C–/CD9– that, according to our data integration analyses, projects 

partially to PreAs (and to Aregs) (Fig. 1.2A,C, and Fig. 1.3G,H). Sorted Lin–/PDGFRβ+/LY6C–/CD9– cells exhib-

ited a higher adipogenic potential compared with the Lin–/PDGFRβ+ total population, in line with the behav-

ior of subcutaneous PreAs. Thus, it is likely that the authors analyzed a subset of PDGFRβ+ PreAs that were 

isolated from visWAT. Another independent study90 also revealed a higher adipogenic propensity in three 

clusters (Clusters 2, 4, and 6) that also project partially to PreAs and Aregs (integration by 90).  
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Figure 1.3 – Integrated scRNA-seq data of SVF isolated from iWAT or from eWAT. 

Publicly available scRNA-seq data of SVF isolated from iWAT (17608 cells) 96,100,102 (panel A-F) or 
eWAT (6645 cells) 100,101 (panel G-L) were integrated using the standard workflow of Seurat 103,104.  
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A. tSNE 2D cell map displaying the clustering of each dataset from iWAT, analyzed individually.  
B. tSNE 2D cell map from iWAT colored by cell cluster identification.  
C. Percentage of the top 100 population markers that overlap with the top 100 population markers of published studies: 

Schwalie et al. (iWAT) 102, Burl et al. 100 (aggregate Mouse eWAT and iWAT), Hepler et al. 101 (eWAT, PDGFRβ+).  
D. Boxplot showing the distribution of scores across cells for the Group1, Group2 and Group3 defined in Merrick et al. 96. The 

score is defined as the sum of the scaled integrated expression of a list of specific markers discussed in Merrick et al. 96 
(Group1: Pi16, Dpp4, Dact2, Gpr1, Ptgs2, Bmp7, Wnt2, Stmn4, Wnt10b; Group2: Fabp4, Pparg, Icam1, Cd36, Dlk1, Gsc, 
Cyp1b1; Group3: F3, Fmo2, Clec11a).  

E. Boxplot showing the distribution of log normalized expression of selected markers (Ly6a: Stem cell antigen 1 SCA1)  
F. tSNE colored by the log normalized expression of selected markers. (Aoc3: VAP1; F3: CD142). The colors reflect population 

specificity (Green: ASCs, Red: PreAs, Blue: Aregs, Purple: Mesothelial cells). 
G. tSNE 2D cell map displaying the clustering of each dataset from eWAT, analyzed individually. 
H. tSNE 2D cell map from eWAT colored by cell cluster identification. 
I. Percentage of the top 100 population markers that overlap with the top 100 population markers of published studies: Burl 

et al. 100 (eWAT), Hepler et al. 101. 
J. Boxplot showing the distribution of scores across cells for the Group1, Group2 and Group3 defined in Merrick et al. 96. The 

score is defined as the sum of the scaled integrated expression of a list of specific markers discussed in Merrick et al. 96 
(Group1: Pi16, Dpp4, Dact2, Gpr1, Ptgs2, Bmp7, Wnt2, Stmn4, Wnt10b; Group2: Fabp4, Pparg, Icam1, Cd36, Dlk1, Gsc, 
Cyp1b1; Group3: F3, Fmo2, Clec11a). 

K. Boxplot showing the distribution of log normalized expression of selected markers (Ly6a: Stem cell antigen 1 SCA1) 
L. tSNE colored by the log normalized expression of selected markers. (Aoc3: VAP1; F3: CD142). The colors reflect population 

specificity (Green: ASCs, Red: PreAs, Blue: Aregs, Purple: Mesothelial cells). 
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1.7 The Adipogenesis Regulators Population 

1.7.1 Aregs in iWAT 

A third population, closer in terms of gene expression to PreAs than to ASCs and defined by the expression 

of F3 (encoding CD142) (Fig. 1.2C,E), was first identified within iWAT of adult mice87. Functionally, these cells 

were not only refractory to adipogenesis in vitro, but also had the capacity to inhibit the adipogenic differen-

tiation of the remaining ASPCs, both in vitro and in vivo. Therefore, these cells were termed Aregs by the 

authors (Fig. 1.3F).  

Given their distinctive transcriptomic clustering pattern, a second study also focused on CD142+ cells60, but, 

contrary to the first87, found CD142+ cells to be fully adipogenic. While there were clear methodological and 

mouse model differences, the exact reason why CD142+ ASPCs behaved differently between the two studies 

has yet to be resolved. Nevertheless, the overall consensus is that CD142+ ASPCs constitute a distinct popu-

lation of cells featuring a transcriptomic signature that is clearly different from that of ASCs and PreAs (Fig. 

1.2B,C, and Fig. 1.3C,F).  

Going beyond adipose tissue, Areg-like cells have been recently identified in muscle120, exhibiting molecular 

and functional (e.g., antiadipogenic) properties that are in line with those reported for subcutaneous Aregs87. 

The authors proposed a mechanistic model that involves the secreted factor GDF10 as one of the main factors 

responsible for the inhibitory capacity of CD142+ cells, both in mouse and human. Interestingly, dystrophic 

mice were found to harbor fewer ‘muscle Aregs’ than their wild-type (WT) counterparts, raising the hypoth-

esis that this change in cellular composition explains the increased accumulation of fat cells in dystrophic 

muscle 120. 

1.7.2 Aregs in Visceral WAT 

No scRNA-seq study of visWAT has so far specifically explored the existence of Aregs and, even though they 

both appear to display an antiadipogenic phenotype, FIPs and Aregs are clearly molecularly distinct (Fig. 

1.2C)89. Even though a higher fraction of CD142+ cells in eWAT compared with iWAT has been reported using 

flow cytometry87, to date, no one has ever sorted and characterized visceral Aregs fully. However, a recent 

study described an ASPC population (Lin–/Sca1+/PDGFRA+/PDPN+/THY1+/CD55– cells) that was tran-

scriptomically similar to Aregs and that exhibited a low adipogenic propensity, even though it was not sorted 

using the CD142 surface marker itself99. In line with this, our integration results revealed a population that 

express Areg-like markers in eWAT (Fig. 1.3H,I). Surprisingly, even though F3 remains a differentially ex-

pressed (DE) gene, it appears not to be the best marker for this population because it lacks specificity (Fig. 
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1.3F versus Fig. 1.3L). Such a broad, diffuse expression pattern could explain the higher CD142+ fraction ob-

served in flow cytometry in visWAT87 without necessarily implying a higher proportion of actual Aregs. None-

theless, using the relative fraction inferred from scRNA-seq data, and keeping in mind possible biases due to 

cell selection, the proportion of Areg-like marker-expressing cells in the visceral data set remains substan-

tially higher than in the subcutaneous one (23.5% versus 7% when considering only ASPCs). A higher fraction 

of ASPCs featuring an antiadipogenic character, potentially comprising both ‘visceral Aregs’ and FIPs, would 

be consistent with the low adipogenic potential of total visceral ASPCs compared with their subcutaneous 

counterparts, a well-established notion in the field121,122. These observations highlight once again not only 

the intrinsic similarities, but also differences between the different fat depots, and clearly emphasize the 

need to better functionalize all ASPC fractions. 

And what about Aregs in humans? Markers of mouse Aregs (CD142, CLEC11A and FMO2) appeared broadly 

expressed across the two main human subpopulations: ASCs and PreAs 96. We conclude therefore that either 

orthologous human Aregs do not exist or may not be defined by this set of markers at the transcriptomic 

level. In accordance, no functional differences were found between sorted human CD142+ and ICAM1+ 

ASPCs 96. Nevertheless, when human CD142+ cells were sorted and compared to the corresponding CD142- 

and Lin- fractions, the same non-adipogenic character observed for mouse Aregs was seen for human CD142+ 

ASPCs 102. This underscores the general interest in providing a more in-depth molecular and functional char-

acterization of human CD142+ cells. 

1.8 Hierarchy of ASPCs 

As implied by the names given to the different ASPC subpopulations in this introduction (ASCs, PreAs and 

Aregs), we propose a hierarchy between ASPCs (see arrows in Fig. 1.4). First of all, the expression pattern of 

Pdgfra and Pdgfrb, as already detailed above, indicates that the ASCs are the most stem-cell like ASPCs. The 

higher expression of Cd24 in ASCs further supports this hypothesis (Fig. 1.2 E). Indeed, it has been proposed 

that CD24+ adipocyte precursors are stem cell-like ASPCs that become further committed by losing CD24 

expression 123. Recently, this hierarchy has also been suggested in silico by applying a pseudotemporal tra-

jectory analysis on scRNA-seq datasets 96,124, after which it was validated in vivo using fluorescence-based cell 

tracing 96. Specifically, when fluorescently-labelled subcutaneous ASCs (DPP4+ cells) were transplanted in a 

wild type subcutaneous fat pad, these cells acquired PreAs and Aregs markers (ICAM1 and CD142 respec-

tively) within 7 days post-transplantation and a subset of them lost DPP4 expression after 14 days 96. These 

findings indicate that ASCs (DPP4+) give rise to both preAs (ICAM1+) and Aregs (CD142+). In contrast, fluo-

rescently-labeled preAs (ICAM1+) and Aregs (CD142+) did not acquire DPP4 expression over time 96, under-

scoring the overall unidirectionality of ASC commitment and differentiation. However, PreAs and Aregs may 
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undergo immunophenotypic interconversion since a subset of mTomato-labeled ICAM1+ and CD142+ cells 

acquired to a certain extent CD142 and ICAM1 markers respectively 96. How this interconversion is molecu-

larly encoded, what determines the hierarchical equilibrium, and how different metabolic conditions affect 

this equilibrium, are important, yet outstanding questions (see section “The ASPCs and Obesity”). 

1.9 Mesothelial cells 

Mesothelial cells constitute the peritoneum both in mouse and human and belong exclusively to the visceral 

SVF. Not only do they line the walls of the abdominal cavity, but they are also found in small clusters within 

the visceral WAT itself, in the form of so-called ‘milky spot’ or ‘fat-associated lymphoid clusters’125,126. Msln, 

Wt1, Lrrn4, and Upk3b are typical mesothelial markers and, in vitro, such cells display a characteristic epithe-

lial/cobblestone morphology127–129. Not surprisingly, mesothelial cells were found among visceral ASPCs using 

scRNA-seq (in mouse80,88,95,98, in human 59,60,94) (Fig. 1.2A, B, E, and Fig. 1.3G, H, I). Thus, one should be aware 

that, for both human and mouse, cells of the mesothelial lineage exist within the visceral SVF and may cloud 

functional read-outs. Therefore, we argue that it may be best to sort these cells out before any downstream 

in vitro characterization of ASPCs. 

However, what is interesting about mesothelial cells in the context of adipose biology, besides being a het-

erogeneous population themselves80,94,130, is their role at the crossroads between adipose tissue function and 

immunity as well as them being hotpots for cancer metastasis126,131,132. When peritonitis occurs, they recruit 

neutrophils for peritoneal fluid clearance80, whereas in physiological conditions, they support the interleukin 

(IL)-33 driven recruitment and differentiation of type 2 innate lymphoid cells (ILC2s)99,133,134. ILC2 cells secrete 

type 2 immunomodulatory cytokines130, which, together with regulatory T cells and eosinophils, enable the 

visceral cavity and adipose tissue to remain in a normal, uninflamed state, countering the development of 

type 2 diabetes135. In turn, loss of IL-33 results in weight gain, although the underlying mechanisms, as well 

as implications of ASPCs in this process remain poorly understood133. 

In human, less is known about the interplay between mesothelial, immune, and stromal cells. However, it 

has been proposed that subclusters of mesothelial cells are implicated in beige adipogenesis based in the 

fact that these subclusters express a higher proportion of mitochondrial genes than any other ASPC subpop-

ulation and that their relative cell number negatively correlated with glucose fasting levels94. Moreover, the 

beige adipocyte markers PLA2G2A136 and SOD2137 were enriched among mesothelial subclusters, but not 

MYF5 and ZIC1, two brown adipocyte precursors cell markers137, providing additional support for the involve-

ment of these human mesothelial cells in beige adipogenesis. 
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1.10 ASPCs and obesity 

1.10.1 ASCs and obesity  

We currently have a poor understanding of ASPC dynamics in obesity, and we know even less about the 

implication of each subpopulation 138. Nevertheless, scRNA-seq was performed, for example, on eWAT from 

both lean and diet-induced obese mice 139, revealing that obesity redistributes the prevalence of individual 

ASPC subpopulations. In addition, obesity specifically enriches for subgroups of ASPCs that exhibit enhanced 

extracellular matrix and immunomodulatory capacities as well as altered differentiation abilities 139. In line 

with this, the frequency of FIPs increased when mice were fed a HFD 101, while the DPP4+ stem fraction 

decreased 96. Together, these findings suggest that ASCs may play an important immunomodulatory role in 

WAT, consistent with previous observations 140, and that a diet-induced ASC imbalance toward a FIP-like phe-

notype may be one of the factors underlying obesity-induced adipose inflammation.  

1.10.2 PreAs and obesity 

One hypothesis is that intrinsic properties of ASPCs could explain the distinct impact of differential anatomi-

cal fat deposition during obesity on the development of metabolic disease (reviewed in 138). In line, subcuta-

neous ICAM1+ cells have a comparably high adipogenic capacity regardless of whether they are isolated from 

obese or lean mice, while visceral ICAM1+ cells exhibited a lower adipogenic potential when retrieved from 

obese mice compared to lean 96. This observation may explain why hypertrophic WAT expansion is favored 

over hyperplasia in the abdomen.  

Interestingly, a relative increase in the proportion of human PreAs seems to correlate with insulin resistance 

and type two diabetes based on a large scRNA-seq dataset from 25 obese patients 61. To our knowledge, this 

is the first time that a correlation has been found between a metabolic disease phenotype and differential 

ASPC composition in human. Whether this correlation, based on scRNA-seq cell proportions only, reflects 

causality remains to be established. 

1.10.3 Aregs and obesity 

The fact that WAT may harbor ASPCs such as Aregs or FIPs that could negatively modulate adipocyte for-

mation has triggered a paradigm shift in our understanding of how adipose tissue plasticity could be medi-

ated, pointing to potential novel therapeutic applications. For example, a reduction in adipogenesis-sup-

pressing cells may be one of the mechanisms that lead to fat cell hyperplasia. Inversely, their increase may 

lead to fat cell hypertrophy due to a suppression of adipocyte formation. Interestingly, it has been proposed 

that a depletion of ASPCs may be responsible for the switch from hyperplasia to hypertrophy in the context 

of overfeeding 141,142. The fact that the abundance of CD142+ cells varies across depots and physiological state 
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would support this possible shift 96,102. Indeed, while the increase of CD142+ cells in obese mice may at first 

glance seem counterintuitive given their possible anti-adipogenic phenotype, it may instead reflect a defen-

sive strategy aimed at limiting adipose tissue (hyper)expansion. The main drawback of such a mechanism 

would be a balance favoring hypertrophy over hyperplasia upon excessive weight gain.  

 

Figure 1.4 – Adipose derived stem and progenitor cells: toward a consensus view. 

A. Mouse white adipose tissue (WAT) 96,100–102,139,143: ASCs give rise to PreAs and Aregs. Aregs exert an inhibitory effect on 
adipogenesis. Such effect may in part be mediated by GDF10 based on Areg-like cells found in muscle 120. FIPs, CD9+ and 
mesothelial cells are exclusively present in visceral WAT. FIPs also exert an inhibitory action on adipogenesis. Mesothelial 
cells bridge ASPCs and immunoregulation. CD9+ cells are profibrotic 144.  

B. Human WAT 61,96: hASCs supposedly give rise to hPreA-like cells. CD9+ cells are profibrotic and, similar to mesothelial cells, 
exclusively present in visceral WAT. Hematopoietic stem cells are found in human SVF and are marked by CD4561. 

 
Shadowed sections are based on (sc)RNA-seq analyses only, plain colors mean FACS isolation and characterization. 
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1.11 The scope of this thesis 

This work attempts to redefine in an unbiased and cross-anatomical fashion the cellular composition of hu-

man adipose-derived stem and progenitor cells (hASPCs), a cellular compartment within the stroma of adi-

pose tissue responsible for its renewal. We took advantage of cutting-edge single-cell RNA sequencing 

(scRNA-seq) techniques to identify cells that have common characteristics based on their RNA expression. I 

then characterized them molecularly and phenotypically with the ultimate goal of understanding why in vitro 

hASPCs isolated from intra-peritoneal depots are strikingly less adipogenic than the ones isolated from extra-

peritoneal adipose depots. 

At first, I performed scRNA-seq experiments on the non-endothelial, non-immune stromal vascular fraction 

(SVF) of the adipose tissue from four distinct anatomic origins: subcutaneous, omental, perirenal and meso-

colic adipose tissues. This allowed to perform thorough bioinformatics analysis to identify new subpopulation 

and put them in the context of what was previously described in the literature about human and mouse 

ASPCs. I then identified surface proteins against which I designed and validated a sorting strategy that al-

lowed to study each subpopulation separately with regard to their relative abundance in the SVF, adipogenic 

potential and proliferation ability in a systematic way across all adipose depots. Whenever possible I tried to 

link donor’s metadata including age, sex and BMIs to my findings. 

At last, I explored the role of omentum-specific mesothelial cells in the context of adipogenesis. I demon-

strated that mesothelial cells within the SVF of omental adipose tissue secrete inhibitory cues which are at 

least partially responsible for the observed low-adipogenic phenotype of intraperitoneal-derived SVF-adher-

ent cells. I further proposed that the observed inhibition signaling originates specifically from mesothelial 

cells and relies on the IGFBP2 secreted protein which acts through an IGF-independent mechanism. Interfer-

ing with this signaling resulted in enhanced adipogenesis by the omentum. 

 



 

46 

 

 

  



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

47 

Chapter 2 | A human omentum-specific mesothe-

lial-like stromal population inhibits adipogenesis 

through IGFBP2 secretion 

 

 

 

 

 

 

 

 

  
Note: This chapter is based on a manuscript under sub-
mission “A human omentum-specific mesothelial-like 
stromal population inhibits adipogenesis through 
IGFBP2 secretion” 

Authors: Radiana Ferrero*, Pernille Yde Rainer*, Julie 
Russeil, Magda Zachara, Joern Pezoldt, Guido van 
Mierlo, Vincent Gardeux, Wouter Saelens, Daniel 
Alpern, Lucie Favre, Styliani Mantziari, Tobias Zingg, 
Nelly Pitteloud, Michel Suter, Maurice Matter, Carles 
Canto, and Bart Deplancke.                                         
* These authors contributed equally 

My contribution: Conceptualized the study and wrote 
the manuscript. Conducted all experimental procedures 
and analyzed acquired images, flow cytometric 
measures, qPCRs, ELISAs and immunohistochemistry. 



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

 48 

2.1 Abstract 

Adipose tissue (AT) is a key metabolically dynamic organ that tends to have distinct functions dependent on 

its anatomical location. For example, subcutaneous (SC) AT tends to be more adipogenic compared to visceral 

AT whose expansion carries a greater risk for obesity-related co-morbidities. While significant progress has 

been made in mice to understand which cells mediate AT plasticity and how these are distributed across 

distinct adipose depots, a similar level of understanding is still lacking in humans. 

Here, we probed the differentiation capacity of human Adipose-derived Stem and Progenitor cells (hASPCs, 

defined as Stromal Vascular Fraction (SVF) Lineage (Lin)-negative cells) from four adipose depots (SC, perire-

nal (PR), omental (OM), and mesocolic (MC)), revealing striking differences in their adipogenic potential. To 

explore the molecular and cellular origins of these differences, we performed bulk RNA-seq of 20 SC, 8 PR, 

19 OM, and 4 MC primary ASPC samples and scRNA-seq of ~34’000 cells from these four depots, followed by 

functional characterization of the identified cell subpopulations.  

On the one hand, these analyses revealed at least two major, ubiquitous hASPC subpopulations, adipose 

stem cells and pre-adipocytes, with distinct proliferative and adipogenic properties and whose proportions 

differed in function of adipose depot type and BMI. Moreover, despite their omnipresence, these subpopu-

lations still exhibited depot-specific gene expression patterns, likely reflecting distinct AT properties. On the 

other, we identified an OM-specific, mesothelial-like stromal population that is defined by high expression 

of IGFBP2, constitutes 2-5% of the OM SVF Lin– fraction depending on the donor’s BMI, appears to transition 

between mesothelial and mesenchymal cell states, and inhibits the adipogenic capacity of hASPCs in a depot-

specific manner through IGFBP2 secretion. 

Altogether, our in-depth characterization of hASPC heterogeneity and function not only highlights the cellular 

uniqueness of different adipose niches, it also identifies a new mechanism underlying the limited adipogenic 

capacity of OM hASPCs by uncovering an OM-specific IGFBP2+ mesothelial-like cell population that negatively 

regulates hASPC adipogenesis through IGFBP2 signaling. 

 

Keywords: obesity, adipogenesis, human, adipose stem and progenitor cells, mesothelial cells, mesothelial 

to mesenchymal transition, anti-adipogenic, omentum, IGFBP2, TM4SF1, MSLN, scRNA-seq 
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2.2 Introduction 

Our understanding of key adipose tissue (AT) phenotypes, such as turnover and expansion dynamics in health 

and in response to altering metabolic conditions, is still limited, especially when it comes to human AT. This 

is further exacerbated by the fact that these AT phenotypes vary according to the anatomical location of the 

respective AT with for example the frequent opposition of the “metabolically healthy” subcutaneous (SC) AT 

to the “unhealthy” visceral one when overgrown. However, the terms “visceral” and “subcutaneous” under-

lie several finer anatomic locations and, with it, potentially more fine-grained AT characteristics79. For in-

stance, among visceral AT is the perirenal (PR) AT, which locates around the kidney and is attracting increas-

ing attention as being a potential site of dormant brown adipogenesis71,72. Its possible crosstalk with the 

kidney itself influences renal function and constitutes an independent risk factor for cardiovascular and 

chronic kidney disease71. Even if PR AT can be considered as a visceral tissue, it is not confined within a mes-

othelial layer, contrary to for example the mesenteric (MC) and omental (OM) ATs. The latter tends to be 

considered the “golden standard” visceral adipose depot and is typically linked to type 2 diabetes onset, 

cardiometabolic complications, and an overall proinflammatory status11,77. The MC AT, a fold connecting the 

intestine to the abdominal wall, contributes to buffering the intestinal intake, both as an immune barrier and 

a lipidic reservoir to prevent lipid hepatotoxicity76. It serves as a scaffold to the mesenteric vasculature that 

nourishes the small and large intestines and, based on its anatomy, can further be stratified in the mesentery 

and the mesocolon, depending on whether it binds the small or large intestine, respectively. 

While it is thus well-accepted that human ATs from distinct anatomical locations are linked to different met-

abolic risks when overgrown, little is known about what causes these phenotypic differences. One attractive 

hypothesis is that these differences could at least be partially driven by variation in the cellular composition 

of the stromal vascular fraction (SVF) across depots and specifically in that of the adipose-derived stem and 

progenitor cell (ASPC) pool. This hypothesis is supported by i) a recently published comprehensive single cell 

transcriptomic (scRNA-seq) atlas of whole human AT, as well as previously published studies, revealing the 

existence of several subpopulations amongst human ASPCs (hASPCs)61,96,145. However, these scRNA-seq stud-

ies focused on the two most commonly studied ATs: subcutaneous and omentum. Hence, a more overarching 

view on similarities and/or differences in hASPC composition beyond the SC and OM depots remains elusive. 

ii) While still scarce in humans, substantial evidence is mounting that in mice, ASPCs are also highly hetero-

geneous with the detection of at least three major ASPC subpopulations91,96,100,102,143,145–149. Moreover, exten-

sive downstream validation suggests that these subpopulations exhibit different functional properties with 

the Dpp4+ (or Ly6c+) cells being labeled as stem cells, the Icam1+ (or Aoc3+) ones as pre-adipocytes and the 

F3+ cells as adipogenesis-regulatory cells91,96,100,102,143,145–149. A similar level of phenotypic characterization of 

hASPC populations is still lacking, likely reflecting the challenge of having access to and/or gathering enough 

human material to do so. Nevertheless, in one study, efforts were undertaken to functionally characterize 
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hASPC subpopulations that were similar to the ones found in mice, with the DPP4+ ASPCs being highly pro-

liferative and less adipogenic than the ICAM1+ ASPCs96. Together, these findings suggest that, similar to 

mouse, hASPCs may not only be highly heterogeneous but also functionally distinct. Yet, to date, no system-

atic, functional characterization of hASPC heterogeneity and behavior has been performed across several 

human adipose depots. 

Here, we provide a comprehensive overview of gene expression profiles of SVF-adherent cells over 30 human 

donors in four major human depots: SC, PR, OM, and MC AT, supplemented with scRNA-seq data on ~34,000 

non-immune (CD45–) and non-endothelial (CD31–) SVF cells (SVF/Lin–). We consistently detected two main 

hASPC subpopulations that are common to all depots and addressed similarities but also differences across 

these depots, as well as in comparison to the most commonly studied mouse ATs. Specifically, we found that 

pro-adipogenic/developmental genes are enriched in SC, non-adipogenic/inflammatory ones in OM, mito-

chondrial/thermogenic ones in PR, and protein folding/trafficking in MC. We isolated, quantified, and char-

acterized different cellular subpopulations in SC, OM, and PR depots with regard to their adipogenic potential 

and proliferation abilities, validating two surface markers, CD26 and VAP-1, that enable the enrichment of 

highly proliferative and highly adipogenic cells, respectively, across all depots. Finally, we focused on resolv-

ing the mechanism underlying the lower adipogenic potential of OM-isolated SVF-adherent cells, compared 

to SC and PR ones. We identified a new and omentum-specific cell population that is susceptible to undergo-

ing mesothelial-to-mesenchymal transition and negatively impacts the adipogenic potential of OM and SC 

hASPCs. We further linked the observed adipogenic inhibition to the secretion of IGFBP2, which potentially 

acts through the α5β1 integrin receptor. 

2.3 Results 

2.3.1 Human SVF precursor cells exhibit depot-dependent differences in their in vitro adi-

pogenic potential 

To characterize the function of SVF-adherent cells, including hASPCs, across distinct human adipose depots, 

we differentiated cell lines from SC (20 donors), PR (8 donors), OM (19 donors), and MC (4 donors) AT (Table 

2.1). As no consensus exists on the surface markers defining hASPCs and to not bias our strategy towards a 

potential ASPC (sub)population, we did not implement any enrichment strategy beyond plating SVF cells and 

culturing SVF-adherent cells, as is commonly done in the field. Once confluent, these distinct AT-derived pri-

mary cell lines were exposed to an adipogenic cocktail for 14 days (Fig. 2.1A, see Materials and Methods). 

Subsequent staining for lipid droplets revealed that only SVF-adherent cells that were isolated from white AT 

(WAT) situated outside the peritoneal cavity (i.e., SC and PR) are able to form mature adipocytes that are 

characterized by the effective accumulation of lipid droplets in vitro (Fig. 2.1B-C, Supp. Fig. 2.1.1A). Con-

versely, cells that were isolated from intraperitoneal depots (i.e., OM and MC) barely formed any lipid 
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droplets under adipogenic differentiation conditions, or at most, tiny droplets that were difficult to distin-

guish from a background stain (Fig. 2.1B-C, Supp. Fig. 2.1.1B-C, see Materials and Methods). Interestingly, 

while both SC and PR hASPCs differentiated to a higher extent than intraperitoneal cells, PR lines showed the 

highest adipogenic potential in vitro, particularly when cells were differentiated straight after isolation (Fig. 

2.1B-C, Supp. Fig. 2.1.1A). However, at longer times/passages, PR lines tended to become as adipogenic as 

SC ones (Supp. Fig. 2.1.2 and 2.1.3A-B). Furthermore, SC and PR lines showed high inter-individual variation 

in their ability to differentiate, which is observable as an adipogenic potential gradient for SC lines and a 

dichotomy for PR lines, as illustrated by very high versus very low adipogenic potential (Supp. Fig. 2.1.3A). In 

contrast, OM and MC lines were systematically resistant to adipogenic differentiation (Supp. Fig. 2.1.2), while 

also being the slowest growing lines (Supp. Fig. 2.1.1D). 

We explored possible correlations between our experimental adiposcore (Supp. Fig. 2.1.2B) and physiologi-

cal parameters such as BMI, age, and gender of the donors but found no correlations except for a tendency 

for PR cells to become less adipogenic in women and elderly people (Supp. Fig. 2.1.3C-F). However, we 

acknowledge that our cohort’s demographic characteristics can bias these observations (Table 2.1 and Table 

2.2), i.e., included patients are mainly young and obese, while we also analyzed only a relatively small pro-

portion of PR samples (n=8). 

2.3.2 Human SVF-adherent cells exhibit transcriptomic differences that reflect their ana-

tomical origin and adipogenic potential 

To explore if the striking phenotypic difference between intra-peritoneal and extra-peritoneal cell lines is 

reflected in their respective transcriptomes, we set out to perform bulk RNA barcoding and sequencing (BRB-

seq)150 of SVF-adherent primary cell lines from different individuals and depots both at the undifferenti-

ated/expanding state (t0) and after 14 days of adipogenic differentiation (t14) (SC n=22, OM n=16, PR n=8, 

MC n=4, Supp. Fig. 2.1.4A). We found that the major source of variation is explained by the exposure to the 

adipogenic cocktail, followed by the anatomic origin of the cell lines (Fig. 2.1D, Supp. Fig. 2.1.4B-F). We ob-

served that all samples at t0 highly express THY1, a well-known mesenchymal marker151, at similar levels, 

except OM samples in which it is slightly but significantly lower expressed (Supp. Fig. 2.1.4G). Upon exposure 

to a differentiation cocktail, cells from all depots induced genes related to extracellular remodeling, insulin 

response, and positive regulation of fat cell differentiation compared to their undifferentiated state. How-

ever, most of these adipogenic-related terms were more enriched in SC and PR compared to OM and MC 

(Fig. 2.1E-F, Supp. Fig. 2.1.4H-I). In addition, golden standard markers of adipogenesis and mature adipocytes 

such as FABP4, PPARG, CEBPA, ADIPOQ, PLIN1-2-4, LPL, and others (see Methods) were solely upregulated 

in PR and SC samples post-differentiation (Supp. Fig. 2.1.4J). The expression of the latter correlated with the 

lipid droplet accumulation of the corresponding lines as quantified by the image-based adiposcore (ρ=0.81, 
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Fig. 2.1G, Supp. Fig. 2.1.2, see Materials and Methods), showing that inter-individual variability in terms of 

adipogenicity is also reflected at the transcriptomic level. Overall, even if the differentiation medium induced 

an adipogenic response in OM and MC hASPCs, it did not activate key regulators leading to overt lipid accu-

mulation under the form of lipid droplets as, for example, supported by the enrichment of the “lipid storage” 

term solely in PR and SC-derived cells (Fig. 2.1E).  

Next to their clear molecular and phenotypic dissimilarities in adipogenic response, we further investigated 

potential transcriptomic differences between SVF-adherent cells from different depots, which could underlie 

their distinct adipogenic potential. As previously reported, developmental genes such as HOXC8-10, HOXA9, 

and HOXD8 were highly expressed in SC samples (Fig. 2.1H)78,152, as further illustrated by the enrichment of 

numerous terms linked to morphogenesis and development compared to the other depots both at t0 and 

t14 (Fig. 2.1H, Supp. 1.5). Interestingly, at t14, SC samples also showed enrichment of cell differentiation-

related terms compared to the other depots, even considering the highly adipogenic PR samples (Fig. 2.1I). 

In contrast, PR-enriched genes in differentiated hASPCs were related to thermogenesis, suggesting that these 

cells have brown-like or beige-like adipocyte characteristics (Fig. 2.1I)153,154. In OM samples, we observed a 

non-adipogenic gene expression signature with positive and negative enrichment of the terms “negative reg-

ulation of differentiation” and “white fat cell differentiation” respectively, compared to differentiation me-

dium-exposed SVF-adherent cells from the other adipose depots (Fig. 2.1I). Undifferentiated OM SVF-adher-

ent cells also exhibited significantly higher expression of genes linked to an inflammatory response, which 

remained after exposure to an adipogenic cocktail (Fig. 2.1I, Supp. Fig. 2.1.5A, Supp. Fig. 2.1.6A). This is not 

entirely unexpected given that the OM samples that were analyzed using BRB-seq mainly originated from 

obese patients undergoing bariatric surgery (Supp. Fig. 2.1.4A, Table 2.1), whose OM fat has previously been 

reported to show signs of inflammation79,155–157. Interestingly, in both t0 and t14 time points, OM cells showed 

an enrichment of expressed genes linked to the vasculature and epithelium/endothelium development (Fig. 

2.1I, Supp. Fig. 2.1.6B). This is consistent with our observation that many Keratin-related genes such as KRT8, 

KRT9, KRT18, and also LRRN4 or UPK1B (Fig. 2.1H, Supp. Fig. 2.1.5B) were among the top differentially ex-

pressed genes in OM cells versus those from other depots. The latter may be reflective of a mesothelial cell 

signature158, suggesting that the SVF-adherent cell pool of OM is composed of various cell types, other than 

hASPCs. Finally, genes that were specifically expressed in MC compared to other depots were linked to pro-

tein metabolism and trafficking (Fig. 2.1I).  

Taken together, we found that each depot features specific gene signatures that can be linked to functional 

implications, highlighting the regional specialization of AT based on its anatomical location. In addition, the 

observed experimental adipogenic potential is mirrored by the up- or down-regulation of pro-adipogenic 

markers in extraperitoneal and intraperitoneal adipose depot-derived cells, respectively. Finally, mesenchy-

mal markers are highly expressed in SVF-adherent cells from all depots, validating the high enrichment of 
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hASPCs in the SV-adherent fraction. However, OM-derived samples also express an epithelial/mesothelial 

gene signature, suggesting the presence of mesothelial cells within the Lin– SVF of OM. 

 
Figure 2.1 – Ex vivo cultures of SVF-adherent cells feature an anatomic footprint in their phenotype and transcrip-
tome. 

(A) Schematic of the experimental setup; primary SVF-adherent cell lines from human subcutaneous (SC), perirenal (PR), 
omental (OM), and mesocolic (MC) adipose tissues were cultured in parallel and harvested at the undifferentiated (t0) and 
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differentiated (t14) states for transcriptomic (BRB-seq) analysis; the same lines were seeded in a separate assay plate to 
quantify their adipogenic potential using the adiposcore (see Materials and Methods). 

(B) Representative fluorescence microscopy images of SVF-adherent cells directly after isolation expansion to confluence and 
adipogenic induction (t14); Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA, scale bar = 1 mm. 

(C) Barplot showing the log (adiposcore + 1) quantification of SVF-adherent cells in B; n = 14-22, 4-5 donors, 3-5 independent 
wells. 

(D) t-SNE map based on the transcriptomic (BRB-seq) data of SVF-adherent cells from the indicated adipose depots (SC - yellow, 
PR - brown, OM - purple, MC - blue) and time points (t0 - light, t14 - dark); n = 12-61, 4-20 biological replicates, 1-4 inde-
pendent replicates for each.  

(E) Dot plot showing enriched, representative terms found by GSEA performed on the differential gene expression analysis 
results of t0 versus t14 samples for each depot of the data shown in D. 

(F) Boxplot displaying the “Positive regulation of fat cell differentiation score”, based on the scaled expression of the corre-
sponding GO term (GO:0045600) of the data shown in D.  

(G) Scatter plot showing the relationship between the image quantification-based experimental adiposcore (shown in Supp. 
Fig. 2.1.1) versus the “mature adipocyte score” based on the scaled expression of well-known adipogenic markers (see 
Methods) of the transcriptomic samples from the same donor. Samples are grouped by depots and donors. Spearman 
correlation and adjusted R2 of y~log(x+1) (plotted orange line with 95% confidence interval) values are indicated. 

(H) Heatmap of top differentially expressed genes when comparing the indicated depot versus the three others at t0 of the 
data shown in D.  

(I) Dot plot showing representative, enriched terms found by GSEA performed on the differential gene analysis results of each 
indicated depot versus the others at t14 of the data shown in D. 

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, One-Way ANOVA and Tukey HSD post hoc test (C), unpaired two-sided t-test 
(F).  
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2.3.3 scRNA-seq of SVF Lin– fraction reveals both common and unique subpopulations 

across the subcutaneous, visceral, mesocolic, and perirenal adipose depots 

Next, we explored whether the afore-observed transcriptomic and phenotypic differences across SVF-adher-

ent cells derived from distinct adipose depots could in fact be driven by cellular heterogeneity. To do so, and 

to be as representative as possible of the SVF-adherent cells of the bulk RNA-seq analysis, we performed 

scRNA-seq of SVF Lin– (i.e., CD45–/CD31–) cells that were isolated from SC (n=3), OM (n=3), MC (n=2, from 

the same donor), and PR (n=3) adipose samples (Table 2.2), analyzing a total of 34’126 cells (on average, 

~8’500 cells per depot). We first analyzed each resulting dataset independently, i.e., per depot and per donor 

(Supp. Fig. 2.2.1A-B). In all datasets, we identified hASPCs, defined by the expression of THY1 and PDGFRA, 

well-known mesenchymal markers151, as well as a population expressing muscle-related markers such as 

MYH11 but also ACTA2 and TAGLN (Supp. Fig. 2.2.1C), resembling a transcriptomic signature of vascular 

smooth muscle progenitor cells (VSMPs)159. Consistent with our bulk transcriptomic analysis, we also identi-

fied mesothelial cells, defined by the expression of MSLN, UP3KB, LRRN4, and Keratin-related genes, exclu-

sively among SVF Lin– cells that were derived from OM AT (Supp. Fig. 2.2.1C, Supp. Fig. 2.2.1A). Finally, we 

identified a small number of immune (high CD45) and endothelial (high PECAM1) cells in the datasets from 

donor D07 that likely escaped the magnetic-based (MACS) Lin– enrichment that was performed for the cor-

responding SVF Lin– cells, as opposed to FACS used for the remaining datasets, where no CD45+ nor CD31+ 

cells are detected (Supp. Fig. 2.2.1A-C, for the type of enrichment method used prior to scRNA-seq, see Table 

2.2). 

Consistent with recent reports61,96,145, hASPCs (THY1 and PDGFRA high) displayed high heterogeneity and 

could be further stratified into at least two main clusters (Supp. Fig. 2.2.1A). To explore if and to what extent 

the identified hASPC subpopulations share molecular features across adipose depots, we performed three 

independent analyses. First, we calculated the overlap of the top cluster markers between datasets (Supp. 

Fig. 2.2.1D). We found that, while the percentage of shared markers tends to be the highest within samples 

isolated from the same depot and donor (Supp. Fig. 2.2.1E-F), the overlap across depots and donors is, on 

average, over 50% for most of the identified subpopulations (Supp. Fig. 2.2.1D). This result was confirmed 

when projecting each dataset onto each other using scmap160, revealing that on average more than 75% of 

cells from one specific population projected onto the corresponding population in other datasets, regardless 

of the depot of origin (Supp. Fig. 2.2.1G). Finally, we integrated the data by considering each dataset as a 

different batch and correcting accordingly. Once again, we observed an excellent overlap of the depot-coun-

terpart populations in the tSNE space (Fig. 2.2A, Supp. Fig. 2.2.1H-I), which was further confirmed by clus-

tering analysis (Fig. 2.2B). Taken together, we can confidently stipulate that human adipose SVF contains at 

least two main hASPC (THY1 and PDGFRA high) subpopulations/states, a feature common to all studied 
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depots: SC, PR, OM, and MC (Fig. 2.2C-D, Supp. Fig. 2.2.2A-B). To explore the universality of this finding, we 

assessed yet another unexplored adipose tissue, the AT which accumulates surrounding the gallbladder in a 

subset of morbidly obese patients, and even if relatively few hASPCs were ultimately captured, we still re-

trieved the two main hASPCs subpopulations (n=1, Supp. Fig. 2.2.1B). 

Based on their respective gene expression signatures, we labeled those two hASPC subpopulations as adipose 

stem cells (ASCs) and pre-adipocytes (PreAs) (Fig. 2.2B). Indeed, ASCs from all depots shared a gene signature 

enriched for DPP4, CD55, and PI16, and showed enrichment in genes involved in proliferation, collagen syn-

thesis and stemness (Fig. 2.2C, Supp. Fig. 2.2.2C-D), consistent with the corresponding ASC subpopulation 

from mouse epigonadal (visceral AT) and SC adipose depots96,100,102,146,161 (Supp. Fig. 2.2.3). On the other 

hand, PreAs differentially expressed known markers of committed adipogenic cells such as PPARG, FABP4, 

PDGFRA, APOC, and APOE and showed enrichment of terms linked to differentiation, commitment, and lipid 

transport (Fig. 2.2C, Supp. Fig. 2.2.2C-D), again aligning with the corresponding mouse PreA popula-

tion96,100,102,146,161 (Supp. Fig. 2.2.3). Furthermore, our annotations are consistent with the two ASPC states 

observed in human SC AT96,145 and predicted for OM AT61,145 (Fig. 2.2E, Supp. Fig. 2.2.4). To our knowledge, 

these hASPC states have never been described for other human anatomical locations. 

Upon integration, we identified five smaller populations of hASPCs defined by specific transcriptomic signa-

tures that are most likely subpopulations of PreAs (Fig. 2.2B-C). One of them was defined by a high expression 

of HHIP (Supp. Fig. 2.2.5A-B). Among the top differentially expressed genes of this population, we recognized 

several key ortholog markers, such as F3, CLEC11A, GDF10, MGP, and INMT (Supp. Fig. 2.2.5A), of a mouse 

ASPC subpopulation that we have previously characterized as having non- and anti-adipogenic properties, 

and accordingly named Adipogenesis Regulators (Aregs)102,148. To compare the transcriptomic signature of 

this population across species in a more unbiased way, we computed a score based on the orthologs of the 

top HHIP+ hASPC markers, or of Aregs (reported in Ferrero et al.146 and Zachara et al.148, see Methods) and 

showed that in both species, the score was significantly enriched in the corresponding population (Supp. Fig. 

2.2.3). Recently, Emont and colleagues identified a cluster of hASPCs that is characterized by enriched ex-

pression of EPHA3 in their human AT scRNA-seq atlas, which has substantial similarities to murine Aregs145. 

Notably, EPHA3 is specifically expressed by the HHIP+ hASPCs that we identified in our analyses, further sup-

porting its alignment with mouse Aregs (Supp. Fig. 2.2.5A). To solidify the point that the previously described 

EPHA3+ hASPCs are indeed similar to our HHIP+ hASPCs, we transferred our cell annotation onto the Emont 

et al. dataset145 and found that the EPHA3+ population has a significantly higher prediction score for our 

HHIP+ population than the rest of the hASPCs (Fig. 2.2F). Finally, given that HHIP is coding for a surface 

marker, we could confirm the existence of a human SVF Lin–/HHIP+ cell population in the SC adipose depot 

using flow cytometry (Supp. Fig. 2.2.5C-D). 
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Another small population of hASPCs, present in every depot and donor, which we refer to as IFIT+ hASPCs, is 

defined by an extremely specific expression of interferon-related genes such as IFIT3, IFI6, and IFI27, a gene 

signature that is reflective of a viral immune response (Supp. Fig. 2.2.6A-B). A mesothelial Ifit+ population 

has already been reported in mouse OM143; yet, our IFIT+ population does not express mesothelial markers 

(Fig. 2.2C) but mesenchymal ones (Supp. Fig. 2.2.6C). However, we found that, based on the expression of 

ortholog genes between mice and humans, this population shared a very similar signature with Ifit+ cells that 

we have previously reported and that emerged when we integrated multiple mouse ASPC scRNA-seq da-

tasets146 (Fig. 2.2G, Supp. Fig. 2.2.3). 

Another small hASPC subpopulation that we detected was characterized by high expression of Secreted friz-

zled-related proteins 2 and 4 (SFRP2 and SFRP4) (Supp. Fig. 2.2.7A), and its gene expression patterns were 

similar to those of a mouse ASPC subpopulation identified using scRNA-seq146 (Supp. Fig. 2.2.3), and a hASPC 

subpopulation identified by Emont and colleagues145 (Supp. Fig. 2.2.7B). SFRPs are known to inhibit the Wnt 

signaling pathway, a key regulator of adipocyte differentiation162, and SFRP2-4, in particular, were shown to 

be upregulated in obesity, especially in visceral WAT163. While we identified this population as present in all 

depots, we observed a general higher expression of SFRP2, but not SFRP4, in hASPCs from OM adipose depots 

(Supp. Fig. 2.2.7C-D). 

While most hASPC subpopulations seem to exist in all analyzed adipose depots, albeit at different propor-

tions, we found two depot-specific cell clusters: FMO2+ cells were specific to PR and MC, while IGFBP2+ cells 

to OM adipose tissue (Fig. 2.2D, Supp. Fig. 2.2.2A-B). An enrichment of IGFBP2+ cell markers was also ob-

served in our bulk transcriptomic datasets of OM samples compared to other depots, both at the undiffer-

entiated and post-adipogenic induction states (Supp. Fig. 2.2.8A-B), thus confirming their specificity to OM. 

Moreover, when projecting our annotation onto the dataset by Emont and colleagues145, our IGFBP2+ cluster 

seems to align with one of their clusters (hASPC6)(Fig. 2.2E, Supp. Fig. 2.2.4).   

In conclusion, we found hASPCs to be constituted of two main subpopulations/states: the ASCs and PreAs, 

which are conserved across all depots. However, the heterogeneity of hASPCs is obviously more complex, 

with more (sub)cellular states. Among them, we identified an OM-specific subpopulation defined by high 

expression of IGFBP2. Finally, in line with the established definition of peritoneum covering visceral AT, we 

found mesothelial cells almost exclusively in the OM AT (Fig. 2.2D, Supp. Fig. 2.2.2A, Supp. Fig. 2.2.8C-E). 

Only (very few) cells originating from MC samples were also expressing mesothelial markers (Supp. Fig. 

2.2.8E), in line with the MC being itself covered by the peritoneum. 
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Figure 2.2 – scRNA-seq reveals common and specific cell populations across adipose depots. 

(A) t-SNE cell map of integrated scRNA-seq datasets across four depots and 6 donors (D) (Table 2.2): OM, n=3, SC, n=3, and 
MC, n=2 (same donor) from matched donors, and PR, n=3 colored by the clustering of each dataset analyzed individually 
(as shown in Supp. Fig. 2.2.1A). 

(B) t-SNE cell map of the data introduced in A colored by the identified clustering: Adipose Stem Cells (ASCs) - green, Pre-
adipocytes (PreAs) - red, HHIP+ ASPCs - light blue, IFIT+ ASPCs - gray, SFRP4+ ASPCs - light green, RBP5+ ASPCs - light-red, 
FMO2+ ASPCs - brown, mesothelial cells (Meso) - purple, vascular smooth muscle progenitor cells (VSMPs) - orange, endo-
thelial cells (Endo) - yellow, and immune cells (Immune) - pink. The percentage of cells belonging to each cluster is shown 
by a dot plot, with the exact number of cells on the right. 

(C) Dot plot of 10 of the main specific markers of each identified cluster shown in B. 
(D) Barplot displaying the percentage of cells of each depot shown in B coming from each cluster, excluding immune and en-

dothelial cells, see color legend below. 
(E) UMAP computed on the integrated data of SC- and OM-derived hASPCs and mesothelial cells published in Emont et al. 

(2022)145, colored by the predicted cell type/state when transferring our cell cluster annotation, see color legend for the 
predicted cell types below. 
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(F) Violin plot showing the distribution of the prediction score of the HHIP+ hASPC population when transferred onto the 
scRNA-seq atlas of hASPCs of Emont et al.145, where they identified hASPC4 as being transcriptomically similar to murine 
Aregs102,148.  

(G) Boxplot showing the distribution of the murine “Ifit+ ASPC” scores across the detected, distinct human SVF cell populations. 
The scores were based on the human orthologs of the murine top markers of the Ifit+ ASPCs based on the integration of 
scRNA-seq datasets of subcutaneous and visceral murine adipose tissues described in Ferrero et al.146 
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2.3.4 The Lin– fraction of SVF harbors three main subpopulations with specific functions 

that are ubiquitous across depots  

After having characterized the heterogeneity of the cellular SVF Lin– landscape across depots, we aimed at 

refining our functional characterization between depots, now at the subpopulation level. We thereby first 

focused on the main cell populations that are ubiquitous across depots: the ASCs, the PreAs and the VSMPs 

(Fig. 2.2A). Based on our scRNA-seq analyses expression profiles, we developed a specific sorting strategy 

that would allow downstream stratification and characterization of each of the aforementioned main SVF 

Lin– populations that are shared across depots. This sorting strategy involves three layers: 1) the first layer 

involves CD26, encoded by the gene DPP4 and specifically expressed by ASCs (Supp. Fig. 2.3.1A). Consistent 

with previous studies61,96,102, Dpp4 expression is specific to the murine ASC cluster146. 2) The second layer 

involves Vascular-adhesion protein 1 (VAP1), encoded by the gene AOC3 and highly expressed in VSMPs 

(Supp. Fig. 2.3.1A). In mouse, Aoc3 expression has mainly been described as being enriched in the PreA pop-

ulation96,102,146. However, based on our scRNA-seq integration of murine data, Aoc3 is in fact also highly ex-

pressed by murine VSMPs (Supp. Fig. 2.3.1B). 3) The third layer aims to enrich for PreAs. Several candidate 

surface markers appear specific to the PreA population (i.e., GPC3 or ICAM1). However, we reasoned that a 

simpler PreA enrichment approach would be to select for low expression of CD26 and VAP1. This approach 

would hold true in every depot except for the OM adipose depot, where two additional OM-specific cell 

populations would first need to be excluded: the mesothelial and the IGFBP2+ cells. Based on our transcrip-

tional analyses, we selected the transmembrane 4 L6 family member 1 (TM4SF1) as a marker to first exclude 

OM-specific populations from our analysis (Supp. Fig. 2.3.1A, C). In sum, our sorting strategy involves anti-

bodies directed against CD26, VAP1, and TM4SF1 (see Materials and Methods) to enrich for human ASCs 

(SVF Lin–/TM4SF1–/CD26+ (later referred to as CD26+)) and VSMPs (Lin–/TM4SF1–/VAP1+ (later referred to 

as VAP1+)), which leaves SVF Lin–/TM4SF1–/VAP1–/CD26– cells (later referred to as DN for “double nega-

tive”) enriched for PreAs (Fig. 2.3A-B). 

As expected, and in line with the transcriptomic findings, only OM-derived SVF showed a clearly positive 

population when stained with anti-TM4SF1 antibody, confirming its high enrichment in OM depot (Fig. 2.3B, 

Supp. Fig. 2.3.1D). However, as in the scRNA-seq datasets, we did find a few TM4SF1+ cells among MC SVF 

Lin– cells as well (Supp. Fig. 2.3.1D). Analysis of the flow cytometry profiles gathered from up to 37 human 

donors (Table 2.1) allowed us to quantify the relative abundance of the targeted populations in each of the 

three adipose depots (Fig. 2.3C). We found that the ASC pool is less abundant in OM AT compared to that of 

PR and SC, while SC AT is dominated by PreAs and the OM and PR ones by VSMPs (Fig.  3D). In line with our 

scRNA-seq findings, we found the same three populations in MC AT with relative ratios that resemble those 

of OM AT (Supp. Fig. 2.3.1E-F). 
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Having confirmed the existence of these shared SVF Lin– subpopulations in each depot, we aimed to interro-

gate their phenotypic behavior in vitro. When sorted separately, the CD26+ population outpaced all other 

populations in terms of cell growth regardless of the depot of origin (Supp. Fig. 2.3.1G), a feature that con-

firms their stem-like nature and is consistent with previous observations in mouse and human96,164. While 

highly proliferative, CD26+ scored the lowest in terms of adipogenic potential (Fig. 2.3E-F), further supporting 

the hypothesis that they are located at the very root of the adipogenic lineage. The VAP1+ cells had the 

highest adipogenic potential, followed by DN cells (Fig. 2.3E-F). The latter populations also exhibited a lower 

proliferative capacity compared to the ASC population (Supp. Fig. 2.3.1G). 

Taking advantage of the relatively large cohort of human donors (n=37, Table 2.1) from which the adipose 

tissue was sampled, we investigated potential correlations between the relative abundance of each of the 

hASPC subpopulations and corresponding metadata such as BMI, age, and gender of the donors. Interest-

ingly, we found that while the proportion of CD26+ cells (enriching for ASCs) is not affected by BMI changes, 

the latter appears to be correlated with DN depletion (enriching for PreAs). This correlation is particularly 

high in the SC, but also in the OM AT and is accompanied by a slight increase in the proportion of VAP1+ cells 

(enriching for the VSMPs) (Fig. 2.3G). In contrast, the age or sex of the donor did not seem to affect the 

equilibrium of cell populations within the SVF Lin– pool of any of the three analyzed adipose depots (Supp. 

Fig. 2.3.2). 

Despite high similarities in the transcriptomes of ASCs and PreAs across depots in the scRNA-seq data, we 

observed that OM CD26+ and DN cells are consistently and significantly less adipogenic than equivalent SC 

and PR cells. To determine if cell-intrinsic features could explain the low adipogenic capacities of the OM 

cells, we explored the depot-specific transcriptomic signatures of these subpopulations in our scRNA-seq 

dataset. We noticed that across depots, the transcriptomes of ASC cells are more related than PreA ones 

(Supp. Fig. 2.2.2D, Supp. Fig. 2.3.3A), supporting the hypothesis that depot-specific features accumulate 

along commitment. We then identified genes of ASCs or PreAs that were enriched in a depot-specific manner 

(Fig. 2.3H, Supp. Fig. 2.3.3B). In line with their high adipogenic potential, hASPCs from SC, and especially 

PreAs, showed significantly higher expression of well-known adipogenic genes and transcription factors such 

KLF4, KLF6, WISP2, APOE, APOC1, and CD36. The pro-adipogenic character of PR adipose depot-isolated cells 

was also reflected in their transcriptome (Supp. Fig. 2.3.3B-C). For example, PIK3R1 is the most up-regulated 

gene in PR compared to other adipose depots, with PI3K/Akt signaling playing a crucial role in adipogenesis 

of human mesenchymal stem cells165. In mice, PI3K/Akt signaling has also been linked to browning by regu-

lating GDF5-induced Smad5 phosphorylation166. While GDF5 expression was virtually absent in our scRNA-

seq data, SMAD5 expression was specific to PR PreAs and ASCs. Similarly, ZBTB16 is a PR-specific marker 

known to induce browning167. With respect to populations that showed limited adipogenic potential, MC cells 

overexpressed genes linked to unfolded protein or protein folding (Supp. Fig. 2.3.3C) such as Heat-shock-
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proteins (HSPs) (Fig. 2.3H, Supp. Fig. 2.3.3B), a large family of molecular chaperones. HSPs have been re-

ported to interact with PPARγ to either stabilize it and enhance adipogenesis (Hsp90) 168 or to destabilize it 

and inhibit adipogenesis (Hsp20)169. OM cells once again showed an expression enrichment of genes linked 

to the inflammatory response (Supp. Fig. 2.3.3C). Among the candidates that were specific to OM were also 

a number of markers that were previously described in the literature as having a negative impact on adipo-

genesis (Fig. 2.3H, Supp. Fig. 2.3.3B, RARRES2, RSPO3, RPL7, PTN, GAL, ALDH1A1, IGFBP3152,170–172). Taken 

together, we were not only able to validate the findings that we inferred from bulk transcriptomic data at 

the scRNA-seq level, we also provided evidence that the PreA subpopulations are likely the ones that con-

tribute the most to the depot-specific transcriptomic signatures that we captured at the bulk level. 
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Figure 2.3 – The SVF Lin– composition differs between subcutaneous, omental, and perirenal adipose tissues, and 
shared sub-populations from different anatomical locations exhibit consistent but also intrinsic molecular and cellular 
phenotypes. 

(A) Sorting strategy scheme to enrich for Adipose stem cells (ASCs), pre-adipocytes (PreAs), Vascular smooth muscle progeni-
tors (VSMPs), and OM-specific cells. 

(B) Flow cytometry-based representative profiles and gating strategy for SC, OM, and PR SVF from the same donor (D23) to 
isolate SVF Lin–/TM4SF1– cells. 

(C) Flow cytometry-based analysis of the abundance of each cell subpopulation gated from the Lin–/TM4SF1– fraction of SVF 
cells; SC n = 37, OM n = 35, PR n = 17 donors. 

(D) Bar plot to compare the flow cytometry-based abundance of the indicated SVF populations across depots. The three pop-
ulations accumulate to 100% of Lin–/TM4SF1– gated cells by depot; SC n = 37, OM n = 35, PR n = 17 donors. 

(E) Representative fluorescence microscopy images of SVF Lin–/TM4SF1–, CD26+, DN, and VAP1+ SVF populations from each 
depot after in vitro adipogenic differentiation (see Methods); Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA, 
scale bar = 100 um. 

(F) Quantification of the adipogenic potential of the SVF Lin–/TM4SF1–populations shown in D; Values are normalized to av-
erage adiposcore of the reference Lin–/TM4SF1– population; n = 12-21, 3-7 donors, 1-4 independent wells each. 

(G) Scatter plot showing the correlation between the % Lin–/TM4SF1– cells from each indicated SVF population and BMI across 
donors. 

(H) Heatmap of the top 30 genes detected as significantly higher expressed in the indicated depot versus all other depots (only 
genes detected as differentially expressed in each pairwise comparison were retained) when focusing on ASCs (left) or 
PreAs (right); Average log normalized expression scaled by row. 

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, One-Way ANOVA and Tukey HSD post hoc test (C, D, F), and linear regression 
analysis with its relative goodness of fit, and the FDR-adjused p-values of the Pearson correlations (G).  
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2.3.5 Mesothelial cells inhibit adipogenesis of omental hASPCs 

We next questioned whether the presence of OM-specific cell populations (Fig. 2.4A) might influence the 

adipogenic capacity of the precursor cells themselves, as triggered by two key observations: 1) OM VAP1+ 

and DN cells, which are depleted of TM4SF1+ cells via the utilized sorting strategy, did show a discrete ability 

to differentiate (Fig. 2.3E-F); 2) several genes that were previously linked to the non-adipogenic phenotype 

of OM SVF-adherent cells were specific to mesothelial and/or IGFBP2+ cells (e.g., CD200173, WT1, and 

ALDH1A2152, Supp. Fig. 2.4.1A). 

Using TM4SF1 as a surface marker for OM-specific populations (mesothelial and IGFBP2+ cells, Supp. Fig. 

2.3.1C), we separated TM4SF1+ cells from the total OM SVF Lin– fraction to study the adipogenic behavior 

of “pure” OM hASPCs (Fig. 2.4B). In line with our previous observation on the adipogenic potential of OM DN 

and VAP1+ subpopulations (Fig. 2.3E-F), we found that OM SVF Lin–/TM4SF1– cells, enriching for OM hASPCs 

and later referred to as TM4SF1– cells, are significantly more adipogenic than the total OM SVF Lin– fraction, 

which does contain the OM-specific mesothelial and IGFBP2+ cells. Not surprisingly, since mesothelial cells 

have previously been shown to be non-adipogenic174, the OM SVF/Lin–/TM4SF1+ cells, here referred to as 

TM4SF1+ cells, did not accumulate any lipid droplets (Fig. 2.4C-D). Importantly, however, the increase in 

differentiation observed for TM4SF1– cells compared to the Lin– fraction was greater than expected by the 

simple, proportional removal of the non-adipogenic TM4SF1+ cells (accounting for roughly 20% of the total 

SVF Lin– fraction, Fig. 2.3C). Taken together, in vitro cultured OM hASPCs seem to be subjected to inhibitory 

cues that may stem from the OM-specific TM4SF1+ populations. Interestingly, the relative fraction of OM 

TM4SF1+ cells within the total SVF Lin– cell pool positively correlated with the BMI of donors, suggesting a 

possible functional role of TM4SF1+ cells in AT expansion (Supp. Fig. 2.4.1B). Morphologically, TM4SF1+ cells 

stood out from regular round and cobblestone-like OM hASPCs (OM SVF/Lin–/TM4SF1–)175,176 (Supp. Fig. 

2.4.1C), as they had spindle-like shape characteristic of mesothelial cells. 

To test whether the observed inhibitory cues within the OM SVF Lin– cell pool has a negative influence not 

only on the adipogenic potential of OM hASPCs but also on those of SC or PR, we set up a mixing experiment 

where SC Lin– or PR Lin– cells were co-cultured with increasing ratios of OM Lin– cells (Fig. 2.4E-F, and Supp. 

Fig. 2.4.2). We observed that despite a linear increase in the relative proportion of OM SVF Lin– cells among 

SC SVF Lin– ones, the resulting decrease in adipogenic potential was non-linear (Fig. 2.4F). In other words, 

the decrease in differentiation was greater than expected by the simple relative “dilution” of SC SVF Lin– 

cells. To control for the fact that SC cells were not overgrown by OM cells, we quantified the relative number 

of nuclei across conditions which was stable (Supp. Fig. 2.4.2A) and controlled that the expression of an SC-

specific marker DKK2 was linearly increasing with the proportion of SC cells (Supp. Fig. 2.4.2B-C). Using a 

similar approach but this time mixing OM SVF Lin– cells with PR SVF Lin– cells did not reveal any regulatory 

effect, as we observed a relatively linear relationship between the increase in differentiation and the 
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proportion of PR cells per well (Supp. Fig. 2.4.2D-F). Thus, our findings suggest that the presence of OM 

TM4SF1+ cells results in lowered adipogenic potential, although this effect is not universal among hASPCs, 

hinting at depot-specific sensitivities to potential inhibitory cues stemming from OM SVF Lin– cells. 

2.3.6 IGFBP2+ OM SVF Lin– cells can be found in situ and appear to transition between 

mesothelial and mesenchymal cell types 

To better understand the cellular nature of the observed inhibitory effect, we set out to determine which 

TM4SF1+ population may be responsible for this adipogenic inhibition: the previously described mesothelial 

cells, and/or a small cluster of cells that highly express IGFBP2 (Fig. 2.4A and Supp. Fig. 2.3.1C). The latter 

appears a plausible candidate since IGFBP2 has previously been shown to exert an anti-adipogenic effect 

both in mice and humans177,178, which is why we first aimed to better define this population. At the single-

cell level, the IGFBP2+ population appeared to have an intriguing dual gene expression signature, sharing 

markers with both hASPCs and mesothelial cells (Supp. Fig. 2.4.3). Such expression signature may at first 

glance suggest a technical artifact known as doublets, when two cells are mistakenly co-captured and con-

sidered as a single one. However, IGFBP2+ cells did not display a larger library size or number of captured 

features (Supp. Fig. 2.2.1I), which would be expected for doublets due to a larger initial RNA content com-

pared to singlets. More importantly, we found that these cells express, on the one hand, specific markers 

such as IGFBP2, RBP1, WNT4, or WNT6 and, on the other, markers to a higher level than in ASPCs or meso-

thelial cells alone (Supp. Fig. 2.4.3), which is technically impossible for randomly co-encapsulated cells. To 

validate the existence of this population in another independent dataset, we transferred our cell annotation 

onto the recently published scRNA-seq atlas of human SC and OM ATs145. We found that, first, only cells from 

OM harbor a positive prediction score for IGFBP2+ cells (Supp. Fig. 2.4.4A), validating once more their spec-

ificity to the OM. Second, the cells predicted as IGFBP2+ aligned with a cluster that was independently iden-

tified by Emont et al.145 (Supp. Fig. 2.4.4B-D, Fig. 2.2F) and showed enrichment for IGFBP2+ cell markers, as 

illustrated by the marker-based expression score (Supp. Fig. 2.4.4E). Interestingly, the frequency of this pop-

ulation (relative to ASPCs and mesothelial cells) highly correlated with the BMI of the donors (ρ=0.95, Supp. 

Fig. 2.4.4F). Furthermore, and once again, aside from expressing their own specific markers (Supp. Fig. 

2.4.4G-H), the predicted cells co-expressed mesothelial and ASPC markers (Supp. Fig. 2.4.4I) and aligned 

along a “bridge” between the two cell types. This duality in gene expression could reflect cells that are tran-

sitioning from one cell type to another. To computationally test this hypothesis, we performed trajectory 

inference on OM hASPCs (ASCs, PreAs), IGFBP2+ cells, mesothelial cells as well as VSMPs as a negative con-

trol. The trajectory was computed using PAGA as it can identify continuous and disconnected structures in 

the data179. The inferred graph predicted branches connecting ASPCs to mesothelial cells through IGFBP2+ 

cells (Fig. 2.4G). As positive and negative controls of the validity of the graph structure, ASCs and PreAs were 
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also connected by a robust branch, as previously reported in mouse96,146, and VSMPs were, as expected, not 

connected to the main trajectory. When ordering the cells by their pseudotime along the trajectory starting 

from ASCs (Supp. Fig. 2.4.5A), we observed a gradual decrease and increase of hASPC and mesothelial cell 

markers, respectively, along the connecting branch (Fig. 2.4H-I), as well as an up-regulation of IGFBP2+ cell 

markers during the transition (Fig. 2.4H, J, Supp. Fig. 2.4.5B). Altogether, these results indicate that IGFBP2+ 

cells might represent cells that transition between mesothelial and mesenchymal cell types. Accordingly, we 

found the GO term “epithelial-to-mesenchymal transition” (EMT) to be enriched among the IGFBP2+ cells’ 

differentially expressed genes (Supp. Fig. 2.4.5C-D). In addition to the genes enriched in the GO term, such 

as Slug (SNAI2), we also found several genes that are expressed by the transitioning cells that were previously 

linked with EMT, such as genes from the Wnt family, Matrix Metallopeptidase (MMPs), ZEB transcription 

factors, and others180–182 (Supp. Fig. 2.4.5D). TGF-β signaling, and especially TGF-β1, has also been described 

as a master regulator of EMT linked to wound healing and fibrosis183,184. In line, we found that IGFBP2+ cells 

have an enriched expression linked to “response to TGF-β”, but not significantly to TGF-β1 in particular. These 

cells also express genes in relation to epithelial migration and proliferation. Finally, EMT in the peritoneum 

of mice has been shown to induce the following gene programs: angiogenesis, hypoxia, inflammatory re-

sponses, cell cycle markers, and downregulation of adhesion molecules185. The corresponding GO terms were 

all significantly enriched among the IGFBP2+ cell markers (Supp. Fig. 2.4.5C). Thus, our findings point to the 

existence of cells that likely transition between mesothelial and mesenchymal cells, even under “steady-

state-like” conditions. 

Having identified IGFBP2-expressing and transitioning cells computationally, we next defined a sorting strat-

egy to separate these cells and the mesothelial cells from the total human OM SVF. To do so, we retained 

TM4SF1 as a valuable marker to segregate OM-specific cells from OM hASPCs and added MSLN as a marker 

that is solely expressed by mesothelial cells (Supp. Fig. 2.3.1C). Hence, we defined IGFBP2+ cells as OM SVF 

Lin–/TM4SF1+/MSLN– and mesothelial cells as OM SVF Lin–/TM4SF1+/MSLN+ (Supp. Fig. 2.4.6A), each frac-

tion accounting for 5 to 10% of the total OM SVF/Lin– fraction (Supp. Fig. 2.4.6B). While we were able to 

highlight a significant, positive correlation between the abundance of TM4SF1+ cells and the BMI of donors 

based on flow cytometry analysis (Supp. Fig. 2.4.1B), that between the abundance of TM4SF1+/MSLN– cells, 

enriching for IGFBP2+ cells specifically, and BMI was not significant (Supp. Fig. 2.4.6C). Using the same panel 

of markers, we then set out to localize IGFBP2+ cells in situ. Interestingly, both MSLN and TM4SF1 highly 

stained the boundaries of the AT lobules (Supp. Fig. 2.4.7A), likely revealing a mesothelial mono-layer peri-

toneum-like structure that pads the OM itself. Accordingly, the majority of cells looked equally intense for 

both markers; we therefore defined the majority of cells as mesothelial cells (Fig. 2.4K, red arrows, Supp. Fig. 

2.4.7B). However, intermingled among these mesothelial cells, we identified cells that were much more in-

tense in the TM4SF1 channel than the MSLN one (Fig. 2.4K, and Supp. Fig. 2.4.7B, white arrows), reminiscent 
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of our IGFBP2+ cell gene expression signature. The absence of background staining was assessed by both 

unstained control and secondary-only staining (Supp. Fig. 2.4.7). Finally, and emphasizing their transitioning 

cell nature, we found that confluent Lin–/TM4SF1+/MSLN– cells harbor the specific mesothelial-cobblestone-

like morphology, but when expanding, they tend to be spindle-like in shape, resembling mesenchymal cells 

(Fig. 2.4L, Supp. Fig. 2.4.8). 
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Figure 2.4 – OM SVF harbors cells and signals that mediate adipogenic inhibition, while IGFBP2+ cells appear in tran-
sition between mesothelial cells and ASPCs. 

(A) t-SNE cell map of integrated scRNA-seq datasets highlighting the two OM-specific populations: Mesothelial cells in purple 
and IGFBP2+ cells in blue. 

(B) Representative flow cytometry scatter plot of OM SVF Lin– cells (D05) stained with TM4SF1 antibody showing the gating 
strategy for sorting OM SVF Lin– -specific subpopulations as Lin–/TM4SF1+ and Lin–/TM4SF1– cells. 
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(C) Representative fluorescence microscopy images of OM SVF Lin–, Lin–/TM4SF1– and Lin–/TM4SF1+ cell populations after 
adipogenic differentiation (see Methods); Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA; Scale bars = 100 
um. 

(D) Barplot showing the adiposcore of the cell populations that are indicated in C; n = 6-23, 4 donors, 1-6 independent wells 
for each. 

(E) Representative fluorescence microscopy images of SVF Lin– cells in mixing experiments after 14 days of adipogenic differ-
entiation, where SVF Lin- cells from OM and SC adipose tissues of donor 68 (D68) were mixed directly after cell isolation at 
the indicated proportions. Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA, scale bar = 100 mm. 

(F) Quantification of the extent of adipogenic differentiation of the distinct, mixed OM and SC SVF Lin– cell populations, as 
presented in E. Values across biological replicates are normalized to the average adiposcore of the reference 100% SC Lin– 
condition. The relative proportion (0-100%) of SC SVF Lin- cells in each well is plotted on the x-axis. Error bars represent 
standard deviation from the average, the linear and exponential regression with corresponding R2 coefficients are shown 
in red and blue, respectively. The black line represents the expected increase of adipogenesis for a linear dilution between 
0 and 100% of SC SVF Lin– cells; n = 16, 4 biological replicates, 4 independent wells for each. 

(G) PAGA-inferred trajectory superimposed on the PAGA-initialized ForceAtlas2 layout. The size of the dots is proportional to 
the number of cells in the cluster, and the thickness of the lines indicates the confidence of the obtained trajectory rela-
tionship (the thicker, the more confident). 

(H) Heatmap showing the gene expression changes along pseudotime calculated on the trajectory shown in G. Genes decreas-
ing from hASPCs (ASCs and PreAs) to Mesothelial cells are highlighted in red, genes increasing from hASPCs to Mesothelial 
cells are highlighted in purple, and genes specific to IGFBP2+ cells are highlighted in blue; log normalized gene expression 
scaled by row (quantile normalization). 

(I) Scatter plot showing the average of quantile-normalized gene expression highlighted in red or purple on the heatmap 
shown in H for each cell along the pseudotime calculated on the trajectory shown in G. The plot focuses on the transition 
between PreAs (red) and Mesothelial cells (purple), passing by IGFBP2+ cells (blue). A locally estimated scatterplot smooth-
ing (LOESS) smoothing with 95% confidence interval is shown. 

(J) Scatter plot showing the average of quantile-normalized gene expression highlighted in blue on the heatmap shown in H 
for each cell along the pseudotime calculated on the trajectory shown in G. The plot focuses on the transition between 
PreAs (red) and Mesothelial cells, passing by IGFBP2+ cells (blue). A generalized additive model (GAM) fit with 95% confi-
dence interval is shown. 

(K) Confocal microscopy fluorescent images of the in situ immunohistochemistry-based localization of TM4SF1+ (green) and 
MSLN+ (pink) cells in OM adipose tissue in donor 67. Nuclei are stained with DAPI (blue). The arrows indicate 
TM4SF1+/MSLN– cells (white) and TM4SF1+/MSLN+ cells (red) in the periphery of the adipose tissue lobules. Scale bars, 50 
μm. Experiments were repeated at least three times, yielding similar results. 

(L) Brightfield microscopy images of OM SVF Lin–/TM4SF1+/MSLN– (i.e., IGFBP2+) cells from donor 67 reveal a mesothelial 
cobblestone-like morphology when confluent and fibroblast spindle-like morphology upon expansion; Scale bars, 10 mm.  

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, REML analysis with matched values for the same donor and Tukey HSD post hoc 
test (D).  
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2.3.7 IGFBP2+ SVF Lin– OM cells inhibit adipogenesis through IGFBP2 

Having identified cells with low MSLN but high TM4SF1 expression both in situ by immunohistochemistry and 

ex vivo by FACS, we wanted first to validate that cells that we isolated as Lin–/TM4SF1+/MSLN– (Fig. 2.5A) 

correspond to the IGFBP2+ cells that we identified in the scRNA-seq data. We first confirmed enriched IGFBP2 

expression in the sorted cells compared to total OM SVF Lin– or OM TM4SF1–/MSLN– ASPCs and SC SVF Lin– 

cells by qPCR (Fig. 2.5B). To assess whether IGFBP2 is secreted or intracellular186, we looked for the presence 

of the IGFBP2 protein in the supernatant of the OM-specific subpopulations as well as in SC and PR SVF Lin– 

cells as negative controls. Using ELISA, we measured the highest concentration of IGFBP2 in the supernatant 

of OM Lin–/TM4SF1+/MSLN– cells, quantified at approximately 35 ng/ml after 48h, followed by the meso-

thelial cells which secrete less than 20 ng/ml of IGFBP2. In contrast, we only detected low IGFBP2 levels in 

the supernatant of OM SVF Lin– cells, OM hASPCs (OM Lin–/TM4SF1–/MSLN–), or PR Lin– and no secretion 

by the SC SVF Lin– cells (Fig. 2.5C). To translate these IGFBP2 ELISA values to a more physiological model of 

IGFBP2 secretion by the OM AT, we incubated total OM AT in PBS and measured the secreted IGFBP2 amount 

after 24, 48, and 72 hours. The concentration of IGFBP2 increased linearly over time, leading to a secretion 

of ~5ng/mL for 100mg of tissue every 24h (Fig. 2.5D). 

Having identified a sorting strategy to stratify the IGFBP2-secreting and mesothelial cells, we now aimed at 

identifying which cell fraction is responsible for the anti-adipogenic effect exerted by the OM-specific 

TM4SF1+ cells described above (Fig. 2.4C). More specifically, given that IGFBP2 is a well-known OM-specific 

adipokine that has been shown to have anti-adipogenic properties177,187,188, we wondered if the SVF Lin–

/TM4SF1+/MSLN– cells could exert this effect in a paracrine fashion. To test this hypothesis, we used a 

transwell setup to expose receiving cells at the bottom to the secretome of either IGFBP2-secreting, meso-

thelial, or control cells, preventing cell-to-cell contact. At the bottom, we seeded the highly adipogenic SC 

SVF Lin– cells, since we already showed their sensitivity to the OM SVF Lin–-mediated anti-adipogenic effect 

(Fig. 2.4E-F). By doing so, we observed the highest and most significant adipogenic inhibition on SC cells when 

they were exposed to OM SVF Lin–/TM4SF1+/MSLN– cells, while the adipogenic inhibition was milder and 

more variable when SC cells were exposed to the OM Lin–/TM4SF1+/MSLN+ fraction (Fig. 2.5E-F, Supp. Fig. 

2.5.1A). To validate that the PR cells are less responsive to this inhibitory signal, as shown in direct co-culture 

experiments (Supp. Fig. 2.4.2D-F), we performed the same transwell experiment, but this time with PR SVF 

Lin– cells at the bottom. Consistent with our first results, PR hASPCs were rather insensitive to the inhibitory 

action of OM SVF Lin– cell subpopulations on adipogenesis (Supp. Fig. 2.5.1B-D). 

To test whether IGFBP2 is at least partly regulating the high anti-adipogenic effect of IGFBP2-secreting cells, 

we knocked down (KD) IGFBP2 in the OM SVF Lin–/TM4SF1+/MSLN– cell population using siRNA probes. 

After validating the KD both at the mRNA and secreted protein levels (Fig. 2.5G-H), we used again a transwell 

set-up to expose SC SVF Lin– cells to their secretome as well as to that of OM SVF Lin–/TM4SF1+/MSLN– cells 
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treated with non-targeting siRNA control (NC1). We found that the SC cells exposed to the IGFBP2 KD cells 

are significantly more adipogenic than those exposed to the control (Fig. 2.5I-J, Supp. Fig. 2.5.1E), further 

supporting the notion that Lin–/TM4SF1+/MSLN– cells exert an anti-adipogenic action via IGFBP2. 

2.3.8 IGFBP2-mediated adipogenic inhibition occurs in an IGF-independent manner 

Prompted by the evidence that IGFBP2 at least partially orchestrates the anti-adipogenic environment ob-

served within OM SVF, we set out to better understand the mechanism underlying IGFBP2’s anti-adipogenic 

effect. First, we tested if exogenous recombinant IGFBP2 is itself inhibitory by treating SVF-adherent cells 

from SC or PR depots with increasing IGFBP2 concentrations ranging from 0.5 to 4nM (Supp. Fig. 2.5.2A-F). 

We observed a linear decrease of differentiation of SC cells with increasing IGFBP2 concentrations, while only 

a milder effect was observed on PR cells. Notably, we observed significant inhibition of SC cells starting from 

as low as 1nM IGFBP2 (Fig. 2.5K-L). This is a value close to that measured in the supernatant of IGFBP2 (Lin–

/TM4SF1+/MSLN–)-secreting cells (Fig. 2.5C), which is why we used it for all further experiments. 

IGFBP2 is known to act through two main mechanisms involving either IGF-dependent or IGF-independent 

signaling189. Under the first scenario, the presence of IGFBP2 in the extracellular environment of hASPCs 

would sequester IGF-I and/or IGF-II and interfere with their pro-adipogenic signaling190–193. Under the second 

scenario, IGFBP2 would activate a signaling cascade by binding to the α5β1 integrin receptor, inducing cells 

to stay in their pre-adipocyte state194. Hence, we aimed to narrow down through which of these mechanisms 

IGFBP2 might influence adipogenesis of hASPCs from adipose depots to which we had recurrent access (i.e., 

SC, PR, and OM).  

To test the first hypothesis of IGFBP2 sequestering IGFs, we co-treated SVF-adherent cells with both IGFBP2 

and IGF-I or IGF-II, as well as with the three recombinant proteins alone. Based on the literature191,193, we 

decided to use a concentration of 10nM for both IGF-I and IGF-II, given that, rather surprisingly, we were 

unable to observe a significant effect on the adipogenic potential of hASPCs treated with IGFs at any concen-

tration ranging from 2.5 to 40nM, neither on SC or PR SVF Lin– cells (Supp. Fig. 2.5.2A, G-J, D, K-N). For SC 

cells, the drop in adipogenic potential was comparable when cells were treated with IGFBP2 both in the 

presence or in the absence of IGFs (Fig. 2.5K-L, Supp. Fig. 2.5.3A), suggesting an IGF-independent action of 

IGFBP2. Once again, PR lines appeared to be less sensitive to the action of IGFBP2 and IGF treatments. In fact, 

even though we observed a similar trend to that observed for SC cell behavior when treating PR cells with 

IGFBP2 both in the presence or in the absence of IGFs, none of the observed decreases in adipogenic poten-

tial was significant when compared to the non-treated cells (Supp. Fig. 2.5.3B-D). Overall, this is consistent 

with our previous observations suggesting that PR SVF-adherent cells are less sensitive to the inhibitory effect 

of OM SVF Lin– cells in the cell mixing setup (Supp. Fig. 2.4.2D-F) and of OM SVF Lin–/TM4SF1+/MSLN– cells 

in the transwell setup (Supp. Fig. 2.5.1B-D).  
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Next, we explored to what extent OM TM4SF1– cells, enriching for OM hASPCs, can respond to IGFBP2 and 

IGF treatments, since these cells anatomically co-exist with the IGFBP2-secreting cells. Even if OM TM4SF1– 

cells are intrinsically lowly adipogenic, we observed a significant differentiation decrease when these cells 

were treated with IGFBP2 (Fig. 2.5M-N, Supp. Fig. 2.5.3F), which further supports the anti-adipogenic poten-

tial of IGFBP2-secreting cells in their depot of origin. Contrary to PR and SC cells, OM cells were more sensitive 

to the IGF-I and IGF-II treatments but with a high degree of variability between batches (Fig. 2.5M-N). How-

ever, when co-treated with IGFs and IGFBP2, the differentiation of OM TM4SF1– cells was again significantly 

lower than in non-treated cells (Fig. 2.5M-N, Supp. Fig. 2.5.3E). The fact that IGF treatment could not main-

tain the increased adipogenic potential when cells were treated with IGFs only, even if given in excess (10nM 

of IGFs versus 1nM of IGFBP2 for a stoichiometry of 1:1), further suggests an IGF-independent mode of action 

by IGFBP2. 

We then tested the second hypothesis, namely that IGFBP2 may act in an IGF-independent fashion by acti-

vating the α5β1 integrin receptor194. To do so, we used echistatin, a known antagonist of the integrin recep-

tor195, at a concentration of 100 nM for the first 48h of adipogenic induction177, as longer treatment resulted 

in cell detachment. We therefore coupled echistatin to IGFBP2 treatment only during the first 48h of differ-

entiation. Interestingly, we found that echistatin alone is able to significantly enhance the differentiation of 

SC SVF-adherent cells, while, when cells were co-treated with IGFBP2 and echistatin, the adipogenic potential 

of the treated cells was similar to that of non-treated control cells (Fig. 2.5K, O, Supp. Fig. 2.5.3A). Interfering 

with integrin receptor function in PR SVF-adherent cells yielded a similar trend in overall adipogenic potential 

as observed for SC cells (Supp. Fig. 2.5.3B-C, F). This result highlights the important role played by integrin 

receptor signaling in mediating the adipogenic potential of cells, as echistatin had a significant effect even on 

the highly adipogenic PR cells. 

Finally, when treating OM TM4SF1– cells with echistatin, we observed a significant increase in the ability of 

these intrinsically non-adipogenic cells to accumulate lipid droplets (Fig. 2.5M, P, and Supp. Fig. 2.5.3E), in 

line with findings by Yau and colleagues177. Furthermore, co-treatment with echistatin and IGFBP2, both com-

peting for binding to the α5β1 integrin receptor, led to a significant increase in differentiation compared to 

non-treated cells, but less than echistatin-only treatments (Fig. 2.5M, P, and Supp. Fig. 2.5.3E). 

Taken together, our observations point to the existence of an OM-specific and transitioning cell population 

that highly expresses and secretes IGFBP2, which negatively impacts the adipogenic potential of OM and SC 

hASPCs, by signaling through an IGF-independent mechanism involving the integrin receptor alpha. However, 

we cannot completely exclude that the restored adipogenic potential of the analyzed cells (as compared to 

non-treated control cells) may be driven by two independent and opposite effects, i.e., inhibition by IGFBP2 

and enhancement by echistatin. Indeed, the observed significant increase in adipogenesis for example of PR 
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cells upon echistatin treatment (Supp. Fig. 2.5.3B-C, F) suggests that the integrin receptor can also negatively 

regulate adipogenic potential in a manner that may be independent of IGFBP2 activation. 

  



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

 75 

 

TM
4S

F1
 - 

AF
64

7-
A

MSLN - CF568

TM4SF1+/MSLN–
2.81

MesoDP
20.6

37.7
MesoDN

0.9
TM4SF1–/MSLN+

Lin– MesothelialIGFBP2 high

OM ASPCs

SVF
SVF

A

E F
SVF SVF TM4SF1–/

MSLN–
TM4SF1+/

MSLN–
TM4SF1+/

MSLN+

TM4S
F1+

MSLN
+

TM4S
F1+

MSLN
–

B

24h 48h 72h
0

5

10

15

20

IG
FB

P2
 [n

g/
m

l] 
pe

r 1
00

 m
g 

of
 ti

ss
ue

 

C

D

SVF
SVF

TM4S
F1–

MSLN
–

TM4S
F1+

MSLN
–

G H

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
ad

ip
os

co
re

 [a
.u

.]

Lin
–

Lin
–

Lin
–

TM4S
F1+

MSLN
+

TM4S
F1+

MSLN
–

OM
SC
PR

Depot:

0

20

40

60

80

ng
/m

l
SC SVF

SVF TM4SF1+/
MSLN– NC1

TM4SF1+/MSLN–
IGFBP2 KD

0.0

0.2

0.4

0.6

0.8

Ad
ip

os
co

re
 [a

.u
.]

SVF

TM4S
F1+

MSLN
–

NC1
TM4S

F1+

MSLN
–

IG
FBP2 K

D

I J

0.0

0.5

1.0

1.5

2-
Ct

IGFBP2

0

5

10

15

20

ng
/m

l 

IGFBP2

NC1

IG
FBP2 K

D
SVF

NC1

IG
FBP2 K

D
SVF

SC SVF

Bottom
Top

Bottom
Top

TM4S
F1–

MSLN
–

TM4S
F1–

MSLN
–

OM
SC

Depot:

OM
SC

Depot:

OM
SC

Depot:

OM
SC

Depot:

OM
SC

Depot:

OM
SC

Depot:

0

1

2

3

4

5

2-
Ct

O
M

 A
SP

Cs
 D

73

Ctrl IGFBP2 Echistatin
IGFBP2
Echistatin

IGF-I IGF-II IGFBP2
IGF-I

IGFBP2
IGF-II

N P

Ctrl IGFBP2 Echistatin
IGFBP2
Echistatin

IGF-I IGF-II IGFBP2
IGF-I

IGFBP2
IGF-II

SC
 S

VF
 D

62

K L

M

O

No
rm

al
ize

d 
ad

ip
os

co
re

 [a
.u

.]

0.0

0.5

1.0

1.5

2.0

Ctrl

IG
FBP2

Ech
i.

IG
FBP2

Ech
i.

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
ad

ip
os

co
re

 [a
.u

.]

Ctrl

IG
FBP2

IG
F-I

IG
F-II

IG
FBP2

IG
F-I

IG
FBP2

IG
F-II

0.0

0.1

0.2

0.3

0.4

Ad
ip

os
co

re
 [a

.u
.]

0.0

0.1

0.2

0.3

0.4

Ad
ip

os
co

re
 [a

.u
.]

Ctrl

IG
FBP2

Ech
i.

IG
FBP2

Ech
i.Ctrl

IG
FBP2

IG
F-I

IG
F-II

IG
FBP2

IG
F-I

IG
FBP2

IG
F-II

IGFBP2    IGFBP2

Bottom

Top

Bottom

Top



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

 76 

Figure 2.5 – IGFBP2+ cells secrete IGFBP2 to inhibit adipogenesis of neighboring cells through an IGF-independent, 
paracrine mechanism. 

(A) Representative flow cytometry scatter plot of OM SVF Lin– cells (D53) stained with TM4SF1 and MSLN showing the gating 
strategy to enrich for specific SVF Lin– subpopulations: Lin–/TM4SF1–/MSLN– (OM ASPCs - Black border), Lin–
/TM4SF1+/MSLN– (IGFBP2+ cells, Blue border), or Lin–/TM4SF1+/MSLN+ (mesothelial cells, Purple border); DP: Double 
Positive; DN: Double Negative. 

(B) qPCR-based quantification of IGFBP2 expression. Ct values are normalized first to HPRT1 expression, then to the ∆Ct of OM 
SVF cells; n=4, 2 donors, 2 technical replicates. 

(C) ELISA-based quantification of secreted IGFBP2 (ng/mL) in the supernatant of the indicated cellular populations after 48h of 
secretion in a serum-free medium; n=8, 4 donors, 2 technical replicates. 

(D) ELISA-based quantification of IGFBP2 levels (ng/mL), as secreted by 100mg of OM adipose tissue over the indicated time 
window in PBS; n=4, 2 donors, 2 technical replicates. 

(E) Representative fluorescence microscopy images of “receiver” SC SVF adherent cells, at the bottom of a transwell set-up, 
after adipogenic differentiation when co-cultured with the indicated SVF populations on top of the transwell: paired SC SVF 
adherent cells, OM SVF adherent cells, OM SVF/Lin–/TM4SF1– (OM ASPCs), OM SVF/Lin–/TM4SF1+/MSLN– (IGFBP2+) cells, 
or OM SVF/Lin–/TM4SF1+/MSLN+ (mesothelial) cells. Top row: SC cells from D25, OM cells from D54; bottom row: SC and 
OM cells from D65. 

(F) Barplot showing the adiposcore quantification of “receiver” cells in E. Values are normalized to the average adiposcore of 
the reference top SC SVF adherent condition; n=12, 4 donors, 3 independent wells. 

(G) qPCR-based quantification of IGFBP2 expression in SVF/Lin–/TM4SF1+/MSLN– cells subjected to either IGFBP2 siRNA or 
non-targeting siRNA control (NC1), as retrieved from the transwell set-up. SC SVF adherent cells are also used as negative 
control. Ct values are normalized first to HPRT1 expression, then to the ∆Ct of NC1 control; n = 2, 1 donor, two technical 
replicates. 

(H) ELISA-based quantification of IGFBP2 levels in the supernatant of OM SVF Lin–/TM4SF1+/MSLN– cells subjected to either 
IGFBP2 siRNA or non-targeting siRNA control (NC1). SC SVF/Lin– cells are used as negative control; n = 2, 1 donor, two 
technical replicates. 

(I) Representative fluorescence microscopy images of “receiver” SC SVF adherent cells, at the bottom of the transwell set-up, 
after adipogenic differentiation when co-cultured, with the indicated cells on top of the transwell: paired SC SVF adherent 
control cells, OM SVF/Lin–/TM4SF1+/MSLN– cells treated with non-targeting siRNA control (NC1), OM SVF/Lin–
/TM4SF1+/MSLN– cells treated with IGFBP2 siRNA. Top row: SC and OM cells from D74, bottom row: SC cells from D63, 
and OM cells from D75. 

(J) Barplot showing the adiposcore quantification of “receiver” cells in I; n=16-20, 4 donors, 2-4 independent wells. 
(K) Representative fluorescence microscopy images of SC SVF-adherent cells after adipogenic differentiation when treated 

with the indicated interfering compounds: IGFBP2 1nM, IGF-I 10nM, IGF-II 10nM, Echistatin 100nM. 
(L) Barplot showing the adiposcore quantification of cells in K with a focus on the IGF-dependent signaling pathway of IGFBP2. 

Values are normalized to the average adiposcore of the untreated control cells (Ctrl); n=12, 4 donors, three independent 
wells. 

(M) Representative fluorescence microscopy images of OM SVF/Lin-/TM4SF1-/MSLN- cells after adipogenic differentiation 
when treated with the indicated, interfering compounds: IGFBP2 1nM, IGF-I 10nM, IGF-II 10nM, Echistatin 100nM. 

(N) Barplot showing the adiposcore quantification of cells in M with a focus on the IGF-dependent signaling pathway of IGFBP2. 
Values are normalized to the average adiposcore of the untreated control cells (Ctrl); n=9, 3 donors, three independent 
wells. 

(O) Barplot showing the adiposcore quantification of cells in K with a focus on the IGF-independent signaling pathway of 
IGFBP2. Values are normalized to the average adiposcore of the untreated control cells (Ctrl); n=12, 4 donors, three inde-
pendent wells. 

(P) Barplot showing the adiposcore quantification of cells in M with a focus on the IGF-independent signaling pathway of 
IGFBP2. Values are normalized to the average adiposcore of the untreated control cells (Ctrl); n=9, 3 donors, three inde-
pendent wells. 

 
For images in E, I, K, and M: Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA, scale bar=100 um. *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001,****p ≤ 0.0001, One-Way ANOVA and Tukey HSD post hoc test (B, C, F, L, O), REML analysis with matched values for 
the same donor and Tukey HSD post hoc test (J, N, P).  



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

 77 

2.4 Conclusion 

Despite significant efforts, our understanding of hASPC heterogeneity and function across human adipose 

depots is still limited, which has been further hampered by the lack of hASPC consensus markers. Conse-

quently, hASPCs tend to be studied in form of total SVF Lin–, which blurs their cellular and functional charac-

terization. To address this, we performed a comprehensive exploration of human SC, PR, OM, and MC AT SVF 

Lin– population structure and function. Our bulk analyses revealed extensive molecular and phenotypic var-

iation among these depots (Fig. 2.1). On a global level, we confirmed earlier observations that only SVF-

adherent cells from extraperitoneal ATs (SC and PR) displayed high adipogenic potential ex vivo, while their 

intraperitoneal counterparts (OM and MC) were refractory to adipogenesis196–198. This is also reflected by the 

fact that SC and PR SVF-adherent cells featured a highly adipogenic transcriptomic signature compared to 

OM and MC ones (Supp. Fig. 2.1.4H, J), which in contrast featured a more inflammatory and epithelial/mes-

othelial gene expression profile (OM) (Alvehus et al. 2010), or a protein trafficking (heat shock protein) sig-

nature (MC) (Fig. 2.1I). However, despite being highly adipogenic, we also found important molecular differ-

ences among extraperitoneal ATs, revealing that, contrary to SC, the gene expression profile of PR SVF-ad-

herent cells was enriched for terms associated with the oxidative respiratory chain, thermogenic response, 

and mitochondrial activity (Fig. 2.1I). This suggests that PR hASPCs may be prone to beiging, potentially re-

flecting an influence of the nearby adrenal gland198. 

To better explore potential cellular mechanisms underlying the distinct adipogenic properties of the four 

analyzed depots, we resolved SVF Lin– heterogeneity by performing scRNA-seq on about 34’000 cells (an 

average of 8’500 cells per depot) and comparing the resulting data with publicly available datasets from both 

human and mouse ATs145,146. These analyses allowed us to identify at least six hASPC populations that are 

shared across the Ats (Fig. 2.2B), including four relatively small ones, such as HHIP+ or IFIT+ hASPCs, as well 

as two main ones: i) the hASCs, which mapped to the mouse Dpp4+ population96,100,102 and the human DPP4+ 

cells96, and ii) the hPreAs, which mapped to the mouse Icam1+/Aoc3+ population96,102 and human ICAM1+ 

clusters96. Subsequent population sorting thereby revealed that the ASC pool is proportionally the smallest 

in OM AT (Fig. 2.3D), supporting the hypothesis that SC and PR ATs have a greater capacity to expand through 

hyperplasia compared to OM AT11,203. A third cluster that was ubiquitous in all analyzed human depots is the 

VSMP cluster which highly expresses AOC3 (VAP1) (Fig. 2.2B, Supp. Fig. 2.3.1A). Although Aoc3 has mainly 

been described as being expressed by murine PreAs96,102, murine VSMPs do exist and also highly express Aoc3 

(Supp. Fig. 2.2.3, Supp. Fig. 2.3.1B). As hPreAs also exhibit basal AOC3 expression, we cannot completely rule 

out that VAP1 also enriches for a fraction of human AOC3-expressing PreAs. In our study, VAP1+ cells were 

the most adipogenic, but at the transcriptomic level, AOC3-high cells also expressed muscle-related markers 

(Fig. 2.2C), which seems contradictory. However, beige/brown AT progenitors have been described to upreg-

ulate muscle-related markers to become thermogenic69,204–207. Thus, we cannot exclude that VSMP and/or 
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VAP1-enriched PreAs are in fact beige progenitors, although the fact that VAP1+ cell abundance was lower 

in SC compared to OM and PR ATs would in this regard be counterintuitive since SC is the preferential site 

for beige adipogenesis208. Nevertheless, it seems worthy to elucidate the function of these VSMP cells given 

their greater abundance in high versus normal weight individuals across all analyzed adipose depots (Fig. 

2.3G). This may reflect an attempt to either induce a thermogenic response to balance excessive energy take 

or to create new vasculature to support (excessive) adipose tissue expansion (or both). Overall, when com-

paring the human and mouse ASPC landscapes, there are clear similarities but also differences. For example, 

while F3+ ASPCs form a clearly distinct cluster in mouse96,102,146,148,149, they appear to be rarer in humans, as 

they only emerged after aggregating all of our datasets (Fig. 2.2A-B). Moreover, while F3 is a specific marker 

for anti-adipogenic ASPC populations in mice, it is much less specific in humans, where HHIP appears to be a 

more specific marker for this cell population (Supp. Fig. 2.2.5A). 

Next to AT-ubiquitous cell populations, we also found some that are exclusive to one adipose depot. A striking 

example is the mesothelial cells that we almost exclusively detected in OM AT (Fig. 2.2D). While the presence 

of such cells within the OM SVF fraction is well-established91,100,143,145, our functional characterization re-

vealed that the mesothelial cells, even if variable across replicates, can in fact mildly inhibit the differentiation 

of OM hASPCs (Fig. 2.5E-F), suggesting that the mesothelium surrounding the OM AT could have a regulatory 

impact on its plasticity. But more strikingly, we identified a mesothelial-like subpopulation that is also specific 

to the OM and that exhibits a robust anti-adipogenic capacity. We found that the latter OM SVF/Lin–

/TM4SF1+/MSLN– cells highly secrete IGFBP2 (Fig. 2.5C) and can as such negatively regulate the adipogenic 

capacity of both SC and OM hASPCs (Fig. 2.5I-J), consistent with IGFBP2’s previously reported anti-adipogenic 

properties177,209. Our findings thereby indicate that these cells’ anti-adipogenic properties are mediated 

through an IGF-independent mechanism, most likely through the activation of integrin receptor signaling in 

a paracrine fashion. Stromal populations that negatively regulate the adipogenic capacity of ASPCs have re-

cently been discovered in mouse ATs by our102,148 and other labs91,149. The discovery of the OM SVF/Lin–

/TM4SF1+/MSLN– cells now suggests that also in humans, AT (here, OM) plasticity may be orchestrated by 

distinct regulatory features including not only (more systemic) endocrine signals but also specialized niche 

cells that are not necessarily mesenchymal in nature. 

The identification of a TM4SF1+/MSLN–-IGFBP2-secreting cell population also provides new insights into the 

mechanisms underlying the well-established limited adipogenic capacity of OM hASPCs, even though IGFBP2 

signaling could only partially explain the reduced capacity of OM hASPCs compared to other depots (Fig. 2.3E-

F). This indicates that OM hASPCs still feature cell-intrinsic and transcriptomically independent mechanisms 

that render them refractory to differentiation and more specialized to mediating inflammation and vascular 

remodeling (Supp. Fig. 2.3.3C). Nevertheless, the identification of these IGFBP2-secreting cells raises ques-

tions as to their cellular origin and physiological relevance. We found that IGFBP2+ cells co-expressed 
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mesenchymal and mesothelial markers and showed enrichment of mesothelial to mesenchymal transition 

(MMT) markers (Fig. 2.4H-I, Supp. Fig. 2.4.5C). Moreover, when sorted as TM4SF1+/MSLN– cells, they exhib-

ited a cobblestone-mesothelial morphology while, upon expansion, a spindle-mesenchymal one (Fig. 2.4L), 

suggesting that these cells are likely able to undergo MMT, a still poorly characterized process that has been 

described to also be driven by IGFBP2 itself210–213. While this cellular process is known, it has mainly been 

described in development, wound healing and cancer. Our results suggest however that MMT can also occur 

in adulthood at steady-like state. Interestingly, by projecting our annotation onto the recently published sin-

gle-cell atlas of human AT145, we found not only that IGFBP2+ cells can be detected in the OM adipose depots 

of both lean and obese donors, which we confirmed through flow cytometry (Supp. Fig. 2.4.6), we also ob-

served a highly positive correlation between inferred IGFBP2+ cell abundance and BMI (Supp. Fig. 2.4.4F). 

The latter observation appears to contrast with results from previous studies though, which found in fact an 

anti-correlation between BMI214–216, onset of metabolic syndrome217 including type 2 diabetes and NAFLD218 

on the one hand and circulating IGFBP2 serum levels on the other. Since IGFBP2 is also secreted by other 

organs such as the liver187,218, additional research will therefore be required to reconcile IGFBP2’s role in 

seemingly controlling local OM adipose tissue plasticity versus acting as a systemic metabolic regulator. 

While an important proportion of human visceral fat is contained in the OM, this depot is rather minimal in 

mouse219. It may therefore prove difficult to find an equivalent population in mouse. However, a very recent 

study by Zhang et al.91 of mouse epididymal AT did identify “mesothelial-like cells'' that shared markers with 

both mesothelial and mesenchymal cells and that were also defined by high Igfbp2 expression. This suggests 

that OM IGFBP2+ cells may be cellularly and functionally conserved between mouse and human, which in 

turn may open new experimental avenues to study their relevance in mediating OM AT plasticity in distinct 

metabolic contexts. Longer-term, such studies may then lead to new therapeutic strategies to render OM 

hASPCs more adipogenic and less inflammatory, which could be a valuable novel approach to treat metabolic 

disorders linked to obesity, especially given the protective and anti-diabetic effect that has been attributed 

to IGFBP2216. 
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2.5 Materials and methods 

Bioethics  

All materials used in this study have been obtained from AT donors from two independent cohorts: the Co-

hort of Obese Patients of Lausanne with ethically approved license by the commission of the Vaud Canton 

(CER-VD Project PB_2018-00119) and a control healthy cohort from renal transplantation donors with ethi-

cally approved license by the commission of the Vaud Canton (CER-VD 2020-02021). The coded samples were 

collected undersigned informed consent conforming to the guidelines of the 2000 Helsinki declaration. Table 

2.3 illustrates cohorts demographics. 

Human ASPCs isolation and culture 

2-3 cm3 biopsies from SC, OM, PR and MC ATs were washed in PBS to remove excess blood, weighted and 

finely minced using scissors. Minced adipose tissue was incubated with 0.28 U/ml of liberase TM (Roche 

#05401119001) in DPBS with calcium and magnesium (Gibco #14040091) for 60 min at 37 °C under agitation. 

Vigorous shaking was performed after 45 min of incubation to increase the yield of recovered SVF cells. The 

digested tissue was mixed with an equal volume of 1% human albumin (CSL Behring) in DPBS −/− (Gibco 

#14190094) to stop the lysis. Following a 5-min centrifugation at 400 g at room temperature, floating lipids 

and mature adipocytes were discarded by aspiration and the resuspended SVF pellet was sequentially filtered 

through 100-μm and 40-μm cell strainers to ensure a single cell preparation. To lyse red blood cells, pelleted 

SVF was resuspended in VersaLyse solution (Beckman Coulter #A09777) according to the manufacturer’s 

recommendations and washed once with 1% albumin solution. Obtained red blood cell-free SVF suspension 

was then either plated for experiments, expanded and cryoprotected or stained for sorting (see below). The 

SVF used for expansion or experiments was plated at a density of at least 100’000 cells per square centimeter 

in high glucose MEMalpha GlutaMax medium (Gibco #32561037) supplemented with 5% human platelet ly-

sate (Sigma #SCM152) and 50 μg/ml Primocin (InvivoGen #ant-pm-2). For culturing human ASPCs, TrypLE 

Select reagent (Gibco #12563011) was used to collect the cells from the cell culture plates.  

Bulk RNA barcoding and sequencing (BRB-seq) 

All cells for BRB-seq were seeded in parallel in six 24-well plates. Cells from three wells were harvested un-

differentiated (t0 time point) upon cell expansion in the 24-well plate. Cells from the three remaining wells 

were expanded until confluence and harvested in TRIzol (Sigma, #T3934) after 14 days of adipogenic differ-

entiation (t14 time point). RNA was extracted from all samples in parallel using the Direct-ZOL 96 well plate 

format (Zymo, #R2054), and BRB-seq libraries were prepared as previously described220 and further detailed 

by the MercuriusTM Protocol (Alithea Genomics). In brief, 7-200 ng of total RNA from each sample was reverse 

transcribed in a 96-well plate using SuperScriptTM II Reverse Transcriptase (Lifetech 18064014) with 
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individual barcoded oligo-dT primers, featuring a 12-nt-long sample barcode (IDT). Double-stranded cDNA 

was generated by second-strand synthesis via the nick translation method using a mix containing 2 μl of 

RNAse H (NEB, #M0297S), 1 μl of E. coli DNA ligase (NEB, #M0205 L), 5 μl of E. coli DNA Polymerase (NEB, 

#M0209 L), 1 μl of dNTP (10 mM), 10 μl of 5x Second Strand Buffer (100 mM Tris, pH 6.9, (AppliChem, 

#A3452); 25 mM MgCl2 (Sigma, #M2670); 450 mM KCl (AppliChem, #A2939); 0.8 mM β-NAD (Sigma, N1511); 

60 mM (NH4)2SO4 (Fisher Scientific Acros, #AC20587); and 11 μl of water was added to 20 μl of ExoI-treated 

first-strand reaction on ice. The reaction was incubated at 16 °C for 2.5 h. Full-length double-stranded cDNA 

was purified with 30 μl (0.6x) of AMPure XP magnetic beads (Beckman Coulter, #A63881) and eluted in 20 μl 

of water. 

The Illumina-compatible libraries were prepared by tagmentation of 10-40 ng of full-length double-stranded 

cDNA with 1 µl of in-house produced Tn5 enzyme (11 μM). After tagmentation, the libraries were purified 

with DNA Clean and Concentrator kit (Zymo Research #D4014) eluted in 20 µl of water and PCR amplified 

using 25 μl NEB Next High-Fidelity 2x PCR Master Mix (NEB, #M0541 L), 2.5 μl of each i5 and i7 Illumina index 

adapter (IDT) using the following program: incubation 72 °C—3 min, denaturation 98 °C—30 s; 15 cycles: 

98 °C—10 s, 63 °C—30 s, 72 °C—30 s; final elongation at 72 °C—5 min. The libraries were purified twice with 

AMPure beads (Beckman Coulter, #A63881) at a 0.6x ratio to remove the fragments < 300 nt. The resulting 

libraries were profiled using a High Sensitivity NGS Fragment Analysis Kit (Advanced Analytical, #DNF-474) 

and measured using a Qubit dsDNA HS Assay Kit (Invitrogen, #Q32851) prior to pooling and sequencing using 

the Illumina NextSeq 500 platform using a custom primer and the High Output v2 kit (75 cycles) (Illumina, 

#FC-404-2005). The library loading concentration was 2.4 pM, and the sequencing configuration was as fol-

lows: R1 21c / index i7 8c / index i5 8 c/ R2 55c. 

In parallel, the same cells were seeded in four independent 96well plates and imaged after 14 days of differ-

entiation to quantify their adipogenic potential (see “In vitro adipogenic differentiation of hASPCs”). 

Analysis of BRB-seq data 

Preprocessing 

After sequencing and standard Illumina library demultiplexing, the.fastq files were aligned to the human ref-

erence genome GRCh38 using STAR (Version 2.7.3a), excluding multiple mapped reads. Resulting BAM files 

were sample-demultiplexed using BRB-seqTools v.1.4 (https://github.com/DeplanckeLab/BRB-seqTools) and 

the “gene expression x samples” read, and UMI count matrices were generated using HTSeq v0.12.4. 

General methods 

Samples with a too low number of reads or UMIs were filtered out. Genes with a count per million greater 

than 1 in at least 3 samples were retained. Raw counts were then normalized as log counts per million with 

a pseudo count of 1, using the function cpm from EdgeR221 version 3.30.3. If the samples were from different 
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batches, the raw counts were first normalized using quantile normalization as implemented in voom from 

the package limma222 version 3.44.3 and then corrected for batch effects using combat from sva version 

3.36.0. PCAs were computed using prcomp with the parameters center and scale set to TRUE. Differential 

expression analyses were performed using DESeq2223 version 1.28.1 and adding batch as a cofactor when 

necessary. 

Scores: 

Scores were calculated as the sum of the integrated gene expression scaled between 0 and 1 per gene of the 

mentioned gene lists. For Supp. Fig. 2.2.3A the top differentially expressed genes of murine fat depots pop-

ulations identified based on the integration of 3 scRNA-seq datasets and published in Ferrero et al.146 were 

used to compute the cell type scores. 

Gene expression heatmaps: 

Heatmaps display row-normalized expression and were generated using pheatmap version 1.0.12. The col-

umns and rows were clustered using the method “ward.2D” of hclust of the package stats. 

Gene set enrichment analysis: 

Gene set enrichment analysis was performed using the package clusterprofiler224 version 3.16.1. 

scRNA-seq of SVF Lin– cells 

SVF Lin- cells from different depots and donors were enriched with either FACS or MACS (Table 2.2) and 

resuspended in 1% human albumin in DPBS solution prior to be loaded into the Chromium Single Cell Gene 

Expression Solution (10x Genomics), following the manufacturer’s recommendations targeting a recovery of 

4000 to 5000 cells per run. scRNA-seq libraries were obtained following the 10x Genomics recommended 

protocol, using the reagents included in the Chromium Single Cell 3ʹ v3 Reagent Kit. Libraries were sequenced 

on the NextSeq 500 v2 (Illumina) instrument using 150 cycles (18 bp barcode + UMI, and 132-bp transcript 3ʹ 

end), obtaining ~5 × 108 raw reads. 

 

Analysis of scRNA-seq data   

Analysis of the datasets individually 

Raw fastqs were processed using the default CellRanger pipeline (v 2.1.0, 10X Genomics, Pleasanton, CA). 

The same transcriptome version was used to align all the datasets (GRCh38.92). All the data were then loaded 

on R (R version 3.6.1). Cells were filtered for the number of Unique Molecular Identifiers (UMIs) and genes 

using isOutlier from the package scater, which determines which values in a numeric vector are outliers based 

on the median absolute deviation (MAD) (nmads set between 3 and 4), and filters for too high a percentage 
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of UMIs mapping to mitochondrial RNA (~10%) or ribosomal RNA (~20%) or too low a percentage of UMIs 

mapping to protein-coding genes (~80%). 

The datasets were first analyzed one by one using the Seurat pipeline103. After cell filtering, only genes ex-

pressed in at least 3 cells were kept. The data were scaled for the number of UMIs and features using the 

function ScaleData and the remaining default parameters. The first 50 principal components of the PCA were 

computed using RunPCA, and then evaluated for significance using the JackStraw function of Seurat. Only 

the first PCs successively having a p-value < 0.05 among the top 50 PCs were selected for downstream anal-

ysis. Clustering was performed using FindNeighbors. The robustness of the clustering was assessed using 

clustree displaying the relationship between the clusters with increasing resolution. Differential expression 

analysis was computed using the FindAllMarkers function of Seurat for the selected clustering. Only genes 

detected as differentially expressed (log2FC > log2(1.2), p.adj < 0.05) for both the Likelihood-ratio test 

(test.use = “bimod”) and Wilcoxon Rank Sum test (test.use = “wilcox”) were selected. 

Each sample was processed and sequenced individually, with the exception of the samples PR - D30 and 

PR - D61. The isolated cells of these two samples and donors were mixed. The cells were identified as belong-

ing to each donor post-processing based on two criteria: the results of the clustering of the dataset, which 

clearly separated the cells from the two individuals, and the expression of XIST as the two donors were of 

the opposite sex. Cells ambiguously assigned to a donor (i.e, having a positive expression of XIST while clus-

tering with the cells of the donor patient or the opposite) were filtered out. 

Comparison of top markers of individual datasets 

For each pair of subpopulations and dataset, the percentage of shared markers between their top 100 dif-

ferentially expressed genes with the highest FC were calculated and displayed on Supp. Fig. 2.2.1D-F.  

Scmap 

The Scmap package225 was used to project the cells of a dataset X onto the identified subpopulations of a 

dataset Y. Each pair of dataset X, Y and its inverse Y, X were computed. More precisely, the datasets were 

normalized using the “Single-cell Analysis Toolkit for Gene Expression Data in R” (scater package). The data 

were log normalized using the logNormCounts functions using the size factor estimated with compteSum-

Factors. The 1000 most informative features of each dataset were selected using the selectFeatures function 

of scmap, which is based on a modified version of the M3Drop method. The centroids of each cluster for each 

dataset were calculated with the function indexCluster, and finally, the datasets were projected onto one 

another using the function scmapCluster.  

Data integration 

The datasets from each individual patient and depot, at the exception of GB-D07 (due to a very low number 

of captured ASPCs), were integrated following the standard workflow of Seurat pipeline. The datasets were 
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normalized in log scale with a scale factor of 10000. The top 2000 highly variable genes were selected using 

the FindVariableFeatures function with the parameter selection.methods set to “vst”. The anchors were iden-

tified using FindIntegrationAnchors. The top 2000 variable features identified by SelectIntegrationFeatures 

and the first 60 principal components of the PCA were used as input to perform canonical correlation analysis. 

The integrated data computed by IntegrateData were then used for dimensionality reduction and clustering 

based on the first 60 principal components of the PCA. Clustering was computed for different clustering res-

olutions. The final clustering result was based on the clustering results at different resolutions depending on 

the robustness of the clusters and the specificity of their differentially expressed markers. Top differentially 

expressed genes were identified using the FindConservedMarkers function of Seurat after setting the default 

assay to RNA, the adjusted p-values were combined using Tippett’s method as implemented by the function 

minimump from metap R package (meta.method = metap::minimump)226. Only groups of cells with at least 

10 cells were tested (min.cells.group = 10). Specifically, for the IGFBP2+ cell cluster, as we found only a few 

cells per batch and we focused on that cell type in part of the manuscript, DEGs were further computed using 

EdgeR and correcting for batch. More precisely, genes not expressed in at least 2% of the cells were filtered 

out using the function filterByExpr. After converting the count matrix into a DGEList using DGEList, the data 

were normalized with calcNormFactors. The design matrix was defined following the formula ~0 + clust + 

batch, where clust corresponds to the cluster of every cell and batch to its dataset (as individually shown on 

Supp. Fig. 2.2.1A). The dispersion was estimated using estimateDisp. The quasi-likelihood negative binomial 

generalized log-linear model was fitted using glmQLFit, followed by the quasi-likelihood F-test glmQLFtest 

contrasting the IGFBP2+ cluster versus the other clusters (pondered by the number of clusters).  

Identification of depot-specific markers for ASCs and PreAs 

DEG analysis was performed on the integrated data, by selecting the cells of the population of interest (ASCs 

or PreAs) and contrasting between all possible pairs of depots using the function FindMarkers of Seurat. This 

is possible as we have 3 replicates for SC, OM, PR, and 2 for MC, however, for the latter, those were coming 

from two biological samples from the same donor. A set of markers was considered depot-specific when 

significantly differentially expressed in a depot versus any other depot. A gene was defined as differentially 

expressed when its average log Fold Change (defined as the average of the log Fold Change in each replicate) 

was positive and an adjusted p-value smaller than 0.05.  

Comparison with murine ASPCs  

a. Murine data integration  

The integration of five datasets of adult mouse SC and OM ATs provided by Schwalie et al. 102, Burl et al.100, 

Hepler et al.147 and Merrick et al.96 was performed as described in Ferrero et al.146. The clustering originally 

published in Ferrero et al.146, focusing on ASPCs, merged the cells close to endothelial cells into one main 

cluster. The clustering was here revised to include vascular smooth muscle progenitor cells. For consistency 
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with the human data, the top markers of the subpopulation were computed as defined above. The top mark-

ers were ordered by the average of the log2 Fold Change of each dataset.  

b. Score 

Scores of the mouse ASPC subpopulations, mesothelial cells, and vascular smooth muscle progenitor cells 

were based on their human orthologs and calculated as the sum of the gene expression scaled between 0 

and 1 per gene of the top markers (average log2 Fold Change across batches > 0 and adjusted p-value < 0.05) 

of each murine ASPC subpopulation (ASCs, PreAs, Aregs, Ifit+, and Cilp+ ASCs), mesothelial cells and vascular 

smooth muscle progenitor cells. The scores were then scaled by the number of genes on each list. 

Comparison with the dataset from Emont et al.145 

The whole human single-nucleus/cell dataset (here reported as “scRNA-seq”) provided by Emont et al.145 was 

downloaded on the single cell portal (study no. SCP1376, All cells). The dataset was then subsetted for the 

cells defined as ASPC or mesothelium by the authors (as defined in the metadata “cell_type2”), and the PCA 

was recomputed as well as clustering, tSNE and UMAP with the first 50 PCs as input. First, an IGFBP2 expres-

sion score was computed using the AddModuleScore function. The dataset containing only ASPCs, and mes-

othelial cells was then split by samples, and the symbol gene IDs were converted to Ensembl ID using the 

GRCh38 release 92 from the Ensembl gene annotation as reference. The few genes with no corresponding 

Ensembl IDs were filtered out, and, in the rare case of two corresponding Ensembl IDs, only one was kept. 

Each sample was log normalized with the default normalization of the Seurat package and then scaled for 

the features selected using SelectIntegrationFeatures with each of the samples of Emont et al.145 and our 

generated single-cell SC and OM datasets as input. The first 50 PCs were computed based on the scaled data. 

Clustering was performed following the default Seurat clustering pipeline for resolutions spanning from 0.1 

to 3. Each sample of the Emont et al.145 dataset was then projected on our integration (see Analysis of single-

cell RNA-seq, Data integration), using the FindTransferAnchors and TransferData functions of the Seurat 

package with the default parameters.  

Trajectory analysis 

Trajectory analysis was performed on the integrated normalized data subsetting for Epiploic samples. Poten-

tial doublets were excluded from the analysis using DoubletFinder227 on each epiploic scRNA-seq dataset 

individually. Cells labeled as ASCs, PreAs, IGFBP2+ cells, Mesothelial cells, and VSMPs were selected. The first 

50 PCs were computed using the pca function of scanpy228 and the neighborhood graph was computed with 

the default parameters (pp.neighbors). The connectivity between our defined cell classifications was com-

puted using the paga function179, and low-connectivity edges were thresholded at 0.03. We computed the 

ForceAtlas2 (FA2) graph229 using PAGA-initialization (draw_graph). The Dynverse package230 was used to com-

pute the most variable genes along the branch connecting PreAs and Mesothelial cells through IGFBP2+ cells 

(calculate_branch_feature_importance).  
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FACS sorting of human SVF subpopulations  

SVF cells were resuspended in 1% albumin solution to the concentration of 105 cells/ml, and the staining 

antibody panels (Table 2.4) were added in titration-determined quantities. The cells were incubated with the 

cocktail of antibodies on ice for 30 min protected from light, after which they were washed and stained with 

propidium iodide (Molecular Probes #P3566) for assessing viability, and subjected to FACS using a Becton 

Dickinson FACSAria II sorter or a MoFlo Astrios EQ, Cell Sorter - Beckman Coulter. Compensation measure-

ments were performed for single stains using compensation beads (eBiosciences #01-2222-42).  

The following gating strategy was applied while sorting the cells: first, the cells were selected based on their 

size and granularity or complexity (side and forward scatter), and then any event that could represent more 

than one cell was eliminated. Next, the live cells were selected based on propidium iodide negativity, and 

from those, the Lin–(CD31–/CD45–) population was selected. At first, all SC, OM, and PR cells were stained 

with the OM-specific panel, including mesothelial markers, but since SC and PR SVF cells were consistently 

negative for the TM4SF1 and MSLN markers over three consecutive experiments, SC and PR cells were only 

stained with the SC and PR panels, respectively (Table 2.4). For the SC samples, from the Lin– fraction of cells, 

Lin–/CD26+, Lin–/VAP1+, Lin–/DN, and Lin–/HHIP+ cells were defined against unstained controls and FMO 

controls. For the PR samples, from the Lin– fraction of cells, Lin–/CD26+, Lin–/VAP1+, and Lin–/DN cells were 

defined against unstained controls and FMO controls. For the OM samples, OM-specific subpopulations were 

first isolated from the Lin- gate as Lin–/TM4SF1+/MSLN– and Lin–/TM4SF1+/MSLN+ populations. From the 

remaining Lin–/TM4SF1– gate, we then isolated Lin–/TM4SF1–/CD26+, Lin–/TM4SF1–/VAP1+, and Lin–

/TM4SF1–/DN cells. Acquired FCS files were analyzed using FlowJo software to infer population abundances 

that were plotted using GraphPad Prism. 

In vitro adipogenic differentiation and chemical treatments of hASPCs 

Cells were seeded for adipogenic differentiation at high density (65k cells /cm2) in 3-5 replicate wells of a 96-

well black plate (Corning #353219). After 48h or when cells where confluent for at least 24h, cells were 

treated with induction cocktail (high glucose DMEM (#61965), 10% FBS, 50 μg/ml Primocin, 0.5 mM IBMX 

(Sigma #15879), 1 μM dexamethasone (Sigma #D2915), 1.7 μM insulin (Sigma #19278), 0.2 mM indomethacin 

(Sigma #I7378) for 7 days, followed by a maintenance cocktail (high glucose DMEM, 10% FBS, 50 μg/ml Pri-

mocin, 1.7 μM insulin) for another 7 days. No medium refreshment was performed between these two 

timepoints. For the chemical treatments, the above-mentioned differentiation and maintenance cocktails 

were supplemented with the recombinant IGFBP2 protein at 1nM (R&D, #674-B2-025), recombinant IGF-I 

protein at 10nM (Sigma, #I3769), recombinant IGF-II protein at 10nM (R&D, #292-G2-050), Blocking anti-

human IGFBP2 antibody (scavanging) 1 mg/ml (R&D, #AF674) and Echistatin 100 nM (R&D, #3202). Chemicals 

were added to both induction and maintenance cocktails except for Echistatin which was added to the 
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induction cocktail only and withdrawn 48h after induction since inhibiting the integrin receptor resulted in 

cell detachment when Echistatin was kept in culture for longer periods than 48h. In the Echistatin mixed with 

IGFBP2 condition, only IGFBP2 was kept after 48h. IGFBP2, IGF-I and IGF-II were first titrated at the concen-

trations shown in Supp. Fig. 2.5.2. 

Cell proliferation assay 

Sorted cells were split into four and seeded in 4 different wells of a 12well plate and allowed to attach and 

start to proliferate for 7 to 10 days. One well of each cell population was trypsinized after this period. Cells 

were resuspended in 1 ml of medium, counted twice using a hematocytometer, and the mean count was 

used as the baseline number of cells from which cell increase was calculated. The same counting was per-

formed on the remaining wells every two days. The expansion medium was refreshed every two days. 

Mixing and transwell experiments 

For the mixing experiments, unexpanded Lin– SVF cells were isolated with MACS using Miltenyi LD columns 

(Miltenyi, #130-042-901) on manual mono-MACS separators after staining with magnetic anti-human CD45 

and CD31 microbeads (Miltenyi, #130-045-801 and #130-091-935) according to the manufacturer’s protocol. 

MACS-isolated Lin- cells from SC, OM, and PR samples were counted in duplicates and mixed at high density 

(65k cells /cm2) in 11 ratios from 0 to 100%. After 24h, the cells were induced to differentiate following the 

adipogenic differentiation protocol. For the transwell experiments, we used 96well plate format transwell 

inserts with 0.4 mm (Corning #CLS3391) pores to allow protein and small molecule diffusion through the 

membrane, but not cell migration. 96well transwell-receiving plates (Corning #3382) were first coated with 

type I collagen (Corning #354249) 1:500 in DPBS before use to facilitate cell adhesion. Sorted donor OM 

subpopulations and expanded receiver SC and PR SVF-adherent cells were plated and expanded separately 

onto the top transwell insert and the bottom receiving plate, respectively. When confluent, the transwell 

insert was put in contact with the receiver plate, and all cells were induced to differentiate following the 

listed differentiation protocol. 

Enzyme-linked immunosorbent assay (ELISA) 

For the supernatant measure, cells were expanded for two passages and seeded into a 6well plate. Once 

confluent, the expansion medium was aspirated, and wells were washed twice with PBS to ensure residual 

serum, dead cell and protein removal. 2ml of OPTI-Pro serum-free medium (Thermo, #12309050) was added 

to each well and incubated with the cells at 37ºC for 48h. After incubation, SFM medium was harvested, spun 

for 10 min at 4ºC max speed to clear potential cell debris. Cleared supernatant was aliquoted and stored at -

80ºC until further usage. For the whole AT IGFBP2 secretion assays, three times 200-400 mg of OM AT were 

put in 500ml of DPBS (Gibco #14190169) and incubated at 37ºC for 24, 48 and 72 hours. After incubation, 
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DPBS was harvested, spun for 10 min at 4ºC max speed to clear potential cell debris and stored at -80ºC until 

further usage. The Anti-human IGFBP2 ELISA kit (Sigma, #RAB0233-1KT) was used to quantify IGFBP2 protein 

in the supernatants according to the manufacturer's recommendations. Before loading samples on the ELISA 

membranes, the total protein concentration was quantified using the Qubit™ Protein Broad Range assay kit 

(Thermo, #A50669) and 300 ng of total protein was added per reaction. Incubation of samples with primary 

antibodies was performed O/N at 4ºC. At the end of the assay, absorbance was read at 450 nm using a 

SPARK® Microplate reader. 

Immunohistochemistry 

Human AT biopsies were washed twice in PBS to remove excess blood and divided in 50 to 100 mg for fixation 

in 4% PFA (paraformaldehyde, electron microscopy grade (VWR #100504-858)) for 2 hours at 4ºC with gentle 

shaking. Next, the tissue was washed with PBS and incubated with 30% sucrose O/N at 4ºC with gentle shak-

ing. Cryoblocks were prepared using Cryomatrix (Thermo Fisher Scientific #6769006), and 25-μm sections 

were generated using a Leica CM3050S cryostat at −30ºC. The tissue was air-dried for 30 min at -20º in the 

cryostat itself, then 1h at RT. Slides were additionally fixed 10 min in 4% PFA at RT, washed two times 5 

minutes with PBS, permeabilized at RT with 0.25% TritonX100 (Sigma #T9284) for 10 minutes, washed twice 

with PBS again and antigen blocking was performed at RT for 30 min with 1% BSA in PBS. Primary antibodies 

(anti-TM4SF1, anti-MSLN, anti-PLIN1) in 1% BSA were applied O/N at 4º with gentle shaking following the 

titrations indicated in Table 2.4. The following day, after two PBS washes, and quick 1% BSA dip, the second-

ary antibody (anti-rabbit AF-647) in 1% BSA was applied for 40 min at RT following the titrations in Table 2.4. 

Nuclei were stained with 1mg/ml DAPI (Sigma #D9564) for 10 min and washed twice in PBS prior to mounting 

with Fluoromount G (Southern Biotech #0100-01). The slides were then imaged with a Leica SP8 Inverted 

confocal microscope (objectives: HC PL Fluotar 10x/0.30 air, HC PL APO 20x/0.75 air, HC PL APO 40x/1.25 

glyc, HC PL APO 63x/1.40 oil). The results presented in Fig. 2.4K and Supp. Fig. 2.4.7 were replicated in at 

least three independent experiments. We note that we also verified that the signal we detected is not the 

result of autofluorescence of the AT or from unspecific binding of secondary antibodies (Supp. Fig. 2.4.7). 

Imaging and quantification of in vitro adipogenesis 

On the 14th day of differentiation, cells were either fixed with 4% PFA (EMS, #15710) and stained at a later 

timepoint or live-stained with fluorescence dyes: Bodipy 10 mg/ml (boron-dipyrromethene, Invitrogen 

#D3922) for lipids and Hoechst 1 mg/ml (Sigma, #B2883) for nuclei. Cells were incubated with the dyes in 

PBS, for 30 min in the dark, washed twice with PBS, and imaged. If the imaging was performed on live cells, 

we used FluoroBrite DMEM (Gibco # A1896701) supplemented with 10% FBS as acquisition medium. Given 

substantial variation in the extent of lipid accumulation by the tested cell fractions (within the same well but 

also across technical replicates), the imaging was optimized to cover the largest surface possible of the 96 
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well. Moreover, a z-stack acquisition in a spinning-disc mode and Z-projection were performed in order to 

capture the extent of in vitro adipogenesis with the highest possible accuracy. Specifically, the automated 

platform Operetta (Perkin Elmer) was used for imaging. First, 3–6 z-stacks were acquired for every field of 

view in a confocal mode of the microscope in order to produce high-quality images for downstream z-pro-

jection and accurate thresholding. Next, 25 images per well were acquired using a Plan Neofluar 10× Air, NA 

0.35 objective for the transwell-receiving plates or 20x air objective NA 0.8 for normal 96w plates (Falcon, 

#353219), with no overlap for further tiling and with the aim of covering the majority of the well for an accu-

rate representation of lipid accumulation (see Methods in 148,231). The lasers were set in time exposure and 

power to assure that in both the Hoechst and the Bodipy channels, the pixel intensity was between 500 and 

4000, and in all cases at least two times higher than the surrounding background. The images, supported by 

Harmony software, were exported as TIFF files. They were subsequently tiled, and Z-projected with the max-

imum intensity method. To accurately estimate and represent differences in adipocyte differentiation, a 

quantification algorithm for image treatment was developed in collaboration with the EPFL BIOP imaging 

facility. In brief, image analysis was performed in ImageJ/Fiji, lipid droplets (yellow) and nuclei (blue) images 

were filtered using a Gaussian blur (sigma equal to 2 and 3, respectively) before automatic thresholding. The 

automatic thresholding algorithm selections were chosen based on visual inspection of output images. The 

area corresponding to the thresholded lipid signal was then divided by the area corresponding to the 

thresholded nuclei area and used to calculate the Adiposcore (totalLipidArea/totalNucleiArea). In the figures, 

representative blown-up cropped images of each sample are shown. To reduce technical variation across the 

biological replicates (different donors), adiposcores were normalized to the average adiposcore of the indi-

cated control when we compared conditions within highly differentiating lines like SC and PR. Adiposcores 

were compared without normalization when we wanted to directly compare adiposcores across depots (i.e., 

Fig. 2.1C) or among poorly-differentiating samples like OM when the absolute values of adiposcores were < 

0.01 (Fig. 2.4D, Fig. 2.5J, N and P, and Supp. Fig. 2.1.2B, and Supp. Fig. 2.1.3). 

siRNA-mediated knockdown 

To achieve knockdown of IGFBP2, direct transfection was performed on OM SVF Lin–/TM4SF1+/MSLN– cells 

using the IGFBP2 IDT, TriFECTA DsiRNAs kit using 3 pooled siRNAs: hs.Ri.IGFBP2.13.1, hs.Ri.IGFBP2.13.2, 

hs.Ri.IGFBP2.13.3. In brief, after sorting, cells were expanded for one or two rounds, then harvested and 

plated at mid-low density (45k cells/cm2) and allowed to adhere. The following day, transfection mix was 

prepared as Opti-MEM medium (Invitrogen #31985062), 1.5% Lipofectamine RNAiMAX (Invitrogen 

#13778150) and 20 nM of the pooled siRNAs. In the transfection mix, lipofectamine-siRNA transfection par-

ticles were allowed to form for 15 min at RT with gentle shaking. After incubation, the transfection mix was 

diluted 10 times (to a final concentration of siRNA of 2 nM) in MEMalpha GlutaMax medium (Gibco 

#32561037) supplemented with 2.5% human platelet lysate (Sigma #SCM152), w/o antibiotics and 
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exchanged to the plated cell medium. After 48h, medium was changed to differentiation medium (for the 

transwell assay), with serum free medium (for ELISA validation) or directly taken in TRIzol (for qPCR valida-

tion). 

RNA isolation and qPCR 

Expanded OM and SC SVF-adherent, OM SVF Lin–/TM4SF1–/MSLN–, OM SVF Lin–/TM4SF1+/MSLN– cells as 

well as cells subjected to siRNA-mediated knockdowns 48h post-transfection were collected into TRIzol 

(Sigma, #T3934). The direct-zol RNA kit (Zymo Research #R2062) was used to extract RNA, followed by re-

verse transcription using the SuperScript II VILO cDNA Synthesis Kit (Invitrogen # 11754050). Expression levels 

of mRNA were assessed by real-time PCR using the PowerUp SYBR Green Master Mix (Thermo Fisher Scien-

tific #A25743). mRNA expression was normalized to the Hprt1 gene. Primer sequences used: IGFBP2 – Fw 

CGAGGGCACTTGTGAGAAGCG, Rv TGTTCATGGTGCTGTCCACGTG; HPRT – Fw CAGCCCTGGCGTCGTGATTA, Rv 

GTGATGGCCTCCCATCTCCTT. 

 

 

Statistical methods  

The experiments were not randomized, and the investigators were not blinded in experiments. The paired 

Student’s t-test was used to determine statistical differences between two groups, with the null hypothesis 

being that the two groups are equal. Multiple comparisons were corrected using false discovery rate (FDR) 

correction. When specified, one-way ANOVA or RELM test followed by Tukey honest significant difference 

(HSD) post hoc correction was applied, the null hypothesis being defined so that the difference of means was 

zero. (Adjusted) *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 were considered statistically signifi-

cant. All boxplots display the mean as a dark band, the box shows the 25th and 75th percentiles, while the 

whiskers indicate the minimum and maximum data points in the considered dataset excluding outliers. All 

bar plots display the mean value and the standard deviation from the mean as error bar.  
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2.7 Supplementary Figures and Tables 

 

Supplementary Figure 2.1.1 – Across depot comparisons of SVF-adherent cells at low passage. 

(A) Total number of nuclei in each well (see Methods for more details) of images in Fig. 2.1B; n=14-22, 4-5 donors, 3-5 inde-

pendent wells. 

(B) Representative confocal images of intraperitoneal OM- and MC-derived SVF-adherent cells after 14 days of differentiation; 
Top: lines that form very few mature lipid droplets, Bottom: lines that form small lipid droplets that are barely distinguish-

able from background; Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA. 
(C) Image-processing steps to define what signal from the lipid channel is considered as fully formed lipid droplets and which 

is not. Red squares indicate the thresholding parameters chosen for the final analysis to exclude background from the low 

adipogenic lines and to not underestimate the lipid area of the highly differentiating lines (PR). In the first two columns, 
green denotes lipids, red nuclei, and in the last two columns, red is the signal measured above the defined threshold (see 

Methods). 
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(D) Relative cell number increase over time of culture for SC, OM, and PR SVF-adherent cells; n=12, 4 donors per depot; Black 

stars compare SC versus OM, Red: PR versus OM, Blue: SC versus PR. 
 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, One-Way ANOVA and Tukey HSD post hoc test (A), and RELM analysis and 
Tukey HSD post hoc test (D).  
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Supplementary Figure 2.1.2 – Adipogenic differentiation potential of cell lines is highly variable across individual do-
nors. 

(A) Full well images of four independent wells after image processing (25 merged Z-projected tiles taken with a 20x objective, 

see Materials and Methods) enabling us to quantify the adipogenic potential of each cell line that was analyzed by BRB-

seq18 after 14 days of adipogenic differentiation. The cells were differentiated after 2 to 6 passages. The blue color repre-
sents the signal above threshold for the DNA stain, and the yellow color represents the signal above threshold for the lipid 

stain. Subcutaneous, yellow (SC): n=104, 4 independent wells, 26 cell lines, 20 donors (D); Perirenal, brown (PR): n=36, 4 
independent wells, 9 cell lines, 8 donors; Omentum, purple (OM): n=88, 4 independent wells, 22 cell lines, 18 donors; 
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Mesocolon, blue (MC): n=16, 4 independent wells, 4 cell lines, 4 donors; Scale bar=1 mm. B2 indicates the second biological 

replicate of a certain line, and 1y indicates the few samples from patient 1 year post bariatric surgery.  

(B) Distribution of the ratios between the total lipid area and the total DNA area measured in the images shown in A, i.e., 
adiposcore (see Methods for more details), ordered by increasing values across all cell lines shown in A. 

(C) Total number of nuclei in each well quantified by segmenting the DNA area above threshold of images in A and plotted in 
the same order as in B. 
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Supplementary Figure 2.1.3 – The adipogenic potential of SVF-adherent lines from different depots and their corre-
lation with metadata. 

(A) Quantification of the adipogenic potential derived from images in Supp. Fig. 2.1.2A representing differentiated SVF-adher-

ent cells after expansion (passaged 2 to 6 times). On the y axes, the log(adiposcore+1) is plotted. SC: n=104, 4 independent 

wells, 26 cell lines, 20 donors; PR: n=36, 4 independent wells, 9 cell lines, 8 donors; OM: n=88, 4 independent wells, 22 cell 

lines, 18 donors; MC: n=16, 4 independent wells, 4 cell lines, 4 donors. 
(B) Total number of nuclei in each well (see Methods) of images shown in Supp. Fig. 2.1.2A. 

(C) Scatter plot showing the correlation between the adiposcore of highly adipogenic lines (SC - left and PR - right) and the BMI 

of respective donors. The line represents the linear regression analysis.  
(D) Scatter plot showing the correlation between the adiposcore of highly adipogenic lines (SC - left and PR - right) and the age 

of respective donors. The line represents a linear regression analysis. 
(E) Barplot showing the distribution of the adiposcore of SC lines between men and women. 

(F) Barplot showing the distribution of the adiposcore of PR lines between men and women.  

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, and linear regression analysis with its relative goodness of fit, and the FDR-
adjusted p-values of the Pearson correlations (C, D), One-Way ANOVA and Tukey HSD post hoc test (E, F).  
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Supplementary Figure 2.1.4 – Human SVF-adherent cells from different depots differentially upregulate the adipo-
genesis response upon exposure to an adipogenic cocktail. 

(A) Plot showing the number of donors and distribution of their BMI and sex included in the BRB-seq150 analysis across the 

different depots and time points.  
(B) PCA based on the BRB-seq150 data of SVF-adherent cells from the indicated adipose depots (SC - subcutaneous, PR - perire-

nal, OM - omentum, MC - mesocolic) and indicated time points (t0 - undifferentiated, t14 - 14 days post-adipogenic induc-

tion). 
(C) PCA, as described in B, colored by donors. 
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(D) t-SNE map shown in Fig. 2.1D computed on the 10 first PCs of the PCA displayed in B, colored by donors. 

(E) t-SNE map shown in Fig. 2.1D colored by the number of detected genes. 

(F) t-SNE map shown in Fig. 2.1D colored by the BMI of the donors.  
(G) Boxplot displaying the expression distribution of THY1, a known mesenchymal cell marker, across samples from the indi-

cated depots at t0.  
(H) Boxplots displaying the “white fat cell differentiation score” based on the scaled expression of the genes from the GO term 

“white fat cell differentiation” (GO:0050872) for the indicated depots and time points (see Methods). 

(I) Boxplots displaying the “response to insulin score” based on the scaled expression of the genes from the GO term “response 
to insulin” (GO:0032868) for the indicated depots and time points (see Methods). 

(J) Boxplots displaying the “mature adipocyte score” based on the scaled expression of the following markers: FABP4, PPARG, 

ADIPOQ, LIPE, LPL, PLIN1, PLIN2, PLIN4, CEBPA, CEBPB, CIDEC, CIDEA, for the indicated depots and time points (see Meth-

ods). 

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, unpaired two-sided t-test (G-J).  
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Supplementary Figure 2.1.5 – SVF-adherent cells from different depots have distinct transcriptomic signatures both 
when undifferentiated and when differentiated. 

(A) Dotplot showing enriched, representative terms that were found by GSEA performed on the differential gene expression 

analysis results of each indicated depot versus all others at t0 (i.e., undifferentiated state) of the transcriptomic data shown 

in Fig. 2.1D. 
(B) Heatmap of top differentially expressed genes when comparing the indicated adipose depot versus the three others at t14.  
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Supplementary Figure 1.5 
SVF-adherent cells from different depots have distinct transcriptomic signatures both when 
undifferentiated and when differentiated.!

(A) Dotplot showing enriched, representative terms that were found by GSEA performed on the 
differential gene expression analysis results of each indicated depot versus all others at t0 
(i.e., undifferentiated state) of the transcriptomic data shown in Fig. 1D. 

(B) Heatmap of top differentially expressed genes when comparing the indicated adipose depot 
versus the three others at t14.  
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Supplementary Figure 2.1.6 – The expression of genes related to “inflammatory response” and “vasculature and ep-
ithelium development” is enriched in OM adipose depot-derived cells compared to those from other depots. 

(A) GSEA plot of selected inflammatory response GO terms (“humoral response” GO:0006959, “cellular response to lipopoly-
saccharides” GO:0071222, “neutrophil chemotaxis” GO: 0030593), based on the differential expression analysis of SVF-

adherent cells derived from OM adipose depots versus those from other depots (SC, PR, MC) at t0 (i.e., undifferentiated 

state) or t14 (i.e., post-adipogenic induction). 
(B) GSEA plot of the GO terms “epithelial cell development” (GO:0060429) and “morphogenesis of a branching epithelium” 

(GO:0048754), based on the differential expression analysis of SVF-adherent cells derived from OM adipose depots versus 

those from other depots (SC, PR, MC) at t0 (i.e., undifferentiated state). 
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Supplementary Figure 1.6 
The expression of genes related to “inflammatory response” and “vasculature and epithelium 
development” is enriched in OM adipose depot-derived cells compared to those from other 
depots. 

(A) GSEA plot of selected inflammatory response GO terms (“humoral response” GO:0006959, 
“cellular response to lipopolysaccharides” GO:0071222, “neutrophil chemotaxis” GO: 
0030593), based on the differential expression analysis of SVF-adherent cells derived from 
OM adipose depots versus those from other depots (SC, PR, MC) at t0 (i.e., undifferentiated 
state) or t14 (i.e., post-adipogenic induction). 

(B) GSEA plot of the GO terms “epithelial cell development” (GO:0060429) and “morphogenesis 
of a branching epithelium” (GO:0048754), based on the differential expression analysis of 
SVF-adherent cells derived from OM adipose depots versus those from other depots (SC, 
PR, MC) at t0 (i.e., undifferentiated state). 
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Supplementary Figure 2.2.1 – scRNA-seq reveals common cell populations across adipose depots and donors. 

(A) t-SNE cell maps of individual scRNA-seq datasets of SVF Lin– cells isolated from four adipose depots (SC, OM, MC, and PR) 

and six different donors (D, as indicated in the corner of each t-SNE, see Table 2.2), visualizing the identified subpopulations 
of hASPCs: adipose stem cells (ASCs; green), pre-adipocytes (PreAs; red), OM-specific cells (blue), as well as mesothelial 
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cells (purple), vascular smooth muscle progenitor cells (VSMPs; dark orange), endothelial (light orange) and immune cells 

(pink). The number of cells per dataset from top to bottom and by row: 3929, 4169, 2162, 4262, 2042, 2670, 8583, 600, 

509, 2650, 2550. 
(B) left - t-SNE cell map of a scRNA-seq dataset of SVF Lin– cells isolated from gallbladder-associated adipose tissue from one 

donor, visualizing the identified populations: immune cells (pink) and hASPCs (ASCs in green and preAs in red). The high 
proportion of immune cells in the dataset likely reflects a technical artefact where SVF cells may have been under-stained 

prior to MACS separation; right - PCA of the highlighted hASPCs of the left panel visualizing the two hASPC subpopulations: 

adipose stem cells (ASCs; green) and pre-adipocytes (PreAs; red), a total of 54 cells. 
(C) Boxplot showing the log normalized gene expression distribution of selected markers in the different hASPC subpopulations 

depicted in panels A and B. 

(D) The percentage of shared top 100 differentially expressed genes between each subpopulation and sample shown in panels 
A and B; each point represents the number of shared markers between the indicated subpopulations (x-axis) of an individ-

ual dataset X and a subpopulation (coloring) in another individual dataset Y. 

(E) The percentage of shared top 100 differentially expressed genes as shown in panel D but limited to the comparison of the 
same populations (ASCs with ASCs, PreAs with PreAs, and VSMPs with VSMPs) across depots and donors, split by the type 

of depot of the comparison pairs; comparisons between samples originating from the same depots are highlighted in shades 

of green, and comparison of samples originating from different depots are in shades from yellow to red. 
(F) The percentage of shared top 100 differentially expressed genes as shown in panel D but limited to the comparison of the 

same populations (ASCs with ASCs, PreAs with PreAs, and VSMPs with VSMPs) across depots and donors, stratified accord-
ing to whether the pairs of compared samples are originating from the same donor (green) or not (red). 

(G) The percentage of cells of a subpopulation projected onto each subpopulation and sample based on scmap225 results (see 

Methods). Each point represents the percentage of a subpopulation (x-axis) of an individual dataset X projected onto a 
subpopulation (coloring) of another dataset Y. Projections of subpopulations (x-axis) non-existing in the reference data are 

highlighted as shaded circles.  

(H) t-SNE cell map of the integration of all scRNA-seq datasets described in Fig. 2.2A and B colored by sample. 
(I) Violin plot showing the distribution of library size (left) or the number of detected genes (right) across the different clusters 

shown in Fig. 2.2B. 
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Supplementary Figure 2.2.2 – Human ASCs and PreAs feature different signaling pathways. 

(A) Barplot displaying the percentage of cells of each cluster shown in Fig. 2.2B coming from each batch. 
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Supplementary Figure 2.2 |  See next page for caption
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(B) Barplot displaying the percentage of cells of each cluster shown in Fig. 2.2B coming from each depot (shades of colors 

indicate the different batches). The values were corrected for the number of cells per batch and the number of replicates 

per depot (n=3 for SC, PR, and OM, versus n=2 for MC). 
(C) Dot plot showing enriched biological process GO terms based on differentially expressed genes of ASCs or PreAs of the 

integrated scRNA-seq data shown in Fig. 2.2A and B. 
(D) Heatmap of the differentially expressed genes between the Adipose Stem Cell (ASC) population and the Pre-adipocyte 

(PreA) one across depots. 
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Supplementary Figure 2.2.3 – Several cell populations that were identified in the human SVF Lin– fraction across 
adipose depots correspond to cell populations identified in mice. 
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(A) Boxplot showing the distribution of the indicated murine WAT cell population scores across the detected, distinct human 

SVF cell populations. The scores were based on the human orthologs of the murine top markers, which were computed in 

the analysis presented in Ferrero et al.146 integrating scRNA-seq datasets of subcutaneous and visceral adipose tissue. 
(B) Boxplot showing the distribution of the indicated human cell populations across the different mouse cell populations de-

fined in Ferrero et al.146. The scores were based on the mouse orthologs of the human top markers of the clusters shown 
in Fig. 2.2B.  

(C) t-SNE cell map of integrated scRNA-seq datasets60,87,88 from OM and SC fat depots visualizing the identified subpopulations 

of mouse subcutaneous cells: adipose stem cells (ASCs), pre-adipocytes (PreAs), Aregs, Ifit+ ASPCs, Cilp+ ASPCs, mesothelial, 
endothelial, and immune cells. 

 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, unpaired two-sided t-test (A, B), only the statistics for the highest mean(s) are 
shown. The indicated adjusted p-value categories hold for all comparisons with the corresponding category, except if stated other-
wise.  
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Supplementary Figure 2.2.4 – Metadata of the scRNA-seq atlas of hASPCs and mesothelial cells published by Emont 
et al.59. 

(A) UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et al.59 colored by the depot of 

origin.  
(B) UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et al.59 colored by the clustering 

published in the latter study.  
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Supplementary Figure 2.4. 
Metadata of the scRNA-seq atlas of hASPCs and mesothelial cells published by Emont et al..

(A) UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et 
al.7 colored by the depot of origin.  

(B)  UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et 
al.7 colored by the clustering published in the latter study.  
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Supplementary Figure 2.2.5 – A HHIP+ hASPC population shares key marker genes with the murine Adipogenesis 
regulators (Aregs). 

(A) Dot plot displaying the average expression and percentage of expressing cells of the top 20 markers of HHIP+ hASPCs across 

the clusters shown in Fig. 2.2B. The orthologs of the murine top Areg markers (as defined in Zachara et al., 2022113) are 

highlighted in bold. 
(B) t-SNE cell map of the integrated data of human SVF cells shown in Fig. 2.2A and B colored by the log normalized expression 

of HHIP. The HHIP+ hASPC cluster is highlighted with a red circle. 

(C) Representative flow cytometry-based gating of HHIP+ events on SC adipose depot-derived SVF Lin– cells. The HHIP+ staining 
is highly variable across donors: donor D34 harbors a more distinct population, D25 more a continuum of positive events. 

(D) Flow cytometry-based quantification of Lin–/HHIP+ events in SC SVF Lin–, n=11. 
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Supplementary Figure 2.5. 
A HHIP+ hASPC population shares key marker genes with the murine Adipogenesis regulators 
(Aregs). 

(A) Dot plot displaying the average expression and percentage of expressing cells of the top 20 
markers of HHIP+ hASPCs across the clusters shown in Fig. 2B. The orthologs of the murine 
top Areg markers (as defined in Zachara et al.16) are highlighted in bold. 

(B)  t-SNE cell map of the integrated data of human SVF cells shown in Fig. 2A and B colored by 
the log normalized expression of HHIP. The HHIP+ hASPC cluster is highlighted with a red 
circle. 

(C)  Representative flow cytometry-based gating of HHIP+ events on SC adipose depot-derived 
SVF Lin– cells. The HHIP+ staining is highly variable across donors: donor D34 harbors a 
more distinct population, D25 more a continuum of positive events. 

(D)  Flow cytometry-based quantification of Lin–/HHIP+ events in SC SVF Lin–, n=11. 
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Supplementary Figure 2.2.6 – A population of IFIT+ hASPCs features enriched viral immune response gene expression. 

(A) Dot plot showing the average expression and percentage of expressing cells of the top 20 markers of IFIT+ hASPCs across 

the clusters shown in Fig. 2.2B.  

(B) Dot plot showing representative GO terms that are enriched based on the differentially expressed genes of IFIT+ hASPCs.  
(C) Boxplot showing the distribution of the log normalized expression of PDGFRA and PTPRC (CD45) across the cluster shown 

in Fig. 2.2B. 
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Supplementary Figure 2.6. 
A population of IFIT+ hASPCs features enriched viral immune response gene expression.

(A)  Dot plot showing the average expression and percentage of expressing cells of the top 20 
markers of IFIT+ hASPCs across the clusters shown in Fig. 2B.  

(B)  Dot plot showing representative GO terms that are enriched based on the differentially 
expressed genes of IFIT+ hASPCs.  

(C) Boxplot showing the distribution of the log normalized expression of PDGFRA and PTPRC 
(CD45) across the cluster shown in Fig. 2B. 
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Supplementary Figure 2.2.7 – A hASPC population shared across depots is defined by high SFRP2 and SFRP4 expres-
sion. 

(A) Dot plot displaying the average expression and percentage of expressing cells of the top markers of SFRP4+ hASPCs across 

the clusters shown in Fig. 2.2B. 

(B) UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et al.59 colored by the prediction 
score of SFRP4+ cells when transferring our cell cluster annotation.  

(C) Box plot showing the distribution of SFRP2 (top) and SFRP4 (bottom) expression in the different cell types from the inte-
grated scRNA-seq data, colored by depot of origin. 

(D) Box plot showing the distribution of SFRP2 (top) and SFRP4 (bottom) expression in the different hASPC subpopulations 

from the integrated scRNA-seq data, colored by depots of origin. 
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Supplementary Figure 2.7. 
A hASPC population shared across depots is defined by high SFRP2 and SFRP4 expression. 

(A) Dot plot displaying the average expression and percentage of expressing cells of the top 
markers of SFRP4+ hASPCs across the clusters shown in Fig. 2B. 

(B) UMAP of hASPCs and human mesothelial cells from scRNA-seq data provided by Emont et 
al.7 colored by the prediction score of SFRP4+ cells when transferring our cell cluster 
annotation.  

(C)  Box plot showing the distribution of SFRP2 (top) and SFRP4 (bottom) expression in the 
different cell types from the integrated scRNA-seq data, colored by depot of origin. 

(D)  Box plot showing the distribution of SFRP2 (top) and SFRP4 (bottom) expression in the 
different hASPC subpopulations from the integrated scRNA-seq data, colored by depots of 
origin. 
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Supplementary Figure 2.2.8 – Mesothelial and IGFBP2+ cell markers are enriched in SVF cells from the OM adipose 
depot compared to other depots, both pre- and post-adipogenic induction. 

(A) Volcano plot displaying differential gene expression results based on the BRB-seq150 data of expanded SVF-adherent cells 

from the OM adipose depot versus SVF-adherent cells from other depots (SC, PR, and MC fat depots). Top IGFBP2 markers 

identified using scRNA-seq datasets are highlighted in blue, while significantly differentially expressed genes (log2FC > 1, 
adjusted p-value < 0.01) are highlighted in darker colors. 

(B) Volcano plot displaying differential gene expression results based on the BRB-seq150 data of SVF-adherent cells from the 

OM adipose depot versus SVF-adherent cells from other depots (SC, PR, and MC fat depots) post-adipogenic induction. Top 
IGFBP2+ cells markers identified using scRNA-seq datasets are highlighted in blue, significantly differentially expressed 

genes (log2FC > 1, adjusted p-value < 0.01) are highlighted in darker colors. 
(C) Volcano plot displaying differential gene expression results based on the BRB-seq150 data of SVF-adherent cells from the 

OM adipose depot versus SVF-adherent cells from other depots (SC, PR, and MC). Top mesothelial markers identified using 

scRNA-seq datasets are highlighted in purple, while significantly differentially expressed genes (log2FC > 1, adjusted p-value 
< 0.01) are highlighted in darker colors. 
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(D) Volcano plot displaying differential gene expression results based on the BRB-seq150 data of SVF-adherent cells from the 

OM adipose depot versus SVF-adherent cells from other depots (SC, PR, and MC) post-adipogenic induction. Top mesothe-

lial markers identified using scRNA-seq datasets are highlighted in purple, while significantly differentially expressed genes 
(log2FC > 1, adjusted p-value < 0.01) are highlighted in darker colors. 

(E) Volcano plot displaying differential gene expression results based on the BRB-seq150 data of SVF-adherent cells from the 
OM adipose depot versus SVF-adherent cells from other depots (SC, PR, and MC) post-adipogenic induction. Top mesothe-

lial markers identified using scRNA-seq datasets are highlighted in purple, while significantly differentially expressed genes 

(log2FC > 1, adjusted p-value < 0.01) are highlighted in darker colors. 
(F) Box plot displaying the log normalized expression of MSLN (top) and UPK3B (bottom) across hASPCs (ASCs, PreAs, HHIP+, 

IFIT+, SFRP4+, RBP5+ ASPCs), IGFBP2+ cells, Mesothelial cells (Meso) and Vascular Smooth Muscle progenitors (VSMPs), 

grouped by the depot of origin indicated on the x-axis. 
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Supplementary Figure 2.3.1 – The selection of scRNA-seq-inferred surface markers enables the enrichment of main 
SVF cell populations across all analyzed adipose depots. 
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(A) t-SNE cell map of integrated scRNA-seq datasets described in Fig. 2.2A and B colored by the expression of genes corre-
sponding to the surface markers that were used to isolate each subpopulation experimentally. 

(B) Violin plot showing the distribution of the log normalized expression of Aoc3 based on the scRNA-seq integration of murine 
datasets (see Methods). 

(C) Boxplot showing the distribution of the log normalized scRNA-seq-based expression for IGFBP2, MSLN, and TM4SF1 (color) 
across the different human cell populations (x-axis). 

(D) Flow cytometry profiles of Lin–/TM4SF1+ populations after TM4SF1 staining from five different adipose depot-derived SVF 
cells from the same donor. 

(E) Flow cytometry-based analysis of the abundance of each indicated cell population gated from the Lin– fraction of MC SVF 
cells. Bar plots indicate mean, error bars standard deviation; n=2 donors. 

(F) Bar plot to compare flow cytometry-based abundances of the indicated cell populations across SC, PR, OM, and MC adipose 
depots within the SVF Lin– fraction. The three populations accumulate to 100% by depot. For OM, each cell population is 
also TM4SF1– to deplete for OM-specific populations; SC n=37, OM n=35, PR n=17; MC n=2 donors. 

(G) Relative cell number increase over time of culture for CD26+, DN, and VAP1+ cells in each depot. For OM, the three cell 
populations were gated from the Lin–/TM4SF1– population and the growth speed of Lin–/TM4SF1+ OM-specific cells were 
also recorded; n=12, 3 donors, 3-4 populations per depot. 

 
SC - Subcutaneous, PR - Perirenal, OM - Omentum, MC - mesocolic/mesenteric; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.0001, 
One-Way ANOVA and Tukey HSD post hoc test (E) and RELM analysis and Tukey HSD post hoc test (F). Black compares CD26+ ver-
sus DN, Red CD26+ versus VAP1+, Blue DN versus TM4SF1+, Green VAP1+ versus TM4SF1+, Pink DN versus VAP1+. 
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Supplementary Figure 2.3.2 – Correlation between the FACS-based abundance of the indicated SVF Lin– subpopula-
tions shared across depots and physiological data of the donors. 

(A) Grouped bar plots showing subpopulation abundance in male versus female donors (SC n=37, OM n=35, PR n=17 donors). 
(B) Scatter plot showing the correlation between FACS-based subpopulation abundance and donor age. The line represents a 

linear regression analysis. 
 
SC - Subcutaneous, PR - Perirenal, OM - Omentum; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, Unpaired Two-Way ANOVA 
(mixed model) multiple comparisons and Tukey HSD post hoc test (A) and linear regression analysis with its relative goodness of fit, 
and the FDR-adjused p-values of the Pearson correlations (B). 
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Supplementary Figure 3.2.  
Correlation between the FACS-based abundance of the indicated SVF Lin– subpopulations 
shared across depots and physiological data of the donors. 

(A) Grouped bar plots showing subpopulation abundance in male versus female donors (SC 
n=37, OM n=35, PR n=17 donors). 

(B) Scatter plot showing the correlation between FACS-based subpopulation abundance and 
donor age. The line represents a linear regression analysis. 

SC - Subcutaneous, PR - Perirenal, OM - Omentum; *p  0.05, **p  0.01, ***p  0.001,****p  
0.0001, Unpaired Two-Way ANOVA (mixed model) multiple comparisons and Tukey HSD post 
hoc test (A) and linear regression analysis with its relative goodness of fit, and the FDR-adjused 
p-values of the Pearson correlations (B). 
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Supplementary Figure 2.3.3 – ASCs and PreAs, even if detected across depots, exhibit distinct gene expression pro-
files. 

(A) Heatmap of the correlation between 2000 randomly selected ASCs and PreAs based on the first 30 principal components 
of the PCA space of integrated scRNA-seq data shown in Fig. 2.2A; a similar number of cells was selected for each depot 
and population.  

(B) Heatmap of the top 30 genes detected as significantly higher expressed in the indicated depot versus all other depots (only 
genes detected as differentially expressed in each pairwise comparison were retained) when focusing on ASCs (left) or 
PreAs (right); log normalized expression. 

(C) Dot plot of enriched, representative GO terms based on the differentially expressed genes specific to the indicated depot, 
as explained in A. 
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Supplementary Figure 3.3. 
ASCs and PreAs, even if detected across depots, exhibit distinct gene expression profiles.  

(A) Heatmap of the correlation between 2000 randomly selected ASCs and PreAs based on the 
first 30 principal components of the PCA space of integrated scRNA-seq data shown in Fig. 
2A; a similar number of cells was selected for each depot and population. 

(B) Heatmap of the top 30 genes detected as significantly higher expressed in the indicated 
depot versus all other depots (only genes detected as differentially expressed in each 
pairwise comparison were retained) when focusing on ASCs (left) or PreAs (right); log 
normalized expression. 

(C) Dot plot of enriched, representative GO terms based on the differentially expressed genes 
specific to the indicated depot, as explained in A. 

SC - Subcutaneous, PR - Perirenal, OM - Omentum, MC - Mesocolic. 
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Supplementary Figure 2.4.1 – Known anti-adipogenic markers are overrepresented in OM-specific cell populations 
that express TM4SF1, and the proportion of TM4SF1+ cells positively correlates with BMI. Mesothelial and IGFBP2+ 
cells also display different mor-phologies. 

(A) Boxplot showing the distribution of log normalized expression of the scRNA-seq data of WT1, ALDH1A2, and CD200 (x-axis) 
across the indicated cell populations (defined by the colors). 

(B) Scatter plot showing the correlation between the OM SVF Lin–/TM4SF1+ fraction based on flow cytometry analysis and the 
BMI of donors; the line represents a linear regression analysis with its relative goodness of fit; the p-value was computed 
performing a Pearson correlation. 

(C) Bright-field transmission light microscopy images of spindle-like OM (Omentum) ASPCs (OM SVF/Lin–/TM4SF1–) and cob-
blestone-like OM-specific TM4SF1+ populations. 
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Supplementary Figure 4.1.  
Known anti-adipogenic markers are overrepresented in OM-specific cell populations that 
express TM4SF1, and the proportion of TM4SF1+ cells positively correlates with BMI. Mesothelial 
and IGFBP2+ cells also display different morphologies.!

(A)! Boxplot showing the distribution of log normalized expression of the scRNA-seq data of 
WT1, ALDH1A2, and CD200 (x-axis) across the indicated cell populations (defined by the 
colors). 

(B)! Scatter plot showing the correlation between the OM SVF Lin–/TM4SF1+ fraction based on 
flow cytometry analysis and the BMI of donors; the line represents a linear regression analysis 
with its relative goodness of fit; the p-value was computed performing a Pearson correlation. 

(C) Bright-field transmission light microscopy images of spindle-like OM (Omentum) ASPCs (OM 
SVF/Lin–/TM4SF1–) and cobblestone-like OM-specific TM4SF1+ populations.
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Supplementary Figure 2.4.2 – Mixing OM SVF with PR SVF does not affect the adipogenic potential of PR cells. 

(A) Total number of nuclei in each well (see Methods for more details) of images in Fig. 2.4E, n=16, 4 biological replicates, 4 
independent wells for each. 

(B) Boxplot showing the distribution of batch normalized expression of DKK2 of BRB-seq150 data of SVF-isolated cells from the 
indicated depots and treatment conditions, n=12-61, 4-20 biological replicates, 1-4 independent wells for each. 

(C) qPCR-based gene expression levels of DKK2 (a subcutaneous depot-specific gene), normalized by HPRT1 expression and 0% 
subcutaneous (SC) to control for correct mixing ratios in the experiment shown in Fig. 2.4E. The linear regression and cor-
responding R2 coefficient values are shown in red; a black line links the lowest value to the highest value; n=4, 2 biological 
replicates, 2 independent wells for each. 

(D) Representative fluorescence microscopy images of SVF Lin– cells in mixing experiments after 14 days of adipogenic differ-
entiation, where SVF Lin– cells from OM and PR of Donor 68 were mixed directly after cell isolation at the indicated pro-
portions. Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA, scale bar=100 mm. 

(E) Total number of nuclei in each well (see Methods for more details) of images in C; n=12, 4 biological replicates, 3 independ-
ent wells for each. 

(F) Quantification of the extent of adipogenic differentiation of the distinct, mixed OM and PR SVF Lin– cell populations, as 
presented in E. Values across biological replicates are normalized to the average adiposcore of the reference 100% PR Lin– 
condition. The relative proportion (0-100%) of PR SVF Lin– cells in each well is plotted on the x-axis. Error bars represent 
standard deviation from the average, linear and exponential regression with corresponding R2 coefficients shown in red 
and blue, respectively. The black line represents the expected increase of adipogenesis for a linear dilution between 0 and 
100% of PR SVF Lin– cells; n=16, 4 biological replicates, 4 independent wells for each. 
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Supplementary Figure 4.2.  
Mixing OM SVF with PR SVF does not affect the adipogenic potential of PR cells. 

(A) Total number of nuclei in each well (see Methods for more details) of images in Fig. 4E, 
n=16, 4 biological replicates, 4 independent wells for each.

(B)  Boxplot showing the distribution of batch normalized expression of DKK2 of BRB-seq18 data 
of SVF-isolated cells from the indicated depots and treatment conditions, n=12-61, 4-20 
biological replicates, 1-4 independent wells for each. 

(C)  qPCR-based gene expression levels of DKK2 (a subcutaneous depot-specific gene), 
normalized by HPRT1 expression and 0% subcutaneous (SC) to control for correct mixing 
ratios in the experiment shown in Fig. 4E. The linear regression and corresponding R2 
coefficient values are shown in red; a black line links the lowest value to the highest value; 
n=4, 2 biological replicates, 2 independent wells for each. 

(D)  Representative fluorescence microscopy images of SVF Lin– cells in mixing experiments 
after 14 days of adipogenic differentiation, where SVF Lin– cells from OM and PR of Donor 
68 were mixed directly after cell isolation at the indicated proportions. Yellow - Bodypi stains 
for lipids, blue - Hoechst stains for DNA, scale bar=100 m. 

(E)  Total number of nuclei in each well (see Methods for more details) of images in C; n=12, 4 
biological replicates, 3 independent wells for each. 

(F)  Quantification of the extent of adipogenic differentiation of the distinct, mixed OM and PR 
SVF Lin– cell populations, as presented in E. Values across biological replicates are 
normalized to the average adiposcore of the reference 100% PR Lin– condition. The relative 
proportion (0-100%) of PR SVF Lin– cells in each well is plotted on the x-axis. Error bars 
represent standard deviation from the average, linear and exponential regression with 
corresponding R2 coefficients shown in red and blue, respectively. The black line represents 
the expected increase of adipogenesis for a linear dilution between 0 and 100% of PR SVF 
Lin– cells; n=16, 4 biological replicates, 4 independent wells for each. 

SC - Subcutaneous, PR - Perirenal, OM - Omentum, MC - Mesocolic. 

μ



Chapter 2 | A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion 

 119 

Supplementary Figure 2.4.3 – IGFBP2+ cells exhibit a specific gene expression profile that also shares signatures with 
both ASPCs and mesothelial cells. 

(A) Dot plot displaying the average expression and percentage of expressing cells of the top IGFBP2+ cell markers across the 
clusters shown in Fig. 2.2B. 

(B) Boxplot showing the distribution of the score based on the top mesothelial cell markers (purple) or the top ASC and preA 
markers (green) in OM hASPCs (ASCs and PreAs), IGFBP2+ cells, and mesothelial cells. 
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Supplementary Figure 4.3.  
IGFBP2+ cells exhibit a specific gene expression profile that also shares signatures with both 
ASPCs and mesothelial cells.  

(A) Dot plot displaying the average expression and percentage of expressing cells of the top 
IGFBP2+ cell markers across the clusters shown in Fig. 2B. 

(B) Boxplot showing the distribution of the score based on the top mesothelial cell markers 
(purple) or the top ASC and preA markers (green) in OM hASPCs (ASCs and PreAs), IGFBP2+ 
cells, and mesothelial cells. 
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Supplementary Figure 2.4.4 – Cells from the sc and snRNAseq atlas of WAT published by Emont and colleagues are 
predicted as IGFBP2+ cells. 

(A) Boxplot showing the distribution of the prediction score of IGFBP2+ cells when transferring our cell cluster annotation on 
the data published by Emont et al.59 for the indicated adipose depots (x-axis); SC - Subcutaneous, OM - Omentum. 
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(B) UMAP computed on the integrated data of hASPCs and human mesothelial cells reported by Emont et al.59 colored by the 
clustering provided in the same study. 

(C) Bar plot displaying the number of cells predicted as IGFBP2+ cells into each of the clusters of mesothelial cells and ASPCs 
originally reported by Emont et al.59, shown in B. 

(D) UMAP described in B colored by the prediction score of IGFBP2+ cells when transferring our cell cluster annotation on the 
data reported by Emont et al.59. 

(E) UMAP described in B colored by the score based on the top IGFBP2+ cell markers. 
(F) Correlation between every donor’s BMI and the percentage of hASPC6 cells (IGFBP2+-like) for each donor based on the 

scRNA-seq dataset provided by Emont et al.59; the percentage was calculated for each donor as the fraction of mesothelial 
cells and ASPCs combined. 

(G) tSNE cell map of our integrated scRNA-seq data colored by the log-normalized expression of the indicated IGFBP2+ cell 
markers. 

(H) UMAP described in B colored by the log-normalized expression of some IGFBP2+ cell markers as in G. 
(I) UMAP described in B colored by the log-normalized expression of the indicated markers shared by predicted IGFBP2+ cells 

and ASPCs or Mesothelial cells. 
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Supplementary Figure 2.4.5 – IGFBP2+ cells are cells that transition between mesothelial and mesenchymal cell 
states. 

(A) PAGA-inferred trajectory179 superimposed on the PAGA-initialized ForceAtlas2 layout between ASCs, PreAs, IGFBP2+ cells, 
mesothelial cells, and VSMPs as shown in Fig. 2.4G, colored by the inferred pseudotime (starting from ASCs). 
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(B) PAGA-inferred trajectory179 as shown in A colored by the log normalized expression of IGFBP2. 
(C) Dot plot of key GO terms enriched based on IGFBP2+ cell markers.  
(D) Heatmap showing the change of gene expression along the trajectory pseudotime shown in A for EMT-related genes (top: 

genes found as enriched when performing GO enrichment analysis, bottom: other EMT-related genes found in the litera-
ture). For visualization purposes, the number of cells was downsampled proportionally along pseudotime (see Methods). 
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Supplementary Figure 2.4.6 – TM4SF1 and MSLN markers allow distinguishing between the two OM-specific subpop-
ulations. 

(A) Representative flow cytometry plots of SC (Subcutaneous), OM (Omentum), and PR (Perirenal) SVF/Lin– from donor 53 
stained with TM4SF1 and MSLN and gating strategy to enrich for ASPCs (Lin–/TM4SF1–/MSLN–), IGFBP2+ cells (Lin–
/TM4SF1+/MSLN–) or mesothelial cells (Lin–/TM4SF1+/MSLN+) exclusively in OM SVF. Similar profiles were obtained from 
at least three donors. 

(B) Quantification of the relative abundance of indicated cell populations based on Flow cytometry profiles; n=23-47 donors. 
(C) Scatter plot showing the correlation between the OM SVF Lin–/TM4SF1+/MSLN– fraction based on flow cytometry analysis 

and the BMI of donors; the line represents a linear regression analysis with its relative goodness of fit; the p-value was 
computed performing a Pearson correlation. 
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Supplementary Figure 4.6.  
TM4SF1 and MSLN markers allow distinguishing between the two OM-specific subpopulations.

(A) Representative flow cytometry plots of SC (Subcutaneous), OM (Omentum), and PR 
(Perirenal) SVF/Lin– from donor 53 stained with TM4SF1 and MSLN and gating strategy to 
enrich for ASPCs (Lin–/TM4SF1–/MSLN–), IGFBP2+ cells (Lin–/TM4SF1+/MSLN–) or 
mesothelial cells (Lin–/TM4SF1+/MSLN+) exclusively in OM SVF. Similar profiles were 
obtained from at least three donors. 

(B) Quantification of the relative abundance of indicated cell populations based on Flow 
cytometry profiles; n=23-47 donors. 

(C) Scatter plot showing the correlation between the OM SVF Lin–/TM4SF1+/MSLN– fraction 
based on flow cytometry analysis and the BMI of donors; the line represents a linear 
regression analysis with its relative goodness of fit; the p-value was computed performing a 
Pearson correlation. 
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Supplementary Figure 2.4.7 – Detection of TM4SF1+/MSLN+ and TM4SF1+/MSLN– cells by in situ immunohistochem-
istry. 
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(A) Confocal microscopy fluorescent images after TM4SF1 (Green), Perilipin (PLIN1) (Yellow), and MSLN (Pink) immunohisto-
chemistry staining of whole OM AT cryo-cuts. The top row is the unstained control. DAPI staining for nuclei is colored in 
Cyan. The experiment was repeated three times, yielding similar results. 

(B) Confocal microscopy fluorescent images after TM4SF1 (Green), Perilipin (PLIN1) (Yellow) and MSLN (Pink) immunohisto-
chemistry staining of whole OM AT cryocuts. The top row is the unstained control. DAPI staining for nuclei is colored in 
Cyan. The experiment was repeated three times, yielding similar results. The white arrows point to TM4SF1+ cells, the red 
arrows point to TM4SF1+/MSLN+ cells. 
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Supplementary Figure 2.4.8 – TM4SF1+/MSLN– cells change morphology upon expansion in vitro. 

(A) Bright-field transmission light microscopy images of confluent or expanding spindle-like OM (Omentum) ASPCs (OM 
SVF/Lin–/TM4SF1–) and cobblestone-like Mesothelial cell (OM SVF/Lin–/TM4SF1+/MSLN+) and IGFBP2+ (defined as OM 
SVF/Lin–/TM4SF1+/MSLN–) cell populations. 
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Supplementary Figure 4.8.  
TM4SF1+/MSLN– cells change morphology upon expansion in vitro. 

(A) Bright-field transmission light microscopy images of confluent or expanding spindle-like OM 
(Omentum) ASPCs (OM SVF/Lin–/TM4SF1–) and cobblestone-like Mesothelial cell (OM 
SVF/Lin–/TM4SF1+/MSLN+) and IGFBP2+ (defined as OM SVF/Lin–/TM4SF1+/MSLN–) cell 
populations. 
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Supplementary Figure 2.5.1 – PR SVF-adherent cells are insensitive to the inhibition exerted by IGFBP2-secreting cells 
in a transwell setting. 

(A) Total number of nuclei in each well (see Methods for more details) of images in Fig. 2.5E; n=12, 4 donors, 3 independent 
wells. 

(B) Representative fluorescence microscopy images of “receiver” PR SVF-adherent cells, at the bottom of the transwell set-up, 
after adipogenic differentiation when co-cultured with the indicated SVF fractions at the top: paired PR SVF-adherent cells, 
OM SVF-adherent cells, OM SVF/Lin–/TM4SF1– (OM ASPCs), OM SVF/Lin–/TM4SF1+/MSLN– (IGFBP2-secreting cells), or 
OM SVF/Lin–/TM4SF1+/MSLN+ cells (mesothelial cells). First row: PR and OM cells from D54, Second row: SC and OM cells 
from D65. 

(C) Barplot showing the adiposcore quantification of bottom cells in B. Values are normalized to the average adiposcore of the 
reference top PR SVF-adherent condition; n=12, 4 donors, 3 independent wells. 

(D) Total number of nuclei in each well (see Methods for more details) of images in B; n=12, 4 donors, 3 independent wells. 
(E) Total number of nuclei in each well (see Methods for more details) of images in Fig. 2.5I; n=16-20, 4 donors, 2-4 independ-

ent wells. 
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Supplementary Figure 5.1  
PR SVF-adherent cells are insensitive to the inhibition exerted by IGFBP2-secreting cells in a 
transwell setting. 

(A) Total number of nuclei in each well (see Methods for more details) of images in Fig. 5E; n=12, 
4 donors, 3 independent wells. 

(B)  Representative fluorescence microscopy images of “receiver” PR SVF-adherent cells, at the 
bottom of the transwell set-up, after adipogenic differentiation when co-cultured with the 
indicated SVF fractions at the top: paired PR SVF-adherent cells, OM SVF-adherent cells, 
OM SVF/Lin–/TM4SF1– (OM ASPCs), OM SVF/Lin–/TM4SF1+/MSLN– (IGFBP2-secreting 
cells), or OM SVF/Lin–/TM4SF1+/MSLN+ cells (mesothelial cells). First row: PR and OM cells 
from D54, Second row: SC and OM cells from D65. 

(C)  Barplot showing the adiposcore quantification of bottom cells in B. Values are normalized to 
the average adiposcore of the reference top PR SVF-adherent condition; n=12, 4 donors, 3 
independent wells. 

(D)  Total number of nuclei in each well (see Methods for more details) of images in B; n=12, 4 
donors, 3 independent wells. 

(E)  Total number of nuclei in each well (see Methods for more details) of images in Fig. 5I; n=16-
20, 4 donors, 2-4 independent wells. 

SC Subcutaneous - Yellow, OM Omentum - Purple, PR Perirenal - Brown. 
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Supplementary Figure 2.5.2 – Experimental titration of IGFBP2, IGF-I, and IGF-II recombinant proteins to test their 
effect on adipogenic differentia-tion. 

(A) Representative fluorescent microscopy images of SC SVF-adherent cells treated with the indicated concentrations of inter-
fering compounds. Scale bar=100 mm.  

(B) Barplot showing the adiposcore quantification of IGFBP2-treated cells in A. The adiposcores are normalized to the non-
treated cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(C) Total number of nuclei in each well (see Methods for more details) for IGFBP2-treated cells in A; n=6, 3 donors, 2 inde-
pendent wells. 

(D) Representative fluorescent microscopy images of PR SVF cells treated with the indicated concentrations of interfering com-
pounds. Scale bar=100 mm. 
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(E) Barplot showing the adiposcore quantification of IGFBP2-treated cells in D. The adiposcores are normalized to the non-
treated cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(F) Total number of nuclei in each well (see Methods for more details) for IGFBP2-treated cells in D; n=6, 3 donors, 2 inde-
pendent wells. 

(G) Barplot showing the adiposcore quantification of IGF-I-treated cells in A. The adiposcores are normalized to the non-treated 
cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(H) Total number of nuclei in each well (see Methods for more details) for IGF-I-treated cells of panel A; n=6, 3 donors, 2 
independent wells. 

(I) Barplot showing the adiposcore quantification of IGF-II-treated cells in A. The adiposcores are normalized to the non-
treated cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(J) Total number of nuclei in each well (see Methods for more details) for IGF-II treated cells of panel A; n=6, 3 donors, 2 
independent wells. 

(K) Barplot showing the adiposcore quantification of IGF-I-treated cells in D. The adiposcores are normalized to the non-treated 
cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(L) Total number of nuclei in each well (see Methods for more details) for IGF-I-treated cells of panel D; n=6, 3 donors, 2 
independent wells. 

(M) Barplot showing the adiposcore quantification of IGF-II-treated cells in D. The adiposcores are normalized to the non-
treated cells (Ctrl); n=4, 2 donors, 2 independent wells. 

(N) Total number of nuclei in each well (see Methods for more details) for IGF-II treated cells of panel D; n=6, 3 donors, 2 
independent wells. 

 
For each image:  Yellow - Bodipy stains for lipids, blue - Hoechst stains for DNA. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 
0.0001One-Way ANOVA and Tukey HSD post hoc test. 
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Supplementary Figure 2.5.3 – Treatment with IGFBP2 did not significantly affect the adipogenic differentiation of PR 
SVF-adherent cells, while treat-ment with Echistatin increased the accumulation of lipid droplets. 

(A) Total number of nuclei in each well (see Methods for more details) for cells in Fig. 2.5K. n=12, 4 donors, 3 independent 
wells per replicate. 

(B) Representative fluorescence microscopy images of PR SVF cells after adipogenic differentiation when treated with the in-
dicated interfering compounds. IGFBP2 1nM, IGF-I 10nM, IGF-II 10nM, Echistatin 100nM. 

(C) Total number of nuclei in each well (see Methods for more details) for cells in A. n=12, 4 donors, 3 independent wells per 
replicate. 

(D) Barplot showing the adiposcore quantification of cells in A focusing on the IGF-independent signaling pathway of IGFBP2. 
The adiposcores are normalized to the non-treated cells (Ctrl); n=12, 4 donors, three independent wells. 

(E) Total number of nuclei in each well (see Methods for more details) for cells in Fig. 2.5N. n=12, 4 donors, 3 independent 
wells per replicate. 

(F) Barplot showing the adiposcore quantification of cells in A focusing on the IGF-dependent signaling pathway of IGFBP2. 
The adiposcores are normalized to the non-treated cells (Ctrl). n=12, 4 donors, three independent wells. 

 
SC Subcutaneous - Yellow, OM Omentum - Purple, PR Perirenal - Brown; For each images:  Yellow - Bodipy stains for lipids, blue - 
Hoechst stains for DNA *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p ≤ 0.000,1One-Way ANOVA and Tukey HSD post hoc test. 
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Supplementary Figure 5.3  
Treatment with IGFBP2 did not significantly affect the adipogenic differentiation of PR SVF-
adherent cells, while treatment with Echistatin increased the accumulation of lipid droplets.  

(A) Total number of nuclei in each well (see Methods for more details) for cells in Fig. 5K. n=12, 
4 donors, 3 independent wells per replicate. 

(B) Representative fluorescence microscopy images of PR SVF cells after adipogenic 
differentiation when treated with the indicated interfering compounds. IGFBP2 1nM, IGF-I 
10nM, IGF-II 10nM, Echistatin 100nM. 

(C) Total number of nuclei in each well (see Methods for more details) for cells in A. n=12, 4 
donors, 3 independent wells per replicate. 

(D) Barplot showing the adiposcore quantification of cells in A focusing on the IGF-independent 
signaling pathway of IGFBP2. The adiposcores are normalized to the non-treated cells (Ctrl); 
n=12, 4 donors, three independent wells. 

(E) Total number of nuclei in each well (see Methods for more details) for cells in Fig. 5N. n=12, 
4 donors, 3 independent wells per replicate. 

(F) Barplot showing the adiposcore quantification of cells in A focusing on the IGF-dependent 
signaling pathway of IGFBP2. The adiposcores are normalized to the non-treated cells (Ctrl). 
n=12, 4 donors, three independent wells. 

SC Subcutaneous - Yellow, OM Omentum - Purple, PR Perirenal - Brown; For each images: 
Yellow - Bodypi stains for lipids, blue - Hoechst stains for DNA *p  0.05, **p  0.01, ***p  
0.001,****p  0.000,1One-Way ANOVA and Tukey HSD post hoc test. 
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Table 2.1 – Donors’ information 

 
  

Donor code Fig1 & supp Fig2 & supp Fig3 & supp Fig4 & supp Fig 5 & supp Height Weight BMI Age Gender Type of surgery

D00 CI, AS, BRB scRNAseq 1.74 138 45.58 32 Female Gastric bypass

D01 CI, AS, BRB scRNAseq 1.77 110 35.11 46 Female Gastric bypass

D02 CI, AS, BRB 1.78 146.5 46.23 35 Female Gastric bypass

D03 CI, AS, BRB 1.64 108.6 40.37 51 Female Gastric bypass

D04 CI, AS, BRB 1.66 112 40.64 54 Female Gastric bypass

D05 CI, AS, BRB FC CI, AS 1.66 112 40.64 54 Female Gastric bypass

D06 CI, AS, BRB FC 1.71 111 37.96 27 Female Gastric bypass

D07 CI, AS, BRB scRNAseq FC 1.79 128 39.94 51 Male Gastric bypass

D08 CI, AS, BRB 1.59 129 51.02 25 Female Gastric bypass

D09 CI, AS, BRB FC 1.6 106 41.4 29 Female Gastric bypass

D10 CI, AS, BRB FC 1.53 102 43.57 40 Female Gastric bypass

D11 CI, AS, BRB FC 1.64 132 49.07 32 Female Gastric bypass

D12 CI, AS, BRB FC 1.76 106 34.22 36 Male Gastric bypass

D13 CI, AS, BRB FC 1.67 136 48.76 42 Female Gastric bypass

D14 CI, AS, BRB FC Mix AS 1.56 93 38.21 26 Female Gastric bypass

D15 CI, AS, BRB FC Mix AS 1.7 115 39.79 60 Male Gastric bypass

D16 CI, AS, BRB FC 1.79 180 56.17 54 Male Gastric bypass

D17 CI, AS, BRB FC 1.74 181 59.78 57 Male Gastric bypass

D18 CI, AS, BRB 1.72 96 32.44 50 Female Gastric bypass

D19 CI, AS, BRB FC 1.74 169 55.81 44 Male Gastric bypass

D20 CI, AS, BRB FC 1.68 149 52.79 63 Female Gastric bypass

D21 CI, AS, BRB FC 1.68 110 38.97 49 Female Gastric bypass

D22 CI, AS, BRB FC 1.89 90 25.19 31 Male Nephrectomy

D23 CI, AS, BRB FC, Profiles 1.6 75 29.29 75 Female Nephrectomy

D24 CI, AS, BRB scRNAseq FC TW AS 1.53 57 24.34 63 Female Nephrectomy

D25 CI, AS, BRB FC 1.62 55 20.95 65 Female Nephrectomy

D26 FC 1.61 102 39.35 60 Female Gastric bypass

D27 CI, AS, BRB FC 1.75 92 30.04 59 Male Nephrectomy

D28 CI, AS, BRB 1.61 65 25.07 45 Female Nephrectomy

D29 CI, AS, BRB FC 1.62 60 22.86 46 Female Nephrectomy

D30 CI, AS, BRB scRNAseq FC, AS 1.68 60 21.25 63 Female Nephrectomy

D31 CI, AS, BRB 1.76 114 36.8 38 Male Gastric bypass

D32 CI, AS, BRB FC 1.57 114 36.8 38 Female Gastric bypass

D33 CI, AS, BRB FC 1.6 100 40.56 46 Female Nephrectomy

D34 CI, AS, BRB FC 1.75 56 21.87 48 Female Nephrectomy

D35 CI, AS, BRB FC TW AS 1.58 95 31.02 72 Female Nephrectomy

D36 FC 50 Female Gastric bypass

D37 FC 1.59 114 45.09 27 Female Gastric bypass

D38 FC 1.85 169 49.37 40 Male Gastric bypass

D39 FC 1.56 102 41.91 44 Female Gastric bypass

D40 FC 1.83 176.8 52.79 30 Male Gastric bypass

D41 FC CI, AS 1.66 118 42.82 42 Female Gastric bypass

D42 FC 1.73 106 35.41 55 Male Gastric bypass

D43 FC, AS 1.65 98 35.99 21 Female Gastric bypass

D44 FC, AS CI, AS 48 Male Gastric bypass

D45 FC 1.79 110 34.33 40 Male Gastric bypass

D46 FC 1.67 90 32.27 44 Male Gastric bypass

D47 FC 1.64 122 45.35 45 Male Gastric bypass

D48 FC 1.71 133 45.48 34 Female Gastric bypass

D49 FC 1.47 85 39.33 53 Female Gastric bypass

D50 FC 1.67 105 37.64 56 Female Gastric bypass

D51 FC 1.85 175 51.13 34 Male Gastric bypass

D52 FC 1.7 141 48.78 22 Female Gastric bypass

D53 FC TW AS, CI 1.71 136 46.51 53 Male Gastric bypass

D54 FC TW AS 1.64 86 31.97 43 Female Gastric bypass

D55 FC 1.64 136 50.56 53 Female Gastric bypass

D56 FC 1.64 129 47.96 30 Female Gastric bypass

D57 FC 1.7 127 43.94 54 Male Gastric bypass

D61 scRNAseq FC 1.76 81 26.14 75 Male Nephrectomy

D62 FC Chem AS, CI 1.72 85 28.73 59 Female Nephrectomy Legend
D63 FC Chem AS, CI 1.61 84 32.4 48 Female Nephrectomy AS Adiposcore

D64 FC 1.65 78 28.65 33 Female Nephrectomy BF brightfield images

D65 FC, AS TW AS, CI, ELISA 1.73 88 29.4 66 Male Nephrectomy BRB Barcoded bulkRNA sequencing

D66 FC, AS TW AS, ELISA 1.65 65 23.87 44 Female Nephrectomy Chem chemical experiments

D67 FC, AS Mix AS, IHC, BF 1.59 73 28.87 67 Female Nephrectomy CI Confocal imaging

D68 FC, AS, CI Mix CI, AS 1.82 78 23.54 27 Male Nephrectomy ELISA enzyme-linked immunosorbent assay

D69 FC, AS 1.62 70 26.67 59 Female Nephrectomy FC flow cytometry

D70 FC, AS, CI 1.76 83 26.79 59 Male Nephrectomy IHC Immunohistochemistry

D71 FC 1.77 83 26.49 42 Male Nephrectomy KD siRNA knockdown experiments

D72 AS 1.77 129 41.17 70 Male Gastric bypass Mix mixing experiments

D73 Chem AS, CI 1.7 80 27.68 61 Female Nephrectomy Profiles flow cytometry scatter plot profiles

D74 KD, Chem AS 1.5 71 31.55 55 Female Nephrectomy scRNAseq single-cell RNA sequencing

D75 Chem AS, KD, ELISA 1.86 76 21.99 55 Male Nephrectomy TW transwell

D76 Chem AS, ELISA 1.72 91 30.75 38 Male Nephrectomy

Supplementary Table 1 – Donor’s information
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Table 2.2 – Donors' specifications for scRNA-seq 

Red: Obese, Yellow: Overweight, Green: Normoweight 

 
Table 2.3 – Cohorts specifications 

 

Table 2.4 – Antibody specifications for FACS 

 

Table 2.5 – Antibody specifications for IHC 

Grey indicates secondary antibodies 

 

 
 

 

Donor code Age Gender Weight [kg] Height [m] BMI [kg/m2] Type of surgery
Enrichment for SVF 

Lin– before scRNAseq Analysed depots
D00 32 Female 138 1.74 45.58 Gastric bypass FACS SC, OM
D01 46 Female 110 1.77 35.11 Gastric bypass FACS SC, OM
D07 51 Male 128 1.79 39.94 Gastric bypass MACS SC, OM, MC1 and MC2
D24 63 Female 57 1.53 24.34 Live donor nephrectomy FACS PR
D30 63 Female 60 1.68 21.25 Live donor nephrectomy FACS PR
D61 75 Male 81 1.76 26.14 Live donor nephrectomy FACS PR

Supplementary Table 2 – Donor’s specifications for scRNA-seq
Red: Obese, Green: Normoweight, Yellow: Overweight

 

Cohort of 
obese 

patients

Control 
cohort of 

kidney 
donors

Number 55 26
Gender (M:F) 21:34 8:17
Age Mean ± SD 42.4  ± 11.7 53.9  ± 13.6
BMI Mean ± SD [kg/m2] 43.4 ± 6.6 26.8 ± 3.3
Weight Mean ± SD [kg] 124.1 ± 25.1 75.3 ± 12.2
Height Mean ± SD [cm] 168  ± 9 167.3 ± 9.3

Type of surgery Gastric bypass
Live donor 

nephrectomy
Accessible biopsies SC, OM, MC SC, OM, PR

                 Supplementary Table 3 – Cohorts specifications

Target Provider Catalog number Host specie Fluorophore 
conjugate

Biotium Mix n Stain 
fluorofore conjugate

Biotium Mix n Stain 
reference Working titration SC SVF 

Panel
OM SVF 

Panel
PR SVF 
Panel

Human HHIP Sigma Aldrich WH0064399M1 Mouse uncoupled CF568 92235 1:20

Human MSLN Biolegend 530101 Mouse uncoupled CF568 92255 1:25

Human VAP-1 R&D IC39571G Mouse AF488 - - 1:80

Human CD26 Biolegend 302714 Mouse PE/Cy7 - - 1:80

Human CD45 Biolegend 304022 Mouse Pacific Blue - - 1:400

Human CD31 Biolgend 303114 Mouse Pacific Blue - - 1:100

Human TM4SF1/L6 R&D FAB8164R Mouse AF647 - - 1:20

                        Supplementary Table 4 – Antibody specifications for FACS

Target Provider Catalog number Host specie Fluorophore conjugate
Biotium Mix n Stain 

fluorofore 
conjugate

Biotium Mix n 
Stain reference

Working 
titration

Primary (I) or 
Secondary 

(II)

Human MSLN Biolegend 530101 Mouse uncoupled CF568 92255 1:50 I
Human TM4SF1/L6 R&D FAB8164R Mouse AF488 - - 1:50 I

Human PLIN1 Abcam ab172907 Rabbit uncoupled 1:200 I
anti-Rabbit IgG (H+L) Thermo A-31573 Donkey AF647 1:200 II

                  Supplementary Table 5 – Antibody specifications for IHC  
                  Grey indicates secondary antibody  
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3.1 The adipose-tissue SVF and its heterogeneity across species 

3.1.1 The ASPC heterogeneity in mouse 

The advent of scRNA-seq techniques allowed for unprecedent and unbiased revelation of new cell sub-pop-

ulations within heterogeneous cell populations232. If the scientific community has been able to produce whole 

body atlases of simple research models such as C. elegans233 and D. melanogaster234, when it comes to higher 

mammals accounting for billions of cells, we have no other ways than exploring organ by organ, tissue by 

tissue the underlying cell heterogeneity. The Deplancke lab undertook the scRNA-seq-based exploration of 

adipose stem and progenitor cells (ASPCs) in 2015 and since then contributed to a number of groundbreaking 

discoveries, among which was resolving the heterogeneity of mouse subcutaneous (SC) ASPCs102. Shortly af-

ter, several other labs corroborated our findings96,100 and added depth to general knowledge by resolving 

epigonadal100,101 or omental143 mouse ASPCs heterogeneity, all concluding on the fact that the ASPC pool is 

heterogenous regardless of the anatomic depot of origin145,146,235. Specifically, the mouse ASPC landscape 

across depots is populated by two canonical mesenchymal cell types/states, the adipose stem cells (ASC) and 

the pre-adipocytes (PreA). Downstream functionalization of these cell sub-populations corroborated the 

choice of nomenclature, given that ASCs (Dpp4+, Cd55+) as opposed to PreAs (Icam1+, Aoc3+) showed 

greater proliferation abilities, while the latter the highest adipogenic potential96,146. Transcriptomically close 

to ASCs and PreAs stood an enigmatic cell type characterized by a high and specific expression of F3 and 

which robustly clustered apart from the two main populations96,102,146. Technically, this mouse F3+ population 

should not be considered as an ASPC as it is unable itself to form mature adipocytes, instead, exerts a nega-

tive regulation on neighboring adipogenic cells like ASC or PreAs, hence the proposed nomenclature of Aregs 

(for Adipogenesis regulators)102. Lineage tracing analysis further validated the newly established niche land-

scape, in fact it was shown that ASCs stand at the very root of adipogenesis, and can give rise to both PreAs 

and Aregs in vivo96. By integrating all publicly available datasets in 2020 146, a fourth, final mesenchymal pop-

ulation showed consistent clustering. This is the Clip+ population. Although no functional characterization 

was performed on the Clip+ population itself, their transcriptome is somewhat close to both ASCs and Aregs 

and an interesting hypothesis would be that they could be specialized Aregs precursor cells. Trajectory infer-

ence analysis and targeted lineage tracing experiments would help lift the veil on this aspect. Interestingly, a 

few cells from the integrated dataset (Ifit+ cluster) are characterized by high expression of interferon-related 

markers. The gene expression signature of these cells is reminiscent of fibroblast-inflammatory cells that are 

highly specialized in innate immune response directed against viruses that locate preferentially in the red 

pulp of the spleen 236. Therefore, these cells may act as specialized sensors for viral infection of the adipose 

tissue, and it would be interesting to interrogate their role in the tropism of specific viruses, such as SARS-

CoV2, towards adipose tissue. Besides the two canonical ASPC clusters, the Areg and its potential progenitor 



Chapter 3 | Conclusion and future perspectives 

 137 

Clip+ and the specialized anti-viral cluster Ifit+, which are identifiable in both subcutaneous and epigonadal 

mouse AT146, is a cell cluster that is not mesenchymal in nature, but rather epithelial, and that exclusively 

stems from epigonadal- and omental-derived datasets: the mesothelial cells100,101,145,146. Considering the 

newly established subpopulation landscape of the ASPCs in the adult mouse, further work should focus on 

interrogating how the equilibrium of the niche changes upon physiological conditions in health and disease. 

As such, it would be useful to develop reporter mouse models for each of the uncovered cell subpopulation. 

This could be achieved, for example, by fluorescently labeling one of the top differentially expressed markers 

of each subpopulation. Once these tools ready, we would be able to interrogate changes in the relative abun-

dance of each cell subpopulation in different biological scenarios (i.e. early development and pre-pubertal 

time, upon aging and post-menopausal time, across genders, as well as under high-fat diet or high-glucose 

pulse conditions) and test the biological limits of adipose tissue plasticity. 

The anti-adipogenic effect of Aregs is one of the most intriguing aspects that arose from studying the mouse 

ASPC niche. Despite that the non- and anti-adipogenic character of these cells have been challenged by other 

labs96, we148 and others149 proved the phenotype consistency of Aregs (CD142+ (= F3+)) cells across a number 

of different conditions (i.e. mouse strains, FACS gating strategy, differentiation cues) in recent studies. Out 

of all tested conditions, two appeared to be crucial to ensure the correct sorting and characterization of non- 

and anti-adipogenic Aregs. On the one hand, in adult mice, it is important to exclude contamination of Aregs 

by Vap1+ ASPCs. Hence Dong and colleagues proposed a refined sorting strategy, where Aregs are defined 

as SC SVF Lin–/Sca1+/VAP1-/CD55-/CD142+ ASPCs149. On the other hand, the animal age from which cells 

were isolated turned out to be critical to ensure Aregs phenotype. In fact, Aregs isolated from SC adipose 

tissue of pup mice, specifically from the pre-weaning age, appeared to be highly adipogenic – to at least the 

same extent as the other ASPCs (CD142- (=F3-) ASPCs) – and were incapable of negatively influencing the 

adipogenic potential of neighboring cells 148. Weaning is a critical event in the metabolism of mammals in-

cluding humans, where the gut of the offspring has to learn to digest complex sugars and nutrients that were 

absent in the mother’s milk. As such, weaning is accompanied by a drastic change in the gut microbiota237–

240. It is by now well established that some nutrients in the gut can only be absorbed following pre-metaboli-

zation by the microbiome, and a number of vitamins and essential nutrients for the organism, including ret-

inoic acid, are subjected to this bacterial pre-processing step before being at the host organism disposal241. 

We showed that retinoic acid, together with secreted proteins CD142 and MGP play a key role through an 

auto-paracrine axis to ensure the non-adipogenic character of the Aregs on one side, and on the other side 

in the inhibitory mechanism of Aregs toward neighboring ASPCs148. Hence, it would be tempting to hypothe-

size that changes in the gut microbiome upon weaning might be influencing the phenotype of Aregs. This 

could be tested by exploring Aregs behavior in germ-free mice, mice subjected to selected depletion of mi-

crobiota through antibiotic treatment, or by altering the timings of the diet-transition enforced by weaning. 
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3.1.2 The ASPC heterogeneity in human  

Mice are certainly a great resource when it comes to expanding our general knowledge of how fundamental 

biology mechanisms operate at the whole-body scale in a mammalian organism. However, findings in mice 

might not be always translated in humans 242,243. A relevant example is the discovery of the leptin hypotha-

lamic-pituitary endocrine axis in the mid ‘90s244. The leptin axis is one of the major food intake regulation 

axes in mice. Knocking out the Lep gene in the wild-type mouse is responsible by itself for the onset of severe 

obesity as a consequence of excessive food intake by the animal (Ob/Ob mouse model)245. However, when it 

comes to humans, perturbations in the leptin signaling axis were described in only sporadic cases of severe 

obesity, as a consequence of homozygotic mutation in the leptin-coding region of Lep246. In addition, except 

for the patients with a non-sense mutation in the leptin gene itself, where the leptin analog therapy rescued 

a normal body weight247, no drug-discovery-related attempt to enhance the leptin axis was effective for 

weight management therapy, and to date, the only drug-development attempts concerning the leptin axes 

are carried out in the field of cancer biology248. Several other important differences exist between the mouse 

and human adipose tissue. For example, the brown adipose tissue is a fully functional and important organ 

in mice, both in early life and adulthood, responsible for maintaining body temperature homeostasis 

throughout the entire lifespan of the animal249. In humans, brown adipose tissue is mainly present in new-

borns, while during adulthood, only vestigial depots are found in the supraclavicular, mediastinal, cervical, 

axillary, paraspinal and perirenal regions 250 and might only marginally contribute to the regulation of body 

temperature. Another striking difference in the AT distribution in mice versus humans is the anatomy of the 

main visceral AT. The omentum, the main human visceral adipose tissue is nothing more than a tiny line of 

tissue above the stomach of the mouse, barely distinguishable from the pancreas, inversely, the mouse 

epigonadal AT occupies the vast majority of the animal abdominal space, while is barely distinguishable from 

the human gonad itself251. Given these differences in adipose tissue biology and the possibility that findings 

in mouse AT might not extrapolate to humans, there was a need to understand the heterogeneity and func-

tionality of human ASPCs. 

Throughout my Ph.D., I got access to adipose tissue biopsies from three anatomic locations (Subcutaneous = 

SC, Perirenal = PR, Omentum =OM) and sporadic from two of them (Mesocolon = MC and the Gallbladder-

associated AT = GB) and was able to collect samples from up to 85 donors (Table 2.1). This allowed to depict 

a comprehensive snapshot of similarities and differences in the hASPC composition in function of the ana-

tomic depot of origin both at the single-cell (~34’000 SVF/Lin– cells analyzed) resolution (Fig. 2.2) and at the 

bulk transcriptomic one (20 SC, 8 PR, 19 OM, and 4 MC primary cell lines analyzed) (Fig. 2.1). Like in mice and 

in other publicly available work96,145, two main hASPC populations, the hASCs (DPP4+, CD55+) and the hPreAs 

(ICAM1+, APOD+) appeared to be present in all four canonical adipose tissues (SC, PR, OM. And MC) as well 

as in the GB AT, which is at times present around the gallbladder of morbidly obese donors exclusively. We 
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experimentally proved that hASC-eriched SVF cells (Lin–/TM4SF1–/CD26+) are more proliferative and less 

adipogenic than hPreA-enriched SVF cells (Lin–/ TM4SF1–/DN) regardless of the anatomic depot of origin 

(Fig. 2.3E-F and Supp. Fig. 2.3.1G). In silico trajectory analysis that we performed, also hints at the lineage 

dependency of these two cell populations (Fig. 2.4G) as was previously described96. Aside hASCs and PreAs 

stand another transcriptomically well-distinct cell subpopulation common to all anatomic locations. These 

cells that resemble Vascular Smooth Muscle Progenitors (VSMP)159 highly express muscle-related markers 

such as actin and myosin (Fig. 2.2.1C) and represent between 2 to 10% of the SVF Lin– cells depending on 

the depot(Fig. 2.2D). Using AOC3 marker encoding for VAP-1 surface protein, we were able to sort VSMP-

enriched SVF cells (Lin–/TM4SF1–/VAP1+) (Fig. 2.3E-F) which surprisingly showed the highest adipogenic po-

tential in vitro (even higher than the PreAs defined as Lin–/TM4SF1–/DN) (Fig. 2.3E-F) coupled to the slowest 

growing pace (Supp. Fig. 2.3.1G). If at the first glance is contradictory that muscle-primed cells can be so 

adipogenic, this could be explained by the fact that VSMPs are in fact beige adipocytes progenitors 69,204–207. 

Another more technical explanation for the observed high-adipogenic phenotype of VSMPs would be that 

despite the fact that they significantly express to the highest extent AOC3, a number of PreAs also express 

AOC3. It would thus be advisable to investigate if the high adipogenicity of VAP1+ cells come from in fact a 

“contamination” by highly adipogenic PreAs. 

Like in mouse, we identified a number of other minor clusters including one expressing HHIP that resemble 

mouse Aregs (Supp. Fig. 2.2.5), one expressing SFRP4 that resembles Clip+ cells in mouse (Supp. Fig. 2.2.7) 

and even one that expresses IFIT like mouse Ifit+ cells that may be involved in innate immunity response 

(Supp. Fig. 2.2.6)236. While the overall transcriptomic signatures are close to the ones of the mouse popula-

tions, the top expressing markers of human cells are slightly different and this difference should be taken 

into account for further investigations. Interestingly, one of the minor clusters from the human merged da-

taset was specific to the PR and MC AT (Fig. 2.2D, Supp. Fig. 2.2.1H, Supp. Fig. 2.2.2A-B), however, >80% of 

the cells from this cluster come also from one single donor (Supp. Fig. 2.2.2A), it is thus difficult to draw 

conclusions on if this cluster is truly PR-MC-specific or patient-specific. Aside from the above-mentioned pan-

anatomic clusters, stand out two depot-specific ones: the mesothelial and the IGFBP2+ cells, which are ex-

clusively retrieved in the OM AT (Fig. 2D, Supp. Fig. 2.2.2A-B) and whose new functional properties are dis-

cussed in the paragraph below.  Overall, mounting evidence point to the fact that we should no longer ignore 

the underlying human nor mouse ASPCs heterogeneity for future work aiming at understanding the neo-

adipogenesis process. For future perspectives, it would be interesting to include even more adipose tissue 

types (for example the pericardial, epicardial, mediastinal or orbital) to study not only their ASPC composition 

but also the heterogeneity of two important cellular players of the adipose tissue that were missed by the 

current study: the mature adipocytes themselves and the resident immune cells. 
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3.2 Mesothelial cells are key effectors of the stromal vascular fraction 

Mesothelial cells build up the peritoneum, a monolayer of mesothelial cells upholstering the abdominal cav-

ity 252. However, the functional role of mesothelial cells in the abdominal cavity has not been extensively 

studied so far. In this work, we identified mesothelial cells (OM SVF Lin–/TM4SF1+/MSLN+) and mesothelial-

like IGFBP2+ cells (OM SVF Lin–/TM4SF1+/MSLN–) (Fig. 2.5A, Supp. Fig. 2.3.1C) exclusively in the human SVF 

of the OM AT (Supp. Fig. 2.4.6A). In mice, mesothelial cells can be found in the murine epigonadal 91,100,101,145 

and omental 143 ATs. Therefore, future works studying visceral AT ASPCs should make sure to exclude meso-

thelial cells from the “true” ASPCs for any transcriptomic and functional analyses. To do so, we used TM4SF1 

as a pan-mesothelial marker, and we observed that the OM SVF/Lin– fraction depleted of TM4SF1+ cells (OM 

SVF/Lin–/TM4SF1– cells), was significantly more adipogenic than the total fraction of OM SVF Lin– cells (Fig 

2.4C-D), hinting to the fact that mesothelial cells and mesothelial-like cells might play a negative role in reg-

ulating the OM hASPC adipogenesis. Moreover, we demonstrated, that TM4SF1+ cells can further be segre-

gated into two functional subpopulations, one that is MSLN+ (OM SVF Lin–/TM4SF1+/MSLN+) and another 

that is MSLN– (OM SVF Lin–/TM4SF1+/MSLN–) (Fig. 2.5A, Supp. Fig. 2.3.1C). While both populations were 

able to inhibit the adipogenesis of hASPCs to some extent, only the MSLN– fraction did so in a consistent and 

robust way (Fig. 2.5E-F). We were further able to prove that the inhibition stems from the fact that 

TM4SF1+/MSLN– highly secrete and express IGFBP2 (Fig. 2.5B-C), which inhibited adipogenesis through the 

activation of the integrin receptor ⍺5β1 (Fig. 2.5K-P)186. During the length of this thesis, we demonstrated 

this point by chemical and recombinant protein interference assays in primary cultures (Fig. 2.5K-P). Future 

works could further complement this line of research by better understanding the intracellular downstream 

effects of the integrin receptor activation. This could be done also in primary human cultures, by knocking 

down the integrin receptor and comparing the phosphorylation status of intracellular proteins in the pres-

ence or absence of the IGFBP2 protein treatment. Similarly, to further understand the transcriptional repro-

gramming occurring in OM SVF cells upon IGFBP2 treatment, ChIP-seq or ATAC-seq assays could be per-

formed.  

In our samples, the percentage of OM-specific TM4SF1+ cells (mesothelial and IGFBP2+ together) measured 

by flow cytometry positively correlated with the donor’s BMI (Supp. Fig. 2.4.1B). Taking advantage of the 

Emont et al. atlas145, we were able to corroborate in silico a positive correlation between IGFBP2+ cells spe-

cifically and the donors’ BMIs (Supp. Fig. 2.4.4F). While such findings hint at a functional role of the IGFBP2+ 

cells in vivo,  IGFBP2 serum levels in humans negatively correlated with BMI 214–216, and characteristic features 

of the onset of the metabolic syndrome 217, including type 2 diabetes and NAFLD 218. Circulating levels of 

IGFBP2, however, are highly determined by hepatic IGFBP2 secretion 218,253, and, therefore, might not reflect 

its regulation in OM AT. To further characterize the role of IGFBP2 in human physiology it would also be 
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interesting to interrogate whole genome sequencing biobanks to look for SNP in the IGFPB2 locus and study 

what is the phenotypic trait associated to it, with a specific focus on metabolic traits. 

IGFBP2-secreting cells are rare among the OM SVF (2-5% of Lin– cells) (Fig. 2.4.6B) and once in culture are 

slow-growing cells, difficult to expand to reach useful cell numbers. This could constitute a critical limitation 

for studies aiming to unravel their biological function. The inner limitations of human biopsy collections might 

also limit our ability to better understand the effects of IGFBP2 signaling in vivo. In this sense, it would be 

useful to investigate whether IGFBP2-secreting cells exist in the epigonadal AT of the mouse. A possible ave-

nue to do so is to validate antibodies directed against the mouse TM4SF1 and MSLN antigens, and to use the 

same sorting strategy described in humans, however, given the described fundamental differences that we 

systematically observed across human and mouse AT biology, it would be more appropriate to favor an un-

biased approach and first look for Igfbp2+ cells in publicly available scRNAseq datasets obtained from mouse 

epigonadal SVFs directly91,100,101,145. This could allow us to identify new mouse-specific surface markers to 

eventually validate through flow cytometry. In that direction, Zhang and colleagues91 recently identified 

through single-cell transcriptomics a mesothelial cell population that highly expresses Igfbp2 in the adult 

mouse epWAT. In contrast, at a younger age (P3) Igfbp2 was differentially expressed by the smooth muscle 

cell cluster (likely resembling the human VSMPs). Ultimately, genetically modified animal tools would greatly 

help to explore the role of Igfbp2 in vivo. Transgenic human Igfbp2-expressing mice, as well as Igfbp2-KO and 

eGFP-tagged mice, are commercially available and could provide new avenues to evaluate the role of IGFBP2 

in adipose tissue biology upon metabolic challenges. Similarly, the eGFP-tagged-IGFBP2 transgenic mouse 

would allow to easily sort Igfbp2+ cells as well as to visualize them in situ. 

In this work we highlighted a new functional role of mesothelial cells with regard to adipogenesis regulation, 

however they might also be functionally relevant with regard to the cross-talk with the immune sys-

tem143,201,254. We showed that SVF-adherent cells from the OM AT highly express pro-inflammatory markers 

and upregulate pathways related to immune response (Fig. 2.1I, Supp. Fig. 2.1.5A). Interestingly, the meso-

thelial cluster in the scRNA-seq specifically expresses chemokines and cytokines like IL-33, IL-1b and IL-18 as 

well as WT1 that all have been shown to contribute to the low-grade inflammation often linked to visceral 

obesity252,254–256. Further effort should be put into understanding if the inflammatory signals we captured 

among OM SVF-adherent cells are secreted by mesothelial cells, the ASPCs or if it is a crosstalk between the 

two cell types that induces an overall inflammatory response. The cross-talk between mesothelial cells and 

ASPCs could be studied using co-culture transwell systems, where non-inflammatory cells like SC or PR ASPCs 

would be harvested for transcriptomic analysis after being exposed to paracrine signaling cues of mesothelial 

or IGFBP2-secreting cells, or vice-versa. Similar experiments could be designed to evaluate the interaction of 

IGFBP2-expressing cells with immune cells. Another valuable and interesting approach would be to use 
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spatial transcriptomics and histochemistry techniques to study the physical interaction between immune and 

mesothelial cells. 

3.3 The emerging concept of negative regulation of adipogenesis  

3.3.1 Do Aregs exist in human? 

Aregs is a new functional cell population that was first described by our lab in 2018102. In mice, they are 

defined as subcutaneous SVF Lin–/Sca1+/CD142+ cells, which appear to inhibit adipogenesis both in vitro and 

in vivo. Their relative abundance among SVF cells increases upon HFD feeding102,148,149, which may seem coun-

terintuitive at a first glance, but in fact could reflect either (1) a compensatory mechanism to counteract the 

adipose tissue expansion, or (2) the development of intrinsic resistance to the regulatory mechanism of Aregs 

upon weight gain. Finding an equivalent population in humans was among the fundamental endeavors of the 

present work. Interestingly, while a clear and consistent cluster of F3-expressing cells was identified in both 

subcutaneous and visceral SVFs of the mouse145,257, it looks like they are an extremely rare cell type in hu-

mans. In fact, we were able to detect an Areg-like cluster only after aggregating all our datasets together. In 

addition to their rareness, F3, the highly specific mouse marker is much less specific to human Aregs and is 

expressed instead at low levels by all the hASPCs.  Based on our analysis in silico, HHIP should be considered 

a more valuable marker in the context of human Aregs biology given its specific enrichment in what we iden-

tified as the Areg-like cluster (Supp. Fig. 2.2.5). Validating a sorting strategy based on HHIP staining would 

therefore be an appropriate approach to better characterize human Aregs.  

Despite human Areg-like cells are yet to be fully defined and characterized, understanding the mechanism of 

action of mouse Aregs is highly relevant since it is likely conserved across species. In fact, recent work from 

our lab showed that when SC hASPCs (SC SVF-adherent cells) are exposed to mouse Aregs (SC SVF Lin–

/Sca1+/CD142+) in a transwell system, this resulted in significant impairment in their adipogenic potential, 

similar to the observed inhibitory action of Aregs on mouse adipogenic CD142– ASPCs (SC SVF Lin–

/Sca1+/CD142–)148. Using the same rationale, it would be interesting to interrogate the effect of the inhibi-

tory power of mouse Aregs on hASPCs derived from OM and PR AT as well, aiming at understanding if Aregs’ 

inhibitory power is universal. The human-mouse hybrid setup could also be a useful tool to better understand 

the mechanism of action of Aregs taking advantage of the genetic differences between species.  

In an interesting twist, our lab recently reported that when mouse adipogenic CD142– ASPCs are exposed to 

the Aregs secretome in the transwell setup, not only they ceased to be adipogenic, but their transcriptome 

became close to the one of Aregs. This is suggestive of a snowball effect where Aregs presence would induce 

an Areg-like state in their surrounding cells148. This could stem from a canonical protein-receptor cell-signal-

ing mechanism148,149 but also through signaling based on extracellular vesicles/exosomes “transmission”. 
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Mesenchymal cells are known heavy producers of extracellular vesicles that carry anti-inflammatory and 

therapeutic properties258,259. The hypothesis that Aregs would therefore signal through exocytosis of cyto-

plasmatic vectors that would fuse to the cytoplasm of receiving cells and carry Aregs’ mRNA with them could 

be interesting to pursue. Our findings showing that hASPCs can be influenced by Aregs could be helpful for 

this purpose, as one could look for contaminating mouse mRNA into the receiving hASPCs transcriptome as 

a way to elegantly test if Aregs signal through an extracellular vesicle flow. This approach, however, would 

not detect peptides, lipids or other metabolites that could mediate actions through extracellular vesicle com-

munication, which cannot be ruled out. 

In the present work we show for the first time that negative regulators of adipogenesis exist not only in mice 

but also in humans. Mesothelial cells and specifically IGFBP2+ cells, residing within the OM AT are able to 

negatively regulate the neoadipogenesis of OM ASPCs but also SC ASPCs. This finding opens a number of 

research avenues to understand how these cells modulate the plasticity of OM AT in vivo. This could have 

important therapeutic consequences, as OM AT expansion is linked to metabolically unhealthy obesity. In 

order to advance in a more unbiased way toward this understanding, it would be great to undertake a multi-

omics approach, where we would perform combined proteomics, lipidomics and metabolomics on IGFBP2-

secreting cell supernatant to identify in a more direct way what are the cues that are effectively secreted by 

the cells. Another interesting approach in both Aregs and IGFBP2+ cell biology would be to test the univer-

sality of their regulatory mechanism on whole new systems such as the muscle and the bone marrow as well 

as on bone or cartilage morphogenesis. In all these systems to have a precise means to control tissue renewal 

would allow precious advances in tissue engineering and transplantation. 

3.3.2 Adipogenesis is differentially regulated across anatomic locations 

Despite high similarity across hASPCs derived from different anatomic regions, we and others79 were able to 

demonstrate, that cells from different depots carry over a transcriptomic footprint from their anatomic origin 

(Fig. 2.1H-I). As such, SC SVF-adherent cells highly express several developmental related HOX genes, PR cells 

have several pathways linked to oxidative respiratory chain and thermogenesis upregulated while OM cells 

are extremely inflammatory and carry an epithelial signature compared to MC which are characterized by 

heat-shock-protein (HSP) expression. It is therefore reasonable to think that different regulatory processes 

reign in different anatomic depots. Interestingly IGFBP2 signaling seems to act differentially across depots. 

While OM and SC hASPCs adipogenesis is effectively blunted by IGFBP2 at the concentration of around 30 

ng/ml (1nM) (Fig. 2.5K-P), PR cells seem to be overall less sensitive to IGFBP2 (Supp. Fig. 2.5.1B-C, Supp. Fig. 

2.5.3B, D-F). Interestingly, OM SVF-adherent cells compared to all other depots differentially express IGFBP2 

both at the undifferentiated state and the differentiated one. In contrast, PR ASPCs upregulate IGFBP2 ex-

clusively upon differentiation (low IGFBP2 expression at PR t0, high IGFBP2 expression at PR t14) (Fig. 3.1). 
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Taken together, not only does the concentration of the inhibitory cue seem to play a key role in determining 

selectively which adipose depots to regulate, but determinant could also be the timing of secretion and the 

signaling mode. In this sense, it is important to note that IGFBP2 might not only act as a secreted protein, but 

it can also have intracellular actions, for example, by interacting with tumor-suppressing genes such as PTEN. 

It would therefore be interesting in the case of PR to identify if the IGFBP2 upregulation results in its secretion 

or not.  

IGFBP2 certainly contributes to the refractoriness of OM ASPCs to form lipid droplets in vitro but it still cannot 

be fully explained why intraperitoneal-derived ASPCs are so strongly refractory to adipogenesis upon cell 

culture. Even the most highly adipogenic OM ASPC population (OM SVF Lin–/TM4SF1–/VAP1+) is by far not 

as adipogenic as the SC or PR corresponding populations (Fig. 2.3E). This observation hints at the fact that 

there must be some cell-intrinsic mechanism that prevents OM ASPCs to become adipocytes. Several OM-

specific markers aside from IGFBP2 could potentially be involved in the cell-intrinsic non-adipogenic charac-

ter of OM ASPCs. For instance, retinoic acid148,152, GAL170, PTN171, SLPI260, BCHE261 and CD200173 are all differ-

entially expressed by OM ASPCs and have previously been described as being anti-adipogenic factors. Inter-

fering with these markers, by knocking them down or overexpressing them as well as dissecting their signal-

ing pathways may lead to new discoveries in the field of adipogenesis regulation. Rspo2 has been reported 

to play a key role in the inhibitory mechanism used by Aregs to inhibit149. To test how hASPCs from different 

depots respond to RSPO2 treatment would be interesting to evaluate its relevance in human adipose tissue 

biology. 

 

Figure 3.1 – IGFBP2 expression at t0 and t14 across depots. 

Boxplot showing the distribution of batch normalized expression of IGFBP2 of BRB-seq150 data of SVF-isolated cells from the indicated 

depots and treatment conditions, n=12-61, 4-20 biological replicates, 1-4 independent wells for each. 
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3.4 Understanding the adipogenic lineage  

3.4.1 The mesothelium as a possible origin for OM adipocytes 

Aside from being able to negatively regulate adipogenesis, we showed the IGFBP2+ cells are susceptible to 

transition between mesothelial and mesenchymal cell states. Based on scRNA-seq data and pseudotime anal-

ysis, we showed that these cells order along a trajectory connecting ASPCs to mesothelial cells (Fig. 2.4G). 

Along the connecting branch, mesothelial and ASPCs markers increase and decrease, respectively, while 

some genes including IGFBP2 and others previously linked to mesothelial to mesenchymal transition (MMT) 

peak at the center of the trajectory (Fig. 2.4J). While MMT acts similarly to the Epithelial to Mesenchymal 

Transition (EMT), its role in physiopathology is still unclear and has mainly been described in lung, liver and 

kidney fibrosis as well as in the context of peritoneal fibrosis during dialysis252. MMT is however not neces-

sarily a detrimental event. Due to these transitional properties, the omentum is routinely used in visceral 

surgery as a living patch to reconstruct perforated intestines. MMT is uttermost important during organo-

genesis, where mesothelial cells - expressing Msln - give rise to various cell types, such as fibroblast, or 

smooth muscle, of the visceral organs252. Our work put forward the hypothesis that MMT would not only 

occur during early developmental stages but would happen in adulthood in a steady-like state.  

Whether the MMT in adulthood would be the root of adipocyte formation in the omentum is a controverted 

subject that, if proven valid, would revolutionize our vision of OM AT plasticity. A lineage tracing study per-

formed on murine epididymal fat originally, showed that eWAT but not scWAT nor BAT adipocytes express 

Wt1, likely reflecting an origin from Wt1+ mesothelial cells62, while mesothelial cells were also described to 

be adipogenic in vitro262. A very recent study confirmed that mature eWAT adipocytes do express Wt1, but 

also demonstrated that only Wt1 Pdgfra+ cells were able to give rise to mature adipocytes, while canonical 

Krt19+ Wt1+ mesothelial cells were unable to do so both at the developmental level and under forced adi-

pose tissue expansion via high-fat diet174. Interestingly, our IGFBP2+ cells express PDGFRa but not KRT19. We 

never directly tested the adipogenic abilities of our IGFBP2-secreting cells but this would be certainly an in-

teresting experiment to perform. Similarly, it would be interesting to see if overexpression of known MMT 

transcription factors in mesothelial cells isolated from human omentum, would trigger a gene expression 

profile similar to the IGFBP2+ cells. 

3.4.2 Redirecting the adipogenic lineage towards beiging  

In the present work, we were able for the first time to determine the relative abundance of different cell 

subpopulations in the SVF Lin– niche of human SC, OM and PR AT of over 30 donors (Fig. 2.3B-C). This analysis 

showed that the ASC population is the least abundant in the OM AT, compared to SC and PR (Fig. 2.3D, Supp. 

Fig. 2.3.1F). This likely reflects exhaustion of the OM ASC pool in adulthood, which could explain the 
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preferential hypertrophic mode of expansion of OM AT. Conversely, PreAs predominate the ASPC landscape 

of SC ASPCs, while VSMP (or VAP1+-expressing PreAs) predominate the visceral ones (i.e. OM, PR and MC) 

(Fig. 2.3D, Supp. Fig. 2.3.1F). With increased BMI, and regardless of the anatomic depot, we highlighted an 

overall shift of the niche equilibrium from the PreAs (whose abundance negatively correlates to BMIs) to the 

VSMP pool (whose abundance positively does) (Fig. 2.3G). If we couple this hypothesis with the cell hierarchy 

model proposed by Merrick and colleagues96, where mouse ASC would give rise to ICAM1+ cells and CD142+ 

cells, it would be interesting to explore if human ASC could give rise to both DN PreAs and VAP1+ 

VSMPs/PreAs as an early commitment to white or beige adipogenesis respectively. If this was the case, the 

observed increase in the relative proportion of VAP1+ cells in all ATs may reflect a desperate attempt to 

induce a thermogenic response to balance the excessive energy intake or to create new vasculature with the 

AT expansion. 

Sprouting literature highlights how beige/brown adipogenesis is often coupled to the upregulation of myo-

genic-like markers necessary to dissipate energy under the form of heat69,204–207. In this regard, it would be 

interesting to test the ability of VAP1+ cells specifically to upregulate UCP1 under adrenergic stimulation or 

to perform respirometry or mitochondrial activity tests on these cells and compare their behavior with the 

other cell subpopulations as this would mount evidence supporting the hypothesis that VAP1+ cells could be 

thermogenic. 

3.5 The Omentum AT as a hotspot for abdominal cancer metastasis 

More than a bare energy reservoir, the omentum is a fascinating crossroad between connective and lym-

phatic tissue able to secrete endocrine signals, combat infections and store lipids. Clinically many visceral 

malignancies, including ovarian, gastric and colorectal cancers preferentially metastasize to the omen-

tum263263. The exact signals that mediate this process are still subject to research and future efforts will be 

needed to dissect if the pro-metastatic signals come from a particular stromal cell population. In mice, met-

astatic cells are found in so-called “milky spots”, of the epigonadal WAT264, which are specialized niches of 

immune and mesothelial cells reminiscent of small lymph nodes143,265,266. Milky spots do not exist in the hu-

man omentum, but, in line with them, mesothelial cells rather locate on the periphery of the tissue267. Nev-

ertheless, with the whole new resolution we brought to the cell composition of the stromal vascular fraction 

of the omentum, it would be relevant to question the role that mesothelial as well as IGFBP2+ cells play in 

the nesting of tumoral cells in the omentum. Mesothelial cells notably secrete IL-6 and IL-8 involved in gastric 

cancer metastasis268. TM4SF1, our validated pan-mesothelial surface marker, has been described as a bad 

prognosis marker in pancreatic ductal cancer, as it might facilitate metastasization of the tumor269. Conse-

quently, current efforts focus on TM4SF1 as a potential new therapeutic target to prevent the invasion and 

metastasization of ovarian cancer270. Finally, IGFBP2 itself has been described as “the dark horse” in 
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metabolism 209 and constitutes a marker for tumor progression in gliomas, prostatic cancer and breast cancer. 

Among the proposed mechanisms by which IGFBP2 could influence tumor prognosis are the interaction with 

extracellular matrix (ECM) components, such as surface proteoglycan receptors and integrin receptors. By 

affecting ECM components, IGFBP2 would allow tumor cells to detach from their native matrix and migrate. 

In addition, IGFBP2 could also influence tumor progression by downregulating the expression of PTEN or 

CDKN2A, which are known tumor-suppressing genes271 as well as preventing the translocation of p21 or 

PAPA1 to the272. 

It would be extremely insightful to study if the metastatic process would be altered in genetically modified 

mice that have their mesothelial cell function impaired either by KO of IGFBP2 or TM4SF1. It would also be 

interesting to use in situ techniques such as immunohistochemistry or spatial transcriptomics in human me-

tastasis resections. Macrophages also seem to play a key role in facilitating tumor metastasis to the omen-

tum273, which could be influenced by the crosstalk with mesothelial cells, creating the perfect microenviron-

ment for cancer proliferation. Therefore, mesothelial cells in adipose tissue open a whole new field for the 

identification of therapeutic approaches to improve the prognosis of such aggressive diseases. 

Altogether we provided the first systematic and cross-anatomical functionalization of hASPC subpopulations 

proposed a new mechanism explaining why visceral ASPCs are reluctant to adipogenesis in vitro and dis-

cussed universal and unique characteristics of the adipose tissue in the function of its anatomic location and 

species of origin. Interfering locally with the IGFBP2 signaling in the visceral adipose tissue may contribute to 

promoting a healthy neoadipogenesis axed on hyperplasia instead of hyper-trophy and ease the inflamma-

tory status linked to visceral obesity.
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