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Abstract

The electronic density of states (DOS) quantifies the distribution of the energy levels that can

be occupied by electrons in a quasiparticle picture and is central to modern electronic struc-

ture theory. It also underpins the computation and interpretation of experimentally observable

material properties such as optical absorption, electrical conductivity, and heat capacity. It

can be accurately computed through expensive first-principle calculations, limiting the size of

the problems that can be simulated easily to a few thousand atoms. Machine-learning (ML)

techniques are a promising alternative to these calculations, as they were successfully applied

to study many atomic-scale problems by generalising information from small configurations

to large and complex structures. However, most efforts focused on learning the ground-state

Born-Oppenheimer energies and the atomic forces, which are scalar quantities, unlike the

DOS, which is a multivariate function of the energy.

In this thesis, we discuss the inherent challenges in constructing an ML framework that pre-

dicts the DOS as a combination of local contributions that depend, in turn, on the geometric

configuration of neighbours around each atom. We compare different approaches to represent

the DOS as a learning target and the accuracy of predicting quantities such as the Fermi level,

the electron density at the Fermi level, or the band energy, either directly or as a side product

of the evaluation of the DOS.

As a first benchmark, we evaluate our model on a challenging case study that includes con-

figurations of silicon spanning a broad set of thermodynamic conditions, ranging from bulk

structures to clusters and from semiconducting to metallic behaviour.

Then, we leverage the atom-centredness of the model to compute the DOS of large amorphous

silicon samples, for which it would be prohibitively expensive to compute the DOS by direct

electronic structure calculations. Besides the size transferability, we show that this decompo-

sition of the DOS can extract physical insights into the connections between structural and

electronic features to describe their transitions in disordered silicon phases.

Finally, we explore two approaches to using the DOS in integrated ML frameworks to model the

properties of materials, where the DOS is used to incorporate the effect of thermal excitations
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of electrons. We propose to combine simulations from well-established ML interatomic

potentials with band energy calculations extracted from DOS predictions on the already-

produced trajectories. This procedure successfully describes the heat capacity of molten

nickel and is in agreement with the experiments. However, we show that this method is

only valid when the dynamics of the ions are, to a large extent, not affected by the electronic

excitations, and it would fail in conditions with higher temperatures, such as those found in

astrophysical settings. Therefore, we introduce an integrated ML framework that includes

these thermal effects in constructing the interatomic potential. The novelty of this method is

that the electronic temperature is an external parameter of the simulation because one only

needs access to ground-state energies, forces and DOS. We successfully apply our model to

study metallic hydrogen in the conditions of a young Jupiter core. We reconstruct its equation

of state and its heat capacity and find that they are compatible with their first-principle-

derived counterparts. The work of this thesis demonstrates the impact of a physics-inspired

universal model describing structural and electronic properties inexpensively and its ability to

enable more accurate and predictive materials modelling and design.

Keywords: machine-learning, multivariate, electronic structure, density of states, finite tem-

perature
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Résumé

La densité d’états électroniques (DOS) quantifie la distribution des niveaux énergétiques

qui peuvent être occupés par les électrons dans une image de quasi-particule et est au cœur

de la théorie moderne de la structure électronique. Elle sous-tend également le calcul et

l’interprétation des propriétés matérielles observables expérimentalement, telles que l’ab-

sorption optique, la conductivité électrique et la capacité thermique. Elle peut être calculée

avec précision par des calculs ab initio coûteux, ce qui limite à quelques milliers d’atomes

la taille des problèmes qui peuvent être simulés facilement. Les techniques d’apprentissage

automatique (ML) constituent une alternative prometteuse à ces calculs, car elles ont été

appliquées avec succès à l’étude de nombreux problèmes à l’échelle atomique en généralisant

les informations provenant de petites configurations à des structures larges et complexes.

Cependant, la plupart des efforts se sont concentrés sur l’apprentissage des énergies de Born-

Oppenheimer à l’état fondamental et des forces atomiques, qui sont des quantités scalaires,

contrairement à la DOS, qui est une fonction multidimensionnelle en l’énergie.

Dans cette thèse, nous discutons les défis inhérents à la construction d’un cadre ML qui

prédit la DOS comme une combinaison de contributions locales qui dépendent, à leur tour,

de la configuration géométrique des voisins de chaque centre atomique. Nous comparons

différentes approches pour représenter la DOS comme cible d’apprentissage et la précision de

la prédiction de quantités telles que le niveau de Fermi, la densité d’électrons au niveau de

Fermi ou l’énergie de bande, soit directement, soit comme produit secondaire de l’évaluation

de la DOS.

Comme premier point de référence, nous évaluons notre modèle sur une étude de cas diffi-

cile qui comprend des configurations de silicium couvrant un large éventail de conditions

thermodynamiques, allant du comportement semi-conducteur au comportement métallique.

Ensuite, nous tirons parti de la centralité atomique du modèle pour calculer la DOS de grands

échantillons de silicium amorphe, pour lesquels il serait excessivement coûteux de calculer la

DOS par des calculs directs de structure électronique. Outre la transférabilité de la taille, nous

montrons que cette décomposition de la DOS permet d’extraire des informations physiques
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sur les connexions entre les caractéristiques structurelles et électroniques afin de décrire les

transitions dans les phases désordonnées du silicium.

Enfin, nous explorons deux approches de l’utilisation de la DOS dans des cadres ML intégrés

pour modéliser les propriétés des matériaux, où la DOS est utilisée pour incorporer l’effet des

excitations thermiques des électrons. Nous proposons de combiner des simulations à partir

de potentiels interatomiques ML bien établis avec des calculs d’énergie de bande extraits des

prédictions de la DOS sur les trajectoires déjà produites. Cette procédure décrit avec succès la

capacité thermique du nickel fondu et est en accord avec les expériences. Cependant, nous

montrons que cette méthode n’est valable que lorsque la dynamique des ions n’est, dans

une large mesure, pas affectée par les excitations électroniques, et qu’elle échouerait dans

des conditions de températures plus élevées, telles que celles rencontrées dans les milieux

astrophysiques. Par conséquent, nous introduisons un cadre intégré ML qui inclut ces effets

thermiques dans la construction du potentiel interatomique. La nouveauté de cette méthode

est que la température électronique est un paramètre externe de la simulation car il suffit

d’avoir accès aux énergies, forces et DOS de l’état fondamental. Nous appliquons avec succès

notre modèle pour étudier l’hydrogène métallique dans les conditions d’un jeune noyau

de Jupiter. Nous reconstruisons son équation d’état et sa capacité thermique et constatons

qu’elles sont compatibles avec leurs équivalents dérivés des premiers principes. Le travail

de cette thèse démontre l’impact d’un modèle universel inspiré de la physique décrivant les

propriétés structurelles et électroniques de manière peu coûteuse et sa capacité à permettre

une modélisation et une conception des matériaux plus précises et prédictives.

Mots clefs : apprentissage automatique, fonction multivariée, structure électronique, densité

des états, temperature finie
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1 Introduction

Computational materials science is an interdisciplinary field that combines physics, chemistry,

computer science and data analysis to study and design materials using modelling, simulation

and theory. It aims to acquire complete insight into materials’ microscopic and macroscopic

behaviour, leading to a better understanding of the processing challenges, experimental

feasibility, and conditions necessary to optimise specific properties. In general, computer

simulations both provide explanations for experimentally observed phenomena [1], and can

make experimentally-verifiable discoveries like the effect of dopants on hydrogen adsorption

on CeO2 surfaces [2], the stability and functional properties of inorganic materials like TaCoSn

and TaCo2Sn [3] or proton exchange on water membrane catalysis [4].

Computational approaches to materials design avoid problems associated with experimental

methods, such as the high setup cost or handling of poisonous substances. These techniques

also aim to guide manufacturing processes by providing insight into how a material would

behave in certain situations or by determining the optimal conditions to enhance a particular

property. Depending on the demands and design of our system, available computational

power, and the length and time scales of the studied system, there are many appropriate

options for computational theory and software. As a rule of thumb, the larger the system is,

the more approximations we need to make in order to simulate a material due to the lack of

computational resources, even despite the extraordinary development of computing platforms

and hardware. The different needs of simulating different length scales led to the development

of different categories of methods. If a method leverages the atomic behaviour of a material

in order to infer its properties, it falls under the so-called atomistic methods. Examples of

atomistic techniques include molecular dynamics (MD), Monte Carlo (MC) and kinetic Monte

Carlo. If the method is interested in systems of the size of real-world devices, they fall under the

continuum methods, such as the finite-element solvers. A schematic representation including

1
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Quantum chemistry
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Figure 1.1: An overview of the length scale and time scale of some of the techniques used
in computational materials science ranging from the study of the electronic structure to
the mechanical properties and reactions at a human time scale. The continuum figure (top
right corner) is adapted from Ref. [5]. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/)

some of these methods, the length/time scales and examples of possible applications is given

in Fig. 1.1.The combination of atomistic and continuum methods can lead to the development

of multi-scale modelling, where the properties and behaviour of materials at the atomic scale

are used to inform and improve the predictions made at the macroscopic scale. This allows

for a more accurate and comprehensive understanding of the behaviour of materials across

multiple scales.

This thesis focuses on the first set of methods: the atomistic techniques. Their goal is to

understand and model the motion of individual atoms, as their collective behaviour can

describe a material’s macroscopic response to deformation and phase transition, for example.

They are usually paired with an interatomic potential that can describe the nature of the

interactions between the individual atoms with different levels of accuracy. Historically,

interatomic potentials have a functional form with a restricted number of parameters that

can be tuned to reproduce an experimental observable like the shear viscosity of the pair

correlation function. These parameters usually have physical interpretations, such as the case

2
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of the bond equilibrium distance in Lennard-Jones or Morse potentials. They can also be

tuned to reproduce quantities derived from a quantum mechanical (QM) calculation, like the

lattice constant or the cohesive energy. More complicated and non-parametric, i.e. potentials

with hundreds of parameters or more, are tuned nowadays using machine learning algorithms

that we introduce later in this chapter. One objective of these potentials is to be transferable in

the broad sense of the term. The transferability of an interatomic potential can be expressed

in terms of system size, system chemical composition, system thermodynamic conditions and

chemical reactions as well. Some of these problems can be circumvented if one leverages QM

calculations to compute the interatomic forces instead of fitting a few parameters, performing

ab initio or first-principle simulations.

Ab initio methods solve the Schrödinger equation with various levels of approximations, lead-

ing to a wide range in approaches, ranging from a simple parameterisation of the electronic

interactions like the local combination of atomic orbitals (LCAO) and tight binding [6] meth-

ods to the post-Hartree-Fock methods like the coupled cluster approach [7].

The most famous of such techniques is density functional theory (DFT), an elegant solution to

the ground-state many-body time-independent Schrödinger problem. DFT is relatively cheap

computationally, compared to higher-level-theory QM calculations such as Quantum Monte

Carlo, and has been optimised for modern high-performance computing and with scalable

implementations. DFT is a ground-state formulation of the many-body problem, which lever-

ages the Born-Oppenheimer approximation that decouples the ionic and electronic degrees

of freedom, based on the existence of a mapping between the atomic coordinates of a system

and its electronic structure. With DFT, we can perform many sophisticated applications and

compute numerous properties of materials ranging from vibrational [8, 9], thermodynamic [10,

11], electrical [12] and mechanical [13, 14] properties. The conditions of these numerical

experiments cover a wide range of pressures and temperatures ranging from those similar

to the surface of the earth up to the core of exoplanets, where the temperature and pressure

are several orders of magnitude higher than we live in. However, we are limited in the system

sizes and time scales we can probe using DFT (a few thousand atoms and tens of picoseconds

of trajectories), as most current implementations of DFT scale cubically with the number of

particles in the system.

The basics of DFT rely on the Hohenberg-Kohn [15] and Kohn-Sham [16] theorems that reduce

the many-body problem into a system of non-interacting quasi-particles “swimming” in an

average field of interactions from the other particles. The parameterisation of DFT often

occurs in the choice of the exchange-correlation functional. These functionals are either fitted

to certain empirical data or are constructed to comply with theoretical constraints, such as

reproducing properties predicted from Quantum Monte Carlo. One of the first attempts to
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solve the exchange-correlation problem is the local density approximation (LDA) [16], where

a system of homogenous gas approximates the electron cloud. Later, different techniques

emerged, such as the Perdew–Burke–Ernzerhof [17] (PBE) functional, which is a general-

purpose functional because it is a non-empirical functional with reasonable accuracy over

a wide range of systems [18]. There is also a range of hybrid functionals targeted to specific

electronic properties, such as the Heyd-Scuseria-Ernzerhof [19, 20] (HSE06) functional, which

usually predicts the energy band gap accurately [21]. These functionals are usually derived to

satisfy physical constraints or to reproduce properties computed from a higher-level theory

calculation. The development of this myriad of exchange-correlation functionals raised the

question of the conformity of the calculations and the subsequent property predictions. This

uncertainty and these discrepancies led to the development of the ensemble Bayesian error

estimation functional (BEEF) [22] as a method to make the best compromise between the

target properties of the included functionals.

In the Kohn-Sham DFT framework, it is possible to consider the total energy of an atomic

system as a functional of two primary quantities of the electronic structure theory, the charge

density (ρ) and the electronic density of states (DOS). ρ is an experimental observable and

is defined as the modulus of the wavefunction. It describes the probability of finding an

electron at a specific coordinate in space. Experimental techniques such as X-ray diffraction or

transmission electron microscopy (TEM) [23] are used to measure this electron density. These

measurements locate the atomic positions, identify chemical bonds or indicate molecular size

and shape [24].

The DOS is a measure of the number of electronic states available for occupation by the

electrons within a given energy range. Beyond its utility in computing the total energy, the

DOS allows us to determine the material’s metallicity and electrical conductivity at the ground

state. When the transition rates are known, it is possible to determine the optical electron

transitions via the Fermi golden rule. The DOS also allows one to evaluate the contribution of

thermally activated electronic states by examining its value near the Fermi energy, which can

then be used to quantify the contribution of electrons to the specific heat capacity of a system.

In a textbook example, this can be directly seen from the Sommerfeld approximation, where

the heat capacity, entropy, and band energy are a function of fundamental constants and the

value of the DOS at the Fermi level.

As mentioned earlier, DFT suffers from cubic scaling, making its use limited to a few thousand

atoms. One possible approach to avoid performing expensive calculations is to build surrogate

models. A popular choice to perform this task is Machine learning (ML). It can be defined as

the set of statistical methods employed to extract trends and laws from a set of data in order

to make automated inferences about new observations. ML techniques can use structural
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Figure 1.2: A representation of the three main ingredients in an ML workflow for atomistic
modelling and the construction of MLIPs: (a) the label input structures or molecules (b) the
structural representation, and (c) the learning algorithm.

properties of materials, like chemical composition, atomic positions, or volume, to build and

train models able to reproduce target properties like the ionisation energy, chemical shifts

or bulk modulus. The ML models can also accelerate atomistic simulations when trained on

QM data like DFT energies and/or forces by fitting machine-learning interatomic potentials

(MLIP)s. It becomes possible to perform MD or MC simulations with quantum-mechanical

accuracy at a fraction of the cost [25, 26, 27] or design molecules and materials with specific

properties using generative algorithms [28, 29]. This is possible due to the linear scaling of

MLIPs with system size, expressed by the additivity of locally-defined quantities and based

on the assumption of nearsightedness of matter [30] in contrast with the cubic scaling of QM

methods, and one usually expects three to four orders of magnitude speed-up per calculation

step. These gains opened the door to performing more efficient high-throughput screening

of materials with the desired thermal or dynamical properties [31, 32, 33]. Nowadays, it is

becoming common to read about works involving millions of atoms simulating nano-scale

devices [34, 35, 36] or studying phenomena requiring a large length scale and hence a high

number of atoms, e.g. ice nucleation [37] and amorphous silicon compression [38].

The other family of ML models is known as the unsupervised techniques, which are helpful

in identifying trends, studying similarities and evaluating patterns and clustering in the data.

We also see newly applied methods that combine supervised and unsupervised approaches

to guide the construction of maps that are aware of target properties and the geometrical

correlations or bias target properties with the geometrical features of the training data [39].
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There are three key ingredients one should keep in mind when constructing MLIPs for atom-

istic modelling and ML models in general, as illustrated in Fig. 1.2. The first significant

ingredient is the training data. The goal of building an MLIP is to sample a potential energy

surface (PES), which implies the need to reproduce not only the energy values of a structure

but also the atomic forces and the stress tensor since they are gradients of the energy. Depend-

ing on the chemical nature of the system and the target property, there are several datasets

and repositories organised by class of materials and data sources, including the QM9 [40]

and the Cambridge Structural Database [41]. However, they are not always sufficient to build

an accurate ML model, e.g. they may lack the necessary information to capture the effect of

thermal fluctuations. A typical approach is to add structures from an MD trajectory driven

targeting several conditions. In recent years, different systematic strategies have been pro-

posed to reduce human intervention to tackle the augmentation issue. Some of them rely

on uncertainty quantification by training MLIPs iteratively or by biasing the models towards

some areas of the phase space [33].

The second essential ingredient is the encoding of the atomic configuration, also known as

features or descriptors. These descriptors transform a structure into a vector in a feature space

and then be used as inputs for the MLIPs. While many end-to-end algorithms take only the

atomic Cartesian coordinates as inputs, this is inefficient as the prediction of energies and

forces will depend on the Cartesian reference and the order of the atoms. However, this does

not mean that these features cannot be derived from any physical or structural considerations.

In fact, it is important to select the descriptors that provide a comprehensive description of the

atomic arrangements and correlate well with the target properties. For MLIPs, it is important

to choose a descriptor that respects the smoothness and the symmetries of the potential

energy surface. Also, it is essential to provide a unique description to every structure to ensure

the reliability of the predictions made by the MLIPs. Density-based descriptors are a promising

class of descriptors that are able to encode the rotational and translational symmetries of a

structure by acting on the Cartesian coordinates of atoms. Examples of this class of features

include radial distribution function, the smooth overlap of atomic positions (SOAP) [42],

the Behler-Parrinello symmetry functions [43] and the atomic cluster expansion (ACE) [44].

One common aspect between these atomic descriptors is that they allow for atom-centred

representation of a system, which results in a natural size extension formulation.

The last ingredient of the ML workflow is the learning algorithm itself. These algorithms

try to establish the mapping between the inputs, like the atomic descriptors, and the labels,

like the DFT energies or the DOS, in the case of supervised learning or identify patterns in

unlabeled data in the case of unsupervised learning. Regardless of the task at hand, they

usually have a set of hyperparameters that need to be optimised in order to guarantee the
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main objective of ML, which is the generalisation of the rules identified during the training

phase to new cases (or atomic structures). Depending on the task at hand, some approaches

are more suitable than others. Examples of supervised ML models include artificial neural

networks [45], graph neural networks [46], Gaussian Processes [47] and decision trees. Among

unsupervised learning, we can mention support-vector machines and principal component

analysis.

The recent developments in the use of ML methods to circumvent the expensive costs of

QM calculations focus on modelling the potential energy surface and its gradients, i.e. the

atomic forces and the stress tensor, since they are necessary to run MD simulations. These

surrogate ML models successfully overcome the drawbacks of both classical interatomic

potentials (low accuracy) and quantum mechanical calculations (high cost). The use of ML in

materials modelling goes beyond the total energies and forces to other electronic structure

properties such as the positions of the Wannier centres [48], the exchange-correlation energies

since they are responsible for the accuracy of the DFT approach [49], or the kinetic energy

functional [50, 51], in an orbital-free DFT approach. We also see efforts tackling surrogate

models for primary outputs of a DFT calculation, such as the local density of states resolved in

energy and space [52, 53], the electron density ρ [54, 55, 56, 57], and the electronic DOS [58,

59, 60, 61, 58, 62, 63]. Learning these quantities yields predictions that can also be used to

calculate some quantities of interest indirectly, in a physics-inspired approach, like the band

energy or the exchange-correlation energy, sometimes providing better accuracy than models

targeting these quantities directly [64]. Most of these surrogate models rely on additivity

from atom-centred terms, which has implications for the interpretability of the correlations

between structural features and target properties. In particular, there have been works that

define surrogate models for DOS based on additivity from individual atoms and use these

fingerprints to characterise atomic environments further, contributing to more comprehensive

structure-property relations [65, 66, 38]. Finally, it is worth mentioning a new trend in atomistic

ML techniques, which focuses on modelling the Hamiltonian [67, 68]. The latter holds the

necessary information to compute the different electronic structure properties, like the DOS,

hence reducing the number of surrogate ML models while maintaining the highest levels of

fidelity to the QM description of the material.

1.1 Summary

The development and use of universal models describing structural and electronic properties

inexpensively set the foundations for more accurate and predictive materials modelling and

design and removing barriers between physics and data-driven modelling. This thesis aims to
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bridge a gap in the modelling of the fundamental electronic structure properties using ML

techniques. In particular, we focus on modelling the electronic density of states and explore

how it can be used within ML workflows to assist with their predictions.

This thesis is organised as follows: Chapter 2 introduces the general machine learning frame-

work that allows us to model the electronic density of states as a vector-valued function of

the energy, utilising the similarity measure between atomic environments introduced by the

SOAP representation. Chapter 3 describes the numerical experiments used to validate the ML

model for the electronic DOS in a challenging data set of silicon structures describing several

thermodynamic conditions and structures ranging from distorted bulk snapshots to clusters.

It also explores the use of the DOS as a fingerprint to identify the possible geometrical features

of local environments to describe structural and electronic transitions in disordered phases.

Chapter 4 introduces a theoretical framework to perform finite temperature modelling of

condensed matter using the DOS without recomputing data sets with expensive QM methods

and based only on a single temperature calculation, usually the ground state. It also discusses

different levels of possible approximations and an application of this model to study hydrogen

in the high-pressure/high-temperature regime. Conclusions are drawn in Chapter 5.
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2 Methods

2.1 Introduction

Machine-learning (ML) is the field of study interested in building methods to infer knowledge

from data. This means that ML focuses on constructing statistical methods and algorithms

to analyse datasets and potentially identify patterns and trends. This acquired knowledge

is then used to predict the behaviour of future (test) cases, even those that have not been

considered during the learning or training phase. This aspect of generalisation, without

explicit knowledge about the analytical relations and correlations between the data, makes

ML techniques intriguing and compelling. They require minor human intervention and

constraints in the training phase. The generalisation is also an important metric to evaluate

the quality of the training data and the ML algorithm.

Generally, the more data we add, the more accurate the ML model is and the more generalis-

able it becomes. However, the raw input data, e.g. atomic coordinates in atomistic systems,

is rarely a suitable candidate for building the training datasets. Let us consider a molecule

in a vacuum. Its cohesive energy should remain constant under any rotation or translation,

although these operations will affect the atomic coordinates. This thought experiment justifies

the need for proper descriptors, also known as fingerprints or representations, that encode

the symmetries of the problem and correlate with the modelled observation. Needless to say

that the representation must be unique for every point in the data set because, otherwise, the

ML models would assign the same target property like the cohesive energy for two different

configurations, which makes the ML models unreliable.

Depending on the available data, there are two main families of ML techniques: unsupervised

and supervised learning. The significant difference between the two families is the labelling of

the data. The first set focuses on unlabelled data by exploring hidden correlations between
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input points and finding rules to cluster them. The second set deals with labelled data by

training models that classify the observations or predict the outcomes accurately.

This chapter focuses on two fundamental blocks in the ML workflow in materials science

and atomistic simulations. First, we are interested in structure representation as a method to

increase the robustness of the model to symmetry operations. In particular, we go over the

basics of density-based descriptors. Next, we dive deeply into one of supervised ML’s widely-

used algorithms, Gaussian Process regression (GPR). We focus on its kernel formulation and

its extension to vector-valued functions. The latter is considered the backbone of modelling

and learning the electronic density of states (DOS).

2.2 Density based descriptors

We begin by providing a brief overview of some of the strategies to build atomic descriptors and

representations. The field of geometrical descriptions of atomic arrangements has experienced

very rapid growth in the past decade. Even though dozens of alternative descriptors have

been proposed, most of the atomic descriptors ranging from Behler-Parrinello symmetry

functions [43], first introduced in 2007, till the latest descriptors such as the Atom Cluster

Expansion [44] (ACE) or NICE [69], can be derived from the same considerations [70].

Taking one step back, atomic fingerprints are not a new idea that appeared with the emergence

of machine-learning techniques for atomistic modelling. In particular, empirical potentials

included some sort of atomic descriptors in their functional forms to describe the nature of

interactions between the different atomic species present in a system, including the Lennard-

Jones potential or the Gupta empirical potential [71] that use the pairwise distances as descrip-

tors. The most basic atomic descriptor is the set of Cartesian coordinates of atoms in space.

This approach requires a feature space of 3N dimensions, with N the number of atoms in a

particular frame, to describe the atoms’ arrangement. Despite being simple, this descriptor is

used as a fingerprint for several applications, including the challenging characterisation of

structural motifs in biomolecular complexes [72]. However, it presents multiple disadvantages.

First, it is linked to a fixed Cartesian reference. So it would produce different fingerprints for

the same atomic arrangement if we rotate the reference or translate ins origin. For instance,

if one considers two water molecules where one is obtained by rotation of the other around

its principal axis, we will get two different sets of atomic positions. Also, we obtain different

fingerprints if we permute the labels of the two hydrogen atoms in the water molecule. Second,

it does not provide a systematic way to compare structures with different types and numbers

of atoms. Finally, depending on the nature of the studied problem, some properties might

not be invariant, i.e. their value depends on the orientation of the molecule. Suppose one is
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interested in modelling the dipole moment of the water molecule. The descriptor should be

able to encode how a given quantity changes when a rigid transformation is applied to the

global system. In that case, one does not need to explore all the possible molecule’s rotations

to find the corresponding dipole moment. In fact, they should have the same magnitude but

differ only in direction.

This simple example highlights certain essential aspects needed for designing structural de-

scriptors. They must respect the internal symmetries of a structure, including translational,

rotational and permutational symmetries. While doing so, it must also be ensured that the

representation is smooth with respect to the atomic displacements since most of the physical

observables are also smooth with respect to these perturbations. Some of these issues have

already been solved in the empirical potential community by moving to internal coordinates,

like pairwise distances and dihedral angles.

They should also provide a natural system size extension, which is usually achieved by assum-

ing the additivity of local or atomic fingerprints. The locality assumption is also justified by

the nearsightedness of matter [30], a key assumption in several branches of physical sciences,

including the theory behind the linear scaling density functional theory [73], and also in

machine-learning approaches for atomistic modelling. It is this underlying assumption that

we will use throughout this manuscript. In practice, the locality assumption can be tested for

atomic properties like the forces by considering an atomic environment defined by a centre

and a radial cutoff. The procedure consists in measuring the variance of the atomic property

computed for the central atom by randomly displacing atoms outside the environment as a

function of the radial cutoff. Finally, one other important property should be completeness,

i.e. an atomic fingerprint must be unique for every structure, and two different arrangements

of atoms must yield different fingerprints by the descriptor. This assumption turns out to

be the most difficult to achieve. In atom-density descriptors, one must have access to high

body-order correlations to ensure the uniqueness of fingerprints [74].

In general, the atomic descriptors used in the context of atomistic modelling can be classified

into two main groups: global and local. Global descriptors include the Coulomb matrices [75],

bag of bonds [76], many body tensor representation [77] and the mixture of local environ-

ments [78]. It has been shown in Ref. [70] that they are projections on different basis sets of

the same algebraic object, i.e. the atomic density field ρ. We use the notations first introduced

in Ref. [70], mimicking the Dirac notations (bra-ket) used in quantum mechanics. The rea-

soning behind this choice is that they highlight the basis-independence of the atom-density

representations.

We define |A〉 as the object holding all the information about a structure A and the atoms it

contains, including the chemical composition and the spatial arrangement of the atoms. It
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is possible to complement the indication in |A〉 with the nature of the representation, and

we write the abstract object |A; rep.〉, where “rep.” is a shorthand that describes the kind

of correlations that underlies the featurisation. For example, we use the |A;ρ〉 notation to

emphasise the nature of the atom density field used to describe the structure A. Examples of

this class of descriptors are the smooth overlap of atomic position (SOAP) [42], the features

of the moment tensor potential [79], or the features of the SNAP [80] architecture. We pro-

ceed by decomposing the global representation of the structure A into a sum of its atomic

representations:

|A;ρ〉 = ∑
i∈A

|ri ; g 〉, (2.1)

where |ri ; g 〉 is the representation of the i th atomic centre placed at ri , and g is usually a

smooth localised function at the atomic centres, e.g. a Gaussian. The general expression of

Eq. (2.1) highlights these structural representations should be regarded as formal/abstract

mathematical objects independent of the basis, e.g. real space or plane waves, or the smooth

function g . In the case of a projection of the ket |A;ρ〉 on real space represented by the bra 〈x|,
we obtain the following:

〈x|A;ρ〉 = ∑
i∈A

〈x|ri ; g 〉 ≡ ∑
i∈A

g (x− ri ). (2.2)

By taking the limit of the smooth function g to a delta Dirac function δ at every atom, we

recover the Cartesian coordinates of the atoms within the structure A. In general, the change

of basis is obtained following the same formulas introduced in most quantum mechanics

courses, also known as the completeness relation:

〈T |A〉 =
∫

dQ〈T |Q〉〈Q|A〉, (2.3)

where |T 〉 is a basis of projections and the set of smooth functions |Q〉 forms a complete basis.

The equality holds for sums over countable discrete indices if the basis is not continuous.

Eq. (2.2) is not translationally invariant as it relies explicitly on the atomic positions. The

first step towards translation symmetry is to integrate the density over all the possible R3

translations t̂ in our bra-ket notations
∫

dt̂〈x|t̂ |A;ρ〉. This operation is known as the Haar

integration, and its objective is to symmetrise an operator with respect to elements in a

particular group. One problem that arises from performing the symmetrisation on the global

field |A;ρ〉 is the integration of all the spatial degrees of freedom, and the final result is a

constant proportional to the total number of particles in the simulation box. A similar problem

would occur if we consider the Haar integration over the SO(3) group of elemental rotations

and lose all the angular information.
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One possible method to mitigate these issues is to consider the tensor product of density fields

instead of the density. The t̂-symmetrised two-point correlation function is

〈a1x1; a2x2|〈ρ⊗ρ〉R3〉 =
∫

dt̂〈a1x1|t̂ |ρ〉〈a2x2|t̂ |ρ〉∝
∑
i j
δa1a jδa2ai 〈(x1 −x2)|(r j − ri ); g̃ 〉, (2.4)

where we write |A;ρ〉 ≡ |ρ〉 to simplify the notations a bit, g̃ is the cross-correlation of two

localised density functions, a1 and a2 are the chemical species of the atomic centres, x1and x2

are the position operators of the same centres, and δ is the Kronecker symbol and vanishes

if the chemical elements in the subscript are different. We can formally define ρ⊗2 = 〈ρ⊗ρ〉,
the averaged tensor product of the density. This expression of Eq. (2.4) allows us to define

translationally invariant features, and as a bonus, these features are local. In fact, Eq. (2.4) can

be re-written as:

〈a1x1; a2x2|ρ⊗2〉 = ∑
i∈A

δa2ai 〈a1(x1 −x2)|A;ρi 〉, (2.5)

where |A,ρi 〉 is an abstract object describing the local density field, or environment of the i th

atom:

〈ax|A,ρi 〉 =
∑
j∈A

δaa j fcut(|r j − ri |)〈x|r j − ri ; g 〉 (2.6)

In this expression, we introduce a (radial) cutoff function fcut(r ) that depends on the distance

between the i th and j th atoms to emphasise further the local aspect of translationally invariant

|A,ρi 〉. Alternatively, we can hide the dependence on the cutoff function in the definition of

the local environments Ai and we write:

〈ax|A,ρi 〉 =
∑

j∈Ai

δaa j 〈x|r j − ri ; g 〉, (2.7)

where the sum is performed over all atoms j defined by the cutoff function fcut(r ). One should

note that this construction of the translationally invariant 〈ax|A,ρi 〉 is equivalent to using

displacement vectors as done in the standard SOAP implementation [42], for example.

The next step in the feature construction is to force rotational invariance. As mentioned earlier,

we are looking into performing Haar integration over the O(3) symmetry group. However, this

time we perform the symmetrisation on the local density field |A;ρi 〉. To make notations less

heavy, we use this simplified version |ρi 〉 ≡ |A;ρi 〉. We may perform the tensor product opera-

tion (ν) times, and we define |ρ⊗ν
i 〉 = |〈ρi ⊗·· ·⊗ρi︸ ︷︷ ︸

ν times

〉O(3)〉 as the (ν+1)-body-order symmetrised

field. And then we symmetrise this new averaged tensor product by using the expression in
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∑
i

g(x − ri)
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Figure 2.1: Summary of the steps in symmetrised field construction. This figure is
reproduced from Ref. [81]. Original figure published under the CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/)

Eq. (2.2), allowing us to obtain the following:

〈a1x1 · · ·aνxν|ρ⊗ν
i 〉 = ∑

k=0,1

∫
SO(3)

dR̂ 〈a1x1|î k R̂|ρi 〉 · · · 〈aνxν|î k R̂|ρi 〉︸ ︷︷ ︸
ν times

, (2.8)

where the sum over k describes the inversion symmetry. Fig. 2.1 is an illustration of the

symmetrised local field for the two-body order case (ν = 1). Since we are working with

rotation operators, one easy (and fast) method to evaluate these integrals is to involve spherical

harmonics. We can project Eq. (2.6) on an orthonormal basis of radial functions Rn(x) ≡ 〈x|n〉
and a basis of spherical harmonics Y l

m(x̂) ≡ 〈x̂|l m〉, making sure to use the completeness

relation of Eq. (2.3). The expansion coefficients of the localised density field on the basis of

orthonormal radial functions and the spherical harmonics are:

〈anl m|A;ρi 〉 =
∑

j∈Ai

δaa j 〈nlm|r j − ri ; g 〉

=
∫

dx〈n|x〉〈lm|x̂〉〈ax|A;ρi 〉

=
∫

dxRn(x)Y l
m(x̂)

∑
j∈Ai

g (x− (r j − ri ))

(2.9)

where 〈nlm|r j − ri ; g 〉 is the expansion coefficient of a Gaussian centred on the interaction
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between the atoms i and j . The use of spherical harmonics |lm〉 makes the evaluation of the

integrals involving the rotation operator R̂ easy, like in Eq. (2.8), using Wigner-D matrices:

〈l m|R̂|l ′m′〉 = δl l ′D
l
mm′(R̂). (2.10)

This is because the Wigner-D matrices are an irreducible representation of the group of ele-

mentary rotations SO(3). We obtain explicit expressions for the symmetrised fields for different

values of ν or body-orders. In particular, the SOAP power spectrum representation [42], which

we use as the main atomic representation in the later chapter of this manuscript, is obtained

for ν= 2 as we can write from Eq. (2.8):

〈a1n1l1m1; a2n2l2m2|ρ⊗2
i 〉 = δl1l2δm1m2

8π2

2l1 +1

∑
s

(−1)s−m1〈a1n1l1s|ρi 〉〈a1n2l2(−s)|ρi 〉,
(2.11)

which can be rearranged as follows to obtain the final form of the power spectrum:

〈a1n1; a2n2; l |ρ⊗2
i 〉 = (−1)l

p
2l +1

∑
m

(−1)m〈a1n1lm|ρi 〉〈a2n2l (−m)|ρi 〉

∝ 1p
2l +1

∑
m

c i ,a1

n1lm(c i ,a2

n2lm)∗
(2.12)

where c i ,a
nlm = 〈anl m|A;ρi 〉. From this construction, we can prove that the power spectrum is

a 3-body-order representation of atomic environments. At this level, one could affirm that

the SOAP power spectrum presents several hyperparameters that need optimising depending

on the studied problem: the number of radial channels nmax, the maximum of the angular

channels lmax and mmax, the radial cutoff of the local density field, and any other parameters

linked to the Gaussian density smearing function |g 〉. In particular, one could be inspired by

the locality of most target quantities from a simulation and the contribution of neighbours

to the structure-property relation and introduce a radial scaling of the SOAP (or any other

representation) features that is implemented as an additional weighting to the radial cutoff

function fcut of the contributions from the neighbours:

u(ri j ) = c

c + (ri j /r0)m (2.13)

where c, m and r0 are parameters to be optimised with respect to the target property of the

learning scheme. An optimised radial scaling can substantially improve the performance of a

model, similar to what can be obtained by the use of multiple kernels with different length

scales [82].

A different, but equivalent formulation of the density representation, especially in the limit of

|ρ〉→ |δ〉, reveals that this class of representations can be seen through a set of all pairwise
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distances and angles between the different atomic species in the structure. We can thus

formally prove that many atomic descriptors used in the field of machine-learning atomistic

modelling, like the DeepMD kit [83] or the Behler-Parrinello symmetry functions [43], are

equivalent to the SOAP power spectrum, as all of these representations arise from ν= 2. Using

similar arguments, considering the case of ν = 3 would lead to constructing the SOAP bi-

spectrum, and we can confirm it arises from 4-body correlations arguments. Needless to

mention that projections over the radial and spherical harmonics basis sets are not the only

way to exploit these local features. One could, as mentioned earlier, utilise a basis set of plane

waves |k〉.

Despite being successful in providing robust fingerprints for atomistic modelling applications

and structure stability, these representations do not meet the completeness requirement,

including the SOAP bispectrum [74]. In fact, the formulation of these descriptors in terms

of internal coordinates, i.e. pairwise distances and dihedral angles, reveals that it is possi-

ble to construct two different atomic arrangements with the same features. This becomes

problematic when the two configurations have different energies, creating “confusion” for the

machine-learning algorithm and hindering its accuracy in the small dataset regime. Also, this

behaviour affects generative models, where the goal is to find the atomic configurations from

their geometrical fingerprints. Possible solutions might include going higher in the body-order

correlations. Notable approaches include the NICE [69] construction and the ACE representa-

tion [44], which is known to be complete for high body-orders as ν→+∞. Determining the

optimal body-order ν is still an open question at the moment of writing this manuscript. The

uniqueness problem also affects different architectures, deemed complete, like graph neural

networks [84]. Although the picture seems a bit gloomy, this particular problem appears

to have limited impact in most real-world applications, where usually labelling the atomic

centres with their chemical species and the possibility of using representations centred on

multiple atoms in the structures usually helps (but might not be enough) to the lift of the

degeneracy of the atomic descriptors. These options should be explored further in order to

assess their viability for machine-learning workflows for atomistic modelling applications.

2.3 GPR for scalar-valued functions

One of the goals behind the use of machine-learning techniques in atomistic modelling is to

establish a mapping between the configurational phase space of molecules and materials,

in the broader sense, and their physical observables, e.g. cohesive energy of a molecular

compound or the electronic bandgap of a semiconductor, or to construct ML interatomic

potentials by learning their energies and atomic forces. Formally, this problem belongs to
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the class of supervised machine-learning methods, and in particular of regression. It can be

formulated as follows: we want to find the functional relationship f between an input space

X , that could be RN or of infinite dimensions, and an output space that we consider to be

R. In this section, we present the basics of a well-known method to perform regressions, i.e.

Gaussian process regression, applied to learning scalar (or single output) properties. We also

discuss the different ways to interpret Gaussian processes.

2.3.1 Function space point of view

A Gaussian Process (GP) is a stochastic process that is a collection of random variables. The

particularity of a GP is that the distribution of any finite collection of its random variables

follows a multivariate Gaussian distribution. It is fully characterised by a mean function

m : X →R and a covariance function k : X ×X →R that is symmetric and positive definite,

and we usually note:

f ∼GP (m,k), (2.14)

where for any X ∈ X we have m(X ) = E[ f (X )] and for any X , X ′ ∈ X we have k(X , X ′) =
E[( f (X )−m(X ))( f (X ′)−m(X ′))]. Note, that the covariance between the outputs, despite

describing similarities between the random processes f (X ), is usually written as a function of

the inputs [47]: cov
(

f (X ), f (X ′)
)= k(X , X ′). The covariance function k may be referred to as

the kernel function. For atomistic modelling applications, k could be a measurement of the

similarity between two data points X and X ′. Without any loss of generality, we can assume

that m(X ) ≡ 0 since we can subtract the mean function, which does not affect the covariance.

This procedure is common for machine-learning applications. In what follows, we assume we

have a finite dataset D
{(

Xi , yi
)

i∈N

}≡D {(X,Y)} collecting N input-observation pairs, where

the Xi ∈X and the yi ∈R.

The GP, as defined in Eq. (2.14), can be used as a prior distribution within the Bayesian

inference framework. This leads to performing function regression, thus defining the Gaussian

process regression (GPR). Since the mean function and the covariance completely specify the

GP, the collection of random variables { f (Xi )}Xi∈X follows a Gaussian distribution and we

write the prior distribution as follows:

f (X) ∼N (m(X),K), (2.15)

where f (X) = [ f (X1), .., f (XN )] is a vector containing the GP prior for every observation in the

dataset D, m(X) = [m(X1), ..,m(XN )] a vector containing the mean predictive function of every

observation and K is the kernel matrix of size N ×N , and whose elements are [K]i j = k(Xi , X j ).
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The notation of Eqs. (2.14) and 2.15 is a shorthand for the multivariate Gaussian probability of

f (X):

p( f ) = 1√
(2π)N det(K )

exp

(
−1

2

(
f (X)−m(X)

)⊺ K−1 (
f (X)−m(X)

))
. (2.16)

The GP formally specifies the prior belief about the properties of the function f . These beliefs

are updated in the presence of the training data D. This is achieved via a likelihood function

relating the prior assumptions and the true observations. The result of this approach is a

posterior distribution that we use to infer on, potentially, unseen test cases. To illustrate this

idea, we assume that our observations yi are noisy. This assumption usually helps with the

robustness of the model. In addition, noise-free modelling is not interesting in itself because

we would only get observations drawn from a known distribution.The incorporation of the

noise in the modelling of the observations is typical for modelling using “real life” data. It can

be explained physically by uncertainties in the measuring methods, for example. This noisy

model is formulated as follows:

yi = f (Xi )+εi , with εi ∼N (0,σ2
i ), (2.17)

where the noise components εi are independent and identically distributed (i.i.d) with vari-

ance σ2
i and they can be assigned to each observation individually. However, in practice,

it is possible to assign the same value for all the σ2
i = σ2. Examining Eq. (2.17) reveals an

interesting result. The observations yi form themselves a GP with the same mean function

m(X) of f and with a different kernel matrix Ky = K+σ2
i IN , where IN is the identity matrix of

size N ×N . This can be deduced thanks to the additivity property of the Gaussian distributions

of f and the noise. The Gaussian likelihood function of the single noisy observations reads:

p(yi | f , Xi ,σ2
i ) =N ( f (Xi ),σ2

i ). (2.18)

Let us introduce a new input-observation pair (XN+1, yN+1) and propose to find the model

linking them according to the dataset D. The joint distribution for the test case and the training

data Y is such that:
Y

f (XN+1)

∼N




m(X)

m(XN+1)

 ,


K+σ2IN k(XN+1,D)

k(XN+1,D)⊺ k(XN+1, XN+1)


 , (2.19)

where k(XN+1,D) is a vector of size N containing the kernel function value between the new

data point XN+1 and the data points in the training set and its elements are [k(XN+1,D)]i =
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k(XN+1, Xi ). Utilising the law of conditional probability:

p( f (XN+1)|Y) = p( f (XN+1),Y)∫
p( f ,Y)d f

, (2.20)

the joint distribution gives access to the conditional probability of the observation of the test

point XN+1, and we obtain the updated posterior that is also a Gaussian:

p( f (XN+1)|D, XN+1,σ2
i ) =N ( f (XN+1),var( f (XN+1))), (2.21)

where

f (XN+1) = k⊺(XN+1,D) · (K+σ2IN )−1Y (2.22)

and

var( f (XN+1)) = k(XN+1, XN+1)−k⊺(XN+1,D) · (K+σ2IN )−1 ·k(XN+1,D). (2.23)

Based on this last definition, k(XN+1, XN+1) is simply the variance associated with new data

point XN+1 as implied from the kernel function k and we can write k(XN+1, XN+1) =σ2
N+1.

A closer inspection of Eq. 2.22 shows that the mean predictive function of a GP is nothing

more than a linear expansion over the covariance function of the inputs in the training set D

and the new input:

f (XN+1) =
N∑

i=1
αi k(XN+1, Xi ), (2.24)

where the linear expansion coefficients are

α= (K+σ2IN )−1Y. (2.25)

Eq. 2.23 reveals one crucial aspect of GPs: they incorporate information about the uncertainty

of their modelling capabilities since they are a distribution over functions. The variance of

a GP does not depend on the observations but only on the input training data Xi and the

new point XN+1. However, it is possible to influence the uncertainty by choosing kernel

functions that correlate strongly with the outputs. This shifts the burden of designing a

solid ML framework to constructing suitable covariance functions for the input data, whose

parameters (i.e. the covariance function) can be regarded as hyperparameters of the GPR

model. The community developed several kernel functions to provide initial starting points

for GPR. Notable general-purpose examples include:

• the Gaussian kernel, or the squared exponential (to avoid confusion with Gaussian
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Process), also known as the radial basis function (RBF) kernel:

k(X , X ′) = s2exp

(
||X −X ′||2

2σ2
l

)
,

where s2 and σ2
l are hyperparameters of the model describing the magnitude and the

variation scale desired between the features and should be tuned according to the

problem. This kernel function is used by default by many ML and GPR users.

• the linear kernel or the dot product kernel:

k(X , X ′) = X ·X ′,

and by substituting the linear kernel in Eqs. (2.25) or (2.29), we should recover the

well-known expression of linear ridge regression.

• the polynomial kernel:

k(X , X ′) = (X ·X ′)ζ,where ζ> 1,

and from this family, one can expand towards piecewise polynomial kernels.

Other interesting kernels could be formulated when one realises that the sum or the product

of two kernels is also a kernel. In atomistic modelling, this observation resulted in interesting

constructions, like the multi-scale kernels [85] where one builds a different kernel for different

ranges of separation between the atomic centres.

In addition to the hyperparameters introduced by the kernels, we may also consider the

variance of noise components for the training data σ2
i as hyperparameters of the GPR mod-

els. All of the free parameters could be tuned by maximising the log marginal likelihood

log
(
p(Y|D,σ2

i )
)

given the training set or by N-fold cross-validation to test the generalisation of

the model, for example. These techniques are representatives of the field of model selection,

whose aim is to make sure that the ML models are practical tools in real-world applications,

in particular, making sure that the models are able to generalise to new unseen test cases

and avoid overfitting on the training data. Our objective is to infer, based on the training set,

the parameters of the covariance function and compare models based on clear performance

metrics.

This approach, demonstrated by Eq. (2.25), shows the importance of the Gaussian noise εi

as it assures that the kernel matrix is not singular and we can compute its inverse, in case of

degeneracy in the training data. It also highlights the data-driven nature of GPs as a linear

combination of input information that entirely determines the posterior distribution. In
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the world of ML, this point of view of interpreting GPR is called the function space point of

view. The linear combination has as many elements as the dataset D and scales with the

size of the training data, earning this approach the name of full GPR. Also, this highlights

the non-parametric aspect of GPR, as they leverage all the data provided to the model. We

calculate the covariance of the entire dataset with itself. One can immediately see that this

approach is expensive as it requires inverting the matrix (K+σ2IN ) of size N ×N . The inversion

of this matrix scales as O (N 3) and also poses some limitations on the computer memory. In

order to mitigate against this problem, we discuss a widely-used approximation to the full

GPR framework, and we refer to it the sparse GPR.

The sparse GPR formalism is represented by several approximations, such as the Nyström

approximation or the projected process (PP) approximation. They all share the idea of pro-

jecting the entire function space on a latent space generated by a subset of fixed functions.

The PP approximation has the particularity of making use of the whole dataset as it is based

on minimising the likelihood over all the data points. This is equivalent to choosing M ≪ N

representatives to form a subset M , also called the sparse points or the active set, from the

training set Dand expressing the predictive mean of the GP in their basis:

f (XN+1) =
M∑

m=1
αmk(XN+1, Xi ). (2.26)

In this approximation, one no longer needs to compare all the data points with themselves

but with only a sub-selection. Hence, it significantly reduces the computational cost of GPs.

However, as the training set size increases, M should also increase in order to maintain the

accuracy of the model. This is because a larger training set contains more information about

the underlying distribution of the data, and a larger number of sparse points is needed to

capture this information accurately. The predictive mean and the variance are:

f (XN+1) = k⊺(XN+1, M) · K̃−1K⊺
N M Y (2.27)

and

var( f (XN+1)) = k(XN+1, XN+1)−QXN+1,XN+1 +k⊺(XN+1, M) · K̃−1k(XN+1, M), (2.28)

where KM N is a matrix of size (M ×N ) whose elements are the kernel function values between

the training data and the active set, k(XN+1, M) is the kernel vector between the new data point

and the active set, K̃ = (K⊺
N M KN M +σ2KM M ), KM M is a kernel matrix of the active set elements

and QXN+1,XN+1 = k⊺(XN+1, M)K−1
M M k(XN+1, M). We notice that all the matrices within the

sparse GPR framework are smaller than the ones in full GPR. We only need to invert matrices

21



Chapter 2 Methods

of size M ×M , in contrast to N ×N in the previous case, reducing the computational cost

significantly. Within these notations, we can write the linear expansion coefficients αm under

the form:

α= K̃−1K⊺
N M Y = (K⊺

N M KN M +σ2KM M )−1K⊺
N M Y. (2.29)

Considering the limit of M → N , we recover the expression of the linear expansion for the full

GPR of Eq. (2.25) by exploiting the fact that KN N = K and K⊺ = K.

The selection of the sparse points is always a debate, and a quick check of the literature reveals

many methods discussing this particular problem [47]. In a materials science context, greedy

and stochastic methods are the norm. We can cite the furthest point sampling (FPS) [86]

and the CUR decomposition [87, 88]. These methods can also be used to reduce the size

of the feature vectors of the density-based descriptors discussed in Section 2.2. Hence, the

optimisation is achieved at two levels of the ML workflow: the feature generation and the ML

algorithm.

2.3.2 Weight space point of view and links to RKHS

The function space interpretation of GPs is not the only way to derive an expression for the

GPR predictions. We can also rely on a definition closer to another popular method within the

ML community, the kernel ridge regression (KRR). We express the predictive mean of the GP

as a linear expansion on the basis set of the kernel function k(XN+1, Xi ) evaluated between

the new point XN+1 and a subset of the Xi in the training set D with size U ≤ N :

f (XN+1) =
U∑

i=1
ci k(XN+1, Xi ). (2.30)

The coefficients ci are obtained from the minimisation of a loss function

L = 1

σ2 ||f(X )−Y||2 +R, (2.31)

in which R =
U∑
i , j

ci k(Xi , X j )c j is the Tikhonov regularisation term. It can be interpreted as the

norm of the coefficients vector c in the space of the kernel functions of the environments Xi .

It ensures that the model does not overfit. The functional form of the predictive mean of GP is

potentially very flexible. In fact, if we ignore the regularisation and assume a full-rank kernel,

the minimised loss will find the coefficients ci constructing a function that passes by all the

training observations yi . This usually leads to poor performances when tested on new input

data, which defeats the purpose of building an ML model.
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One should notice that the linear expansion coefficients, despite not arising from the same

considerations, lead to equivalent interpretations of a GP. This observation also applies to the

noise ϵi and their varianceσ2
i . One should note that the loss in the regularisation/weights point

of view represents the cost we pay when predicting "wrong" outputs. In the Bayesian/function-

space point of view, on the other hand, the loss does not affect the inference of the posterior

distribution and weighs the incorrect decisions given their uncertainties. Also, the loss only

appears at a later step in the workflow.

One last thing we should mention when presenting (sparse) GPR is the design of the kernel or

the covariance k(X , X ′) and how it is linked to reproducing kernel Hilbert space (RKHS). An

RKHS with a reproducing kernel k is a Hilbert space Hk of functions on a non-empty set X

equipped with an inner product 〈·, ·〉Hk if the following conditions are satisfied:

1. for every X ∈X we have k(·, X ) ∈Hk

2. the reproducing property: for every X ∈X and f ∈Hk we have f (X ) = 〈 f ,k(·, X )〉Hk

As a reminder, k(X , X ′) is a function that measures the similarity between two reference

data points X and X ′. We call it a kernel because it satisfies the conditions of a kernel, i.e.

k(X , X ′) is symmetric and positive definite. The Moore-Aronszajn theorem [89] states that

every symmetric and positive-definite kernel defines a unique RKHS, i.e. the kernel function

defines an RKHS.

From the definition of the RKHS, in particular the reproducing property, we can write the

kernel of two data points X and X ′ as:

k(X , X ′) ≡ cov
(

f (X ), f (X ′)
)= 〈k(·, X ′),k(·, X )〉Hk . (2.32)

We immediately notice that the covariance is defined by a dot product between two functions

in the Hilbert space Hk . In ML terminology, the φX : X ′ → k(X ′, X ) is known as the feature

map of X and has potentially infinite dimensions. Without any loss of generality, we can write

the kernel function as a function of the feature maps:

k(X , X ′) = 〈φX ,φX ′〉Hk (2.33)

The consequences of such a result are crucial: we can embed infinite features and transform

them into similarity measures with values in R as long as we are able to find the appropriate

dot product and Hilbert space. This operation is known as the kernel trick. The structural

representations discussed in Section 2.2 are an example of these feature maps.

These observations hint at a strong link between (sparse)GPR and regression in the Hilbert
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space Hk . In fact, the minimisation solution of the loss, as defined in Eq. (2.31), can be

obtained through the representer theorem and allow us to write the predictive mean of GPR

as a linear expansion of functions of the form (X → k(·, X )):

f (X ) =
N∑

i=1
αi k(X , Xi ), (2.34)

where the sum runs over all the training data points Xi . We obtain the same solution as the

weight space interpretation of GPs of Eq. (2.30).

2.3.3 GPR in atomistic modelling

The GPR framework applies naturally to several problems in the materials science community,

including establishing mappings between materials classes and some physical observables

like the prediction of NMR chemical shifts [90] and the molecular orbital energy [91].

However, it is mainly used in one of the fundamental problems in atomistic modelling: con-

structing surrogate models for the potential energy surface (PES), i.e. the energies of configura-

tions and its gradients, i.e. atomic forces and global stress tensors, creating machine-learning

interatomic potentials (MLIPs). This is manifested by the popularity of the Gaussian Ap-

proximation Potential (GAP) [92] approach in studying multiple systems [26, 93, 94, 95, 96],

especially when paired with kernels constructed using atom-centred features like the SOAP

representations but not only [97]. The GAP approach is based on decomposing the total energy

of an atomic system Etot(A) into contributions from its local atomic energies E(Ai ):

Etot(A) = ∑
i∈A

E(Ai ).

We can re-write this equation using the bra-ket notations from Section 2.2, by considering the

energy as an operator |E〉 on which we project the object holding the structural information

|A〉:
Etot(A) ≡ 〈E |A〉 = ∑

i∈A
E(Ai ) ≡ ∑

i∈A
〈E |Ai 〉. (2.35)

One should notice that the concept of local energy is ill-defined, despite its popularity in the

field of classical interatomic potentials (or force fields), and that it does not translate to a

physical observable. However, there are a few efforts to use ML local energies (and other ill-

defined local quantities) as fingerprints to characterise local environments [39] or to optimise

some hyperparameters of structural representations like the radial cutoff [93].

Sometimes, one does not model the total energy from a quantum mechanical calculation,

such as the different flavours of density functional theory or post-Hartree-Fock methods, but
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usually the difference between the energy computed from a “cheaper” calculation and the

quantum mechanical one. This approach can be referred to by delta learning or baselining.

The baseline potential provides numerical stability to the machine-learned PES, and it can be

computed from empirical potentials, other machine-learning models, or another quantum

mechanical calculation. The use of a many-body descriptor, like the SOAP representation, is

found to fail to describe the repulsive interaction between dimers [93]; hence, the ML potential

fails to describe the short-range energies and forces and leads to unphysical structures. The

difference between the baseline potential calculated on a training set and the reference

(quantum mechanical) potential becomes the target of the machine-learning workflow, and

that is the Etot in Eq. (2.35).

GAP can be built using the full GPR, but this presents a significant computational problem:

the training of the model might scale unfavourably with the training set size (we mentioned

earlier that the cost of inverting the kernel matrix scales as O (N 3)). To mitigate against this

issue, we may recourse to the sparse GPR framework and select a subset M of atomic (and

local) environments constituting the sparse points, of size M ≪ N , and we write the energy of

a single environment Ai treating the chemical species ai in separate channels:

〈E |Ai 〉 =
∑

I∈M

δai aI 〈E ; aI |MI 〉k(Ai , MI ), (2.36)

where MI is the I th sparse point and k(Ai , MI ) is the kernel evaluated between the represen-

tation of the local environment Ai and the sparse point MI . Please note that, formally, there

is no restriction on how the sparse points are chosen or whether they should be drawn from

the training set, but usually, they are selected from the training environments. As we stated

earlier, the sparse GPR scales more favourably with training set size when training the model

(as O (M 3)). Reducing the number of parameters might hinder the quality of the model and

increase prediction errors, but in practice, this rarely occurs. The choice of a minimal sparse

point basis results in an insignificant decrease in the model’s performance.

The formulation of Eq. (2.36) allows us to easily access, at least formally, the gradients of the

PES, i.e. the atomic forces F j by taking the gradient with respect to atomic displacements of

the j th atom

F j =−∇ j 〈E |A〉 =− ∑
I∈M

〈E ; aI |MI 〉
∑
i∈A

δai aI ∇ j k(Ai , MI ) (2.37)

and the virial stress tensor by computing the derivative with respect to a deformation η of the

simulation cell

∂

∂η
〈E |A〉 = ∑

I∈M

〈E ; aI |MI 〉
∑
i∈A

δai aI

∑
j∈A

r j i ⊗∇ j k(Ai , MI ), (2.38)
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where ri j = r j −ri the direction vector between the i th and the j th atoms. Both expressions

depend on the gradients of the kernel elements with respect to the neighbours of every atomic

centre, making the evaluation of these gradients computationally expensive. However, the

final expressions are simple because of their independence of the structural representation,

the kernel function, and the ML algorithm used to perform the regression. This observation

makes kernel methods and the GAP formulation an elegant approach to creating physically-

motivated ML models for the PES as we would see in Section 4.2. Finally, it is worth mentioning

that it is possible to construct GAP by learning exclusively from the derivatives of the total

energy, i.e. atomic forces and stress tensor. This is possible due to the kernel formulation of

GAP, and the fact that taking derivatives is a linear operation on the total energy and, therefore,

on the kernels. Details of this construction can be found in Refs. [92, 98].

2.4 Extension to vector-valued functions

Scalar properties are not the only physical invariant observables we are interested in modelling.

This extends to vector-valued properties, i.e. the properties that depend on an external variable,

usually independent from the input space of configurations. Some of these properties, that

do not depend on the orientation of the piece of a material, are the photo-emission spectra

of molecules and the electronic density of states of semiconductors and metals. We call

them vector-valued functions to make the distinctions with “true” vectors that obey strict

mathematical formalism and transformation rules. The modelling of vector-valued functions

has been treated extensively, especially in the context of geostatistics, where GPR models are

referred to by kriging [99]. In a deeper dive into the general machine-learning literature, one

notices the interchangeable use of terms like multi-output and multitask learning. However,

they should not be equivalent. Multi-output learning refers to the general class of modelling

vector-valued functions, while multitask learning deals with vector-valued functions where

each entry has its own (distinct) input space. We can also classify these models depending

on how they are trained: isotopic learning is used when the outputs share the same inputs

and heterotopic learning is when some inputs have their own input space, similar to multitask

learning.

We should state at this level that there are different approaches applied within the machine-

learning community to tackle the problem of multivariate learning, e.g. adding the dimension

of the output space to the training data [100] or decomposing the modelling of the D outputs

into independent single-output problems and proceeding with the GPR for scalar-valued

functions as in Section 2.3 with or without independent training sets for every output channel.

The latter approach disregards potential correlations between the dimensions but could
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Figure 2.2: A schematic representation of the difference between the single task and multitask
approaches to tackle the multivariate learning problem.

outperform models with knowledge transfer between the output processes [101]. Fig. 2.2

illustrates the general problem of multitask learning.

In this section, we present an overview of GPR applied to learning vector-valued functions and

how they are linked to the case of scalar properties. Formally, the problem we are interested in

is learning an unknown functional relationship f between an input space X , similar to the

one treated in Section 2.3, and an output space {1, . . . ,D} of multi-output functions that we

can consider to be RD , with potentially D ≫ 1 where D is the number of processes.

2.4.1 Function space and RKHS

GPs for vector-valued functions follow the same approach as in the case of scalar targets of

Section 2.3, with a slight difference in the definitions of the mean function of the GP and the

kernel function. The former becomes vector-valued, with the same dimension as the output

space, and the latter becomes kernel-valued, i.e. the covariance between two realisations

f(X ) and f(X ′) of the GP is a kernel matrix of size D ×D. In this subsection, we re-visit the

main steps for the derivation of the full and sparse GPR predictor of vector-valued functions.

To avoid unnecessary repetition, we just provide the function-space point of view and the

construction of the RKHS.
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Function space

The vector-valued functions can be viewed as a collection of random processes { fd }d∈1,D

organised in a vector. A vector-valued function f follows a GP if there exists a mean function

m : X →RD and reproducing kernel that is matrix-valued: K : X ×X →RD×D , and we can use

similar notations to Section 2.3:

f ∼GP (m,K), (2.39)

where m ∈ RD is a vector containing the mean function of every output process and K is a

covariance matrix describing the similarity between two outputs associated with two different

processes d and d ′. The elements [K(X , X ′)]d ,d ′ of the covariance are matrices, in contrast

with the GPs for scalar properties where they were just scalars, and they describe the similarity

between the processes fd (X ) and fd ′(X ′). The assumption of zero mean m can also be applied.

Then, we follow the same procedure as the GP for scalar-valued functions. We assume a finite

dataset D
{(

Xi ,yi
)

i∈N

}≡D{(X,Y)} collecting collecting N input-observation pairs where the

Xi ∈X and the yi ∈RD .

The GP defines a Gaussian prior distribution over the random variables {f(Xi )}Xi∈X as we note:

f(X) ∼N (m,K(X,X)), (2.40)

where f(X) = [f(X1), . . . , f(XN )] a matrix containing the GP prior for every observation in the

dataset D, m(X) = [m(X1), . . . ,m(XN )] a matrix containing the mean predictive function of

every observation, and K is block partitioned kernel matrix of size (N D×N D), and it is written

as :

K(X,X) =


(K(X1, X1))1,1 . . . K(X1, XD ))1,D

(K(X2, X1))2,1 . . . K(X2, XD ))2,D
... . . .

...

(K(XD , X1))D,1 . . . K(XD , XD ))D,D

 , (2.41)

where every block (K(Xi , X j ))d ,d ′ is a matrix of size N ×N . In this expression, we assume that

every dimension d has its own training set.

We assume that our observations yi are corrupted, and we model this behaviour by an in-

dependent and identically distributed Gaussian noise {εd }d=1,D and we write the model as

follows:

yi ,d = fd (Xi )+εi ,d , with εi ,d ∼N (0,σ2
i ,d ). (2.42)

In order to perform a regression, we write the Gaussian likelihood function for a single obser-

vation yi as follows:

p(yi |f, Xi ,Σ) =N (f(Xi ),Σ), (2.43)
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where Σ is a D ×D diagonal matrix, whose elements are the σ2
d . We can obtain the predictive

mean of the GP and its variance by introducing a new data point made of a pair of input-

observation (XN+1,yN+1). Following the same reasoning in Section 2.3.1, we find the predictive

mean of the multioutput regression:

f(XN+1) =
N∑

i=1
αi K(XN+1, Xi ), (2.44)

where the linear expansion coefficients are matrices and have the same formal form as

Eq. (2.25):

α= (K(X,X)+Σ)−1Y. (2.45)

The sparsification of this full GPR approach follows the same logic as the case of the scalar-

valued functions. In particular, we can apply the same methodology of the projected process

approximation and project the processes on a subset of active set points and end up with

another linear expansion expression for the predictive mean.

RKHS for vector-valued functions

Similar to the case of scalar-valued functions, the RKHS of vector-valued functions is charac-

terised by its matrix-valued kernel, and we note the reproducibility condition for any function

f in the RKHS HK as:

〈f,K(·, X ) ·c〉HK = f(X )⊺ ·c, (2.46)

where the notation 〈·, ·〉HK refers to the inner dot product of the RKHS. The kernel trick can also

be applied in this case, and one can extend the definition of features maps φ to vector-valued

functions. In particular, and depending on the nature of the processes fd , one can assign

different maps φd to different processes.

If we follow the regularisation route of the scalar-valued functions as shown in Eq. (2.31), the

regression problem can be formulated as a minimisation of a loss function:

L = 1

N
||f(Xi )−yi ||2 +λ||f||2HK

. (2.47)

The solution to this problem can be obtained thanks to the representer theorem [102]:

f(X ) =
N∑

i=1
K(X , Xi ) ·ci , (2.48)

where c = (K(X,X)+λN IN D )−1Y is the vector holding the linear expansion coefficients of
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size N D. It is obtained by concatenating the expansion coefficients vectors of size D, ci

as c =


c1
...

cN

 . If we dispose of a new test point XN+1, the corresponding expression for the

regressor is given by:

f(XN+1) = K(XN+1,D)⊺ ·c, (2.49)

where K(XN+1,D) is a matrix of dimensions N D ×D , and whose entries are (K(XN+1, Xi ))d ,d ′ .

2.4.2 Kernel design for vector-valued functions

Designing kernels for vector-valued functions is delicate and is heavily influenced by the

nature of the processes and their intrinsic correlations. It is possible only to consider the

most general case and build a different GPR model for every dimension by ignoring possible

correlations and potentially requiring an increasing number of training sets. However, it is

advantageous to model connections between the different processes. Let us consider the case

of learning a continuum spectrum like the electronic density of states or the photoemission

spectrum. These spectra are usually constructed by convoluting the discrete spectrum with a

smooth function and stored as a collection of discrete values. The resulting “vector”, or more

appropriately, array, contains several adjacent points that are highly correlated. It would be

ideal if one could establish a strategy to leverage and model these “hidden” correlations.

We showcase an elegant approach to designing kernels for vector-valued functions based on

decoupling the information from the input space X and the output space {1, . . . ,D}, known

as separable kernels. The starting point is writing the matrix-valued kernel function of the

multi-output GP as a product between a kernel function of the input space and another one

for the output space. The general form of an element of this matrix within this class of kernels

is written as follows:

(K(X , X ′))d ,d ′ = k(X , X ′)kT (d ,d ′), (2.50)

where k : X ×X → R and kT : {1, . . . ,D}× {1, . . . ,D} → R are the two scalar kernel functions.

Equivalently, we can consider the matrix representation of these kernels, exploiting the fact

the output space is fixed for a given problem:

K(X , X ′) = k(X , X ′)B, (2.51)

where B, also known as coregionalisation matrix, is a symmetric semidefinite matrix, with D ×
D dimension, and it is the matrix representation of kT . The link between the two expressions

can be visualised if we consider the training set Dand inject Eq. (2.50) into Eq. (2.41) to obtain:
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K(X,X) = k(X,X)⊗B

=


k(X1, X1)B · · · k(X1, XN )B

...
...

k(XN , X1)B · · · k(XN , XN )B

 (2.52)

where k(X,X) is the kernel matrix of input space associated with the dataset D.

We can recover the general case of independent output values by setting the covariance matrix

B to the identity ID or equivalently have the kernel function of the form: kT (d ,d ′) = δd ,d ′ ,

where δd ,d ′ is the Kronecker symbol. The kernel matrix associated with D becomes equivalent

to:

K(X,X) ≡


k(X1, X1)ID (0)

. . .

(0) k(XN , XN )ID

 , (2.53)

which is the same as the kernel matrix from the scalar-valued functions. Intuitively, we can

deduce that the off-diagonal terms of the matrix B encode the dependencies among the output

processes, and ensure the knowledge transfer between the outputs. However, even within this

simple approach, the correlation between the outputs still exists, implicitly because we set the

same hyperparameters for all the outputs, including those of the kernel matrix, from all the

data provided in the training set D.

The key question that needs to be addressed is how one should design the matrix B. As a

reminder, for atomistic modelling problems, we can use kernels based on the atomic rep-

resentations discussed in Section 2.2. The most straightforward approach can be found in

standard geostatistics literature [99], in particular, by adopting the weight-space point of

view. The method consists of evaluating, in a separate inference step, the matrix B from the

covariance matrix of the outputs of the training data yi . Alternatively, we can achieve the same

interpretation of the covariance matrix within an intrinsic regionalisation model (ICM) [103]

point of view, one of the wide-spread formulations for multivariate learning with applications

in geology [104, 105] or environmental studies [106, 107]. Its main idea consists in drawing R

independent realisations ur (X ) of the same process u(X ) following a GP: u(X ) ∼GP (m,k),

and expressing every process fd as a linear combination of the drawn samples as:

fd (X ) =
R∑

r=1
ar

d ur (X ), (2.54)

where the ar
d are the linear expansion coefficients. Here we emphasise that all the independent
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processes ur (X ) are drawn using the same kernel function k. The covariance of the function f

is:

cov(f(X ), f(X ′)) = AA⊺k(X , X ′) ≡ Bk(X , X ′), (2.55)

where A is a matrix holding the linear expansion coefficients with elements [A]r,d = ar
d . And we

obtain the same formulation as the separable kernels in Eq. (2.51). The covariance matrix B has

a rank equal to R because the processes ur (X ) are independent. This formulation highlights

that we can express the outputs fd as a linear expansion of independent and orthogonal

latent functions, the ur . In particular, it is possible to choose a representative set of R < D

latent functions in order to reduce the computational costs of the inference step. Doing so

requires extra inductive bias to the model, which could be regarded as a method to make

the model more data efficient by imposing a certain “structure” on the data. As mentioned

earlier, the most straightforward option is to use the covariance matrix of the outputs yi of

the training set D. The latent functions, in this case, can be chosen to be the eigenvectors of

the D ×D covariance matrix, and then a low-rank approximation can then be employed. For

example, we visit the case of projecting B on a subset of its eigenvectors, which is equivalent to

defining a new coordinate system in which B becomes diagonal. We assume the mean value

of every output is 0; otherwise, it may be necessary to remove them. We write the eigenvalue

decomposition of B as:

B = UΛU⊺, (2.56)

whereΛ is a diagonal matrix holding the (ordered from highest to lowest) eigenvaluesΛk of the

matrix B, and U is the matrix holding the eigenvectors, also known as principal components.

They coincide with the vector form ud of the latent functions ur of Eq. (2.54). At this level,

we can apply a low-rank approximation, which is a projection on the R non-degenerate

principal components. We denote by C the matrix holding the coefficients ci of Eq. (2.48):

C ≡ (c1, . . . ,cN ). We define new expansion coefficients c̃d = (c1 · ud , . . . ,cN · ud ) and write

C =
D∑

d=1
c̃d ⊗ud . Similarly, we re-write the target outputs as Ỹ =

D∑
d=1

ỹd ⊗ud with ỹd = (y1 ·
yd , . . . ,yN ·ud ). These transformations can be simply seen as rotations in the output space.

From these (re)definitions, we can write the linear system to solve for the linear coefficients as:

C = (K(X,X)+λN IN )−1Y =
D∑

d=1
(B⊗k(X,X)+λN IN )−1ỹd ⊗ud

=
D∑

d=1
(Λd k(X,X)+λN IN )−1ỹd ⊗ud .

(2.57)

The (eigen)vectors ud are orthogonal, and this allows us to solve this problem as independent
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R problems:

c̃d = (k(X,X)+ λ

Λd
IN )−1 ỹd

Λd
,d = 1, . . . ,R. (2.58)

Fig. 2.3 summarises the training of the model with this approach using the matrix representa-

tion of the problem. This derivation shows that, within the separable kernels approximation,

one could reduce the dimensionality of the (potentially correlated) outputs by projecting them

on a basis set of orthogonal functions, e.g. the principal components of the outputs of the

training set. The projection coefficients become the targets of our learning scheme. This

means that the problem becomes that of learning independent-by-construction tasks; hence,

we can utilise all the tricks from the scalar-valued GPR framework. The independent basis

functions, on which we project the outputs, hold information about all the outputs, therefore

allowing for an efficient transfer of “knowledge” between them and significantly reducing the

computation cost. In Section 3.1, we encounter the same result of decomposing the outputs

on a basis set of principal components, but from considerations coming from the correlated

nature of the outputs, and not from kernel design considerations as we encountered in this

section.

To wrap up this discussion, it is possible to extend the ICM to cases where the different latent

functions are drawn from distinct kernel functions. This class of models is known as the

linear regionalisation models (LCM) [103, 108], and we write the covariance of f as a linear

combination of coregionalisation matrices Bq and kernel functions kq :

cov(f(X ), f(X ′)) =
Q∑

q=1
Bq kq (X , X ′). (2.59)

The LMC amounts to represent the outputs variables as linear combinations of sets of uncorre-

lated latent variables. This approach has the advantage of making use of several input spaces

and potentially offering a better knowledge transfer between the outputs. In an atomistic

modelling context, one could imagine applying LMC within a multi-scale kernels approach

(as discussed in Section 2.2), where each kernel pair (kq ,Bq ) is built to target a portion of the

outputs.
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Figure 2.3: A matrix representation of the separable kernels approach with a low-rank approxi-
mation as described in Eq. (2.54)

34



3 Learning the electronic density of

states1

The electronic density of states (DOS) is a fundamental quantity in the electronic structure

theory. It describes the distribution of the energy levels that can be occupied by electrons

in a quasiparticle picture. It can be used to calculate the electronic contribution to the heat

capacity in metals, the density of free charge carriers in semiconductors, and is an indirect

proxy for properties such as the energy band gap, the band energy, and also the optical

absorption spectrum. All of these “derived” properties justify the efforts for building surrogate

models to a quantum-mechanically computed DOS.

In this chapter, we present a machine-learning (ML)-based atom-centred model for the

electronic DOS using the geometrical descriptors and the multivariate fitting algorithms

presented in Chapter 2. We also assess the relative performance of models that directly

predict electronic properties, such as the band energy and the optical absorption spectrum,

with those of models that use the DOS as an intermediate quantity. We use as a benchmark

a challenging data set of silicon structures that includes different solid phases, liquid and

amorphous configurations, and gas phase clusters, spanning a wide range of behaviours from

metallic to semiconducting. Finally, we demonstrate the transferability of the model to predict

the DOS of large amorphous configurations, exploiting the local description to link atomic

environments to their contributions to the overall density of energy levels and describe the

electronic transitions in disordered phases of silicon.

1This chapter is an adaptation of my contributions to Refs. [109, 38]. It also includes some unpublished results
and analysis. Sections 3.1 and 3.2 are adapted from Ref. [109]. I contributed to running the reference DFT
calculations, building the ML models, and performing the analysis. Section 3.3 is an adaptation of the contribution
to Ref. [38], where I trained the DOS models, including performing the hybrid-DFT calculations and performed
the analysis leading to the construction of the features/properties maps.
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3.1 Atom-centred model for the DOS

We define the DOS as a sum of Dirac distributions centred around the eigenvalues of the

single-particle Hamiltonian, ϵn(k) describing the energy levels that the electrons can occupy

at each point k of the electronic Brillouin zone (BZ):

DOS(ϵ) = 2

Nk

bands∑
n

∑
k
δ(ϵ−ϵn(k)),

where “2” accounts for the spin degeneracy of the electrons in case of the absence of an

external magnetic field and Nk is the number of k points used to sample the BZ. This def-

inition approximates the integral over the BZ and extends readily to a-periodic systems

by removing the summation over the k points. In order to obtain a continuous distribu-

tion, the Dirac distributions are broadened with a Gaussian broadening gb: δ(ϵ− ϵn(k)) →
(gb

p
2π)−1 exp[−(ϵ−ϵn(k))2/(2g 2

b)]. The choice of gb should reflect the level of the fine struc-

ture of the DOS curve that one wants to keep: a small value of gb would lead to more sharp

peaks and describe more accurately the conductivity/metallicity or the band gap of a structure,

while a large value of gb would lead to a ”featureless” DOS curve and underestimate the band

gap by accumulating more states near the Fermi energy. For ML applications, it is possible

to optimise the value of gb using Bayesian optimisation by maximising a log-likelihood, for

example. The Gaussian broadening is a popular option to construct the continuous DOS

spectrum, but it is not the only option. Other approaches could use Fermi-Dirac broadening

or a combination of polynomials and Lorentzian functions as presented in Refs. [110, 111].

The smooth DOS gives us access to several “derived” quantities. In particular, we will be

interested in these quantities:

• The Fermi energy (εF )

εF :
∫

dϵ DOS(ϵ) fFD(ϵ−εF ,T = 0) = Nval, (3.1)

where fFD(ϵ−εF ,T = 0) is the occupation of the energy level according to Fermi-Dirac

statistics at T = 0, which only describe the occupied states, and Nval is the number of

valence electrons.

• The density of states at the Fermi energy (DOS(εF ))

• The band energy

ϵband =
∫

dϵ DOS(ϵ)ϵ fFD(ϵ−εF ,T = 0).
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Figure 3.1: Schematic representation of the workflow of the ML DOS model. A indicates full
atomic configurations, Ai represents the atomic environments in these structures, the blue
curves are the DOS from DFT calculations and the red dots are the targets of the ML models.

• The distribution of excitations

A(∆) =
∫ ∫

dϵ dϵ′ DOS(ϵ) fFD(ϵ−εF ,T = 0)

DOS(ϵ′) (1− fFD(ϵ−εF ,T = 0))δ(ϵ−ϵ′−∆).

A(∆) mimics the adsorption spectrum, where ∆ corresponds to the absorbed photon’s

energy and we ignore the amplitude of the transition. The shape of A(∆) for small

excitation energies reveals the presence and the magnitude of a band gap.

These quantities demonstrate the usefulness of modelling the DOS, because a single inference

step leads to estimating several important properties of an atomic configuration. We en-

counter in Chapter 4 other use cases for DOS-based surrogate models within a physics-driven

modelling approach of materials.

In the following paragraphs, we introduce the different components of our strategy to predict

the DOS based on a regression model trained on a small number of reference configurations.

Fig. 3.1 is a summary of our strategy and the workflow used to build and evaluate the ML DOS

model.
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We aim to build a model of the DOS for a structure A by decomposing the total DOS into a

sum of local contributions from each of its atomic environments Ai , i.e.,

DOS(A,ϵ) = ∑
i∈A

LDOS(Ai ,ϵ). (3.2)

Implementing such a model requires the definition of a framework to parameterise the shape

of the LDOS, and a framework to represent the structure and the composition of the environ-

ment surrounding each atom. Given these, one can determine the parameters x of the LDOS

model by minimising a loss function of the form:

L 2(A,x) =
∫

dϵ

∣∣∣∣∣DOS(A,ϵ)− ∑
i∈A

LDOSx(Ai ,ϵ)

∣∣∣∣∣
2

. (3.3)

The model can then be used to make predictions for new, possibly more complex, struc-

tures. We model LDOSx(Ai ,ϵ) using the Projected Process (PP) approximation of the Gaussian

Process Regression (GPR) [47], presented in Section 2.3. We use the most diverse M atomic

environments, selected according to a Farthest Point Sampling (FPS) scheme [88] among the

training structures, as the active set that defines the basis on which the target is expanded in

local contributions:

LDOSx(Ai ,ϵ) = ∑
j∈M

x j (ϵ)k(Ai , M j ), (3.4)

where k(Ai , M j ) is a positive-definite kernel basis function that expresses the similarity be-

tween the environment Ai and an environment from the active set M j . We use a polynomial

kernel constructed from the power spectrum of the smooth overlap of atomic positions (SOAP)

representation. Given the additive nature of the DOS model, as introduced in Eq. (3.2), we

define the kernel between entire structures as the sum of the kernels between the atomic

environments that constitute the structures, k(A, A′) = ∑
i∈A,i ′∈A′

k(Ai , A′
i ′). The linear expan-

sion coefficients x j (ϵ) depend on the energy and should be discretised in a way that reflects

the representation of the DOS, which is discussed in the next paragraph. We optimise the

coefficients xM (ϵ) by minimising the following empirical loss function, in the same spirit of

ridge regression models, based on knowledge of the targeted DOS for the training structures:

L 2
λ (xM ) = ∑

A∈train
L 2(A,xM )+λ2x⊺M KM M xM . (3.5)

Here, λ is the regularisation parameter and KM M is the kernel matrix, whose entries are the

kernel functions between the active-set environments. The optimal solution to this problem

is obtained as a function of the kernel matrix of the active set KM M and the kernel matrix of
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the training structures and the active set KN M :

xM (ϵ) = (λ2KM M +KM N K ⊺
M N )−1KM N yN (ϵ), (3.6)

where yN is a vector containing the values of DOS(A,ϵ) for the N training structures. Once we

find the optimal solution for our problem, usually using a k-fold cross-validation scheme, the

DOS of a new structure A∗ can be obtained as a simple dot product:

DOS(A∗,ϵ) = k⊺
A∗M ·xM (ϵ), (3.7)

where kA∗M is the vector that contains the kernels between the structure A∗ and the M active

set environments.

Uncertainty estimation

GPR models have a built-in variance estimator that makes it possible to assess the statistical

uncertainty – and hence the reliability – of the prediction for a specific structure, as discussed

in Section 2.3. For computational efficiency and to simplify the propagation of uncertainty

from the atom-centred decomposition to the full density of states of a structure, we build

instead a committee of NRS GPR models of size n < N , as discussed in Ref. [112]. If the

models are built based on the PP approximation, keeping a fixed active set for all the models,

each model corresponds to a different weight vector x(s)
M (ϵ), and predictions can be obtained

inexpensively as the kernel vector in Eq. (3.7) must be computed only once for each new

structure. The average of the predictions DOS(s)(A∗,ϵ) made by the models in the committee

is taken as the best estimate:

DOSRS(A∗,ϵ) = 1

NRS

∑
s

DOS(s)(A∗,ϵ),

while their variance is taken as a measure of the uncertainty

σ2
RS(A∗,ϵ) = αRS(ϵ)

NRS −1

∑
s

(
DOS(s)(A∗,ϵ)−DOSRS(A∗,ϵ)

)2
. (3.8)

The factor αRS(ϵ) serves to compensate for the correlations that are present between the

training points and between the different resampled models; αRS(ϵ) can be determined by

calibrating the uncertainty estimate with a likelihood maximisation criterion, using a valida-

tion set or an internal reference [112]. We obtain an unbiased estimator [113] for the rescaling
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factor αRS(ϵ):

αRS(ϵ) =− 1

NRS
+ NRS −3

NRS −1

∑
A∈val

∣∣DOS(s)(A,ϵ)−DOSRS(A,ϵ)
∣∣2

σ2(A,ϵ)
, (3.9)

where σ2(A, ϵ) is the variance of the prediction of the DOS(A, ϵ) and can be obtained from

variance of the predictions of the committee of models or from the built-in variance of the

GPR as in Eq. (2.23). Note that it is possible to realise this calibration process by rescaling the

predictions around the mean, i.e.

DOS(s)(A∗,ϵ) ←DOSRS(A∗,ϵ)+√
αRS(ϵ)

[
DOS(s)(A∗,ϵ)−DOSRS(A∗,ϵ)

]
.

(3.10)

We can use this calibrated ensemble of predictions to perform post-processing tasks, such as

the assembly of atom-centred predictions, in a way that automatically incorporates correla-

tions between the predictions of different models.

DOS representation

As discussed earlier in Section 2.4, we have already encountered several strategies to build

kernel functions for multivariate GPR. We concluded that, for some of them, designing a kernel

function is equivalent to projecting the target property on a different basis.

In this paragraph, we explore some approaches to represent the space of the (L)DOS. In order

to build a practical model of the DOS, one needs to represent the (L)DOS as a set of discrete

values, y j (A), that can then be used to construct a multivariate regression model. A pointwise

trivial approach is to discretise the energy axis over a finite range [ϵ0,ϵ0 + (NDOS −1)δϵ], and

take the smooth DOS computed at each energy point as a regression target,

yPW
j (A) = DOS(A,ϵ0 + jδϵ). (3.11)

In the Gaussian process regression model we use, each regression task is independent of

the others, which means that the number of these descriptors can become arbitrarily high

depending on the level of complexity (defined by the Gaussian broadening) and the density

of the considered energy points (linked to the discretisation width δϵ), which results in an

increase in the number of prediction models.

This pointwise representation is not necessarily the most efficient: it potentially requires

training and evaluating hundreds of ML models. It ignores the fact that variations in the

DOS between different structures and different energy levels are correlated, both because

of physical reasons and because of the Gaussian broadening. We should note here that in a
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regression scheme, it is possible to ensure the smoothness of the predicted DOS by utilising

a smooth regularising function of the energy channels λ(ϵ) in Eq. (3.5), in contrast with the

approach of optimising λ(ϵ) for every energy channel ϵ independently.

It is possible to reduce the degrees of freedom of the problem by projecting the DOS on an

orthogonal basis set of latent functions and learning the expansion coefficients, as presented

in Section 2.4.2 when discussing the implications of the separable kernel approach. In order

to capture the correlations between the variations of the DOS at different points, we construct

a data-adapted basis by evaluating the principal components (PC) of the DOS within the

training set. In practice and given that we aim to build a predictor for the LDOS, but we only

have information on the total DOS of a structure, we normalise the DOS of each structure by

the number of electronic states and construct the matrix

ỸA j =
y j (A)

NA
− 1

Ntrain

∑
A′

y j (A′)
NA′

. (3.12)

We then compute the eigendecomposition of the covariance matrix

Y⊺Y = UΛU⊺. (3.13)

The columns of the unitary matrix U that are associated with the largest (non-zero) eigenvalues

Λk describe uncorrelated modes of variation of the (L)DOS. The truncation of the expansion

to a small number of PCs determines the error one makes in approximating the DOS and

corresponds effectively to an additional smoothing of the DOS. Building a model in the PC

representation amounts to computing the projection of the DOS on the basis functions

ỹPC
k (A) =∑

j
y j (A) U j k , (3.14)

training a regression model on each of the ỹPC
k coefficients and then reconstructing the

prediction in terms of the principal vectors,

y j (A) ≈∑
k

ỹPC
k (A) U j k , (3.15)

A third approach to represent the DOS can be derived to address the fact that a loss of the

form Eq. (3.3) cannot discriminate between distributions that differ by the position of peaks

that have negligible overlap – a problem that is frequently encountered when comparing

spectral functions. The Wasserstein distance (also known as earth mover’s distance) is a

metric to compare distributions designed to address this problem, and that can be easily

computed as the norm of the pointwise difference between the inverse cumulative distribution
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functions [114]. Inspired by the Wasserstein metric, we propose to represent the DOS in terms

of the associated cumulative distribution function (CDF), which can be computed as partial

sums over the pointwise representation, which approximates the integral over the energy:

yCDF
k (A) =

k∑
j=0

y j (A). (3.16)

Even though a Euclidean norm that uses this vector is not a precise implementation of the

earth mover’s distance (that is based on the Euclidean distance between inverse CDFs), it is

still sensitive to shifts in peak position. It also preserves the additive construction of the total

DOS based on atom-centred contributions – a physical constraint that would be lost by using

a metric based on the inverse CDF.

3.2 Benchmarks on silicon data set

Data set

We use, as a training and validation data set, a challenging combination of 1039 silicon

structures containing configurations that correspond to elastically and thermally distorted

bulk diamond and β-tin structures, snapshots from molten silicon simulations, amorphous

configurations obtained at different quenching rates, as well as some cluster configurations.

We extract these structures from the training data set used to build an ML interatomic potential

for silicon [26]. Fig. 3.2 demonstrates the heterogeneity of the data set, showing a projection

on the two largest principal components of the average SOAP power spectrum vectors of

the different configurations. The parameters of the SOAP representation are the same as

those used for the regression models discussed below. The map reflects the presence of

several distinct groups of structures that have been obtained with simulations performed at

different temperatures and pressures. In what follows, we randomly selected 800 structures

that we used to train the different models and used the remainder of the data set for testing.

The random selection ensures approximately uniform sampling of the different portions of

the configuration space. Unless otherwise specified in Sections 3.2 and 3.2, test errors are

averaged over 16 random splittings of the overall data set. We compute the single-particle

energy levels for this system by running density functional theory (DFT) calculations using

the FHI-aims all-electrons code [115]. We use the “tight” settings, and the Perdew–Burke-

Ernzerhof (PBE) [17] exchange-correlation functional. We keep a constant k-point spacing

of 0.01Å−1 for the periodic structures. The energy levels are aligned by zeroing the vacuum

level of the Hartree potential for isolated structures, and its constant, G = 0 component for

periodic structures. As discussed below, we compute the density of states by summing over
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Figure 3.2: Clustering of the structures in the silicon data set based on the first 2 kernel
principal components of every configuration. These components hold ≈ 94% of the variance in
features space. The different subsets are well separated in features space, except for a few liquid
structures computed at high pressure, that partly overlap with β-tin phase configurations. We
also plot, on the same axes, the position of carefully-equilibrated, large amorphous silicon
supercells (discussed in Section 3.3) and of one Si(100) slab (discussed in Fig. 3.8), used to
assess the extrapolative capabilities of the model.

the single-particle eigenvalues, using different levels of Gaussian broadening. In appendix A.1,

we discuss a few strategies for the energy reference for the DOS representations and how they

affect the ML model’s performance.

Model hyperparameters and training

As introduced in Section 2.2, the SOAP representation has several hyperparameters that need

to be tuned depending on the training data and the target property. Given that, as discussed

above, we aim to compare the performance of the model with a different representation of the

DOS and different target properties, one would need to perform hundreds of separate optimi-

sation procedures for these hyperparameters. Instead, we performed a single optimisation

using the cohesive energy as the target property; this avoids biasing explicitly our comparison

towards one of the DOS learning protocols and is representative of a scenario in which one

wants to re-use the features that underlie an ML interatomic potential to estimate additional

electronic-structure properties.

We use the metric induced by a preliminary set of SOAP features to select, by farthest point

sampling (FPS) [88], 3000 environments out of ≈22000 training environments to use as an

active set for the PP approximation. As shown in Fig. 3.3, increasing the active set size further

leads to a negligible prediction error reduction when using the PW representation of the DOS
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Figure 3.3: Evolution of the errors in the pointwise DOS prediction as a function of the active
set size. The reference DOS is constructed using gb = 0.3eV.

and a Gaussian broadening of gb = 0.3eV of the target DOS. In particular, we notice that the

reduction of prediction errors between an active set of size 3000 and an active set of size 10000

is smaller than 0.1%. A discussion of the effect of gb on the performance of the ML models will

follow in this Section and is summarised in Fig. 3.9. We then select the best hyperparameters

using a 5-fold cross-validation regression scheme and a grid search, using a single random or-

dering of the full data set. We obtain the smallest prediction errors for the cohesive energy for

the following set of parameters in the notations of librascal [116] for the SOAP representation:

interaction_cutoff =6Å, max_radial=12, max_angular=9, and gaussian_sigma_constant=0.45,

and for the radial scaling: rate=1Å, exponent=5, and scale=3.0Å. This choice of parameters

leads only to a marginal degradation of performance in comparison to a model that has been

specifically optimised to reproduce the PW representation of the DOS, as shown in Fig. 3.4).

For consistency, given that the change of hyperparameters modifies the kernel, and the kernel-

induced distance, we then re-select 3000 active environments using these optimal values. It

should be noted, however, that selecting new active points leads to negligible improvement in

the accuracy of the model.

We build eight models using the same active set but different 50% subsampling of the 800 train

structures. We report the mean of the model as our best prediction (which has an accuracy

comparable to that of a single model trained on the full 800 structures), and rescale the

spread of the models around the mean, as discussed in Section 3.1, to obtain an ensemble of

predictions based on which we can easily propagate our uncertainty quantification. In order

to investigate the impact of the representation of the DOS on the performance of the model,

we consider three values of the Gaussian broadening gb: 0.1eV, 0.3eV and 0.5eV. We discretise
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Figure 3.4: Comparison between the average errors in the DOS prediction over 8 train/test
split using the hyperparameters optimized for the DOS prediction and the hyperparameters
optimized for the binding energy prediction. The error bars represent the standard error of
the mean. The Gaussian broadening of the reference DOS is gb = 0.3eV.
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Figure 3.5: (Left) Distribution of the first 200 eigenvalues of the covariance matrix of the DOS
at a gb = 0.3 eV. The 3 small panels on the right represent the shape of the average DOS in the
data set, the 1st principal component and the 16th principal component. (Right) The reference
DOS curve of a silicon diamond structure at 0.3eV broadening and its reconstruction from
the first 80 PCs. The lower panel shows the errors at every energy level. The total error for this
structure is ≈ 5.11×10−3 eV−1/atom.
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Figure 3.6: Evolution of the systematic errors in the Fermi energy εF due to the truncation
of the DOS (in blue) and the ML errors of εF predicted from truncated DOS (in orange). The
prediction error saturates starting from 38 PCs used to build the DOS. The reference DOS is
built using gb = 0.1eV.

the DOS on a grid where the points are spaced by δϵ= 0.05eV, which ensures that we are able

to sample the fine structure of DOS(ϵ) when using a gb = 0.1eV Gaussian broadening. We use

this representation as the pointwise representation from Eq. (3.11). We use the same grid to

compute the cumulative integral of the DOS and obtain the CDF representation of Eq. (3.16).

We recover the DOS from the CDF representation by taking the derivative of the CDF with

respect to the energy axis. In practice, we use a central derivative approach to determine

DOS(ϵ):

DOS(ϵ) = CDF(ϵ+δϵ)−CDF(ϵ−δϵ)

2δϵ
, (3.17)

where δϵ is the energy discretisation step.

For the PC representation, Eq. (3.14), we select the principal eigenvectors of the covariance

matrix computed for the 800 training structures. The left panel in Fig. 3.5 demonstrates

the rapid decay of the eigenvalues of the covariance for gb = 0.3eV, and the shape of the

average DOS of the data set, the 1st and the 16th eigenvectors. One notices that the principal

components corresponding to the high eigenvalues contribute to the general structure of

the DOS curve, while the ones corresponding to lower eigenvalues describe its fine structure.

We choose the number of PCs to retain 99.999% of the variance, which corresponds to 200,

80 and 35 PCs for gb = 0.1,0.3,0.5eV, respectively. Even though the error resulting from this

approximation is visually very small, as shown in the right panel of Fig. 3.5, it leads to non-

negligible errors when using the DOS to compute the Fermi energy, as shown in Fig. 3.6.

46



Learning the electronic density of states Chapter 3

Benchmarking the models

Having discussed the details of the ML DOS model, we now turn to assess its performance

on the database of silicon structures. We begin by comparing the accuracy as a function of

the broadening of the density of states, and its representation, and proceed to determine how

the error in the prediction of DOS(ϵ) translates to the error in quantities that can be obtained

from it, such as the band energy or the Fermi level.

To facilitate the comparison of the model performance between different properties and

scenarios, we normalise the root mean squares error (RMSE) by the standard deviation of the

target property, expressed as a percentage. This is particularly important because reducing the

Gaussian broadening substantially increases the complexity of the DOS, measured in terms of

the variance over the full data set (c.f. Table3.1). For scalar properties, the expression reads:

RMSEscalar = 100∗
√

1
N

∑
i (y i

pred − y i )2√
1
N

∑
i (y i − ȳ)2

(3.18)

This expression is easily extended to cover the properties that have an energy dependence

(such as the DOS and the distribution of excitations), that require the simultaneous regression

of multiple coefficients, by comparing the L2 distance to the deviation from the average vector

representing the target property of the training set:

RMSEvec = 100∗
√

1
N

∑
i
∫

(yi
pred −yi )2√

1
N

∑
i
∫

(yi − ȳ)2
, (3.19)

where ȳ is the vector containing the average of each coefficient in the yi . We will use either of

the definitions as appropriate and indicate the error simply as %RMSE.

Comparison of the DOS representations

We begin by showing, for the pointwise representation of the DOS and gb = 0.3eV, a plot of

the model DOS(ϵ) for the diamond and liquid structures with the lowest, median and highest

predicted uncertainty (Figure 3.7). The figure demonstrates that a single model is capable

of predicting the behaviour of Si across the semiconductor-to-metal transition and that the

uncertainty quantification correctly identifies the most problematic test structures. As an

example of the stability of the model when performing extrapolative predictions, we estimate

the DOS of a 96-atom Si(100) slab, with one surface truncated to the bulk geometry, and the

other reconstructed with a c4×2 geometry (Fig. 3.8, geometry from Ref. [117]), using the
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Figure 3.7: Representative examples of DOS predictions for the silicon data set. The four
panels represent one of the subsets in the data set: diamond, liquid, β-tin structures and
clusters. Every panel shows three cases corresponding to the best, median and worst predicted
uncertainty in the test set, compared to the reference DFT DOS (left to right). The reference
DOS is constructed using gb = 0.3eV. The shaded areas indicate the uncertainty estimates of
the ML model at every energy level based on a committee of 8 GPR models. The lower section
of each plot depicts the residuals, colour-coded in the same way as the plot of the prediction.
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Figure 3.8: Comparison of DFT and ML DOS of 96-atom slab model of the Si(100)− c4×2
surface reconstruction. The reference DOS is constructed using gb = 0.3eV. The ML model
uses the pointwise representation of the DOS. The shaded area represents the uncertainty of
the ML model at each energy level.

broadening (eV) 0.1 0.3 0.5
DOS (states/atom) 0.435 0.335 0.297
ϵF (eV) 0.849 0.834 0.814
DOS(ϵF ) (eV−1/atom) 0.064 0.072 0.082
ϵband (eV) 2.483 2.477 2.474
A(∆) 0.267 0.272 0.278

Table 3.1: Standard deviation of the density of states curve, the Fermi energy, the DOS value at
the Fermi energy, the band energy and the excitation distribution over the entire silicon data
set.

pointwise representation and a target Gaussian broadening of gb = 0.3eV. As shown in Fig. 3.2,

this structure is isolated in phase space, which results in both the predicted uncertainty and

the actual error being large, comparable to the worse-case scenarios in Fig. 3.7. Even in this

challenging example, however, the qualitative features of the DOS are correctly reproduced,

and the large uncertainty could be used in an active learning setting to signal the need to refine

the training set. This prediction could be useful to investigate, visually, the main features of

the DOS of this 2D structure, but it may not be sufficient to extract derived quantities from

the DOS like the DOS(εF ) or the band energy because of the high predicted uncertainty. This

result shows the extrapolative capabilities of the ML DOS model trained on 3D structures to

2D structures. Also, it highlights the need to tune the ML models with respect to the phase

space region of interest. We investigate this aspect further in Section 3.3.

In order to assess more quantitatively the accuracy of the model for different values of broad-

ening gb and different representations of the DOS, we then compute the %RMSE of predictions

(Eq. (3.19)) using the full training set of 800 structures, shown in Fig. 3.9. To account for the

dependency of the accuracy on the test/train split, we repeat the regression and testing on 16

random splits and report the mean and standard error of the mean over the different splits.
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Figure 3.9: Average errors in the DOS over 16 train/test splits in the Si data set using 3 different
representations of the DOS curves: the pointwise approach, the decomposition on a basis set of
principal components, and the DOS derived from the learnt CDF, and for 3 different Gaussian
broadening values: 0.5eV, 0.3.eV and 0.1eV. Different representations lead to comparable
errors, that grow systematically with decreasing gb. The error bars represent the standard
error of the mean. Errors for the PC decomposition due to the truncation of the PC basis are
negligible.

Even though we have renormalised the error on the intrinsic variance of the data, which

is larger for the smaller values of the Gaussian broadening (c.f. Tab. 3.1), the error in the

predicted DOS is clearly much larger for the finer gb. The errors jump from roughly 8% for

the 0.5eV broadening and 11% for the 0.3eV broadening to 22% for the 0.1eV broadening. The

representation of the DOS has a small impact on the accuracy of the model, with the CDF

showing a slight but systematic advantage over the pointwise and the PC representations. The

projection errors for the latter representation (i.e. the PC representation) are too small to affect

the errors of the DOS predictions, unlike what we will encounter later when we discuss the

derived quantities in Section 3.2.

We also investigate the relevance of the error estimation method we utilise in this work.

In Figure 3.10, we report the parity plots between the integrated uncertainty based on 8

committee models and the RMSE of the pointwise DOS for different values of broadening

gb = 0.5eV, 0.3eV and 0.1eV. We define the integrated uncertainty of a DOS curve of a structure

A as follows:

σ(A) =
√∫

σ2
RS(A,ϵ)dϵ,

where σ2
RS(ϵ) is the uncertainty of DOS(A,ϵ). We notice that, on average, the uncertainty

increases when we decrease gb. We also notice that higher uncertainty correlates well with

higher prediction error of the pointwise DOS.
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Figure 3.10: Parity plot in log-log scale of the integrated uncertainty vs the integrated RMSE of
the pointwise ML DOS of single structures in the data set. The reference DOS are constructed
using gb = 0.5eV, 0.3eV and 0.1eV, respectively. The dashed black line represents the parity line
y = x.

In order to understand the limitations of our data set and to validate the training set size we use

in this work, we examine the learning curves (LC) for the different representations of the DOS,

as shown in the left panel of Fig. 3.11 for the most challenging case of gb = 0.1 eV. For training

sizes less than ≈ 100 structures, we notice that all the LCs are decreasing algebraically, and for

larger sizes, the rate decreases, and we can see that the LCs start to saturate, which indicates

that adding more data to train the ML models does not result in a significant improvement of

the models’ performance. Despite small differences at the smaller train set sizes, the three

representations show similar convergence behaviour. The same observation holds even when

looking at the LCs of the pointwise representation, in the central panel of Fig. 3.11 for different

Gaussian broadening values gb = 0.5, 0.3, and 0.1eV. However, the LC associated with the

largest broadening of gb = 0.5eV seems to saturate for a larger train set size compared to the

smaller broadening values. The PC representation can provide some insight into the origin

of the plateau. The right panel of Fig. 3.11 shows the LCs of the first, third and sixteenth

projections of the DOS on the PC basis, with the fractional error referring to the variance

of each component. The first two elements are well-learnt: errors are around 10% for 100

structures in the training set, and the corresponding LCs saturate at low validation errors,

2% and 8%, respectively. In contrast with the first few principal components, the learning is

slower and more difficult for lower-variance components. The error is below 60% for the 16th

component only for the full training data set. In general, we observe that the convergence

of these individual errors gets slower as we consider higher PCs of the DOS. As shown in

Fig. 3.5, these smaller-variance PCs are associated with high-frequency, “noisy” modes that are

necessary to describe the fine structure of the DOS. For many applications, a large Gaussian

broadening does not hinder using the density of states – and indeed, previous attempts at
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Figure 3.11: Learning curves for (Left) the 3 different representations of the DOS curve where
the reference DOS is computed with gb = 0.1 eV, (Centre) for the pointwise representation the
reference DOS is computed with gb = 0.5, 0.3, and 0.1eV, and (Right) the projection on the
1st, 3rd and 16th PC as a function of the training structures. All the errors are normalised with
respect to the standard deviation of the training set.

using ML to predict the DOS used large broadening values (e.g. 0.2 eV in Ref. [52]). Whenever

a higher resolution is needed (e.g. to identify the position of individual defect states or to

determine precisely the band gap), a higher density of data, possibly in combination with

more complex models, is needed. In Section 3.3, we show that - when focusing on a more

restricted set of configurations - it is possible to achieve quantitative accuracy with a fine DOS

broadening by a relatively minor tuning and an extension of the training set.

Learning from the DOS

Besides its intrinsic interest as a description of the single-particle energy levels in a condensed-

phase system, the DOS(ϵ) can be used as the starting point to derive other quantities that

relate to experimental observables. We consider four quantities: the Fermi energy (εF ), the

density of states at the Fermi energy (DOS(εF )), the band energy (ϵband), and the distribution of

excitations (A(∆)) because they are easily extracted from a smooth DOS curve. The definition

of these quantities was given at the beginning of Section 3.1. For each of these properties,

we build an ML model using the same kernel parameters and train set, minimising a loss

function analogous to Eq. (3.3). We compare these direct predictions to indirect models built

by first predicting DOS(ϵ) and then using it to compute εF , DOS(εF ), ϵband, A(∆). Whenever

an expression depends on εF , we use the value computed consistently from the predicted

DOS. We build different models with various values of gb and representation of the DOS, as

discussed in the previous paragraph.

The average prediction errors for the four properties and for the different models are illustrated
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Figure 3.12: Average errors in the derived quantities over 16 train/test splits in the Si data
set using three different representations of the DOS curves: the pointwise approach, the
decomposition on a basis set of principal components and derived from the learnt CDF, and
for three different gb values: 0.5 eV, 0.3 eV and 0.1 eV. The error bars represent the standard
error of the mean, and hatched areas represent the average systematic errors due to the
projection on the basis of PCs. The test errors grow systematically when we decrease the value
of gb.

in Fig. 3.12. Similar to what we observe for the DOS learning, the prediction errors increase

as we decrease the value of gb, including the direct method. The truncation errors in the PC

decomposition representation contribute significantly to the overall errors.

Let us focus on each individual quantity, starting with the Fermi energy, whose accurate

determination is particularly important, as it enters the definition of the other three quantities.

The prediction errors for the direct models are low, between 3.5% and 4.5%. They increase,

although less dramatically than in the case of the DOS, for decreasing values of the Gaussian

broadening gb. Errors for the indirect predictions are comparable at gb = 0.3 eV and gb =
0.5 eV, except for the PC decomposition, for which the errors are almost twice as large. The

truncation of the DOS contributes to the larger error. As shown in Fig. 3.6, a large number

of PC components is necessary to obtain an accurate estimate for εF . In combination with

difficulty in learning the fine-grained components, this explains the poor performance of

the PC approach. Similarly to what was observed for the DOS modes, the error increases

substantially for the smallest broadening value, and the direct prediction outperforms, by

nearly a factor of 2, all the indirect predictions.

The prediction errors of the DOS(εF ) of the direct model follow the same trend as the DOS,

where they grow from 9.5% for gb = 0.5eV to 23% for gb = 0.1eV. In contrast to the case of

the Fermi energy, here the errors of the indirect models are significantly lower for gb = 0.5eV

(≈ 5% error) and gb = 0.3eV (≈ 7% error) and comparable between the three approaches, with

a minor advantage for the CDF scheme. For gb = 0.1eV, errors increase substantially, but
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the indirect models still outperform a direct prediction, except for the PC decomposition,

where the errors are close to 29%. The DOS truncation error contributes partly to the poor

performance of the PC scheme, similar to what was observed for the Fermi energy – whose

internally-consistent prediction is used as the point at which the DOS is computed.

The prediction errors of the direct model of the band energy are low compared to the intrinsic

variability, below 1% and largely independent of the value of gb. The fact that the error in the

predicted band energy is largely independent of the broadening suggests that the averaging

procedure that is associated with the evaluation of ϵband reduces the sensitivity to the fine

details of the DOS and that the large error that is observed on the prediction of DOS(ϵ) for

gb = 0.1eV is not reflected in coarser-grained features of the distribution of energy levels.

The prediction errors of the indirect models are slightly lower than those of the direct model,

once again with the exception of the PC decomposition, where the errors jump to 2% for

gb = 0.5eV to 3% for gb = 0.1eV. Even though the use of PCs does help improve the accuracy of

the predicted DOS marginally, this is clearly not reflected in the accuracy of derived quantities,

because of the presence of high-frequency components in the DOS that contribute to the

value of εF , ϵband and DOS(εF ) and are either discarded or very difficult to learn. Finally, the

direct prediction errors of A(∆) are usually low (between 2% and 4.5%), with errors that grow

gently as gb is reduced. The errors of the indirect models are systematically lower than the

direct model, with the CDF model consistently showing the best performance.

Overall, these examples show that using a model of the DOS as an intermediate step in the

calculation of electronic-structure properties can outperform, marginally or substantially, a

direct prediction. The improvement is most noticeable when learning properties such as the

excitation density A(∆) or the DOS at the Fermi level that clearly depend in a non-trivial way

on non-locality – i.e. the presence of a localised defect can change in a non-additive manner

the value of the property for the entire system. Another advantage of an indirect model is

that, based on a single prediction, one can compute a multitude of physical observables – in

addition to those we mention here, the electronic contributions to a material’s heat capacity

or Gibbs free energy, the band gap, etc. – and that these predictions are consistent with each

other, rather than affected by independent model errors. Contrary to what we observed when

building a model of DOS(ϵ), the strategy used to represent the target function has an important

effect on the accuracy of the indirect predictions. In particular, learning the separate principal

components in the data set leads consistently to degraded performance, in part because

of the error incurred by truncating the PC expansion, but also in part because higher-order

components have very poor learning rates, at least when using a single set of features for all the

components. The CDF-based model is consistently the best of the indirect models, suggesting

that a Wasserstein-type metric is the most relevant way to assess the quality of a predicted DOS.

54



Learning the electronic density of states Chapter 3

variability/eV−1/2 RMSE/eV−1/2√
1
N

∑
i
∫

(yi − ȳ)2
√

1
N

∑
i
∫

(yi
pred −yi )2

gb/eV 0.5 0.3 0.1 0.5 0.3 0.1 ntest

diamond 0.118 0.149 0.22 0.02 0.036 0.103 79
β-tin 0.092 0.105 0.13 0.017 0.025 0.057 61
liquid 0.122 0.139 0.163 0.021 0.032 0.074 16
clusters 0.095 0.181 0.418 0.010 0.020 0.087 60
amorphous 0.02 0.029 0.063 0.018 0.028 0.07 23
TOTAL 0.254 0.295 0.393 0.017 0.029 0.084 239

Table 3.2: Overview of the test set intrinsic variability and RMSE for the pointwise prediction
of the DOS, for one of the 16 random train/test splits and for different values of gb = 0.5eV,
0.3eV and 0.1eV.

It is worth noting that the three approaches are simple linear transformations of the same

data, which is, in a multivariate kernel regression framework, equivalent to the choice of a non-

diagonal regularisation of the regression weights that couples different target properties. One

could envisage explicitly optimising the regularisation to improve the accuracy in the desired

derived quantities, by choosing the regularisation value that reduces the (cross-)validation

error on the derived quantity of interest instead of minimising the validation error of the DOS.

3.3 Electronic fingerprints in amorphous silicon

We use carefully-equilibrated large-scale configurations of amorphous silicon [118] to demon-

strate two advantageous features of a local machine-learning model, such as the one we use

here. On the one hand, it allows predicting properties of large structures with a cost that scales

linearly with system size; on the other, it provides a data-driven decomposition of the DOS in

local contributions that can be used to analyse structure-property relationships.

Large-scale evaluation of the DOS

We consider a series of larger amorphous silicon structures, with a size ranging between 216

and 4096 atoms, that were obtained by slowly annealing a molten Si configuration using

an ML interatomic potential, following the protocol described in Ref. [118]. For all but the

largest size, we compute DFT reference values following the same scheme we used for the

train set. As can be seen in Fig. 3.2, the larger size and careful equilibration lead to structures

that are quite different from the 64-atom amorphous silicon, but very similar to each other,

concentrated in a narrow region close to that occupied by liquid configurations. As shown

in Fig. 3.13, the general-purpose model we benchmark in Section 3.2 achieves an accuracy
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Figure 3.13: Comparison of DFT and ML electronic DOS of (a) a 216-atom structure where the
ML DOS is based on the general-purpose ML model discussed in Section 3.2, (b) a 216-atom
structure where the ML DOS is based on an ML model that has been further tuned for this
class of structures (c) an average of ten 216-atom structures with the tuned ML model (d) a
4096-atom structure with the tuned ML model. For all panels, the reference DOS is constructed
using gb = 0.1eV, and ML models use the CDF representation. The shaded area indicates the
uncertainty in the ML prediction.
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comparable to that observed for liquid configurations – exhibiting clearly the qualitative

features of the reference DOS. However, as noted earlier, a more finely-tuned training set is

needed to achieve quantitative prediction accuracy with a high-resolution, gb = 0.1eV DOS

reference. To demonstrate that this fine-tuning can be easily achieved when focusing on a

targeted application, we modify the training set by eliminating the cluster configurations that

occupy a completely disconnected portion of phase space, exhibit very large variance, and are

built using a different band alignment reference with respect to bulk structures (see Fig. 3.2

and Tab. 3.2). We also add 10 amorphous structures of 128 atoms each, generated by the

same potential as the other large structures, to ensure that the train set contains disordered

configurations that are more representative of the large, slowly quenched configurations. We

represent the DOS using the CDF approach and with a Gaussian broadening gb = 0.1eV. We

also use the same SOAP parameters we adopted for the benchmarking of the ML DOS models

from Section 3.2.

When computing the properties of materials in realistic thermodynamic conditions, it is neces-

sary to average over multiple configurations, to compute a mean value that is consistent with a

(quasi)-equilibrium probability distribution. We observe that this ensemble average smooths

the DOS, and that, as a result, the agreement between ML predictions and DFT reference val-

ues improves substantially (Fig. 3.13). The features of the DOS are well reproduced, including

the presence of a small peak around the Fermi energy (i.e near ≈−5.7eV). The cost of an ML

prediction of the DOS is several orders of magnitude smaller than that of a DFT calculation,

even for the smaller system sizes. Furthermore, the cost of a multivariate GPR prediction

scales linearly with system size as opposed to the cubic scaling of DFT. We report in Fig. 3.14

the representative timings for calculating the DOS of amorphous silicon samples of increasing

size. The ML model allows computing inexpensively the DOS of the largest structure of 4096

atoms (bottom right panel of Fig. 3.13), for which an explicit DFT calculation would require

the application of a linear-scaling approach at still substantial cost, as a cubic-scaling DFT

simulation using the same setup we applied to smaller structures would require more the 1

million CPU hours and 20 TB of RAM. The DOS predicted for this structure is consistent with

the average DOS of the smaller structures – which indicates that this larger sample contains

motifs that are found, with similar probability, in smaller simulations.

Interpreting the local machine-learning DOS

Having shown that the ML model accurately reproduces the total DOS of the sample, we

assess whether the local contributions can be given a meaningful interpretation. The atom-

centred decomposition of the DOS that underlies our model can yield LDOS contributions
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Figure 3.14: CPU time needed to produce the DOS for amorphous silicon structures of different
sizes ranging from 64 atoms to 512 atoms when performing a DFT calculation and from 64
atoms to 4096 atoms when using the tuned ML model from Section V.A. In the latter case, the
time of the SOAP representation is included. The dashed line near the blue curve represents
the linear scaling with the number of atoms in the structure. The dashed line near the orange
curve represents the cubic scaling with the number of atoms in the structure.

that are negative over some energy ranges. These negative contributions, which might appear

unphysical, are a consequence of the fact that each atom-centred term reflects information

from all of the atoms within the cutoff distance, so that atoms with large positive and negative

LDOS(εF ) combine to yield the observed total DOS, which is the only physical observable

given as target. As discussed in Refs. [119, 120], in the absence of an explicit, physics-based

local learning target, atomic ML predictions reflect the interplay between structures and

properties mediated by the choice of representation. This is particularly relevant in light of the

recent observation that 3-body correlation features are incomplete [74], and that learning

of global properties relies on neighbouring atoms to disambiguate pairs of environments

that have different structures but the same features (and hence the same ML-predicted local

properties).

To investigate how the ML predictions of the LDOS can be used to analyse the structural motifs

found in the 4096-atom amorphous silicon structure, we use the recently-developed kernel

principal covariates regression technique (KPCovR) [39] to obtain a visually-interpretable

description of the structure-property relations. KPCovR finds a low-dimensional projection of

the kernel-induced features that correlate linearly with a set of target properties – in this case,

the energy-resolved LDOS. It can be seen as a modified kernel principal-component analysis
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Figure 3.15: KPCovR map [39] of the Si environments in the 4096-atom amorphous configu-
ration, built based on a combination of SOAP kernels and LDOS predictions, with a mixing
parameter α= 0.05. Points are coloured according to (a) the RMSE of the LDOS and (b) the
local charge computed based on the LDOS. Snapshots of selected environments are also
shown, with highly-distorted Si-Si-Si angles highlighted in dark red. (c) Comparison between
the LDOS of selected configurations compared to the DOS of bulk Si. From top to bottom, the
panels correspond to P, N, and O type environments (respectively, the 10 environments with
the lowest, highest and median local charge).
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Figure 3.16: Pair correlation functions between Si atoms, resolved according to the classifica-
tion between N (negatively-charged, Q <−0.05), P (positively charged, Q > 0.05), O (neutral,
−0.05 ≤Q ≤ 0.05) atoms, introduced in the text.

in which one uses a modified kernel with a scaling parameter α combining the structural

information encoded in K with the target properties (more precisely, their best GP estimate) Ŷ:

K̃ =αK+ (1−α)ŶŶ⊺ (3.20)

As shown in Fig. 3.15a, KPCovR constructs a purely structure-based latent space that correlates

well with the ML LDOS, and identifies environments that have a DOS similar to bulk silicon,

and defective environments with substantially different (local) electronic properties. We can

further analyse the link between geometric and electronic structure by computing a “local
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charge” indicator, defined as

Q(Ai ) = Nval −
∫

dϵ LDOS(Ai ,ϵ) fF D (ϵ−εF )|T=0, (3.21)

where Nval is the number of valence electrons. This local charge correlates strongly with the

KPCovR map (see Fig. 3.15b). Type N environments (to the left of the plot) are negatively

charged, type P environments (to the right of the plot) have a net positive local charge, and

type O environments (in the middle, having a DOS most similar to bulk Si structures) are

approximately neutral. By visualising the environments with the interactive structure analyser

Chemiscope [121] (input available in the Supplemental Material of Ref. [109]), we can recognise

the structural features associated with the principal axes of the KPCovR latent space. Type N

environments have a distorted structure, with tetrahedral angles that approach 180 degrees.

Type P environments have a relatively regular distribution of nearest neighbours, but their

neighbours have a highly distorted configuration, similar to that observed for environments

at the right end of the map. Environments at the centre of the plot (type O) have both the

central atom and its neighbours in a regular tetrahedral structure, and often with the same

relative orientation, as one would find in crystalline Si structures. Looking more closely at

the LDOS associated with these structures (Fig. 3.15c), one sees that, as anticipated above,

the atom-centred ML predictions exhibit strongly unphysical features, with large negative

values of the LDOS being associated with P environments. The fact that physical values of

the total DOS can arise by combining unphysical predictions is also apparent in the fact that

the positions of N and P environments are strongly correlated. As shown in Fig. 3.16, N and P

atoms are less often found as first neighbours of an environment of the same type, while N–P

pairs are encountered more often than one would expect from a random distribution. One

possibility to recover a more physically-interpretable prediction is to compute local averages

of the ML LDOS. In other terms, since each atom appears in multiple environments, it should

get a share of the prediction for each of the environments it contributes to. This suggests the

following expression for a locally-averaged DOS (LADOS) leveraging the radial scaling function

u(r ) from Eq. (2.13) of the SOAP representation:

LADOS(Ai ,ϵ) = ∑
j∈A

fcut(ri j )u(ri j )LDOS(ϵ, A j )∑
k∈A

fcut(r j k )u(r j k )
, (3.22)

in which we use a weighting of the contributions that corresponds to that used to construct

the local density features. This formulation also ensures that the same prediction for the

global DOS of the structure can be obtained by summing over the LADOS values, as well as

over the raw LDOS (i.e. pre local averaging). As shown in Fig. 3.17, local averaging reduces

the variability in the atom-centred predictions and leads to largely positive-(semi)-definite
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Figure 3.17: (left) KPCovR map [39] of the Si environments in the 4096-atom amorphous
configuration, built based on a combination of SOAP kernels and LADOS predictions, with a
mixing parameter α= 0.05. Points are coloured according to (a) the RMSE of the LADOS and
(b) the local charge computed based on the LADOS. Snapshots of selected environments are
also shown, with 5-rings highlighted in blue, and 7-rings highlighted in red. (c) Comparison
between the LDOS of selected configurations compared to the DOS of bulk Si. From top
to bottom, the panels correspond to P, N and O type environments (respectively, the 10
environments with the lowest, highest and median local charge).

values of the local density of states – which is consistent with the fact that averages over large

portions of a structure tend to a well-defined total DOS. The principal axis of the KPCovR map

is still largely correlated to a local charge value Q(Ai ) computed based on the LADOS, but

the structural features that are associated with the local charge are less apparent and more

delocalised than those we found for the ML LDOS. We observe that structures with a large

positive local charge tend to be associated with rings of 7 Si atoms, while structures with a

large negative charge tend to be close to many 5-membered rings. Furthermore, the LDOS

and LADOS-based values of Q(Ai ) correlate poorly with each other and with commonly-used

structural descriptors, such as the tetrahedrality index [122, 123] (for an interactive view, see

the Chemiscope input in the Supplemental Material of Ref. [109]), and do not show strong

signals for the over- and under-coordinated structures that are found to exhibit a localised

band gap state in physics-based local DOS calculations [124].

Another direction to interpret the L(A)DOS-based values of Q(Ai ) is to compare them to

physics-based atomic charges. We were provided with the atom-projected DOS as calculated

by the Local Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER) [125]

software of a 512-atom amorphous silicon structure. These atom-projected DOS can be

interpreted as the LDOS within our atom-centred approach to model the DOS (Eq. (3.2)).

We compare these LDOS to the ones obtained by our ML approach. In Fig. 3.18, we show

examples of the LDOS defined by the LOBSTER analysis and our ML approach for three atomic

environments. We notice that our ML LDOS is able to recreate the physical LDOS in the lower-
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Figure 3.18: Examples of ML LDOS predictions compared to their LOBSTER counterpart
for three environments in a 512-atom amorphous silicon structure. The Fermi energy εF is
set as the energy zero. The reference ML DOS is constructed using gb = 0.1eV. The reference
LOBSTER LDOS is constructed using gb = 0.05eV.

energy regions but usually fails to describe the behaviour near the global Fermi energy of the

structure. In particular, our ML LDOS model cannot predict the localised highly occupied

state in the band gap. This can be explained by the fact that the ML model is only trained on

the global DOS, which does not present these trends. In our tests, the ML LADOS suffers from

the same issues as the ML LDOS. We can use the LDOS of LOBSTER to define local-atomic-

based charges Q(Ai ), and we call them the LOBSTER charges. We compare these values of the

LOBSTER charges to the values of LADOS-based values of Q(Ai ) computed from three cutoff

radii: 0.0Å corresponding to no local averaging, 3.0Å corresponding to averaging over the first

neighbours as described by the pair distribution function, and 6.0Å corresponding to the SOAP

representation cutoff and to what we used for Fig. 3.17. We report the result of this comparison

in Fig. 3.19. In particular, the “best” match between the two sets of locally defined charges

occurs for an average over the first shell of neighbours. However, the local charge predictions

for the under-coordinated (3-fold) and over-coordinated (5-fold) atoms are not in agreement

with their reference values from the LOBSTER analysis. This behaviour can be explained by the

fact the locally averaged ML LDOS are not able to recreate the localised state at the band gap, a

characteristic of these environments according to the LOBSTER analysis, because the ML DOS

model is not explicitly trained to reproduce these electronic features. Further investigation of

the effect of the DOS representation on the local atomic charges, without local averaging, can

be found in Appendix A.3.

An analysis of the atom-centred ML DOS, in combination with a hybrid supervised/unsuper-

vised learning method such as KPCovR, facilitates the identification of the impact of structural
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Figure 3.19: Parity plots of the atomic charge as computed from a LOBSTER [125] analysis
of a 512-atom amorphous silicon structure and the locally averaged charge with different
averaging cutoffs in Eq. (3.22) where the cutoff radius is (Left) 0.0Å corresponding to no local
averaging, (Centre) 3.0Å corresponding to averaging over the first neighbours as described by
the radial distribution function, and (Right) 6.0Å. The red and black dots correspond to the
under-coordinated and over-coordinated atoms within the structure, respectively.

heterogeneity on the electronic structure of disordered materials, but one should not over-

interpret an analysis that is also influenced by the details of the ML representation and the

regression scheme.

3.4 Application: Origins of electronic transitions in disordered sili-

con

The study of disordered phases of materials is challenging for computer simulations at a

quantum mechanical level because it requires access to large system sizes and long simulation

times. ML interatomic potentials are a powerful tool to address these challenges because of

their transferability, as one could train a model on small configurations and let the model

generalise the mapping to much larger systems. In particular, we collaborated with a group of

researchers on a study of the structural and electronic transitions while compressing a large

box of 100,000 atoms of amorphous silicon with ML models, and it resulted in Ref. [38].

The main focus of this publication is to describe the mechanisms of structural transitions

of amorphous silicon under high pressure. Diamond anvil cell experiments have indicated

an amorphous–amorphous transition upon compressing amorphous silicon to several gi-

gapascals, evidenced by the sudden disappearance of high-frequency Raman fingerprints

and by a concomitant sharp increase of the electrical conductivity (a semiconductor–metal
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Figure 3.20: Amorphous silicon at high and very-high pressure. Colour coding indicates
coordination numbers, N (spatial cut-off = 2.85Å) (a-e) Structural snapshots during isothermal
compression at 500K using the GAP model, showing the coexistence of LDA-like (N = 4) and
HDA-like (N > 4) regions up to 11GPa, the collapse into a transient VHDA phase (N ≫ 4) at
12-13 GPa, and finally the formation of sh crystallites.

transition), both indicative of a major change in atomistic structure [126, 127, 128]. Increasing

the pressure even further, to about 14 GPa, was seen to induce crystallisation of the simple

hexagonal (sh) phase of silicon (thereby demarcating the existing limit of dense disordered

phases) [129, 130]. Although experiments made it possible to identify the transition in the first

place, they can provide relatively little insight into the atomistic structure of the amorphous

high-density phase(s). Until this work, there were no atomistic simulations that successfully

reproduced the pressure-induced crystallisation of amorphous silicon. Our collaborators

carried out GAP-driven [92] simulations of the 100,000-atom amorphous silicon system under

isothermal compression. Hydrostatic pressure was applied at a constant rate of 0.1 GPa ps−1

while the temperature was held at 500 K, which is high enough to overcome local energy

barriers but below the melting line. A description of the behaviour of amorphous silicon when

compressed is summarised by Fig. 3.20. Up to 11GPa (c.f. Fig. 3.20a), most atoms remained in

fourfold-coordinated environments, similar to the low-density amorphous (LDA) phase. A

striking result is the coexistence of LDA and high-density amorphous (HDA)-like regions at the

same temperature and pressure; that is, the simulations indicate the presence of polyamor-

phism over a range of several GPa, rather than an abrupt transition to an almost completely

fivefold-coordinated single HDA phase. Upon further compression, beginning at around

12GPa (c.f. Fig. 3.20b), regions with much higher coordination (≥ 7) suddenly emerged. These

highly coordinated regions rapidly coalesced into a dense form that is distinct from both LDA

and HDA (c.f. Fig. 3.20c). We refer to this phase as very-high-density amorphous (VHDA).

The rapid structural collapse during VHDA formation reduced the volume from around 18 to

around 14Å3 per atom. Importantly, this VHDA phase was transient, and crystalline regions

rapidly nucleated (c.f. Fig. 3.20d). The key finding of the present work is not just the formation

of sh silicon at high pressure, but the observation of a multistep crystallisation process that

proceeds through an entirely distinct VHDA precursor contrasting with the assumptions in
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previous works of direct HDA → crystalline transitions [129, 130]. Having reached 20GPa,

the system had fully transformed into a polycrystalline (“pc”) phase exhibiting hexagonally

packed layers, stacked to form an sh structure (c.f. Fig. 3.20e).

Among the experimental indicators for the amorphous–amorphous transition in silicon is a

sudden increase in the electrical conductivity [127]. We studied the electronic structure of our

100,000-atom systems by leveraging the ML DOS approach of this Chapter. We developed a

regression model for the DOS in disordered silicon, requiring only atomic coordinates as input.

The new parameterisation is fitted to hybrid-DFT data for representative structural models

of all relevant polyamorphs, including VHDA, as well as the pertinent crystalline phases. In

particular, we use SOAP features with radial scaling and sparse Gaussian processes to build

an ML model for the total DOS of a given atomistic structure. We represent the DOS as a

target of the machine learning models by its cumulative distribution function (CDF). As a

reminder, this approach yielded systematically lower prediction errors than models using the

DOS curve directly for the silicon data set, because it is sensitive to shifts in peak positions. The

SOAP cut-off radius was 6.0 Å; the smoothness parameter was set to 0.5 Å. The radial scaling

parameters used for the SOAP representation of Eq. (2.13) are c = 1, r0 = 3.0Å and the exponent

m = 5. We selected 3000 reference atomic environments by farthest point sampling (FPS)

for the sparse GPR. The training data consisted of 658 structures supplemented by 100 small

amorphous silicon snapshots (64 atoms per cell) at 0GPa from the data set investigated in this

Section 3.2, and 30 small dense disordered silicon structural models (64 atoms per cell) that

were drawn from the new reference data set used to fit an ML interatomic potential used to

validate the findings of this study, over a range of pressures between 11 and 20 GPa. The latter

part serves to represent the high-density phases and their electronic DOS properly. Electronic

structure calculations to extract the DOS for labelling the input data were performed using

the FHI-aims package [115] with the intermediate convergence settings. The HSE06 hybrid

functional [19, 20], which is known to usually provide reliable estimates of the band structure

of systems with small band gaps [21], was used to determine the self-consistent Kohn–Sham

eigenvalues. The latter were then used to compute the reference DOS. The k-point spacing

was 0.01Å. We also performed uncertainty quantification of the ML DOS model by building a

committee of 8 models, each containing a subset of 394 structures randomly selected from the

training set. The average prediction of the DOS from the committee of models was taken as the

final prediction, and their variance as the uncertainty estimate. The models of the committee

are correlated, and so we rescaled the variance around the mean, determining the calibration

coefficient with a likelihood-maximisation criterion.

With this model in hand, we are able to make hybrid-DFT-quality predictions for the electronic

DOS of large simulation cells within minutes alongside the ML model’s uncertainty estimate as
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Figure 3.21: Electronic fingerprints of structural transitions. (a-d), Electronic densities of
states (DOS) at various stages of the compression run (compare with Fig. 3.20a-e). Black
lines indicate the result of a machine learning model for hybrid DFT data using the HSE06
functional; grey shading indicates the associated uncertainty quantification. Blue dashed
lines show the result of direct tight-binding computations for the 100,000-atom systems.
We note that the tight-binding basis set is minimal (one s and three p valence orbitals per
atom), and therefore states above the Fermi level, εF , are less well represented because of
incompleteness effects. Details about the tight-binding calculations can be found in the
methods section of Ref. [38]. A red arrow marks the filling-in of the pseudo gap upon VHDA
formation, as discussed in the text. In all plots, εF is set as the energy zero. (e), Evolution of
the atomic environments during our compression simulation, visualised using KPCovR. The
axes (components) provide the two-dimensional projection of the SOAP kernel features that
give the best balance between discriminating the structural diversity of the environments,
and linearly predicting the locally averaged machine learning DOS(εF ). The latter quantity,
as a fingerprint of electronic structure and metallisation, is used to colour-code the points
associated with individual atomic environments. Contour lines indicate the distribution
of atomic environments in the KPCovR space and emphasise the structural and electronic
transition upon VHDA formation.
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shown in Fig. 3.21; direct electronic-structure computation at this high level would have been

restricted to system sizes of a few hundred atoms at most. The value of the DOS at the Fermi

level, DOS(εF ), is a primary signature of electrical conductivity [131], and its increase during

compression (Fig. 3.21a-c) indicates metallisation in the transient VHDA phase, qualitatively

consistent with the rapid conductivity increase between 10-12GPa that is observed in dia-

mond anvil cell experiments [127]. At 13GPa-when the VHDA formation was complete in our

simulation-the pseudo gap was entirely filled in (marked by an arrow in Fig. 3.21c). The pre-

diction of this distinct electronic feature might be tested by ultrafast spectroscopy techniques,

which have been previously applied to the liquid-liquid phase transition in silicon [132] and

can access timescales that indeed correspond to those in our simulations. Machine learning

models for the DOS, as shown in Fig. 3.21, might have a key role in this regard, by giving access

to experimentally relevant system sizes (unlike DFT). Another implication of the onset of

metallicity is a possible link to superconductivity, analogous to what has been observed for

the metallic high-pressure form of the heavier congener, amorphous germanium [133], and

indeed for crystalline sh silicon (with a critical temperature of about 8K at 14.8GPa) [134]. This

question, however, requires further experimental study.

Finally, by combining the structural information from the SOAP representation and the

machine-learned local electronic fingerprints LDOS, we may construct structure-property

maps for atomic environments using kernel principal covariates regression (KPCovR) [39]. In

particular, we use the locally averaged DOS (LADOS) as defined in Eq. (3.22) and restricted to

the [−4,4]eV energy interval to highlight the correlation between the local environments and

their corresponding (LA)DOS in the vicinity of the Fermi energy εF . These LADOS values are

used, together with the same kernel used to regress the DOS, to build a map of the KPCovR

map (represented in Fig. 3.21e) that reflects both structural diversity (dissimilarity) and the

correlations between structure and the LADOS. This approach yields two-dimensional slices

that map out the atomic environments arranged so as to reflect structural diversity and also

the relationship between structure and metallicity, for which the LADOS(εF ) is used as a

proxy. The two principal components used to draw the maps in Fig. 3.21e were determined

by training the KPCovR model on 164,000 environments selected by FPS from 41 structures

at pressures ranging from 0 to 20 GPa. All remaining atomic environments were then pro-

jected on these two coordinates and used for further analysis. We then arranged the slices

in three dimensions to study their evolution through the transitions, with pressure as the

third coordinate (Fig. 3.21e). We observed a unimodal distribution of data points in LDA

silicon at 0GPa, reflecting the coexistence of locally ordered semiconducting environments

and highly defective environments that contribute to the DOS in the electronic band gap. The

distribution gradually shifted and broadened towards environments with higher local DOS(εF )
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as polyamorphic HDA regions developed up to 11GPa. The structural collapse at 12GPa led

to a new maximum in the map: this indicates a transition between two distinct phases, also

seen in Fig. 3.20b. The VHDA phase was localised in a very different region of the map than

the LDA/HDA environments, consistent with the marked increase in coordination numbers

(Fig. 3.20c) and local DOS(εF ) contributions. For the sh crystallites (at 20GPa), the data points

remained in an overall similar region of the map but became more sharply focused compared

to VHDA silicon and shifted slightly to a region of lower DOS(εF ), indicative of the formation

of a small pseudo gap (also seen in Fig. 3.21d). We expect that such maps, in both two and

three dimensions, will become useful tools for studying structural and electronic transitions

in diverse phases of matter.

3.5 Conclusion

In this Chapter, we presented an ML framework based on sparse Gaussian process regression,

a SOAP-based representation of local environments, and an additive decomposition of the

electronic density of states to learn and predict the DFT-computed DOS for a diverse data

set of silicon structures, covering a broad range of thermodynamic conditions and different

phases. We discussed the effect of the Gaussian broadening values usually used to smooth the

DOS curves on the prediction process. We also compare 3 different methods to represent the

DOS that can be linked to the use of different metrics to assess the error in the predictions:

the pointwise discretisation approach, a decomposition on the basis of selected principal

components, and the description of the DOS as a derivative of its associated cumulative

distribution function. We find that the different representations are fairly compatible, with a

slight advantage to the latter independently from the broadening values.

We also investigated the accuracy of derived properties, that can be computed from the

predicted DOS, against a direct ML model. In particular, we considered the Fermi energy, the

DOS value at the Fermi energy, the band energy and the excitation spectrum. In general, we

find that the indirect models lead to small but consistent improvements over direct predictions.

This improvement is remarkable because a direct model has the possibility to focus on the

structure-property relations that are more relevant to the target. The fact that going through

the DOS improves predictions indicates that the density of states is more amenable to an

additive, local decomposition with respect to properties like εF that depend on the global

imposition of charge neutrality.

We demonstrated an application of our ML model to the prediction of the DOS of some

amorphous silicon configurations, including one containing 4096 atoms for which a brute-

force DFT calculation would be prohibitively expensive. We observe excellent accuracy in
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the ML predictions and that the averaging over multiple configurations – which is necessary

to obtain predictions consistent with experimental observations – considerably reduces the

discrepancy between the ML model and the DFT reference. A data-driven analysis of the local

density of states reveals the interplay between structural motifs and electronic structure in

amorphous silicon, but a physical interpretation of the local DOS contributions computed

by an ML model should not disregard the role played by choice of structural features and

regression scheme, which affects the atom-centred predictions in the absence of explicit

reference values for the LDOS.

We showed that the ML model for the DOS was a powerful tool for studying electronic transi-

tions in disordered phases by leveraging its generalisation capabilities. We trained a model on

a higher theory level of DFT and on small snapshots and applied it on the ultra-scale necessary

to describe the transition mechanisms when compressing amorphous silicon. This model

provided consistent observations with experimental observables while giving insights into the

structural/electronic fingerprints interplay.

Our ML framework makes it possible to estimate, based exclusively on atomic configurations,

one of the most essential descriptors of the electronic structure. Combining it with one of

the well-established potential energy models makes it possible to compute the electronic

contributions to macroscopic properties, such as the heat capacity of metals, to perform simu-

lations that take into account finite-electronic-temperature effects [135], and provides another

brick in the construction of a full surrogate ML model of the properties of molecules and

materials. The possibility of computing atomic charges by enforcing global charge neutrality

and then using local DOS to determine charge partitioning provides an interesting line of

investigation to realise a “grand-canonical ML” framework that combines a local model with a

physics-based charge equilibration scheme.
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4 Thermal excitations1

In this chapter, we explore two methods to leverage the electronic density of states to account

for the electronic contribution to physical observables. First, we use the Born-Oppenheimer

approximation to decouple the electronic and ionic degrees of freedom and compute the elec-

tronic contribution as an a posteriori correction to the observable derived from the dynamics

of the ions. Second, we derive a framework where the thermal excitations of the electrons are

taken into consideration when constructing the finite-temperature potential energy surface

and its gradients. In both cases, we utilise the atom-centred machine-learning (ML) model

for the electronic density of states from Section 3.1, trained on ground-state data. These

results show the power of physics-inspired modelling, where combining different ML models

for structural and electronic properties of materials leads to more accurate modelling of the

properties of materials across a wide range of conditions.

4.1 Electronic thermal excitations as an a posteriori correction

As a first step to address the question of modelling condensed matter at high temperatures, we

propose to study a nickel over a wide range of temperatures up to its melting temperature, as

reported in Ref. [136]. This work is a collaboration, where the author’s contribution consisted

in building the ML model for the density of states and using the model to compute thermody-

namic properties. The main objective of this study is to build an accurate machine-learning

interatomic potential to study the structural, mechanical and thermodynamic properties of

nickel. This is achieved by using sampling techniques at finite temperatures to compute bulk

and interfacial properties of nickel from cryogenic temperatures up to above the melting

point. The ion-based predictions are complemented by taking into account the effect of the

electronic excitations without performing extra electronic structure calculations with respect

1This chapter is an adaptation of my contributions to Refs. [136, 137]
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Figure 4.1: Constant pressure heat capacity Cp as a function of temperature. Triangles indicate
experimental observations. The solid magenta line represents the heat capacity computed in
this work with path integral molecular dynamics. The dark yellow solid line represents the
heat capacity computed, including electronic corrections based on an ML model of the DOS.
The solid black line describes the classical prediction for heat capacity.

to the training phase, as described below.

We propose to incorporate the electronic degrees of freedom, i.e. the thermal excitation effects,

as a posteriori correction to the thermodynamic averages, heat capacity in this case, obtained

from the dynamics of ions. In particular, we can use the DOS model of Section 3.1 to compute

the electronic contributions to several thermodynamic properties, such as the Helmholtz free

energy at finite temperature

F el(T ) =U el(T )−T Sel(T ) (4.1)

which is decomposed in a contribution from the hot electrons to the band energy

U el(T ) =
∫ ∞

−∞
εDOS(ε) fFD(ε−εF ,T )dε−

∫ εF

−∞
εDOS(ε)dε (4.2)

and an entropy term

Sel(T ) =
∫ ∞

−∞
DOS(ε)

[
fFD(ε−εF ,T ) log( fFD(ε−εF ,T ))−

(1− fFD(ε−εF ,T )) log(1− fFD(ε−εF ,T ))
]

dε, (4.3)

72



Thermal excitations Chapter 4

and the electronic contribution to the high-temperature heat capacity

C el
p (T ) = ∂U el(T )

∂T
. (4.4)

These expressions are written in a “non-self-consistent” approximation, where we consider

the density of states to be fixed to that computed from the Kohn-Sham eigenvalues obtained

self-consistently at T el = 0, and the temperature dependence is due to the occupation of the

energy levels, which is given by a Fermi-Dirac distribution fFD(ε−εF ,T ), and by the Fermi

energy εF (T ) which can be computed for the DOS at each temperature T by enforcing charge

neutrality as described in Eq. (3.1). Given a molecular dynamics trajectory, one could predict

the electronic DOS for every frame, then use them to estimate the electronic energy U el . The

electronic contribution to heat capacity Cp can be obtained by finite differences, for example.

In this work, the thermodynamic averages of the ions are deduced from molecular dynamics

simulations driven by an interatomic potential, in this case, a neural network potential (NNP)

using the Behler-Parrinello symmetry functions [43] and trained on several classes of struc-

tures covering bulk configurations, point defects and interfaces. The NNP was then validated

on static lattice properties by computing the stability of the fcc, hcp and bcc phases of bulk

nickel. It showed good agreement with the DFT results in calculating mechanical properties

like elastic constants, the bulk modulus and the formation energy of point defects, which

requires performing simulations on large systems. Through finite temperature simulations,

we computed several finite temperature properties from thermodynamic averages. In low-

temperature simulations, it is important to account for quantum nuclear effects. While in the

high-temperature regime, it is necessary to account for magnetic and electronic excitations,

making a direct comparison to DFT results difficult, and this explains the choice of comparing

the NNP results to existing classical force fields [138] and experiments when possible. Despite

its success in describing several properties of nickel, it fails to describe the heat capacity

of nickel near the melting temperature, as shown in Fig. 4.1, despite providing satisfactory

results and in agreement with experiments, below the Curie temperature. This approach

underestimates the heat capacity by ≈20% compared to the experimental observations at

high temperatures. The discrepancy (which is also observed in explicit first-principles molec-

ular dynamics [139] and in simulations that use the reference classical force field) is due to

electronic contributions.

To train a model of the DOS, we use a subset containing 1069 structures of the data set used

to train the NNP, while discarding those corresponding to solid-liquid, liquid-vacuum and

solid-vacuum interfaces, and we complement it with 123 independent structures extracted

from liquid and solid trajectories at the melting temperature. We use the radial cutoff r0 = 6.Å
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Figure 4.2: Evolution of the prediction errors in the validation set as a function of the training
set size for the pointwise representation of the ML DOS (in black), as well as for quantities
derived from the DOS prediction for thermal excitations computed at Tm = 1700K (namely,
the band energy U el(Tm), the electronic entropy term TmSel(Tm), the free energy F el(Tm), and
the heat capacity TmCp (Tm) written in energy units).The reference DOS is generated with a
Gaussian broadening of 0.1eV. The arrows point to the axis on which the errors can be read.

and an atomic density smoothing 0.45 for the SOAP features. The active set contains 15000

environments selected by FPS out of the ≈ 127000 that are present in the training set. We

determine the regression weights xM using a regularisation parameter that is optimised by a

10-fold cross-validation scheme in order to ensure the model is not in the over-fitting regime.

The learning curves, computed by reporting errors on a fixed test set of the predictions of

models trained on an increasing fraction of the remaining 1000 structures, are shown in Fig. 4.2.

The figure shows both the error on the DOS, computed as the integrated root mean square

error (RMSE) of the ML DOS and DFT DOS normalised by the integrated standard deviation

of the reference DFT DOS, as well as errors for the quantities in Eqs. (4.1-4.4), computed

on the predicted DOS and checked against those obtained from the reference DFT curve.

Learning curves are not saturating, indicating that a more accurate model could be obtained,

if needed, by increasing further the train set size. In practice, this model is sufficiently accurate:

even though the normalised error on the DOS is large (%RMSE=14.71% for the largest train

set size), this translates into sub-meV errors for the key properties at the melting tempera-

ture Tm = 1700K. For the band energy U el(Tm): %RMSE=3.30% and RMSE=0.12meV/atom;

for the entropy TmSel(Tm): %RMSE=5.81% and RMSE=0.32meV/atom; for the free energy

F el(Tm): %RMSE=9.04% and RMSE=0.32meV/atom and for the heat capacity TmC el
p (Tm):

%RMSE=4.25% and RMSE=0.36 meV/atom.
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meV/at. U el (Tm) TmSel (Tm) ∆F el (Tm)
solid 66.59±0.07 155.37±0.11 −88.78±0.06
liquid 69.55±0.08 157.76±0.27 −88.21±0.25
∆liq−sol 2.96±0.15 2.39±0.36 0.57±0.29

Table 4.1: Average band energy, entropy contribution and free energy of solid and liquid
phases at the melting temperature of Nickel Tm = 1700K , together with their difference. The
values are computed from the ML DOS estimated for ≈ 15000 snapshots extracted from
an NNP simulation of the liquid and solid phase at Tm . The uncertainties are derived by
separately computing each quantity using a separate prediction of the calibrated DOS model,
and computing the standard deviation of the end results.

The dark yellow line of Fig. 4.1 confirms our hypothesis that the discrepancy between the

computational and experimental values of Cp is due to the “hot” electrons. This cheap ML

model is also in agreement with much more elaborated and accurate simulations using

density functional theory and quasi-harmonic simulations [139]. We should acknowledge that,

despite these remarkable achievements, our integrated modelling approach has poor results

in the region around the Curie temperature, where magnetic excitations become important.

Even though we do not include them in this model, adding a description of magnetism

constitutes an interesting direction for future studies. This could be achieved by incorporating

the magnetic moments into the structural fingerprints or building ML models for up-spin

and down-spin atoms. As for the DOS, one could also build two independent models for the

spin-up and spin-down electronic systems obtained from spin-polarised calculations.

We can also use the ML model of the DOS to compute the contributions to the free energy

associated with electronic excitations, Eq. (4.1), averaged over trajectories of the bulk solid and

liquid phases at temperatures around the melting temperature Tm . The melting temperature

can be calculated from the dynamics of the ions by using the interface pinning technique [140],

which works by applying a harmonic bias potential to a two-phase system, which couples

to an order-parameter Φ that discriminates between the two phases of interest. The Gibbs

free energy difference between the phases is determined by the average force that the pinning

potential exerts on the system and allows us to extract a difference in the chemical potentials

of the phases ∆µsl. By performing multiple simulations at different temperatures, one can

identify the dependence of∆µsl on T . The temperature at which∆µsl = 0 identifies the melting

point Tm , and the slope is equal to the entropy of melting.

Applying the adiabatic approximation, one could argue that the difference ∆F el(T ) = F el
l (T )−

F el
s (T ) between the electronic free energies of the liquid phase F el

l (T ) and the solid phase

F el
s (T ) could contribute to shifting the chemical potential, and hence leading to a change

in the predicted Tm . As shown in Table 4.1, even though the electronic excitations give a
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Figure 4.3: Average predicted DOS curve for the solid and liquid trajectories at the melting
temperature Tm = 1700K . The shaded area represents the standard deviation of DOS(E) over
the considered trajectories, and the inset shows a close-up of the region around the Fermi
energy. The dashed curve represents the Fermi-Dirac function fFD(ϵ−ϵF ,Tm)

very substantial contribution to the free energy of Ni around Tm , the contributions from the

solid and the molten phases cancel out almost perfectly, so that the impact on the melting

temperature is less than 10K – in agreement with the observations made in Ref. [141]. It

should also be noted that converging these quantities to the level required to resolve the small

difference between solid and liquid phases is far from trivial – both in terms of the statistical

error over an MD trajectory and in terms of the ML error computed following Ref. [112], by

first generating a committee of predictions for the DOS, and then using each curve to obtain a

separate estimation of ∆F el(T ).

The averaged DOS over the solid and liquid phases at Tm , shown in Fig. 4.3, demonstrate that

the cancellation between F el
l (T ) and F el

s (T ) is to be expected, given the minor differences,

particularly in the vicinity of the Fermi level. More significant effects could appear in sys-

tems that, upon melting, undergo a substantial change in electronic properties, e.g. from

semiconducting to metallic like in Section 3.4.

Here, we have discussed our attempt to incorporate electronic excitations directly into ML

simulations. It consisted of predicting the single-particle density of states and using it to

evaluate a-posteriori corrections to the thermodynamic quantities, e.g. heat capacity or

melting temperature, extracted from the MD of ions whose machine-learning interatomic

potential is trained on ground-state data. However, we show in the next sections that this

approach is limited to condensed matter well below the Fermi temperature, where atomic
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forces are almost unaffected by the electronic excitations.

4.2 Approximating the finite temperature free energy

Having demonstrated the impact of using an ML model for the density of states to compute

better estimates for thermal properties of nickel, we move to discuss the challenges of building

a “universal” model that incorporates the thermal excitations of electrons in the machine-

learning interatomic potential (MLIP). Current ML strategies are usually designed to reproduce

the ground state Born-Oppenheimer (BO) potential energy surface, and do not account for

the temperature-dependent electronic excitations which play a significant role in metallic

matter at planetary conditions, like warm dense matter (WDM) [142, 143, 144, 145, 146]. These

fluctuations introduce subtle but important corrections in the thermophysical properties of

ordinary metals [147, 148]. The most common strategy to treat finite electron temperature

is to replace the BO potential with a temperature-dependent electronic free energy A(T el).

In traditional ML interatomic potentials (MLIPs) frameworks that rely exclusively on nuclear

coordinates as inputs, switching from the BO potential to A(T el) would require training a

separate model for every target electronic temperature T el, recomputing also the training set

– although the temperature can be included as an input of the model, which yields MLIPs

that are explicitly temperature-dependent, and interpolate between training data at different

electron temperature [149].

Our objective is to construct a framework that allows us to construct temperature-dependent

MLIPs, beyond the ground-state BO approximation. In this section, we prove that within a

density functional theory framework, it is possible to rigorously approximate the total free

energy, atomic forces and the stress tensor of an atomic system, the three ingredients needed

to reconstruct the finite temperature free energy surface, as the sum of a T el = 0K contribution

and a finite-T el correction depending exclusively on the ground-state electronic density of

states (DOS). This general result underpins a framework that relies only on ground-state

calculations to learn A(T el) and its derivatives in the presence of thermally-excited electrons.

Thus, a consistent ground-state training set and model can be generated and used to sample

the finite-electron-temperature distributions, using T el as an external parameter.

Framework derivation

Let us start by considering the standard representation of the DFT energy:

E = Eband −Edc +Eion (4.5)
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Figure 4.4: (Upper panel) Relative deviation of Hellmann-Feynman atomic force versus the
electronic temperature with respect to the ground state force for a given ion and a Cartesian
direction. (Lower panel) Root mean square errors (RMSE) of 10 force components computed
with Eq. (4.32) compared to their Hellmann-Feynman counterparts. Solid lines: using the DOS
from T el = 0K calculations. Dashed lines: using the DOS from finite-T el calculations. Blue:
aluminium; orange: hydrogen; green: nickel.
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FI(Tel)
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Figure 4.5: The sketch represents the decomposition of the finite-T el atomic force component
within our framework
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as a sum of the electrostatic interactions between the ions Eion, the band energy Eband =∑
i

fi ϵi ,

expressed in terms of the Kohn-Sham (KS) eigenvalues ϵi and level occupations fi , and the

“double-counting term"

Edc =
1

2

Ï
ρ(r′)ρ(r)

|r− r′| drdr′−Exc[ρ]+
∫

Vxc[ρ](r)ρ(r)dr. (4.6)

Here Exc is the exchange-correlation (XC) functional, Vxc[ρ](r) = δExc/δρ(r) is the XC potential,

and ρ(r) =∑
i fi |φi (r)|2 is the DFT density, expressed in terms of the KS eigenfunctions φi (r)

and occupations fi .

Whenever an electronic temperature T el is introduced, the fi become fractional, and the

correct energy functional becomes the Helmholtz free energy [150, 135, 111]

A(T el) = E(0)+∆E(T el)−T elS(T el), (4.7)

where E (0) is the ground-state energy, ∆E (T el) is the finite-T el contribution to the energy, and

S(T el) is the KS electronic entropy. From Eq. (4.7) one can obtain the finite-T el Hellmann-

Feynman forces [151], whose relative deviation with respect to T el = 0K-forces becomes

significant at large T el, as reported in the upper panel of Fig. 4.4. In principle, a T el-dependent

XC functional should be employed [152]. However, it is often possible to rely on the Zero

Temperature Approximation (ZTA), where the XC functional depends on T el only through the

T el-dependence of the density: Exc[ρ(T el)]. The ZTA performs well at both low and high T el

and also satisfies exact conditions as discussed in Ref. [153], and we adopt it as the basis of our

framework.

A change in the occupation of the levels, e.g. as a consequence of thermal excitations, de-

termines a change in the density, and thus, self-consistently, in the KS eigenenergies and

eigenfunctions. For instance, the functional derivative of Eband with respect to fi is

δEband

δ fi
= ϵi +

∑
j

f j
δϵ j

δ fi
(4.8)

Nonetheless, it can be proved, following reasoning similar to that used in Ref. [154], and in

Ref. [155] for the energy variation due to infinitesimal atomic displacements, that the second

term in Eq. (4.8) cancels exactly with the variation of the double-counting term, δEdc/δ fi .

Therefore, the change in E due to a finite change in the occupations can be approximated by

∆E ≈∆E 0
band ≡∑

i
ϵ0

i ∆ fi , (4.9)
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where ϵ0
i ≡ ϵi ({∆ fk = 0}) are the unperturbed Kohn-Sham eigenenergies computed at vanish-

ing variation on all the fk . The “0” superscript labels quantities obtained from unperturbed

eigenenergies computed a reference electronic temperature, which we consider for the re-

mainder of this discussion to be T el = 0K.

Mathematical proof of Eq. (4.9)

In order to prove the equality of Eq. (4.9), we start with the variation of the band energy due to

a change in the occupation of the j -th level:

δEband

δ f j
= ϵ j +

∑
i

fi
δϵi

δ f j
(4.10)

In first-order perturbation theory, we have

∂ρ(r)

∂ f j

∣∣∣∣
∆f=0

= |φ0
j (r)|2 =: ρ0

j (r), (4.11)

with no change in the eigenfunctions due to further self-consistent cycles. The eigenenergy of

the i -th KS state is

ϵi = 〈φi |T̂ + V̂ion + V̂scf|φi 〉, (4.12)

where V̂ion is the ion potential and

Vscf(r) =
∫

ρ(r′)
|r− r′|dr′+Vxc[ρ](r) (4.13)

Therefore, the variation of ϵi under a change in the occupation of the j -th KS state is

δϵi

δ f j
= 〈φi |δV̂scf

δ f j
|φi 〉 =

Ï
ρ0

i (r)

(
1

|r− r′| +
δVxc[ρ]

δρ(r′)

)
ρ0

j (r′)dr′dr (4.14)

since both δV̂ion
δ f j

and δT̂
δ f j

vanish 2, and

δVscf(r)

δ f j
=

∫ ρ0
j (r′)dr′

|r− r′| +
∫
δVxc[ρ]

δρ(r′)
ρ0

j (r′)dr′. (4.15)

2The first step in Eq. (4.14) is justified by the Hellmann-Feynman theorem even without the approximation
of Eq. (4.11). The ZTA enters Eq. (4.14), where we neglect the explicit dependency of Vxc upon the electronic
temperature.
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In conclusion, the variation of the band energy due to a change in f j is

δEband

δ f j
= ϵ j +

∑
i

fi

[Ï ρ0
i (r′)ρ0

j (r)

|r− r′| drdr′ +
Ï

δVxc

δρ(r′)
ρ0

i (r)ρ0
j (r′)drdr′

]
. (4.16)

For the double-counting term, we have

−δEdc

δ f j
=−δEH

δ f j
+

∫
δExc

δρ(r)︸ ︷︷ ︸
Vxc[ρ](r)

∂ρ(r)

∂ f j︸ ︷︷ ︸
ρ0

j (r)

dr− δ

δ f j

∫
Vxc[ρ](r)

∑
i

fiρ
0
i (r)dr

(4.17)

where

EH = 1

2

Ï
ρ(r′)ρ(r)

|r− r′| drdr′ (4.18)

is the Hartree energy. Therefore,

−δEH

δ f j
=− ∂

∂ f j

1

2

∑
i

∑
l

fi fl

Ï ρ0
i (r′)ρ0

l (r)

|r− r′| drdr′ =−∑
i

fi

Ï ρ0
i (r′)ρ0

j (r)

|r− r′| drdr′, (4.19)

while

− ∂

∂ f j

∫
Vxc[ρ](r)

∑
i

fiρ
0
i (r)dr =−

∫
Vxc[ρ](r)ρ0

j (r)dr−
Ï

δVxc[ρ]

δρ(r′)
∂ρ(r′)
∂ f j︸ ︷︷ ︸
ρ0

j (r′)

∑
i

fiρ
0
i (r)dr′dr.

(4.20)

Therefore, the first-order derivative of the double-counting term is

−δEdc

δ f j
=−∑

i
fi

[Ï ρ0
i (r′)ρ0

j (r)

|r− r′| drdr′ +
Ï

δVxc[ρ]

δρ(r′)
ρ0

i (r)ρ0
j (r′)drdr′

]
, (4.21)

which exactly cancels
∑
i

fi
δϵi
δ f j

when Eq. (4.14) is used, thus proving Eq. (4.9). This derivation

is based on variations of fi with respect to given reference values, which need not neces-

sarily be those at T = 0, which provides a way to extend further the range of applicability

of the approximation at very high T el by computing data at a few self-consistent reference

temperatures.

Specific case of Fermi-Dirac occupation

We now focus on the specific case where the set of fi are Fermi-Dirac distributed, fi = fFD(ϵi −
µ(T el),T el), µ(T el) being the chemical potential of the electron system at a temperature T el
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and kB the Boltzmann constant. Here, we define the Fermi-Dirac function as:

fFD(x,T ) = 1

1+e
x

kB T

From Eq. (4.9), the finite-T el correction to the DFT energy is

∆E 0
band(T el) =

∫ +∞

−∞
ϵDOS0(ϵ)

[
fFD

(
ϵ−µ(T el),T el

)
− fFD

(
ϵ−µ(0),T = 0+)]

dϵ, (4.22)

where DOS0(ϵ) =∑
i
δ(ϵ−ϵ0

i ) is the electronic DOS. In order to finish building the approximation

of Eq. (4.7), one needs to find the expressions of the chemical potential of the electron system

µ(T el) and the entropy contribution S(T ). In particular, should we use the zero-T el or the

finite-T el values to compute such approximations?

Notice that since the energy eigenstates do not enter directly (but only through the occupa-

tions), the order is higher than in the case of the internal energy. What we aim at is a good

approximation of a possible correction

−TδT S ≡−T [ST (T )−S0(T )] (4.23)

where

Sτ(T ) ≡−kB
∑

i
f τi (T ) ln[ f τi (T )]+ [1− f τi (T )] ln[1− f τi (T )] (4.24)

and

f τi (T ) ≡ fFD
(
ϵτi −µτ(T ),T

)
(4.25)

Here ϵτi is the i -th eigenenergy computed at temperature τ, while µτ(T ) is the chemical

potential obtained from the normalisation relation when the employed states are ϵτi but the

temperature used to populate the states is T . The symbol δτ denotes a change, at fixed

population temperature T , due to a variation τ of the temperature used in the calculation of

the eigenstates:

δτ fi (T ) ≡ fFD
(
ϵτi −µτ(T ),T

)− fFD
(
ϵ0

i −µ0(T ),T
)

. (4.26)

At the first order in δτ f (T ) we obtain

−TδτS ≈−T
∑

i

∂S

∂ fi

∣∣∣∣
f 0

i (T )
δτ fi (T )

=−kB T
∑

i
ln

(
1− f 0

i (T )

f 0
i (T )

)
δτ fi (T )

=−∑
i

(ϵ0
i −µ0(T ))δτ fi (T )

(4.27)
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Taking τ= T , the term −∑
i
ϵ0

i [ f T
i (T )− f 0

i (T )] cancels with an analogous term arising in ∆E , as

it is evident when we add and subtract f 0
i (T ) in ∆ fi = f T

i (T )− f 0
i (0) used in Eq. (4.9), while∑

i
µ0(T )δτ fi (T ) = 0 because the total number of electrons is fixed.

This derivation proves that it is sufficient to use the zero-T el levels, i.e. the zero-T el DOS, and

hence justify the use of DOS0 in the charge conservation relation to determine µ(T el):

N =
∫ +∞

−∞
DOS0(ϵ) fFD

(
ϵ−µ(T el),T el

)
dϵ, (4.28)

and the electronic entropy S(T el):

S(T el) ≈ S0(T el) ≡
∫ +∞

−∞
DOS0(ϵ) s

(
ϵ−µ(T el),T el

)
dϵ, (4.29)

where N is the number of valence electrons and s(x,T ) = fFD ln fFD + (1− fFD) ln(1− fFD).

Therefore, our approximation for the free energy yields a Mermin-like functional:

A(T el) ≈ E(0)+∆E 0
band(T el)−T elS0(T el). (4.30)

Our derivation directly translates to the calculation of derivatives of the free energy, i.e. the

atomic forces and the stress tensor. For instance, according to the Born-Oppenheimer approx-

imation, the force acting on the I−th nucleus in the DFT ensemble is

FI (T el) =−∇I A(T el) ≈ FI (0)+∆F0
I (T el), (4.31)

where

FI (0) ≡−∇I E(0)

∆F0
I (T el) ≡−∇I [∆E 0

band(T el)−T elS0(T el)].
(4.32)

In this decomposition, the electronic temperature T el enters as an external parameter. Fig. 4.5

is a schematic representation of this framework, using the atomic force as a representative.

These equations would be of limited practical value if the end goal were to compute A(T el)

for a given structure and temperature by means of a self-consistent electronic structure

calculation. However, they become very useful in the context of data-driven modelling, as

they provide a rigorous basis for the development of a ML framework to learn finite-T el

interatomic forcefields without the need to train on finite-T el calculations. The T el = 0K

quantities, E(0) and FI (0), can be modelled by any of the widely used MLIPs [92, 43, 83, 46,

156]. The hot-electron correction, Eq. (4.32), can be accessed by training an ML model for the
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DOS.

Our derivation justifies other approximations made in the literature, such as the fixed-DOS

approximation of Refs. [157], which assumes that the electronic DOS is approximately indepen-

dent of T el. In fact, the cancellations ensure the validity of Eq. (4.9), even if the self-consistent

energy levels (and thus the DOS itself) changed substantially by changing T el.

What about using the finite-T el DOS?

If one wanted to go beyond this ground-state approximation, it would not be sufficient to

obtain the finite-T el DOS and to use it in expressions similar to Eqs. (4.22), (4.28) and (4.29).

Without access to the self-consistent finite-temperature Edc, doing so would lead to worse

results, as shown in the lower panel in Fig. 4.4. Also, any mixture of the finite-T el and zero-

T el DOS in the terms of Eq. (4.30) would lead to worse predictions of the free energy and

the atomic forces as well as shown in Fig. 4.6 in an aluminium supercell, a liquid hydrogen

structure and a liquid nickel structure. Figure 4.7 shows, in particular, the use of the DOS

computed at T el = 50,000K and trying to recover the free energy and force of lower temperature

calculations compared to the finite temperature DFT. The relative errors are larger at low

temperatures, which indicates that the approximation of this work is better used when the

reference calculation is done at low temperatures. This behaviour occurs despite a minimal

change in the DFT DOS computed at T el = 0K and T el = 50,000K. Fig. 4.8 shows the DOS of a

liquid hydrogen structure computed at the mentioned temperatures.

This observation opens the door to a general approach. Suppose one was prepared to perform

self-consistent calculations at multiple temperatures. In that case, our perturbative expres-

sions could also be applied to a reference temperature different from T el = 0 and serve as the

basis of more accurate temperature-interpolation schemes. We consider five different cases

for a single force component of a liquid hydrogen snapshot, which is the same one used to

illustrate the approximation developed in this work in Figs. 4.6 and 4.7:

• the force extrapolation from this work’s approximation, with reference calculation done

at the ground-state T0 = 0K, F T0→Tmax (T el)

• the force extrapolation from this work’s approximation, with reference calculation done

at Tmax = 50,000K, F Tmax→T0 (T el)

• a linear fit between the ground-state force and the finite-T el force computed at T el =
50,000K

• a linear combination of the previous two predictions in a way to approximate the finite-

84



Thermal excitations Chapter 4

103 104

0.0

0.1

0.2

0.3

0.4

0.5

|
 F

| (
eV

/Å
)

Al

this work

F(0)- (ET
b(T) E0

b(0) TST(T))

F(0)- (E0
b(T) E0

b(0) TST(T))

103 104

0.0

0.5

1.0

1.5

2.0

|
 F

| (
eV

/Å
)

H

this work

F(0)- (ET
b(T) E0

b(0) TST(T))

F(0)- (E0
b(T) E0

b(0) TST(T))

103 104

temperature (K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|
 F

| (
eV

/Å
)

Ni

this work

F(0)- (ET
b(T) E0

b(0) TST(T))

F(0)- (E0
b(T) E0

b(0) TST(T))

103 104

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

|
 E

| (
eV

/a
to

m
)

Al

this work

E(0)-(ET
b(T) E0

b(0) TST(T))

E(0)-(E0
b(T) E0

b(0) TST(T))

103 104

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

|
 E

| (
eV

/a
to

m
)

H

this work

E(0)-(ET
b(T) E0

b(0) TST(T))

E(0)-(E0
b(T) E0

b(0) TST(T))

103 104

temperature (K)

0

2

4

6

8

10

12

14

|
 E

| (
eV

/a
to

m
)

Ni

this work

E(0)-(ET
b(T) E0

b(0) TST(T))

E(0)-(E0
b(T) E0

b(0) TST(T))

Figure 4.6: Errors, with respect to the finite-T el results, of different methods to compute a finite-
T el correction to the total energy and the atomic force, computed for a single force component
in an aluminium supercell, a liquid hydrogen structure and a liquid nickel structure as a
function of the electronic temperature.

85



Chapter 4 Thermal excitations

Figure 4.7: Errors, with respect to the finite-T el results, of different methods to compute a
finite-T el and using two reference calculations done at T el = 50,000K and T el = 0K, to compute
a correction to the total energy and the atomic force, computed for a single force component in
an aluminium supercell, a liquid hydrogen structure and a liquid nickel structure as a function
of the electronic temperature.

86



Thermal excitations Chapter 4

Figure 4.8: (Upper panel) The DOS of a liquid hydrogen structure using two electronic temper-
atures. Blue: ground-state, orange: T el=50,000K. The Gaussian broadening used to construct
the DOS is 0.3eV. (Lower panel) The residual between the two DOS computed at T el = 0K and
T el = 50,000K.

T el force with the better approximation according to the following mixing:

F two−point(T el) = T el −T0

Tmax −T0
F T0→Tmax (T el)+ Tmax −T el

Tmax −T0
F Tmax→T0 (T el),

• a cubic fitting using the two previous predictions F T0→Tmax (T el) and F Tmax→T0 (T el) using

our approximation

F two−point,cubic(T el) =
[

1−λ
(

T el −T0

Tmax −T0

)]
F T0→Tmax (T el)+λ

(
T el −T0

Tmax −T0

)
F Tmax→T0 (T el),

where λ(x) is the cubic polynomial that satisfies λ(0) = 0, λ(1) = 1, λ′(0) =λ′(1) = 0

We report our findings about the errors of these methods compared to finite-T el computed

forces in Fig. 4.9. The simple linear fit yields worse results than all the other methods, except

at the extremes (0K and 50,000K). Our Mermin-like functional used as a single-point extrap-

olation seems to be a good approximation on its own when using a round-state reference,

while the high-T reference leads to high errors at low temperatures. A linear mixing of the

high and low-temperature extrapolations improves the accuracy in the high-temperature limit

and can be further improved by considering that in our Mermin-functional expansion, the
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Figure 4.9: Calculation errors compared to the finite-T el force in a liquid hydrogen structure.

error has zero first derivative close to the edges and that this property can be preserved by

using a mixing function that has zero derivatives at the edges.

Derivation of finite-T el gradients

As mentioned earlier, our derivation for the Mermin-like functional is compatible with most

MLIPs and ML DOS models presented in the scientific literature. We show a general deriva-

tion of the different finite-T el force components in Eq. (4.32): ∆F0
I (T el) ≡−∇I [∆E 0

band(T el)−
T elS0(T el)]. Also, we demonstrate that if one opts for a kernel model for the DOS, like the one

presented in Chapter 3, it is possible to derive simple expressions for the force components in

order to make the implementation simpler, regardless of the representation of the DOS.

From the definitions of the band energy, in Eq. (4.22), and the entropy in Eq. (4.29), we notice

that taking the gradient of these components requires the determination of the gradient of the

Fermi level µ(T ) with respect to the atomic positions because of the chain rule. One easy way

to determine this gradient is by taking the derivative of Eq. (4.28) at a fixed total number of

electrons is unaffected by perturbing the system and we obtain:

∇Iµ(T ) =− 1∫
dϵ DOS0(ϵ)∂ f

∂µ

∫ +∞

−∞
dϵ fFD(ϵ−µ(T ),T )∇I DOS0(ϵ). (4.33)

In the limit of T = 0K, the Fermi level becomes the Fermi energy µ(0) = εF and we obtain:

∇IεF =− 1

DOS0(εF )

∫ εF

−∞
dϵ ∇I DOS0(ϵ).

The thermal band energy of Eq. (4.22) is the difference between two similar terms, which is why

we only focus on the first term depending on T > 0, Eb(T ) = ∫
dϵ ϵDOS0(ϵ) fFD(ϵ−µ(T el),T el),

since it is the general case of the T = 0K term. In order to make notations easier to follow, we
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write f = fFD(ϵ−µ(T ),T ). We start by writing the gradient of Eb(T ):

∇I Eb(T ) =
∫

dϵ ϵ f ∇I DOS0(ϵ)+
∫

dϵ ϵDOS0(ϵ)
∂ f

∂µ
∇Iµ. (4.34)

By plugging Eq. (4.33) in the previous equation and rearranging terms, we obtain the following

expression for the gradients of the band energy as a function of the gradient of the electronic

density of states:

∇I Eb(T ) =
∫

dϵ (ϵ−Σ) f ∇I DOS0(ϵ), (4.35)

where

Σ=
∫

dϵ ϵDOS0(ϵ)∂ f
∂µ∫

dϵ DOS0(ϵ)∂ f
∂µ

is an average shift term appearing due to the conservation of the Fermi level. In the T = 0 limit,

this shift is the Fermi energy of the electron system: Σ(T = 0) = εF .

We follow the same logic in determining the gradient of the entropy S0(T ):

∇I S0(T ) =−kB

∫
dϵ [ f log( f )+ (1− f )log(1− f )]∇I DOS0(ϵ)

−kB

∫
dϵ

∂[ f log( f )+ (1− f )log(1− f )]

∂µ
∇Iµ. (4.36)

In this expression, we need to simplify the derivative with respect to µ in the second integral

and we obtain:

∂[ f log( f )+ (1− f )log(1− f )]

∂µ
= log

(
f

1− f

)
∂ f

∂µ
=−β(ϵ−µ)

∂ f

∂µ
. (4.37)

We plug this expression alongside Eq. (4.33) in Eq. (4.36), rearrange terms and obtain the

following expression for the gradient of the entropy:

∇I S0(T ) =−kB

∫
dϵ [ f log( f )+ (1− f )log(1− f )]∇I DOS0(ϵ)+ 1

T
(µ−Σ)

∫
dϵ f ∇I DOS0(ϵ),

(4.38)

where we notice that the shift term Σ appears again, acting on the Fermi level of the electron

system. This derivation proves that we can write the hot electron forces just in terms of the

gradients of the DOS, which can be computed easily within the kernel-based ML model, e.g.

Eq. (3.7). In fact, if one considers the pointwise representation of the DOS(A,E ) = k⊺
AM ·xM (E ),

the weights matrix xM only depends on the energy grid and is independent of the atomic

positions. Hence, we can take the kernel vector out of the integrals in Eq. (4.35) and Eq. (4.38).

For the remainder of this short discussion, we use Eq. (4.35) as a demonstration and the same
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result that we obtain from the derivation also holds for the entropy in Eq. (4.38). The gradients

of the band energy of Eq. (4.35) become:

∇I Eb(T ) =∇I (k⊺
AM ) ·

(∫
dϵ (ϵ−Σ) f xM (ϵ)

)
. (4.39)

The practical implementation of the CDF representation, as shown in Eq. (3.17), makes the

implementation of the gradients of the DOS also straightforward. One only needs to replace, in

Eq. (4.39), the weights matrix at E by the average of the matrix values at (E −δE ) and (E +δE ):

xM (E) ← xM (E+δE)−xM (E−δE)
2δE .

The implementation of the gradients in the PC decomposition approach is slightly more

delicate than the previous two representations. The DOS of a structure A can be decomposed

as DOS(A,E ) =∑
k

ck (A)Uk (E ), where the ck (A) are the linear expansion coefficients and Uk (E )

are the values of the principal components (or latent functions) at the energy level E . Each

coefficient ck is a target for a regression model and we write ck (A) = k⊺
AM ·wk , where the wk

are the regression weights. In this case, the DOS model becomes

DOS(A,E) =∑
k

(k⊺
AM ·wk )Uk (E),

where only the Uk hold the dependence on the energy levels. Therefore, Eq. (4.35) can be

implemented as:

∇I Eb(T ) =∑
k

(∇I (k⊺
AM ) ·wk ) ·

(∫
dϵ (ϵ−Σ) f Uk (ϵ)

)
. (4.40)

One should notice that these derivations can be extended to the case of the gradients of the

free energy A(T el) with respect to the cell vectors in order to obtain the stress virial. One

only needs to replace the gradients of the DOS with respect to the atomic positions with the

gradients of the DOS with respect to the variations of the cell vectors.

4.3 Hydrogen in planetary conditions

We demonstrate the practicality of our theoretical framework in ML workflows incorporating

the electronic finite temperature effects in atomistic simulations by constructing the EOS of

metallic liquid hydrogen at conditions similar to those found in the core of a young Jupiter

[158], and we compare our ML approach to explicit first-principles molecular dynamics

(FPMD) simulations results at finite-T el. We build a training set made of ∼ 28,000 structures,

each containing 128 atoms, and densities ranging between 0.6g cm−3 and 1.77g cm−3. It

consists of configurations from Ref. [159], complemented by snapshots obtained from MD
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from Ref. [158]

from FPMD

from iterative ML models

Figure 4.10: Clustering of the structures in the hydrogen data set based on the first 2 principal
components of the SOAP representation of every configuration.

simulations performed with preliminary versions of the MLIP. Fig. 4.10 is a map of the first

two principal components of the SOAP features of the structures in the dataset showing its

diversity. We employ QUANTUM ESPRESSO [160, 161, 162] (QE) for DFT calculations of the

data set, using the Optimized Norm-Conserving Vanderbilt pseudopotential [163] version

1.2, which is shown to perform well even at ∼TPa pressures [164]. Dispersion interactions

are included via a van der Waals density functional [165, 166, 167, 168]. We use a plane-wave

energy cutoff on wave functions of 100Ry. We use the Marzari-Vanderbilt cold smearing [169]

of 0.01Ry, which yielded similar energies and forces to calculations done at higher k-point

density and with a Fermi-Dirac smearing of 10K. The self-consistency accuracy in the electron

density is 1×10−12Ry. We use dense k-point mesh targeting at least 0.01Å−1 spacing to ensure

the convergence of the DOS and the stress tensor. We perform these convergence tests

on a hydrogen structure containing 64 atoms and of density 0.733g cm−3. The results of

the convergence tests with respect to the k-point grid for the DOS (to the left) and the Sxx

component of the stress tensor (to the right) are shown in Figure 4.11. In our calculations, we

make sure to compute a sufficient number of bands to accommodate the tail of the distribution,

which reaches high energies at large T el. In practice, we choose to compute 3 bands per atom,

which results in the computation of 6 electronic states per atom. This choice ensures that the

Fermi-Dirac occupation of the highest energy level is below 1×10−5 when T el = 50,000K. We

find that this value is sufficiently low not to affect the values of the atomic forces.

We train a GAP model, to learn and predict the T el = 0 contribution to the total free energy on

the total DFT energies and a single Hellmann-Feynman force component per structure. We
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Figure 4.11: Convergence of some key quantities with respect to the k point grid for a 64-atom
liquid hydrogen structure. Left: electronic density of states constructed using a Gaussian
broadening value of 0.3eV. Right: the Sxx component of the Hellmann-Feynman stress tensor.
In both cases, 8×8×8 corresponds to the targeted k-point spacing of 0.01Å−1.

use a two-body baseline for the GAP, as discussed in Section 2.3.3. As a reminder, we write:

E = E2B +EMB

where E2B is a baseline two-body term and EMB is a many-body term. The baseline potential is

fitted on dissociating hydrogen dimers placed in a large box of length 15Å. The distances range

from 0.075Å to 0.73Å, which corresponds to the repulsive part of the pair interaction. This

2-body term ensures the stability of our molecular dynamics simulations at high temperatures

(>20,000K). In a preliminary study using only the many-body term of the GAP model, we

found that the MLIP could not recreate the binding curve of a hydrogen dimer and favoured

configurations where the two hydrogen atoms were superposed. This behaviour of the many-

body term of GAP is also observed in other studies, such as in Ref. [93]. In practice, we tabulate

the repulsive potential values and use LAMMPS [170] to handle the calculations of the atomic

energies and forces of the two-body interactions. The many-body term is obtained from the

Smooth Overlap of Atomic Positions (SOAP) [42] representation with radial scaling [70]. The

SOAP representation requires the optimisation of several hyperparameters that we achieve

using a grid search. We select the parameters that minimise the prediction error on the total

energy in a subset of 5000 structures using a 2-fold cross-validation regression scheme. The

best SOAP parameters are (in the notation of librascal [116]): max_radial=8, max_angular=6,

interaction_cutoff =2Å, gaussian_sigma_constant=0.1 and the best radial scaling parameters

are: rate=1.0, scale=2.0 and exponent=4. It is worth noting that in a preliminary study, we

tried to use 2-body MLIP, with a large radial cutoff (>7Å), to model the pair interaction of the

hydrogen dimer. We found that this operation resulted in an increase in the variance of the
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RMSE
E(0) 11.05meV/atom
∆E 0

band(T el)−T elS0(T el) 13.43meV/atom
A(T el) 12.22meV/atom
FI (0) 0.87eV/Å
∆FI (T el) 0.66eV/Å
FI (T el) 0.81eV/Å

Table 4.2: Table of the validation root mean square errors (RMSE) of the ML models on the
energies and forces compared to the reference DFT data, at the same level of theory introduced
in Eqs. (4.30) and (4.32). The electronic temperature is T el = 35,000K. The training set consists
of 28,000 structures and the errors are reported for a validation set of 2,500 configurations.

total energies learned by the many-body SOAP MLIP; hence, the performance of the final

model was poor.

We follow a similar approach to the many-body term to construct an atom-centred model for

the electronic density of states (DOS), as explained in Chapter 3. We build the DOS from the

Kohn-Sham eigenenergies of the same calculations for the total energies using a Gaussian

broadening gb of 0.5eV. We also build a single DOS-gradient component, computed by finite

displacement of a single atom by 1×10−3Å. The model also relies on the SOAP representation.

We use a grid-search on the same subset to find the optimal hyperparameters that minimise

the prediction errors on the DOS: max_radial=12, max_angular=8, interaction_cutoff =4Å,

gaussian_sigma_constant=0.1 and the best radial scaling parameters are rate=1.0, scale=1.0

and exponent=2.

Before moving towards the validation of the ML workflow with the finite-T el approximation,

it is important to address one last issue of learning the DOS. The alignment of the energy

bands is, in principle, irrelevant to the definition of the finite-T el correction, according to

Eq. (4.22). While the gradients of the DOS with respect to the atomic positions or the cell

vectors may depend on the chosen alignment, the finite-T el correction to the forces and stress

involving them do not. We only need to make sure that the alignment is done consistently

when computing the energy terms and the DOS gradients. While there are several strategies to

align the DOS, like aligning with respect to the deep core levels, the valence band minimum

(VBM) or the Fermi energy, the choice of the alignment should only depend on the quality of

the ML prediction. In this case, we find that aligning the DOS with respect to the VBM yields

the lowest prediction errors because it uniformises the energy range on which the DOS is

defined. This strategy helps create uniform targets. In Appendix A.2, we discuss further the

challenges of building an ML DOS for this data set containing structures spanning a wide

density interval, and the need to numerically fit states in the conduction band.
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Figure 4.12: Root mean square error (RMSE) as a percentage of the total variance of the
energies and forces as a function of the size of the training set. Left: from the GAP model; right:
from the GAP and the finite-T el correction at T el = 35,000K.

We use the Projected Process approximation of the Gaussian process regression framework to

train the two ML models. The idea is to select a subselection of the training environments and

use them as a basis to expand the target quantities (energy or DOS). We select 7000 environ-

ments for the GAP model and 5000 environments for the DOS model. These environments

are chosen by a greedy algorithm, the furthest point sampling [88]. We validate our two ML

models on a validation set containing 2500 structures. Figure 4.12 shows the learning curves

(LCs) of the energies and forces obtained from the GAP model (left) and the full framework, i.e.

GAP and the thermal electronic correction (right) at T el = 35,000K. The LCs are still linear for

all the considered quantities in the log-log plots and suggest that the accuracy of the models

can be enhanced by training on more configurations. Table. 4.2 shows the root mean square

error (RMSE) of the different (free) energies and forces for T el = 0K and at T el = 35,000K. The

ML models are in good agreement with the corresponding DFT calculations and the RMSE of

the total free energy is well below the typical thermal energy at the temperatures we consider

in this study, and comparable to the values observed in previous simulations of liquid systems

at high ionic temperatures [93].

In order to gauge the importance of finite-T el effects, and to obtain accurate reference calcula-

tions consistent with our computational setup, we run two sets of FPMD trajectories targeting

the pressures 400GPa, 800GPa, 1,200GPa, and 1,600GPa for each of the ionic temperatures

T i = 10,000K, 20,000K, 35,000K, and 50,000K. The electronic temperature of the first set is
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Figure 4.13: Hydrogen isotherms of different equations of state (EOS). The empty circles
correspond to the EOS computed with “cold”-electron-Γ-point DFT. The empty diamonds
correspond to the EOS computed with finite-electron-temperature-Γ-point DFT. The dashed
lines correspond to the EOS computed with ML trained on T el = 0K data. The solid lines
correspond to the EOS computed with finite temperature ML framework, where T el = T i .
The temperatures range from 10,000K to 50,000K are denoted by the different colours as
shown in the legend. The statistical error bars computed by block averages are smaller
than the size of the markers. The small inset represents the radial distribution functions of
hydrogen at P = 400GPa and T i = 50,000K computed from the ML trajectories. The dashed
line corresponds to T el = 0K and the solid line to T el = T i .
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T el = 0K, while T el = T i is in the second set. The DFT calculations are performed with QE and

Γ-point sampling. We evolve the ion dynamics with i-PI for at least 8ps, after an equilibration

phase of 1ps, with a time step of 0.1fs. T i is controlled by stochastic velocity rescaling [171]

with a time constant τ = 5fs, and an isotropic barostat [172] with a time constant τ = 20fs,

thermalised with an optimal-sampling generalised Langevin thermostat [173]. Due to the high

temperature and the fast intrinsic time scale of hydrogen, such relatively short simulations are

sufficient to obtain converged results with small statistical uncertainty. We report the results of

these simulations in Fig. 4.13, by the empty symbols. The differences due to the finite electron

temperature grow steadily between 10,000K and 50,000K, and at the highest temperature, they

range between 4% at 1,600GPa and 10% at 400GPa, providing an indication of the impact of

finite-T el in this range of pressure and density.

We then run two analogous sets of trajectories based on the finite-T el MLIP, temperatures as

for the FPMD, and pressures spanning the range between 400GPa and 1,600GPa in intervals

of 100GPa. As for the case of FPMD, the first set of simulations does not include any finite

temperature effects (dashed lines in Fig. 4.13), while the second incorporates them (solid

lines). Our ML EOSs are in excellent agreement with the reference curves obtained with

explicit finite-T el FPMD, up to the statistical uncertainties. We also observe a small shift in

the radial distribution at the lower pressure and higher temperature range, corresponding

to the difference in particle densities. As an additional demonstration of the importance of

incorporating finite-T el effects, we compute constant-pressure heat capacities, Cp =
(
∂H
∂T

)
p

that we obtain as finite differences of the enthalpy H = 〈K 〉+〈A(T el)〉+T el 〈S0(T el)〉+p 〈V 〉,
Here K is the kinetic energy of the ions, and the averages 〈. . .〉 are computed over finite-T el

N pT sampling. Fig. 4.14 compares the heat capacity computed from T el = 0K simulations

(blue) with that computed including the electronic contributions (green) - which amounts

to almost 50% at the highest temperature considered. DFT and ML simulations agree with

each other within their statistical uncertainty. The a-posteriori incorporation of electronic

excitation by adding Cel ≡ 〈∂∆Eband
∂T 〉 (orange) on top of the T el = 0K ionic contribution, as done

in Ref. [136] and explained in Section 4.1, cannot reproduce accurately the finite-T el results.

These results demonstrate the accuracy of an ML model based on the ground-state DOS ap-

proximation in sampling the finite-T el thermophysical properties of hydrogen in a challenging

portion of its phase diagram. By treating explicitly the ionic and electronic degrees of freedom,

our ML models eliminate one of the most glaring limitations of traditional MLIPs, which are

restricted to performing simulations at a single (usually zero) electron temperature. We remark

that no restriction occurs in applying our machinery to a two-temperature model where the

electrons and the nuclei are thermalised at different temperatures, i.e. T el ̸= T i , even though a

more realistic scenario would incorporate some coupling term between the electronic and
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Figure 4.14: Specific heat capacity Cp of hydrogen from N pT simulations at 400GPa. The solid
lines represent the DFT calculations and the dashed lines represent the ML calculations. Blue:
Cp from the fluctuations of the ions’ enthalpy at T el = 0K; orange: Cp same as the blue curves
in addition to a correction term computed from the average band energy of the electrons over
the trajectories; green: Cp from the finite-T el sampling. The error bars are computed from
standard block analysis.

the nuclear subsystems. Our approach can be easily extended to any electronic structure

method based on the Kohn-Sham mapping and can be naturally used also for multiple-species

systems, opening the possibility of studying the complex phase diagram of metallic mixtures at

high-pT conditions, which dictates the evolution of giant planets [174]. On a conceptual level,

the idea of using a physical approximation in synergy with data-driven predictions emerges

as a promising research direction to further extend the scope of applicability of predictive

atomic-scale simulations.
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The electronic density of states (DOS) is a central quantity in the electronic structure theory.

It can be used to estimate several properties of materials, including thermal and optical

properties. Traditionally, the DOS is determined by performing expensive first-principle

calculations, which significantly limits the size of problems that can be investigated, even with

modern computing platforms. This makes the development of cheap and accurate models a

necessity for large-scale calculations. Machine-learning approaches are a good candidate for

building these surrogate models, as one only needs to perform calculations on a small number

of structures. Then the model performs the generalisation to other configurations.

In this thesis, we tried to tackle some of the issues linked to building machine-learning for

the DOS, including the optimal methods to represent it as a target for a machine-learning

algorithm, in order to reduce the complexity of the learning task. The success of the model led

us to explore its use as a building block in integrated machine-learning approaches, where we

used the DOS to account for the effects of the (thermally-excited) electrons.

However, constructing machine-learning models for the DOS can be challenging because the

DOS of a material is a smooth vector-valued function of the energy levels. The dimension of the

output space can become arbitrarily large when accurately representing the DOS variations.

Nevertheless, the smooth construction of the DOS hints towards possible correlations between

the values of the DOS. In particular, we investigated three approaches to represent the DOS

while keeping in mind the smoothness condition for the machine-learned DOS. We found

that it is possible to leverage the correlations between the values of the DOS to increase the

accuracy of the model by first predicting its cumulative distribution function when applied to

a challenging silicon dataset.

Alongside the proposed representations for the DOS, we introduced an atom-centred model
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and applied it to different classes of materials ranging from semiconductors, metals and matter

in extreme conditions. Its additivity property guarantees the scalability of the model trained

on small atomic configurations to larger and more complex structures. We demonstrated its

generalisation ability by predicting the electronic fingerprints in large silicon structures. The

atom-centred approach also gave us access to locally-defined DOS that, despite not being a

physical observable, provided us with insights into the electronic transitions in disordered

silicon phases and their interplay with the structural transitions.

Then, we explored how to use the DOS models in an integrated machine-learning framework,

arising from a physics-inspired modelling approach, to compute macroscopic properties of

materials. As a first step, we combined the DOS model with traditional ML potentials to com-

pute the heat capacity of nickel near its melting temperature, by assuming that the thermal

excitations of electrons do not affect the dynamics of the ions. Hence, we were able to estimate

the electronic contribution to the heat capacity of molten nickel, which explained the dis-

crepancy between the experimental and computational values. This approach was successful

because the difference between finite temperature forces and the ground state forces used to

train the potential energy surface model was negligible at the temperature regime investigated.

However, this assumption could not be maintained at higher temperatures, like in warm

dense matter conditions. In these cases, the finite temperature electronic free energy must

be used to perform finite temperature Born-Oppenheimer simulations. Machine-learning

techniques could reduce computational costs, but prior to our work, traditional approaches to

constructing the potential energy surface suffered from non-transferability between electronic

temperatures.

This thesis proposed a framework to approximate the electronic free energy from ground-

state data exclusively, which solved the temperature transferability problem. We combined

over-the-shelf machine-learning interatomic potentials with DOS models in a Mermin-like

expression for the electronic free energy and its gradients. In our framework, the electronic

temperature is an external parameter independent of the training phase of the models. There-

fore, it is guaranteed that the approximated free energy can be used over a wide range of

temperatures. We implemented these models in existing atomistic modelling software and

showcased them on metallic hydrogen in warm dense matter conditions. We successfully

recovered the equation of state and the heat capacity, both computed from first-principle

molecular dynamics, with our machine-learning framework at a fraction of the cost. This

is a powerful example of the potential of physics-driven modelling of materials combining

structural and electronic descriptions of atomic configurations.

Moving forward, one could think of different ways to enhance the atom-centred models of the
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DOS. One possible approach is to exploit the freedom in defining the local density of states

and, subsequently, the local atomic charges. They can be used within a self-consistent scheme

to align the local DOS so that the atomic charges can reconstruct a particular global field like

the Hartree potential within the simulation box. This charge equilibration scheme might be

useful to construct models for charge flow when two materials with different Fermi energies

are in contact, like semiconductors heterojunctions. Another aspect that could benefit from

accelerating the electronic DOS is two-temperature experiments mimicking light shining on

metals that can excite electrons to higher temperatures while keeping the ions “cold”. This

model can be combined with nonadiabatic simulation techniques to study several phenomena

like thermal transport across metal/non-metal interfaces [175] for example. Finally, one

could explore further the underlying assumption of decomposing the DOS of a structure into

contributions from atomic centres since the DOS is a global property of the entire structure.

The locality investigation of the DOS is part of an effort to study the locality effects of the

machine-learning models used in atomistic modelling. While these local contributions are the

result of a modelling exercise, they may be linked to experimental observables, hence, validate

our (machine-learning) models.

More broadly, this thesis demonstrates the advantages of combining ML predictions with

physics-based approximations, providing an example of hybrid modelling paradigm that

combines the flexibility of data-driven techniques with the transferability and interpretability

of physical models.
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In these three sections, we present and discuss some of the technical challenges in building

machine-learning (ML) models for the electronic density of states (DOS). In particular, we look

into the effect of the energy reference on the indirect learning of some derived quantities from

the DOS, and on the principal component (PC) representation of the DOS. We will use the

two data sets of silicon (Section 3.2) and hydrogen (Section 4.3) as examples to illustrate these

challenges and provide general guidelines for learning strategies for the DOS. Also, we provide

extra results about the interpretation of the local atomic charges defined from the local density

of states (LDOS) obtained from the DOS representations introduced in Section 3.1.

A.1 Alignment of the DOS

In this paragraph, we discuss some methods one could use to align the DOS as a target for an

ML approach and their effect on the calculation of the value of the DOS at the Fermi energy

(DOS(εF )), the Fermi energy (εF ) and the band energy.

The diversity of structures in the silicon dataset used in Section 3.2, in terms of densities and

type of structures (bulk vs clusters), presents one main challenge for modelling the DOS, that

is the choice of the energy reference to construct the DOS of the training set. We refer to this

problem as the DOS alignment.One could state that this problem is purely a mathematical

issue, as we see in Section 4.2, where the finite-temperature correction is independent of the

alignment of the DOS, i.e. the only constraint here is to have a consistent method to perform

the alignment for the entire data set. Therefore, the optimal choice should be left to the data

and the machine learning models.

In particular, we are interested in four strategies: aligning to the G = 0 component of the

Hartree potential (MH), the Fermi energy, the deepest core level (DS), and the valence band
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Figure A.1: Average errors in the density of states over 8 splits in the silicon dataset for different
band alignment strategies. The reference DOS is constructed using a Gaussian broadening
gb = 0.1eV. MH stands for average Hartree potential, εF stands for Fermi energy, DS stands for
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Figure A.2: Examples of the DFT and ML-predicted DOS of two silicon structures: (left) a liquid
structure; (right) a cluster structure. The energy reference is the deepest core level.
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minimum (VBM). We test these four strategies on the silicon data set of Section 3.2 using

the pointwise representation of the DOS targeting a Gaussian broadening of gb = 0.1eV. We

compute the errors by performing 8 train/test splits of the data set and report the test errors

only. We estimate the uncertainty of each strategy by computing the standard error of the

mean from the 8 splits. The top left panel of Fig. A.4 shows that the best method to align the

DOS is the G = 0 component of the Hartree potential used by default in FHI-aims, followed by

the Fermi energy and the VBM alignments. The DS alignment performs the worst in this data

set, even though the intuitive understanding states that these core levels should be isolated

from external effects; hence, they should provide a robust energy reference. Fig. A.2 might

provide an explanation for the high errors. We see that this model is prone to predicting

non-zero occupation for states in the conduction band while their DFT reference is zero. In

Section A.2, we discuss this problem further.

In the other panels of Fig. A.4, we report the prediction errors for up-mentioned derived

quantities from the different aligning strategies. We find that the DS alignment yields the

worst prediction errors for all the properties calculated, especially for the Fermi energy and

the band energy. However, it seems that MH alignment is the best approach to use with the

lowest errors in all quantities, followed by the VBM alignment. The latter has a straightforward

implementation from the eigenenergies themselves and does not require “hacking” DFT

packages to extract the mean Hartree potential value. As expected, we find that the alignment

to the Fermi energy performs the best in predicting the Fermi energy. This is explained by the

fact the Fermi energy is now a constant of the learning problem and is expected to be close to

zero. In fact, the RMSE of the Fermi energy, in this case, is lower than the energy grid spacing

of δϵ= 0.05eV.

Another direction to tackle this problem is to adjust the DOS in such a way that it has the

minimum possible variance at each energy channel without changing its shape, within a rigid

DOS approximation. This approach could be useful in situations where it is necessary to align

the DOS with certain physical constraints or requirements.

A.2 Unphysical unoccupied states

In Section A.1, we saw that the alignment of the DOS could play an important role in the

accuracy of the ML DOS models, and it could also affect the quantities that we compute with

DOS. One problem that we noticed was the prediction of non-zero DOS(ϵ) when its reference

DFT value is zero, as seen in Fig. A.2. The ML DOS model predicts the existence of the non-zero

DOS(ϵ) towards the edge of the computed conduction band. One could argue that this arises

from the construction of the reference DFT DOS. When performing DFT calculations on the
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Figure A.3: Left: Example of the unfitted DFT DOS of two hydrogen structures at different
densities computed using 3 bands per atom. Blue: density is 1.57g cm−3; orange: density is
0.91g cm−3. Right: Example of the effect of unphysical discontinuity of the DFT DOS on the
ML DOS (in blue) and the stabilised model after fitting the missing bands (in orange).

training set, one only provides the number of bands to be computed by the software and not

their energy range. This means that if we performed DFT calculations with more electronic

states per atom, the zero-occupation region in the right panel of Fig. A.2 would have states

that can be occupied. Therefore, we could say that these zero-values of the reference DOS are

not physical.

As mentioned earlier, we would like to assess the effects of these unphysical discontinuities

of the DFT DOS on the PC representation of the DOS and on the indirect learning of the

DOS-dependent quantities: the Fermi energy, the DOS(εF ), and the band energy for the silicon

data set. We use the VBM alignment and a Gaussian broadening of gb = 0.3eV. We truncate the

DOS to an energy level in the conduction band on which the DOS(ϵ) is non-zero because we

are not able to fit a function for the missing bands. We also compare to the models trained

on DOS presenting the unphysical discontinuities, that we truncate after obtaining the ML

predictions. We report in Fig. A.4 the evolution of the prediction errors as a function of the

number of principal components used to construct the DOS. These results are obtained by

performing the same 8 splits of train/test of the data set from Section A.1. We notice that all

prediction errors are saturated after using ≈ 15 PCs. Both strategies to train the DOS yield

compatible results on the derived quantities, which hints that the effect of the “unlearnable”

PCs, discussed in Section 3.2, is more important in this indirect learning approach.

We also see the same problem of the non-physical zero-DOS when dealing with the hydrogen

data set of Section 4.3. The data set contains configurations at different volumes and hence
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their DOS can span a different energy range, even after VBM alignment, for the same number of

the calculated electronic states (c.f. left panel of Figure A.3). The calculated DOS drops to zero

above the highest computed energy level. Even though the chosen number of energy levels is

always such that the Fermi-Dirac occupation of the highest level is negligible even at the largest

T el considered, a sudden, unphysical drop in the DOS may negatively affect the learning, as

discussed in Section A.1. To solve this issue, we fit the values of the missing (empty) states

to a square root behaviour, where we use a ∝p
ϵ−ϵ0 filling of the unphysically-zero DOS(ϵ),

to ensure that the targets for our ML DOS model do not involve unphysical discontinuities.

The right panel of Figure A.3 shows an example of the effect of such discontinuities on the

learning of the DOS in a liquid hydrogen structure and how fitting the missing bands provides

much-needed stability to the ML DOS model. We want to stress that these fitted occupations

do not contribute to the finite-T el correction, even at T el = 50,000K, despite the long tail of

the Fermi-Dirac distribution at this temperature. The RMSE of the finite-T el correction to

the atomic forces computed with the DFT fitted and unfitted DOS is 0.00037eV/Å and can be

neglected.

We also perform a similar study using the hydrogen data set. We include the finite-temperature

correction to the electronic free energy A(T el) at T el = 50,000K for the hydrogen data set. We

use the VBM alignment and a Gaussian broadening of gb = 0.5eV. We compare the performance

of the pointwise and the PC representations of the DOS. We also include results from one extra

strategy for building the DOS, which is dividing each the DOS of every structure A, DOS(A,ϵ),

by the volume of the structure. In a preliminary study, we found that this approach might

be justified by the fact the slope of the DOS in the conduction band was strongly dependent

on the volume. Due to the large size of this set (≈ 28,500 structures), we only perform these

predictions on a single train/test split. The train set size is 26,500 structures. We report the

results in Fig. A.5. We find that the derived quantities are almost insensitive to the model’s

building strategy, even though one would prefer to scale by the structures’ volume as a first

step in the fitting process and also fit the missing states from the DOS. In this example, the PC

representation of the DOS seems to outperform the pointwise representation.

A.3 Effect of the representation of the atomic charges

In Section 3.3, we show that the different representations of the DOS yield different ML LDOS

compared to the LOBSTER-defined LDOS. Consequently, the differences in the predicted

ML LDOS lead to different values of the atomic charges Q(Ai ). In Fig. A.6, we report three

scatter plots of the atomic charges for a 512-atom amorphous silicon structure obtained

from the pointwise, principal components, and CDF representations of the DOS. On one
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Figure A.4: (Blue curves) Evolution of the prediction errors of the PC representation of the
VBM-aligned DOS and its derived quantities: the DOS(εF ), the Fermi energy and the band
energy, as a function of the number of principal components. Solid lines describe truncating
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Figure A.5: Prediction errors of several strategies to represent the VBM-aligned DOS. The
quantities shown are the DOS, the Fermi energy εF , the DOS(εF ), the band energy, and the
finite-temperature correction to the electronic free energy A(T el= 50,000K). Transparent
colours: the pointwise representation. Opaque colours: the PC representation. Blue: no fitting
of the missing band and no normalising by the volume of the structures. Orange: no fitting
of the missing band and normalising by the volume of the structures. Green: fitting of the
missing band and no normalising by the volume of the structures. Red: fitting of the missing
band and normalising by the volume of the structures

side, we notice that the charges obtained from the pointwise and CDF representations are

correlated. Conversely, the charges from the PC representation show little correlation with

their counterpart from the pointwise or the CDF representations. This could be explained by

the difficulty in learning several PCs, which results in a predicted LDOS that is different from

the one obtained from the pointwise or the CDF representations.
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Figure A.6: Scatter plots of atomic charges defined from the LDOS of a 512-atom amorphous
silicon structure: comparison of atomic charges computed from (a) CDF and PW representa-
tions, (b) CDF and PC representations, and (c) PW and PC representations. The reference DOS
is constructed using gb=0.1eV. We notice that PW and CDF yielded correlated charges. Both
are not correlated with charges derived from the PC representation.
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[91] Annika Stuke, Milica Todorović, Matthias Rupp, Christian Kunkel, Kunal Ghosh, Lauri

Himanen, and Patrick Rinke. “Chemical Diversity in Molecular Orbital Energy Predic-

tions with Kernel Ridge Regression”. In: The Journal of Chemical Physics 150.20 (May

2019), p. 204121. DOI: 10.1063/1.5086105.

[92] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. “Gaussian Approxi-

mation Potentials: The Accuracy of Quantum Mechanics, without the Electrons”. In:

Physical Review Letters 104.13 (Apr. 2010), p. 136403. DOI: 10/dkchb7.

[93] Volker L. Deringer and Gábor Csányi. “Machine Learning Based Interatomic Potential

for Amorphous Carbon”. In: Physical Review B 95.9 (Mar. 2017), p. 094203. DOI: 10.

1103/PhysRevB.95.094203.

[94] Davis Unruh, Reza Vatan Meidanshahi, Stephen M. Goodnick, Gábor Csányi, and

Gergely T. Zimányi. “Gaussian Approximation Potential for Amorphous Si : H”. In:

Physical Review Materials 6.6 (June 2022), p. 065603. DOI: 10.1103/PhysRevMaterials.6.

065603.

[95] Volker L. Deringer, Miguel A. Caro, and Gábor Csányi. “A General-Purpose Machine-

Learning Force Field for Bulk and Nanostructured Phosphorus”. In: Nature Communi-

cations 11.1 (Dec. 2020), p. 5461. DOI: 10.1038/s41467-020-19168-z.

[96] Ganesh Sivaraman, Jicheng Guo, Logan Ward, Nathaniel Hoyt, Mark Williamson, Ian

Foster, Chris Benmore, and Nicholas Jackson. “Automated Development of Molten

Salt Machine Learning Potentials: Application to LiCl”. In: The Journal of Physical

Chemistry Letters 12.17 (May 2021), pp. 4278–4285. DOI: 10.1021/acs.jpclett.1c00901.

[97] James Barker, Johannes Bulin, Jan Hamaekers, and Sonja Mathias. “LC-GAP: Local-

ized Coulomb Descriptors for the Gaussian Approximation Potential”. In: Scientific

Computing and Algorithms in Industrial Simulations. Ed. by Michael Griebel, Anton

Schüller, and Marc Alexander Schweitzer. Cham: Springer International Publishing,

2017, pp. 25–42. DOI: 10.1007/978-3-319-62458-7_2.

[98] Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M. Wilkins, Michele Ceriotti,

and Gábor Csányi. “Gaussian Process Regression for Materials and Molecules”. In:

Chemical Reviews 121.16 (Aug. 2021), pp. 10073–10141. DOI: 10.1021/acs.chemrev.

1c00022.

[99] Hans Wackernagel. Multivariate Geostatistics: An Introduction with Applications. Berlin

; New York: Springer, 1995.

120

https://doi.org/10.1038/s41467-018-06972-x
https://doi.org/10.1063/1.5086105
https://doi.org/10/dkchb7
https://doi.org/10.1103/PhysRevB.95.094203
https://doi.org/10.1103/PhysRevB.95.094203
https://doi.org/10.1103/PhysRevMaterials.6.065603
https://doi.org/10.1103/PhysRevMaterials.6.065603
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1021/acs.jpclett.1c00901
https://doi.org/10.1007/978-3-319-62458-7_2
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022


BIBLIOGRAPHY Chapter A

[100] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. “Safe

Model-Based Reinforcement Learning with Stability Guarantees”. In: Advances in

Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,

2017.

[101] Haitao Liu, Jianfei Cai, and Yew-Soon Ong. “Remarks on Multi-Output Gaussian Pro-

cess Regression”. In: Knowledge-Based Systems 144 (Mar. 2018), pp. 102–121. DOI:

10.1016/j.knosys.2017.12.034.

[102] George Kimeldorf and Grace Wahba. “Some Results on Tchebycheffian Spline Func-

tions”. In: Journal of Mathematical Analysis and Applications 33.1 (Jan. 1971), pp. 82–95.

DOI: 10.1016/0022-247X(71)90184-3.

[103] Pierre Goovaerts. Geostatistics for Natural Resources Evaluation. Applied Geostatistics

Series. New York: Oxford University Press, 1997.

[104] Rupeng Li, Igor Shikhov, and Christoph H. Arns. “Bayesian Optimization With Transfer

Learning: A Study on Spatial Variability of Rock Properties Using NMR Relaxometry”.

In: Water Resources Research 58.9 (Sept. 2022). DOI: 10.1029/2021WR031590.

[105] Marc Soutter and Yvan Pannatier. “Groundwater Vulnerability to Pesticide Contam-

ination on a Regional Scale”. In: Journal of Environmental Quality 25.3 (May 1996),

pp. 439–444. DOI: 10.2134/jeq1996.00472425002500030009x.

[106] Jin Li and Andrew D. Heap. “A Review of Comparative Studies of Spatial Interpolation

Methods in Environmental Sciences: Performance and Impact Factors”. In: Ecological

Informatics 6.3-4 (July 2011), pp. 228–241. DOI: 10.1016/j.ecoinf.2010.12.003.

[107] Philipp Schneider, Nuria Castell, Matthias Vogt, Franck R. Dauge, William A. Lahoz, and

Alena Bartonova. “Mapping Urban Air Quality in near Real-Time Using Observations

from Low-Cost Sensors and Model Information”. In: Environment International 106

(Sept. 2017), pp. 234–247. DOI: 10.1016/j.envint.2017.05.005.

[108] A. G. Journel and Ch J. Huijbregts. Mining Geostatistics. Caldwell, N.J: Blackburn Press,

2003.

[109] Chiheb Ben Mahmoud, Andrea Anelli, Gábor Csányi, and Michele Ceriotti. “Learning

the Electronic Density of States in Condensed Matter”. In: Physical Review B 102.23

(Dec. 2020), p. 235130. DOI: 10.1103/PhysRevB.102.235130.

[110] Juan S Gómez-Jeria. “ON THE USE OF THE WHOLE EIGENVALUE SPECTRUM TO

OBTAIN SINGLE MOLECULE BAND STRUCTURES AND SOLID BAND GAPS FOR

MOLECULAR ELECTRONICS STUDIES”. In: Journal of the Chilean Chemical Society

51.2 (June 2006). DOI: 10.4067/S0717-97072006000200014.

121

https://doi.org/10.1016/j.knosys.2017.12.034
https://doi.org/10.1016/0022-247X(71)90184-3
https://doi.org/10.1029/2021WR031590
https://doi.org/10.2134/jeq1996.00472425002500030009x
https://doi.org/10.1016/j.ecoinf.2010.12.003
https://doi.org/10.1016/j.envint.2017.05.005
https://doi.org/10.1103/PhysRevB.102.235130
https://doi.org/10.4067/S0717-97072006000200014


Chapter A BIBLIOGRAPHY

[111] Nicola Marzari, David Vanderbilt, and M. C. Payne. “Ensemble Density-Functional

Theory for Ab Initio Molecular Dynamics of Metals and Finite-Temperature Insulators”.

In: Physical Review Letters 79.7 (Aug. 1997), pp. 1337–1340. DOI: 10/bhzwsv.

[112] Félix Musil, Michael J. Willatt, Mikhail A. Langovoy, and Michele Ceriotti. “Fast and Ac-

curate Uncertainty Estimation in Chemical Machine Learning”. In: Journal of Chemical

Theory and Computation 15.2 (Feb. 2019), pp. 906–915. DOI: 10/gft4fv.

[113] Giulio Imbalzano, Yongbin Zhuang, Venkat Kapil, Kevin Rossi, Edgar A. Engel, Federico

Grasselli, and Michele Ceriotti. “Uncertainty Estimation for Molecular Dynamics and

Sampling”. In: The Journal of Chemical Physics 154.7 (Feb. 2021), p. 074102. DOI: 10/

gh4k2w.

[114] Y. Rubner, C. Tomasi, and L.J. Guibas. “A Metric for Distributions with Applications

to Image Databases”. In: Sixth International Conference on Computer Vision (IEEE

Cat. No.98CH36271). Bombay, India: Narosa Publishing House, 1998, pp. 59–66. DOI:

10.1109/ICCV.1998.710701.

[115] Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren, Karsten

Reuter, and Matthias Scheffler. “Ab Initio Molecular Simulations with Numeric Atom-

Centered Orbitals”. In: Computer Physics Communications 180.11 (Nov. 2009), pp. 2175–

2196. DOI: 10/bzxqhn.

[116] Félix Musil, Max Veit, Alexander Goscinski, Guillaume Fraux, Michael J. Willatt, Markus

Stricker, Till Junge, and Michele Ceriotti. “Efficient Implementation of Atom-Density

Representations”. In: The Journal of Chemical Physics 154.11 (Mar. 2021), p. 114109.

DOI: 10/gjg7k4.

[117] Michele Ceriotti, Silvia Cereda, Francesco Montalenti, Leo Miglio, and Marco Bernasconi.

“Ab Initio Study of the Diffusion and Decomposition Pathways of SiH x Species on

Si(100)”. In: Physical Review B 79.16 (Apr. 2009), p. 165437. DOI: 10.1103/PhysRevB.79.

165437.

[118] Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J. Cliffe, Rachel N. Ker-

ber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott, and Gábor Csányi. “Realistic

Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular

Dynamics”. In: The Journal of Physical Chemistry Letters 9.11 (June 2018), pp. 2879–

2885. DOI: 10.1021/acs.jpclett.8b00902.

[119] David M. Wilkins, Andrea Grisafi, Yang Yang, Ka Un Lao, Robert A. DiStasio, and

Michele Ceriotti. “Accurate Molecular Polarizabilities with Coupled Cluster Theory

and Machine Learning”. In: Proceedings of the National Academy of Sciences 116.9 (Feb.

2019), pp. 3401–3406. DOI: 10.1073/pnas.1816132116.

122

https://doi.org/10/bhzwsv
https://doi.org/10/gft4fv
https://doi.org/10/gh4k2w
https://doi.org/10/gh4k2w
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10/bzxqhn
https://doi.org/10/gjg7k4
https://doi.org/10.1103/PhysRevB.79.165437
https://doi.org/10.1103/PhysRevB.79.165437
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1073/pnas.1816132116


BIBLIOGRAPHY Chapter A

[120] Max Veit, David M. Wilkins, Yang Yang, Robert A. DiStasio, and Michele Ceriotti.

“Predicting Molecular Dipole Moments by Combining Atomic Partial Charges and

Atomic Dipoles”. In: The Journal of Chemical Physics 153.2 (July 2020), p. 024113. DOI:

10.1063/5.0009106.

[121] Guillaume Fraux, Rose Cersonsky, and Michele Ceriotti. “Chemiscope: Interactive

Structure-Property Explorer for Materials and Molecules”. In: Journal of Open Source

Software 5.51 (July 2020), p. 2117. DOI: 10.21105/joss.02117.

[122] P.-L. Chau and A. J. Hardwick. “A New Order Parameter for Tetrahedral Configurations”.

In: Molecular Physics 93.3 (Feb. 1998), pp. 511–518. DOI: 10.1080/002689798169195.

[123] Jeffrey R. Errington and Pablo G. Debenedetti. “Relationship between Structural Order

and the Anomalies of Liquid Water”. In: Nature 409.6818 (Jan. 2001), pp. 318–321. DOI:

10.1038/35053024.

[124] Noam Bernstein, Bishal Bhattarai, Gábor Csányi, David A. Drabold, Stephen R. Elliott,

and Volker L. Deringer. “Quantifying Chemical Structure and Machine-Learned Atomic

Energies in Amorphous and Liquid Silicon”. In: Angewandte Chemie International

Edition 58.21 (2019), pp. 7057–7061. DOI: 10/gfwgnz.

[125] Stefan Maintz, Volker L. Deringer, Andrei L. Tchougréeff, and Richard Dronskowski.

“LOBSTER: A Tool to Extract Chemical Bonding from Plane-Wave Based DFT: Tool to

Extract Chemical Bonding”. In: Journal of Computational Chemistry 37.11 (Apr. 2016),

pp. 1030–1035. DOI: 10.1002/jcc.24300.

[126] Sudip K. Deb, Martin Wilding, Maddury Somayazulu, and Paul F. McMillan. “Pressure-

Induced Amorphization and an Amorphous–Amorphous Transition in Densified Porous

Silicon”. In: Nature 414.6863 (Nov. 2001), pp. 528–530. DOI: 10.1038/35107036.

[127] Paul F. McMillan, Mark Wilson, Dominik Daisenberger, and Denis Machon. “A Density-

Driven Phase Transition between Semiconducting and Metallic Polyamorphs of Sili-

con”. In: Nature Materials 4.9 (Sept. 2005), pp. 680–684. DOI: 10.1038/nmat1458.

[128] Dominik Daisenberger, Thierry Deschamps, Bernard Champagnon, Mohamed Mezouar,

Raúl Quesada Cabrera, Mark Wilson, and Paul F. McMillan. “Polyamorphic Amorphous

Silicon at High Pressure: Raman and Spatially Resolved X-ray Scattering and Molec-

ular Dynamics Studies”. In: The Journal of Physical Chemistry B 115.48 (Dec. 2011),

pp. 14246–14255. DOI: 10.1021/jp205090s.

[129] K. K. Pandey, Nandini Garg, K. V. Shanavas, Surinder M. Sharma, and S. K. Sikka.

“Pressure Induced Crystallization in Amorphous Silicon”. In: Journal of Applied Physics

109.11 (June 2011), p. 113511. DOI: 10.1063/1.3592963.

123

https://doi.org/10.1063/5.0009106
https://doi.org/10.21105/joss.02117
https://doi.org/10.1080/002689798169195
https://doi.org/10.1038/35053024
https://doi.org/10/gfwgnz
https://doi.org/10.1002/jcc.24300
https://doi.org/10.1038/35107036
https://doi.org/10.1038/nmat1458
https://doi.org/10.1021/jp205090s
https://doi.org/10.1063/1.3592963


Chapter A BIBLIOGRAPHY

[130] Nandini Garg, K. K. Pandey, K. V. Shanavas, C. A. Betty, and Surinder M. Sharma. “Mem-

ory Effect in Low-Density Amorphous Silicon under Pressure”. In: Physical Review B

83.11 (Mar. 2011), p. 115202. DOI: 10.1103/PhysRevB.83.115202.

[131] N. F. Mott and E. A. Davis. Electronic Processes in Non-Crystalline Materials. 2nd ed.

International Series of Monographs on Physics. Oxford: Clarendon Press, 2012.

[132] Martin Beye, Florian Sorgenfrei, William F. Schlotter, Wilfried Wurth, and Alexander

Föhlisch. “The Liquid-Liquid Phase Transition in Silicon Revealed by Snapshots of

Valence Electrons”. In: Proceedings of the National Academy of Sciences 107.39 (Sept.

2010), pp. 16772–16776. DOI: 10.1073/pnas.1006499107.

[133] O. I. Barkalov, V. G. Tissen, P. F. McMillan, M. Wilson, A. Sella, and M. V. Nefedova.

“Pressure-Induced Transformations and Superconductivity of Amorphous Germa-

nium”. In: Physical Review B 82.2 (July 2010), p. 020507. DOI: 10.1103/PhysRevB.82.

020507.

[134] J.M. Mignot, G. Chouteau, and G. Martinez. “High Pressure Superconductivity of

Silicon”. In: Physica B+C 135.1-3 (Dec. 1985), pp. 235–238. DOI: 10.1016/0378-4363(85)

90473-5.

[135] Ali Alavi, Jorge Kohanoff, Michele Parrinello, and Daan Frenkel. “Ab Initio Molecu-

lar Dynamics with Excited Electrons”. In: Physical Review Letters 73.19 (Nov. 1994),

pp. 2599–2602. DOI: 10.1103/PhysRevLett.73.2599.

[136] Nataliya Lopanitsyna, Chiheb Ben Mahmoud, and Michele Ceriotti. “Finite-Temperature

Materials Modeling from the Quantum Nuclei to the Hot Electron Regime”. In: Physical

Review Materials 5.4 (Apr. 2021), p. 043802. DOI: 10/gjr8gv.

[137] Chiheb Ben Mahmoud, Federico Grasselli, and Michele Ceriotti. “Predicting Hot-

Electron Free Energies from Ground-State Data”. In: Physical Review B 106.12 (Sept.

2022), p. L121116. DOI: 10.1103/PhysRevB.106.L121116.

[138] G.P. Purja Pun and Y. Mishin. “Development of an Interatomic Potential for the Ni-Al

System”. In: Philosophical Magazine 89.34-36 (Dec. 2009), pp. 3245–3267. DOI: 10.1080/

14786430903258184.

[139] F. Körmann, A. Dick, T. Hickel, and J. Neugebauer. “Role of Spin Quantization in Deter-

mining the Thermodynamic Properties of Magnetic Transition Metals”. In: Physical

Review B 83.16 (Apr. 2011), p. 165114. DOI: 10.1103/PhysRevB.83.165114.

[140] Ulf R. Pedersen, Felix Hummel, Georg Kresse, Gerhard Kahl, and Christoph Dellago.

“Computing Gibbs Free Energy Differences by Interface Pinning”. In: Physical Review B

88.9 (Sept. 2013), p. 094101. DOI: 10.1103/PhysRevB.88.094101.

124

https://doi.org/10.1103/PhysRevB.83.115202
https://doi.org/10.1073/pnas.1006499107
https://doi.org/10.1103/PhysRevB.82.020507
https://doi.org/10.1103/PhysRevB.82.020507
https://doi.org/10.1016/0378-4363(85)90473-5
https://doi.org/10.1016/0378-4363(85)90473-5
https://doi.org/10.1103/PhysRevLett.73.2599
https://doi.org/10/gjr8gv
https://doi.org/10.1103/PhysRevB.106.L121116
https://doi.org/10.1080/14786430903258184
https://doi.org/10.1080/14786430903258184
https://doi.org/10.1103/PhysRevB.83.165114
https://doi.org/10.1103/PhysRevB.88.094101


BIBLIOGRAPHY Chapter A

[141] Li-Fang Zhu, Fritz Körmann, Andrei V. Ruban, Jörg Neugebauer, and Blazej Grabowski.

“Performance of the Standard Exchange-Correlation Functionals in Predicting Melting

Properties Fully from First Principles: Application to Al and Magnetic Ni”. In: Physical

Review B 101.14 (Apr. 2020), p. 144108. DOI: 10/gh5dpr.

[142] Roberto Scipioni, Lars Stixrude, and Michael P. Desjarlais. “Electrical Conductivity of

SiO2 at Extreme Conditions and Planetary Dynamos”. In: Proceedings of the National

Academy of Sciences 114.34 (Aug. 2017), pp. 9009–9013. DOI: 10/gbvq7t.

[143] D. I. Mihaylov, V. V. Karasiev, S. X. Hu, J. R. Rygg, V. N. Goncharov, and G. W. Collins.

“Improved First-Principles Equation-of-State Table of Deuterium for High-Energy-

Density Applications”. In: Physical Review B 104.14 (Oct. 2021), p. 144104. DOI: 10.1103/

PhysRevB.104.144104.

[144] Valentin V. Karasiev, James W. Dufty, and S. B. Trickey. “Nonempirical Semilocal Free-

Energy Density Functional for Matter under Extreme Conditions”. In: Physical Review

Letters 120.7 (Feb. 2018), p. 076401. DOI: 10.1103/PhysRevLett.120.076401.

[145] Jeffrey M. McMahon, Miguel A. Morales, Carlo Pierleoni, and David M. Ceperley. “The

Properties of Hydrogen and Helium under Extreme Conditions”. In: Reviews of Modern

Physics 84.4 (Nov. 2012), pp. 1607–1653. DOI: 10.1103/RevModPhys.84.1607.

[146] M. Bonitz, T. Dornheim, Zh. A. Moldabekov, S. Zhang, P. Hamann, H. Kählert, A. Filinov,

K. Ramakrishna, and J. Vorberger. “Ab Initio Simulation of Warm Dense Matter”. In:

Physics of Plasmas 27.4 (Apr. 2020), p. 042710. DOI: 10/ghnbz6.

[147] B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer. “Ab Initio up to the Melting Point:

Anharmonicity and Vacancies in Aluminum”. In: Physical Review B 79.13 (Apr. 2009),

p. 134106. DOI: 10/b827jj.

[148] Duancheng Ma, Blazej Grabowski, Fritz Körmann, Jörg Neugebauer, and Dierk Raabe.

“Ab Initio Thermodynamics of the CoCrFeMnNi High Entropy Alloy: Importance of

Entropy Contributions beyond the Configurational One”. In: Acta Materialia 100 (Nov.

2015), pp. 90–97. DOI: 10.1016/j.actamat.2015.08.050.

[149] Yuzhi Zhang, Chang Gao, Qianrui Liu, Linfeng Zhang, Han Wang, and Mohan Chen.

“Warm Dense Matter Simulation via Electron Temperature Dependent Deep Potential

Molecular Dynamics”. In: Physics of Plasmas 27.12 (Dec. 2020), p. 122704. DOI: 10.1063/

5.0023265.

[150] N. David Mermin. “Thermal Properties of the Inhomogeneous Electron Gas”. In: Phys-

ical Review 137.5A (Mar. 1965), A1441–A1443. DOI: 10/dwfk8s.

125

https://doi.org/10/gh5dpr
https://doi.org/10/gbvq7t
https://doi.org/10.1103/PhysRevB.104.144104
https://doi.org/10.1103/PhysRevB.104.144104
https://doi.org/10.1103/PhysRevLett.120.076401
https://doi.org/10.1103/RevModPhys.84.1607
https://doi.org/10/ghnbz6
https://doi.org/10/b827jj
https://doi.org/10.1016/j.actamat.2015.08.050
https://doi.org/10.1063/5.0023265
https://doi.org/10.1063/5.0023265
https://doi.org/10/dwfk8s


Chapter A BIBLIOGRAPHY

[151] Renata M. Wentzcovitch, José Luís Martins, and Philip B. Allen. “Energy versus Free-

Energy Conservation in First-Principles Molecular Dynamics”. In: Physical Review B

45.19 (May 1992), pp. 11372–11374. DOI: 10.1103/PhysRevB.45.11372.

[152] Valentin V. Karasiev, Joshua Hinz, S. X. Hu, and S. B. Trickey. “Elucidation of the Subcriti-

cal Character of the Liquid–Liquid Transition in Dense Hydrogen”. In: arXiv:2012.13835

[cond-mat] (Dec. 2020). arXiv: 2012.13835 [cond-mat].

[153] Aurora Pribram-Jones, Stefano Pittalis, E. K. U. Gross, and Kieron Burke. “Thermal

Density Functional Theory in Context”. In: arXiv:1309.3043 [cond-mat, physics:physics,

physics:quant-ph] 96 (2014), pp. 25–60. DOI: 10/gjg4rp. arXiv: 1309.3043 [cond-mat,

physics:physics, physics:quant-ph].

[154] M. Weinert and J. W. Davenport. “Fractional Occupations and Density-Functional

Energies and Forces”. In: Physical Review B 45.23 (June 1992), pp. 13709–13712. DOI:

10.1103/PhysRevB.45.13709.

[155] S. Goedecker and K. Maschke. “Operator Approach in the Linearized Augmented-

Plane-Wave Method: Efficient Electronic-Structure Calculations Including Forces”. In:

Physical Review B 45.4 (Jan. 1992), pp. 1597–1604. DOI: 10.1103/PhysRevB.45.1597.

[156] Dávid Péter Kovács, Cas van der Oord, Jiri Kucera, Alice E. A. Allen, Daniel J. Cole,

Christoph Ortner, and Gábor Csányi. “Linear Atomic Cluster Expansion Force Fields for

Organic Molecules: Beyond RMSE”. In: Journal of Chemical Theory and Computation

17.12 (Dec. 2021), pp. 7696–7711. DOI: 10.1021/acs.jctc.1c00647.

[157] Xi Zhang, Blazej Grabowski, Fritz Körmann, Christoph Freysoldt, and Jörg Neugebauer.

“Accurate Electronic Free Energies of the $3\mathit{d},4\mathit{d}$, and $5\mathit{d}$

Transition Metals at High Temperatures”. In: Physical Review B 95.16 (Apr. 2017),

p. 165126. DOI: 10/ghtrv6.

[158] N. Nettelmann, A. Becker, B. Holst, and R. Redmer. “JUPITER MODELS WITH IM-

PROVED AB INITIO HYDROGEN EQUATION OF STATE (H-REOS.2)”. In: The Astro-

physical Journal 750.1 (Apr. 2012), p. 52. DOI: 10/ggvszg.

[159] Bingqing Cheng, Guglielmo Mazzola, Chris J. Pickard, and Michele Ceriotti. “Evidence

for Supercritical Behaviour of High-Pressure Liquid Hydrogen”. In: Nature 585.7824

(Sept. 2020), pp. 217–220. DOI: 10/gg99h2.

[160] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo

Cavazzoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo,

Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer,

Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-

Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo

126

https://doi.org/10.1103/PhysRevB.45.11372
https://arxiv.org/abs/2012.13835
https://doi.org/10/gjg4rp
https://arxiv.org/abs/1309.3043
https://arxiv.org/abs/1309.3043
https://doi.org/10.1103/PhysRevB.45.13709
https://doi.org/10.1103/PhysRevB.45.1597
https://doi.org/10.1021/acs.jctc.1c00647
https://doi.org/10/ghtrv6
https://doi.org/10/ggvszg
https://doi.org/10/gg99h2


BIBLIOGRAPHY Chapter A

Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero,

Ari P. Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M. Wentzcovitch.

“QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum

Simulations of Materials”. In: Journal of Physics: Condensed Matter 21.39 (Sept. 2009),

p. 395502. DOI: 10/d7spb8.

[161] P Giannozzi, O Andreussi, T Brumme, O Bunau, M Buongiorno Nardelli, M Calandra, R

Car, C Cavazzoni, D Ceresoli, M Cococcioni, N Colonna, I Carnimeo, A Dal Corso, S de

Gironcoli, P Delugas, R A DiStasio, A Ferretti, A Floris, G Fratesi, G Fugallo, R Gebauer,

U Gerstmann, F Giustino, T Gorni, J Jia, M Kawamura, H-Y Ko, A Kokalj, E Küçükbenli,

M Lazzeri, M Marsili, N Marzari, F Mauri, N L Nguyen, H-V Nguyen, A Otero-de-la-

Roza, L Paulatto, S Poncé, D Rocca, R Sabatini, B Santra, M Schlipf, A P Seitsonen,

A Smogunov, I Timrov, T Thonhauser, P Umari, N Vast, X Wu, and S Baroni. “Advanced

Capabilities for Materials Modelling with Quantum ESPRESSO”. In: Journal of Physics:

Condensed Matter 29.46 (Nov. 2017), p. 465901. DOI: 10.1088/1361-648X/aa8f79.

[162] Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato, Roberto Car, Ivan

Carnimeo, Carlo Cavazzoni, Stefano de Gironcoli, Pietro Delugas, Fabrizio Ferrari

Ruffino, Andrea Ferretti, Nicola Marzari, Iurii Timrov, Andrea Urru, and Stefano Baroni.

“Q UANTUM ESPRESSO toward the Exascale”. In: The Journal of Chemical Physics

152.15 (Apr. 2020), p. 154105. DOI: 10.1063/5.0005082.

[163] Martin Schlipf and François Gygi. “Optimization Algorithm for the Generation of ONCV

Pseudopotentials”. In: Computer Physics Communications 196 (Nov. 2015), pp. 36–44.

DOI: 10/f7tvm7.

[164] Jiming Sun, Bryan K. Clark, Salvatore Torquato, and Roberto Car. “The Phase Diagram

of High-Pressure Superionic Ice”. In: Nature Communications 6.1 (Nov. 2015), p. 8156.

DOI: 10.1038/ncomms9156.

[165] Kristian Berland, Valentino R. Cooper, Kyuho Lee, Elsebeth Schröder, T. Thonhauser,

Per Hyldgaard, and Bengt I. Lundqvist. “Van Der Waals Forces in Density Functional

Theory: A Review of the vdW-DF Method”. In: Reports on Progress in Physics 78.6 (May

2015), p. 066501. DOI: 10/f3n3tz.

[166] T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland, E. Schröder, and P. Hyldgaard. “Spin

Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks”. In: Physical

Review Letters 115.13 (Sept. 2015), p. 136402. DOI: 10.1103/PhysRevLett.115.136402.

[167] D C Langreth, B I Lundqvist, S D Chakarova-Käck, V R Cooper, M Dion, P Hyldgaard,

A Kelkkanen, J Kleis, Lingzhu Kong, Shen Li, P G Moses, E Murray, A Puzder, H Rydberg,

E Schröder, and T Thonhauser. “A Density Functional for Sparse Matter”. In: Journal

127

https://doi.org/10/d7spb8
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1063/5.0005082
https://doi.org/10/f7tvm7
https://doi.org/10.1038/ncomms9156
https://doi.org/10/f3n3tz
https://doi.org/10.1103/PhysRevLett.115.136402


Chapter A BIBLIOGRAPHY

of Physics: Condensed Matter 21.8 (Feb. 2009), p. 084203. DOI: 10.1088/0953-8984/21/

8/084203.

[168] T. Thonhauser, Valentino R. Cooper, Shen Li, Aaron Puzder, Per Hyldgaard, and David

C. Langreth. “Van Der Waals Density Functional: Self-consistent Potential and the

Nature of the van Der Waals Bond”. In: Physical Review B 76.12 (Sept. 2007), p. 125112.

DOI: 10.1103/PhysRevB.76.125112.

[169] Nicola Marzari, David Vanderbilt, Alessandro De Vita, and M. C. Payne. “Thermal

Contraction and Disordering of the Al(110) Surface”. In: Physical Review Letters 82.16

(Apr. 1999), pp. 3296–3299. DOI: 10/fg796x.

[170] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael

Brown, Paul S. Crozier, Pieter J. in ’t Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac

Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian Trott, and Steven J.

Plimpton. “LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling

at the Atomic, Meso, and Continuum Scales”. In: Computer Physics Communications

271 (Feb. 2022), p. 108171. DOI: 10.1016/j.cpc.2021.108171.

[171] Giovanni Bussi, Davide Donadio, and Michele Parrinello. “Canonical Sampling through

Velocity Rescaling”. In: The Journal of Chemical Physics 126.1 (Jan. 2007), p. 014101.

DOI: 10.1063/1.2408420.

[172] Giovanni Bussi, Tatyana Zykova-Timan, and Michele Parrinello. “Isothermal-Isobaric

Molecular Dynamics Using Stochastic Velocity Rescaling”. In: The Journal of Chemical

Physics 130.7 (Feb. 2009), p. 074101. DOI: 10.1063/1.3073889.

[173] Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. “Colored-Noise Thermostats

à La Carte”. In: Journal of Chemical Theory and Computation 6.4 (Apr. 2010), pp. 1170–

1180. DOI: 10.1021/ct900563s.

[174] Ravit Helled, Guglielmo Mazzola, and Ronald Redmer. “Understanding Dense Hydro-

gen at Planetary Conditions”. In: Nature Reviews Physics 2.10 (Oct. 2020), pp. 562–574.

DOI: 10/gk5m37.

[175] Yan Wang, Xiulin Ruan, and Ajit K. Roy. “Two-Temperature Nonequilibrium Molecular

Dynamics Simulation of Thermal Transport across Metal-Nonmetal Interfaces”. In:

Physical Review B 85.20 (May 2012), p. 205311. DOI: 10.1103/PhysRevB.85.205311.

128

https://doi.org/10.1088/0953-8984/21/8/084203
https://doi.org/10.1088/0953-8984/21/8/084203
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10/fg796x
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.3073889
https://doi.org/10.1021/ct900563s
https://doi.org/10/gk5m37
https://doi.org/10.1103/PhysRevB.85.205311


Curriculum Vitae

Personal Information

Chiheb BEN MAHMOUD
Doctoral Assistant
Ecole Polytechnique Fédérale de Lausanne
COSMO - STI 1015 Lausanne
Switzerland

Email: bmahmoud.chiheb@gmail.com
G. Scholar: https://scholar.google.com/citations?user=hHRmxPgAAAAJ&hl
ORCiD: https://orcid.org/0000-0002-6695-1402

Education

09/2018–now Ph.D., Materials Science and Engineering
Ecole Polytechnique Fédérale de Lausanne
Advisor: Prof. Michele Ceriotti
I am working under the supervision of Prof. Michele Ceriotti on applying machine-
learning techniques to learn and predict electronic structure properties. In particu-
lar, my research project focuses on modelling the electronic density of states (DOS)
as a multi-output target using geometrical descriptors. The main project lines are:

• building an atom-centred model for the DOS [1] using the SOAP descriptor
and applying it to identify possible correlations between structural and
electronic features in amorphous Silicon [1,2]

• utilizing the atom-centred model for the DOS to account for the electronic
thermal excitations as a correction term for ground-state properties [3],
and to build temperature-dependent machine-learning interatomic poten-
tials by exclusively training on ground-state data and then extrapolating
to any given temperature to perform finite-temperature simulations of
materials at the warm dense matter conditions [4]

09/2014–12/2017 MSc in Engineering, Physics and Applications
Ecole CentraleSupelec (ex Ecole Centrale Paris), France
One of the top French engineering schools. I joined the research-optimized pro-
gram in January 2015. Some relevant courses are quantum physics, non-equilibrium
statistical physics, solid state physics, numerical atomistic simulations, nanomag-
netism and spintronics. Average: 15/20.

09/2016–09/2017 MSc, Nanosciences
University of Paris-Sud (Orsay), France
One of the top universities in France. I am enrolled in a double degree program
with Ecole CentraleSupélec. Some of the relevant courses are quantum optics,
mesoscopic physics and nanophotonics. End of year project is validated with high
honours. Average: 14.41/20.

09/2011–07/2014 Classe preparatoire aux grandes écoles
Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, Tunisia

129



High-level academic training in mathematics and physics (MP). The main subjects
were Analysis, Algebra, Mechanics, Electromagnetism and Chemistry with addi-
tional courses in philosophy and English. At the end of my studies, I sat for a
highly selective pathway to Ecole Centrale Paris.

Internships and projects

05/2017–02/2018 Ecole Polytechnique Fédérale de Lausanne, THEOS
Supervisor: Prof. Nicola Marzari
Project: My project was about comparing the branching method vs the use of sev-
eral thermostats (GLE and SVR) in extracting diffusion coefficients in the TIP4P
water model and LLZO using MD. The effect of these thermostats on the tracer
and charge diffusion coefficients and the Haven ratio was investigated.

03/2016–06/2016 The Hong Kong University of Science and Technology
Supervisor: Prof. Francesco Ciucci
Project: I studied the effect of oxygen vacancies on proton diffusion in Yttrium-
doped Barium Zirconate using ReaxFF potential by LAMMPS MD simulations. I
tried to look for possible correlations. The structure has become too soft.

Tutoring experience

During my thesis preparation, I have been a TA in the following courses:

• Algèbre linéaire (MATH-111(g)): fall semesters of 2018, 2019 and 2020

• Statistical mechanics (MSE-421): spring semesters of 2019, 2020 and 2021

• MARVEL summer camp (for high school students): June 2021 and June 2022

I was also supervising the following Master student(s) for their semester projects:

• Rachel Wang, Data-driven materials modelling: a primer : Autumn semester 2019

Journal Publications

1. Ben Mahmoud, C., Anelli, A., Csányi, G., Ceriotti, M., 2020. Learning the electronic density
of states in condensed matter. Phys. Rev. B 102, 235130.

2. Deringer, V.L., Bernstein, N., Csányi, G., Ben Mahmoud, C., Ceriotti, M., Wilson, M.,
Drabold, D.A., Elliott, S.R., 2021. Origins of structural and electronic transitions in disordered
silicon. Nature 589, 59–64.

3. Lopanitsyna, N., Ben Mahmoud, C., Ceriotti, M., 2021. Finite-temperature materials mod-
elling from the quantum nuclei to the hot electrons regime. Phys. Rev. Materials 5, 043802

4. Ben Mahmoud, C., Grasselli, F., Ceriotti, M., 2022. Predicting hot-electron free energies
from ground-state data. Phys. Rev. B 106, L121116.

Conferences and oral presentations

• APS March Meeting 2021 (online)

• Psi-k 2022 conference

• DPG conference Regensburg 2022

130



Honors, Awards & Scholarships

• I was awarded a 4-year-merit-based scholarship by the French government to pursue my studies
at Ecole Centrale Paris (2014-2017)

Extra tarining

• CAMD summer school 2022 (Denmark): a week-long summer school with a focus on the use
of electronic structure theory in materials design.

Languages

• Arabic (native)

• French (full proficiency)

• English (full proficiency)

• German (Notions)

Digital competence

• Languages: Python, C++, HTML/CSS/Javascript

• Libraries: NumPy, SciPy, PyTorch, librascal, Chemiscope, ASE

• Programs: Quantum Espresso, FHI-aims, i-PI, LAMMPS

131


	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Summary

	Methods
	Introduction
	Density based descriptors
	GPR for scalar-valued functions
	Function space point of view
	Weight space point of view and links to RKHS
	GPR in atomistic modelling

	Extension to vector-valued functions
	Function space and RKHS
	Kernel design for vector-valued functions


	Learning the electronic density of states
	Atom-centred model for the DOS
	Benchmarks on silicon data set
	Electronic fingerprints in amorphous silicon
	Application: Origins of electronic transitions in disordered silicon
	Conclusion

	Thermal excitations
	Electronic thermal excitations as an a posteriori correction
	Approximating the finite temperature free energy
	Hydrogen in planetary conditions

	Conclusions
	Appendix
	Alignment of the DOS
	Unphysical unoccupied states 
	Effect of the representation of the atomic charges

	Bibliography
	Curriculum Vitae



