
1.  Introduction
The ecological and hydro-morphological significance of aquatic vegetation in lowland rivers is widely 
acknowledged with aquatic plants providing important habitat for a large number of vertebrates and inverte-
brates (Corenblit et al., 2007; Gurnell & Grabowski, 2016; Gurnell et al., 2006; O’Hare et al., 2018; Wharton 
et al., 2006). This results from the interactions between vegetation and flows (Biggs et al., 2019; Cornacchia 
et al., 2018; Franklin et al., 2008; Marjoribanks et al., 2017) and modification of the transport, trapping and 
retention of sediment by plants which affects the residence times of sediment-bound nutrients and contaminants 
(Gurnell & Bertoldi,  2022; Heppell et  al.,  2009). The interactions may take place at different spatial scales 
(Schoelynck et al., 2012), from the blade scale, which is key for nutrient uptake by plants, to the patch and reach 
scales, which are important in sediment transport processes and disturbances induced by flow shear stresses 
and biogeochemical conditions (Cornacchia et al., 2020; Cotton et al., 2006). Interactions between submerged 
plants, sediment, and water may affect the growth and decay of plants and the entire morphodynamic evolution 
of the channel itself (Gurnell, 2014; Gurnell & Grabowski, 2016). As a result of the feedbacks among plants and 

Abstract  Aquatic vegetation in fluvial systems is often characterized by spatial patterning of the plant 
patches. To investigate the conditions for the formation of vegetation patches, we explore the stability of a 
uniform flow over a non-erodible bed with a uniform vegetation cover of submerged plants. The flow model 
consists of the two-dimensional shallow water and continuity equations. The hydrodynamic equations are 
coupled firstly to the classic formulation for vegetation dynamics, and secondly to a modified version of the 
equation. The revised relationship for vegetation dynamics accounts for the influence of removal, transport, 
and resettlement of propagules on the growth rate of aquatic vegetation. Linear stability analysis of the 
eco-hydrodynamic problem is performed by enforcing the quasi-steady approximation. We obtain a dispersion 
relation disclosing the growth rate and the migration rate of the perturbations of vegetation density as a function 
of the wavenumber and the relevant flow and vegetation parameters. The present theory predicts the onset 
of vegetation patterns and includes an adequate wavelength selection mechanism. While uprooting initially 
reduces plant density, the analysis demonstrates that resettled propagules after removal are fundamental for 
further plant population increases and the development of vegetation patterns. The proposed framework is then 
validated against data available in the literature. Additionally, the presence of an upper threshold in terms of 
vegetation density, above which uniform vegetation cover is stable, might explain the absence of any spatial 
pattern and thus the extremely dense vegetation cover induced by climate change and invasive species in altered 
ecosystems.

Plain Language Summary  Rivers are complex ecosystems where vegetation plays an important 
role in shaping the natural habitat. In this work, we study rivers where aquatic plants are present because of 
favorable conditions for colonization. While vegetation tends to grow and spread, the action exerted by the 
flow may remove plants, thus reducing the population density. The removed propagules are transported by 
the flow, may resettle, root and grow, and, in turn, increase the plant density. Starting from an initial riverbed 
with a uniform vegetation cover, we show that plants tend to arrange themselves into patches with unvegetated 
gaps between. We perform this analysis through a mathematical approach that allows us to determine the 
geometrical and dynamic characteristics of the vegetation patterns. These features depend on the value of 
the relevant hydraulic and plant parameters. Results demonstrate that the production of propagules, together 
with their resettlement and resprouting, is fundamental for the reproduction of aquatic species and for the 
development of vegetation patterns. The presence of extremely dense vegetation cover in altered ecosystems 
due to climate change forcing altering low and high flows and colonization by invasive species is also explained 
by considering positive feedbacks among plants and the reduction of flow removal.

CALVANI ET AL.

© 2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Stability Analysis of Submerged Vegetation Patterns in Rivers
G. Calvani1  , C. Carbonari1  , and L. Solari1 

1Department of Civil and Environmental Engineering, University of Florence, Florence, ItalyKey Points:
•	 �We revised the coupled 

eco-hydrodynamic problem 
considering the dynamics of aquatic 
plants and performed a linear stability 
analysis

•	 �We modified the equation for 
vegetation dynamics to account for 
the removal and resettlement of 
propagules

•	 �We demonstrated that the resettlement 
of uprooted propagules is the key 
process for the onset of vegetation 
patches

Correspondence to:
G. Calvani,
giulio.calvani@unifi.it

Citation:
Calvani, G., Carbonari, C., & Solari, 
L. (2022). Stability analysis of 
submerged vegetation patterns in 
rivers. Water Resources Research, 
58, e2021WR031901. https://doi.
org/10.1029/2021WR031901

Received 27 DEC 2021
Accepted 29 JUL 2022

10.1029/2021WR031901
RESEARCH ARTICLE

1 of 17

 19447973, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031901 by B

ibliothèque D
e L

'E
pfl-, W

iley O
nline L

ibrary on [20/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6887-2209
https://orcid.org/0000-0002-8681-0009
https://orcid.org/0000-0001-9227-4305
https://doi.org/10.1029/2021WR031901
https://doi.org/10.1029/2021WR031901
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021WR031901&domain=pdf&date_stamp=2022-08-12


Water Resources Research

CALVANI ET AL.

10.1029/2021WR031901

2 of 17

between plants and the riverine environment, different patterns of submerged and emergent aquatic vegetation 
may take place in fluvial ecosystems (Figures 1a–1c), with different morphologies and spatial arrangements of 
patches (Cornacchia et al., 2018; Larsen & Harvey, 2011; Nepf, 2012).

Organized planform arrangements of vegetation patches are ubiquitous and many studies have reported their 
presence in different habitats, ranging from grasslands to forests, and from arid systems to savannas and peat-
lands (Borgogno et al., 2009; Rietkerk et al., 2004, for a review). Several authors analytically investigated the 
formation of patterns in such environments by considering the action of an external forcing: the dynamics of 
soil moisture (e.g., Vincenot et al., 2017), the toxicity of dead plants (e.g., Cartenì et al., 2012), the rainfall (e.g., 
Wang et al., 2017), or the spread of fire (D’Odorico et al., 2007), for instance. Deblauwe et al. (2012), Cartenì 
et al. (2012), and Bastiaansen et al. (2018), among others, demonstrated that vegetation patterns may migrate, 
under the influence of external factors. Conversely, some authors showed the formation of self-organized patch-
iness without the action exerted by forcing. For instance, Lejeune et al.  (2004) took into account the balance 
between cooperative and competitive interactions among different individuals using a diffusion term with a 
negative coefficient in the equation for vegetation dynamics. And in the absence of external forcing, they also 
obtained a null value for the migration rate of vegetation patterns. Similar results were obtained by Larsen and 
Harvey (2011) through a cellular automata model based on simple rules governing the dynamics of vegetation in 
wetlands subjected to bed elevation changes.

The geometrical characteristics of vegetation patterns in rivers have been analyzed using field investigations 
(e.g., Cornacchia, Folkard, et al., 2019; Cotton et al., 2006; Schoelynck et al., 2012; Tooth & Nanson, 2000) 
whereas Gourgue et al. (2021) performed numerical simulations to study the mutual interactions between patterns 

Figure 1.  Patterns of vegetation in fluvial environments and sketch of the mathematical model (pictures (b and c) taken by 
the authors). (a) Lateral view of the River Frome, Dorset (UK) with patches of Ranunculus stands (courtesy of Dr. Robert C. 
Grabowski). (b) Upstream view of the Este River from the San Miguél de Arcos Bridge near Barros, Portugal (Coordinates 
41°23’35.38”N 8°40’0.29”W) with patches of emergent and submerged vegetation (July 2021). (c) Upstream view of the Sar 
River in Padr𝐴𝐴 𝐴𝐴𝐴 n, Spain (Coordinates 42°44’20.55”N 8°39’43.48”W) with fully submerged patches (July 2021). (d) Sketch 
of the mathematical model with dark green and light brown highlighting regions of higher and lower vegetation density, 
respectively, concerning the equilibrium value, ϕ0.
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and water flows. Bärenbold et al. (2016) and Crouzy et al. (2016) predicted 
the critical conditions for the formation of patterns of emergent vegetation 
based on a stability analysis, a mathematical tool which allows studying the 
eigenvalues of a problem by simplifying partial differential equations to an 
algebraic system of linear equations. They both considered emergent riparian 
plants and a positive value for the diffusion coefficient in the classic logis-
tic law for vegetation dynamics (Camporeale & Ridolfi, 2006). The positive 
coefficient accounts for positive feedbacks induced by plants on neighboring 
individuals (D’Odorico et al., 2007). Specifically, the presence of patches of 
submerged vegetation dampens turbulence and diverts flow, thus creating 
regions of low flow conditions around and behind the patch itself (Cornacchia, 
Licci, et al., 2019; Nepf, 2012). This, in turns, creates favorable conditions 
for the spread of nearby vegetation communities. This process is usually 
considered to be dependent on the difference between neighboring vegeta-
tion densities. Accordingly, it has been typically modeled through a Lapla-
cian operator (2nd order derivative) and a multiplying coefficient governing 
the dependency between time-derivative and 2nd order spatial-derivative of 
vegetation density (D’Odorico et al., 2007). The higher the coefficient, the 

higher the positive sheltering effects, and the higher the positive rate of change in terms of vegetation density. 
Crouzy et al. (2016) focused on the asymmetry in longitudinal and transverse wavelengths, typically observed 
in anabranching rivers, while Bärenbold et al. (2016) analyzed patterns of vegetation in single-thread channels. 
Nonetheless, they both acknowledged the use of extremely high values for vegetated parameters of both growth, 
decay, and diffusion. As a result, they obtained vegetation dynamics to be faster than water dynamics, and there-
fore they had to treat the problem by fully coupling the systems of equations.

In this work, we revise and extend the analytical approach of Bärenbold et al. (2016) and Crouzy et al. (2016) to 
patterns of submerged aquatic vegetation in rivers. First, we demonstrate that the onset of vegetation patterns in 
fluvial habitats cannot be predicted solely based on the equation for vegetation dynamics. Rather, the onset of 
patches is governed by the mutual interactions between vegetation and hydrodynamics. Second, we show that the 
classic logistic law lacks fundamental ingredients to provide acceptable solutions. Finally, we propose a possible 
solution to overcome such a problem, when vegetation dynamics is considered slower than hydrodynamics (i.e., 
quasi-steady approximation). The proposed mathematical framework is then validated against data from the liter-
ature and the analysis supports the proposed solution, thus showing that vegetation patterns in fluvial ecosystems 
may arise from propagule dispersal instabilities triggered by hydrodynamic perturbations.

2.  Problem Formulation
To highlight the critical conditions for the potential formation of vegetation patterns induced by hydrodynamics 
only, we adopt the simplest approach to model the interactions between hydraulic and plant dynamics. Thus, 
we set the conditions of a straight channel with rectangular cross-section and fixed lateral banks, subjected to 
normal flow conditions, and periodic boundary conditions in the longitudinal direction (i.e., wrapping). The 
equilibrium state is characterized by a uniform density of plants colonizing the riverbed. We consider the bed not 
to be erodible (i.e., no erosion or deposition), and we do not account for either sediment transport or changes in 
bed topography.

Throughout the manuscript, we tackle the problem by involving dimensionless variables. When present, dimen-
sional quantities are denoted by the superscript *. Variables are made dimensionless according to normal flow 
conditions (indicated by subscript 0) of flow velocity, 𝐴𝐴 𝐴𝐴

∗

0
 , water depth, 𝐴𝐴 𝐴𝐴

∗

0
 and river width, 2B*, and the carrying 

capacity, 𝐴𝐴 𝐴𝐴
∗
𝑚𝑚 . More specifically, the flow velocity 𝐴𝐴 𝐴𝐴

∗

0
 is calculated by imposing the value of the Froude number, Fr 

(i.e., 𝐴𝐴 𝐴𝐴
∗

0
= 𝐹𝐹𝐹𝐹

√

𝑔𝑔𝑔𝑔
∗

0
 ). As an example, we report the dimensionless formula of the vegetation density 𝐴𝐴 𝐴𝐴 = 𝜙𝜙

∗
∕𝜙𝜙

∗
𝑚𝑚 . 

For the relationships of all the dimensionless variables, we address the reader to Appendix A. Values of parame-
ters, as well as dimensional and dimensionless variables, involved in the analysis, are reported in Table 1.

In the following sections, we describe the different approaches involved in the analysis.

Symbol Variable Value Units

CD Drag coefficient 2 [–]

d* Grain size 1 · 10 −3 m

Dv Frontal width of plants 0.1 [–]

hv Vegetation height 0.75 [–]

kn Transverse wavenumber π/2 [–]

𝐴𝐴 𝐴𝐴
∗

0
  Water depth 1 m

𝐴𝐴 𝐴𝐴
∗

𝑑𝑑
  Vegetation decay coefficient 2.04 · 10 −9 m −3 s

𝐴𝐴 𝐴𝐴
∗

𝐷𝐷
  Vegetation diffusion coefficient 7.93 · 10 −8 m 2 s −1

�∗
�  Vegetation growth coefficient 3.17 · 10 −11 m 2 s −1

𝐴𝐴 𝐴𝐴
∗

𝑃𝑃
  Propagule coefficient 2 · 10 10 m 2 s 2

Table 1 
Parameters and Variables Involved in the Stability Analysis
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2.1.  The Classic Equation for Vegetation Dynamics

The equation for vegetation dynamics (Equation 1) in fluvial environments models the evolution in time and 
space of the plant density. It includes a growth term, whose general solution is represented by a logistic func-
tion (Camporeale & Ridolfi,  2006), a decay term due to plant mortality induced by flow uprooting (Perona 
et  al.,  2014), and a diffusion term to model positive feedbacks between neighboring vegetation (Bärenbold 
et al., 2016; Crouzy et al., 2016; D’Odorico et al., 2007). We refer to Equation 1 as the classic equation through-
out the manuscript to reflect that the formula has been available in the literature for many years (Camporeale 
& Ridolfi, 2006; D’Odorico et al., 2007). Similarly, we name classic problem a system of equations involving 
Equation 1. The dimensionless form of the classic equation for vegetation dynamics reads:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛽𝛽 𝛽𝛽𝑔𝑔 𝜙𝜙 (1 − 𝜙𝜙) +

𝜈𝜈𝐷𝐷

𝛽𝛽
∇

2
𝜙𝜙 − 𝛽𝛽 𝛽𝛽𝑑𝑑 min {ℎ𝑣𝑣, 𝑌𝑌 } |

⃖⃖⃗𝑉𝑉 |

2
𝜙𝜙� (1)

in which ϕ is the spatial density of vegetation, t is time, β is the width-to-depth ratio (also known as aspect ratio), 
hv is the vegetation height, Y is the water depth, 𝐴𝐴 ⃖⃖⃗𝑉𝑉 = {𝑈𝑈𝑈 𝑈𝑈 } is the flow velocity, and νg, νD, and νd are the dimen-
sionless parameters for growth, diffusion, and decay, respectively, being �∗

� , 𝐴𝐴 𝐴𝐴
∗

𝐷𝐷
 , and 𝐴𝐴 𝐴𝐴

∗

𝑑𝑑
 their relative dimensional 

coefficients. Values of vegetation coefficients regarding growth and decay are retrieved from the work of Calvani 
et al. (2020), whereas the value of the vegetation diffusion coefficient was chosen from the range provided by 
Sand-Jensen and Madsen (1992). Moreover, the dimensionless vegetation height, hv, basically represents the rela-
tive emergence (analogous to the relative roughness d/Y for sediments with grain size d). Consequently, the term 
min{hv, Y} accounts for both submerged (hv < Y) and emergent (hv ≥ Y) vegetation. For the sake of simplicity, hv 
has already considered the plant reconfiguration induced by flow drag. Therefore, no additional closure relation-
ships are required (Västilä & Järvelä, 2014; Vogel, 1989).

At equilibrium, Equation 1 admits two solutions, one representing barebed conditions (ϕ0,2 = 0), the other uniform 
vegetation cover (ϕ0,1 = 1 − min{hv, 1} νd/νg). The latter solution was already found by Bärenbold et al. (2016) 
for emergent vegetation only (ϕ0,1 = 1 − νd/νg). Given the properties of a certain vegetation species (i.e., the 
growth and decay parameters, νg and νd, respectively, and the vegetation height, hv), Calvani et al. (2022) already 
showed that the solution ϕ0,1 suggests the existence of a threshold value of the hydrodynamic variables (e.g., 
Froude number, Fr) for the establishment of that particular vegetation. For the sake of consistency, in the present 
analysis we consider Froude numbers well below the critical value for the shift toward barebed conditions. In 
the following, we consider submerged vegetation (i.e., hv < 1) and simply refer to the equilibrium solution as ϕ0.

A first-order perturbation of Equation 1 is performed by using the mathematical expansion usually adopted in 
stability analysis (Colombini et al., 1987, among others):

𝜙𝜙 = 𝜙𝜙0 + 𝜖𝜖 (𝜙𝜙1 exp [Ω 𝑡𝑡 + 𝒊𝒊 𝑘𝑘𝑠𝑠 𝑠𝑠] sin (𝑘𝑘𝑛𝑛 𝑛𝑛) + 𝑐𝑐𝑐𝑐𝑐𝑐)� (2)

in which the subscript 1 refers to the linear level, ϵ is a small parameter, Ω = ΩR + i ΩI is the complex wave-speed 
of the perturbation, s and n are the longitudinal and transverse coordinates, respectively, ks and kn are the stream-
wise and transverse wavenumber (see Figure 1d), respectively, and c.c stands for complex conjugate.

2.2.  Stability Analysis of the Eco-Hydrodynamic Problem

We couple the classic equation for submerged vegetation dynamics (Equation 1) with min{hv, Y} = hv) to the 
2D shallow water equations (SWE) for momentum and mass conservation of the water flow. The dimensionless 
system of equation reads:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑈𝑈

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑉𝑉

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

1

𝐹𝐹𝐹𝐹2

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+ 𝛽𝛽
𝜏𝜏𝑠𝑠

𝑌𝑌
= 0� (3)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑈𝑈

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑉𝑉

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

1

𝐹𝐹𝐹𝐹2

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+ 𝛽𝛽
𝜏𝜏𝑛𝑛

𝑌𝑌
= 0� (4)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅

(

𝑌𝑌 ⃖⃖⃗𝑉𝑉

)

= 0� (5)
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𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝛽𝛽 𝛽𝛽𝑔𝑔 𝜙𝜙 (1 − 𝜙𝜙) −

𝜈𝜈𝐷𝐷

𝛽𝛽
∇

2
𝜙𝜙 + 𝛽𝛽 𝛽𝛽𝑑𝑑 ℎ𝑣𝑣 |

⃖⃖⃗𝑉𝑉 |

2
𝜙𝜙 = 0� (6)

We adopt the Chézy formula as closure relationship for the total shear stress 𝐴𝐴 ⃖⃗𝜏𝜏 = {𝜏𝜏𝑠𝑠, 𝜏𝜏𝑛𝑛} =
| ⃖⃗𝑉𝑉 |

𝐶𝐶2
{𝑈𝑈𝑈𝑈𝑈  } . The total 

conductance, C, is calculated according to the model of Luhar and Nepf (2013) to account for the presence of 
submerged vegetation:

𝐶𝐶 =

(

2

𝐶𝐶𝑓𝑓

)1∕2
(

1 −
ℎ𝑣𝑣

𝑌𝑌

)3∕2

+

(

2

𝐶𝐶𝐷𝐷 𝜙𝜙 𝜙𝑣𝑣 𝐷𝐷𝑣𝑣 𝜙𝜙𝑚𝑚

)1∕2

ℎ𝑣𝑣

𝑌𝑌
� (7)

in which 𝐴𝐴 𝐴𝐴𝑓𝑓 =
(

5.75log
10

(

2𝑌𝑌
∗

0
∕𝑑𝑑

∗
))−2 is the bed friction coefficient depending on the mean grain size, d* 

(Whiting & Dietrich, 1990), CD is the vegetation drag coefficient, Dv is the frontal width of plants and ϕm is the 
carrying capacity.

We expand hydrodynamic variables in the governing equations at the linear level and adopt a mathematical 
convenient Ansatz solution (Bärenbold et al., 2016, after Colombini et al., 1987) given by:

{𝑈𝑈𝑈 𝑈𝑈 } = {𝑈𝑈0,𝑌𝑌 0} + 𝜖𝜖 ({𝑈𝑈1,𝑌𝑌 1} exp [Ω 𝑡𝑡 + 𝒊𝒊 𝑘𝑘𝑠𝑠 𝑠𝑠] sin (𝑘𝑘𝑛𝑛 𝑛𝑛) + 𝑐𝑐𝑐𝑐𝑐𝑐)� (8)

𝑉𝑉 = 𝑉𝑉0 + 𝜖𝜖 (𝑉𝑉1 exp [Ω 𝑡𝑡 + 𝒊𝒊 𝑘𝑘𝑠𝑠 𝑠𝑠] cos (𝑘𝑘𝑛𝑛 𝑛𝑛) + 𝑐𝑐𝑐𝑐𝑐𝑐)� (9)

being {U0, V0, Y0, ϕ0} = {1, 0, 1, 1 − hv νd/νg} the solution at the leading order (i.e., normal flow conditions 
with uniform vegetation density). The transverse wavenumber, kn, must assume multiple values of π/2 due to the 
lateral boundary conditions imposed at the riverbanks (i.e., kn = mπ/2). For the sake of simplicity, we assume 
m = 1 to model the onset of alternate patterns of vegetation (see Figure 1d), without loss of generality of the main 
purposes of this work. For vegetation patterns characterized by multiple patches in the same cross section (e.g., 
m = 2 or m = 3), we address the reader to the analysis of Carbonari et al. (2022) and to the work of Crosato and 
Mosselman (2009) for an analogy to sediment bars.

The values of vegetation coefficients involved in the analysis (Table 1) and the corresponding dimensionless 
parameters (e.g., νg) imply that vegetation dynamics (O(10 −8 − 10 −6)) is much slower than hydrodynamics (O(1)). 
Such hypothesis allows for the quasi-steady approximation in Equations 3–5, similarly to what it is usually done 
in the stability analysis of morphodynamics (i.e., water-sediment interactions) (Colombini & Carbonari, 2020; 
Colombini & Stocchino, 2012; Colombini et al., 1987, among others). By involving Equations 2, 8, and 9 and 
by applying the quasi-steady approximation, the system of Equations 3–6 can be turned into an algebraic system 
with complex coefficients:
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in which the complex wave-speed Ω is the eigenvalue of the vegetation dynamics. In the system, C0 is the Chézy 
coefficient (Equation 7) and 𝐴𝐴 𝐴𝐴1,𝑌𝑌 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|

|

|0
 and 𝐴𝐴 𝐴𝐴1,𝜙𝜙 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|

|

|0
 are its partial derivatives in Y and ϕ, respectively. The 

subscript 0 indicates that the three terms are evaluated at the base state 𝐴𝐴 ( that is, 𝐴𝐴 𝐴𝐴 = 𝑌𝑌0, 𝜙𝜙 = 𝜙𝜙0) .

The characteristic polynomial, also known as the dispersion relation, of the square matrix in Equation 10 is a 
simple linear equation in Ω. Its solution provides the growth (i.e., amplification) rate, ΩR, and migration rate (i.e., 
celerity), ΩI, of the perturbation. The analysis of ΩR's sign determines whether vegetation patterns may show up 
(ΩR > 0) or not (ΩR ≤ 0).
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2.3.  A Modified Version of the Classic Model

The growth of vegetation density depends on the deposition and establishment of vegetative propagules, generated 
by flow induced breakage or uprooting (Gurnell et al., 2007). Propagules are transported downstream within the 
water column or floating on the water surface before settling (Eckert et al., 2016; Gurnell et al., 2008; Heidbüchel 
et al., 2020; Nilsson et al., 2010). In the classic equation (Equation 1), such processes are intrinsically modeled 
by the vegetation growth rate, νg. However, no influence of propagule transport or deposition is present in the 
formulation, as the parameter νg is constant. We model the change of the vegetation growth rate by accounting 
for the propagules produced by the process of plant decay and/or breakage and their transport and settlement. The 
proposed equations reads:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛽𝛽 𝛽𝛽𝑔𝑔 𝜙𝜙 (1 − 𝜙𝜙)

(

1 −
𝜈𝜈𝑃𝑃

𝛽𝛽 (𝜈𝜈𝑔𝑔 𝜙𝜙0 (1 − 𝜙𝜙0))
2
∇ ⋅

[

𝜈𝜈𝑑𝑑 ℎ𝑣𝑣 𝜙𝜙 |

⃖⃖⃗𝑉𝑉 |

2 ⃖⃖⃗𝑉𝑉

]

)

+

+
𝜈𝜈𝐷𝐷

𝛽𝛽
∇

2
𝜙𝜙 − 𝛽𝛽 𝛽𝛽𝑑𝑑 ℎ𝑣𝑣|

⃖⃖⃗𝑉𝑉 |

2
𝜙𝜙

� (11)

in which the quantity 𝐴𝐴 𝐴𝐴𝑑𝑑 ℎ𝑣𝑣 𝜙𝜙 |

⃖⃖⃗𝑉𝑉 |

2 resembles the decay rate of vegetation and thereby represents the production 
of propagules and velocity vector, 𝐴𝐴 ⃖⃖⃗𝑉𝑉  , accounts for spatial-heterogeneity in the velocity field. Consequently, the 
divergence term considers the variations both in the transport of propagules within the control volume due to 
main flow diversion and in the spatial production of propagules due to uprooting or breakage (Eckert et al., 2016; 
Heidbüchel et al., 2020). The parameter νP models the influence of propagule production, transport, and settle-
ment on the vegetation growth rate through the coefficient 𝐴𝐴 𝐴𝐴

∗

𝑃𝑃
 .

Similarly to the classic version of the equation for vegetation dynamics (Equation 1), the proposed formulation 
(Equation 11) is coupled to SWE for hydrodynamics. The system is then perturbed and the same Ansatz solu-
tions are involved for the governing variables (Equations 2, 8, and 9). The problem at the linear level remains 
unchanged in the first three lines of thesystem Equation 10. Equation 4 (i.e., vegetation dynamics) is updated as 
follows:

(2 𝛽𝛽 𝛽𝛽𝑑𝑑 ℎ𝑣𝑣 𝜙𝜙0 + 3𝜈𝜈𝑃𝑃 𝒊𝒊𝑘𝑘𝑠𝑠) 𝑈𝑈1 − 𝜈𝜈𝑃𝑃 𝑘𝑘𝑛𝑛 𝑉𝑉1 +

(

𝛽𝛽 𝛽𝛽𝑔𝑔 𝜙𝜙0 +
𝜈𝜈𝐷𝐷

𝛽𝛽

(

𝑘𝑘
2
𝑠𝑠 + 𝑘𝑘

2
𝑛𝑛

)

+
𝜈𝜈𝑃𝑃

𝜙𝜙0

𝒊𝒊𝑘𝑘𝑠𝑠 + Ω

)

𝜙𝜙1 = 0� (12)

For the sake of simplicity, we consider values of the parameter νP in the same range of the other parameters for 
vegetation dynamics (e.g., 10 −8 − 10 −6), as no studies provided values for such a quantity. Additionally, νP values 
of similar order of magnitude of the other vegetation parameters ensures that the different terms of Equation 12 
have the same relevance. Having one of the parameters much smaller than the others implies that the process 
governed by such a parameter is negligible. Under this assumption, the quasi-steady approximation is still valid 
for the algebraic problem, and the characteristic polynomial remains a simple linear relation in the variable Ω.

3.  Results
3.1.  Stability Analysis of the Classic Equation

First, we demonstrate that the equation for vegetation dynamics (Equation 1) cannot predict the onset of vege-
tation patterns on its own. We recall that the diffusive term models the spread of vegetation from areas with 
higher plant density to neighboring regions with lower plant density (i.e., positive feedbacks between plants). 
Such spread depends on the cooperative interactions between plants in the two areas and, as such, it implies the 
positive value of the diffusion coefficient, νD, according to D’Odorico et al. (2007). By substituting Equation 2 in 
Equation 1, we obtain a solution for the complex wave speed Ω, whose real part, ΩR, and the imaginary part, ΩI, 
represent the growth rate and the migration rate of the perturbation, respectively. The solution reads:

Ω𝑅𝑅 + 𝒊𝒊 Ω𝐼𝐼 = −𝛽𝛽 𝛽𝛽𝑔𝑔 𝜙𝜙0 −
𝜈𝜈𝐷𝐷

𝛽𝛽

(

𝑘𝑘
2
𝑠𝑠 + 𝑘𝑘

2
𝑛𝑛

)

� (13)

in which the right-hand side term is a linear expression in the variable νD with real coefficients. This implies that 
ΩI is null and, as a consequence, potential vegetation patterns do not migrate. The formation of patterns occurs 
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when the real quantity ΩR is strictly positive. Accordingly, the simple mathematics in Equation 13 leads to the 
condition

𝜈𝜈𝐷𝐷 < −
𝛽𝛽
2
𝜈𝜈𝑔𝑔 𝜙𝜙0

𝑘𝑘
2
𝑠𝑠 + 𝑘𝑘

2
𝑛𝑛

� (14)

Given that the fraction on the right-hand side is a positive and real quantity, the diffusion coefficient must assume 
negative values to allow for the formation of vegetation patterns. This result contradicts the original hypothesis of 
positive feedbacks (Crouzy et al., 2016; D’Odorico et al., 2007). On the contrary, if one accounts for a negative 
diffusion coefficient to model, for instance, negative feedbacks among plants due to erosion induced by flow 
acceleration between patches (e.g., Meire et al., 2014; van Wesenbeeck et al., 2008), the solution of the marginal 
curve (i.e., ΩR = 0) from Equation 13 reads

𝛽𝛽 =

√

− 𝜈𝜈𝐷𝐷

𝜈𝜈𝑔𝑔 𝜙𝜙0

𝑘𝑘𝑠𝑠 +

√

− 𝜈𝜈𝐷𝐷

𝜈𝜈𝑔𝑔 𝜙𝜙0

𝑘𝑘
2
𝑛𝑛� (15)

which represents a straight line in the ks − β space. The threshold condition for instability toward patterns is repre-
sented by the minimum value of β, which occurs for ks = 0. This means that vegetation patterns have no longitu-
dinal wavelength, which seems counter-intuitive if compared to the patterns of Figure 1 showing observed spatial 
patterns of submerged aquatic vegetation observed from field surveys and reported in the literature (Cornacchia 
et al., 2020; Schoelynck et al., 2012; Wharton et al., 2006, among others).

Consequently, the formation of vegetation patterns may be predicted by the equation for plant dynamics only 
when it is coupled to additional relationships modeling external forcing (e.g., Cartenì et  al.,  2012; Vincenot 
et al., 2017; Wang et al., 2017). In the following, we consider the instability induced by hydrodynamic forces, 
similar to Bärenbold et al. (2016) and Crouzy et al. (2016).

3.2.  Stability Analysis of the Classic Eco-Hydrodynamic Problem

The characteristic polynomial of the system of Equations 10 is herein solved, providing the eigenvalue Ω. The 
real part of the eigenvalue, ΩR, is investigated by varying the aspect ratio, β, and the longitudinal wavenumber, 
ks, and by setting values for the other variables (see Table 1). Particularly, regarding the diffusive coefficient νD, 
both positive and negative values are involved in the analysis. Results of the analysis are graphically represented 
in Figure 2, where the so-called stability plot identifies regions of positive (i.e., growing unstable perturbations) 
and negative values of ΩR. The regions of positive and negative amplification rate are separated by the marginal 
curve (thick black line in Figure 3) and it is noteworthy that the marginal curve graphically represents the rela-
tionship ΩR = 0. The ks − β space has been chosen to represent the results, analogous to sediment bars in 2D 
morphodynamic problems (Colombini et al., 1987, among others) and similar to previous works dealing with 
stability analysis of vegetation patterns (Bärenbold et al., 2016; Crouzy et al., 2016).

Figure 2.  Stability plots of the eco-hydrodynamic problem (Equation 10) with the classic equation for vegetation dynamics 
(Equation 1) by varying the diffusion coefficient, νD. Gray regions highlight a positive growth rate. Maximum amplification 
is shown by the red curve. Values of fixed variables and parameters are indicated in Table 1 or shown in the legend box. (a) 
Stability plot with positive diffusion coefficient (νD > 0); (b) Stability plot with negative diffusion coefficient (νD < 0).
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Figure 2a shows the stability plot of ΩR for the positive value of the diffusion 
coefficient, νD. The marginal curve (ΩR = 0) identifies a region of positive 
amplification rate above a certain threshold of the aspect ratio, β, while the 
most unstable wavenumber (maximum growth rate) is highlighted by the red 
curve. Such a curve shows that the growth rate assumes maximum values 
corresponding to the y-axis, represented by the value ks = 0.

For comparison, Figure 2b shows the marginal curve for the same hydraulic 
conditions (e.g., Froude number) and vegetation parameters of Figure 2a, but 
the diffusion coefficient takes the opposite value. The analysis of the classic 
equation (Equation 15) suggests that instability toward patterns may arise by 
accounting for negative feedbacks (i.e., negative diffusion coefficient). In this 
case, we explore the implications related to the approach adopted by Lejeune 
et al. (2004). Nevertheless, coupling the equation to SWE (Figure 2b) shows 
that instability occurs for a broad range of longitudinal wavenumber, ks, being 
the unstable region (ΩR > 0) indefinitely unbounded toward high values of 
ks. Additionally, the marginal curve does not show a threshold value of the 
aspect ratio, β, and instability occurs for low values of the aspect ratio (e.g., 
β ≈ 1). Lastly, the most unstable wavenumber again overlaps the y-axis (i.e., 
ks  =  0), similar to the stability plot in Figure  2a. We anticipate that such 
results are analytically meaningless, and we address the reader to the Discus-
sion section for further remarks on the significance of maximum growth rate 
occurring at ks = 0.

3.3.  Stability Analysis of the Modified Eco-Hydrodynamic Problem

Similar to Equation 1, the modified equation for vegetation dynamics (Equation 11) does not allow for the forma-
tion of patterns of vegetation, when we refer to this equation alone. This can be simply demonstrated by consider-
ing that the real part of the term containing phi1 is the same both in the system at the linear level (compare fourth 
line in Equation 10 and Equation 12). The phi1 term containing the imaginary unit in Equation 12 contributes 
to the imaginary part (i.e., celerity, ΩI) of the eigenvalue, Ω, and not to the growth rate, ΩR. For the sake of 
simplicity and in line with previous studies (Bärenbold et al., 2016; Crouzy et al., 2016; D’Odorico et al., 2007), 

we consider a positive diffusion coefficient in the modified relationship for 
vegetation dynamics.

The linear problem formed by the first three lines of the system Equation 10 
coupled with Equation 12 basically differs from the classic eco-hydrodynamic 
problem (system Equation 10) in the terms related to U1 and V1 and in the 
term iks νP/ϕ0 associated to ϕ1. The solution of the linear problem (i.e., the 
eigenvalue Ω) is therefore revised, as well as the resulting stability scenarios.

The main results of the analysis are illustrated using several stability plots 
(Figures 3 and 4), where the behavior of the amplification rate, ΩR, is inves-
tigated in the framework of different parameter spaces. The main dimension-
less parameters involved in the analysis are reported in the legend of each 
plot. Global coefficients are reported in Table 1. For clarification, vegetation 
parameters (e.g., νg and νd) may change according to the framework of the 
stability plots, mainly because they depend on Froude number, Fr, equilib-
rium vegetation density, ϕ0, and carrying capacity, 𝐴𝐴 𝐴𝐴

∗
𝑚𝑚 . For this reason, they 

are constant in the ks − β space, only. In the other stability plots, their values 
vary in line with the formulations provided in Appendix  A. Thus, when 
vegetation parameters vary, we perform the analysis by modifying the decay 
coefficient, 𝐴𝐴 𝐴𝐴

∗

𝑑𝑑
 , and by keeping the growth coefficient, �∗

� , and the vegetation 
equilibrium density, ϕ0, constant.

Figure 3.  Stability plots for the modified eco-hydrodynamic problem. Colored 
regions are associated with ΩR > 0, white regions with ΩR < 0, marginal curve 
is indicated by the thick black line, maximum amplification by red line. Values 
of fixed variables and parameters are listed. (a) The stability plot in the ks − β 
parameter space; (b) The stability plot in the ks − Fr parameter space.

Figure 4.  Stability plots for the modified eco-hydrodynamic problem. Colored 
regions are associated with ΩR > 0, white regions with ΩR < 0, marginal curve 
is indicated by the thick black line, maximum amplification by red line. Values 
of fixed variables and parameters are listed. (a) The stability plot in the ks − ϕ0 
parameter space; (b) The stability plot in the ks − ϕm parameter space.
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In each plot, isolines (thin black lines) identify points with equal growth 
rates, ΩR. The marginal curve (thick black line) divides the parameter space 
into regions of positive and negative growth rate. The white area is associ-
ated with stable uniform vegetation density in the space-time domain (i.e., 
ΩR < 0). The colored region is associated with unstable perturbation acting 
on vegetation density leading to vegetation pattern formation (i.e., ΩR > 0). 
As indicated by the color bar, positive growth rate values increase from light 
warm to dark cool colors. The red line indicates the wavenumber of maxi-
mum amplification. For a given condition (the quantity on the y-axis), the 
presence of a unique wavenumber indicated by the red curve demonstrates 
that a selection mechanism is adequately included in the analysis and this is 
essential for the meaningfulness of the results.

Figures 3a and 3b shows the stability plot in the ks − β and in the ks − Fr 
parameter space, respectively. Both the stability plots in Figure 3 illustrate a 
distinct unstable region in the corresponding parameter space. For the range 
of β plotted in Figure 3a, the maximum growth rate (red curve) occurs for 

values of ks in the range 0.95–1.35, whereas in Figure 3b the maximum amplification occurs in a narrower range 
of ks (0.96 ≤ ks ≤ 1.12). A critical threshold above which vegetation patterns start to develop is visible in both the 
panels: for the values of parameters involved in the analysis, this is equal to β = 10.9 and Fr = 0.22, respectively.

Figure 4a illustrates the stability plot in the ks − ϕ0 parameter space. Using ϕ0 as a variable means that the initial 
vegetation density varies according to the selected value on the y-axis but it is constant within the river reach. 
Figure 4b shows the stability plot in the ks − ϕm parameter space. The latter panel displays a single unstable 
region, whereas the analysis in the ks − ϕ0 reveals that an unstable region exists near the origin of the axis, for 
the very low value of the initial equilibrium density. Both the panels in Figure 4 show the selection mechanism 
of the wavenumber ks: for the values of parameters involved in the analysis (Table 1), it occurs for 0.72 ≤ ks ≤ 1.2 
in the ks − ϕ0 space and for 1.05 ≤ ks ≤ 1.46 in the ks − ϕm space. The threshold for the onset of vegetation 
patterns is unambiguously identifiable in Figure 4b (ϕm ≥ 44), whereas Figure 4a shows that the threshold value 
is ϕ0 = 0. However, for a more likely value of the initial vegetation density, a second threshold can be identified 
as ϕ0 ≥ 0.025. Interestingly, a further critical value (ϕ0 = 0.38) limits the unstable region in the upper part of the 
stability plot.

At the linear level, the coupled eco-hydrodynamic problem with the modified equation for vegetation dynamics 
(Equation 12) presents a term proportional to V1 and a complex coefficient in U1. Conversely, in the classic 
coupled problem (Equation 10), they are null and real, respectively. The combination of these terms with the rest 
of the coefficients strongly affects the characteristic polynomial of the system. Such terms modify the overall 
balance between stabilizing and destabilizing effects, and, as a consequence, the overall behavior of the eigen-
value, both in the real (Figures 3, 4, and 6c) and in the imaginary parts. Particularly, it is worth mentioning that 
our analysis may capture the main features of the migration rate, ΩI, of the emerging vegetation patches.

The analysis of the imaginary part of the eigenvalue, ΩI, provides information on the dynamics of the patches 
of vegetation by revealing how fast the vegetation patterns may migrate within the channel. Figure 5 illustrates 
the migration rate as a function of the wavenumber for the values of Fr, β, ϕm, and ϕ0 reported in the legend of 
each panel. For those values, we have already shown the onset of vegetation patches in Figure 4. In this regard, 
we explore the celerity of such patterns in Figure 5. According to the classical approach for river bar morphody-
namics (Colombini et al., 1987), positive ΩI > 0 corresponds to the upstream migration of the patterns, whereas 
negative values indicate that perturbations migrate downstream.

3.4.  Validation and Practical Application

We apply the proposed framework to a river reach of the River Frome (UK). The Frome Vauchurch reach 
(see Figure 1) is a groundwater-fed, chalk stream, characterized by the presence of macrophyte cover, mostly 
Ranunculus penicillatus. The presence of patterns of submerged vegetation patches is reported by many authors 
(Cornacchia et al., 2020; Cotton et al., 2006; Watson, 2007; Wharton et al., 2006, among others). For the sake of 

Figure 5.  The trend of the migrations rate, ΩI, versus the longitudinal 
wavenumber, ks at varying vegetation characteristics. Main vegetation and 
flow properties are reported in Table 1. (a) ΩI for some values of the initial 
vegetation density, ϕ0; (b) ΩI for some values of the carrying capacity, ϕm.
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model validation, we compare the predicted longitudinal wavenumber, ks, corresponding to the maximum ampli-
fication rate (red lines in Figures 3 and 4 to the measures of patch lengths provided by Watson (2007).

Data of flow conditions, water depth, and river characteristics (e.g., mean river width, 2B* = 8.9 m) were retrieved 
from Cornacchia et al. (2020) according to similar values of the Froude number, Fr. Vegetation is characterized 
by the presence of multiple patches within the cross-section (e.g., m = 3), hv = 0.9 to account for almost emer-
gent conditions, and carrying capacity 𝐴𝐴 𝐴𝐴

∗
𝑚𝑚  = 200 m −2 as reported by the authors (Cornacchia et al., 2020). We 

consider growth and diffusion coefficients as reported in Table 1 whereas the decay coefficient is calculated by 
imposing ϕ0 = 0.15. Watson (2007) reported an average pattern length, 𝐴𝐴 𝐴𝐴

∗
𝑠𝑠 , of 

4.5 m, corresponding to a longitudinal wavenumber 𝐴𝐴 𝐴𝐴𝑠𝑠 = 2𝜋𝜋𝜋𝜋
∗
∕𝐿𝐿

∗
𝑠𝑠  = 6.2. By 

accounting for a 10% tolerance in the measurements (i.e., 𝐴𝐴 𝐴𝐴
∗
𝑠𝑠  = 4.5 ± 0.45 m), 

the patch wavenumber lies in the range ks = 5.65–6.90. We consider the same 
tolerance for the predicted wavenumbers. Table 2 reports the predicted values 
at the maximum growth rate and the corresponding range based on 0.45 m 
tolerance.

The predicted range of wavenumbers overlaps the measured quantities for 
most of the provided data. The model better performs for measurements with 
Fr = 0.10 and Fr = 0.15, whereas for Fr = 0.05 and Fr = 0.20 the predicted 
range of wavenumbers has a general tendency to underestimate the meas-
ured values. Only in one case (Fr = 0.2 and β = 13.5), the predicted range 
lies just outside the measured one (maximum predicted ks = 5.57, minimum 
measured wavenumber ks = 5.65). In terms of wavelength, such discrepancy 
corresponds to 0.07 m in a measured wavelength 𝐴𝐴 𝐴𝐴

∗
𝑠𝑠  = 4.5 m (1.6% error).

The proposed mathematical framework may be involved in practical appli-
cations aiming at improving the heterogeneity of fluvial environments. For 
given hydrological characteristics (e.g., average discharge, Q), sediment size 
(i.e., mean grain diameter, 𝐴𝐴 𝐴𝐴

∗

50
 ) of the river reach, and for given plant species 

and properties (e.g., growth, �∗
� , and diffusion, 𝐴𝐴 𝐴𝐴

∗

𝐷𝐷
 , coefficients), the river 

width may be adjusted to obtain a width-to-depth ratio, β, higher than the 
threshold value, βc (see Figure 3a). As a result, the formation of patches is 
promoted. Conversely, one may also proceed in the opposite direction, by 
narrowing the river reach to limit the value of the width-to-depth ratio below 
the threshold value, thus preventing the development of patches. Similarly, 

Figure 6.  Comparison between growth rates of the coupled eco-hydrodynamic problems according to different formulation of the equation for vegetation dynamics 
at varying the parameter β. (a) Growth rate trends for the classic equation (Equation 1) with positive diffusion coefficient, νD (see Figure 2a for parameter values); 
(b) Growth rate trends for the classic equation (Equation 1) with negative diffusion coefficient, νD (see Figure 2b for parameter values); (c) Growth rate trends for the 
modified equation (Equation 11) accounting for propagule resettlement (see Figure 3a for parameter values).

Fr β ks (ΩR max) ks range

0.05 9.27 5.46 5.02–5.98

10.6 5.81 5.32–6.41

0.1 8.90 6.35 5.76–7.07

10.9 5.90 5.39–6.52

11.1 6.72 6.07–7.54

12.7 5.58 5.12–6.13

0.15 8.90 6.11 5.57–6.78

10.3 5.72 5.23–6.29

11.0 6.01 5.48–6.65

13.1 6.27 5.70–6.98

13.5 5.67 5.19–6.24

14.8 5.41 4.97–5.92

0.2 9.08 5.71 5.23–6.28

9.18 5.54 5.09–6.09

10.9 5.30 4.89–5.80

13.5 5.11 4.72–5.57

Note. All values are dimensionless. Measured range is ks  =  5.65–6.90 
(Watson, 2007).

Table 2 
Predicted Wavenumbers of Vegetation Patches in the River Frome 
(Figure 1a)
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for a given aspect ratio occurring in the river reach under restoration, one may select the plant species with the 
characteristics to allow or inhibit the formation of patterns.

4.  Discussion
4.1.  The Classic Equation for Vegetation Dynamics

The classic equation for vegetation dynamics (Equation 1) admits a solution toward vegetation patterns for nega-
tive values of the diffusion coefficient, νD. This approach was used by Lejeune et al. (2004), among others, to 
analyze the onset of vegetation patterns in arid ecosystems. Despite the use of a different equation for vegetation 
dynamics, which was further expanded by additional non-linear terms (e.g., ϕ 3 and ∇ 4ϕ), the authors demon-
strated that the negative diffusion coefficient is the only term responsible for a positive growth rate of the pertur-
bation. In this respect, the condition imposed by Equation 14 agrees with the results of Lejeune et al. (2004). 
Interestingly, the presence of the cubic term (i.e., ϕ 3) leads to the development of an upper threshold limit in the 
ks − ϕ0 space, similar to the stability plot in Figure 4a. However, Lejeune et al. (2004) did not clarify what ϕ 3 was 
supposed to model. For the case of fluvial environments, we demonstrated (Equation 15) that considering the 
equation for vegetation dynamics only predicts the onset of patterns with infinite longitudinal wavelength (i.e., 
ks = 0). These patterns resembling stripes rather than alternate patches are commonly found in dry and wetlands 
(Cheng et al., 2011; Larsen & Harvey, 2011; Lejeune et al., 2004) but they have never been reported in rivers 
(e.g., Cornacchia et al., 2018; Schoelynck et al., 2012; Watson, 2007; Wharton et al., 2006). Furthermore, it is 
remarkable to note that Lejeune et al. (2004) obtained a null value for the migration rate, ΩI, due to the absence 
of external forcing.

As a general remark, the decay term in the equation models the vegetation mortality induced by flow drag. The 
decay process does not account for scouring and erosion processes promoting uprooting (Type II uprooting, 
according to Edmaier et al. (2011)). Therefore, the influence of sediment dynamics on flow-induced mortality 
is only embedded in the decay parameter, νd (Bärenbold et al., 2016; Calvani et al., 2020; Perona et al., 2014). 
Additionally, the decay term does not distinguish between different processes of plant loss (e.g., breakage or 
uprooting), although both the processes depend on the flow drag acting on the plant surface 𝐴𝐴

(

∝ ℎ𝑣𝑣 |
⃖⃖⃗𝑉𝑉 |

2

)

 . Thus, 
further research must be carried out (e.g., Cornacchia et al., 2020; Riis & Biggs, 2003; Schoelynck et al., 2012).

4.2.  Coupled Eco-Hydrodynamic Problem With the Classic Equation

The classic eco-hydrodynamic problem shows the same issue as the previous analysis, as already mentioned 
when presenting the results in Figure 2. The presence of a threshold in the aspect ratio, Figure 2a, is acknowl-
edged when stability analysis is performed. Although this threshold has similar characteristics to the critical 
conditions for the occurrence of bedforms (i.e., bars and dunes in gravel-bed and sand-bed rivers, respectively), 
the overall results of the analysis reported in Figure 2a are difficult to interpret. We already showed that the maxi-
mum value of the growth rate takes place along the y-axis (red line in Figure 2a), that is ks = 0 (Figure 6a). Again, 
this condition corresponds to the onset of longitudinal vegetation stripes as opposed to patches of finite length.

A possible solution to the coupled eco-hydrodynamic problem was found by Bärenbold et al. (2016) and Crouzy 
et al. (2016). Although involving high values of the vegetation parameters, as well as the full unsteadiness of the 
SWE, seems a reasonable approach to solve the problem of vegetation patterns, we think that the onset of insta-
bility must be proved by accounting for realistic values of plant parameters. In the light of our results (Figure 2), 
coupling the classic equation for vegetation dynamics to SWE does not predict the critical conditions for the 
formation of vegetation patterns. Even the use of a negative diffusion coefficient (Equation 14) does not provide 
satisfactory results (Figure 6b). More specifically, Figure 2b demonstrates that the coupled eco-hydrodynamic 
problem with a negative diffusion coefficient shows that the maximum amplification rate once again takes 
place for ks  =  0. In this case, the results are meaningless because even the initial equilibrium configuration 
(i.e., ks = kn = 0) is unstable and no threshold value (i.e., β = 0) limits the unstable region, which appears to be 
unbounded toward infinite values of the wavenumber, ks.

Our analysis demonstrates that the classic equation for vegetation dynamics in rivers lacks some ingredients 
necessary to capture the onset of instability toward patterns of finite length. To overcome the issue, we have intro-
duced a new, physically meaningful, term in Equation 11 to account for the positive effects induced by propagules 
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on the growth rate of submerged aquatic vegetation. Results have shown that such a term may induce instability 
in the eigenvalue problem (Figures 3 and 4). In this context, Figure 6c shows that the growth rate, ΩR, is positive 
for values of width-to-depth ratio higher than a threshold (β > βc) and remains positive in a certain range of the 
wavenumber, ks.

4.3.  Coupled Eco-Hydrodynamic Problem With the Modified Equation

The proposed equation for vegetation dynamics accounts for the transport, settling and sprouting of removed 
propagules due to flow uprooting or breakage (Equation  11). This propagation mechanism has been proved 
fundamental for submerged aquatic vegetation, whereas riparian plants mostly reproduce via seed dispersal (see 
Barrat-Segretain, 1996, for a review).

The proposed approach seems to provide promising results (see Figures 3 and 4) and the validation against field 
data turned out satisfactory (Table 2), with only one case with predicted wavenumbers outside the measured 
range. We tackled the problem by keeping the mathematical model as simple and physically-based as possible. 
To further deepen the analysis and consider additional aspects, one may take into account nutrient transport and 
morphodynamic-related processes. Nutrient transport may be introduced by considering turbulent fluctuations 
and molecular diffusion with a more refined flow model (e.g., fully 3D hydrodynamic equations). Regarding 
sediment processes, a negative diffusion coefficient can be incorporated into the proposed Equation 11 to account 
for negative feedbacks due to erosion at patch edges (e.g., Meire et  al.,  2014; van Wesenbeeck et  al.,  2008). 
However, this approach, as demonstrated in this manuscript, may lead to unsatisfactory results. It must be also 
considered that the diffusion term is represented by the Laplacian of the vegetation density (Equations 1 and 11) 
and not of the bed elevation, that the hypothesis behind the negative coefficient would suggest. According to 
this consideration, a proper term (∝∇ 2η) may be included in the equation and account for bed elevation changes 
(Exner equation). In this regard, Bärenbold et al. (2016) have already proved the presence of morphodynamic 
processes to affect the shape and characteristics (e.g., threshold aspect ratio) of marginal curves.

Flow diversion induced by the presence of discrete vegetation patches may be introduced in the hydrodynamic 
equations (i.e., in the continuity equation (Equation 5) for highly vegetated riverbeds. For the values of parame-
ters and vegetation density used in the present analysis, the vegetated volume fraction represents less than 0.1% 
of the volume domain. For this purpose, it is worth noting that the stability plot in Figure 4a shows that it exists 
an upper threshold (ϕ0 = 0.38) for the onset of vegetation patterns. In correspondence with such threshold value 
and for the vegetation and hydraulic characteristics (Table 1), the vegetated volume fraction is equal to 0.22%, a 
value which does not justify the use of a more complicated mass-conservation equation.

Here we report a sensitivity analysis performed on some of the coefficients involved in the analysis. We consid-
ered six different variables, namely the drag coefficient, CD, the frontal width of plants, Dv, the Chézy coefficient, 
C0 and the growth, �∗

� , the decay, 𝐴𝐴 𝐴𝐴
∗

𝑑𝑑
 , and the diffusion, 𝐴𝐴 𝐴𝐴

∗

𝐷𝐷
 , coefficients. To allow for comparison with the stability 

plot in Figure 3a, the results of the analysis are reported in terms of the threshold aspect ratio, βc. We considered 
βc because the aspect ratio is usually acknowledged to play a role in 2D shallow-water systems. For example, 
it governs the emergence of bar patterns and the morphodynamic evolution of multiple thread channels (e.g., 
Colombini et al., 1987; Crosato & Mosselman, 2009), and was previously used to analyze the onset of vegetation 
patterns (Bärenbold et al., 2016; Crouzy et al., 2016). We must also point out that the results of the sensitivity 
analysis may be meaningless when the threshold aspect ratio takes very low values (i.e., βc ≈ 1). In this case, the 
2D SWE (Equations 3–5) cannot be applied and the mathematical framework loses its reliability.

Figure 7 shows results of the sensitivity analysis, according to different coefficients and parameters for some 
values of the Froude number, Fr. The analysis indicates that the decay and diffusion coefficients play the major 
role in selecting the threshold aspect ratio, βc, for a wide range of values of the Froude number, Fr (Figures 7e 
and 7f). The growth coefficient, 𝐴𝐴 𝐴𝐴

∗
𝑔𝑔 , seems relevant for all the tested hydraulic conditions (i.e., Froude number) 

for values lower than 0.7 × 10 −10 m 2 s −1 (Figure 7d), whereas its influence on βc becomes negligible for higher 
values. The model is responsive to the Chézy coefficient, C0, for values higher than 6 and Froude number higher 
than 2 (Figure 7c), whereas the threshold aspect ratio, βc, significantly varies for Froude number equal to 0.1. The 
trend is similar for other variables (e.g., drag coefficient, CD, in Figure 7a and plant width, Dv, in Figure 7b). It is 
noteworthy that the dependence of the threshold aspect ratio, βc, on the drag coefficient, CD, and the frontal width 
of plants, Dv, is almost linear and decreases at increasing values of the Froude number, Fr. This may suggest that 
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vegetation patches may show up at high values of the Froude number (higher than the 0.3 in the proposed frame-
work) according to the parameters governing vegetation dynamics (e.g., 𝐴𝐴 𝐴𝐴

∗
𝑔𝑔 ) rather than those related to plant 

geometry (e.g., Dv) and plant-scale turbulence (e.g., CD).

The presence of an upper threshold in terms of vegetation density, ϕ0, in Figure 4a implies that vegetation density 
remains constant and uniform above such threshold. Besides the role played by other factors (e.g., thermal alter-
ations, nutrient availability), the existence of such an upper threshold may explain the development of vegetation 
cover by invasive species. The positive feedbacks induced by high vegetation cover (e.g., reduction of plant 
removal and breakage due to low flow velocities in the vegetated layer) may promote the increase in vegetation 
density up to extremely high values. This may take place to such a point that plant removal is physically impeded 
by the very low flow drag, and patterns may not come up. The hampered formation of vegetation patterns due 
to high vegetation density is consistent with field observations which give evidence to the uniform and dense 
vegetation cover of invasive species (e.g., Ibáñez et al., 2012; Thamaga & Dube, 2018). In these cases, human 
interventions are mandatory to recover and restore fluvial and ecological equilibrium (Rahel et al., 2008, among 
others).

According to the values of parameters involved in the analysis, the magnitude of ΩI (Figure 5) is similar to the 
range measured by Deblauwe et al. (2012) for the migration of banded vegetation patterns in arid ecosystems 
but the values in the range are much lower than the migration rate of morphological bedforms (e.g., Rodrigues 
et al., 2015; Serlet et al., 2018). Additionally, Figure 5 reveals that ΩI assumes negative values, only, meaning 
that vegetation patterns may migrate under the influence of the hydrodynamic forcing, but only in the down-
stream direction. These results are in contrast to the measurements of Deblauwe et al. (2012) and Bastiaansen 
et al. (2018), where patterns migrate upslope, and to the findings of Cartenì et al. (2012), where patterns migrate 
both in the upstream and in the downstream directions. To this regard, we must point out that all the aforemen-
tioned papers did not deal with hydrodynamic interactions as they were meant to model vegetation patterns in 

Figure 7.  Sensitivity analysis of the threshold aspect ratio, βc, with respect to different coefficients involved in the model (Equations 7, 11, and 12). (a) βc versus the 
drag coefficient, CD; (b) βc versus the frontal width of plants, Dv; (c) βc versus the Chézy coefficient, C0; (d) βc versus the growth coefficient, 𝐴𝐴 𝐴𝐴

∗
𝑔𝑔 ; (e) βc versus the decay 

coefficient, 𝐴𝐴 𝐴𝐴
∗

𝑑𝑑
 ; (f) βc versus the diffusion coefficient, 𝐴𝐴 𝐴𝐴

∗

𝐷𝐷
 .
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drylands and arid ecosystems. Moreover, Cartenì et al. (2012) assumed a system of spatial coordinates with no 
slope and no preferred direction, which may explain the occurrence of the migration in both directions.

5.  Conclusions
In this work, we revised the coupled eco-hydrodynamic problem to shed light on the threshold conditions for the 
formation of vegetation patterns of aquatic plants in rivers. The mathematical approach is based on the linear 
stability analysis of a modified equation modeling vegetation dynamics in terms of plant density. The proposed 
formulation accounts for the positive feedbacks induced by the removal of propagules on the growth rate of the 
plants. We proved that the onset of vegetation patches from a uniform vegetated riverbed may be explained by 
the transport and resettlement of uprooted or broken propagules (Eckert et al., 2016; Heidbüchel et al., 2020).

Both the onset of vegetation patterns and their geometrical characteristics depend on the hydrodynamic parame-
ters (e.g., Froude number) and the specific plant-species properties (e.g., growth, diffusion, decay coefficients). 
As a consequence, the management of vegetated rivers is challenging in particular due to the hydrological effects 
of climate change, the impacts of land use practices on sediment dynamics, and the presence of invasive species. 
The results of our analysis may explain the formation of extremely dense vegetation covers when non-native 
species start colonizing the riverbed. The proposed framework also represents a valid tool for informing the 
design of river restoration projects. Vegetation patches play a key role aiming at improving in the physical and 
biological diversity of lowland permeable rivers including the management of low and high flows.

Appendix A:  Dimensionless Variables
In this appendix, we report the mathematical expression of dimensionless variables.
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∗
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Notation
CD	 Drag coefficient
Cf	 Bed friction coefficient
d*	 Grain size
Dv	 Frontal width of plants
Fr	 Froude number
g	 Acceleration due to gravity
hv	 Vegetation height
kn	 Transverse wavenumber
ks	 Longitudinal wavenumber

𝐴𝐴 𝐴𝐴
∗
𝑠𝑠 	 Longitudinal wavelength

n	 Transverse coordinate
s	 Longitudinal coordinate
t	 Time
U	 Longitudinal flow velocity
V	 Transverse flow velocity

𝐴𝐴 ⃖⃖⃗𝑉𝑉 = {𝑈𝑈𝑈 𝑈𝑈 } 	 Flow velocity vector
Y	 Water depth

𝐴𝐴 𝐴𝐴
∗

𝑑𝑑
 	 Vegetation decay coefficient

𝐴𝐴 𝐴𝐴
∗

𝐷𝐷
 	 Vegetation diffusion coefficient

𝐴𝐴 𝐴𝐴
∗
𝑔𝑔 	 Vegetation growth coefficient

𝐴𝐴 𝐴𝐴
∗

𝑃𝑃
 	 Propagule coefficient

β	 Width-to-depth ratio
βc	 Threshold width-to-depth ratio
ϵ	 Small number
η	 Bed elevation
νd	 Vegetation decay parameter
νD	 Vegetation diffusion parameter
νg	 Vegetation growth parameter
νP	 Propagule parameter

𝐴𝐴 ⃖⃗𝜏𝜏 = {𝜏𝜏𝑠𝑠, 𝜏𝜏𝑛𝑛} 	 Bed shear stress
ϕ	 Vegetation density
ϕ0	 Vegetation density at equilibrium
ϕm	 Carrying capacity

𝐴𝐴 𝐴𝐴
∗
𝑚𝑚 	 Dimensional carrying capacity

Ω = ΩR + iΩI	 Complex wave-speed of the perturbation

Data Availability Statement
Data used in the analysis are reported in the tables and within the text.
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