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Abstract
Modern analytical engines rely on Approximate Query Processing
(AQP) to provide faster response times than the hardware allows
for exact query answering. However, existing AQP methods impose
steep performance penalties as workload unpredictability increases.
Specifically, offline AQP relies on predictable workloads to create
samples that match the queries in a priori to query execution, pro-
viding reductions in query response times when queries match the
expected workload. As soon as workload predictability diminishes,
existing online AQP methods create query-specific samples with
little reuse across queries and produce significantly smaller gains in
response times. As a result, existing approaches cannot fully exploit
the benefits of sampling under increased unpredictability.

We analyze sample creation and propose LAQy, a framework for
building, expanding, and merging samples to adapt to the changes
in workload predicates. We show the main parameters that affect
the sample creation time and propose lazy sampling to overcome
the unpredictability issues that cause fast-but-specialized samples
to be query-specific. We evaluate LAQy by implementing it in an
in-memory code-generation-based scale-up analytical engine to
show the adaptivity and practicality of our framework in a modern
system. LAQy speeds up online sampling processing as a function of
sample reuse ranging from practically zero to full online sampling
time, and from 2.5x to 19.3x in a simulated exploratory workload.
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1 Introduction
Data exploration is crucial to deriving insights and informed de-
cisions in today’s data-driven world. Visualization tools and in-
teractive dashboards provide a convenient and rich exploration
interface. Nevertheless, humans require fast responses to maintain
their focus during mental tasks: Miller [26] reports a 0.1 seconds
response window for users to feel the UI follows their actions and
15 seconds as a hard limit to avoid demoralization and breaking
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the line of thought. However, with current memory technologies
providing a few hundred GBps of memory bandwidth, analytical
engines cannot even process simple queries that touch more than
a few GBs of data in the 0.1 seconds window, despite running on
TB-sized memories.

Analytical engines have long relied on approximate query pro-
cessing to reduce the data processing time [2, 4, 8, 9, 11, 19, 23, 28,
33, 36]. Offline approximate query processing methods prebuild
samples to reduce the data access and processing time during query
execution [2]. However, the significant savings of such approaches
come at the expense of requiring predictable workloads. Such pre-
dictable workloads appear in data warehousing operations, but
they mismatch interactive workloads like data exploration, where
queries constantly change [22]. Online query processing general-
izes offline sampling into interactive use cases. Instead of relying
on query templates, it does the sampling during query execution
before expensive operations. Such approaches reduce the process-
ing time; however, sampling during query execution is a heavy
operation [4, 36]. To minimize this cost, existing approaches rely on
pushing lightweight, selective operations below sampling [19] and
sample caching [28]. However, specializing the online sample to the
current query reduces its potential to be suitable for another query.
As a result, existing approaches introduce a steep trade-off between
sample reuse and sampling overhead for interactive exploration.

This work introduces LAQy, a sampling-based AQP framework
that increases the sample reuse opportunities while maintaining
the sample creation to the same or lower cost than online sample
creation. LAQy relaxes the sample matching requirements by allow-
ing samples to match a query partially. This relaxation allows using
samples that would otherwise be considered inappropriate for an
incoming query – resulting in significant execution time savings.
LAQy corrects the query-sample mismatch using delta samples:
samples that LAQy uses to augment the partially matching sample
with the missing pieces needed to satisfy the query approximation
requirements. As a result, LAQy extends i) the effectiveness of on-
line sampling techniques to a greater range of query workloads,
ii) provides a system-level acceleration technique that maintains
the theoretical sample properties, and iii) reduces the query pre-
dictability requirements that existing systems need to overcome
the hardware limitations through query approximation techniques.

In summary, LAQy makes the following contributions:

• We identify that the current rigidness of sample matching
rules highly impacts a class of workloads (Section 2). We
pinpoint the resulting wasteful sample creations (Section 4)
and augment the workload predictability classification [2]
with a new class that often appears in exploratory workloads.
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• We propose a relaxed sample-to-query matching framework
(Section 3) that increases sample reuse. We show how par-
tial matching, combined with lazy delta sample creation, i)
extends the reusability of online samples and ii) reduces the
online sample creation cost (Section 5).
• We outline the integration of LAQy in a state-of-the-art par-
allel analytical engine (Section 6). We show how through
partial sample matching and lazy delta samples, LAQy accel-
erates online approximate query processing by up to 19.3x
without loss of approximation guarantees (Section 7).

Overall, LAQy improves the efficiency of online approximate
query processing systems by increasing sample reuse and bridging
the gap between predictable and unpredictable predicates in approx-
imate query processing. As a result, LAQy enables fast responses
despite the query unpredictability that characterizes data explo-
ration workloads, which previously hindered the effectiveness of
query approximation methods. LAQy reduces the sample creation
overhead. While most of the prior related systems use sampling
in disk-based, single-threaded, and distributed setups, we investi-
gate and address the bottleneck shift in scale-up single-machine
setups with minimal engine modifications. LAQy proposes a lazy
sampling algorithm to avoid costly sample creation through an
in-memory-friendly architecture and judicious workload-driven
sample construction and merging. This allows for speeding up
the sampling operation for base relations and also enables reuse
opportunities when samplers must be placed after joins, for exam-
ple, when meaningful filtering and sampling dimensions are only
available after joining the fact tables with dimension tables.

2 Background and Motivation
Exploratory data analysis creates hard-to-predict query patterns,
yet its interactive nature requires fast response times to keep the
data analyst focused and productive. Further, keeping the user
engaged requires response times exceeding the underlying hard-
ware’s capabilities. As a result, analytical engines have relied on
approximate query processing to reduce the data processing cost.
Online and offline AQP. To improve response times, past work [2,
4, 8, 9, 11, 19, 23, 28, 33, 36] has used offline and online approximate
query processing. Offline AQP prebuilds a set of samples to reply to
queries during runtime quickly. In contrast to offline AQP, which
relies on predictable workloads, online AQP relies on sampling
during the actual runtime. This reduces the predictability require-
ments for online AQP and the observed benefits, as online AQP
only improves operations after the sample (e.g., an online sample
is created before an expensive join or shuffling operation).

A core requirement of AQP methods is that when the query
implies some grouping, all groups are represented in the output.
To achieve that, variants of approximation methods often rely on
stratified sampling: the systems analyze the query clauses and
extract the columns that, if they are not included in the stratification
key, the query output could sample out tuples. These columns are
called the Query Column Set (QCS), and when aligned with the
query requirements, they allow for strict bounds on the error of
the computed aggregations [2]. Furthermore, Quickr [19] provides
optimization rules for injecting the samplers in the query plan and
transforming samples and their QCS requirements while pushing

SELECT AGG(C1) 

FROM T

WHERE C2 < 6
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Sample {C2 < 2} Sample {C2 < 6}
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Figure 1: Relaxing the predicate predictability example.

them across various relational operators. Conversely, the remaining
non-QCS columns are called Query Value Set (QVS).
Workload predictability. The different approximate query pro-
cessing methods’ applicability depends on workload predictability.
Agarwal et al. [2] classify workloads into four categories based on
the predictability of the queries: i) predictable queries where the
upcoming queries are known, e.g., monthly or weekly warehousing
tasks that repeat the same query in a fixed interval, ii) predictable
query predicates where the filter conditions of upcoming queries
are fixed and known, iii) predictable QCSs where the grouping or
filtering columns are known, but the actual filtering values are
revealed only during the query invocation, and iv) unpredictable
queries where there is no information about the upcoming queries.

While the query patterns during data exploration are hard to
predict, they are also not entirely unpredictable. Users often add, re-
move, expand or shrink filters, grouping columns and joined tables
as a result of focusing their exploration on specific subsets of the
input or expanding to increase their exploration scope and hypoth-
esis testing [37]. As a result, the analytical engine often receives
incremental changes to the query shape, placing such workloads be-
tween predictable, or slowly changing, QCSs and predictable query
predicates. Yet, approximation techniques for predictable query
predicates are much more efficient as samples are handled similarly
to offline views and thus incur small overheads. In contrast (mostly)
predictable QCSs rely on online sampling.

Issue #1: strict sample matching rules.Whether a sample sub-
sumes a query or not is, currently, a binary classification: either a
query has an appropriate QCS and QVS, or it can not provide the
necessary guarantee, even if just one column is not contained in one
of those sets. As a result, small mismatches in column set require-
ments result in creating a new sample – with the corresponding
overhead and missed opportunities.
Example. Figure 1 shows two queries arriving in a sequence, with
the second one having an expanded filter, similarly to the queries
submitted by a data scientist who zooms out to cover a greater range
of the input. Suppose that, during query execution, a sample on T is
created after the filtering condition, e.g., to minimize the sampling
cost. In that case, that sample will not have the information neces-
sary to answer the expanded (red) query. As a result, while the two
queries are very similar, the sample would be rejected, and a new
one would be created, reducing the first sample’s effectiveness.
Challenge #1: increase sample usefulness. Efficient query ap-
proximation techniques need to increase the usefulness of each
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sample by relaxing the sample matching requirements, despite the
theoretical requirements. To avoid compromising the theoretical
sample properties, LAQy increases the sample usefulness by allow-
ing samples to partially satisfy a query and creating delta queries
that require smaller samples for their approximation.

Issue #2: creating a new sample is costly. When existing samples
do not match the current query, either a new sample is created, or
approximate processing is abandoned altogether. To mitigate such
overheads, existing methods [28] aggressively cache samples and
synopsis. Specifically, Taster [28] continuously inspects the work-
load to materialize samples as a side-effect of execution for future
(re)use based on the recent query history. However, the materialized
sample is only helpful if it entirely subsumes the predicates and
QCS, again falling back to the online AQP processing otherwise.

Further, the new sample is built from scratch despite potentially
having similar samples. As a result, despite an existing sample
satisfying part of the query, the new sample will be built on the
entire input and have the full QCS size, which prior work has shown
that it can have a prohibitive cost, especially as the QCS and QVS
sizes increase [36].
Example. If the queries of Figure 1 were also grouping on C2, then
the corresponding samples would have C2 in the QCS. Although
the blue sample is a subset of the sample required for the red query,
existing approaches would discard the blue sample when evalu-
ating the second (red) query. Further, with the valid range of C2
increasing, building the second (red) sample with stratification on
C2 would be significantly slower than making the blue sample,
as the number of strata is the dominating factor during sample
creation [36].
Challenge #2: efficiently react to missing samples. Efficient
query approximation techniques need to quickly and efficiently
build the required samples. To reduce the sample creation time,
LAQy judiciously builds only the missing parts of a required sam-
ple and retrieves the rest from the already available samples.

Issue #3: unpredictability increases the risk of useless pre-sam-
pling. Offline sampling [2] mitigates the sampling overhead by sam-
pling before the query time. During query processing, the sample is
already available, effectively eradicating the cost of sampling from
the response time. Further, to avoid the overhead of periodically
having to recreate the sample as the source data are updated, Birler
et al. [4] propose incrementally maintaining the sample during
updates. Yet, offline methods require that the useful samples are
known prior to query time.

To reduce the probability of wasted samples, offline approaches
tend to build more inclusive and, thus, bigger samples. However,
this is still a double edge sword: while it may support more queries,
1) using a bigger sample incurs a higher cost for each query using
it, 2) a higher build cost and yet the potential of mispredicting the
query workload and not using the sample.
Example. Consider this time that an aggressive sampling approach
sees the condition on C2, and instead of applying the filter before
the sampling, it decides to stratify on C2 as well (include C2 in the
QCS).While this wouldmake the sample reusable in the second (red)
query, it may not pay off if, for example, multiplying the number of
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Figure 2: The design space of sampling-based AQP methods.

strata by the cardinality of C2 makes sample creation much slower
than creating two different samples – a common occurrence for
high cardinality columns [36].
Challenge #3: sampling without regret. As a result, the over-
generalization of samples may result in significant costs. Efficient
query approximation systems need to minimize the risk of wasteful
sample creation by reducing the probability of creating a minimally
useful sample. To overcome this issue, LAQy builds only samples
that will be immediately used to accelerate a query.

Summary. Overall, the current rigidness of whether a sample satis-
fies or not a query, combined with the high cost of sample creation
from scratch and the uncertainty about the long-term gains of
creating bigger samples highly affect the effectiveness of online
approximation techniques. Further, data exploration often results
in partially overlapping queries and small transitions across predi-
cates, resulting in the aforementioned issues being exemplified for
such workloads. In the next sections, we describe how LAQy’s de-
sign allows tackling all three issues through a design that focuses on
maximizing the (even partial) sample reuse to minimize the sample
creation (through lazy delta samples) and a sample-as-you-query
model that reduces the regret for building a sample by creating only
samples that are immediately useful. As a result, LAQy bridges the
gap between online and offline approximation methods by partial
sample reuse (Figure 2).

3 LAQy’s Design Principles
LAQy is an approximate query processing engine designed to bridge
the gap between offline and online AQP methods in scale-up sys-
tems. Existing approaches have to select between building low-
overhead samples specialized to the query predicates or paying a
higher sample construction overhead to create reusable samples.
Instead, LAQy achieves a sweet spot between reusability and sam-
pling time by taking advantage of the mergeable nature of samples.
Furthermore, LAQy is compatible with adaptive storage and sample
budgeting solutions, like Taster [28], to allow adaptive management
of the allocated sample space based on workload patterns.

Instead of imposing a binary can-or-cannot-be reused per-sample
decision, the samples generated by LAQy create a continuous spec-
trum between online and offline sampling methods (Figure 2). As a
result, samples do not have to be entirely ignored; instead, they pro-
vide a partial input to the query. Furthermore, for the query input
that is not covered by the existing sample, LAQy avoids building a
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full sample. Instead, it constructs only the part of the sample neces-
sary for the current query – minimizing the overhead imposed by
sample construction, resulting in better applicability of our method
in the era of in-memory engines that saturate the available memory
bandwidth.
The three core principles of LAQy enable it to directly address
the challenges outlined in Section 2:
Principle #1: Partial reuse. Predicates are traditionally considered
either known or too volatile to specialize the sample to the predicate
value – creating a steep penalty, even if the predicates are not
entirely random. For example, typical data exploration patterns
[37] imply that the focus of interest may change but correlate to the
initial scope of analysis, albeit in unpredictable ways. LAQy exploits
the overlap across the predicates to reuse the existing materialized
samples and compute only the delta samples to satisfy uncovered,
non-overlapping sample ranges, extending the strategy of offline
sampling systems.
Principle #2: Judicious sampling. Stratified sampling is an ex-
pensive operation. Stratification imposes random accesses making
sampling potentially as expensive as joins or aggregations. Nonethe-
less, it reduces the input to upcoming operations and the execution
time of future queries if the sample is materialized and reused.
To avoid excessive overheads without a corresponding long-term
speedup, LAQy minimizes the input of stratification operations to
the minimum required for the current query, along the direction of
the online sampling systems.
Principle #3: Laziness and minimal waste. Every bit counts, but
some bits count more. The long-term gain of a sample depends on
upcoming queries. While the prediction accuracy of future queries
can vary, samples created for the current query have an immedi-
ate turnaround. Also, we can give a higher turnaround to already
created samples by increasing their utility through partial reuse.
LAQy reduces the decision-making and pushes it as late as possible
by building only the necessary delta samples and merging them
only when needed. This makes our approach complementary to
both the online and offline state-of-the-art sampling-based AQP
systems.

4 Pruning the Sample Construction Space
LAQy bridges the gap between offline and online sampling by ex-
ploiting the overlap of query predicates to reuse and merge samples.
Section 4.1 starts by evaluating the different parameters that affect
the build time for a stratified sample. Section 4.2 links the various
parameters with the query predictability. Lastly, in Section 4.3, it
motivates our main observation: relaxing the predictability require-
ments for predicates allows lazily building samples and amortizes
the (stratified) sample build time across queries with overlapping
predicates.

4.1 Building Stratified Samples
To create a stratified sample, each input element is inserted into a
reservoir based on the element values on the QCS columns. Each
stratum thus keeps track of the reservoir, and the number of con-
sidered elements (weight) as the admission probability depends on
the number of previously considered items.
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Figure 3: Impact of #tuples of the dataset and #strata defined
by the QCS on the time to create a stratified sample.

Considering an input item for inclusion into a reservoir generally
requires random access to find and update the admission-control
state (random number generator). If the item is admitted, then find-
ing and replacing an existing item from the reservoir requires one
more random access. The latter may or may not be on the same
cache line as the admission state, depending on the reservoir ca-
pacity (𝑘) and whether the reservoir’s storage is inlined with the
admission state.

Admission control takes place for every tuple, so the correspond-
ing time is reduced as the input tuples decrease. Admission, how-
ever, happens stochastically with a probability that converges to
the sampling rate as more items are considered per reservoir. As a
result, admissions are responsible for a small portion of the build
time. Furthermore, following the observation that an item will be
infrequently replaced, LAQy does not pack the reservoir storage
with the admission state. Instead, it stores a pointer to the actual
reservoir together with the admission state to reduce the footprint
of the hash table data structure used to store the strata.

Figure 3 shows how the build time increases with an increase of
the input size. Independently of the number of strata, the sampling
time follows a similar trend. However, as the number of strata grows,
we observe a higher sampling time even for small input sizes. Each
stratum introduces a constant allocation and initialization even
if it does not reach its capacity. As a result, while the input size
affects the sample building time, strata initialization time, count,
and random accesses to stratum state have a significant impact on
the sample build time, exacerbated by the total cardinality of QCS.

Figure 4 shows how the build time changes for different admis-
sion rates and a number of groups by varying the reservoir capacity
𝑘 . While the reservoirs are full at the end of the sampling, their
capacity has a minor impact on the build time for variations from 0
to 2000 tuples/reservoir over the full data input of 6B tuples. Note
that while plotted lines show small increases of tuples per reservoir,
the actual increase of admitted tuples is a multiple of the increase in
reservoir capacity: if 500 more tuples are accepted to each reservoir,
and there are 20 reservoirs, then a total of 10,000 more tuples are ad-
mitted overall into the sample. In contrast, the number of reservoirs,
or equivalently the number of groups, has a significantly higher
effect on the build time: the random access to evaluate whether a
tuple should be admitted to a group overshadows the per-reservoir
tuple admission.
Key observations & predicate predictability. LAQy builds on top
of two observations. First, the number of strata and the number
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Figure 4: Impact of incrementing the per-reservoir capacity.

SELECT C1, SUM(C2) FROM T

WHERE C3 > 5 [AND C1 IN (’G1’, ’G2’)]

GROUP BY C1

Figure 5: Predicated aggregation query example.

of tuples have the highest impact on sampling time, while per-
stratum capacity 𝑘 has a lower impact on the build time. Second,
increases in the reservoir capacity have a marginal impact on the
overall sampling time while controlling the desired error bounds
by obtaining sufficient sample support.

Online AQP approaches [19] rely on the first observation to (con-
ditionally) perform a filter pushdown in the query plan to reduce
the input as soon as possible for the following (sampling) oper-
ators. Pushing operations below sampling, however, reduces the
generality of the sample: the sample is specific to the pushed-down
operations, and thus, if materialized, its reuse is limited to queries
that subsume the predicates and sample characteristics. BlinkDB [2]
makes the differentiation between predicates that are predictable
for the given queries and creates predicate-specific samples, where
beneficial, to specialize in optimizing to storage and processing
budget. For unpredictable predicates but predictable QCSs, pushing
filters down below sampling operations significantly decreases the
sample usefulness, as the predication can have different predicate
values across queries which would have to subsume the existing
sample characteristics and predicates [28]. LAQy takes advantage
of the two observations above to accelerate sampling for unpre-
dictable predicates by exploiting patterns and overlaps present in
the query predications that reduce the penalty of mispredictions in
the case of partial predicate matches.

4.2 The Cost of Predicate Unpredictability
Suppose we have the following query that we would like to approx-
imate by creating a sample, where the input relation T can be a
base table or a subquery result.

If the predicate values are predictable on C3 and C1, the
future queries are assumed to satisfy those conditions. This means
that building a stratified sample on QCS={C1} with filters pushed
down before the sampler can answer the future queries with equal
or stricter, subsuming predicates1.

1If a sufficient sample size support exists for requested error guarantees after applying
the stricter predicate.
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Figure 6: Sampling time for various selectivities.

If the predicate values are not predictable, but predicate
columns are, those columns are added to the QCS, without push-
ing down the filters before sampling. This makes the resulting
sample applicable to any predicate on those columns, at the cost of
a larger input and more complex stratified sampling with multiple
columns in QCS. As the cost of sampling is not negligible at query
execution time, the cost of more complex sampling schemes adds a
prohibitive penalty as the user may be interested only in limited,
yet unpredictable, regions of the dataset, incurring wasteful pre-
computation at a critical execution path. Suppose this happens if
the user is interested only in specific groups in the future queries
with a filter on C1 in brackets.

To demonstrate the impact of selecting one of the above options,
Figure 6 shows the sample build time required for creating a strati-
fied sample for different selectivities. Section 7 provides the detailed
input and hardware details. We start with a stratified sample on
QCS={C1} and filter pushdown on C3 (predictable predicates on QVS)
which results in 450 strata. To improve the reusability of the materi-
alized sample without any predictions about the runtime predicate
values, the column C3 is added to QCS without any filter pushdown,
resulting in 4950 strata (non-predictable predicates).

However, when the predicate is on a column C1 that would
participate on the QCS due to being part of the GROUP BY clause,
the filter can be pushed down along with adding the column to the
QCS. In the best case, on the highly selective end for the newly
added QCS this approach prunes the sample input instead of making
a strict decision to add the entire column to the QCS (predictable
predicate on QCS).
There is up to 19-24x slowdown to create a non-predicate-specific
sample, representing an average slowdown of 6.7-11x across the
selectivities to resolve the predicate value unpredictability with the
existing all-or-none sample matching systems and approaches.
The goal is to construct a reusable sample as the highest speedup
is achieved using a previously materialized sample (offline AQP)
instead of online sampling. The leading cause of the predicate pre-
dictability rigidity is the strict requirement of predicate subsump-
tion for reuse. The sample reuse dichotomy creates a clear-cut
tradeoff between reusability and performance, driven by predictions
instead of the actual workload with overlapping predicates.
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4.3 Relaxing the Sample Predicate Predictability
There is, however, a middle ground between predictable and unpre-
dictable predicates. To demonstrate this, consider the two queries
in Figure 1. If the value for predicate on C2 is known ahead of
time, the query belongs in the predictable predicate category. If
that value varies, then the predicate would be considered unpre-
dictable. Suppose a sample is materialized as a side-effect of work-
load. In that case, the sample can be reused if the predicates are
subsumed [28], assuming enough tuples in the sample satisfy the
predicate to achieve the desired error guarantees.

To our best knowledge, existing systems and algorithms opt to
rebuild samples if the predicate is not fully subsumed, even if gen-
erating an online sample for the missing range [2, 6) would suffice
to answer the query using the previously materialized, effectively
offline sample, as in Figure 1.

We call a sample generated for the uncovered range (𝑥,𝑦] a Δ
(delta) sample, the process of generating such sample expansion
as it expands the samples’ predicate coverage, and the process of
combining the reusable sample with Δ sample merging. We call the
overall sampling lazy, as it defers and relaxes the strict predictability
rules as late as possible while reducing the amount of work that
samplers need to do.
Summary. Our approach relaxes the predictability requirements to
improve the reuse of the samples previously materialized through
workload-aware methods described by prior work [2, 28]. We mod-
ify the physical sampling algorithm and obtain an equivalent logical
sample with the requested characteristics. We explore the reservoir-
based sampling algorithms (simple reservoir sample, stratified reser-
voir sampling), commonly used in systems, but mainly since merg-
ing two or multiple reservoirs preserves the characteristics of the
final (reservoir) sample [41]. We propose a method that bridges
offline and online sampling, complementary to prior art.

5 Lazy Sampling with LAQy
Traditionally [2, 19], the columns in a stratified sample are split into
two sets: the QCS (Query Column Set) and the QVS (Query Value
Set). The QCS contains the columns that affect the participation
of the rows in the output, such as columns participating in filters,
join conditions, and grouping columns. The QVS has the remaining
columns, such as the aggregation columns.

We will briefly describe the main steps of how LAQy relaxes the
predicate requirement for sample reuse, depicted in Figure 7:

(1) Starting from an approximable query, an optimizer (e.g. [19,
28]) decides on the logical sampler placement (striped green
circle). The sampler can have as input base relations or sub-
queries in a more general case.

(2) The sample store attempts to find a materialized sample that
has the requested characteristics of the logical sampler.

(a) If there is a sample that already covers the predicate space
with a subsuming predicate, we can use the existing sam-
ple if sufficient sample support exists after filtering, fully
reusing the offline sample.

(b) If no sample exists overlapping in predicates and require-
ments, online sampling is performed only.

(c) If a partially overlapping sample exists, calculate the non-
overlapping predicate for the Δ query and prepare the

Merge
1.

2.

3.

4.

Offline SampleOnline Sample

Figure 7: LAQy: the relaxed sample reuse steps.

sample for merging in the query execution pipeline. Pro-
ceed to the next step (3).

(3) The predicates are pushed down the original query plan to
initiate online Δ sampling.

(4) Online and offline (stratified) reservoirs are merged, produc-
ing the equivalent logical sample.

LAQy combines samples and triggers the generation of a new
partial (delta) sample only for the relevant input data not covered
by the existing samples. Thus, for each sample, LAQy maintains
the Query Predicate, Query Input, QCS and QVS that represent the
(logical) input of each sampler (the striped circle, Offline Sample in
Figure 7). Making this information part of the sample description
makes explicit that the sample is malleable and reusable, based on
specific conditions outlined in the rest of this section.

Algorithm 1: Lazy sampling with LAQy.
Input :Query 𝑄 with logical sampler 𝑆
Output :Lazy sampler 𝑆𝑙𝑎𝑧𝑦
𝑆 ′ ← get existing sample with 𝑄𝐶𝑆 and 𝑄𝑉𝑆 of 𝑆
if exists(𝑆 ′) then

if 𝑆 ′ subsumes the predicates of 𝑆 then
𝑆𝑙𝑎𝑧𝑦 ← 𝑆 ′ /* full reuse: offline */

else
if 𝑆 ′ overlaps with the predicates of 𝑆) then

/* partial reuse: delta range sample */
𝑆Δ ← 𝐷𝑒𝑙𝑡𝑎𝑆𝑎𝑚𝑝𝑙𝑒 (𝑆, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒Δ(𝑆, 𝑆 ′))
𝑆𝑙𝑎𝑧𝑦 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑀𝑒𝑟𝑔𝑒 (𝑆Δ, 𝑆′)

else
𝑆𝑙𝑎𝑧𝑦 ← 𝑆 /* no reuse: online */

end
else

𝑆𝑙𝑎𝑧𝑦 ← 𝑆 ; /* no reuse: online */

end

To combine two samples, LAQy relies on selecting samples that
cover the area of interest but do not overlap. Consider a query
predicated on 𝐶3 > 2. It can be served by combining a sample on
𝐶3 > 5 with a sample on𝐶3 ∈ (2, 5]. However, combining a sample
on 𝐶3 > 5 with a sample on 𝐶3 ∈ (2, 7] would sample tuples in the
𝐶3 ∈ (5, 7] range twice, introducing a bias towards those intervals
– violating the per-reservoir uniformity assumption. To resolve this
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issue, LAQy extends samples by pushing down the predicates to
merge reservoirs on non-overlapping predicates in QVS, reducing
the sampler input as a desirable property of Δ samples.

This paper relies on prior art that analyzes and proposes solu-
tions for optimization rules for sampling for online AQP [19], as well
as workload-based predictions and sample materializations [2, 28].
We aim to bridge and relax the dichotomy between the two ap-
proaches via flexible sample reuse. Therefore, we focus on a solu-
tion that synergetically works with the prior art and present and
evaluate our contributions within reasonable starting assumptions.
At either extreme, our system would run as purely online or offline
sampling-based AQP system. For example, we will assume that an
offline sample exists to focus on the behavior and performance of
the proposed relaxed reuse via lazy sampling.

5.1 Sample Merging
Reservoir sampling is amenable to updates and maintenance while
preserving the requested sample characteristics. We use the prop-
erty of well-definedmerge behavior to enable both the independent,
data-parallel scale-up execution as well as the key contribution
that relies on sample merging. Different data processing opera-
tions, such as filtering or stratification, impact the data distribution.
Further, partitioning and/or splitting the data for parallelization
potentially introduces additional data skew. As a result, using sam-
ples created after such operations requires careful consideration to
avoid creating biased samples.

LAQy uses the weighted reservoir sampling algorithm [7] to re-
cover a sample equivalent to a full resample of the input. Specifically,
during merging, LAQy weighs the elements of the to-be-merged
samples based on what proportion of the input they represent. To
do so, each created sample keeps the reservoir 𝑅 and tracks the
running sum of (importance) weights 𝑤 of previously qualifying
elements. This allows LAQy to use the exact reservoir weights as it
creates and stores samples just-in-time, effectively maintaining the
count of the elements as the weight of each qualifying input ele-
ment is one. Using these (importance) weights, LAQy calculates the
new weights associated with every sample to use them further with
the weighted reservoir sampling algorithm so that the elements of
the merged sample have the same weight as after a full resample.

The key observation is that two independent reservoirs with
their associated weights {𝑅1,𝑤1} and {𝑅2,𝑤2} can be merged to
obtain {𝑅𝑚,𝑤1 +𝑤2}. Intuitively, reservoir 𝑅1 represents𝑤1 tuples,
𝑅2 represents𝑤2 tuples, and a reservoir 𝑅𝑚 equivalent to sampling
the union of original input data of 𝑅1 and 𝑅2 would have combined
weights𝑤1 +𝑤2. To avoid resampling the original input data, we
use the existing samples where we adjust the sampling weight from
uniform to biased, as in general case weights are different, where
elements of 𝑅1 are selected with probability 𝑤1

𝑤1+𝑤2
; where converse

holds for elements of 𝑅2 [41]. More formally, to combine reservoirs
𝑅1 and 𝑅2 into 𝑅𝑚 , we perform weighted reservoir sampling [7]
with 𝑅1 and 𝑅2 and their weights as input to the algorithm. The
result is equivalent to having performed reservoir sampling over the
combined input while avoiding repeating processing and accessing
the original data represented by 𝑅1 and 𝑅2. Therefore, merging
itself does not change the properties of the obtained reservoir as

it is a reformulation of the inputs to the algorithm amenable to
changing the input weights.

Algorithm 2: Reservoir merging pseudo-algorithm.
Input :Reservoirs 𝑅1 and 𝑅2.
Output :Merged reservoir 𝑅𝑚 .

if only single reservoir defined in input then
𝑅𝑚 ← 𝐷𝑒𝑓 𝑖𝑛𝑒𝑑𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 (𝑅1, 𝑅2);

end
if either reservoir array not full then

𝑅𝑚 ← 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑅1, 𝑅2);
else

𝑘1 ← 𝑔𝑒𝑡𝑅𝑒𝑠𝑆𝑖𝑧𝑒 (𝑅1); 𝑘2 ← 𝑔𝑒𝑡𝑅𝑒𝑠𝑆𝑖𝑧𝑒 (𝑅2);
𝑤1 ← 𝑔𝑒𝑡𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅1);𝑤2 ← 𝑔𝑒𝑡𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅2);
if 𝑘1 == 𝑘2 then

𝑅𝑚 ← 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑅1, 𝑅2,𝑤1,𝑤2);
else

𝑅𝑚 ← 𝑆𝑐𝑎𝑙𝑒𝑑𝑃𝑟𝑜𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑅1, 𝑅2, 𝑘1, 𝑘2,𝑤1,𝑤2);
end

end
return 𝑅𝑚 ;

Algorithm 3: Stratified sample merge pseudo-algorithm.
Input :Data pipelines with stratified samples 𝐷1 and 𝐷2.
Output :Merged stratified sample 𝑆𝑚 .

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐼𝑛𝑝𝑢𝑡 ← 𝑈𝑛𝑖𝑜𝑛(𝐷1, 𝐷2);
𝑘𝑒𝑦𝐶𝑜𝑙𝑠, 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠 ← 𝑈𝑛𝑝𝑎𝑐𝑘𝐶𝑜𝑙𝑠 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐼𝑛𝑝𝑢𝑡);
𝑆𝑚 ← 𝐺𝑟𝑜𝑢𝑝𝐵𝑦 (𝑘𝑒𝑦 = 𝑘𝑒𝑦𝐶𝑜𝑙𝑠, 𝑣𝑎𝑙 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠, 𝑎𝑔𝑔𝐹𝑢𝑛 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2);
return 𝑆𝑚 ;

In Algorithm 2 we name the weighted reservoir sampling Pro-
portionalSampling. Since, in general, even the reservoir sizes 𝑘 may
differ, we introduce ScaledPropSampling to further bias the weight
by the ratio of 𝑘1 and 𝑘2, obtaining the weight factor of 𝑘𝑠𝑐𝑎𝑙𝑒𝑑

𝑤
to achieve proportional reservoir merge via weighted reservoir
sampling of the inputs. Other cases cover the paths where only
one reservoir is defined and when one of the reservoirs is still not
full and did not enter the probabilistic step of the algorithm. LAQy
maintains reservoirs with their weights, and the reservoir sizes are
parameters known at runtime.

To generalize stratified sampling with multiple reservoirs, Algo-
rithm 3 represents step 4 (Merge) in Figure 7. Strata are represented
by stratification keys (keyCols) and reservoirs. Next, we perform an
equivalent of a GroupBy operation over strata that unioned repre-
sent𝐷1 and𝐷2, where the aggregation function is Algorithm 2 over
the reservoirs that share a stratification key. The case of merging
two reservoir samples from Algorithm 2 is equivalent to the case
of grouping without a key.
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5.2 Issuing Δ Samples with Relaxed Predicates
LAQy differentiates between two general types of reuse across
the samples: tightening and relaxing the predicates depending on
the available materialized samples that may require issuing a Δ
sampling query.

5.2.1 Conditional transition to stricter predicates happens when a
sample already covers thewanted space, but the predicate of interest
is stricter. We can use the existing sample under the condition that
samples have enough support after the predicate pushdown to
satisfy the accuracy requirements [28]. No Δ sample needs to be
issued if the sample meets the condition; otherwise, a complete
online sampling must be performed to satisfy the guarantees.

5.2.2 Relaxing predicates requires adding input tuples for predicate
values not covered by an existing sample. We issue a Δ query based
on the predicates to find the inverted, non-overlapping interval.

5.2.3 Combined tightening and relaxing is the case when predicates
require tightening of the predicates on an existing offline sample
and relaxing via executing the Δ sample for the missing interval.
However, the sample support (of each stratum) after applying the
predicate 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑆) is unknown ahead of time, which may im-
pact the (specified) expected error bounds. If a strict qualifying
sample support is needed, we can follow the conservative approach:
for all the reservoirs/strata that do not have sufficient support an
online query is subsequently executed, which performs sampling
after the filter pushdown. This validates if the exact low (or lack of)
support comes from the original data distribution or as the artifact
of sampling. We can continue with the query in a less strict setting
and report the obtained error bound with the available data. One ap-
proach to reducing the probability of insufficient sample support is
introducing an oversampling factor 𝛼 ≥ 1 to create reservoirs sized
𝛼 · 𝑘 . This trades-off space for tentatively higher sample reusability
in case of strict predicates, similar to how past approaches [2] cre-
ate samples with different parameters 𝑘 . This is compatible with
LAQy since we show that the effect of higher reservoir capacity is
negligible (Figure 4). However, tuning this parameter is out of the
scope of this work.

Predicate relaxing allows for building only a Δ sample on the
missing value range. LAQy reduces the input to the expensive
sampling operations by minimizing the necessary work a Δ sampler
needs to do at query time. We reduce the wasteful processing while
taking a sampling decision as late as possible to process only the
data of interest to the user, maximizing the reuse of previously
materialized online or offline sampling effort.

6 System
We implement LAQy in Proteus [10, 20, 34], a parallel in-memory
DBMS engine. Proteus uses LLVM to generate customized code
for each query, as in the prior work on JIT engines [10, 25, 27, 36].
As Proteus did not have AQP support, we extended it by (1) intro-
ducing sampler operators with the corresponding code generation
routines, (2) adding a sample lifetime management module that cap-
tures the generated samples to allow reuse on subsequent queries,
and (3) implementing sample merging aggregation functions and
operators.

6.1 In-Memory Scale-Up Processing
We test our approach using a state-of-the-art analytical engine
to demonstrate the practicality and understand the tradeoffs of
AQP in modern systems. We analyze the bottlenecks that sampling-
based AQP systems will encounter with parallel processing over
high-bandwidth, low-latency storage media. We opt for in-memory,
scale-up processing to compare the sampling performance with the
technological limits (e.g. memory bandwidth) and use the analytical
engine performance as the optimized baseline fully utilizing the
available hardware. Integrating LAQy with disk-based or scale-out
systems [2, 19, 28] is a topic for future research.

6.2 Sampling Operators and Code Generation
To maximize pipelining and reduce the overhead of sampling we
introduced sampling as specialized operations in the existing code
generation infrastructure. Specifically, we introduced reservoir sam-
pling as a new aggregation function that produces a bag of items.
Stratified sampling is then implemented as a group-by that aggre-
gates the input using the reservoir aggregation function. Similarly,
the reservoir aggregation function can be used with a reduction
to create a simple reservoir sample. Lastly, due to the operator fu-
sion, function calls to the C++ standard random number generation
functions introduced a non-negligible overhead, so we used a low-
overhead random numbered generator, the Lehmer generator [31],
and inlined it with the generated code, allowing the state to be kept
in registers.

6.3 Sample Memory Management and Reuse
As we implement sampling as an aggregation function, at the end
of the sampling phase, we move the ownership of the generated
aggregation result into the sample manager. Specifically, at the
end of a stratified sampling phase, multiple reservoirs are ready.
Instead of registering and moving each of these reservoirs into the
sample manager, we transfer the ownership of the hash-table used
by our group-by implementation. The sample manager then serves
the hash-table produced by the group-by as a stratified sample to
the queries operating on the corresponding stratified sample. This
process does not require moving or copying the data. Maintaining
the sample across queries has no performance penalty other than
the storage space.

We represent reservoirs as the admission control state and a
pointer to a contiguous memory region, the reservoir storage, that
stores the sampled tuples. This decouples the reservoir storage
from the admission control allowing a smaller hash-table footprint
during the sample creation phase – enabling a greater access locality
when the overall admission rate is low. Furthermore, by carrying
the entire state, we can independently merge the reservoirs for both
the scale-up processing where samples are combined and collected
after an exchange operator[14], as well as for the proposed relaxed
sample merging (Figure 7).

7 Evaluation
Hardware setup.We run our experiments on a server with dual-
socket Intel(R) Xeon(R) Gold 5118 CPU (2x12 cores, 2x24 threads,
HyperThreading enabled) with 384GB DDR4 RAM. Unless other-
wise noted, all the experiments run on 48 threads.
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Dataset.We use the Star Schema Benchmark [29] data for our
experiments, using the scale factor (SF) 1000 in a binary column
layout. This yields about 6B tuples in the fact table (lineorder),
with about 23GB of data per single 4-byte integer column. We add a
unique identifier column (lo_intkey) to the lineorder table as an
8-byte integer value ranging from 0 to the number of elements in the
table, randomly shuffled to enable fine-grained selectivity control
without implying a specific data ordering. The necessary columns
are preloaded in memory for the experiments. We summarize the
QCS sizes for the stratified sampling experiments in Table 1.

Table 1: Query column set mapping and |QCS| sizes.

Columns lo_quantity lo_tax lo_discount

Individual |QCS| 50 9 11
1-column |QCS| 50
2-column |QCS| 450
3-column |QCS| 4950

Experiments use 1 to 3 columns to produce up to 4950 strata,
defined by the attributes in Table 1. Each stratum is a unique com-
bination of values from stratification columns aligned with the
benchmark specification. Our approach is not limited to the spe-
cific number of columns or strata. Furthermore, our experimental
evaluation is in line with findings in the report fromMicrosoft’s pro-
duction big-data cluster [18], where authors report that 90% of the
input column sets have between 1 and 6 columns. We use a range
of strata, further experimenting with selectivities that LAQy uses
to reduce the sampling overhead opportunistically, as in Figure 8.
Workload. To evaluate the isolated performance of stratified sam-
pling, we use the query template in Equation (Strat). When test-
ing the sensitivity to QVS selectivity, we use the predicate on
lo_intkey, and for QCS, we use the predicate on lo_quantity.
For the sensitivity to the cardinality of QCS and access patterns
generated by stratification, we use from 1 to 3 grouping columns,
as outlined in Table 1, with 𝑘 = 2000 for reservoir capacity.

SELECT GROUPS, AGG(C1, C2) FROM lineorder

[WHERE lo_intkey BETWEEN(𝑙𝑜𝑤𝑒𝑟 AND 𝑢𝑝𝑝𝑒𝑟)] |

[WHERE lo_quantity BETWEEN(𝑙𝑜𝑤𝑒𝑟 AND 𝑢𝑝𝑝𝑒𝑟)]

GROUP BY (1/2/3-columns)

(Strat)

For the experiments that evaluate the holistic performance of on-
line sampling in LAQy, we use two representative query templates.
Equation (Q1) describes a scan-heavy query where the sampler
is pushed down to the scan operator. Equation (Q2) describes a
query with a random-access pattern due to joins with dimension
tables that enable sampling and stratifying on other meaningful
dimensions, where the sampler is placed higher in the query plan.
For both queries we control and report the selectivity over the fact
table (lo_orderdate), via the lo_intkey attribute.

SELECT AGG() FROM lineorder

WHERE lo_intkey BETWEEN(𝑙𝑜𝑤𝑒𝑟 AND 𝑢𝑝𝑝𝑒𝑟)

GROUP BY lo_orderdate

(Q1)

SELECT AGG() FROM lineorder, date, supplier, part

WHERE lo_intkey BETWEEN(𝑙𝑜𝑤𝑒𝑟 AND 𝑢𝑝𝑝𝑒𝑟)

AND s_region="AMERICA" AND p_category="MFGR#12"

AND ... (JOIN) GROUP BY (d_year,p_brand1)

(Q2)

To simulate an exploratory workload with changing predicates,
we generate two types of query sequences. The first sequence rep-
resents a long-running analysis: the user is running the specified
query template over 50 iterations such that they progressively ex-
tend the value range and narrow it down or use the same interval
at a specified rate 𝑟 . The second sequence represents when the user
changes the focus of interest during their analysis, where 60 queries
are split into 3x20 batches that we name short-running analyses,
which are similar in setup to the long-running sequence.

Whenever randomization is used, we manually set the generator
seeds to have repeatable and mutually comparable experiments. We
select the starting point uniformly at random in the value interval,
use geometric distribution to instantiate the per-query value range
around the starting point, and use 𝑟 = 0.3 as the rate when the
same or narrower value range occurs.

7.1 Stratified Sampling and Reuse
Firstly we evaluate the cost and the potential selectivity-driven
savings for the case of stratified sampling. We evaluate in isolation
the parameters that affect the sample building time and the time to
build the Δ samples by pushing down the predicate on both QVS
and QCS as the basis for the relaxed predicate execution of LAQy.

To compare the performance of the stratified sampling operation
against the optimized analytical engine baseline, we measure the
execution time against the GroupBy operator, which shares the data
access pattern with stratified sampling. Traditionally, GroupBy ag-
gregates the tuples on the fly, while Stratified Sampling creates
and maintains reservoirs per group/stratum.

Both GroupBy and Stratified Sampling operations have a random
access pattern driven by the cardinality of grouping/stratification
keys |QCS|, which impacts the processing time. In Figure 8a we
vary the selectivity over |QCS|, with 100% selectivity corresponding
to 50 and 4950 groups respectively. On top of the random access
pattern, Stratified Sampling further has a processing overhead of
the reservoir maintenance algorithm that has to be performed over
as many reservoirs as there are groups/strata.

The second factor that impacts the cost of stratification is the
total number of tuples processed using a filter that does not directly
correlate with the number of strata. We evaluate this by filtering
on the column that belongs in the Query Value Set (QVS) instead
of QCS. While the total number of tuples reduces the execution
time in all cases, the speedup comes from incurring random access
patterns defined by the number of groups/strata fewer times (as
characterized by selectivity) and not directly impacting the access
pattern (Figure 8b). Low selectivities (0%-2%), as shown in Figure 8c,
can impact both the number of strata and the overall number of
processed tuples.
Takeaway. Sampling with relaxed predicate execution through
filter pushdown has the potential to reduce the sampling time
proportional to the relaxed predicate range (selectivity) that the Δ

9



Conference’17, July 2017, Washington, DC, USA Viktor Sanca, Periklis Chrysogelos, and Anastasia Ailamaki

0 20 40 60 80 100

5

10

Selectivity %

Ex
ec
ut
io
n
Ti
m
e
[s
]

|50|-stratified |50|-groupby
|4950|-stratified |4950|-groupby

(a) Selectivity on the QCS column.

0 20 40 60 80 100

5

10

Selectivity %

Ex
ec
ut
io
n
Ti
m
e
[s
]

(b) Selectivity on the QVS column.

0 0.5 1 1.5 2

1

2

3

Selectivity %

Ex
ec
ut
io
n
Ti
m
e
[s
]

(c) Selectivity on the QVS column - focus on low selectivity.

Figure 8: Stratified sampling and GroupBy time.

query would request instead of sampling over the entire range. This
reduces the cost of online sampling by lowering the unpredictability
penalty in a workload-driven lazy-sampling scheme.

7.2 Reuse in Data Exploration Patterns
Exploratory data analysis contains reuse patterns as users will
direct and refine the queries based on the previous results and their
focus of interest [12]. To showcase possible reuse opportunities, we
use two query sequence patterns where users refine and extend
the range of values of interest in two settings, as described in the
Workload paragraph of Section 7.

For both the long-running (Figure 9a) and short-running (Fig-
ure 9b) query sequence, we collect the generated predicate ranges
and convert them to input selectivity over QVS of the fact table,
which represents the effective input cardinality of the online sam-
pler. Workload-oblivious strategies such as online sampling and
(regular) query execution execute on the full specified range. In
contrast to that, LAQy uses prior workload as reuse opportunities
and results in a lower selectivity range that has to be processed at
runtime by issuing a Δ-sample and merging. Furthermore, when
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Figure 9: Selectivities for the experimental query sequence.
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Figure 10: Cumulative selectivities processed in the sequence.

the selectivity reaches 0, it indicates that there exists a prior sample
that can be used and removes the requirement to perform even a
scan over the data.

Observing the above selectivities cumulatively in Figure 10, we
show the acute problem of workload-oblivious online sampling.
Despite possible reuse opportunities for the suitable query pattern,
the same data may be processed many times over, which results in
effective cumulative selectivity greater than 100%. LAQy processes
only the relevant data whenever possible, processing at most 100%
of the data for the qualifying query pattern.
Takeaway. Online Sampling is oblivious to the prior analysis and
reuse opportunities, processing and sampling the input as specified
by the query. To improve reuse, LAQy detects if an overlap exists
for reuse opportunities and effective selectivity reduction.

7.3 Reducing the Cost of Online Sampling
LAQy benefits from reuse opportunities due to overlapping predi-
cates, which enable lazy sampling speedup. In concrete terms, we
first present the breakdown of the cumulative processing time of
Q1 in Figure 11. First, scan time is lower in the case of LAQy due to
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Figure 12: Long query sequence, per-query execution time.

detecting full sample reuse opportunities. Second, the processing
time (excluding scan) is lower due to lazy sampling and issuing only
required Δ samples. Finally, there is a negligible merge overhead to
produce an equivalent sample since merging the reservoirs operates
over the data samples.

7.3.1 Long-running sequence: high reuse Lazily sampling in the
long-running sequence benefits from high reuse opportunity, due
to increasingly low selectivity due to incremental range increase.
This enables online sampling to effectively become cheaper than
the quivalent exact query with same access pattern (groupBy), and
to approach the (ideal) cost for online sampling - which is a simple
scan at memory bandwidth, or dip below the memory bandwidth
wall when a qualifying (offline) sample exists.

When the sampler is pushed-down to scan, the benefit comes
from reducing the input to the sampler (Figure 12a). When the sam-
pler resides after operations such as joins, the benefit comes from
both reducing the input to the sampler and all the prior operations
(Figure 12b), without affecting the quality of the sampler, as we are
effectively sampling past the join operator with reduced input.
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Figure 13: Short query sequence, per-query execution time.

7.3.2 Short-running sequence: adapting to change We analyze the
case when users occasionaly completely change the focus of analy-
sis and process new regions of data. Similarly, this could happen if
there are multiple linked query dashboards issuing different query
patterns as predicate changes.

The initial cold-start queries run in a regular online mode the
queries with index 0, 20, and 40 in Figure 13b and Figure 13a. How-
ever, onwards, LAQy opportunistically reuses the previously sam-
pled regions of the data based on the logical sampler definition.
This ranges from fully reusing a sample, therefore avoiding even
the data scan, to creating partial samples and merging them with
the existing ones, while not regressing above online sampling cost.
Takeaway. LAQy reduces the cost of online sampling by partial
sampling and merging, and benefits from reduced input to the sam-
pler, reduced processing cost of preceeding operators, and reduced
scan cost if there exists a full (offline) sample match.

7.4 Efficient & Reusable Sampling with LAQy
In case there is a good workload prediction, offline sampling meth-
ods have the potential to create highly reusable set of samples. In
case the workload is unpredictable or evolving, our approach re-
duces the misprediction penalty by creating additional samples only
over the queries and data relevant to the user - which is definitely
known at runtime. We conclude the experimental analysis of LAQy
by observing the big picture of cumulative execution time.

7.4.1 Long-running sequence: high reuse Lazy sampling can achieve
the cost which is effectively below the scan time for samplers that
are pushed down to the base relations (Figure 14a). This is due
to combining offline sample use that does not require a scan and
progressively creating missing sample components. Equally, this
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Figure 14: Long query sequence, cumulative execution time.

could be the case of a good workload prediction where slight pred-
icates deviations occur that our approach can gracefully fix. In a
scan-heavy query regular online sampling is slower than the exact
counterpart, as it introduces sample processing overhead on top of
the input coming in at memory-bandwidth rate (scan).

Similarly, when the sampler is placed further up in the query plan
as in Figure 14b, the combined savings from full offline reuse and
selectivity-driven partial reuse enable expensive online sampling
cost to be reduced to a scan. Online sampling cost is the same
as the exact execution, since the input to both operators has a
lower throughput due to preceeding joins, where additional online
sampling processing is masked with the input data rate.

7.4.2 Short-running sequence: adapting to change When there is
moderate reuse opportunity, LAQy enables lazy sampling between
the scan and the input rate defined by the preceeding operator(s).
In particular, when the sampler is fully pushed down, the lazy sam-
pling enables cumulative execution time comparable to sequential
scan (Figure 15a). Otherwise, the cumulative cost of lazy sampling
is between the scan and the input rate of input operators, reducing
synergetically both the impact of random data access patterns of
preceding operations and the sampling cost through delta sampling
and predicate pushdown as we show in Figure 15b.
Takeaway. LAQy enables sampling methods to convert the di-
chotomy of reuse based on full match into a flexible spectrum based
on partial matching. As a result, LAQy expands the applicability of
existing sampling schemes to a greater query set, with a minimal
processing overhead.

8 Related Work
Approximate query processing has been of interest over the years
as a method to trade-off accuracy for reduced execution times and
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Figure 15: Short query sequence, cumulative execution time.

has found applications in interactive data exploration [22], data vi-
sualization [21], cardinality estimation for query optimization [15],
and in novel execution schemes such as speculative execution [38].

The prior work and research in the field of AQP is vast and covers
the theory, systems, operators, and approximation schemes [11],
well summarized in a survey [23]. We limit the scope of our paper to
sampling-based approximations in the context of modern scale-up
analytical systems, and we briefly present the related work.
Offline AQP systems. build samples and data summaries ahead
of time, based on assumptions of knowing the future workload
and static or slowly changing data. Before execution, the sample
construction takes place while the system is offline, preparing the
relevant samples for use by avoiding access to slower storage medi-
ums and scanning the full data with high latency and I/O bottle-
necks; such systems [2, 32] offer significant speedups. However,
when an adequate sample is unavailable, fallback to regular execu-
tion or online sampling is often necessary, reducing the expected
speedups. In recent years ML-based AQP methods [17, 24] have
been devised to minimize the storage budget and allow even faster
execution times by avoiding data access altogether. However, to
achieve this, such systems need to build samples and perform the
specified model-based summarizations. By speculating on the work-
load and spending a specified storage budget, offline AQP systems
spend downtime by creating samples and summaries, time in which
the user cannot benefit from speedup or using the system. In case
of inefficient sampling, this period becomes prohibitively long, re-
sulting in either querying stale data or frequently triggering the
sample maintenance procedure. LAQy uses the previously created
samples to avoid extensive sample creation and to reduce the size
of new samples. As a result, LAQy’s continuous sample creation
increases the potential of having the required sample ready and
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thus brings online approximation methods closer to the benefits of
offline ones.
Online AQP systems. [18, 19] perform sampling at runtime and
offer speedup through data reduction by injecting samplers at data-
intensive parts of the query plan. As the original data needs to
be processed, such systems provide lower speedups than their of-
fline counterparts. However, without any workload assumptions,
they enable ad-hoc queries and require no storage budget for ma-
terializing data summaries. Another flavor of online sampling is
Online Aggregation [16], where the query answer is progressively
evaluated and estimated. To our knowledge, such systems have
a dominant I/O and latency cost [18]. Our work aims to take the
flexibility of online AQP methods and make them future-proof and
practical by making them efficient in the context of high-bandwidth
memory and interconnects inside scale-up analytical engines. Fur-
thermore, they do not take the opportunity of workload patterns
that may speed up future queries through sample reuse. In con-
trast, LAQy’s aggressive sample caching methodology reduces the
overhead of online sampling to only online sampling for the newly
created delta sample.
Hybrid AQP systems. combine online and offline AQP techniques.
Taster [28] proposes adapting to the workload by materializing
samples relevant to the recent window of queries and otherwise
performing online approximations. This is an algorithmic harmo-
nization between online and offline AQP, and it depends on efficient
online sampling and fast sample materializations for future use.
AQP++ [33] proposes connecting samples with aggregate precom-
putations such as data cubes. This work is orthogonal to ours, where
integrating a lazy sampling scheme would reduce the sampling cost
while taking the benefit of using precomputed aggregates to pro-
vide faster query responses. Taster makes a coarse-grained decision
about full sample matches and does not explore the opportunity of
partial sample reuse that would further improve the performance
gap between online and offline sampling procedures, especially for
the exploratory workloads where the predictability of the useful
sample set to precompute is low. Still, the overlap between required
(unpredictable) and materialized (predictable) sample sets is high.
LAQy exploits this overlap to reduce the sample creation time. Fur-
ther, it extends the existing techniques with guidelines to update
the proposed systems to cover more queries.
Storage management in AQP. Taster [28] and BlinkDB [2] handle
sample management based on the available storage. While our
evaluations focus on lazy sampling, our approach is compatible
with sample-storage-management frameworks to allow workload-
sensitive storage provisioning with an allocated storage capacity
through a sample expiration policy or evicting it to another storage
tier. This remains an interesting research topic for future work.
Model updates and concept drifts. The ubiquitous nature of
volatile data has motivated research in machine learning and the-
oretical approaches to detect and update out-of-date models [13]
where new data are monitored to detect when the input data distri-
bution has significantly shifted from the maintained model. When
this happens, the online model is retrained or incrementally up-
dated. For example, DriftSurf [39] analyzes the changes in the data
distribution to maintain the models. While such works detect and
handle changes (drifts) in the input data distribution, LAQy focuses
on finding non-sampled input regions informed by the workload.

While the two are conceptually related, there are two key differ-
ences: 1) the input ranges can reappear very often, and thus query-
processing-oriented techniques need fast transitions between old
and new concepts; 2) the cost of detecting the input ranges is sig-
nificantly lower than concept drifts. Specifically, LAQy maintains
the samples for each sub-region without fusing them all together,
as there is a significant chance that the input ranges may revert
towards an older set of input ranges – requiring the sub-samples
to construct the samples required for query answering. In contrast,
concept drift techniques usually discard/replace the old models,
as detecting if a previous model is representative is significantly
expensive in online learning. Further, LAQy can rapidly (query-
granularity) react to input range changes due to the low overhead
associated with detecting the input range, with well-defined proper-
ties for updating and merging data summaries [1, 7, 41]. In contrast,
concept drifts usually require multiple input points to detect sig-
nificant (and probabilistic) deviations from the underlying data
distribution. As a result, LAQy re-adapts the concept drift ideas to
the analytical query processing, where the drifts due to the chang-
ing workload are immediately detected and accounted for.
Window-based aggregations.While we focused on changes on
the predicates that partition the input ranges, prior work on streams
has extensively optimized how to provide fast exact and approxi-
mate responses on sliding windows [3, 5, 6, 30, 35, 40].Such stream-
ing approaches often calculate a summary per window slide and
then aggregate the summary overlapping with the full window of
interest. LAQy builds on this concept by using and aggregating
subsamples. However, traditional sliding window approaches 1)
do not have to rebalance the subwindow summaries to produce
the final summary probabilistically and 2) have a very predictable
pattern with respect to the summary that will host the new ele-
ments. Despite their differences in query and setting, LAQy can be
adapted to such streaming scenarios by adding the time dimension
as an additional predication to each sample and using the sample
merging techniques to merge samples from different window slides.

9 Conclusion
The reuse dichotomy between the predictable predicates used by
offline sampling to speculate on the useful samples and the online
sampling, which pays the performance cost of unpredictability in
ad-hoc queries, imposes a steep performance penalty, even if an
overlapping sample exist. We propose bridging this gap by relaxing
the sample reuse requirements and allowing partial sample reuse.
We increase the utility of the samples created using the assump-
tion of predictability and pay only the necessary cost to perform
online sampling due to the predicate unpredictability. Our lazy
sampling approach adapts to the changes in query predicates and
improves performance proportionally to the reuse savings. As the
data volume continues to grow, to enable faster and interactive
analytical queries, judicious sampling becomes an ever-important
part of efficient AQP in modern scale-up analytical engines.
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