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A B S T R A C T

Goods can exhibit positive externalities impacting decisions of customers in social networks. Suppliers can
integrate these externalities in their pricing strategies to increase their revenue. Besides optimizing the
prize, suppliers also have to consider their production and maintenance costs. Predictive maintenance has
the potential to reduce the maintenance costs and improve the system availability. To address the joint
optimization of pricing with network externalities and predictive maintenance scheduling based on the
condition of the system, we propose a bi-level optimization solution based on game theory. In the first level,
the manufacturing company decides about the predictive maintenance scheduling of the units and the price of
the goods. In the second level, the customers decide about their consumption using an optimization approach
in which the objective function depends on their consumption, the consumption levels of other customers
who are connected through the graph, and the price of the network which is determined by the supplier. To
solve the problem, we propose the leader–multiple-followers game where the supplier as a leader predicts the
strategies of the followers. Then, customers as the followers obtain their strategies based on the leader’s and
other followers’ strategies. We demonstrate the effectiveness of our proposed method on a simulated case study.
The results demonstrate that knowledge of the social network graph results in an increased revenue compared
to the case when the underlying social network graph is not known. Moreover, the results demonstrate that
obtaining the predictive maintenance scheduling based on the proposed optimization approach leads to an
increased profit compared to the baseline decision-making (perform maintenance at the degradation limit).
1. Introduction

Social networks can have a significant influence on the economic
system [1,2]. In a social network, users connect and communicate with
each other. Hence, the decision of a user has the potential to affect the
decisions of other users, particularly for goods that exhibit externalities.
In such cases, users receive different extents of externalities from the
consumption of other users to whom they are connected in their social
network. The information about the consumption behavior of users
spreads in the network. If supplier knows the graph network topology
and the consumption behavior of the users, it can try to integrate this
information in their optimization. Aiming to maximize their revenue,
suppliers determine the price of the good for each user such that their
revenue is maximized.

Besides considering the prizing of the manufactured goods, man-
ufacturers also need to consider the production and the maintenance
costs. For example, deterioration of manufacturing units can signif-
icantly decrease the production quality [3]. The quality of the pro-
duction depends, among others, on the maintenance strategy of the
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manufacturing equipment to prevent production disruptions [4,5]. In
fact, the goal of maintenance scheduling is to maximize the availability
of the system, while fulfilling the demand of the users or customers.
Traditionally, preventive maintenance is scheduled regularly to restore
the units to their healthy states. However, preventive maintenance
does not consider the system’s condition and the dynamic changes [6].
Predictive maintenance has the potential to significantly reduce the
maintenance costs. Furthermore, maintenance scheduling does typi-
cally not consider the consumption behavior of its customers which
influences the prizing but also the produced amount which in turn
influences the requirements on the availability of the system but also
the degradation of the system and the demand for maintenance actions.
Hence, in order to maximize the availability and reward function, it is
advisable for a supplier to schedule the maintenance of its manufactur-
ing units using the underlying graph of the social network of the users
and the users’ consumption function.
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In this paper, we address the maintenance scheduling problem of
a manufacturing system of goods with positive externalities. In this
context, the goal of the manufacturer is to find the optimal price of the
goods and the optimal maintenance scheduling for the manufacturing
units such that its revenue and availability are maximized. In order
to obtain the maintenance scheduling, we consider the framework of
predictive maintenance in which the remaining useful lifetime (RUL)
of the units and the associated uncertainties can be predicted. We
define the optimization model for the manufacturer which comprises
two main elements: (1) the revenue that can be obtained by selling
the produced goods and (2) maintenance cost of the manufacturing
units. To model the positive externality effects, we assume that users
or customers are connected through a graph and that they choose their
consumption level of the good based on their utility function and the
price of the good. Hence, we face a bi-level optimization problem with
the two levels representing the supplier and the users. In order to solve
the optimization problem, we propose to formulate the problem as a
leader–follower game between the supplier and the users. In this game,
the supplier is the leader and can predict the strategies (consumption
function) of the followers. Then, based on this prediction, it determines
the maintenance scheduling and optimal price of the network and sets
the price for each of the users. We investigate the efficiency of the
proposed approach based on a case study.

To the best of our knowledge, this is the first research that obtains
the maintenance scheduling of different units in the manufacturing
system by considering the price of the network and the positive ex-
ternality effects of the goods using a leader–follower game among the
manufacturer and the customers.

The rest of the paper is organized as follows. The review of related
work is presented in Section 2. The preliminaries on predicting the re-
maining useful lifetime (RUL) and the leader–multiple-followers game
are introduced in Section 3. The supplier’s and customers’ objective
functions are formulated in Section 4. The solution method based of
the leader–follower game is proposed in Section 5. The simulation
results are presented in Section 6. The conclusion remarks are made
in Section 7.

2. Related work

Network price of goods with positive externalities. Several ap-
roaches have been proposed to determine the optimal price in net-
orks with positive externalities. The authors of [2] study the optimal
ricing strategies of a supplier of goods with positive externalities
ssuming that consumers are connected by a social network graph.
heir usage levels depend directly on the usage of their neighbors
ithin a social network [2]. Since the users’ consumption behavior
ffects that of other users, it has been modeled based on the game
heory concept [7,8]. The optimal contracting between the seller and
uyers is proposed in [7]. The authors develop the solution method
sing the Stackelberg game where the seller acts as a leader and the
uyers are followers. The strategic interaction and networks have been
ddressed using game theory in [8]. In this study, the decisions of some
uppliers affect those of other suppliers in the network.

In all of these works, the manufacturers solely consider the pricing
f the goods and do not take the impact of the production on the
peration and maintenance costs into account. In fact, sudden failures
ausing an interruption of the production can severally impact the
bility of the supplier to respond to the demand. Furthermore, not
onsidering the interruptions caused by planned maintenance in the
ricing will result in sub-optimal prices and revenues. To maximize
heir revenue, the suppliers should strive to perform maintenance on
heir manufacturing units when the price of the network is low and
hey sell less.
Maintenance scheduling. Maintenance scheduling with the aim of

increasing the system reliability and availability has been addressed in
2

many applications such as electrical market [9,10], network transporta-
tion [11,12], and manufacturing system [13,14].

Several studies have proposed different approaches for maintenance
scheduling and optimal management of manufacturing systems. The
authors of [13] propose a method based on a Genetic algorithm to
obtain the maintenance scheduling of manufacturing equipment using
the predicted level of degradation. The maintenance scheduling for
manufacturing systems proposed in [15] considers the product quality
and the maintenance cost including the repair and preventive main-
tenance cost. The inventory planning, pricing, and maintenance are
addressed in [16]. In this paper, the authors show that the maintenance
scheduling can increase the profit and reduce the cost of product. The
authors of [17] obtain the predictive maintenance policy for a machine
by considering the economic dependency of the system.

Dynamic maintenance scheduling which obtains the optimal pre-
dictive maintenance using dynamic programming method is developed
in [18,19], and [20]. In these studies, the deterioration process of the
units is formulated as a Markov decision process. An optimization-
based approach for dynamic maintenance scheduling of different units
which considers the operating conditions is proposed in [14]. The
authors of [21] propose reinforcement learning approach to obtain
the optimal joint production, maintenance and product quality con-
trol policies by considering that the maintenance and repair duration
time are random variables. The multi-deterioration state is modeled
for the machine in [22], and then the production scheduling and
maintenance planning are proposed. The dynamic maintenance and
production scheduling for manufacturing system are addressed in [23]
using model predictive control. In all of these studies, the maintenance
scheduling is obtained only based on the degradation level of different
units without considering the price of the goods and the effect of
maintenance on the revenue of the manufacturer.

Notation:. Given 𝐷 ∈ R𝑛×𝑛, 𝐷−1 denotes the inverse of 𝐷. We de-
fine the column augmentation of 𝑍𝑛(𝑡) for 𝑡 = 1,… , 𝑇 , as 𝑍𝑛 =
𝐜𝐨𝐥(𝑍𝑛(1),… , 𝑍𝑛(𝑇 )) ∶= [𝑍𝑛(1),… , 𝑍𝑛(𝑇 )].

3. Preliminaries

3.1. Remaining useful life (RUL) and predictive maintenance

The remaining useful life (RUL) is defined as the amount of time that
an asset will continue to satisfy its desired operating conditions [24].
Predicting RUL is one of the core tasks in predictive maintenance
applications. Predicting the RUL enables on the one hand to perform
maintenance before the failure occurs and by that also to improve the
availability of the system while on the other hand, the lifetime of the
system can be fully exploited resulting in less frequent replacements
or repairs. Several methods have been proposed in the literature to
estimate RUL. These methods can be categorized in three categories:
(1) model-based approaches, where the physics principle models of the
degradation of the asset are applied [25]; (2) data-driven methods, in
which the RUL is estimated based on the condition monitoring data
only [26]; (3) knowledge-based approaches that depend on the domain
knowledge of an expert [27]. RUL estimations are always subject
to uncertainties. While not all of the RUL prediction methods also
estimate the uncertainty of the predictions, uncertainty quantification
is an integral part of decision support systems and is particularly
desirable by domain experts using such systems. For many systems
with multiple-units that are jointly fulfilling the demand, performing
predictive maintenance at the end of life of the system may not the
optimal. Since, the maintenance decision of each unit also depends on
the decision of other units and the production requirements. Hence,
predictive maintenance scheduling is pivotal for fulfilling the demand
while minimizing the maintenance costs. In our problem formulation,
we assume that we are able to predict the RUL and can quantify the
associated uncertainty. We assume that the distribution function of
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RUL is given. The manufacturer should, therefore, take into account
the uncertainty of RUL and schedule the maintenance based on the
production requirements and the associated costs of the unavailability,
while considering that a part of the lifetime of the unit may be lost
when replacing the unit before the end of life.

3.2. Leader–multiple-followers game

Let us consider N-players, 𝑖 = 1,… , 𝑁 , as followers and one player
as a leader. Let 𝑥𝑖 denote the follower 𝑖’s strategy and 𝑦 the leader’s
strategy, respectively. Let 𝑈𝑓

𝑖 (𝑥𝑖, 𝑥−𝑖, 𝑦) denote the utility function of
the follower 𝑖 where 𝑥−𝑖 is the strategy of all followers except follower
𝑖. Let 𝑈 𝑙(𝑦, 𝑥), in which 𝑥 = 𝐜𝐨𝐥(𝑥1,… , 𝑥𝑛), denote the utility function
of the leader. The equilibrium point of the leader–multiple-followers
game can be defined as follows:

Definition 1. Let (𝑥∗, 𝑦∗) be the equilibrium point among the leader
and the followers, then,

𝑈𝑓
𝑖 (𝑥

∗
𝑖 , 𝑥

∗
−𝑖, 𝑦

∗) ≥ 𝑈𝑓
𝑖 (𝑥𝑖, 𝑥

∗
−𝑖, 𝑦

∗), 𝑖 = 1,… , 𝑁,

𝑈 𝑙(𝑦∗, 𝑥∗) ≥ 𝑈 𝑙(𝑦, 𝑥∗)
(1)

In the leader–follower game, the leader predicts the followers’
strategies and implements its strategy first, while the followers react
to the leader’s decisions.

4. Problem formulation

In this section, we propose the optimization model for obtaining the
maintenance scheduling of the units in the manufacturing system based
on the optimal price of the network.

Let us define  = {1,… , 𝐽} as the set of units in the manufacturing
system that are manufacturing the good that has positive externalities
to the customers. Let us define  = 1,… , 𝑁 as the set of customers
who are connected through the graph matrix 𝑊 in the social network.
The 𝑖𝑙 element of matrix 𝑊 denoted by 𝑤𝑖𝑙 ≥ 0 represents the strength
of the connection between the two customers in the network and
represents concurrently also the influence of customer 𝑙 on customer
𝑖. The manufacturer aims to obtain the optimal price of the network
while maintaining a high availability of the manufacturing units. We
assume that the manufacturer has implemented a predictive mainte-
nance strategy to improve the availability of the system and is able to
predict the RUL of the system and the associated uncertainty. Predicting
the RUL enables the manufacturer to schedule the maintenance before
the end of life and, thereby, prevent unscheduled down times while
fully exploiting the lifetimes of the units. The manufacturer aims on
the one hand to maintain a high availability of the units and exploit
the useful lifetime of the units as much as possible, while performing
the maintenance at points in time when it has the least possible impact
on its revenue. The manufacturer is, therefore, seeking to obtain the
maintenance scheduling of manufacturing units for the decision horizon
time  = {1,… , 𝑇 } while maximizing the revenue that can be obtained
by selling the products to the customers. In the following, we explain
the proposed optimization model.

4.1. Manufacturer’s optimization model: joint optimization of maintenance
schedule and price of the network

In the following, we propose the manufacturer’s optimization prob-
lem which concurrently optimizes the price of the network and the
maintenance scheduling of the units.

It should be mentioned that there are many factors that can affect
the good’s price including factors on the demand side and also fac-
tors that affect the production costs. We consider one specific aspect
of demand: goods with externalities and one specific aspect of the
3

production costs: predictive maintenance. Supplier can integrate these
externalities in its pricing strategies to increase its revenue. With re-
spect to the production costs, we consider predictive maintenance. The
combination of these two factors: pricing with network externalities
and predictive maintenance scheduling based on the condition of the
system have been an overlooked problem in the literature and is in the
focus of the current paper.

Maintaining: In this study, we assume that the deterioration state
of the unit increases with time. The maintenance restores the state of
the unit to its initial condition (as good as new). Hence, we model the
deterioration and the restoration as follows:

𝑠𝑗 (𝑡 + 1) = 𝜆𝑗 (1 − 𝑥𝑗 (𝑡))𝑠𝑗 (𝑡) + 1, (2)

where 𝜆𝑗 denotes the aging rate of unit 𝑗, 𝑠𝑗 (𝑡) and 𝑠𝑗 (𝑡− 1) denote the
deterioration state of unit 𝑗 at instants 𝑡 and 𝑡−1, respectively, 𝑥𝑗 (𝑡) is a
binary variable and 𝑥𝑗 (𝑡) = 1 denotes that unit 𝑗 performs maintenance
at instant 𝑡.

When the deterioration state reaches the degradation threshold, it
reaches the end of life which is equivalent to the state where the
remaining useful life (RUL) reaches zero. If the unit has not been
maintained before the end of life, it will fail. As discussed above,
the prediction of the RUL is always associated with uncertainties. It
can, therefore, be considered as a random variable with a known
distribution function. We assume that the predicted RUL and the asso-
ciated uncertainty are given. To avoid failure, the units should perform
maintenance before the end of life. To model this aim, we apply the
chance constraint problem as follows:

P
(

𝑆2,𝑗 ∈ | 𝑠𝑗 (𝑡) − 𝑆2,𝑗 ≤ 0
)

≥ 1 − 𝛼, (3)

where P is a probability measure defined over . 𝑆2,𝑗 is the degradation
threshold of the deterioration state of unit 𝑗. 𝑠𝑗 (𝑡) which satisfies the
chance constraint (3) can be considered as the 𝛼-level feasible solution.

Another constraint of this problem is that the total consumption
of all customers should be less than the total production of all units.
We assume that the demand cannot be postponed and is satisfied at all
times. Furthermore, we assume that the good is perishable and cannot
be stored to cover the demand during the maintenance down time.
Moreover, we assume that when the unit performs maintenance, its
production is zero. Hence, we can model this constraint as follows:
∑

𝑖∈
𝑞𝑖(𝑡) ≤

∑

𝑗∈
(1 − 𝑥𝑗 (𝑡))𝑞𝑗,𝑚𝑎𝑥, (4)

where 𝑞𝑖(𝑡) is the amount of the consumption of customer 𝑖 at instant
, 𝑞𝑗,max is the maximum production output by manufacturing unit 𝑗.

The supplier seeks to obtain the maintenance scheduling which
atisfies (3) and (4), while concurrently minimizing the maintenance
ost of the units which is modeled as follows:

=
∑

𝑗∈

∑

𝑡∈
𝑐𝑗𝑥𝑗 (𝑡), (5)

here 𝑐𝑗 is the maintenance cost of unit 𝑗.
Pricing: The supplier aims to obtain the price of the network which

maximizes the following reward:

𝑅 =
∑

𝑖∈

∑

𝑡∈
𝜙𝑖(𝑡)𝑞𝑖(𝑡), (6)

here 𝜙𝑖(𝑡) ≥ 0 is the price of the consumed good of customer 𝑖 at
nstant 𝑡, 𝑞𝑖(𝑡) ≥ 0 is the consumption of customer 𝑖 at instant 𝑡.

Supplier’s objective function: Using (5) and (6), the utility function of
he supplier can be expressed as follows:

=
∑ ∑

𝜙𝑖(𝑡)𝑞𝑖(𝑡) −
∑ ∑

𝑐𝑗𝑥𝑗 (𝑡), (7)

𝑖∈ 𝑡∈ 𝑗∈ 𝑡∈
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Hence, by applying (7), and by considering constraints (2), (3), and
(4), we can formulate the supplier’s objective function as follows:

max
𝜙,𝑥,𝑠

∑

𝑖∈

∑

𝑡∈
𝜙𝑖(𝑡)𝑞𝑖(𝑡) −

∑

𝑗∈

∑

𝑡∈
𝑐𝑗𝑥𝑗 (𝑡)

S.b. C1 ∶ 𝑠𝑗 (𝑡 + 1) = 𝜆𝑗 (1 − 𝑥𝑗 (𝑡))𝑠𝑗 (𝑡) + 1,

C2 ∶ P
(

𝑆2,𝑗 ∈ | 𝑠𝑗 (𝑡) − 𝑆2,𝑗 ≤ 0
)

≥ 1 − 𝛼,

C3 ∶
∑

𝑖∈
𝑞𝑖(𝑡) ≤

∑

𝑗∈
(1 − 𝑥𝑗 (𝑡))𝑞𝑗,𝑚𝑎𝑥,

C4 ∶ 𝑞𝑖(𝑡) ≥ 0, 𝜙𝑖(𝑡) ≥ 0,

(8)

where 𝜙 = 𝐂𝐨𝐥{𝜙1,… , 𝜙𝑁}, 𝜙𝑖 = 𝐂𝐨𝐥{𝜙𝑖(1),… , 𝜙𝑖(𝑇 )}, 𝑥 =
𝐂𝐨𝐥{𝑥1,… , 𝑥𝑁}, 𝑥𝑖 = 𝐂𝐨𝐥{𝑥𝑖(1),… , 𝑥𝑖(𝑇 )}, 𝑠 = 𝐂𝐨𝐥{𝑠1,… , 𝑠𝑁}, 𝑠𝑖 =
𝐂𝐨𝐥{𝑠𝑖(1),… , 𝑠𝑖(𝑇 )}, 𝑖 ∈  .

The problem (8) is a nonlinear mixed-integer programming problem
due to the constraints C1 and C2. We convert (8) to the mixed-
integer linear programming by using the big-M method [28] and
scenario-based approach [29]. In the following, we explain these two
approaches.

First, let us introduce a new variable 𝑦𝑗 (𝑡) = 𝑥𝑗 (𝑡)𝑠𝑗 (𝑡). By using
the big-𝑀 method, we can convert constraint C1 to the following
mixed-integer linear constraints:

𝑠𝑗 (𝑡 + 1) = 𝑠𝑗 (𝑡) − 𝑦𝑗 (𝑡) + 1,

𝑦𝑗 (𝑡) ≥ 𝑠𝑗 (𝑡) − (1 − 𝑥𝑗 (𝑡))𝑀,

𝑦𝑗 (𝑡) ≤ 𝑠𝑗 (𝑡) + (1 − 𝑥𝑗 (𝑡))𝑀,

0 ≤ 𝑦𝑗 (𝑡) ≤ 𝑥𝑗 (𝑡)𝑀.

(9)

Now, we can substitute the chance constraint (3) with the finite
number of constraints using the scenario based approach. Each con-
straint corresponds to a different realization of 𝑆𝑘

2,𝑗 , 𝑘 = 1,… , 𝐾, for
the uncertain parameter 𝑆2,𝑗 . Thus, we have:

𝑠𝑗 (𝑡) − 𝑆𝑘
2,𝑗 ≤ 0, 𝑘 = 1,… , 𝐾. (10)

Remark 1. The number of the scenarios 𝐾 should be chosen suffi-
ciently large such that the feasible solution of (10) is an 𝛼-level feasible
solution of (3).

Hence, by using (9) and (10), the optimization problem (8) leads to
the following mixed-integer linear programming problem:

max
𝜙,𝑥,𝑠,𝑦

∑

𝑖∈

∑

ℎ∈
𝜙𝑖(𝑡)𝑞𝑖(𝑡) −

∑

𝑗∈

∑

𝑡∈
𝑐𝑗𝑥𝑗 (𝑡)

S.b. C′
1 ∶ 𝑠𝑗 (𝑡 + 1) = 𝜆𝑗𝑠𝑗 (𝑡) − 𝜆𝑗𝑦𝑗 (𝑡) + 1,

C′
2 ∶ 𝑦𝑗 (𝑡) ≥ 𝑠𝑗 (𝑡) − (1 − 𝑥𝑗 (𝑡))𝑀,

C′
3 ∶ 𝑦𝑗 (𝑡) ≤ 𝑠𝑗 (𝑡) + (1 − 𝑥𝑗 (𝑡))𝑀,

C′
4 ∶ 0 ≤ 𝑦𝑗 (𝑡) ≤ 𝑥𝑗 (𝑡)𝑀.

C′
5 ∶ 𝑠𝑗 (𝑡) − 𝑆𝑘

2,𝑗 ≤ 0, 𝑘 = 1,… , 𝐾.

C′
6 ∶

∑

𝑖∈
𝑞𝑖(𝑡) ≤

∑

𝑗∈
(1 − 𝑥𝑗 (𝑡))𝑞𝑗,𝑚𝑎𝑥,

C′
7 ∶ 𝑞𝑖(𝑡) ≥ 0, 𝜙𝑖(𝑡) ≥ 0,

(11)

where 𝑦 = 𝐂𝐨𝐥{𝑦1,… , 𝑦𝑁}, 𝑦𝑖 = 𝐂𝐨𝐥{𝑦𝑖(1),… , 𝑦𝑖(𝑇 )}.
The consumption 𝑞𝑖(𝑡) is obtained by the customers’ objective func-

tion, which is explained in the following.

4.2. Customers’ model: consumption

The customers seek to obtain the optimal consumption which max-
imizes their reward function. Let us model the customer 𝑖 objective
function as follows:

max
𝑞𝑖

∑

𝑡∈

(

𝑣𝑖(𝑞𝑖(𝑡)) +
∑

𝑙∈
𝑤𝑖𝑙𝑞𝑙(𝑡)𝑞𝑖(𝑡) − 𝜙𝑖(𝑡)𝑞𝑖(𝑡)

)

, (12)

where 𝑞𝑖 = 𝐂𝐨𝐥{𝑞𝑖(1),… , 𝑞𝑖(𝑇 )}. The objective function consists of three
terms. The first term denotes the reward that customer 𝑖 can obtain by
4

consuming the good. Inspired by the studies in [2] and [1], we model
the first reward term as follows:

𝑣𝑖(𝑞𝑖(𝑡)) = −1
2
𝑎𝑖𝑞

2
𝑖 (𝑡) + 𝑏𝑖𝑞𝑖(𝑡), (13)

here 𝑎𝑖 ≥ 0 and 𝑏𝑖 are the customer’s 𝑖 model. The second term
xpresses the effect of other customers which are connected through
he social network graph to customer 𝑖. This term implies that the
onsumption 𝑞𝑘(𝑡) of customer 𝑘, who is connected to customer 𝑖

through the social network graph with the weight 𝑤𝑖𝑘, influences the
objective function of customer 𝑖. The third term formulates the price
that customer 𝑖 is willing to pay to the supplier for obtaining the
consumed good 𝑞𝑖(𝑡).

emark 2. The following equations justify that the second term in (12)
an increase the consumption level of customer 𝑖:

max
𝑞𝑖

∑

𝑡∈

(

−1
2
𝑎𝑖𝑞

2
𝑖 (𝑡) + 𝑏𝑖𝑞𝑖(𝑡) +

∑

𝑙∈
𝑤𝑖𝑙𝑞𝑙(𝑡)𝑞𝑖(𝑡) − 𝜙𝑖(𝑡)𝑞𝑖(𝑡)

)

. (14)

n this case, the consumption level of customer 𝑖 at time 𝑡 can be
btained as follows:

𝑖(𝑡) =
1
𝑎𝑖
(𝑏𝑖 +

∑

𝑙∈
𝑤𝑖𝑙𝑞𝑙(𝑡) − 𝜙𝑖(𝑡)), (15)

where the second term is the effect of the decisions of other customers
on the decision of customer 𝑖. In fact, this term means that the con-
sumption level of other customers in the network who are connected
to customer 𝑖 increases the consumption level of this customer.

. Proposed solution: leader and multiple-followers game

In this section, we propose the solution method using the concept
f leader–multiple-followers game [30,31] for solving the bi-level op-
imization problem ((11) and (12)). In this problem, we consider the
ustomers as the followers who are seeking to obtain their consumption
nd the supplier as the leader who is responsible to obtain the price of
he network and maintenance scheduling of its manufacturing units.
he schematic of the proposed framework is shown in Fig. 1.

.1. Consumption equilibrium of multiple-followers game

In the proposed solution, we assume that the customers are the
ollowers of the supplier. According to (12), since the customers’ ob-
ective function depends on the strategies of other customers, we face

game theory problem among the customers which can be described
s 𝐺 = ( ,, ):

(1)  denotes the set of customers as the players.
(2)  =

∏

𝑖∈ 𝑞𝑖 denotes the strategy space of the players.
(3)  = {𝑈1,… , 𝑈𝑁} is the set of utilities, where the utility of player

is defined as follows:

𝑖(𝑞𝑖, 𝑞−𝑖, 𝜙𝑖) =
∑

𝑡∈

(

𝑣𝑖(𝑞𝑖(𝑡)) +
∑

𝑙∈
𝑤𝑖𝑙𝑞𝑙(𝑡)𝑞𝑖(𝑡) − 𝜙𝑖(𝑡)𝑞𝑖(𝑡)

)

(16)

here 𝑞−𝑖 = {𝑞1,… , 𝑞𝑖−1, 𝑞𝑖+1,… , 𝑞𝑁} are the strategies of all players
xcept player 𝑖.

The Nash equilibrium (NE) is one appropriate output solution of the
ame. Using Definition 1, the NE among customers can be defined as
ollows:

𝑖(𝑞∗𝑖 , 𝑞
∗
−𝑖, 𝜙

∗
𝑖 ) ≥ 𝑈𝑖(𝑞𝑖, 𝑞∗−𝑖, 𝜙

∗
𝑖 ) (17)

In order to find the NE of the game among customers, let us define
he following assumption:

ssumption 1. 𝑎𝑖 ≥
∑

𝑙∈ 𝑤𝑖𝑙, 𝑖 ∈  .
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Fig. 1. Schematic of the leader–multiple-followers game for obtaining the maintenance scheduling based on the price of the network.
Theorem 1. Under Assumption 1, the game 𝐺 = ( ,, ) has a unique
NE which is defined as follows:

𝑞∗(𝑡) = (𝐴 −𝑊 )−1(𝐵 −𝛷∗(𝑡)), (18)

where 𝐴 = diag(𝑎1,… , 𝑎𝑁 ), 𝑊 =
⎛

⎜

⎜

⎝

𝑤11 ⋯ 𝑤1𝑁
⋮ ⋯ ⋮

𝑤𝑁1 ⋯ 𝑤𝑁𝑁

⎞

⎟

⎟

⎠

, 𝐵 =
⎛

⎜

⎜

⎝

𝑏1
⋮
𝑏𝑁

⎞

⎟

⎟

⎠

, 𝛷∗ =

⎛

⎜

⎜

⎝

𝜙∗
1
⋮
𝜙∗
𝑁

⎞

⎟

⎟

⎠

5

Proof. The best response of player 𝑖 is as follows:

𝑞𝑖(𝑡) = 𝛽𝑖(𝑞−𝑖(𝑡)) =
𝑏𝑖 − 𝜙∗

𝑖
𝑎𝑖

+
∑

𝑙∈ 𝑤𝑖𝑙𝑞𝑙(𝑡)
𝑎𝑖

, 𝑖 ∈  , (19)

Hence, (19) can be written in the matrix form as follows:

𝐴𝑞(𝑡) = 𝐵 −𝛷∗(𝑡) +𝑊 𝑞(𝑡) (20)

Under Assumption 1, matrix 𝐴 −𝑊 is invertible. Hence, the NE of the
game can be obtained as follows:

𝑞∗(𝑡) = (𝐴 −𝑊 )−1(𝐵 −𝛷∗(𝑡)). □ (21)
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Table 1
Deterioration and maintenance parameters of the manufacturing units.

Unit Mean of deterioration
state thresholds (𝑆2,𝑗 )

Standard deviation of
deterioration state
thresholds (𝑆2,𝑗 )

Maintenance
cost (𝑐𝑗 ) [𝑀𝑈 ]

1 12 1.4 20.48
2 10 3.2 21.39
3 11.2 2.5 22.73
4 9.4 1.1 24.78
5 11.8 2.1 24.82

5.2. Price and maintenance scheduling of the leader

As mentioned above, in the proposed model, we assume that the
supplier can predict the strategies of the followers. Based on this pre-
diction, the supplier optimizes its strategy. Moreover, the supplier acts
first, in the sense that it sends its strategy to the followers, which then
decide about their actions. We assume that the pricing is performed at
the level of an individual customer. Customers who are more connected
within the social network (and are, therefore, impacted by the network)
can than be better targeted by the supplier. The strategy of the supplier
comprises the price of the network and the maintenance scheduling of
the manufacturing units. Hence, in the following, we obtain the optimal
price and maintenance scheduling of the supplier relying on the fact
that it knows the NE of the game (18) among the customers.

Let us define the matrix (𝐴 −𝑊 )−1 as follows:

(𝐴 −𝑊 )−1 = (𝑅𝑖𝑙)𝑖,𝑙∈ . (22)

In view of equality (18) and using (24), the optimization problem of
supplier (11) can be defined as the following mixed-integer quadratic
programming problem:

max
𝜙,𝑥,𝑠,𝑦

∑

𝑡∈
𝜙⊤(𝑡)(𝐴 −𝑊 )−1(𝐵 −𝛷(𝑡)) −

∑

𝑗∈

∑

𝑡∈
𝑐𝑗𝑥𝑗 (𝑡)

S.b. C′
1, C′

2 , C′
3, C′

4, C′
5,

C′′
6 ∶

∑

𝑙∈
𝑅𝑖𝑙(𝑏𝑙 − 𝜙𝑙) ≤

∑

𝑗∈
(1 − 𝑥𝑗 (𝑡))𝑞𝑗,𝑚𝑎𝑥,

C′′
7 ∶ (𝐴 −𝑊 )−1(𝐵 −𝛷(𝑡)) ≥ 0, 𝜙(𝑡) ≥ 0.

(23)

By solving (23), the optimal price 𝜙∗
𝑖 , 𝑖 ∈  , can be obtained and sent

to the customers. Based on the price, they can obtain their NE using
(18).

6. Case study and evaluation

In this section, we implement the proposed method on a manu-
facturing system where the supplier has five manufacturing units and
aims to obtain its maintenance scheduling for 30 days. We assume a
normal distribution for the deterioration threshold value. The mean
and the standard deviation of the deterioration state thresholds and the
maintenance costs of each of the manufacturing units are displayed in
Table 1.

Moreover, we assume 10 customers who are connected through a
social network graph. The profile of the customers’ demand is depicted
in Fig. 2. We consider the following graph weights among the
customers in the network:

𝑊 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.54 0.82 0.28 0.11 0.41 0.16 0.05 0.76 0.86
0.54 0 0.79 0 0 0 0 0 0 0
0.82 0.79 0 0.36 0 0 0 0 0 0
0.28 0 0.36 0 0 0 0 0 0
00.11 0 0 0.08 0 0.62 0 0 0 0
0.41 0 0 0 0.62 0 0 0 0
0.16 0 0 0 0 0.63 0 0.75 0 0
0.05 0 0 0 0 0 0.75 0 0.54 0
0.76 0 0 0 0 0 0 0.54 0 0.25
0.86 0 0 0 0 0 0 0 0.25 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(24)
6

Fig. 2. The total demand of customers during 30 days.

Fig. 3. The total consumption of customers during 30 days.

The weight matrix shows that customer 1 is connected to all other cus-
tomers. Hence, his/her decisions have a high impact on the decisions
of other customers. Fig. 3 shows the consumption level of each of the
customers. As we can see, the consumption level of customer 1 is higher
than that of other customers since the supplier offers a lower price to
this customer to encourage him/her to consume more goods which has
a high impact on other customers’ strategies.

The network price and maintenance scheduling of the units are
shown in Figs. 4 and 5. Moreover, the exact underlying values of
Fig. 3 is provided in Appendix in Table A.8, and the exact underlying
values of Figs. 2 and 4 are shown in Table A.9, again in Appendix.

As we can see from Figs. 4 and 5, the manufacturing units perform
maintenance more frequently when the price of the network is low (in
the first 15 days) compared to the time periods when the network price
is high (between day 15 and 25).

The deterioration state of the units is shown in Fig. 6. The figure
shows that the units perform maintenance before their failure time.
Hence, the proposed model is feasible and also implicitly imposes
conditions that prevent the model from explicitly imposing failure cost.
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Fig. 4. The profile of the network price during 30 days.

Fig. 5. Maintenance scheduling of all supplier’s manufacturing units during 30 days.

Table 2
Computational time of computing the policy of supplier [Sec].

Number of customers Computational time

10 9.45
100 50.77
1000 349.89

6.1. Computational time of the proposed method

In this section, we compare the computational time of the proposed
solution for small, medium, and large sizes of the network. The compu-
tational experiments are performed with MATLAB R2019a on a Desktop
PC with 16 GB of RAM and a 2.11 GHz processor. We consider 10, 100,
and 1000 customers for small, medium, and large size-networks. Table 2
shows the computational time for the different sizes of the networks.

As we can see from Table 2, the computational time increases
with the increasing number of the customers. However, even with a
network size of 1000 connected customers, the computational time is
still comparably small: ca. 350 s.
7

(

Fig. 6. Deterioration state of all supplier’s units during 30 days.

Fig. 7. Baseline maintenance scheduling of all supplier’s manufacturing units with 10
customers during 30 days.

6.2. Comparison to a baseline decision

The results of the reward function for networks with a small,
medium, and large size (with 10, 100, and 1000 customers) are com-
ared to the baseline solution where the units perform maintenance
t the deterioration threshold min𝑘=1,…,𝐾 𝑆𝑘

2,𝑗 , 𝑗 ∈  . This baseline
ecision makes sure that the units can perform maintenance before they
ail. The maintenance decision and the degradation cost for the small
ize network are shown in Figs. 7 and 8.

In Table 3, we compare the reward of the supplier when the units
ecide to perform maintenance when the threshold is reached with the
roposed approach when they obtain their maintenance decision using
11).
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Fig. 8. Deterioration state of all supplier’s units with 10 customers for baseline
maintenance decision during 30 days.

Table 3
Comparison of the supplier objective function during 30 days for base-line and proposed
method [MU].

Number of customers Baseline Proposed method

10 7.4919e+04 1.2893e+05
100 28.9074e+04 4.5432e+05
1000 3.3108e+05 8.3778e+05

The profit of the supplier in all three cases is less than the profit
hen it obtains its maintenance decision using (11). In this case, the
aintenance scheduling of units does not depend on the price of the
etwork but solely on the deterioration state.

.3. The effect of the topology of the social network and the knowledge
bout it

In this section, we investigate the effect of the knowledge on the
opology of the social network on the supplier’s objective function.
oreover, we investigate the effect of changing the topology of the

etwork on the reward of the supplier. In case that the network
opology is not known to the supplier (the supplier does not know how
he customers are connected and how strongly they are influencing
ach other), the supplier predicts the NE of the network as follows:
∗(𝑡) = 𝐴−1(𝐵 − 𝜙∗(𝑡)) (25)

Then, the price and maintenance scheduling are obtained as follows:

max
𝜙,𝑥,𝑠,𝑦

∑

𝑡∈
𝜙⊤(𝑡)(𝐴)−1(𝐵 −𝛷(𝑡)) −

∑

𝑗∈

∑

𝑡∈
𝑐𝑗𝑥𝑗 (𝑡)

S.b. C′
1, C′

2 , C′
3, C′

4, C′
5,

C′′
6 ∶

∑

𝑙∈
𝑅𝑖𝑙(𝑏𝑙 − 𝜙𝑙) ≤

∑

𝑗∈
(1 − 𝑥𝑗 (𝑡))𝑞𝑗,𝑚𝑎𝑥,

C′′
7 ∶ (𝐴)−1(𝐵 −𝛷(𝑡)) ≥ 0, 𝜙(𝑡) ≥ 0.

(26)

Table 4 shows the profit of the supplier for three different network
topologies: (1) random topology, (2) topology with one dominant
customer who is connected to all other customers, (3) fully connected
network where all the customers are connected to each other through
a graph. In this table, we compare the profit that the supplier can
8

obtain for the entire duration of the period over 30 days under two
Table 4
Comparison of the supplier objective function during 30 days for different network
topologies under the condition that the topology [MU] is either known and unknown.

Number of
customers

Network topology Known network
topology

Unknown network
topology

Random topology 1 9.1813e+04 7.4529e+04
10 Random topology 2 1.6021e+04 1.1566e+04

Dominant customer 1.2893e+05 3.5673e+04
Fully connected 3.3644e+05 1.6274e+05

Random topology 1 3.8013e+05 2.8190e+05
100 Random topology 2 3.6197e+05 2.8540e+05

Dominant customer 4.5432e+05 1.2942e+05
Fully connected 6.9901e+05 4.9077e+05

Random topology 1 7.2343e+05 5.8764e+05
1000 Random topology 2 6.7653e+05 5.3245e+05

Dominant customer 8.3778e+05 2.1206e+05
Fully connected 3.2342e+06 1.4324e+06

Table 5
Effect of changing supplier model parameter on the supplier objective function [MU].

Number of customers Value of maintenance cost (𝑐1) Profit

20.48+50% 8.1925e+04
20.48+20% 8.1925e+04

10 20.48 8.1946e+04
20.48−20% 8.1953e+04
20.48−50% 8.1966e+04

20.48+50% 3.1495e+05
20.48+20% 3.1515e+05

100 20.48 3.1525e+05
20.48−20% 3.1536e+05
20.48−50% 3.1545e+05

20.48+50% 8.3346e+05
20.48+20% 8.3358e+05

1000 20.48 8.3374e+05
20.48−20% 8.3388e+05
20.48−50% 8.3395e+05

different scenarios: (1) Under the assumption that the supplied knows
the network topology, which corresponds to solving (23) to (2) Under
the assumption that the supplier does not know the network topology
which corresponds to solving (26).

Table 4 shows that by knowing the network topology, the supplier
can obtain a strategy that results in a higher profit for small, medium,
and large networks. Moreover, in the fully connected network, the
supplier objective function is higher compared to the other two con-
sidered types of network topologies. This is due to the fact that the
customers can affect the decision of each other and this effect is further
reinforced in the fully connected topology. The results demonstrate
that it is always desirable to know the network topology. In all the
considered cases, the profit is higher under the assumption that the
network topology is known. For example, for the small network case,
the knowledge on random, dominant, and fully connected topologies
increases the profit of the supplier by 18%, 72%, 51%, respectively.
As we can see, knowing the network topology has the highest im-
pact on the supplier objective function for the dominant case. This
result is expected since in this case, by knowing who the dominant
customer is and how he/she is connected to other customers, the
supplier can offer a lower price and encourage him to increase his
demand which consequently increases the consumption level of other
customers.

6.4. Sensitivity analysis

In this section, we investigate the effect of varying selected param-
eters of the supplier and customer model on the objective function of
the supplier in small, medium, and large networks.
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Table 6
Effect of changing customer model parameter on the supplier objective function
[MU].

Number of customers Customer model (𝑎1) Profit

3.6235+50% 7.6542e+04
3.6235+20% 8.5926e+04

10 3.6235 9.7492e+04
3.6235−20% 1.1734e+05
3.6235−50% 2.1280e+05

3.6235+50% 2.3125e+05
3.6235+20% 2.5912e+05

100 3.6235 2.8526e+05
3.6235−20% 3.0510e+05
3.6235−50% 3.2513e+05

3.6235+50% 7.3421e+05
3.6235+20% 7.5532e+05

1000 3.6235 7.8526e+05
3.6235−20% 8.1123e+05
3.6235−50% 8.2532e+05

Table 7
Comparison of the supplier objective function during 30 days between similar and
proposed method [MU].

Methodology Supplier reward

Proposed model 1.2893e+05
Model without price optimization [23] 6.6781e+04

In the following, we study the effect of changing the maintenance
ost (𝑐𝑗) and the parameters of the customer’s model (𝑎𝑖) on the

supplier’s reward. We consider two levels of variations ±20% and ±50%
for each parameter. Table 5 provides an overview of the results of the
sensitivity analysis.

As we can see from Table 5, the sensitivity of the objective function
with respect to the maintenance cost is low. For example, for the small
network case, by changing the maintenance cost by ±50%, the objective
function changes only by around 0.02%, which is very low.

However, Table 6 shows that the objective function of the supplier
is highly sensitive to the customer’s objective function. For example,
for a small system, when the objective function parameter changes by
±50%, the objective function changes by around 22%.

6.5. Comparison to a similar algorithm

In this section, we compare the results of the proposed methodology
to the most similar prior work that considers predictive maintenance
scheduling. Contrary to the current research focus, the algorithm does
not consider customer demand. The model is derived from [23] where
the authors propose a framework for obtaining predictive maintenance
scheduling and production planning for manufacturing systems without
considering the effect of customer demand. In other words, the authors
assume that the price of the goods is considered as being given and
is not part of the optimization problem. The focus of the algorithm is
purely on maintenance scheduling.

For this comparison, we focus on the small network size (10 cus-
tomers) and use the case study outlined in Section 6 with the corre-
sponding parameters displayed in Table A.8, the weight matrix (24).
Table 7 compares the profit of the supplier obtained with the algo-
rithm proposed in [23] (without price optimization) and the algorithm
proposed in this research.

Table 7 shows that the profit of the supplier with the proposed
algorithm is higher compared to that obtained by the algorithm pro-
posed in [23]. Hence, we can conclude that the proposed algorithm
which considers the demand of the customers and obtains the price of
the network using the leader–followers game leads to a higher profit
9

compared to that of the model which does not consider the demand
of the customers and does not integrate the price in the optimization
problem.

6.6. Implications and recommendations

The proposed approach and the research results obtained in this
study, reveal several insights and implications that can be useful both
for asset management as well as for pricing strategies and have an
impact on managerial decisions.

The most important insight is that jointly optimizing the price and
predictive maintenance scheduling lead to an improved profit com-
pared to the case when the pricing is not integrated in the maintenance
optimization.

The revenue of the system can be increased by predicting the be-
havior of the customers who are connected through the social network
graph and controlling the price of the goods. We demonstrate the
effectiveness of our proposed method on a simulated case study. The
results demonstrate that knowledge of the social network graph results
in an increased revenue compared to the case when the underlying
social network graph is not known. Moreover, the results show that
obtaining the predictive maintenance scheduling based on the proposed
optimization approach leads to an increased profit compared to the
baseline decision-making (perform maintenance at the degradation
limit) which also helps the managers to use their resources optimally.

The results also demonstrate that it is always beneficial to know the
topology of the network, irrespective of type of the network topology.
The gain of the knowledge on the network topology is particularly pro-
nounced if there is a dominant customer who has a comparably large
influence on the consumption behavior of other customers connected
in the network.

7. Conclusion

In this paper, we address the problem of maintenance scheduling
for manufacturing units of goods with positive externalities by con-
currently optimizing the pricing and the maintenance schedule. The
customers are connected through a social network graph. In order to
solve the problem, we propose a bi-level optimization approach where
at the first level, the supplier obtains its maintenance scheduling and
the price at the level of individual customers. At the second level,
the customers obtain their strategies based on the price offered by
the supplier. In order to solve the bi-level optimization problem, we
propose a solution based on a leader–multiple-followers game where
the customers are the followers and the supplier acts as a leader who
optimizes its decisions based on the predicted strategies of the cus-
tomers. While we evaluated the performance of the proposed algorithm
on different sizes of the network, it can be extended and implemented
to the case of even larger and more complex networks. The numerical
results of the case study show that when the network topology is
known to the supplier, the obtained profit of the supplier is higher
compared to the case that the connections between the customers in the
network are not known. Moreover, we demonstrated that obtaining the
maintenance decision using the proposed bi-level optimization method
leads to a more profitable solution compared to the baseline solution
where the units perform maintenance when they reach to their failure
time. We also demonstrated that concurrently optimizing the price
and the predictive maintenance scheduling results in higher profits
compared to the case when the price is considered as given and only
the maintenance scheduling is optimized.

As future research, multiple suppliers can be considered in the
proposed framework where the strategies of the suppliers are related
to each other and the interaction between the suppliers is also defined
as a game. Moreover, a further promising extension of the research
is to consider uncertainties in the RUL prediction and the customers’
models. This will enable to develop a robust optimization method

which can take the uncertainties into account. Furthermore, extending
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the proposed framework to dynamically changing network topologies
which will result in dynamic maintenance scheduling and dynamic
prices is also subject for further research.
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Appendix. Tables

See Tables A.8 and A.9

Table A.8
The total consumption of customers during 30 days [Kg].

Agent number

1 2 3 4 5 6 7 8 9 10

Total consumption 429 218 227 245 245 269 260 257 217 201

Table A.9
Demand of customers and network price during 30 days.

Network demand [Kg] Network price [MU]

1 494.3 247.81
2 506 240.12
3 497.1 253.07
4 491.5 244.57
5 488.1 241.69
6 489.3 244.18
7 482.7 241.22
8 496.2 238.97
9 497.8 244.59
10 471.2 240.65
11 471.5 236.32
12 472.3 246.77
13 498.6 250.36
14 487.6 254.69
15 495.5 248.11
16 506 250.16
17 510.6 263.13
18 520.3 264.85
19 516.4 265.87
20 534.7 269.69
21 518.3 272.97
22 532.2 268.88
23 519.7 267.00
24 515.5 261.38
25 514.1 257.25
26 514.7 252.16
27 493.1 258.92
28 499.6 253.27
29 483.3 250.51
30 481.4 251.43
10
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