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A B S T R A C T

The real-time, and accurate inference of model parameters is of great importance in many
scientific and engineering disciplines that use computational models (such as a digital twin) for
the analysis and prediction of complex physical processes. However, fast and accurate inference
for processes of complex systems cannot easily be achieved in real-time with state-of-the-art
methods under noisy real-world conditions with the requirement of a real-time response. The
primary reason is that the inference of model parameters with traditional techniques based on
optimization or sampling often suffers from computational and statistical challenges, resulting in
a trade-off between accuracy and deployment time. In this paper, we propose a novel framework
for inference of model parameters based on reinforcement learning. The proposed methodology
is demonstrated and evaluated on two different physics-based models of turbofan engines. The
experimental results demonstrate that the proposed methodology outperforms all other tested
methods in terms of speed and robustness, with high inference accuracy.

. Introduction

Inference of computational model parameters from real-time measurements can be referred to as model calibration [1]. Model
alibration aims to both obtain model parameters that are theoretically plausible and generate model predictions that fit the
bservations. The inferred model parameters often represent physical quantities that are not directly observable or observed,
.e., they are not directly obtained from sensor measurements. Therefore, the inference of physics-based model parameters enables
ne to understand the underlying reasons for a discrepancy between physics-based model predictions and observations, i.e., the
eality gap (see Fig. 1). This is of particular relevance for scientific and engineering disciplines where one is interested in improving
he physics-based models analytically or explaining the observed processes in light of a given physics-based model structure.
pplications can be found in multiple areas, including geology [2], climatology [3], biology [4], health [5], finance [6,7], cognitive
cience [8], mechanical engineering [9], and applied physics [10].

A particularly important field of application aiming at a reasoned analysis of discrepancies between model predictions and
bservations is model-based system health diagnostics of safety-critical engineered systems. Diagnostics involves detecting when
fault occurs, isolating the root cause, and identifying the extent of the damage [11]. In model-based health diagnostics, the

iscrepancy between model and observation is interpreted as a deteriorated or anomalous response of the system. Model-based
ealth diagnostics addresses the diagnostics problem by inferring the value of model parameters, representing the health condition
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Nomenclature

Nomenclature for Model Calibration

𝑥𝑡 Model output at time step t
𝜔𝑡 Flight condition at time step t
𝜃𝑡 Model dynamical parameters for time step t
𝑥𝑡 Sensor measurement at time step t

Nomenclature for Reinforcement Learning

𝛼3 Energy decreasing speed parameter
𝛽 Temperature parameter
𝛾 Discounted factor
 Replay Buffer
 Entropy
𝜌𝜋 Policy
𝜏 Trajectory
𝑎 Action
𝑐𝜋 Cost Function
𝐽 (𝜋) Discounted cumulative reward
𝐿 Lyapunov function
𝑃 Transition Function
𝑠 State
𝑠′ Next State
𝑡 Time step

Nomenclature for Neural Network

𝛽 Positive Lagrange multiplier controls the importance of stability guarantee
𝜆 Positive Lagrange multiplier controls the importance of policy entropy
𝜙𝐿 Target Lyapunov network parameters
𝜙𝐿 Lyapunov network parameters
𝜋∗
𝜃 The mean of the current policy output distribution

𝜋𝜃 Policy Network
𝜏 Target network soft-update parameter
𝜃 Policy network parameters
𝐽 (𝛽) Objective function for 𝛽
𝐽 (𝜆) Objective function for 𝜆
𝐽 (𝜋) Objective function for Policy network
𝐽 (𝐿𝑐 ) Objective function for Lyapunov network
𝐿𝑡𝑎𝑟𝑔𝑒𝑡
𝑐 Target Lyapunov network

𝐿𝑐 Lyapunov network
𝑠𝑛𝑒𝑎𝑟 A near state to state 𝑠

Others

𝛼 Model bias intensity
𝛼𝜂 Gaussian noise intensity
𝐹 Dynamic system, dynamic model or surrogate model
𝑁 Gaussian noise
𝑆𝑁𝑅𝑑𝑏 Signal to noise ratio

of the sub-components of a system that make the physics-based model predictions fit the observations. In this way, anomalies in
the system’s behaviour are detected and characterized by the value of model parameters.

Because of the relevance of model calibration in applications such as model-based diagnostics, it is important that model
alibration provides accurate inference of the model parameters while being robust to uncertainty in the observations and the
2
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Fig. 1. Calibration of physics-based models aims to infer model parameters that make the physics-based model response follow the observations, thus reducing
the reality gap. In this work, a reinforcement learning algorithm is used to obtain a neural network policy that bridges the gap between physics-based model
predictions and observations in real time.

issues are related to the need for running time-consuming simulations using optimization and inference techniques that generally
imply a trade-off between inference accuracy and computation time. Scaling the method to complex dynamic models (such as for
example flow field calculations), high dimensional spaces and large datasets further exacerbate the problem. Statistical issues
arise from (a) the incompleteness of the model representation, (b) the existence of multiple solutions, i.e., confounding solutions
that match the observations, and (c) the uncertainty of the observations. Some safety-critical applications, such as model-based
diagnostics of aircraft engines considered in this paper, require an inference of the model parameters that is at the same time
accurate, robust and is available in real time to enable a fast and reliable state assessment. The necessity of fulfilling all of these
requirements at the same time makes the development of methods for reliable dynamical model calibration challenging.

Several methods have been proposed to address the problem of dynamical model calibration. When the physics-based model
structure is well founded on known physical principles (e.g., aircraft thermodynamic engine models), the majority of the available
methods for parameter inference are estimation approaches developed in the fields of optimal control [12] and statistics [13].
Some examples of popular estimation methods include iterative reweighted least squares schemes [14], unscented Kalman
filters (UKF) [15–17], particle filters [18] or Bayesian inference methods using Markov chain Monte Carlo [5,14] and Gaussian
Process [1,14]. Approaches of this type scale relatively well to high-dimensional calibration problems and, with their probabilistic
nature, handle observation noise reasonably well. These estimation methods have achieved good results in practical applications and
are considered as state-of-the-art methods in several applications, including model-based diagnostics. Yet, despite these attractive
properties, they all suffer, at least to some degree, from various model computational and data statistical difficulties in real-world
scenarios. In particular, this is because estimation with these methods involves multiple evaluations of the computational model,
which makes them unsuitable for real-time calibration of complex models or large datasets. Moreover, these methods are particularly
affected by the inadequacy of the physics-based model structure, resulting in an inaccurate characterization of the reality gap.

More recently, data-driven approaches have been proposed to calibrate physics-based models. Aiming to avoid time-consuming
simulations of previous calibration methods and achieve real-time model calibration, some researchers have proposed alternative
approaches to probabilistic formulation of the calibration problem. The most common approach is to address the calibration problem
as a supervised learning problem [6]. In this case, a neural network algorithm is trained in the inverse relation between the
observations and the model parameters. Although these methods provide a real-time calibration approach (only a forward pass
over a neural network is required at deployment time), the accuracy of the methods is strongly dependent on the representative
quality of the training datasets. As a result, this model calibration approach is not able to adapt to new scenarios without re-training.
To mitigate this limitation, an exhaustive mapping of possible system responses under different flight conditions and values of model
parameters is required. In practice, in high-dimensional calibration problems with a large range of flight conditions, an exhaustive
mapping is infeasible. In addition, such methods can exhibit poor performance in scenarios involving noisy observations, which can
limit their implementation in practical applications when no noise mitigation measures are taken into consideration in the learning
process.

Because of the issues mentioned above, the real-time, robust, and accurate inference of physics-based model parameters of
complex engineered systems remains challenging. However, recent developments in model-free reinforcement learning (RL) have
fostered a great deal of progress in addressing similar challenges in control problems [19]. In fact, RL has proven to be effective
in finding optimal control policies for non-linear stochastic systems when the dynamics are either unknown or affected by severe
uncertainty [20], including complicated robotic locomotion and manipulation [21–23]. The policies learnt via RL have the ability
to adapt to new scenarios and scale well to large-scale problems at run time. In fact, the decision-making of reinforcement learning
can take place through a learned policy without any further optimization or model evaluation, which overcomes the inference speed
3
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Fig. 2. Creating a calibration policy: Step 1, we identify the parameters of the physics-based model we intend to calibrate. Step 2 (optional), we create a
deep neural network (DNN) that models the complex system dynamics. Step 3, we train a control policy using the physics-based model or the DNN model.
Implementation stage: Step 4, we deploy the trained policy for real-time model calibration.

problem at deployment time. The learned policy can take the form of a neural network or use other function approximation methods.
Therefore, model-free RL [24] is a compelling alternative to traditional inference methods for physics-based model calibration.

In this work, we propose a novel formulation of the calibration problem as a tracking problem that is modelled by a Markov
decision process. Based on this formulation, we apply Lyapunov-based maximum entropy deep reinforcement learning to train an
agent that controls the physics-based model parameters to keep the model response matching the observations. In order to overcome
the traditional high variance of RL and achieve better robustness to observation uncertainty and model inadequacy, we propose a
novel constrained Lyapunov-based actor–critic (CLAC) algorithm. The proposed CLAC algorithm adds constraints on the stability of
the policy network and is an extension of the Lyapunov-based actor–critic (LAC) algorithm [25].

Without any knowledge of the physics-based model or simulator, the agent explores a large range of possible dynamical responses
of the system resulting in good and bad rewards. As a result, the agent is able to exploit the dynamics of the model and produce a
robust control (i.e., calibration) logic. Therefore, the proposed framework overcomes the difficulties of traditional optimal control
methods, data-driven approaches and current RL algorithms. It provides: (a) an accurate real-time dynamical calibration, (b) a
policy that can adapt to new scenarios without having been specifically trained on them, (c) scalability to more complex systems
and high-dimensional spaces, and (d) robustness to observation and model uncertainty.

The proposed framework is summarized in Fig. 2. In the first step, we identify the parameters of the physics-based model that are
subjected to inference. In the second step, we use a physics-based model or, alternatively, a surrogate model, in our case a deep neural
network (DNN) that emulates the expected system response for measured properties (i.e., observations). In the third step, we use the
DNN model to train the calibration policy network via RL. At deployment time, the trained calibration policy is directly deployed to
obtain the physics-based model parameters at run time (step 4). The resulting calibration policy is computationally efficient at run
time. Most importantly, the calibration policy is robust to uncertainties both in the observations and the physics-based model. The
proposed methodology is demonstrated and evaluated on two different physics-based models of a turbofan engine: the Advanced
Geared Turbofan 30,000 (AGTF30) and Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) from NASA.

The contribution of this paper is two-fold: (1) We propose a solution to the problem of real-time dynamic calibration of
physics-based models. In particular, we present a general reinforcement-based model calibration framework that enables real-time
inference of system model parameters with a single forward pass through a neural network. While the performance of the framework
is demonstrated on two turbofan engine models in this research, it could be easily applied to any system model. Furthermore, the
proposed framework does not require any labelled data or demonstration for training. This is in line with the requirements of
industrial scenarios where such labels are typically lacking. (2) From the methodological perspective, we propose the constrained
Lyapunov-based actor–critic (CLAC) algorithm, which provides more action stability, especially on parameter tracking problems,
compared to the state-of-the-art LAC reinforcement learning algorithm. This makes the proposed approach robust to noise and high
variability, which is again in line with requirements of industrial applications.

2. Preliminaries

In this section, we briefly review the basic concepts and notations related to reinforcement learning which is in the focus of the
proposed framework.
4
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2.1. Reinforcement learning

Reinforcement learning is a sub-field of machine learning that focuses on how an agent interacts with the environment to achieve
specific goal. The environments are typically stated in the form of a Markov decision process (MDP), which provides a mathematical
escription of decision-making processes. Under the right problem formulation, MDPs can be useful for solving optimization and
nference problems, such as the one described above for physics-based model calibration, via reinforcement learning. The details of
he MDP formulation of physics-based model calibration will be discussed in Section 3.

In conventional reinforcement learning, an agent is trained to interact with the environment and seek rewards on the basis of its
ctions. The agent receives a successor state 𝑠𝑡+1 from the environment as feedback in response to a decision (i.e., action 𝑎𝑡) taken

at time-step 𝑡. The goal is to find a policy 𝜌𝜋 that maximizes the discounted cumulative reward 𝐽 (𝜋) [26], which is given by the
following expression:

𝐽 (𝜋) = E𝜏∼𝜌𝜋

∞
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡) (1)

where 𝛾 ∈ [0, 1) is the discount factor.

2.2. Maximum entropy RL

The maximum entropy reinforcement learning framework considers a more general objective, aiming to learn a stochastic policy
which jointly maximizes the expected discounted cumulative reward and its expected entropy (𝜋(⋅|𝑠𝑡)) [27]:

𝐽 (𝜋) = E𝜏∼𝜌𝜋

∞
∑

𝑡=0
𝛾 𝑡[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛽(𝜋(⋅|𝑠𝑡))], (2)

where 𝛽 is the temperature parameter that controls the stochasticity of the optimal policy over the reward. Therefore, the resulting
stochastic policies balance the exploration–exploitation trade-off and add robustness to the policy.

2.3. Stability guaranteed RL

The maximum entropy reinforcement learning framework can also include a closed-loop stability guarantee of the system
dynamics. Such a stability guarantee is particularly relevant when dealing with control problems in real-world applications. Recently,
the Lyapunov-based actor–critic (LAC) method [25], implementing a stability guarantee, showed state-of-the-art performance on
tracking tasks. From a control-theoretic perspective, the task of tracking can be addressed ensuring that the closed-loop system is
asymptotically stable. In other words, starting from an initial point, the trajectories of states always converge to a single point or
reference trajectory. Therefore, in [25], a stability-guaranteed reinforcement learning framework is proposed under the following
definition of stability:

Stability definition. Suppose 𝑐𝜋 (⋅) is the cost function, 𝑐𝜋 ∶  → R+. The system is said to be mean square stable (MSS) if
lim𝑡→∞ E𝑠𝑡 𝑐𝜋 (𝑠𝑡) = 0 holds for any initial condition 𝑠0.

Under this definition, the stability objective is given by Eq. (3). The stability objective defines an energy decreasing condition
that drives the trajectory asymptotically to the null space of the cost function, producing predictable behaviour of the agent. Here,
we use the Lyapunov function to denote the system’s energy, so that the state goes in the direction of decreasing the value of the
Lyapunov function and eventually converges to the origin or a sub-level set of the Lyapunov function.

E𝑠∼𝜏 (E𝑠′∼𝜌𝜋𝐿(𝑠
′) − 𝐿(𝑠)) ≤ −𝛼3E𝑠∼𝜏𝑐𝜋 (𝑠) (3)

where the 𝛼3 term controls the energy decreasing speed.

3. Proposed framework - Calibration policy

3.1. Model calibration defined as tracking problem

In this work, we formulate the real-time model calibration problem as a tracking problem, which is modelled by an MDP, and
use reinforcement learning to find the optimal tracking policy. We aim to control/infer the model dynamical parameters (𝜃𝑡+1) to let
the model output ( ̂𝑥𝑡+1) match the real sensor measurement (𝑥𝑡+1). However, to solve model calibration by reinforcement learning
is not trivial since it is not a conventional control task. To establish a congruence between the model calibration task and the more
classical driver tracking task: a driver (equivalent to a computational model) needs to infer the operation (equivalent to physical
parameters) of another driver (equivalent to real sensor measurement) in front. To solve this problem, the driver only needs to keep
tracking the path of the car in front. Once driver is able to track the front car, the operation he performs, will be the operation he
would like to infer. The rationale behind this solution strategy is that learning to track observations of a real system response (𝑥𝑡)
by changing the model parameters (𝜃𝑡) results in a control policy that makes the physics-based model yield a sound approximation
of the physical process (𝑥̂𝑡), i.e., reducing the reality gap. Consequently, the tracking policy also serves as a calibration policy [28].

Under a tracking solution strategy, the MDP describing the problem is given as the tuple (𝑠, 𝑎, 𝑟, 𝑃 , 𝜌), where state (𝑠) comprises
the current model output 𝑥̂ , the target value of the system response (observations of the real system) 𝑥 , and the flight condition
5
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𝑤𝑡+1, i.e., 𝑠𝑡 = [𝑥̂𝑡, 𝑥𝑡+1, 𝑤𝑡+1]. The action (𝑎) defines the model parameters that need to be calibrated, i.e., 𝑎𝑡 = 𝜃𝑡. The reward/cost
function 𝑟(𝑠, 𝑎) evaluates how good the tracking is. The state transition probability function (𝑃 (𝑠′|𝑠, 𝑎)) corresponds to the dynamics
of the system that can be modelled by a physics-based or a surrogate model.

In order to speed up the learning process of the RL algorithm, a discrete time counterpart of the physics-based model 𝐹 is used.
The resulting dynamical system 𝐹 or a surrogate simulator is modelled by a deep neural network that approximates the dynamic
transition equation describing how the expected system response changes given the current observations 𝑥̂𝑡, the flight conditions
𝑤𝑡+1, and model parameters 𝜃𝑡+1, resulting in:

𝑥̂𝑡+1 = 𝐹 (𝑤𝑡+1, 𝑥̂𝑡, 𝜃𝑡+1) (4)

For the tracking problem there is, therefore, a desired state that we would like the system to be in at each time step, i.e., 𝑥𝑡+1. The
task of the agent is to find a control policy 𝜃𝑡+1 = 𝜋(𝑥̂𝑡, 𝑥𝑡+1, 𝑤𝑡+1) that minimizes the cost based on a distance metric representing
he reality gap of the physics-based model. Here we use the mean squared error (MSE) between the model output ̂𝑥𝑡+1 and the
eal system measurement 𝑥𝑡+1 as the reward signal. In particular, given the dynamical system above and a target system trajectory
i.e, observations), we train the control policy to keep the simulator output matching the real system output by maximizing the
umulative reward as defined in Eq. (1).

.2. State space and action space

The state 𝑠𝑡 describes the current sensor information of the system, the target sensor information of the system and the flight
onditions, which is defined as 𝑠𝑡 = [𝑥̂𝑡, 𝑥𝑡+1, 𝑤𝑡+1]. And the action describes as the system parameters need to be calibrated,
.e. degradation parameters, which is defined as 𝑎𝑡 = [𝜃𝑡+1].

3.3. Learning algorithm

In this work, we adopt Lyapunov-based actor–critic (LAC) [25] as the learning algorithm, which is based on the soft actor–critic
(SAC) [29] algorithm and incorporates a stability guarantee objective. The stability guarantee objective enables a control policy that
stabilizes the system in the case of interference by unseen disturbances or uncertainties in the system dynamics. Most importantly,
the LAC algorithm has been show to yield the best performance on tracking problems [25].

Based on the maximum entropy actor–critic framework, LAC uses the Lyapunov function 𝐿𝑐 as the critic in the policy gradient
formulation. The objective function of 𝐽 (𝐿𝑐 ) is given as follows:

𝐽 (𝐿𝑐 ) = E(𝑠,𝑎)∼

[ 1
2
(𝐿𝑐 (𝑠, 𝑎) − 𝐿𝑡𝑎𝑟𝑔𝑒𝑡

𝑐 (𝑠, 𝑎))2
]

(5)

𝐿target
𝑐 (𝑠, 𝑎) = 𝑐 + 𝛾 arg max

𝑎
𝐿𝑐 (𝑠′, 𝑎) (6)

where 𝐿𝑡𝑎𝑟𝑔𝑒𝑡
𝑐 is the approximation target for 𝐿𝑐 as typically used in RL methods [30,31]. 𝐿𝑡𝑎𝑟𝑔𝑒𝑡

𝑐 has the same structure as 𝐿𝑐 , but
the parameter is updated through exponentially moving average of weights of 𝐿𝑐 controlled by a hyperparameter 𝜏.

The objective function for the policy network is given by:

𝐽 (𝜋) =E[𝛽[log(𝜋𝜃(𝑓𝜃(𝜖, 𝑠)|𝑠))] + 𝜆(𝐿𝑐 (𝑠′, 𝑓𝜃(𝜖, 𝑠′)) − 𝐿𝑐 (𝑠, 𝑎) + 𝛼3𝑐)] (7)

where 𝜋𝜃 is parameterized by a neural network 𝑓𝜃 , and 𝜖 is an input vector consisted of Gaussian noise. The  ≐ {(𝑠, 𝑎, 𝑠′, 𝑐)} is
the replay buffer for storage of the MDP tuples. In the above objective, 𝛽 and 𝛾 are positive Lagrange multipliers which control
the relative importance of policy entropy versus the stability guarantee. As in [32], the entropy of policy is expected to remain
above the target entropy 𝑡 [32], here we adopt the same strategy. The value of 𝛽 is adjusted through the gradient method, thereby
maximizing the objective:

𝐽 (𝛽) = 𝛽E(𝑠,𝑎)∼[log(𝜋𝜃(𝑎|𝑠)) +𝑡] (8)

𝜆 is adjusted by the gradient method, thus maximizing the objective:

𝐽 (𝜆) = 𝜆(𝐿𝑐 (𝑠′, 𝑓𝜃(𝜖, 𝑠′)) − 𝐿𝑐 (𝑠, 𝑎) + 𝛼3𝑐) (9)

Under conditions of high sensor noise and simulator bias resulting from an incomplete representation of the system model
(i.e., irreducible reality gap), the policy network can exhibit large variance. Such a situation is undesirable in many real-world
applications where it is important to obtain a stable or smooth action over time. Therefore, in order to stabilize the action, we
introduce the constrained Lyapunov-based actor–critic (CLAC) algorithm, a modification of the LAC, which significantly improves
the action stability under model uncertainty and sensor noise. In CLAC, the objective function has an additional term that aims to
obtain a policy network that has similar optimal action when given a similar or near state (𝑠𝑛𝑒𝑎𝑟) and is given by:

𝐽 (𝜋) =E[𝛽[log(𝜋𝜃(𝑓𝜃(𝜖, 𝑠)|𝑠))]+

𝜆(𝐿𝑐 (𝑠′, 𝑓𝜃(𝜖, 𝑠′)) − 𝐿𝑐 (𝑠, 𝑎) + 𝛼3𝑐)+
∗ ∗

(10)
6
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where 𝛼 is a positive Lagrange multiplier, and 𝜋∗
𝜃 (𝑠) outputs the action with the largest probability. In our case, we use the adjacent

ime space state 𝑠𝑡+1 or 𝑠𝑡−1 to approximate 𝑠𝑛𝑒𝑎𝑟.
The entire procedure for training the proposed constrained Lyapunov actor–critic is outlined in Algorithm 1 and the hyper-

arameter settings can be found in Table 1
It is worth mentioning that in our experiments the policy is first trained in the simulation environment and then frozen for

valuation.

Algorithm 1: Constrained Lyapunov-based actor–critic (CLAC)
Input hyperparameters, learning rates 𝛼𝜙𝐿 , 𝛼𝜃
Randomly initialize a Lyapunov network 𝐿(𝑠, 𝑎) and policy network 𝜋(𝑎|𝑠) with parameters 𝜙𝐿, 𝜃 and the Lagrange multipliers
𝛽, 𝜆
Initialize the parameters of target network with 𝜙𝐿 ← 𝜙𝐿
for each iteration do

Sample 𝑠0 according to 𝜌
for each time step do

Sample 𝑎𝑡 from 𝜋(𝑠) and step forward
Observe 𝑠𝑡+1, 𝑟𝑡 and store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 

end for
for each update step do

Sample minibatches of transitions from  and update 𝐿, 𝜋 and Lagrange multipliers with gradients
Update the target networks with soft replacement:

𝜙𝐿 ← 𝜏𝜙𝐿 + (1 − 𝜏)𝜙𝐿

(11)

end for
end for

4. Experiments

The proposed framework is demonstrated and evaluated on two different physics-based models focusing on the diagnostics of
urbofan engines. The two case studies explore different aspects of real-world calibration problems. Case study #1 corresponds to a
ne-dimensional calibration problem (𝑑 = 1) under a wide range of real (i.e., noisy) flight conditions from a small fleet of ten units

(𝑁 = 10). Case study #2 is a more complex system that explores complex failure modes affecting four components of the system
simultaneously (𝑑 = 4). Therefore, case study #2 explores a calibration problem under complex system responses. In contrast to
case study #1, case study #2 contains only flight condition from one single unit and, consequently, has a more limited range of
flight conditions. More details about the simulator and flight condition data can be found in Appendix.

The performance of the proposed CLAC method is evaluated and compared to two alternative calibration models: a unscented
Kalman filter (UKF) and a supervised end-to-end mapping with deep learning algorithm (E2E). The evaluation also covers variants
of case study #1 designed to evaluate the robustness of the different methods to uncertainty in the observations and system model
predictions.

4.1. Neural network architectures and hyper-parameters

The proposed framework requires three neural networks: policy network, Lyapunov network and surrogate network of the
dynamic model.

For the policy network, we use a fully-connected multi-layer perceptron (MLP) with two hidden layers of 256 units, outputting
the mean and standard deviations of a Gaussian distribution. We adopt the invertible squashing function technique as proposed
in [32] to the output layer of the policy network. For the Lyapunov network, we use a fully-connected MLP with two hidden layers
of 256 units, outputting the Lyapunov value. All the hidden layers use leaky-ReLU [33] activation function.

The system dynamics (surrogate network of the dynamic model) is approximated with an MLP with four layers (𝐿 = 4). The
hidden layers have 100 units (𝑛1 = 𝑛2 = 𝑛3 = 100). The output layer has the dimension of the sensor reading vector (i.e. 𝑛𝐿 = 𝑛).
ReLU activation function was used throughout the hidden layers. For the output layer 𝜎𝐿 = 𝐼 is the identity.

The optimization of the networks’ weights was carried out with mini-batch stochastic gradient descent (SGD) and with the Adam
algorithm [34]. Xavier initializer [35] was used for the weight initializations. Most of the parameters setting are according to the
original LAC setup [36], and the target entropy is based on the SAC result [29,32]. Table 1 provides a detailed overview of the
7
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Table 1
LAC and CLAC hyperparameters.
Hyperparameters Batch size LR-Actor/Critic Target entropy 𝜏 𝛾 𝛼3 Initial 𝛽 𝜆

Value 256 1e−4/3e−4 −d 0.005 0.99 1 2 0.1

Table 2
Overview of the inference performance given by the RMSE between the inferred model parameters
and the ground truth with UKF, E2E, and CLAC approaches on complete test trajectories. Best
performance is shown in bold. 1 The analysis with the E2E model was not performed in Case
Study #2 in light of the poor results in Case Study #1.
Method Case Study #1 Case Study #2

UKF 3.42e−04 3.51e−03
E2E 1.36e−03 –
CLAC 3.30 ± 0.38e−04 2.50e−03

Fig. 3. Inferred (blue dots) and ground truth (orange squares) traces of 𝜃 in Case Study #1 with UKF (left), E2E (middle), and CLAC (right) approaches. The 𝜃
values for the ten units are stacked one after the other, generating a single time sequence. Each discontinuity corresponds to the beginning of a new unit. The
UKF solution proves a good match to the ground truth with low bias and variance. It is observed that only at the beginning of each unit, the UKF predictions
show a large bias. Estimations with the E2E model show a large variance, in particular for units with long degradation profiles. The CLAC method demonstrates
a very good match to the ground truth.

5. Results

The aim of the proposed framework is to enable accurate, real-time, and robust model calibration for complex systems and large-
scale problems. Therefore, in this section, the performance of the proposed method is analysed based on six evaluation criteria: (1)
inference accuracy, (2) computational cost, (3) robustness to system model uncertainty, (4) robustness to observation noise, (5)
scalability to more complex systems, and (6) tracking accuracy.

Inference accuracy. The primary objective of model calibration is to infer the values of the model parameters 𝜃. From
the application perspective of model-based diagnostics, this objective corresponds to inferring the true underlying degradation
parameters. Therefore, we compare the estimated degradation parameters (𝜃̂) with the ground truth and report the inference
accuracy in the form of the root mean square error (RMSE). Table 2 shows the inference performance of the unscented Kalman filter
(UKF), end-to-end mapping (E2E), and the proposed method (CLAC) in both datasets. With the lowest RMSE, the policy obtained
with CLAC shows the best overall performance in both case studies. The improvement is particularly significant under complex fault
modes (i.e., Case Study #2). The E2E model yields the worst overall performance in Case Study #1, which highlights the limitations
of supervised learning in cases where the flight condition dataset for training is not fully representative of the test conditions. Fig. 3
shows the inferred unobserved model parameters 𝜃̂ obtained with the three methods in Case Study #1. It is worth mentioning that
unlike the end-to-end mapping, which needs the ground truth degradation parameters for training, our framework does not need any
prior knowledge about the degradation parameters. This makes the approach more flexible and more applicable to real scenarios.

Since reinforcement learning policies might suffer from a high variance [37], we evaluated the reproducibility of the proposed
method by training our agent over five different seeds. As shown in Fig. 4, we observe that our agent shows a good reproducibility
on both tasks.

Computational cost. One crucial aspect of the proposed method is the ability to perform calibration in real time which is a
crucial requirement for real applications. Therefore, we evaluate the time required to perform inference of the model parameters
at deployment. Table 3 reports the average times required to calibrate a single sample and the total training time with the three
methods. In terms of deployment computational cost, the proposed method provides a speed up of ×150 compared to the UKF.
Concretely, inference with the proposed CLAC method takes around 40 ms using a CPU thread. This deployment speed is comparable
to the E2E model as both methods only require a forward pass over a deep neural network. In contrast, the UKF needs to perform
2× (2×𝑑 +1) model evaluations, which for Case Study #1 amounts to 6 s. The CLAC method requires several hours of training with
8
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Fig. 4. The average calibration performance of on AGTF30 and CMAPSS task, where the shaded areas show the 1-SD confidence intervals over 5 random seeds.
The 𝑋-axis indicates the total training steps, while 𝑌 -axis indicates the test return.

Table 3
Overview of the average time required for inference of a single sample with UKF, E2E, and CLAC
approaches in seconds [s] for Case Study #1.
Method UKF E2E CLAC

Deployment time [s] 6 4.2e−02 4.0e−02

Table 4
Overview of the inference performance (RMSE) under model bias (i.e. 𝐹 (𝑤, 𝜃) × 𝛼) and noise (i.e., 𝐹 (𝑤, 𝜃)(1 +
𝑁(0, 𝛼𝜂 )) with UKF and CLAC approaches in Case Study #1.

Model bias: 𝐹 (𝑤, 𝜃) × 𝛼

Intensity UKF CLAC

𝛼 = 1.02 2.04e−3 3.30e−04

Model noise: 𝐹 (𝑤, 𝜃)(1 +𝑁(0, 𝛼𝜂 ))

Intensity UKF CLAC

𝛼𝜂 = 0.1 # 4.22e−04

applications. For real-time applications, the main limiting factor is the deployment time. Therefore, in terms of computational cost,
the proposed method has a clear advantage over UKF.

Robustness to environment uncertainty. Robustness to model inaccuracy is an important aspect in model calibration. It is also
a well known limitation of model-based methods such as UKF. To evaluate the sensitivity of different approaches to inaccuracies in
the models, we apply a model bias to the output of the dynamic system model (i.e., 𝐹 (𝑤, 𝜃) × 𝛼) to emulate an inadequacy of the
system model structure (i.e., inaccurate simulator). We also consider a case where Gaussian noise is added to the dynamic system
model, i.e., 𝐹 (𝑤, 𝜃) + 𝜂 where 𝜂 ∼ 𝑁(0, 𝛼𝜂). It is worth noticing that adding noise to the output of the simulator transforms the
deterministic model into a stochastic system model.

From the RL perspective, the presence of an inaccurate simulator is known as sim-to-real transfer. In fact, sim-to-real is always a
critical problem in reinforcement learning since the agent is trained in a simulated environment which may be different from the
real world. In our case, we use a surrogate DNN model to accelerate the training. Therefore, we have an unavoidable error between
the DNN surrogate model 𝑥̂𝑡+1 = 𝐹 (𝑤𝑡+1, 𝑥̂𝑡, 𝜃𝑡+1) and the engine physics-based model. Then, even in the case where noise is not
added, the agent needs to make decisions with noisy DNN model outputs 𝑥̂𝑡 at every time step 𝑡.

In order to test the trained policy under bias and noisy simulators, we tested two variants where we added a 2% fixed bias
(i.e., 𝛼 = 1.02) and a Gaussian noise with a standard deviation of 10% of the model output (i.e., 𝐹 (𝑤, 𝜃)(1 +𝑁(0, 𝛼𝜂)) with 𝛼𝜂 = 0.1)
to the output of the DNN model. The results in Table 4 show that the policy obtained with the CLAC model provides a very good
inference even under quite large uncertainty, demonstrating better robustness than the UKF, which failed to optimize a stable
inference. The superior inference performance of the CLAC model under 2% fixed bias is visualized in Fig. 5.

Scalability to more complex system and high dimensional model parameters 𝜃. When the dimensionality of the physics-
based model parameters 𝜃 increases, the complexity of inference increases as well. Due to the non-linear correlation between the
degradation parameters and also between the degradation parameters and observations, the solution of the calibration problem in
high dimensional spaces can lead to confounding solutions. In scenarios with noisy observations and systems with poor observability,
the solution of inverse problems, such as UKF methods, might involve a spurious association of calibration factors that have similar
system outputs. To test the scalability of our policies, we performed experiments on controlling 1, 2, and 4 degradation parameters
in AGTF30 experiments (i.e. Case Study #2). Fig. 6 shows the inferred and ground truth traces of a four-dimensional 𝜃 in Case Study
#2 with UKF (left) and CLAC (right) approaches. As in the previous plots, the 𝜃 values for 1315 fault intensities are stacked one
after the other, thus generating a single time sequence. We can observe that the UKF solution does confound or smear the source of
degradation. Moreover, as observed in Case Study #1, at the beginning of each fault combination, the predictions show large bias.
Both of these issues are efficiently solved with the proposed CLAC method.
9
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Fig. 5. Inferred and ground truth (orange squares) traces of 𝜃 in Case Study #1 with 2% model bias for UKF (green triangles) and CLAC (blue dots).

Fig. 6. Comparison to the ground truth in four 𝜃 parameters (HPT and LPT flow (i.e., Wc) and efficiency (i.e., Eff.)) and different degradation parameter settings.
The orange solid line is the ground truth degradation parameter value in different trajectories. The blue dotted line is the policy’s action with CLAC and the
green solid line with triangles is the UKF prediction.

Robustness to sensor noise. In real scenarios, the observations are always noisy. Therefore, it is also important to obtain a
policy that is robust to sensor noise. To evaluate this effect, we modelled the engine sensor noise and generated a noisy flight
condition by adding Gaussian noise with an intensity of 70 db signal to noise ratio (𝑆𝑁𝑅𝑑𝑏 = 70) to the original flight condition.
Table 5 shows the impact of noise on the inference performance of the UKF and CLAC methods. In this case, although our policy
still shows good inference ability, UKF is more robust to sensor noise.

Tracking accuracy. We proposed to formulate the calibration problem as a tracking problem and use reinforcement learning
to track the operational trajectories of the real systems (i.e., the observations) while being constrained to have a stable policy.
Therefore, we evaluate the error between the observed real system response and the calibrated model output. Fig. 7 shows that
our policies exhibit a good tracking ability for the model outputs. Table 6 provides a complete overview of the RMSE for each of
the evaluated test cases. Although the CLAC framework demonstrates a good tracking ability in all the setups, the UKF achieves
10
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Fig. 7. Tracking with the proposed CLAC method (blue dots) and UKF (green triangles) on a subset of Case Study #1 for four sensor outputs. Ground truth is
shown with the orange solid line. The CLAC policy is able to keep all these sensors on track.

Table 5
Overview of the inference performance under observation noise with UKF and CLAC approaches
for complete test trajectories - System #1.

Observation Noise: 𝑥𝑠 + 𝜖

Intensity UKF CLAC
SNR𝑑𝑏 = 70 3.72e−04 7.18e−04

Table 6
Overview of the tracking performance given by RMSE with UKF and CLAC approaches in both
case studies.
Method Case Study #1 Case Study #2

UKF 0.62 1.78
CLAC 0.98 5.54

an even better tracking. This difference in the performance between UKF and CLAC is expected since in the RL agent is actually
solving a more complicated problem. In particular, the current state contains the output of the DNN model 𝑥̂𝑡 instead of the historical
observation (𝑥𝑡). As a result, small errors accumulate affecting the tracking performance. However it is worth point out that precisely
this aspect ensures that the proposed policy action generalizes well to unseen degradation trajectories.

5.1. Ablation study

Comparison between LAC and CLAC algorithms In this research, we propose to extend LAC to CLAC to improve the stability
of the policy under noisy conditions. To demonstrate the benefit of the proposed extension, we compare the inference performance
of both algorithms, LAC and CLAC, on Case Study #1. In the C-MAPSS experiments, the flight conditions are very diverse and the
DNN model is not very accurate and is particularly noisy. Therefore, the DNN model may lead to an unstable policy. Fig. 8 shows
11
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Fig. 8. Left: Inferred policy’s actions with LAC algorithm (blue dots) and ground truth (orange squares) in Case Study #1. The trajectories of the ten units,
stacked one after the other, are shown. SAC policy exhibits quite large variance. Right: Inferred policy’s actions with CLAC algorithm (blue dots) and ground
truth (orange squares). The CLAC policy shows a good stability and a very good match to the ground truth.

the policy’s actions with the LAC and CLAC algorithm (orange squares) and ground truth (blue dots) for all the trajectories. CLAC
demonstrates a significant reduction in the variance of the policy. Concretely, in terms of the RMSE metric, the LAC results in a
RMSE of 1.3e−03 while the CLAC leads to an RMSE of 3.3e−04. Therefore, CLAC provides a 4× inference improvement.

6. Conclusions and future work

In this research, we proposed a maximum entropy reinforcement learning framework and the constrained Lyapunov-based actor–
critic (CLAC) algorithm for model calibration. The proposed calibration methodology achieves an instantaneous, high inference
accuracy and robustness that makes the proposed methodology applicable to noisy, and large-scale calibration problems in real-
time. This capability was achieved purely on the basis of training in a simulation environment without any tedious sampling or
computationally expensive solution of an inverse problem. Moreover, and in contrast to the end-to-end learning architectures,
the proposed methodology only requires access to the model and the observations, eliminating the need for any ground truth
calibration parameters for training. Overall, the proposed CLAC algorithm achieves more precise and faster inference than the prior
state-of-the-art approaches while being more robust to system model uncertainty.

The proposed framework can be generally combined with various RL algorithms, or can even be extended to the meta RL [38,39]
or hierarchical RL [40,41]. All our experiments are currently performed in a simulated environment. As a next step, we plan to
evaluate the resulting policies on real industrial plants or robots.

Although the learning framework presented in the work is demonstrated in a model-based diagnostics task, it is applicable to
any physics-based model, including those used in so-called ‘‘digital twins’’. Therefore, the results presented in this paper suggest a
promising research direction in the field of model calibration. From the application perspective, the targeted model-based diagnostics
problem was solved using exclusively a set of three deep neural networks. Therefore, the proposed framework is a paradigm shift
in the field of model-based diagnostics. Starting with a model-based problem, we demonstrate that a clever arrangement of deep
neural networks can learn both the relevant physics of a complex system and the inference techniques required for diagnostics. It
is worth pointing out that the use of deep neural networks is very diverse (e.g., functioning as the surrogate of a physics-based
system model or as an inference network in a decision-making problem). The proposed framework demonstrates the great potential
of fusing physics-based and deep learning models.
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Table B.7
Weight coefficients and scaling parameters.
Weight coefficients

Weights Expression

𝑊 𝑚
0

𝜆
𝑛𝜃+𝜆

𝑊 𝑐
0 𝑊 𝑚

0 + 1 − 𝛼2 + 𝛽

𝑊 𝑐
𝑖 = 𝑊 𝑚

𝑖
1

2(𝑛𝜃+𝜆)
∀𝑖 = 1,…2𝑛𝜃

Scaling parameters

Parameters Values

𝛾
√

𝑛𝜃 + 𝜆
𝜆 𝛼2(𝑛𝜃 + 𝜅) − 𝑛𝜃
𝛼 1e−3
𝛽 2
𝜅 0

Appendix A. Training environment

A.1. Case Study #1: A small fleet of Turbofan engines

Case Study #1 is the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dynamical model [42] that provides
egradation trajectories of a small fleet comprising ten turbofan engines with unknown and different initial health conditions. The
rajectories are given in the form of multivariate time-series of sensor readings (i.e., [𝑤, 𝑥]). Real flight conditions (𝑤), as recorded
n board a commercial jet, were taken as input to the C-MAPSS model [43]. More details about the generation process can be found
n [44].

.2. Case Study #2: A set of fault scenarios in Turbofan engines

Case Study #2 is the AGTF30 (Advanced Geared Turbofan 30k lbf) dynamical model [45] taking as input real flight conditions
s recorded on board a commercial jet [43]. It can provide simulated condition monitoring trajectories of an advanced gas turbine
uring three flight profiles and multiple fault scenarios. Concretely, three different flight trajectories with a duration of 5000 s
re considered. The system consists of concatenated time series of sensor readings (i.e., [𝑤, 𝑥𝑠] ∈ 𝑅𝑛) resulting from faulty engine
onditions. The fault conditions are induced and simultaneously affect four health-related model parameters representing model
odifiers of the high pressure turbine (HPT) and low pressure turbine (LPT) flow and efficiency. A total of 1315 different fault

cenarios are simulated by factorial design of a finite set of possible degradation intensities for each component. No additional
oise was added to the model response since the flight conditions are already noisy.

ppendix B. E2E and UKF settings

.1. E2E

To evaluate the different calibration methods under equivalent models, the E2E network is as also a MLP. In this way, we separate
he effect of regularization in the form of model and learning strategies choice from other inductive bias in the form of choice of
eural network type. The hidden layers have 100 units (𝑛1 = 𝑛2 = 𝑛3 = 100). The output layer has the dimension of the sensor
eading vector (i.e. 𝑛𝐿 = 𝑛). ReLU activation function was used throughout the hidden layers. For the output layer 𝜎𝐿 = 𝐼 is the
dentity. The resulting architecture is the result of a grid reach.

.2. UKF

The solution of the calibration problem with an UKF requires and state-update formulation where the state equation is modelled
s a random walk. However, the estimation of the state (mean vector 𝜃̂(𝑘) and covariance matrix 𝑃 (𝑘)) at each time steps is obtained
ith the UKF. Concretely, it resorts the standard UKF update process given by the algorithm 2. For clarity and completeness, the
lgorithm 2 and the corresponding UKF settings is added to the Appendix. A more detailed explanation of this problem formulation
pplied to the monitoring of gas turbine engines can be found in [17].

here the weight coefficients 𝑊 𝑚
0 , 𝑊 𝑐

0 and 𝑊 𝑐
𝑖 and the corresponding scaling parameters are given in Table B.7.

The UKF algorithm required the definition of the diagonal covariance matrices 𝑄 and 𝑅. We assumed the covariance matrices to
e diagonal matrices with normalized standard deviation 𝑟 = 0.01 and 𝑞 = 0.01 (i.e., 𝑄 = 𝑞2𝐈𝐧 and 𝑅 = 𝑟2𝐈𝐝 where 𝐈𝐤 is the identity
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Algorithm 2: Unscented Kalman filter for health parameter estimation
1 Estimation of health parameters

Input : {𝑤(𝑘), 𝑥(𝑘), }𝑚𝑘=1, 𝜃𝑟𝑒𝑓 , R and 𝑃 (0) = 𝑄 & F
Output: 𝑥̂(𝑘), 𝜃̂(𝑘), 𝑃 (𝑘)

2 for 𝑘 = 1 ∶ 𝑚 do
3 𝑃 (𝑘) = 𝑃 (𝑘−1) +𝑄(𝑘)

4  (𝑘−1) = [𝜃̂(𝑘−1), 𝜃̂(𝑘−1) + 𝛾
√

𝑃 (𝑘), 𝜃̂(𝑘−1) − 𝛾
√

𝑃 (𝑘)] i.e. Sigma points (vectors)
5  (𝑘)

𝑖 = 𝐹 (𝑤(𝑘), (𝑘−1)
𝑖 ) for 𝑖 = 0, 1,… , 2𝑑 Propagate  through the non-linear function 𝐹

6 𝑥̂(𝑘)𝑠 =
∑2𝑑

𝑖=0 𝑊
𝑚
𝑖  (𝑘)

𝑖
7 𝑟(𝑘) = 𝑥(𝑘)𝑠 − 𝑥̂(𝑘)𝑠

8 𝑃 (𝑘)
𝑦 =

∑2𝑑
𝑖=0 𝑊

𝑐
𝑖 (

(𝑘)
𝑖 − 𝑥̂(𝑘)𝑠 )( (𝑘)

𝑖 − 𝑥̂(𝑘)𝑠 )𝑇 + 𝑅
9 𝑃 (𝑘)

𝜃𝑦 =
∑2𝑑

𝑖=0 𝑊
𝑐
𝑖 (

(𝑘−1) − 𝜃̂(𝑘−1))( (𝑘)
𝑖 − 𝑥̂(𝑘)𝑠 )𝑇

10 𝐾 (𝑘) = 𝑃 (𝑘)
𝜃𝑦 𝑃 (𝑘)

𝑦
−1

11 𝜃̂(𝑘) = 𝜃̂(𝑘) −𝐾 (𝑘)𝑟(𝑘)

12 𝑃 (𝑘) = 𝑃 (𝑘) −𝐾 (𝑘)𝑃 (𝑘)
𝑦 𝐾 (𝑘)𝑇

13 end
14 end
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