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Abstract

Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamen-
tal for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in
many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining exper-
iments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning
pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that
adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the
dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic oper-
ator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only
being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it
achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics
on all the datasets. While the previously proposed approaches are able to be applied as simulators, they fail to infer physically consis-
tent particle interactions that satisfy Newton’s laws. Moreover, the proposed physics-induced graph network for particle interaction
also outperforms the other baseline models in terms of generalization ability to larger systems and robustness to significant levels of
noise. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and
hence, guide the design of materials with targeted properties.

Keywords: interacting particle systems, pairwise interaction, graph neural networks, deterministic physics operator, physics consis-
tency

Significance Statement:

Understanding, modeling, and predicting the kinetic behavior of interacting particle systems rely on knowing the governing in-
teraction laws between individual particles. However, in real applications, the ground truth information on pairwise interactions
remains unknown. Here, we propose a Graph Neural Network framework that incorporates universal physical laws to infer pair-
wise force (or potential energy) for any particle system. The proposed method precisely infers pairwise particle interactions that
are consistent with underlying physical laws without any supervision by only being trained to predict particle acceleration. The
proposed methodology is a step forward in developing flexible and robust tools for the discovery of physical laws, which will be
the basis for various applications such as designing new materials.

Introduction
Interacting particle systems play a key role in nature and en-
gineering as they govern planetary motion (1), mass movement
processes (2) such as landslides and debris flow, bulk material
packaging (3), magnetic particle transport for biomaterials (4),
and many more. Since the macroscopic behavior of such parti-
cle systems is the result of interactions between individual par-
ticles, knowing the governing interaction law is required to bet-
ter understand, model, and predict the kinetic behavior of these
systems. Particle interactions are determined by a combination
of various factors including contact, friction, electrostatic charge,
gravity, and chemical interaction, which affect the particles at
various scales. The inherent complexity of particle systems in-
hibits the study of the underlying interaction law. Hence, they

remain largely unknown and particle systems are mostly studied
in a stochastic framework or with simulations based on simplistic
laws.

Recent efforts on developing machine learning (ML) methods
for the discovery of particle interaction laws have shown great
potential in overcoming these challenges (5–11). These ML meth-
ods, such as the Graph Network-based Simulators (GNS) (12) for sim-
ulating physical processes, Dynamics Extraction From cryo-em Map
(DEFMap) (13) for learning atomic fluctuations in proteins, the
SchNet (14, 15) which can learn the molecular energy, and the
neural relational inference model (NRI) (16) developed for inferring
heterogeneous interactions, can be applied on various types of
interacting particle systems such as water particles, sand, and
plastically deformable particles. They allow implicit and explicit
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learning of the mechanical behavior of particle systems without
prior assumptions and simplifications of the underlying mech-
anisms. A commonly applied approach is to predict directly the
kinetics of the particles without explicitly modeling the interac-
tions (12, 14, 17–21). The neural networks, then, map directly the
input states to the particle acceleration, occasionally by virtue
of macroscopic potential energy (12, 14, 17–19). While these ap-
proaches give an accurate prediction of the particle system as it
evolves, they do neither provide any knowledge about the funda-
mental laws governing the particle interactions nor are they able
to extract the particle interactions precisely.

Recent work (22) proposed an explicit model for the topology
of particle systems, which imposes a strong inductive bias and,
hence, provides access to the individual pairwise particle inter-
actions. Reference (22) demonstrated that their Graph Network
(GN) framework predicts well the kinetics of the particles system.
However, as we will show, the inferred particle interactions violate
Newtonian laws of motion, such as the action–reaction property,
which states that two particles exert the same but opposed force
onto each other. Therefore, the extracted pairwise particle inter-
actions do not correspond to the real underlying particle interac-
tion force or potential, which are the fundamental properties of a
physical system. The origin of these discrepancies lies in the de-
sign of the GN approach, which does not sufficiently constrain the
output space, and clearly demonstrates the need for a physics-
consistent Graph Neural Network (GNN) framework for particle
interactions.

Besides interacting particle systems, recent works applied GN
models to learn microlevel dynamics in other physical systems.
For example, the work of Moon et al. (23) integrated domain
knowledge into the GNN to learn drug–target binding affinities in
a supervised way. Ha and Jeong (24) trained the GN model as a
simulator for interacting discrete physical systems other than in-
teracting particles, including cellular automata, the Vicsek model,
the active Ornstein–Uhlenbeck particle model, and the movement
of a flock of birds. Another follow-up research line aimed to im-
prove GNNs to learn particle dynamics in more complicated sce-
narios. For example, the work of Huang et al. (25) learns particle
dynamics in interacting particle systems with geometrical con-
straints where some particles are connected by bounds. However,
to the best of our knowledge, no other previous work aimed to re-
veal physics-consistent particle interactions from observed parti-
cles trajectories without any direct supervision.

Here, we propose a GNN framework that incorporates universal
physical laws, specifically Newton’s second law of motion, to learn
the interaction potential and force of any physical particle system.
The proposed algorithm, termed physics-induced graph network
for particle interaction (PIG’N’PI), combines the GNN methodology
with deterministic physics operators to guarantee physics con-
sistency when indirectly inferring the particle interaction forces
and potential energy (Fig. 1). We will show that PIG’N’PI learns the
pairwise particle potential and force by only being trained to pre-
dict the particle acceleration (without providing any supervision
on the particle interactions). Moreover, we will show that the in-
ferred interactions by PIG’N’PI are physically consistent (contrary
to those inferred by purely data-driven approaches). We will fur-
ther demonstrate that predictions provided by PIG’N’PI are more
accurate, generalize better to larger systems, and are more robust
to noise than those provided by purely data-driven graph network
approaches. Moreover, we will demonstrate on a case study that is
close to real applications that the proposed algorithm is scalable
to large systems and is applicable to any type of particle interac-
tion laws.

PIG’N’PI: physics-induced graph network
for particle interaction
We propose a framework that is able to infer pairwise particle
forces or potential energy by simply observing particle motion in
time and space. In order to provide physics-consistent results, a
key requirement is that the learnt particle interactions need to
satisfy Newtonian dynamics. One of the main challenges in de-
veloping such a learning algorithm is that only information on
the particle position in time and space along with particle proper-
ties (e.g., charge and mass) can be used for training the algorithm
and no ground truth information on the interactions is available
since it is very difficult to measure it in real systems.

The proposed framework comprises the following distinctive
elements (Fig. 1): (1) a graph network with a strong inductive bias
representing the particles, their properties, and their pairwise in-
teractions; and (2) physics-consistent kinetics imposed by a com-
bination of a neural network for learning the edge function and
a deterministic physics operator for computing the node function
within the graph network architecture. In addition, the proposed
framework consists of the two steps: (1) training the network to
predict the particle motion in time and space; and (2) extraction
of the pairwise forces or the pairwise potential energy from the
edge functions of the trained network.

Particle systems: We consider particle systems that are moving in
space and time and are subject to Newtonian dynamics without
any external forces. A particle system in this research is repre-
sented by the directed graph G = (V, E), where nodes V = {v1, v2,
…, v|V|} correspond to the particles and the directed edges E = {eij:
vi, vj ∈ V, i �= j} correspond to their interactions. The graph is fully
connected if all particles interact with each other. Each particle
i, represented by a node vi, is characterized by its time-invariant
properties, such as charge qi and mass mi, and time-dependent
properties such as its position rt

i and its velocity ṙt
i . We use ηt

i to de-
note the features of particle i at time t, ηt

i = [rt
i , ṙt

i , qi, mi]. We limit
our evaluations to particle systems comprising homogeneous par-
ticle types. This results in particles exhibiting only one type of in-
teraction with all its neighboring particles, leading to |E| = |V|(|V|
− 1). We further assume that the position rt

i of each particle i is
observed at each time step t and that this information is available
during training. Based on the position information rt

i , velocity ṙt
i ,

and acceleration r̈t
i are computed.

Proposed framework: The proposed PIG’N’PI framework extends
the general GN framework proposed by (26), which is a general-
ized form of message-passing GNNs. The architecture of the pro-
posed framework is illustrated in Fig. 2. We use a directed graph to
represent the interacting particle system where nodes correspond
to the particles and edges correspond to their interactions. The
framework imposes a strong inductive bias and enables to learn
the position-invariant interactions across the entire particle sys-
tem network. Given the particle graph structure, the input is then
defined by the node features ηi (representing particle’s character-
istics). The target output is the acceleration r̈t

i of each node at time
step t. The standard GNs block (26), typically, comprises two neural
networks: an edge neural network ĜE (·; θE ) and a node neural net-
work ĜV (·; θV ), where θE and θV are the trainable parameters. Here,
we propose to substitute the node neural network ĜV (·; θV ) by a de-
terministic node operator GV( · ) to ensure that the learned parti-
cle interactions are consistent with the underlying physical laws.
The main novelty compared to the standard GN framework is that
we impose known basic physical laws to ensure that the inferred
pairwise force or potential energy corresponds to the real force
or potential energy while only being trained on predicting the
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Figure 1 Framework of the proposed model to learn pairwise force or pairwise potential energy. (A) The interacting particle system contains three
particles that evolve over time. At every time step, each particle is described by multiple features, which include position, velocity, charge, and mass
(represented by the bar). Position and velocity evolve with time whereas other properties remain constant. (B to C) The proposed method learns
physics-consistent pairwise force or pairwise potential at every time step t. The model has two components: the edge part (B) and the node part (C). In
the edge part (B), two nodes’ vectors are concatenated as edge feature (process 1©). An edge neural network ĜE (·; θE ) (θE represents the trainable
parameters) takes the edge feature as input (process 2©) and outputs a learnt vector on that edge representing the pairwise force or potential energy.
In the node part (C), the output vectors by the edge neural network and the raw node feature are aggregated on each node (process 3©). We design the
deterministic node operator GV( · ) by incorporating physics knowledge to derive the net acceleration on nodes (process 4©). By minimizing the loss on
node-level accelerations, the edge neural network ĜE (·; θE ) will output pairwise force or potential energy exactly.

Figure 2 PIG’N’PI. (A) The workflow where the edge neural network ĜE (·; θE ) takes edge features as input. The corresponding output message Mi j is the

predicted pairwise force or potential energy, depending on the physics operator (B) or (C) in the node part. Parameters θE in ĜE (·; θE ) are trained by
minimizing the loss on particle acceleration.

acceleration of the particles. Whether to use the force-based
PIG’N’PI (blue color in Fig. 2) or the potential-based PIG’N’PI (pur-
ple color in Fig. 2) depends on different demands or downstream
applications in practice, i.e., we can use force-based PIG’N’PI if we
are only interested in the pairwise force without caring about the
pairwise potential energy; or we can use potential-based PIG’N’PI
if we want to know the pairwise potential. Furthermore, note
that the force-based PIG’N’PI method is not limited to energy-

conserving systems, but can also be extended to dissipative sys-
tems (e.g., friction).

It is important to emphasize that only information on particle
positions is used for training the algorithm and the ground-truth
information on the forces and the potential energy is not avail-
able during training. For each edge, the property vectors ηi of two
nodes connected by an edge are concatenated as the edge fea-
ture vector. The edge neural network ĜE (·; θE ) outputs a message
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on every edge that corresponds to the pairwise force or poten-
tial energy. The output dimension is set to be the same as the
spatial dimension d (two or three) if ĜE (·; θE ) is targeted to learn
the pairwise force or one to learn the pairwise potential energy.
Edge messages are aggregated on nodes and the node part op-
erator computes the output corresponding to the acceleration of
nodes, imposing physics-consistency on edge messages. Trained
to predict the node-level acceleration, once applied to a new par-
ticle system, the GN predicts the particle motion at consecutive
time steps. The pairwise forces or the pairwise potential energy
can then be extracted from the edge function for each time step.

Contributions of the present work compared to precious research:
Here, we propose a methodology to learn the pairwise force or
pairwise potential energy from the observed particle trajectories.
This focus distinguishes our work from many previous works such
as (14, 27–31) that learn the energy of the system and then derive
the per-particle dynamics from the global energy. Moreover, as out-
lined above, our proposed approach does not have access to any
ground truth information during training but rather learns to in-
fer the force and potential energy indirectly. This is contrary to the
previously proposed approaches that rely on such information (17,
21).

While our proposed framework has several similarities with
two previously proposed frameworks that are also aiming to infer
pairwise force and pairwise potential energy using also only the
particle accelerations for training (22), none of the previously pro-
posed methods is able to infer the underlying particle interactions
that are consistent with the underlying physical laws. We demon-
strate in our experiments that the learnt particle interactions of
the previously proposed approaches are not consistent with the
underlying physical laws and do not correspond to the real forces
or potential energy.

In fact, the proposed algorithm has also similarities to the
Physics-informed neural networks (PINNs) (32), which aim to solve
partial differential equations. Both PINNs and PIG’N’PI integrate
known physical laws. While PIG’N’PI integrates Newton’s second
law, PINNs enforce the structure imposed by partial differential
equation at a finite set of collocation points.

Results and discussion
Performance evaluation metrics
We evaluate the performance of the proposed PIG’N’PI framework
on synthetic data generated from two- (d = 2) and three- (d = 3)
dimensional numerical simulations. The key distinctive property
of the generated datasets is the definition of the inter-particle po-
tential energy P, which defines the inter-particle pairwise force by
F = −∂P/∂r. The selected cases, which have also been used in prior
work (22) and can be considered as a benchmark case study, cover
a wide range of particle interaction features, including depen-
dence on particle properties, e.g., mass and charge, dependence
on interaction properties, e.g., stiffness, and varying degrees of
smoothness (see Table 1 and Fig. S2 in SI Appendix J for visual-
ization).

The method developed by ref. (22), which applies multilayer
perceptrons [MLPs (33)] in the edge and node part, serves as the
baseline for comparison. We do not change the architecture of the
baseline except for changing the output dimension of its edge part
MLPs when learning the pairwise force or potential energy. The
output dimension is a d-dimensional vector for learning the pair-
wise force and a one-dimensional scalar for the potential energy.
Besides the baseline, we compare the performance of PIG’N’PI to

Table 1. The force and potential energy equations for different
datasets, where Fi j is the force from particle j to particle i, Pij is the
potential incurred by particle j on particle i, rij is the Euclidean dis-
tance between particle i and particle j, ni j is the unit vector point-
ing from particle i to particle j, and qi and mi are the electric charge
and mass of particle i. k, L, c, and � are constants.

Dataset
Pairwise force

(Fi j) Pairwise potential (Pij)

Spring k(ri j − L)ni j
1
2 k(ri j − L)2

Charge −cqiq jni j/r2
i j cqiqj/rij

Orbital mimjni j/ri j mimjln(rij)
Discnt 0, if rij < � 0, if rij < �

(ri j − 1)ni j ,
otherwise

0.5(rij − 1)2, otherwise

an alternative method proposed by ref. (34) that is also based on
GN and was specifically designed to infer pairwise forces. We de-
note this method as GN+ and the details are introduced in the
“Details of the method to learn pairwise force introduced by (34)”
section.

We split each dataset into training, validation, and testing
datasets and use Ttrain, Tvalid, and Ttest to indicate the correspond-
ing simulation time steps for these different splits. Details re-
garding the dataset generation are provided in the “Details about
simulation and experiments” section. The baseline algorithm and
PIG’N’PI are trained and evaluated on the same training and test-
ing datasets from simulations with an 8-particle system. Further,
the evaluation of the generalization ability uses a 12-particle sys-
tem.

It should be noted that ref. (22) measures the quality of the
learnt forces by quantifying the linear correlation between each
dimension of the learnt edge message and all dimensions of the
ground-truth pairwise force. This is a necessary but not sufficient
condition to claim the correspondence of the learnt edge message
with the pairwise interactions and to evaluate the performance
of the indirect inference of the pairwise interactions. Instead, we
evaluate the proposed methodology with a focus on two key as-
pects: (1) supervised learning performance, and (2) consistency
with underlying physics. For all the evaluations, the mean abso-
lute error on the testing dataset of various particle and interaction
properties is used and is defined as follows

MAEinter(φ̂, φ) = 1
|Ttest|

1
|E|

∑

t∈Ttest

i �= j∑

i, j

l1(φ̂t
i j, φ

t
i j ) , (1)

and

MAEpart(φ̂, φ) = 1
|Ttest|

1
|V|

∑

t∈Ttest

|V|∑

i=1

l1(φ̂t
i , φ

t
i ), (2)

respectively, where the superscript hat indicates the predicted val-
ues. Here, φ̂i j and φij are the predicted and corresponding ground-
truth, respectively, of a physical quantity between particle j and
particle i (e.g., pairwise force), and φ̂i = ∑

j φ̂i j and φi = ∑
jφij are

the aggregated prediction and the corresponding ground-truth, re-
spectively, on particle i (e.g., net force). l1(x, y) computes the sum
of absolute differences between each element in x and y, l1(x, y)
= ∑

i|xi − yi|, if x and y are vectors or the absolute difference, l1(x,
y) = |x − y|, if x and y are scalars. Hence, MAEpart measures the
averaged error of the physical quantity on particles over Ttest, and
MAEinter is the averaged error of the inter-particle physical quan-
tity over Ttest.
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Figure 3 Case study: quality of pairwise force prediction of PIG’N’PI and
the baseline model on two-dimensional spring dataset. (A) The spring
force field around a given particle. Color indicates the force amplitude.
From left to right: ground-truth spring force field, predicted force field by
the baseline model, predicted force field by PIG’N’PI. (B) The magnitude
error between predicted force and the ground-truth force
(|norm(F̂) − norm(F)|). Left is the result of baseline model and right is
the result of PIG’N’PI. (C) The angle difference between predicted force
and the ground-truth force (Angle(F̂, F ), in radian). Left is the result of
baseline model and right is the result of PIG’N’PI. (D) Comparison of the
quality of PIG’N’PI, GN+, and baseline model on learning the pairwise
force, where bottom is average result of five experiments and top is the
corresponding standard deviation. From left to right (in logarithmic
scale): acceleration error MAEacc, pairwise force error MAEef, force
symmetry error MAEF

symm, and pairwise force error MAEef on
generalization dataset.

The supervised learning performance is evaluated on the pre-
diction of the acceleration MAEacc= MAEpart( ˆ̈r, r̈). The true ac-
celeration values serve as target values during training. The
physical consistency is evaluated on two criteria. First, we eval-
uate the ability of the proposed framework to infer the underly-
ing physical quantities that were not used as target during train-
ing (e.g., pairwise force), and second, we evaluate physical consis-
tency by verifying whether Newton’s action–reaction property is
satisfied.

The following metrics are used to evaluate the consistency with
the true pairwise interaction. For pairwise force, we use MAEef=
MAEinter(F̂, F ); and for potential energy case, we evaluate the incre-
ment in potential energy MAE�ep = MAEinter(P̂ − P̂0, P − P0), where
superscript 0 refers to the initial configuration.

For the second part of the evaluation of the physical consis-
tency, we verify whether Newton’s action–reaction property is sat-
isfied. For that, we evaluate the symmetry in either inter-particle
forces with MAEF

symm = 1
|Ttest |

1
|E|

∑
t∈Ttest

∑i �= j
i, j l1(F̂t

i j,−F̂t
ji ) or inter-

particle potential with MAEP
symm = 1

|Ttest |
1
|E|

∑
t∈Ttest

∑i �= j
i, j l1(P̂t

i j, P̂t
ji ).

Performance evaluation between PIG’N’PI, GN+,
and baseline for pairwise force
First, we analyze PIG’N’PI for application on particle systems
with interactions given by pairwise forces. We start with evaluat-
ing the supervised learning performance by evaluating the pre-
diction of the acceleration using MAEacc. The results show that
PIG’N’PI provides slightly better predictions than the GN+ and the

Figure 4 Quality of pairwise force prediction of PIG’N’PI, the GN+, and
the baseline model. We report the average and standard deviation of
different errors with five experiments, in logarithmic scale. (A) Pairwise
force prediction error MAEef. (B) Pairwise force symmetry error MAEF

symm.
(C) Pairwise force error MAEef on generalization dataset.

baseline model for both the spring dataset (see Fig. 3D) and all
other datasets (see SI Appendix B).

To verify the physical consistency, we first evaluate if the im-
plicitly inferred pairwise forces are consistent with the true phys-
ical quantity. PIG’N’PI is able to infer the force field around a par-
ticle correctly, while the baseline model fails to predict the force
field (see Fig. 3A for the spring dataset). A force field needs to be
precise in both amplitude and direction. The error of the magni-
tude (see Fig. 3B) and angle (see Fig. 3C) demonstrate unambigu-
ously the superior performance of PIG’N’PI compared to the base-
line model. We quantitatively summarize the performance of the
pairwise force inference with MAEef, which shows PIG’N’PI is able
to infer the pairwise force correctly, while both GN+ and the base-
line fail to infer the pairwise force [two to three orders of mag-
nitude worse inference performance for the spring dataset (see
Fig. 3D) and all other datasets (see Fig. 4A and SI Appendix B)].

Secondly, we verify the consistency of the implicitly inferred
pairwise forces with Newton’s action–reaction law by evaluating
the symmetry of the inter-particle forces with MAEF

symm. Our re-
sults demonstrate that PIG’N’PI satisfies the symmetry property.
However, GN+ and the baseline model are not able to satisfy the
underlying Newton’s laws for the spring dataset (see Fig. 3D) and
the other datasets (see Fig. 4B and SI Appendix B).

Furthermore, we test the robustness of PIG’N’PI and the base-
line model to learn from noisy data. We impose noise to the
measured positions and then compute the noisy velocities (first-
order derivative of position) and noisy accelerations (second-order
derivative of position). The noisy accelerations serve then as the
target values for the learning tasks of all the models. The per-
formance of PIG’N’PI decreases with increasing noise level (see
SI Appendix I; Tables S11, S12, and S13). This is to be expected
given that adding noise makes the training target (particle accel-
erations) less similar to the uncorrupted target that is associated
with particle interactions. However, PIG’N’PI can still learn rea-
sonably well the particle interactions despite the corrupted data.
The performance of the baseline model fluctuates; however, with
different noise levels significantly. This is due to the fact that
the baseline model does not learn the particle interactions but
rather the particle kinematics and is, therefore, more sensitive
to noise.

Finally, we note that the proposed algorithm is also able to gen-
eralize well when trained on an 8-particle system and applied to
a 12-particle system for all datasets (see Figs. 3D and 4, and Ta-
ble S4).

Overall, the results demonstrate that the proposed algorithm
learns correctly the pairwise force (that is consistent with the
underlying physics) without any direct supervision, i.e., with-
out access to the pairwise force in the first place, and that the
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Figure 5 Case study: quality of pairwise potential prediction of PIG’N’PI
and the baseline model on Spring dataset. (A) The spring potential field
around a given particle. Color indicates the potential amplitude. From
left to right: ground-truth spring potential field, predicted potential field
by the baseline model, predicted potential field by PIG’N’PI. (B)
Comparison of the quality of PIG’N’PI and baseline model on learning
the pairwise force. From left to right (in logarithmic scale): acceleration
error MAEacc, pairwise potential error MAE�ep, potential symmetry error
MAEP

symm, and pairwise potential error MAE�ep on generalization dataset.

inferred forces are consistent with the imposed underlying phys-
ical laws.

Performance evaluation between PIG’N’PI and
baseline for pairwise potential energy
Besides learning the pairwise force, the proposed methodology is
extended to learn the pairwise potential energy (see node part de-
sign for learning potential in the “PIG’N’PI: physics-induced graph
network for particle interaction” section). In this case, the physics
operator computes the pairwise force via partial derivative. Since
GN+ was solely designed for learning the pairwise force, it is
not possible to apply it to infer the pairwise potential. There-
fore, for the task of pairwise potential energy inference, we only
compare PIG’N’PI with the baseline model. Our results show that
PIG’N’PI performs well in the supervised learning of the acceler-
ation (MAEacc). Here again, its performance is considerably better
compared to the baseline model (see Fig. 5B). Moreover, the per-
formance is similar to that in the force-based version of the algo-
rithm.

However, when comparing the performance of the baseline
model on the supervised learning task between the potential-
based version and the force-based version of the model, the per-
formance reduces significantly in the potential-based implemen-
tation (compare to Fig. 3D). This drop of performance is potentially
explained by the adjustment of the output dimension of the edge
neural network in the baseline model to enable the extraction of
the potential energy.

Further, our results demonstrate a superior performance of the
PIG’N’PI algorithm on consistency with underlying physics. Firstly,
it infers well the increment of the potential energy (see Fig. 5A).
It clearly infers the inrement of the potential field correctly. On
the contrary, the baseline model fails to infer the potential en-
ergy. This can be quantitatively assessed with MAE�ep. The results
(see Figs. 5B and 6) show that PIG’N’PI is able to infer the poten-
tial energy, while the performance of the baseline model indicates
that it is not able to learn the potential energy only from observing
particles movements.

It is important to note that our algorithm cannot predict the
absolute value of the potential energy; only the increment (see SI

Figure 6 Quality of pairwise potential prediction of PIG’N’PI and the
baseline model. We report different errors in terms of consistency with
the underlying physical laws, in logarithmic scale. (A) Pairwise potential
incremental error MAE�ep. (B) Pairwise potential symmetry error
MAEP

symm. (C) Pairwise potential error incremental error MAE�ep on
generalization dataset.

Appendix D; Fig. S1). The reason is that the model is trained on the
acceleration, which is computed from the derivative of the poten-
tial energy (i.e., the force). Hence, the model only constrains the
derivative, and the constant of integration remains unknown. This
limitation can be overcome by one of the two following options:
either the potential energy is constrained by a spatial boundary
condition or by an initial condition. In the former, we can impose
a known value for a given value of rij, e.g., we could use the as-
sumption that the potential energy for a charge interaction ap-
proaches zero with increasing particle distance. The alternative
(but less likely) approach consists in knowing the potential energy
at a given time, e.g., at the beginning of the observation and add
the inferred increment to the known initial value. Nevertheless,
knowing the absolute value of the potential energy is, in fact, not
crucial as only its derivative determines the dynamics of a particle
system. This is also confirmed in our experiments by the accurate
prediction of the acceleration (see MAEacc).

Secondly, similar to the pairwise force prediction, PIG’N’PI also
provides a superior performance on satisfying Newton’s action–
reaction property, while again, the baseline model fails to satisfy
the underlying Newton’s law. The performance is quantified by
the symmetry of the inter-particle potential energies (MAEP

symm).
(Figs. 5B and 6, and Table S3).

Finally, we test the generalization ability of the learning algo-
rithms in a similar way as in the pairwise force case study. We ap-
ply the models trained on an 8-particles system to a new particle
system comprising 12 particles. The results (see SI Appendix C; Ta-
ble S5) show that PIG’N’PI predicts well the pairwise force and po-
tential energy, and outperforms considerably the baseline model
(see Figs. 5B and 6). This demonstrates that the PIG’N’PI model
provides a general model for learning particle interactions.

Case study under more realistic conditions:
learning pairwise interactions for an
Lennard-Jones (LJ)-argon system
To evaluate the performance of the proposed framework on a
more realistic system with a larger particle interaction system (to
evaluate the scalability), we apply PIG’N’PI on a large LJ system.

We adopt the dataset introduced in ref. (35). This dataset sim-
ulates the movements of liguid argon atoms governed by the LJ
potential. The LJ potential, which is given by V(r) = 4ε{(σ /r)12 −
(σ /r)6}, is an extensively used governing law for two nonbonding
atoms (36). The simulation contains 258 particles in a cubic box
whose length is 27.27 Å. The simulation is run at 100 K with peri-
odic boundary conditions. The potential well depth ε is set to 0.238
kilocalorie/mole, the van der Waals radius σ is set to 3.4 Å, and the
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Figure 7 Pipeline of PIG’N’PI to learn pairwise force or potential for the
LJ-argon particle data. Solid-line arrows indicate the data processing
path from input to the output. The dash-line arrow depicts the
intermediate output of every edge corresponding to the inferred
pairwise force or potential energy. (A) Positions of 258 particles at a
random time step. (B) Representation of the constructed graph. Node
features comprise position, velocity, and mass. Edge features comprise
the relative position difference under periodic boundary conditions. (C)
PIG’N’PI. Edge part takes the concatenation of two nodes’ features and
the edge feature as input and infers the pairwise force or potential.
Node part aggregates the output on every edge and predicts the
acceleration. (D) The inferred pairwise force or potential by edge part
and the acceleration by node part.

interaction cutoff radius for the argon atoms is set to 3σ . The mass
of argon atom is 39.9 dalton. The dataset is run for 10 independent
simulations. Each simulation contains 1000 time steps with ran-
domly initialized positions and velocities. The position, velocity,
and acceleration of all particles are recorded at each time step.

Figure 7 summarizes the learning pipeline. Contrary to the pre-
vious case study where for a small number of particles, a fully
connected graph is considered, in this case study, we construct
the graph of neighboring particles at every time step (Fig. 7). We
connect the particles within the defined interaction cutoff radius
while taking the periodic boundary conditions into consideration.
Particles in the LJ-argon system are characterized by their posi-
tion, velocity, and mass. The charge is not part of the particle
properties, which is different from the particle systems consid-
ered in the previous case study (section “Performance evaluation
between PIG’N’PI, GN+, and base-line for pairwise force” and sec-
tion “Performance evaluation between PIG’N’PI and baseline for
pairise potential energy”). Moreover, we compute the position dif-
ference under the periodic boundary condition and use it as an
edge feature. This edge feature is required because the distance
between two particles in this simulation does not correspond to
the Euclidean distance in the real world due to the periodic bound-
ary conditions. The node features and the edge features are then
concatenated and are used as the input to the edge part of PIG’N’PI
(Fig. 7C) or the baseline model. Similarly to the previous case
study, the learning target is the accelerations of the particles. The
pairwise force and pairwise potential energy are then inferred
from the intermediate output of edge part.

We evaluate the performance of PIG’N’PI on inferring pair-
wise interactions of the LJ-argon particle system with the same
performance metrics as in the previous case study. The results
are reported in Fig. 8 and Table S6. Because the particles in this
dataset have the same mass, we also test a variant of GN+ such
that we assign all nodes with a unique learnable scalar. We de-
note this variant as GN+uni. The results confirm the very good
performance of PIG’N’PI as observed in the previous case study.
Generally, GN+uni outperforms the GN+, but PIG’N’PI still sur-
passes GN+uni and the baseline. On the one hand, PIG’N’PI per-
forms better than the baseline, GN+, and GN+uni on the super-
vised prediction task of predicting the acceleration [achieving less
than half of the MAEacc compared to the baseline and the GN+uni

(Fig. 8A)]. On the other hand, PIG’N’PI is also able to infer the learn
pairwise force correctly. Again, the baseline model is not able to

Figure 8 Performance of the algorithms on pairwise force predictions on
the LJ-argon system. We report the MAE on the acceleration prediction,
which is the target for the learning task (A), the MAE on the pairwise
force inference (indirect inference task) MAEef (B), and the consistency
with Newton’s action–reaction property: the MAE on pairwise force
symmetry MAEF

symm (C). The average (plots at the bottom) on
logarithmic scale and standard deviation (plots in the top row) are
computed from five experiments.

Figure 9 Quality of pairwise potential prediction on the LJ-argon data.
We report different errors in logarithmic scale. The average and
standard deviation are computed from five experiments. (A)
Acceleration prediction error MAEacc. (B) Pairwise potential incremental
error MAE�ep. (C) Pairwise potential symmetry error MAEP

symm.

infer the pairwise force (PIG’N’PI outperforms the baseline by
more than two orders of the magnitude on the MAEef). Moreover,
particle interactions inferred by PIG’N’PI are consistent with New-
ton’s action–reaction law (MAEF

symm). The bad performance of the
baseline model indicates that the learnt interactions do not sat-
isfy Newton’s law.

To summarize, similar to the cases discussed in the “Perfor-
mance evaluation between PIG’N’PI, GN+, and base-line for pair-
wise force” section, PIG’N’PI learns the pairwise force well without
any direct supervision for this complex and large system.

Besides, we test PIG’N’PI to learn the pairwise potential en-
ergy for this LJ system. Results are reported in Fig. 9 and Ta-
ble S7. We first examine the MAEacc that is the learning target.
The MAEacc of PIG’N’PI is similar to that in the force-based ver-
sion of the algorithm. PIG’N’PI performs significantly better than
the baseline model with more than two orders of magnitude
(Fig. 9A). And, similar to the cases in the “Performance evalua-
tion between PIG’N’PI and baseline for pairwise potential energy”
section, we again observe the performance drop of the baseline
model in this potential-based version with the force-based ver-
sion. Then, we evaluate the MAE�ep and MAEef that are the two
metrics for measuring the quality of the learnt pairwise potential
energy. Results show that PIG’N’PI provides again superior perfor-
mance on inferring the increment of the potential energy MAE�ep

(Fig. 9B). The bad performance of the baseline model clearly shows
that it is not able to infer the potential energy correctly. Finally,
we check Newton’s action–reaction property in the potential en-
ergy by MAEP

symm. Here again, the potential energy inferred by
PIG’N’PI follows Newton’s laws while the baseline model fails to
infer the underlying interaction laws correctly (Fig. 9D). All eval-
uations demonstrate that the predicted pairwise potential energy
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by PIG’N’PI is consistent with the LJ potential used in the sim-
ulation, even though PIG’N’PI does not access the ground truth
information.

The results on this case study demonstrate the scalability of
PIG’N’PI to larger systems and the applicability to more realistic
case studies. Moreover, the results confirm the results obtained in
the previous case study that PIG’N’PI is able to infer the underlying
interaction laws correctly. While the other baseline methods are
able to precisely predict the particle dynamics, they fail to infer
the underlying pairwise interaction laws correctly.

Comparison of PIG’N’PI to alternative
hyperparameter choices and an alternative
regularized architecture
We compare the performance of the proposed approach first to
alternative hyperparameter choices, in particular to different ac-
tivation functions, and second, to an alternative way of imposing
physical consistency in the network architecture.

First, we evaluate different choices of activation functions fol-
lowing the observations made in previous studies (18, 21, 37)
that confirmed their significant influence on the performance
of MLPs in approximating physical quantities. The performance
of PIG’N’PI with different activation functions is reported in Ta-
ble S8 in SI Appendix F and Table S9 in SI Appendix G. The results
demonstrate that PIG’N’PI with SiLU activation function (which
was in fact used in all case studies) performs consistently best
on most test datasets compared to PIG’N’PI with other commonly
used activation functions, such as ReLU or LeakyReLU. Based
on this observation, the performance of the baseline with the
SiLU activation function was evaluated (SI Appendix B). The re-
sults show that the SiLU activation improves the learning perfor-
mance of the baseline model to some degree (when only eval-
uating the prediction performance MAEacc). However, it still per-
forms consistently worse than PIG’N’PI and, more importantly,
the consistency with underlying physics in terms of the inferred
force (or potential) and interaction symmetry worsens even con-
siderably.

Second, we compare the performance of PIG’N’PI to an alterna-
tive way of imposing physical consistency: we add a regularization
into the baseline model to enforce the symmetry property onto
the output messages of the edge function. The goal of imposing
the symmetry regularization term is to ensure that the model sat-
isfies the action–reaction physical consistency requirement. It is
expected that by satisfying this symmetry constraint, the model
performance on learning physics-consistent pairwise forces and
potential energy can be improved. We add a symmetry regular-
ization term on the learnt pairwise corresponding messages to
enforce the action–reaction property. The details on this regular-
ization term can be found in the “Details on imposing a symmetry
regularization on the base-line model” section.

While the performance is improved compared to the baseline
model without any regularization, the results demonstrate that
PIG’N’PI still performs considerably better on inferring physical
meaningful quantities for the pairwise force and potential en-
ergy than the symmetry-regularized baseline model (see SI Ap-
pendix H; Table S10 for detailed results and SI Appendix E for the
evaluation on the LJ-argon system).

Conclusions
In this paper, we propose the PIG’N’PI algorithm to learn particle
interactions that are consistent with the underlying physical laws.

The main novelty of the proposed algorithm is in the design of the
physics operator in the node part. The designed physics operator
on nodes guides the edge neural network to learn the pairwise
force or pairwise potential energy exactly. This design also reduces
the model complexity for this machine learning algorithm by re-
ducing the number of tunable parameters.

While our method shows a similar performance on the super-
vised learning task of predicting accelerations compared to the
other baseline models (purely data-driven GNs), it is also able to
infer the particle interactions correctly that follow the underly-
ing physical laws. However, while the baseline models are able
to be applied as simulators, they fail to infer physically consis-
tent particle interactions that satisfy Newton’s laws. Moreover, the
proposed PIG’N’PI also outperforms the other baseline models in
terms of generalization ability to larger systems and robustness
to significant levels of noise.

The proposed methodology can generalize well to larger par-
ticle systems. However, we have to point out that the trained
model cannot extrapolate the data arbitrarily far from the training
distribution. In our experiments, we found that the edge neural
network converges to linear functions outside the training input
space. This observation matches the discussion in ref. (38), which
is an inherent limitation of MLPs.

The developed methodology will help to make a step forward in
developing a flexible and robust tool for the discovery of physical
laws in material mechanics. Such tools will be able to support, for
example, additive manufacturing with heterogeneous materials
that are particularly subject to highly varying material properties,
e.g., sustainable or recycled materials (39).

Methods
Notations and formal task description
We use a fully connected directed graph G = (V, E) to represent the
interacting particle system, where nodes V = {v1, v2, …, v|V|} corre-
spond to the particles and the directed edges E = {eij: vi, vj ∈ V, i �= j}
correspond to particle interactions. Under this notation, vi refers
to the i-th particle, and eij is the directed edge from vj to vi. We
use {ηt

i }i,t to denote the observation of particle states at different
time steps, where ηt

i is a vector describing the state of particle vi at
time t. We note that ηt

i ∈ R
2d+2 (d is the space dimension) includes

position rt
i ∈ R

d, velocity ṙt
i ∈ R

d, electric charge qi ∈ R, and mass
mi ∈ R. The velocity ṙt

i and acceleration r̈t
i at time t are computed

from the position series of particle vi. We use Mi j to denote the
message from vj to vi learnt by the neural network ĜE (·; θE ) with
parameters θE. Our goal is to infer the pairwise force Ft

i j and the
potential energy Pt

i j on every edge eij at each time t given the ob-
servation of particle trajectories. All notations are summarized in
Table S1.

PIG’N’PI details
PIG’N’PI contains an edge part to learn the pairwise interaction
and a node part to aggregate the interactions to derive node ac-
celerations (see Fig. 1). In the edge part, we use MLPs as univer-
sal approximators (40, 41) to learn the pairwise force or pairwise
potential energy. We denote this edge neural network as ĜE (·; θE ).
ĜE (·; θE ) takes the vectors ηi and η j of two nodes as input. The out-
put Mi j of ĜE (·; θE ) is the inferred pairwise force F̂i j or potential
energy P̂i j on edge eij, depending on the operator in the node part.
We design the physics operator GN( · ) to aggregate the edge mes-
sages in the node part and derive the acceleration ˆ̈rt

i for every par-
ticle vi at time t. We optimize parameters θE by minimizing the
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mean absolute error between the predicted acceleration and the
true acceleration. The objective function is given by

arg min
θE

L = 1
|Ttrain|

1
|V|

∑

t∈Ttrain

|V|∑

i=1

l1( ˆ̈rt
i , r̈t

i ). (3)

In the following, we explain the design of the edge neural net-
work ĜE (·; θE ) and the node part operator GN( · ) in two cases: infer-
ring the pairwise force and inferring the pairwise potential energy.

Learning pairwise force
We use an MLP as the edge neural network ĜE (·; θE ) to learn the
pairwise force from vj to vi on each edge eij. The output dimension
of ĜE (·; θE ) is the same as the spatial dimension d. We first con-
catenate ηt

i and ηt
j which is the input of ĜE (·; θE ). We denote the

corresponding output as Mt
i j ∈ R

d, e.g.,

Mt
i j � ĜE (concat(ηt

i , η
t
j ); θE ). (4)

According to Newton’s Second law, the net acceleration of every
particle is equal to the net force divided by its mass. Hence, in
the node part of PIG’N’PI, we first sum up all incoming messages
Mi = ∑ j �=i

j Mi j of every particle vi, and then divide it by the mass
of the particle mi. The output of GN( · ) is the predicted acceleration
ˆ̈ri on particle vi:

ˆ̈rt
i = GN(ηt

i ,Mt
i )

= GN(ηt
i ,

∑ j �=i
j Mt

i j )

=
∑ j �=i

j Mt
i j

mi
. (5)

We optimize the parameters θE in ĜE (·; θE ) by minimizing the
objective function Eq. (3). Through this process, the node part op-
erator GN( · ) guides the edge neural network ĜE (·; θE ) to predict
the pairwise force exactly, e.g.,

F̂t
i j = Mt

i j. (6)

This is illustrated in Block (B) of Fig. 2.

Learning pairwise potential energy
For the pairwise potential energy case, the edge neural network
ĜE (·; θE ) is designed to output the pairwise potential energy. Here,
the output dimension of ĜE (·; θE ) is one because the potential en-
ergy is a scalar. We still first concatenate ηt

i and ηt
j as the input

of ĜE (·; θE ) and use MLPs as ĜE (·; θE ). The corresponding output
Mt

i j ∈ R is denoted as

Mt
i j � ĜE (concat(ηt

i , η
t
j ); θE ). (7)

We know that the net force of every particle equals to the neg-
ative partial derivative of the potential energy with respect to its
position. Hence, in the node part, we first sum up all incoming
messages Mi = ∑ j �=i

j Mi j for every particle i, then compute the
negative derivative with respect to the input position and finally
divide it by the mass. The final output corresponds then to the
predicted acceleration. The node part operator GN( · ) for the po-
tential energy case is given by

ˆ̈rt
i = GN(ηt

i ,Mt
i )

= GN(ηt
i ,

∑ j �=i
j Mt

i j )

= −
∂ (

∑ j �=i
j Mt

i j )/∂rt
i

mi
. (8)

Analogously to the force-based case, we optimize for the pa-
rameters θE in ĜE (·; θE ) by minimizing the acceleration loss (Eq. 3).
The node part operator GN( · ) here guides the edge neural network
ĜE (·; θE ) to learn the pairwise potential energy exactly. The learnt
message on each edge corresponds to the predicted pairwise po-
tential energy, and the negative partial derivative is the predicted
pairwise force, e.g.,

P̂i j = Mi j

F̂i j = −∂P̂i j/∂ri

= −∂Mi j/∂ri. (9)

This is illustrated in Block (C) of Fig. 2.
We note that the commonly used ReLU activation function is

not suitable as activation function in ĜE (·; θE ) for learning the po-
tential energy. The reason is that we compute the partial deriva-
tive of Mi j = ĜE (concat(ηi, η j ); θE ) to derive the predicted acceler-
ations for every particle. The derivative should be continuous and
even smooth considering physical forces. However, ReLU approx-
imates the underlying function by piece-wise linear hyper-planes
with sharp boundaries. The first-order derivative is, thus, piece-
wise constant that does not change with input (21). Details on
selecting the activation function in ĜE (·; θE ) are explained in the
“Details about simulation and experiments” section.

Details on imposing a symmetry regularization
on the baseline model
As mentioned in the “Comparison of PIG’N’PI to alternative hyper-
parameter choices and an alternative regularized architecture”
section, to ensure that the model satisfies the action–reaction
physical consistency requirement, we also test an extension of
the baseline model by imposing a symmetry regularization on the
corresponding pairwise messages in the baseline model. This can
be considered as an alternative way of imposing physical consis-
tency. In details, let Mi j be the message from vj to vi which is
the output of the edge neural network of the baseline model. In
our experimental setup, the message Mi j corresponds to the force
from vj to vi. We impose the symmetry regularization by adding a
regularization term on the learnt messages in the objective func-
tion [Eq. (3)]. This results in the following objective function:

arg min
θE

L = 1
|Ttrain|

∑

t∈Ttrain

(
1

|V|
|V|∑

i=1

| ˆ̈rt
i − r̈t

i |
︸ ︷︷ ︸

Acceleration loss on nodes

+ α
1
|E|

i �= j∑

i, j

|Mt
i j + Mt

ji|
︸ ︷︷ ︸

Symmetry regularization loss on edges

), (10)

where α is a weight parameter. The original baseline model can
be considered as the special case with α = 0 in Eq. (10). In our ex-
periments, we evaluate the impact of the regularization term with
different weights (α = 0.1, 1.0, 10, 100). The results are reported in
Table S10.

Details of the method to learn pairwise force
introduced by ref. (34)
Reference (34) proposed a method that has a similar goal to the
proposed PIG’N’PI applied to pairwise force prediction. The au-
thors also impose Newton’s second law in the standard GN block
by dividing the aggregated messages by the node property. We
denote this method as GN+. The main difference between GN+
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and PIG’N’PI is that GN+ treats the node property as a learnable
parameter. It assigns an individual learnable scalar wi for each
particle vi and predicts the acceleration of vi by dividing the ag-
gregated incoming messages by 10wi . The learnable scalars on all
nodes representing the pairwise force are learnt together with all
other parameters. It is important to point out that GN+ was de-
signed solely for learning the pairwise force while PIG’N’PI can be
applied both: to infer the pairwise forces and also the pairwise
potential energy. The detailed results of GN+ are reported in Ta-
bles S2, S4, and S6, and Figs. 3D, 4, and 8.

Details about simulation and experiments
Here, we summarize the different force functions used in our sim-
ulation. Please note that in this work, we used the same case stud-
ies as in previous work (22). However, we adapted the parameters
of the particle systems slightly to make the learning more chal-
lenging.

� Spring force: We denote the spring constant as k and balance
length as L. The pairwise force from vi to vj is k(ri j − L)ni j and
its potential energy is 0.5k(rij − L)2, where ri j = ∥∥r j − ri

∥∥ is the
Euclidean distance and ni j = r j−ri

‖r j−ri‖ is the unit vector pointing

from vi to vj. We set k = 2.0 and L = 1.0 in our simulations.
� Charge force: The electric charge force from vi to vj is

−cqiq jni j/r2
i j and the potential energy is cqiqj/rij, where c is the

charge constant, and qi, qj are the electric charges. We set c
= 1.0 in the simulation. Furthermore, to prevent any zeros in
the denominator, we add a small number δ (δ = 0.01) when
computing distances.

� Orbital force: The orbital force from vi to vj equals to
mimjni j/ri j and the potential energy is mimjln(rij), where mi,
mj are the masses of vi and vj. We again add a small number
δ (δ = 0.01) when computing distances to prevent zeros in the
denominator and logarithm.

� Discontinuous force: We set threshold constant � = 2.0 such
that the pairwise force is 0 if the Euclidean distance rij is
strictly smaller than this threshold and (ri j − 1)ni j otherwise.
The corresponding potential is 0 if rij is strictly smaller than
this threshold and 0.5(rij − 1)2 otherwise.

We intentionally omit units for variables because the simula-
tion data can be at arbitrary scale. Moreover, the presented cases
serve as proof of concept to learn the input–output relation. Fur-
ther, we note that mi is sampled from the log-uniform distribution
within the range [−1] (ln(mi ) ∼ U (−1, 1)). qi is uniformly sampled
from the range [−1, 1]. Initial location and velocity of particles
are both sampled from the normal Gaussian distribution N (0, 1).
Each simulation contains eight particles. Each particle is associ-
ated with the corresponding features including position, velocity,
mass, and charge. The target for prediction is node accelerations.
Every simulation contains 10,000 time steps with step size 0.01.
We randomly split the simulation steps into training dataset, val-
idation dataset, and testing dataset with the ratio 7:1.5:1.5. We use
Ttrain, Tvalid, and Ttest to indicate the simulation time steps corre-
sponding to training split, validation split, and testing split. We
train the model on the training dataset [optimizing the parame-
ters θE in ĜE (·; θE )] by optimizing Eq. (3), fine-tune hyperparame-
ters, and select the best trained model on the validation dataset
and report the performance of the selected trained model on the
testing dataset. For generalization tests, we re-run each simula-
tion on 12 particles with 1500 time steps (same size as original
testing dataset). The previously selected trained model with eight
particles is tested on the new testing dataset.

We only fine-tune hyperparameters on the spring validation
dataset and use the same hyperparameters in all experiments. We
set the learning rate to 0.001, the number of hidden layers in the
edge neural network to 4, the units of hidden layers to 300, max
training epochs to 200. The dimension of the output layer in the
edge neural network is d to learn the force or one to learn the po-
tential energy. We use the Adam optimizer with the mini-batch
size of 32 for the force case study and eight for the potential case
study to train the model. The SiLU activation function is used in
all PIG’N’PI evaluations.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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