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A B S T R A C T

New operating conditions can result in a significant performance drop of fault diagnostics models due to
the domain shift between the training and the testing data distributions. While several domain adaptation
approaches have been proposed to overcome such domain shifts, their application is limited if the fault classes
represented in the two domains are not the same. To enable a better transferability between two different
domains, particularly in setups where only the healthy data class is shared between the two domains, we
propose a new framework for Partial and Open-Partial domain adaptation based on generating distinct fault
signatures with a Wasserstein GAN. The main contribution of the proposed framework is the controlled data
generation with two characteristics. Firstly, previously unobserved target faults can be generated by having
only access to healthy target and faulty source samples. Secondly, distinct fault types and severity levels can
be generated precisely. The proposed method is especially suited for extreme domain adaption settings that
are particularly relevant in the context of complex and safety-critical systems, where only one class is shared
between the two domains. We evaluate the proposed framework on Partial as well as Open-Partial domain
adaptation tasks on two bearing fault diagnostics case studies. In the evaluated case studies the proposed
methodology demonstrated superior results compared to other methods, particularly in the presence of large
domain gaps. The experiments conducted in different label space settings (Partial and Open-Partial) showcase
the versatility of the proposed framework.
1. Introduction

A reliable operation of complex (safety-critical) assets can be
achieved by monitoring the condition of the assets in real time, detect-
ing the faults in an early stage and distinguishing between the different
fault types and fault severity levels to enable an informed schedule
of the recovery maintenance or fault mitigation actions. Data-driven
models based on real-time condition monitoring (CM) data have shown
a great potential for fault detection and diagnostics [1]. However, CM
data is often affected by distributional shifts (referred to as domain
shifts), that can significantly decrease the performance of data-driven
models. For example, changing operating conditions (OCs) can cause
such a distributional shift [2] or CM data of two units of a fleet
can differ significantly due to differences in their configurations and
operating regimes [3]. To enable the transfer of data-driven models
under domain shifts, domain adaptation (DA) methods have been
successfully applied in fault diagnostics [4,5]. Most of the proposed
approaches, however, require a ClosedSet DA setting, where the same
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fault classes are represented in both domains (see Fig. 1). However,
in real-world datasets, the classes represented in the two domains are
often not congruent. Due to the rareness of faults in safety-critical
industrial assets, observing each possible fault in all assets of a fleet
and/or under all possible OCs is often infeasible. This results in label
space discrepancies in CM datasets of different domains.

In the literature, different DA settings have been distinguished by
their type of discrepancy in the label space [6–8]. This is illustrated in
Fig. 1. In the Partial DA setting, the target domain covers only a subset
of the source classes (source domain has private classes), whereas in
the OpenSet DA setting, the source domain covers only a subset of the
target domain classes (target domain has private classes). The Open-
Partial DA setup is a combination of both previous settings where both
domains have private classes that are not represented in the other
domain. Most existing DA methods are designed for only one of the
above mentioned DA settings (mainly ClosedSet DA) and are often not
transferable to other DA scenarios. This poses a challenge for successful
vailable online 10 October 2022
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Fig. 1. Four DA configurations according to label space discrepancies: (a) ClosedSet ; (b) Partial, (c) OpenSet,(d) both Open-Partial.
Fig. 2. Illustration of the source and target alignment challenge when only one class is shared between the domains on the example of the Partial DA setting: The source and the
target datasets are shown in Fig. 2(a) whereby only one class (green class) is represented in the target domain. The alignment step based on one class only is shown in Fig. 2(b),
whereby the challenge of finding the optimal alignment is indicated. The quality of chosen alignment method can only be tested during the a-posteriori evaluation, when the
target classes have been observed (see Fig. 2(c)).
DA in real applications, where different types of discrepancies in the
label space are common. Moreover, since faults occur rarely in either
of the domains [9], data from specific faults types are typically only
represented in one of the domains.This presents a DA task with an
extreme case of label space discrepancy, where only one class, the
healthy one, is shared between the two domains [10]. For example,
if a system starts operating under a new OC, only data of the assets’
current condition will be available. For safety-critical systems, this is
usually the healthy condition, meaning that only the healthy class is
shared between datasets from various OCs (an extreme case of Partial
DA). As illustrated in Fig. 2, such an extreme case of label space
discrepancy between two domains can pose a significant challenge for
Partial DA methods based on feature alignment. With only one class
shared between the two domains, there exist many possible alignment
solutions (see Fig. 2(b)) and their performance can only be evaluated af-
ter the model is employed and the real target faults have been observed
(see Fig. 2(c)). Extreme discrepancies in the label space of training
datasets can also arise if two units of a fleet are experiencing different
fault types during the data collection (and model development) period.
Then, in the available training dataset, the only common health class
experienced so far by both units may be the healthy class (an extreme
case of Open-Partial DA). Previous studies have shown that, generally,
the less classes are shared between the domains, the harder the DA
task becomes [10,11]. Despite the relevance to PHM applications, there
is hardly any work tackling the extreme cases of discrepancies in the
label spaces (with only one shared class between two domains) for fault
diagnostics in different DA settings. These extreme scenarios are in the
focus of the research in this paper.

We propose to address the challenge raised by label space discrep-
ancies for DA by enabling the generation of domain- and class-specific
data from fault conditions that have not been observed before in the
target domain. The generated fault data can compensate for unseen
2

domain-specific fault classes and, thereby, transform the given Partial
or Open-Partial DA setting into a ClosedSet DA setting if it fulfills two
requirements. Firstly, the generated data should be adapted to the
specificities of the desired domain and secondly, the faults should be
specific to a desired class in the label space. This is, on the one hand, a
particularly challenging task since no fault data in the target domain is
available i.e. the data generation is unsupervised. On the other hand,
it is a particularly relevant case for real safety-critical applications
where a representative dataset of fault data is typically not available.
To enable unsupervised data generation, the proposed work is based
on the hypothesis that the Fourier spectrum from faulty data can be
disentangled in data signatures that represent (1) solely fault class
characteristics and (2) domain-specific characteristics within the data.
Building on this hypothesis, the main contribution of this research is a
novel framework FaultSignatureGAN based on a Wasserstein GAN [12]
that enables to generate domain-independent fault class signatures
that are transferable to any new domain, given only healthy data of
that domain. FaultSignatureGAN enables a controlled way to generate
physically plausible faults of previously unobserved distinct classes in
the target domain and thereby, enables to complement label spaces
with different types of class discrepancies for DA tasks. Since the
proposed framework relies solely on the availability of source faults
and healthy target data, its benefits are particularly pronounced for
targeting the extreme case of DA that is particularly relevant in the
context of safety-critical systems, where only one class (the healthy
class) is shared between the two domains. However, it is applicable
to any number of shared and missing fault classes in the two domains.
The proposed framework FaultSignatureGAN is not limited to only one
type of label space discrepancy since it is applicable in Partial as well
as Open-Partial setups.

The remainder of the paper is organized as follows. First, relevant
related work is summarized in Section 2. The proposed framework is



Reliability Engineering and System Safety 230 (2023) 108857K. Rombach et al.

t
m
d

m
g
e
i

c
H
o
t
d
g
[
t
a
c
W
t
s
a
h
O
l
l
t
D
f
s
s
i
e
t
h
w

t
w
t
d
o
l

u
t
o
a
.
m
a

i
f
d
t
a
t
o
b
u
c
d
p

explained in Section 3. The case studies are introduced in Section 4
and the exact setup of the conducted experiments is stated in Section 5.
The results of the conducted experiments for Partial DA are shown in
Section 6.1 and for Open-Partial settings in Section 6.2. The findings are
discussed in Section 7 and conclusions are drawn in Section 8.

2. Related work

Domain Adaptation has been intensively studied in recent years in
the context of PHM applications [13]. Most of the proposed approaches,
however, have been exclusively developed for the ClosedSet DA setting
where the source and target domain cover the same classes — see
left column in Fig. 1. As exemplified in Section 1, the assumption
of a ClosedSet setting is not realistic in many practical applications.
Hence, ClosedSet DA methods do not meet the requirements of indus-
rial applications. There has been an increasing interest to develop
ethods that address more realistic DA scenarios with label space
iscrepancies. Approaches for Partial [6], OpenSet [7] as well as Open-
Partial [8] DA have been mainly developed in the field of computer
vision. Recently, several research studies have developed the ideas
further to adapt them to the challenges of real CM data. In the context
of fault diagnostics, adversarial approaches have been proposed for
OpenSet DA with different degrees of label space discrepancies i.e. with
a different number of shared classes between the two domains. For
example, in [14], an auxiliary domain discriminator was introduced
to attribute less weight to private target samples and fault diagnostics
experiments were conducted on three bearing datasets with two shared
classes between the two domains. In another study on OpenSet DA for
fault diagnostics, Zhang et al. [11] used an instance-level weighted
mechanism to identify private target classes and tested the proposed
method i.a. with three (out of ten) shared classes between the domains
on two rotating machinery datasets. The results demonstrated that,
generally, the less classes are shared between the domains, the harder
the DA task becomes. Another method proposed a source class-wise
and target instance-wise weighting mechanism combined with an ad-
ditional outlier identifier for OpenSet fault diagnostics on two rotating
machine datasets. The proposed method has even been applied on
multiple label space discrepancy settings [15]. Despite its relevance to
fault diagnostics in safety-critical complex technological system, none
of the above mentioned studies has tackled the extreme case of the
OpenSet or Open-Partial DA setting, where only one class (the healthy
class) is shared between the domains. Another major limitations of
the previously proposed approaches on OpenSet DA is that they only
aim to classify known classes (i.e. source classes) and do not enable
to distinguish private target samples into different classes. In safety-
critical applications, however, it is important to distinguish between
different health conditions within the private target samples to plan
appropriate maintenance actions.

Methods targeting the Partial DA setting have also been developed
for PHM applications. For example, a class-weighted adversarial DA
method was proposed that uses the domain discriminator’s output to
detect private classes [16]. The output of two classifiers has also been
employed to estimate the target distribution and train domain-invariant
representations [17]. Also, randomly selected source data is used to
augment the target domain to align the conditional distributions com-
bined with a class-wise adaptation [18]. Some research studies have
even dealt with the extreme case of Partial DA where only the healthy
state is shared between the two domains [10,19,20]. For example, Li
and Zhang [19] proposed a conditional data alignment step (using the
maximum mean discrepancy) that is only applied to the healthy data
from the source and target domain to prevent misalignment due to
the label space discrepancy. In addition to the conditional alignment,
the authors proposed prediction consistency schemes using multiple
classifier models for fault diagnostics in Partial DA settings. Wang et al.
[10] proposed a unilateral alignment approach (Unilateral) for Partial
3

DA with extreme label space discrepancy. The proposed method made f
use of the inter-class relationships of the source domain and aligned
the target features to the pre-trained source domain features. Although
the results of previous studies using different feature source and target
alignment techniques in extreme Partial DA settings are promising, the

ethods have mainly been tested on CM datasets with small domain
aps (indicated by the high Baseline classification performance). The
mployed methods may fail under large domain shifts, where the
nter-class relationships might have changed significantly.

One fault data generation approach was investigated in the extreme
ase of Partial DA combined with an additional alignment step [20].
owever, the proposed target data generation method required extrap-
lation abilities of the generative model. Given the limited extrapola-
ion abilities of deep models, it is not to be expected that the generated
ata resembles realistic target faults — especially given large domain
aps. Instead of generating target data as performed in [20], Zhao et al.
18] adapted the idea of Liang et al. [6] and proposed to augment
he target data with source data to compensate the missing class data
nd performed adversarial feature alignment on the augmented and
lass-weighted datasets combined with a class-center-alignment loss.
hile the source data augmentation stabilized the alignment process,

he proposed method may fail in settings where the inter-class relation-
hips might have changed significantly. Further, the above mentioned
pproaches tackling different settings of label space discrepancy in DA
ave usually been developed for one specific DA setting, eitherPartial or
penSet, and are typically not applicable in other settings. Furthermore,

arge domain gaps have not been tackled so far in the extreme case of
abel space discrepancy where only the healthy class is shared between
he domains. Another limiting factor in applying the above mentioned
A methods based on feature alignment to new safety-critical assets is

inding an optimal hyperparameter setting. With only one class being
hared between the domains, there exist multiple possible alignment
olutions and their quality can only be evaluated a posteriori, pos-
ng a safety risk in industrial assets. Therefore, previous works used,
.g., data and labels from target faults for one validation domain shift
o tune the hyperparameters [10]. This solution to find the optimal
yperparameter settings is, however, not possible in real applications
here data from unobserved target faults is not available.

In this work, we aim to develop a framework that performs well in
he extreme case of DA under different label space discrepancy settings
ith a particular focus on the Partial and Open-Partial setting. We aim

o develop a framework that enables DA also in the cases where the
omain gaps are large. Further, we aim to achieve this without relying
n target validation data to tune our methodology, as this is one of the
imiting factors in existing DA methods to new safety-critical assets.
Domain generalization addresses the challenge of fault diagnostics

nder unforeseen domain shifts (contrary to one explicit shift between
wo domains). Different techniques have been proposed in the context
f fault diagnostics [21,22]. However, these methods generally require
ccess to multiple source domains, mainly with shared labeled spaces
This is often not given in industrial applications and therefore, do-
ain generalization approaches are not applicable to the challenges

ddressed in this research.
Controlled Synthetic Data Generation has raised a lot of attention

n recent years [23]. In the context of DA for computer vision tasks,
or example, conditional generative models have been employed for
omain mapping i.e. to translate a source input image to an image
hat closely resembles the target distribution [24]. However, these
pproaches require a ClosedSet DA setting since the target domain
ypically inherits the labels from the source domain. In the context
f PHM applications, generative models have mainly been applied to
alance imbalanced datasets, whereby e.g. conditional GANs have been
sed to control the generation process to generate desired distinct
lasses [25]. However, those approaches are solely suited to generate
ata from classes that have been observed before and not to generate
reviously unobserved classes in a specific domain. The latter is the

ocus of our research.
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Contrary to using generative models, Wang et al. [26] proposed
to use expert knowledge about different fault type patterns to gen-
erate synthetic fault data without access to any real fault data. This
enabled to address fault diagnostics if only little real target fault
data is available by performing DA in a subsequent step to close
the synthetic-to-real domain gap. The expert knowledge enables to
transfer different fault types to different types of bearings. However,
this approach requires a substantial domain knowledge. Furthermore,
patterns of different fault types (as in [26]) are typically easier to
distinguish compared to different severity levels of the same fault type,
as addressed in this research. To distinguish between different fault
severities as well as types, synthetic data representing also different
fault severities is required.

The concept of disentanglement, which is based on the hypothesis
that real-world data is generated by a few independent explanatory
factors of variation [27], has also been studied in the context of
controlled data generation. However, although disentangled repre-
sentations should be general and are expected to be generalizable
to new domains, recent studies found that disentanglement does not
guarantee combinatorial generalization (understand and produce novel
combinations of familiar elements) [28]. To mitigate the lack of gen-
eralizability of disentangled representations, it is possible to constrain
the disentanglement using a-priori knowledge on the data structure.
For example, Yang and Soatto [29] assumed that, in image datasets,
the domain-specific information is solely represented in the low fre-
quency range whereas the semantic information is reflected only in
the high frequency range. This assumption allowed the authors to
generate unseen target data simply by swapping the domain-specific
low-frequency block of the source and target images and perform DA
with the synthetically generated data. This block-wise distinction into
a domain-specific and a semantic-specific frequency ranges can be
considered as a disentanglement in the Fourier space. Unfortunately,
such a block-wise distinction of fixed frequency ranges representing
either solely the domain-specific or semantic-specific components is not
possible for CM data from mechanical systems with complex dynamic
behavior. Instead, we expect a fault as well as a domain shift to affect
the entire frequency spectrum. Based on the intuition that the OCs are
independent of defects, we can assume that faults create disturbances
on top of existing signals. We, therefore, assume that the Fourier
spectrum can be expressed as the sum of domain-specific components
and fault-specific components. This assumption, that both information
content (domain-specific and semantic-specific) does not only affect
constrained frequency ranges but rather impact the entire spectrum,
generalizes the work of [29] to data from other application domains,
in particular to CM data from complex industrial systems. Further,
the assumptions enables the generation of unseen data while neither
relying on combinatorial generalization of disentangled features nor
relying on extrapolation abilities of the generative model.

In this work, we aim to develop a framework that enables a
controlled generation of novel distinct fault classes in a target domain
where the fault condition has not been observed before. Thereby,
the contribution of our proposed framework is the generation of
unseen domain-specific fault data, that enables DA with extreme label
space discrepancies, also under large domain gaps. Contrary to other
generative approaches, we do not only control the class being generated
but also the specific domain of the data. Further, the data generation
is unsupervised since the respective target fault has not been observed
before in the specific target domain i.e. we enable the controlled gen-
eration of out-of-distribution data. Although the developed framework
enables the generation of previously unseen data, it does not rely on
extrapolation abilities of the generative model but instead, it relies
on a disentanglement assumption. This assumption enables to transfer
the fault information between different domains and, ultimately, to
generate physically plausible data of unseen fault types and fault sever-
ities. The proposed framework, therefore, enables to generate data that
4

can substitute for missing domain-specific class data for DA problems
with label space discrepancies. Our methodology is especially suited
for DA in the extreme case of label space discrepancy, where only
one class is shared between the domains and thereby, addresses an
important requirement of reliable fault diagnostics in complex indus-
trial (safety-critical) assets. However, it is also applicable to DA setups
with any number of missing classes. Furthermore, contrary to other DA
approaches, the proposed methodology is universally applicable to both
Partial, Open-Partial DA setups.

3. Methodology

We propose a framework, referred to as FaultSignatureGAN, that
enables to generate distinct domain-independent fault signatures based
on the hypothesis that the faulty signal can be represented as the sum
of domain-specific components and fault-specific components. These
fault signatures can be transferred to new target domains such that the
transferred data is representative of distinct fault classes in a target
domain where they have not been observed before. The generated
data is then used in a subsequent step to substitute for missing class
data in different DA settings with label space discrepancies: Partial (see
Fig. 3) and Open-Partial DA (see Fig. 4). Finally, a classification model
is trained on the augmented datasets.

3.1. Training FaultSignatureGAN

FaultSignatureGAN comprises three parts (A–C) as illustrated in
ig. 5: (A) The first part ensures that generated fault signatures are
asily transferable to a specific domain; (B) the second part ensures
hat the transformed fault signatures represent plausible domain data;
nd (C) the last part ensures that the transformed fault signatures are
epresentative of the desired fault classes. Part (A) of the framework
s tackled by a generative network that generates domain-independent
ault signatures from distinct classes in the Fourier domain. These fault
ignatures are then transferred to a specific domain by adding them to
andomly sampled data from the domain’s healthy class. The ability of
he generated data to represent true domain fault data is imposed in
art (B) by an adversarial discriminator. The semantic plausibility of
he generated data to represent a desired fault class (as sampled from
he sampling module) is tackled by a classifier in part (C). The different
arts of the framework are detailed below.
The underlying hypothesis: The proposed approach is based on

he hypothesis that the Fourier spectrum of fault data can be expressed
s the sum of (1) domain-specific components (the spectrum of a signal
rom normal operation) and (2) of fault-specific components repre-
enting the specific fault characteristics. Further, we assume that the
atter (spectrum of a signal representing the specific faulty condition)
orresponds to a general domain-independent fault signature that is
djusted to new domains simply by linear scaling. In other words,
his hypothesis allows us to express Fourier coefficients [30] of the
ault data of a certain class 𝑐 from a specific domain X (𝑥𝑐,𝐹𝐹𝑇

𝑓𝑎𝑢𝑙𝑡,X) as
a sum of (1) domain-specific characteristics that are represented by the
healthy class data of that domain 𝑥𝐹𝐹𝑇

S and (2) the fault class specific
characteristics that are domain-independent 𝑥𝑐,𝐹𝐹𝑇

𝑓𝑎𝑢𝑙𝑡 and scaled by a
factor 𝑤 — see Eq. (1).
𝑐,𝐹𝐹𝑇
𝑓𝑎𝑢𝑙𝑡,X = 𝑥𝐹𝐹𝑇

X +𝑤 ∗ 𝑥𝑐,𝐹𝐹𝑇
𝑓𝑎𝑢𝑙𝑡 (1)

The linear scaling with 𝑤 is performed to account for the fact that
the fault signature is affected by operational changes and, therefore, we
alleviate the strong assumption that the fault-specific variations of real
fault data are independent from OCs. Between a source domain S and
target domain T, the weight factor 𝑤 is defined as in Eq. (2) based on
the healthy data.

𝑤 = 𝐸(𝑥ℎ,S∕𝑥ℎ,T) (2)

(Part A) The generative model 𝐺𝜃 : The final goal is to generate

faults in a target domain that have not been observed before based
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Fig. 3. FaultSignatureGAN in the Partial DA settings: the original data setting is depicted in Fig. 3(a); the missing target classes are generated in Fig. 3(b); the target dataset is
augmented with synthetically generated data in Fig. 3(c) and a classifier is trained on the augmented dataset in Fig. 3(d).
Fig. 4. FaultSignatureGAN in the Open-Partial DA settings: the original data setting is depicted in Fig. 4(a); the missing source and target classes are generated in Fig. 4(b); the
source and target dataset is augmented with synthetically generated data in Fig. 4(c) and a classifier is trained on the augmented dataset in Fig. 4(d).
Fig. 5. FaultSignatureGAN : Training Phase: Training the (A) generative model to generate domain independent fault characteristics while imposing (B) plausibility with the
discriminator in the source domain and (C) semantic consistency with the classifier. Execution Phase: The generation of unseen target data.
on Eq. (1). From the two components in Eq. (1), we only have
access to the healthy data representing the domain-specific variations
(𝑥𝐹𝐹𝑇

T ) in the target domain T. Therefore, to generate unseen faults
in the target domain 𝑥𝑐,𝐹𝐹𝑇

𝑓𝑎𝑢𝑙𝑡,T, we need to design a framework that
enables the generation of the domain-independent characteristics of
a fault class 𝑥𝑐,𝐹𝐹𝑇

𝑓𝑎𝑢𝑙𝑡 . We train the proposed architecture on the data
from the source domain, where we do not only have access to the
healthy data 𝑥𝐹𝐹𝑇

ℎ,S but also to true fault data 𝑥𝑐,𝐹𝐹𝑇
𝑓𝑎𝑢𝑙𝑡,S. In the source

domain S, the scaling factor 𝑤 equals to 1. Due to the variability in the
healthy class, simply subtracting the individual healthy samples from
faulty ones (the reverse operation) is not sufficient to retrieve a domain
independent fault signature. Therefore, we propose a generative model.
The generative model is trained such that its output (blue signal in
Fig. 5) can be transformed in a real source fault by adding it to a
healthy source sample (according to Eq. (1)). Thus, the generated signal
can be transformed to real domain faults with any of the samples from
the healthy data distribution. This process is depicted in Fig. 5. To
ensure plausibility of the generated signals in the specific domain, the
generator is trained to fool a discriminator 𝐷𝑤 (see below). To ensure
semantic or class consistency, we condition the generative model on
the desired fault class by simply sampling the distinct desired fault class
from a categorical distribution. Each of the discrete values drawn from
the categorical distribution corresponds to a specific fault class. The
probability of each category is defined based on the class distribution
in the training dataset 𝑇 , from which the fault signatures should
5

𝑓,S
be learned. In other words, the probability of category 𝑖 is defined
by Eq. (3). The value sampled from the uniform distribution is then
passed to two vectors (𝜇 and 𝜎 in Fig. 5) that parameterize a Gaussian
distribution (mean and deviation), from which we sample using the
reparametrization trick [31]. The generative model is updated based
on the consistency of the desired class with the classifier’s prediction
(see below).

𝑝𝑖 =
|{(𝑥𝑗 , 𝑦𝑗 )|((𝑥𝑗 , 𝑦𝑗 ) ∈ 𝑇𝑓,S)&(𝑦𝑗 = 𝑖)}|

|𝑇𝑓,S|
(3)

To enable a better distinction, we will refer to the signal represent-
ing the domain independent fault characteristics (depicted in blue in
Fig. 5) as the generated fault signature, and to the signal representing
the domain-specific fault data (depicted in red or orange in Fig. 5)
as the generated data sample throughout the paper. Further, in the
following, we will consider the data always in the Fourier domain
without emphasizing it specifically.

(Part B) The discriminator 𝐷𝑤: We need to ensure that the gener-
ated data represents plausible domain data. Due to the absence of real
target faults, the discriminator is trained to discriminate between real
fault data of the source domain and the generated source data. We
implement a Wasserstein GAN that is optimized with gradient penalty
since its training has proven to be more stable compared to other GAN
implementations, mitigating mode collapse [12]. The adversarial loss
function is defined by Eq. (4).

𝐿 = E 𝑐 [𝐷 (�̃�𝑐 + 𝑥 )] − E 𝑐 [𝐷 (𝑥𝑐 )]
𝐷 �̃� ,𝑥ℎ,S 𝑤 ℎ,S 𝑥𝑓,S 𝑤 𝑓,S
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+ 𝜆𝐺𝑃E�̂�∼P�̂� [(‖∇�̂�𝐷𝑤(�̂�)‖2 − 1)2], (4)

here 𝐷𝑤 is the discriminator model, �̃� is a generated fault signature,
ℎ,S is a healthy source sample, 𝑥𝑓,S is a faulty source sample and �̂� is
rawn from P�̂�, a newly defined data distribution used to impose the
radient penalty [12].
(Part C) The classifier 𝐶𝛾 : A classifier is added to the framework

o ensure semantic consistency of the generated data to a desired class.
he classifier is optimized with the semi-hard triplet loss [32] on real
ource data. In Eq. (5), the corresponding loss function is shown, where
𝛾 is the classifier network, 𝛼 is a fixed margin, 𝑥𝑎 is the anchor sample,
𝑝 the positive sample and 𝑥𝑛 the negative one.

𝐶 = 𝑚𝑎𝑥(‖𝐶𝛾 (𝑥𝑎) − 𝐶𝛾 (𝑥𝑝)‖2 − ‖𝐶𝛾 (𝑥𝑎) − 𝐶𝛾 (𝑥𝑛)‖2 + 𝛼, 0) (5)

For updating the generative model 𝐺𝜃 , the semi-hard triplet loss is
calculated using only synthetic data (�̃� + 𝑥ℎ) as anchors and real fault
data 𝑥𝑓,S as positive resp. negative samples. The pseudo algorithm of
the Training Phase is shown in Algorithm 1.

3.2. The generation of unseen data in the execution phase

After training the generative model 𝐺𝜃 in the Training Phase, the
generation of target faults in the Execution Phase is straight forward:
First, we sample the input of the generative model from a categorical
distribution, which determines the desired fault classes to generate. The
number of generated samples per class can be chosen freely. This input
is then passed to the generative model to generate the respective fault
class signatures. The fault signature is then transferred into the target
domain (instead of the source domain) by (1) linearly scaling the fault
signature (with 𝑤) and (2) adding it to the healthy data of the target
domain (yellow data in Execution Phase of Fig. 5). The scaling of
the fault signature is defined as the ratio between the mean signal of
the healthy source data and the mean of the healthy target data per
frequency component (as defined in Eq. (2)). Hence, the unseen target
data is generated as defined in Eq. (6).

𝑥𝑐,𝐹𝐹𝑇
𝑓𝑎𝑢𝑙𝑡,T = 𝑥𝐹𝐹𝑇

T +𝑤 ∗ 𝑥𝑐,𝐹𝐹𝑇
𝑓𝑎𝑢𝑙𝑡 (6)

Algorithm 1 Training Phase of FaultSignatureGAN
Require: 𝑇S (Source Dataset); 𝜆𝐺𝑃 , 𝜆𝐷 , 𝜆𝐸 , 𝛼 (Loss Function Parameter); 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 , 𝑒𝑠 (Early

Stopping Criteria), 𝑚 (Batch Size)
Ensure: 𝐺𝜃
⊳ Prepare Dataset
𝑇ℎ,S = {(𝑥, 𝑦) ∈ 𝑇S | y is healthy }; 𝑇𝑓,S = {(𝑥, 𝑦) ∈ 𝑇S | y is a fault class }
𝐶𝑎𝑡(𝑇𝑓,S) Categorical Distribution of the classes in 𝑇𝑓,S
while 𝑒𝑠 == False do

for t = 1,..,𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do
⊳ Sample data batches

{𝑧(𝑖)}𝑚𝑖=0 ∼ 𝐶𝑎𝑡(𝑇𝑓,S)
{(𝑥𝑓,S , 𝑦𝑓,S)}𝑚𝑖=0 ∼ T𝑓,S; {𝑥ℎ,S}𝑚𝑖=0 ∼ Tℎ,S, {(𝑥S , 𝑦S)}𝑚𝑖=0 ∼ TS
𝜖 ∼ 𝑈 [0, 1]

⊳ Generate data
�̃� ← 𝐺𝜃 (𝑧)
�̃�𝑓 ← �̃� + 𝑥ℎ,S
�̂� ← 𝜖𝑥𝑓,S + (1 − 𝜖)�̃�𝑓

⊳ Update discriminator D
𝐿𝑖
𝐷 ← 𝐷𝑤(𝑥𝑓 ) −𝐷𝑤(𝑥𝑓,S) + 𝜆𝐺𝑃 ((||∇�̂�𝐷𝑤(�̂�)||2 − 1)2)

𝑤 ← 𝐴𝑑𝑎𝑚(∇𝑤1∕𝑚
∑𝑚

𝑖=1 𝐿
𝑖
𝐷 , 𝑤)

end for
⊳ Update classifier C

From {𝑥ℎ,S}𝑚𝑖=0 form triplets [32] according to label 𝑥S,𝑎, 𝑥S,𝑝 and 𝑥S,𝑛
𝐿𝑖
𝐶 ← 𝑚𝑎𝑥(||𝐶𝛾 (𝑥S,𝑎) − 𝐶𝛾 (𝑥S,𝑝)||2 − ||𝐶𝛾 (𝑥S,𝑎) − 𝐶𝛾 (𝑥S,𝑛)||2 + 𝛼, 0)

𝛾 ← 𝐴𝑑𝑎𝑚(∇𝛾 1∕𝑚
∑𝑚

𝑖=1 𝐿
𝑖
𝐶 , 𝛾)

⊳ Update generator G
𝐿𝑖
𝐷 ← −𝐷𝑤(𝐺𝜃 (𝑧))

𝐿𝑖
𝐶 ← 𝑚𝑎𝑥(||𝐶(�̃�𝑓 ) − 𝐶(𝑥S,𝑝)||2 − ||𝐶(�̃�𝑓 ) − 𝐶(𝑥S,𝑛)||2 + 𝛼, 0)

𝐿𝑖
𝐺 = 𝜆𝐷 ∗ 𝐿(𝑖)

𝐷 + 𝜆𝐶 ∗ 𝐿(𝑖)
𝐶

𝜃 ← 𝐴𝑑𝑎𝑚(∇𝜃1∕𝑚
∑𝑚

𝑖=1 𝐿
𝑖
𝐺 , 𝜃)

end while
return 𝐺𝜃
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3.3. Alternative approaches used for comparison

In this work, we address two DA settings with label space discrep-
ancies: Partial DA and Open-Partial DA, with a particular focus on the
xtreme case where only one class is shared between two domains.
hile for Partial DA, some approaches have been proposed, only few

re suitable for this extreme scenario. These few approaches are used
or comparison for the Partial DA experiments. (1) First, we report the
Baseline results, where we train a classifier on real source domain data
only. It shows the minimal achievable performance if no adaptation is
performed. (2) The adversarial feature alignment approach Unilateral
DA [10] is chosen as a comparison method as it has been evaluated in a
Partial DA setting before (as elaborated in Section 2). It aims to achieve
the same goals but uses a different strategy (feature alignment vs. data
generation in our proposed framework). While originally proposed as a
completely unsupervised DA method, the authors also conducted exper-
iments on the extreme scenario (where only the healthy class is shared
between the two domains). For these experiments, the healthy data
label from the target domain was used for alignment [10]. We compare
our method to both implementations and denote the completely un-
supervised implementation as Unilateral and the one using the target’s
healthy label for alignment as 𝑈𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙∗. (3) The adversarial approach
BA3US balances each batch of target data with randomly sampled
source data. It, therefore, presents an interesting comparison method to
the proposed FaultSignatureGAN, where we balance the target domain
with generated data that has been mapped to the target domain in
an unsupervised manner. (4) Last, the data generation approach
GenAlign is used for comparison [20] (see Section 2), where target
data is generated by passing novel input to the generative model. This
approach is used to challenge the hypothesis that generative models are
limited in their extrapolation abilities and therefore, the novel target
data generation should not rely on extrapolation abilities of the model
(as we do in our work).

For the Open-Partial domain experiments, however, there is no other
suitable comparison method that is applicable to the same extreme case
scenario as we consider here where only the healthy class is shared
between the two domains. Therefore, only the Baseline is used for
comparison in these experiments.

4. Case studies

The proposed approach is tested on two bearing datasets that have
been applied for DA tasks in fault diagnostics . Our proposed frame-
work is evaluated on both datasets in Partial and Open-Partial DA
experiments. Both datasets are adjusted to the problem formulation of
the respective DA setup.

4.1. CWRU

The CWRU dataset is a publicly available benchmark bearing
dataset (bearing type SKF 6205) provided by the Case Western Reserve
University Bearing Data Center (CWRU dataset) [33]. The data was
collected on a test rig in laboratory conditions. It contains data recorded
under four different loads (referred to as domain 0,1,2 and 3). The
different load settings resulting in different rotational speeds are shown
in Table 1. Data under healthy and nine different faulty conditions is
available: Three fault types – Ball, Inner Race and Outer Race – with
three severity levels each. An overview of the fault types and severity
levels is shown in Table 2. The CWRU dataset has been extensively used
to demonstrate ClosedSet DA methods under different OCs as well as for
Partial DA setups [10,19].
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Table 1
OCs under which the two case studies (CWRU and Paderborn) are recorded. Each
setting corresponds to one domain.

Domain CWRU Paderborn

Rotational
speed [rpm]

Rotational
speed [rpm]

Load torque
[Nm]

Radial
force [N]

Setting name

0 1797 1500 0.7 1000 N15_M07_F10
1 1772 900 0.7 1000 N09_M07_F10
2 1750 1500 0.1 1000 N15_M01_F10
3 1730 1500 0.7 400 N15_M07_F04

Table 2
Health conditions represented in the case studies (CWRU and Paderborn).

Healthy Outer race
(OR)

Inner race
(IR)

Ball (B)

CWRU Size – 7 14 21 7 14 21 7 14 21
Class 0 1 2 3 4 5 6 7 8 9

Paderborn
Extent of
damage

– 1 2 – 1 2 3 – – –

Class 0 1 2 – 3 4 6 – – –

4.2. Paderborn

The Paderborn dataset is a publicly available bearing dataset (bear-
ing type SKF 6203) provided by the Chair of Design and Drive Tech-
nology from Paderborn University [34]. It incorporates both artificially
induced bearing faults and realistic damages caused by accelerated
lifetime tests under different OCs (rotational speed, load torque and
radial force). In this study, we only consider real fault data and not
the artificially induced one. The represented health conditions in the
dataset are healthy conditions, Inner Race faults (three severity levels)
as well as Outer Race faults (two severity levels). The different OCs
are shown in Table 1 and the different classes in Table 2. The data
was collected on a test rig under laboratory conditions and was also
previously used in different DA studies [10]. Previous publications
mainly focused on 3-class classification of the different fault types [10]
and suggested that the domain gaps in the Paderborn dataset are larger
compared to the CWRU dataset. Further, previous publications typically
neglected the domain 1, since the domain gap to the other domains is
considerably large compared to the other domain gaps. In this research,
we focus on the type and severity classification (6-class classification)
and also aim to bridge large domain gaps. Contrary to previous works,
we, therefore, report results on all possible domain shifts with and
without domain 1 in our DA evaluation.

Moreover, we use less data compared to previous publications, such
as e.g. [10], for our evaluation (only using the datasets K002-5; KA04,
KA15-16 and KI16,18,21 whereas KA22, KA30, KI04 and KI14 have not
been used in this study). This enables us to evaluate if we can extract
transferable fault characteristics from only limited fault data.

5. Experimental setup

To test if FaultSignatureGAN is capable of generating unseen domain
faults, Partial and Open-Partial DA experiments are conducted, whereby
the different domains correspond to the different OCs in the case
studies. The experimental setups are shown in Table 3 (Partial) and
Table 4 (Open-Partial) on an exemplary domain shift from a source
domain X to a target domain Y (𝑋 ⟶ 𝑌 ).

The experiments are conducted as follows: First, a generative model
is trained on data from one domain (as described in Section 3 and
depicted in Training Phase in Fig. 5). In this work, we train one
generative model to generate all severity levels of one fault type.
Second, the label space of the target domain is completed by generating
synthetic target fault data as depicted in Execution Phase in Fig. 5
7

based on healthy target data. The number of generated data samples h
Table 3
Experimental setup for Partial DA on an exemplary domain shift 𝑋 ⟶ 𝑌 .
Partial

Dataset Domain
shift

Source
domain

Source classes Target
domain

Target classes
during training

CWRU X → Y X 0,1,2,3,4,5,6,7,8,9 Y 0
Paderborn X → Y X 0,1,2,3,4,5 Y 0

Table 4
Experimental setup for Open-Partial DA on an exemplary domain shift 𝑋 ⟶ 𝑌 on the
Paderborn dataset.
Open-Partial

Task Domain
shift

Source
domain

Source
classes

Target
domain

Target classes
during training

Source (IR)
⇌

Target (OR)

X → Y X 0,3,4,5 Y 0,1,2

Source (OR)
⇌

Target (IR)

X → Y X 0,1,2 Y 0,3,4,5

per class is chosen to match the mean number of samples per class in
the source domain. In the third step, a new training dataset is composed
of the generated and real data from both domains and used to train a
classification model. The performance of the classifier is then evaluated
on a test dataset composed of all unseen faults and 30% of the data
from each of the classes, from which the conditions have been observed
before.

Hyperparameter Tuning: Data-driven solutions based on neural
etworks come with many hyperparameters to tune including those
f the network architecture. These choices strongly influence the
erformance of the final model including its generalizability to new
ata. There is no commonly accepted procedure for optimizing the
yperparameters for an unknown target domain [35]. Some works rely,
herefore, on a target validation dataset [35] or validation tasks [10].
n the context of safety-critical systems where no target fault data is
vailable, this is not possible. Hence, in this work, we do not make
he assumption of having target data available for hyperparameter
uning, since it is a strong limitation of applying existing DA methods
o real PHM applications. For training the generative model (Training
hase in Fig. 5), only criteria related to the source dataset are used: In
ddition to optimizing the loss functions (see Section 3) on the source
ataset, a stopping criterion is implemented. The training is stopped if
n auxiliary classifier trained on the synthetic source data returns an
ccuracy of at least 98%, evaluated on the real source data. Since this
allback function is computationally expensive, it is only executed after
ach 50 epochs of training. Further, the hyperparameters of the final
lassification model need to be tuned as well. In absence of real target
ault data, we used synthetically generated data as a validation dataset.
o showcase and evaluate the impact that hyperparameter settings
ave on the ability of the model to generalize to an unseen domain,
e trained three different model architectures: Model (1) equals the
ne used in previous publications [10,20] , Model (2) equals Model (1)
ut has the ReLu activation function and Model (3) equals Model (1)
xcept that the kernel size is set to 12 (compared to 3 used in [20]).
xemplary, we only evaluate the domain shifts from source domain 0
n the CWRU dataset for hyperparameter tuning. The final accuracies
n a source validation dataset, a synthetic fault dataset as well as on
he true target test dataset of the three models are shown in Fig. 6.
he performance on the target dataset varies considerably depending
n the architecture used. For example, on domain shift 0 → 2, the
inal performance on the target dataset varies by 10% depending on
he model used. This evaluation shows clearly that even small changes
n hyperparameters can impact the generalization ability strongly i.e.

ave a big effect on the performance in the target domain. The source
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Fig. 6. Visualization of the effect of hyperparameter tuning on the generalizability of different model architectures on different domain shifts: Model 1 as in [10], Model 2 as
in [10] but with the ReLu activation function, Model 3 as in [10] with the kernel size of 12 (compared to 3 used in [10]). Three different datasets are used for evaluation: (1)
source validation dataset (orange); (2) dataset with synthetic faults (green), and (3) the real target dataset (blue).
validation dataset does not provide a good indication which model to
choose since the performance on the source dataset always results in
100%. The accuracy of the synthetically generated dataset does not
correlate strongly with the target accuracy in all instances. However,
it gives a clear indication to choose Model 3 in all instances. This
is also the best choice for the highest accuracy on the target dataset
in the first two domain shifts. Only for domain shift 0 → 3 this is
not an ideal choice. Although not ideal, we want to emphasize that
the synthetic validation dataset provides information on which model
to choose compared to the source validation dataset. On average,
that information results in the best final model choice. Therefore, we
conduct our experiments on Model (3) for the CWRU dataset. We train
the classification model for 2000 epochs (since the source as well as
the synthetic validation datasets suggest that no considerable change
happens after 2000 epochs). To enable a better comparison, we use
only one model architecture for all domain shifts per case study.

Apart from using a synthetic validation dataset, we propose to
use the following strategy for certain hyperparameters: (1) Applying
a heavy regularization (since it leads to better generalization); (2)
running the optimization for multiple epochs — more than indicated
by the validation dataset. The latter choice is motivated by the findings
of learning theory that hypothesize that there are two phases of deep
learning: a fitting and a compression phase. It is indicated that the
latter is responsible for the excellent generalization performance of
deep networks [36]. The final model architectures being used are
elaborated in Appendix.

Label Availability: Similarly to previous studies conducted on the
extreme case of label discrepancy [10,19], we assume to know the label
of the healthy data in the target domain for the Partial and Open-Partial
DA experiments. Since healthy data is ubiquitous, this is considered to
be a realistic assumption. In addition, for the Open-Partial setup, we
assume that if at training data acquisition time fault classes have been
observed, we also have the labels for the fault classes, both for source
and target domains. This is a particularly realistic setup for fleets of
complex systems with different ages for each of the units (each of the
domains). Some units will have experienced one subset of fault types
and other units will have experienced another subset of fault types.
However, at testing time, we would like to be able to diagnose all of
the fault types for all of the units.

Data Pre-Processing: To enable a fair comparison, the datasets are
pre-processed in the same way as in previous publications [10,20]. The
CWRU datasets are first truncated (at 12 000 timesteps) and divided
into 200 sequences of 1024 points. After applying the Fast Fourier
Transform [30], only the first 512 coefficients are used (excluding
the first one). The same process is applied to the Paderborn dataset.
However, the data is not truncated and the 1024 long samples are sliced
with a stride of 4096.
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6. Evaluation and results

Partial (see Section 6.1) as well as Open-Partial DA experiments
are conducted (see Section 6.2) to test the ability of the generated
data to bridge domain gaps in different DA settings. To evaluate the
physical plausibility of the generated data qualitatively, we visualize
the generated data (see Section 6.3).

6.1. Partial DA

First, we conduct experiments in the extreme case of Partial DA
where only the healthy class is shared between the domains. The
experimental setup is exemplified in Fig. 7 for the Paderborn dataset,
where only the healthy target data is available. First, the missing fault
data in the target domain is generated (darker blocks in Fig. 7) to train
a classifier model, which is evaluated on a target test dataset.

CWRU: We compare the results of the proposed methodology with
the methods outlined in Section 3.3. If available, the exact results
from previous publications are shown. If not, we re-implement the
methods while using the same setup as in the original publications.
Only for Ba3US, a new architecture needed to be tuned as elaborated
in Appendix since this method has not yet been applied to any
of the presented case studies. Since hyperparameter tuning without
fault data did not lead to satisfying results, we followed the protocol
of Wang et al. [10] and used the domain shift experiment 0 ⟶ 3
as a validation task. For the source-only experiments, we report, on
the one hand, the previously reported results based on the originally
proposed classifier architecture [10] with a kernel size of 3 (referred
to as 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒). On the other hand, we report the results of the source-
only experiments conducted with the classifier architecture optimized
based on the synthetic data as reported in Section 5. This architecture
has a kernel size of 12 (referred to as 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑦𝑛). The balanced
accuracy of all experiments is shown in Table 5. The overall per-
formance of all approaches is high — even for the two source-only
Baselines, suggesting that the domain gaps are small in this dataset. This
also leaves only limited room for improvement. The baseline model
with optimized hyperparameters (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝑦𝑛), however, outperforms
the existing 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 by 1.71%, showcasing that the generated data
is beneficial for hyperparameter tuning. Moreover, adding the data
generated by FaultSignatureGAN to the training dataset, results in an
additional improvement of 0.96% — resulting in a total improvement
of 2.67% compared to the previously reported baseline method. This
shows that the generated data is beneficial in order to bridge domain
gaps. The method based on data generation used for comparison,
(GenAlign), where the generative model is conditioned on novel input
data performs worse than FaultSignatureGAN. These results suggest
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Fig. 7. Example of an extreme experimental Partial DA Settings on the Paderborn case study. In Fig. 7(a) The real datasets are shown where only the healthy class is shared
between the source and the target dataset and the source dataset has five private classes. In Fig. 7(b) The training dataset is shown where the missing fault classes in the target
domain are synthetically generated and in Fig. 7(c) the test dataset consisting of real target data is shown.
Table 5
Extreme Partial DA results on the CWRU dataset (10-class classification) under all domain shifts.

Domain shift Baselinea Baseline𝑆𝑦𝑛 Unilateralb Unilateral∗a BA3US Gen Align [20]a Fault Signature GAN

0 → 1 93.49 ± 1.75 99.49 ± 0.06 97.04 ± 0.86 98.08 ± 0.16 91.07 ± 3.98 97.81 99.87 ± 0.07
0 → 2 93.65 ± 0.96 99.96 ± 0.02 96.38 ± 2.34 99.56 ± 0.18 91.12 ± 1.28 96.02 99.36 ± 0.36
0 → 3 91.02 ± 0.02 90.27 ± 0.69 94.14 ± 0.56 98.22 ± 0.65 96.33 ± 1.71 94.24 94.50 ± 1.10

1 → 0 97.93 ± 0.93 96.79 ± 0.45 97.48 ± 0.45 98.08 ± 0.32 96.98 ± 1.02 97.27 97.62 ± 0.19
1 → 2 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.95 ± 0.04 96.32 99.95 ± 0.00
1 → 3 98.26 ± 1.63 99.46 ± 0.19 98.40 ± 0.91 99.20 ± 0.19 99.23 ± 0.66 94.59 99.35 ± 0.11

2 → 0 91.63 ± 1.63 96.15 ± 0.15 90.13 ± 3.66 96.43 ± 0.43 93.7 ± 3.59 95.44 96.50 ± 0.16
2 → 1 97.09 ± 0.09 97.78 ± 0.09 97.84 ± 0.26 97.48 ± 0.40 95.58 ± 1.93 96.55 97.06 ± 0.09
2 → 3 99.78 ± 0.17 99.63 ± 0.12 99.71 ± 0.10 98.97 ± 0.21 99.75 ± 0.21 96.13 99.63 ± 0.09

3 → 0 87.96 ± 0.18 88.58 ± 0.19 86.50 ± 4.56 94.85 ± 2.16 86.75 ± 0.21 92.82 92.81 ± 0.92
3 → 1 89.42 ± 0.42 92.68 ± 0.64 93.22 ± 0.97 96.18 ± 0.50 85.53 ± 3.19 93.04 95.41 ± 0.21
3 → 2 99.65 ± 0.17 99.68 ± 0.44 99.82 ± 0.04 99.78 ± 0.09 98.68 ± 2.23 95.49 99.99 ± 0.01

Mean 94.99 96.70 95.88 98.07 94.56 95.49 97.66

aResults as reported in the original publication.
bModels used as in original publication for reproducing results.
that it is not beneficial to condition the generative model on unseen
input and rely on extrapolation abilities of the generative model as in
GenAlign. Therefore, this approach is not used as comparison method
in the following experiments on the Paderborn dataset. From the two
unsupervised adversarial alignment approaches (Unilateral and BA3US),
the Unilateral approach performed consistently better on all domain
shifts. Unilateral∗, where the label of the healthy target data is used
for alignment, results in the highest performance compared to all other
approaches. On average, FaultSignatureGAN performs within the same
performance range as Unilateral∗. In the following experiments on the
Paderborn dataset, only Unilateral∗ is used as a comparison method.

Paderborn: In this case study, we only use the best performing
comparison DA method Unilateral∗. Contrary to other publications on
the Paderborn case study that focus only on fault type classification
(3-class classification), we focus on the task of fault type and severity
classification in this work (6-class classification). Further, previous pub-
lications did not include domain 1 in their experiments [10], where the
domain gap is large compared to the other domain gaps (as indicated
by the Baseline results). In this work, we report the results for all DA
tasks related to the domain 1 separately in the upper part of Table 6 to
indicate the different domain gap sizes. The DA approaches (Unilateral∗
and FaultSignatureGAN) outperform the Baseline on all domain shift
experiments — see Table 6. While the performance gain is comparable
between the two approaches on small domain gaps (domains 0,2 and
3), FaultSignatureGAN results in a considerably better performance on
domain 1, where the domain gap is large. In all settings, there is a sub-
stantial relative gain. On domains 0,2, and 3, an average improvement
of 3.82% was achieved by FaultSignatureGAN compared to the Baseline.
On domain 1, the absolute improvement is even 23.76%. If domain 1
is the target domain, the absolute performance of all approaches is
still rather low (<50%) despite the relatively high improvement. In the
opposite direction, whendomain 1 is the source domain, higher absolute
results were achieved (average performance of the three domain shift
experiments with FaultSignatureGAN is 79.72%). Although the domain
gap should be the same in both directions (domain as source or target),
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Table 6
Extreme Partial DA results on the Paderborn dataset (6-class classification). In the upper
part all results with domain shifts including domains 0,2 and 3 are shown and in the
lower part all domain shifts including domain 1.

Domain shift Baseline Unilateral∗ FaultSignatureGAN

0 → 2 99.78 ± 0.06 99.92 ± 0.02 99.76 ± 0.24
0 → 3 69.49 ± 0.73 69.98 ± 1.73 72.08 ± 1.24
2 → 0 99.42 ± 0.01 99.67 ± 0.08 99.54 ± 0.16
2 → 3 74.66 ± 0.40 75.71 ± 1.69 75.49 ± 0.23
3 → 0 67.43 ± 0.6 71.29 ± 1.61 78.87 ± 0.65
3 → 2 68.37 ± 1.5 77.14 ± 1.42 76.35 ± 0.42

Mean 79.86 82.29 83.68

0 → 1 22.88 ± 1.51 29.37 ± 1.20 45.88 ± 2.21
1 → 0 58.66 ± 1.71 74.54 ± 0.53 84.34 ± 0.21
1 → 2 63.28 ± 1.77 75.16 ± 3.56 86.34 ± 0.77
1 → 3 47.99 ± 0.22 61.87 ± 1.77 68.50 ± 0.51
2 → 1 21.77 ± 0.53 29.96 ± 1.83 47.59 ± 1.66
3 → 1 22.77 ± 1.31 26.47 ± 0.24 45.30 ± 0.61

Mean 39.23 49.56 62.99

this difference in the performance could potentially be explained if the
fault data in domain 1 shows more variability compared to the other
domains. This leads to better generalization on tasks from domain 1 to
other domains. Especially in these instances, FaultSignatureGAN shows
a superior performance.

6.2. Open-partial DA experiments

To showcase the versatility of our framework, we conduct Open-
Partial DA experiments in addition to the Partial DA experiments (Sec-
tion 6.1). These experiments are only conducted on the Paderborn
dataset since the domain gaps are larger compared to the CWRU
dataset. The other DA methods used for comparison for the Partial DA
setup are not directly applicable for the Open-Partial setup. Therefore,
we only report the Baseline results for comparison, where the classifier
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Fig. 8. Example of an extreme experimental Open-Partial DA Settings on the Paderborn case study. In Fig. 7(a) the real datasets are shown where only the healthy class is shared
between the source and the target dataset and the source dataset has five private classes. In Fig. 8(b) The training dataset is shown where the missing fault classes in the target
domain are synthetically generated and in Fig. 8(c), the two test datasets are shown where one consists of the real source and the other of the real target data.
Table 7
Open-Partial DA results on the Paderborn dataset (6-class classification). In the upper part all results with domain shifts including domains 0,2
and 3 are shown and in the lower part all domain shifts including domain 1. As shown in Fig. 8, the trained classification model is evaluated
on two datasets: The source test dataset (S) and the target test dataset (T).

Domain shift Baseline Proposed Baseline Proposed

Source (IR)⇌Target (OR)

0 ⇌ 2 S 99.41 ± 0.15 99.81 ± 0.02

Source (OR)⇌ Target (IR)

S 99.12 ± 0.42 99.96 ± 0.05
T 99.88 ± 0.01 99.97 ± 0.02 T 99.53 ± 0.14 99.85 ± 0.10

0 ⇌ 3 S 73.65 ± 0.13 91.74 ± 0.05 S 78.99 ± 0.69 91.59 ± 0.18
T 72.80 ± 0.51 95.33 ± 0.01 T 75.41 ± 0.48 96.18 ± 0.75

2 ⇌ 3 S 75.30 ± 1.04 93.99 ± 0.61 S 78.10 ± 1.17 97.13 ± 0.70
T 72.93 ± 1.16 94.82 ± 0.23 T 75.31 ± 0.81 91.67 ± 0.77

Mean S 82.79 95.18 S 85.40 96.22
T 81.87 96.71 T 83.42 95.90

Source (IR)⇌ Target (OR)

0 ⇌ 1 S 56.91 ± 1.44 66.55 ± 0.61

Source (OR)⇌ Target (IR)

S 51.53 ± 1.43 53.90 ± 1.33
T 65.53 ± 0.09 71.04 ± 0.22 T 69.06 ± 1.28 81.48 ± 1.53

1 ⇌ 2 S 53.62 ± 0.23 56.21 ± 1.18 S 51.93 ± 1.21 65.65 ± 1.10
T 69.71 ± 0.16 76.08 ± 1.41 T 65.76 ± 0.26 67.54 ± 0.34

1 ⇌ 3 S 51.83 ± 1.66 66.10 ± 1.40 S 63.66 ± 0.56 67.64 ± 0.15
T 66.50 ± 0.02 74.75 ± 0.65 T 65.25 ± 0.06 71.14 ± 0.62

Mean S 54.12 62.95 S 55.71 62.39
T 67.24 73.96 T 66.69 73.39
was trained on all available real data from the source and target
domain. Fig. 8 depicts an example for the experimental setup: For
the Open-Partial DA experiments, we assume that in each of the two
domains, one fault type occurred with different severities. For example,
the outer race fault with severity 1 and 2 (OR1 and OR2) occurred in
the target domain, whereas the inner race fault (severity 1, 2 and 3;
IR1, IR2 and IR3) occurred in the source domain. In a first step, two
generative models are trained. The fault signature of the outer race fault
is trained on the target data, the fault signature of the inner race fault
on the source data (see Training Phase in Section 3). In a second step,
the missing fault data is generated: In the example of Fig. 8, the outer
race fault is generated for the source domain and the inner race fault
classes with severity 1,2 and 3 for the target domain. This generated
and real data composes the training dataset.In our experimental setup
for Open-Partial DA, there is missing data in each of the domains.
Therefore, we evaluate the performance on two test datasets — the
source S and the target T. The test datasets comprise the real missing
fault data as well as of a 30% of known health conditions. The results
on the 6-class classification task are reported in Table 7.

The experiments show that the synthetically generated data enables
to achieve a good classification performance above 90% on all shifts
with small domain gaps, by far exceeding the performance of the
Baseline method of 83.37% on average. On the DA task related to
domain 1, the absolute performance of the classifier is lower, however,
it still results in a large relative improvement in all instances compared
to the Baseline method.

6.3. Qualitative evaluation

To evaluate the physical plausibility qualitatively, we visualize the
mean and standard deviation of a batch of 1000 (1) generated signals
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(blue line in Fig. 9(a)), (2) true faults in the target domain (orange
line in Fig. 9(a)) and (3) true faults in the source domain (green line
in Fig. 9(a)). Exemplary, we chose the fault type OR and severity 1 on
the domain shift 0 → 1 on the Paderborn dataset. Additionally, to better
visualize the differences, the residual of the generated target to the true
target mean signal is visualized as well as the residual of the true source
to the true target (which can be considered as the baseline) — see
Fig. 9(b). The proposed framework generates the true target data well.
Visually, it represents the target faults substantially better compared to
the source data, especially in the higher frequency range.

7. Discussion

The experiments performed in this research demonstrate the validity
of the proposed framework FaultSignatureGAN to generate previously
unobserved fault data, that can be used for DA with different types
of extreme label discrepancies, where only the healthy class is shared
between the domains. The obtained results open interesting points for
discussion.

FaultSignatureGAN for DA with label space discrepancies: Given
small domain gaps, FaultSignatureGAN outperforms most of the compar-
ison methods, especially when comparing the results to GenAlign, the
other generative approach . This particularly supports the assumption
that the unsupervised generation of unseen data should not rely on
extrapolation abilities of the generative model (as it does for the
comparison methods). Instead, our approach enables the generation of
unseen faults building on the hypothesis that domain-specific fault data
can be disentangled in domain-specific characteristics and class specific
ones and therefore, requires no extrapolation ability of the generative
model. The comparison method BA3US outperforms FaultSignatureGAN
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Fig. 9. Paderborn data visualization of the OR severity 1 fault comparing real fault data with generated fault data.
solely on domain shift 0 ⟶ 3 (by 1.83%), where target data has
been used to tune the hyperparameters of BA3US. In practical safety-
critical applications, target data to tune the hyperparameters of a model
is typically not available. Therefore, FaultsignatureGAN did not rely
on this information and thus, satisfies more realistic requirements
for PHM applications.The improvement that BA3US provided on that
one domain shift could not be translated to other domain shifts. This,
once again, showcases the importance of hyperparameter tuning for DA
methods based on feature alignment and in particular the importance
of the access to fault data for hyperparameter tuning. Only the fea-
ture alignment approach Unilateral∗ provides a similar performance as
FaultSignatureGAN under small domain gaps in Partial DA settings (see
all results on CWRU in Section 6.1 and on Paderborn with domains
0,2 and 3). This is not surprising since synthetic data generation is
never perfect. Therefore, when the domain gap is small, the source
data represents the target data already quite well and one would expect
little benefits in generating synthetic target specific data. On large
domain gaps (those including domain 1 on the Paderborn dataset),
however, the performance of the feature alignment method Unilateral
drops. These are the scenarios where the proposed generative approach
FaultSignatureGAN outperforms other approaches (see Sections 6.1 and
6.2). Therefore, if the size of the domain gap is unknown, FaultSigna-
tureGAN is the best option to choose in safety-critical systems since
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it provides a comparable performance under small domain gaps but a
considerably better performance under large domain gaps.

Versatility of FaultSignatureGAN : Many different scenarios of la-
bel discrepancies are possible in real operations as exemplified in
Section 1. Having one versatile method that can be applied in mul-
tiple of these scenarios is, therefore, utterly important for practical
applications. The versatility of the proposed approach is demonstrated
by applying it successfully to DA experiments with different types of
label discrepancies (Partial and Open-Partial) (if the respective labels
are known in the source domain), where it consistently outperforms
other comparison methods under large domain gaps. We consider the
versatility of the proposed approach as a one of the key benefits for
practical PHM applications.

Plausibility of Unsupervised Data Generation and Validity of
the Underlying Hypothesis: The generation of unseen target data is
unsupervised and the plausibility of the target data cannot be directly
imposed while training the generative model. Therefore, it is required
to evaluate how realistic the target data generated by FaultSignature-
GAN is; to which extent it can be used as a surrogate of real target data.
The data visualization (see Section 6.3) shows that the generated data
represents real target data well. In particular, it represents the target
fault data substantially better compared to the source data. This finding
is also supported by the findings in the DA experiments (both Partial
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and Open-Partial) where FaultSignatureGAN consistently outperforms
the Baseline method. This supports the validity of the underlying
hypothesis to enable controlled generation of previously unobserved
data. We can draw the following conclusions: (1) Eq. (1) serves as
a good approximation of real fault data, (2) the disentanglement of
domain-specific and fault-specific characteristics was successful and (3)
that domain-invariant fault signatures can be extracted by FaultSig-
natureGAN given only one source domain. However, our assumption
about the structure of domain-specific and fault-specific components
composing real fault data as defined in Eq. (1) could be extended and
further refined in future work, in particular, the assumption that the
OCs impact the fault-specific components linearly. Moreover, the DA
experiments show that the generative process succeeds in preserving
the semantic meaning of the generated data. If this would not be the
case, the generated data would introduce label noise to the training
data and, quite likely, result in a performance drop in the target
domain.

Synthetic Data for Hyperparameter Tuning: Our results have
shown that the classification performance of the Baseline method in
the target domain is highly dependent on the chosen classifier ar-
chitecture (see evaluation in Section 5). This is also observed in the
literature, where different Baseline results on exact same tasks are
reported with different hyperparameters of classifier architectures. For
example, Wang et al. [10] reported a mean performance 99.78% on
the domain shift 2 → 3, whereas [37] reported a baseline performance
of 92.2% using a different classifier architecture. The classification
improvements in the target domain gained by an appropriate choice of
hyperparameters is even larger compared to improvements gained by
other DA methods. This emphasizes the importance of hyperparameter
tuning including the choice of the network architecture for the task
of DA with extreme label space discrepancies. Previous publications,
therefore, rely, for example, on the availability of target data and labels
for one domain shift experiment. This availability of any target faults
is not realistic in real safety-critical applications, where faults did not
occur. In absence of fault target data, there is no possibility to tune
these hyperparameters with respect to the classification task in the
target domain, which can pose a major risk in safety-critical assets.
If, however, synthetic data is available that represents the real target
data well, the data can be used for validation. In this study, we showed
that synthetic fault data generated by FaultSignatureGAN can support
selecting the optimal architecture without relying on real target fault
data that is usually not available in real satefy-critical applications.
Herein lays one major benefit of the proposed data generative approach
FaultSignatureGAN. Although a proof of optimality is impossible (as the
real target data has not been observed), the synthetic data provides
a better indication of which hyperparameters to choose compared to
the hyperparameter choice based on the source dataset performance or
even a random choice.

Decreasing Data Acquisition Time: In practice, a short data ac-
quisition phase is essential to enable to start monitoring the condition
of a new asset within a short period of time. However, faults are
extremely rare in complex (safety-critical) systems. This lack of real
fault data is a major limitation to applying data-driven solutions for
fault diagnostics. FaultSignatureGAN allows to transfer fault patterns to
a new target domain. Once a fault occurred in one domain providing
sufficient fault data to train a generative model, the fault signature
can be learned, which then can be used to generate new fault data
for any newly emerging domain. This ultimately can speed up the data
collection process significantly, enabling the application of data-driven
solutions within a shorter time span.

8. Conclusion

In this research, we proposed the FaultSignatureGAN framework
for controlled generation of unseen faults in the target domain. The
resulting generated fault data is (1) specific to a desired domain and
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(2) specific to a certain fault type and the severity level of the fault in
that domain. Therefore, FaultSignatureGAN enables to start monitoring
the condition of new assets without any faults observed in the target
domain since plausible faulty data can be generated for all future
target domains. While we considered different OCs as domains in
this research, the proposed framework is also applicable to generate
synthetic faults in new units of a fleet.

We demonstrated the potential of the FaultSignatureGAN to comple-
ment partial label spaces in different DA experiments — Partial as well
as Open-Partial DA settings. The results show that the generated data
represents true faults in the target domain considerably better than the
source fault data, leading to an improved classification performance on
the target domain. Our proposed method excels particularly on large
domain gaps. FaultSignatureGAN also enabled hyperparameter tuning
for unseen target domain which can be applied in combination with any
other DA approach. Without any access to target faults, tuning existing
methods optimally is not possible. This demonstrates one of the benefits
of plausible data generation in the evaluated tasks.

For future work, an additional step integrating real but unlabeled
target data in addition to the synthetically generated data is an inter-
esting direction to explore. Additional unsupervised or semi-supervised
DA approaches could be employed to bridge the synthetic to real gap.
Furthermore, the transferability of the generated fault signatures be-
tween different bearing types is of high interest for future research. One
further direction of future research would be to investigate the source
data demand for FaultSignatureGAN, evaluating how many samples and
how diverse they need to be in order to train a representative genera-
tive model. On a bigger scale, the integration of novel or evolving fault
detection (those that have not been observed neither in the source nor
in the target domain) in addition to the performed fault classification
would be of a significant practical relevance.
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Appendix. Models

Unless stated otherwise, the following model architectures were
used:

Generation Model: The first layer of the generation model is a sin-
gle neuron. The activation of this neuron is sampled from a
categorical distribution corresponding to the number of fault
classes (fault type severities). The second fully connected layer is
the sampling layer (mean and variance), containing three units
each, activated by LeakyReLu (𝛼=0.001).

The following fully connected layers successively increase the
dimensionality to the desired final output shape. Each layer is
activated by LeakyReLu (𝛼=0.001), using no bias and followed
by a BatchNormalization (BN) layer.
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Three 1D convolutional layers follow, each layer is activated by
LeakyReLu (𝛼=0.001), and followed by a BatchNormalization
(BN) layer.
At last the generated signal is added to a randomly drawn data
point from the base dataset.
The Adam optimizer used with a learning rate of 0.0001, 𝑏𝑒𝑡𝑎1 =
0.5 and 𝑏𝑒𝑡𝑎2 = 0.999.

riplet Encoder Model: The triplet encoder model consists of 6 fully
connected layers, each activated with Leaky ReLu (alpha=0.1)
and followed by a dropout layer (rate=0.4). The final layer is 4
dimensional and is L2 normalized.
The Adam optimizer used with a learning rate of 0.0001, 𝑏𝑒𝑡𝑎1 =
0.5 and 𝑏𝑒𝑡𝑎2 = 0.999.

iscriminator Model: The discriminator model consists of six fully
connected layers, each activated with Leaky ReLu (alpha=0.1)
and followed by a dropout layer (rate=0.1). The final layer is
1-dimensional. The Adam optimizer used with a learning rate
of 0.0001, 𝑏𝑒𝑡𝑎1 = 0.5 and 𝑏𝑒𝑡𝑎2 = 0.999.

lassification Model for Early Stopping: It consists of 4 1-D convo-
lutions layers (8 filters in each layer and kernel size is 3),
each activated with Leaky ReLu (alpha=0.1) and followed by
a dropout layer (rate=0.1). Followed by a flattening layer and
a fully connected layer with the appropriate number of units
according to the number of classes in the dataset.
The Adam optimizer used with default parameters.

lassification Model for Evaluation: The classification model for
evaluation is inspired by Wang et al. [10]. It consists of three
1D convolutional layers (10 filters in each layer, activated by
ReLu) and dropout layers (0.4). The Adam optimizer used with
default parameters.
For training the CWRU classification models a batch size of 64
is chosen, for Paderborn 2000.

odel Architecture for the comparison method BA3US: The com-
parison method BA3US has not yet been applied to any time-
series data. Without using target fault data, the methodology
could not be tuned to give satisfying results. Therefore, we
followed the procedure of Wang et al. [10] and tuned BA3US
on a validation task 0⟶3. We started using the exact same
generator, discriminator and classifier architecture as well as
optimizer setting as proposed by Wang et al. [10]. All hyperpa-
rameters (model architecture and weighting of the different loss
terms) are then consecutively optimized on the validation task.
Ultimately, the following architecture was used: The feature ex-
tractor consists of a 3 layer 1D-convolutional layer with kernel
size 3 and 10 filters per layer. Each layer is batch normalized
and activated by the sigmoid function, followed by a dropout
layer (rate= 0.5). Last, based on the flattened activations, a fully
connected layer is added with 256 units. The classifier model
consists of two fully connected layers. The first with 256 units
is activated with the ReLU activation function and followed
by a dropout layer (rate 0.5). The second contains 10 units
(corresponding to the number of classes) and is activated by the
softmax function. The discriminator contains three fully con-
nected layer, each with 256 ReLU activated units. Only the last
layer contains only one unit and is Sigmoid activated. The model
is optimized on batches of 64 samples in the target and the
source domain using the StochasticGradientDescent algorithm
with a learning rate of 0.005. The initial ratio of augmented
source samples is set to 1.0 (𝜌0 = 1), the test interval 𝑁𝑢 is set to
50. The loss conditional entropy loss is weighted with a factor
of 10−3 and the transfer loss with a factor of 10−1. The weighted
complement entropy loss is not considered since it did not lead
to satisfying results (𝑤 = 0).
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