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Abstract
Measuring conditional dependencies among the variables of a network is of great 
interest to many disciplines. This paper studies some shortcomings of the existing 
dependency measures in detecting direct causal influences or their lack of ability 
for group selection to capture strong dependencies and accordingly introduces a 
new statistical dependency measure to overcome them. This measure is inspired by 
Dobrushin’s coefficients and based on the fact that there is no dependency between 
X and Y given another variable Z, if and only if the conditional distribution of Y 
given X = x and Z = z does not change when X takes another realization x′ while 
Z takes the same realization z. We show the advantages of this measure over the 
related measures in the literature. Moreover, we establish the connection between 
our measure and the integral probability metric (IPM) that helps to develop estima-
tors of the measure with lower complexity compared to other relevant information 
theoretic-based measures. Finally, we show the performance of this measure through 
numerical simulations.
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1 Introduction

Identifying the conditional independencies (CIs) among the variables or processes 
in a systems is a fundamental problem in scientific investigations in different fields 
such as biology, econometric, social sciences, and many others.

In probability theory, two events X and Y are conditionally independent given a 
third event Z, if the occurrence or non-occurrence of X and Y are “independent" 
events in their conditional probability distribution given Z (Gorodetskii 1978). There 
are several CI measures in literature that have been developed for different applica-
tions to capture such independency. For instance, the most commonly used one is 
conditional mutual information (CMI) (Gorodetskii 1978) that is an information the-
oretical quantity. This measure has been used in different fields such as communica-
tion engineering, channel coding (Cover and Thomas 2012), and causal discovery 
(Spirtes et al. 2000b). CMI between X and Y given Z is defined by comparing two 
conditional distributions: P(X|Y, Z) and P(X|Z) using KL-divergence and then taking 
average over the conditioning variable Z. Hence, it is limited to those realizations 
with positive probability (see Sect. 4.1). One shortcoming of such measure is that it 
cannot capture CIs that occur rarely or even over zero measure sets. Another short-
coming of this measure is that it is symmetric and thus it fails to encode asymmetric 
dependencies such as causal directions in a network.

Most of the conditional dependency or independency measures are defined sim-
ilar to the CMI in a sense that they take average over the conditioning variables. 
Kernel-based method in Zhang et al. (2011) is another example. Consequently, such 
measures may fail to distinguish the range of the conditioning variable Z in which 
the dependency between the variables of interest X and Y is more clearer. For exam-
ple, consider a treatment that has different effects on a special disease for different 
genders. There are scenarios in which the previous CI measures (e.g., CMI) fail to 
identify for which gender the effect of the treatment on the disease is maximized 
(see Sect. 4.3).

Discovering the causal relationships in a network is one of the main applications 
for CI measures (Spirtes et  al. 2000b). In this area, it is important to capture the 
direct causal influence between two variables in a network independent of the other 
causal indirect influences between them. As we will show in Sect. 4.2, previous CI 
measures (e.g., CMI) cannot capture the direct causal influences between two vari-
ables (cause and effect) in a network when some variables in the indirect causal path 
depend on the cause almost deterministically.

The main contribution of this paper is the introduction of a statistical metric 
inspired by Dobrushin’s coefficient (Dobrushin 1970) to measure the dependency 
or independency between X and Y given Z in a network from their realizations. Our 
metric has been developed based on the paradigm that if Y has no dependency on X 
given Z, then the conditional distribution of Y given X = x and Z = z will not change 
if x varies and Z takes the same realization z. We will show that this dependency 
measure overcomes the aforementioned limitations. Moreover, we will establish the 
connection between our measure and the IPM to develop estimators for our met-
ric with lower complexity compared to other relevant information-theoretic based 
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measures such as CMI. This is because the proposed estimators depend on the sam-
ple points only through the metric of the space, and thus its complexity is independ-
ent of the dimension of the samples.

Perhaps the best known paradigm for visualizing the CIs among the variables 
of a network is Bayesian networks (Pearl 2003). They are directed acyclic graphs 
(DAGs) in which nodes represent random variables and directed edges denote the 
direction of causal influences. Analogously, using the dependency measure in this 
work, we can represent the causal structure of a network via a DAG that possesses 
the same properties as the Bayesian networks.

It is also worth mentioning that there exist several measures to capture CIs and 
the causal influences among time series, for instance, transfer entropy (Schreiber 
2000) and directed information (Massey 1990). Measuring the reduction of uncer-
tainty in one variable after knowing another variable is the key idea in such meas-
ures. Because these measures are defined based on CMI, they also suffer the afore-
mentioned limitations. Note that the proposed measure can easily be modified to 
capture such influences in time series as well.

2  Definitions

In this Section, we review some basic definitions and our notation. Through-
out this paper, we use capital letters to represent random variables, lowercase let-
ters to denote a realization of a random variable, and bold capital letters to denote 
matrices. We denote a subset of random variables with index set K ⊆ [m] , where 
[m] ∶= {1, ...,m} by X

K
 and [m] ⧵ {j} by −{j}.

In a directed graph ��⃗G = (V , �⃗E) , we denote the parent set of a node i ∈ V  by 
Pai ∶= {j ∶ (j, i) ∈ �⃗E} , and denote the set of its non-descendant1 by Ndi . We use 

 to denote X and Y are independent given Z.
Bayesian Network: A Bayesian network is a graphical model that represents the 

conditional independencies among a set of random variables via a directed acyclic 
graph (DAG) (Spirtes et al. 2000b). A set of random variables X is Bayesian with 
respect to a DAG ��⃗G , if

Up to some technical conditions (Lauritzen 1996), this factorization is equivalent 
to the causal Markov condition. Causal Markov condition states that a DAG is only 
acceptable as a possible causal hypothesis if every node is conditionally independent 
of its non-descendant given its parents.

(1)P(X) =

m∏
i=1

P(Xi|XPai
).

1 A node v is a non-descendant of another node u, if there is no direct path from u to v.
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Corresponding DAG of a joint distribution possesses Global Markov condition if 
for any disjoint set of nodes A , B , and C for which A and B are d-separated2 by C , 
then  . It is shown in Lauritzen  (1996) that causal Markov condition 
and Global Markov condition are equivalent.

Faithfulness: A joint distribution is called faithful with respect to a DAG if all 
the conditional independence (CI) relationships implied by the distribution can 
also be found from its corresponding DAG using d-separation and vice versa3Judea 
(2014). It is possible that several DAGs encode the same set of CI relationships. In 
this case, they are called Markov equivalence.

3  New dependency measure

As we mentioned earlier, we use the following paradigm to define our measure of 
independency: if Y has no dependency on X given Z, then the conditional distribu-
tion of Y given X = x and Z = z should not change when X takes different realization 
x′ while Z takes the same realization z. This paradigm is similar in nature to Pearl’s 
paradigm of causal influence (Pearl 2003). He proposed that the influence of a vari-
able (potential cause) on another variable (effect) in a network is assessed by assign-
ing different values to the potential cause, while other variables’ effects are removed, 
and observing the behavior of the effect variable. Below, we formally introduce our 
dependency measure.

Consider X a collection of m random variables. To identify the dependency of Xi 
on Xj , we select a set of indices K , where K ⊆ −{i, j} and consider the following two 
probability measures:

where x
K∪{j}

 and y
K∪{j}

∈ E|K|+1 are two realizations for X
K∪{j}

 that are the same 
every where except at Xj . Further, assume x

K∪{j}
 at position Xj equals x and y

K∪{j}
 

equals y ( y ≠ x ) at this position. If there exists a subset K ⊆ −{i, j} such that for all 
such realizations, �i(xK∪{j}

) and �i(y
K∪{j}

) are the same, then we say Xi has no 
dependency on Xj . This is analogous to the conditional independence that states if Xj 
and Xi are independent given some X

K
 , then there is no causal influence between 

them. Note that using mere observational data, comparing the two conditional prob-
abilities in (2) reveals the dependency between Xi and Xj . However, when interven-
tional data are available, we can identify whether Xj causes Xi , i.e., the direction of 
influence.

To compare the two probability measure in (2), a metric on the space of prob-
ability measures is required. There are several metrics that can be used such as 

(2)
�i(xK∪{j}

) ∶= P
(
Xi
|||XK∪{j}

= x
K∪{j}

)
,

�i(y
K∪{j}

) ∶= P
(
Xi
|||XK∪{j}

= y
K∪{j}

)
,

3 The set of distributions that do not satisfy this assumption has measure zero (Meek 1995).

2 It is d-separated by Z if it contains a collider → ⋅ ← whose descendants are not in Z or a non-collider in 
Z.
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KL-divergence, total variation, etc (Gibbs  and Edward 2002). For instance, using 
the KL-divergence will lead to develop CI test-based approaches (Singh and Val-
torta 1995). In this work, we use Wasserstein distance and discuss the advantage of 
using such metric in Sect. 5.1.

Definition 1 Let (E,  d) be a metrical complete and separable space equipped 
with the Borel field B , and let M be the space of all probability measures on 
(E,B) . Given �1, �2 ∈ M , the Wasserstein metric between �1, �2 is given by 
Wd(�1, �2) ∶= inf�

(
��[d(x, y)]

)
 , where the infimum is taken over all probability 

measures � on E × E such that its marginal distributions are �1 and �2 , respectively.

Using the above distance, we define the dependency of Xi on Xj given K ⊆ −{i, j} 
as follows:

The supremum is over all realizations x
K∪{j}

 and y
K∪{j}

 that only differ at the jth vari-
able. Moreover, we assume x

K∪{j}
 at jth position equals x and y

K∪{j}
 equals y ( y ≠ x ) 

at this position. When K = −{i, j} , cK
i,j

 is called Dobrushin’s coefficient (Dobrushin  
1970). Similarly, we define the dependency of a set of nodes B on a disjoint set A 
given K , where K ∩ (A ∪ B) = � , as follows,

Remark 1 The dependency measure of i on j given K in (3) is defined by taking 
supremum over all realizations. Alternatively we could have taken an average over 
all realizations. More precisely, we can introduce an alternative measure as follows

Clearly, this expression is bounded above by (3). One caveat of taking the expec-
tation versus the supremum is that similar to the conditional mutual information 
I(Xi;Xj|XK

) which is also defined via taking an expectation, the measure in (5) can-
not capture dependencies that occur over zero measures sets.

(3)cK
i,j

= sup
x
K∪{j}

=y
K∪{j}

, off j

Wd(�i(xK∪{j}
),�i(y

K∪{j}
))

d(x, y)
.

(4)cK
B,A

= sup
x
K∪A

=y
K∪A

, off A

Wd(�B(xK∪A
),�B(y

K∪A
))

d(x
A
, y

A
)

.

(5)
∫E

∏
k∈K

P(X
k
= x

k
)P(Xj = y)P(Xj = x)

Wd

(
�i(xK∪{j}

),�i(y
K∪{j}

)

)

d(x, y)
dx

k
dxdy.
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3.1  Maximum mean discrepancy

Using a special case of the duality theorem of Kantorovich and Rubinstein (Villani 
2003), we obtain an alternative approach for computing the Wasserstein metric as 
follows:

where FL is the set of all continuous functions satisfying the Lipschitz condition:
||f ||Lip ∶= supx≠y |f (x) − f (y)|∕d(x, y) ≤ 1. This representation of the Wasserstein 

metric is a special form of integral probability metric (IPM) (Müller 1997) that has 
been studied extensively in probability theory (Dudley 2002) with applications in 
empirical process theory (Der Vaart and Wellner 1996), transportation problem 
(Villani 2003), etc. IPM is defined similar to (6) but instead of FL , the supremum is 
taken over a class of real-valued bounded measurable functions on E.

One particular instance of IPM is maximum mean discrepancy (MMD) in which 
the supremum is taken over FH ∶= {f ∶ ||f ||H ≤ 1} . More precisely, MMD is 
defined as

Here, H represents a reproducing kernel Hilbert space (RKHS) (Aronszajn 1950) 
with reproducing kernel k(⋅, ⋅) . MMD has been used in statistical applications such 
as independence testing and testing for conditional independence (Gretton et  al. 
2006; Fukumizu et al. 2007; Sun et al. 2007).

It is shown in Gretton et al. (2006) that when H is a universal RKHS (Micchelli 
et al. 2006), defined on the compact metric space E, then MMD(�1, �2) = 0 if and 
only if �1 = �2 . In this case, MMD can also be used to compare the two conditional 
distributions in (2). This is because, MMD(�i(xK∪{j}

),�i(y
K∪{j}

)) = 0 implies that 
the two conditional distributions are the same. This allows us to define a new 
dependency measure which we denoted it by c̃K

i,j
 similar to (3) that uses MMD 

instead of Wasserstein distance. It is straight forward to show that this measure has 
similar properties as the one in (3). The main difference between these two measures 
is their estimation method that we discuss in Sect. 5.1.

4  Advantages of the dependency measure

Herein, we discuss the advantages of our measure over other dependency measures 
in the literature.

(6)Wd(�1, �2) = sup
f∈FL

||||∫E

fd�1 − ∫E

fd�2
||||,

(7)MMD(�1, �2) ∶= sup
f∈FH

||||∫E

fd�1 − ∫E

fd�2
||||.
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4.1  Mutual information and information flow

Conditional mutual information is an information theoretic measure that has been 
used in the literature to identify the conditional independence structure of a network. 
This measure compares two probability measures P(Xi|Xj,XK

) and P(Xi|XK
) using 

the KL-divergence as follows,

This measure is symmetric and hence it cannot capture the direction of influence. 
Moreover, it only compares the probability measures over all pairs (Xi,Xj) that have 
positive probability. Note that any other measures in the literature that is based on 
conditional independence test such as the kernel-based methods in Sun et al. (2007); 
Zhang et al. (2011) have the similar limitation.

Example 1 Consider a network of two variables X and Y, in which X ∼ N(0, 1) is 
a zero mean Gaussian variable and Y is N(0, 1) whenever X is a rational number 
and N(1, 2) otherwise. In this network, Y is dependent on X but it cannot be cap-
tured using CI. This is because I(X;Y) = 0 . On the other hand, we have cy,x > 0 and 
cx,y = 0.

Another quantity that has been introduced in the literature to quantify causal 
influences in a network is information flow (Ay and Polani 2008). This quantity is 
defined using Pearl’s do-calculus (Pearl 2003). Intuitively, operating do(xi) removes 
the dependencies of Xi on its parents, and replaces P(Xi|XPai

) with the delta func-
tion. Herein, to give an interpretation on how (3) can be used to identify causal rela-
tionships that are defined in terms of intervention, we compare our measure with 
information flow.

Below, we introduce the formal definition of information flow from X
A
 to X

B
 

imposing X
K

 , I(X
A
→ X

B
|do(X

K
)) , where A, B, and K are three disjoint subsets of V.

This is defined analogous to the conditional mutual information in (8). But unlike the 
conditional mutual information, the information flow is defined for all pairs (x

A
;x

C
) 

rather than being limited to those with positive probability (similar to our measure). 
Similar measures are introduced in Janzing et al. (2013); Nihat and Krakauer (2007) 
which are also based on do-calculation. Analogously, we can define our measure 
based on do-operation to capture the direction of causal influences in a network by 
substituting the conditional distributions in (2) with their do versions. More pre-
cisely, we use the following measures in (3),

(8)I(Xi;Xj|XK
) ∶=

∑
xi,xj,xK

P(xi, xj, xK) log
P(xi|xj, xK)
P(xi|xK)

.

(9)

�
x
A∪B∪K

P(x
K
)P(x

A
�do(x

K
))P(x

B
�do(x

A∪K
))

log
P(x

B
�do(x

A∪K
))∑

x�
A

P(x�
A
�do(x

K
))P(x

B
�do(x�

A
, x

K
))

.
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Because the Wasserstein metric can be estimated using a linear programming (see 
Sect. 5.1), our measure has computational advantages over the information flow or 
other similar measures that uses KL-divergence. Another advantage of (3) over the 
information flow is that it requires less number of interventions in case of using 
interventional data. More precisely, calculating (9) requires at least two do-opera-
tions (do(x

A∪K
) and do(x

K
)) but (3) requires only one (do(x

K∪{j}
)) . Moreover, as the 

next example shows, unlike our measure, the information flow depends on the 
underlying DAG.

Example 2 Consider a network of three binary random variables {X, Y , Z} with 
Z = X ⊕ Y  an XOR. Suppose the underlying DAG of this network is given by Fig. 1b, 
in which X takes zero with probability b. In this case, I(X → Z|do(Y)) = H(b) , 
where H denotes the entropy4. However, if the underlying DAG is given by Fig. 1a, 
we have I(X → Z|do(Y)) = H(�) . Now, consider a scenario in which � tends to zero. 
In this scenario, both DAGs describe a system in which X = Y  and Z = 0 . However, 
in (b), we have I(X → Z|do(Y)) = H(b) > 0 , while in (a), I(X → Z|do(Y)) → 0 . But 
c
y
z,x in both DAGs is independent of � and it is positive.

4.2  A better measure for direct causal influences

Consider a network comprises of three random variables {X, Y , Z} , in which 
Y = f (X,W1) and Z = g(X, Y ,W2) , such that the transformations from (X,W1) 
to (X,  Y) and from (X, Y ,W2) to (X,  Y,  Z) are invertible and W1 and W2 are inde-
pendent exogenous noises. In other words, there exist functions � and � such that 
W1 = �(X, Y) and W2 = �(X, Y , Z) . Furthermore, f is an injective function in its first 
argument, i.e., if f (x1,w) = f (x2,w) for some w, then x1 = x2.

To measure the direct influence from X to Z, one may compute the conditional 
mutual information between X and Z given Y, i.e., I(X; Z|Y). However, this is not a 
good measure because as the dependency of Y on X grows, i.e., H(Y|X) → 0 , then 
I(X;Z|Y) → 0 . This can be explained by the fact that as H(Y|X) goes to zero, in other 
words, as PW1

 tends to �w0
(W1) for some fixed value w0 , then by specifying the value 

�do
i
(x

K∪{j}
) ∶= P

(
Xi
|||do(XK∪{j}

= x
K∪{j}

)

)
,

�do
i
(y

K∪{j}
) ∶= P

(
Xi
|||do(XK∪{j}

= y
K∪{j}

)

)
.

Fig. 1  DAGs for which information flow fails to capture the influence

4 More precisely, H(b) = −b log b − (1 − b) log(1 − b).
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of X, the ambiguity about the value of Y will go to zero. Thus, using the injective 
property of f, it is straightforward to show I(X;Z|Y) → 0 . Note that if f is not injec-
tive, for fixed w1 and y, there are several x such that y = f (x,w1) . Thus, specifying 
the value of Y does not determine X uniquely and I(X; Z|Y) will not go to zero.

This analysis shows that I(X; Z|Y) fails to capture the direct influence between X 
and Z when Y depends on X almost in a deterministic manner. However, looking at 
c
y
z,x , we have

where Px,y(Z) ∶= PW2
(�(x, y,Z))| �g

�W2

(x, y,�(x, y,Z))|−1. This distribution depends 
only on realizations of (X,  Y) and it is independent of PX,Y . Hence, changing the 
dependency between X and Y will not affect cyz,x , which makes it a better candidate to 
measure the direct influences between variables of a network. As an illustration, we 
present a simple example. But first, we need the following result. All proofs are pre-
sented in the Appendix.

Theorem 1 Consider X = �X +W , where � has zero diagonals and its support rep-
resents a DAG. W is a vector of zero mean independent random variables. Then, 
c
Pai⧵{j}

i,j
= |Ai,j|.

Example 3 Consider a network of three variables {X, Y , Z} in which Y = aX +W1 
and Z = bX + cY +W2 for some non-zero coefficients {a, b, c} and exogenous noises 
{W1,W2} . Hence,

As we mentioned earlier, by reducing the variance of W1 , the first term in (10) tends 
to H(bX +W2|X) = H(W2) . Hence, (10) goes to zero. But, using the result of Theo-
rem 1, we have cyz,x = |b| , which is independent of the variance of W1.

4.3  Group selection for effective intervention

Consider a network of three variables {X, Y ,C} in which C is a common cause for 
X and Y, and X influences Y. In this network, to measure the influence of X on Y, 
one may consider P(Y|do(X)) that is given by 

∑
c P(Y�X, c)P(c) = �c[P(Y�X, c)] . See, 

e.g., the back-door criterion in Pearl (2003). This conditional distribution is an aver-
age over all possible realizations of the common cause C.

Consider an experiment that is been conducted on a group of people with differ-
ent ages C in which the goal is to identify the effect of a treatment X on a special 
disease Y. Suppose that this treatment has clearer effect on that disease for elderly 
people and less obvious effect for younger ones. In this case, averaging the effect of 

cy
z,x

= sup
y,x,x�

Wd

(
Px,y(Z),Px�,y(Z)

)
d(x, x�)

,

(10)
I(X;Z|Y) = H(Z|Y) − H(Z|X, Y)

= H(bX +W2|aX +W1) − H(W2).
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the treatment on the disease for all people with different ages, i.e., P(Y|do(X)) might 
not reveal the true effect of the treatment. Hence, it is important to identify a regime 
(in this example age range) of C in which the influence of X on Y is maximized. As 
a consequence, we can identify the group of subjects on which the intervention is 
effective.

Note that this problem cannot be formalized using do-operation or other meas-
ures that take average over all possible realizations of C. However, using the meas-
ure in (3), we can formulate this problem as follows: given X = x and two differ-
ent realizations for C, say c and c′ , we obtain two conditional probabilities P(Y|x, c) 
and P(Y|x, c�) . Then, we say in group C = c , the causal influence between X and Y 
is more obvious compare to the group C = c� , if given C = c , changing the assign-
ments of X leads to larger variation of the conditional probabilities compared to 
changing the assignment of X given C = c� . More precisely, if cC=c

y,x
≥ cC=c

�

y,x
 , where

Note that cc
y,x

= supc c
C=c
y,x

 , where cc
y,x

 is given in (3). Using this new formula-
tion, we define the range of C in which the influence from X to Y is maximized as 
argmaxc c

C=c
y,x

.

Example 4 Suppose that Y = CX +W2 and X = W1∕C , where C takes value from 
{1, ...,M} w.p. {p1, ..., pM} and Wi ∼ N(0, 1) . In this case, we have cC=c

y,x
= |c| . Thus, 

C = M will show the influence of X on Y more clearer. On the other hand, such prop-
erty cannot be detected using other measures. For example, we have

I(X;Y|C = c) = 0.5 log(2), for all c.

5  Properties of the measure

Lemma 1 The measure defined in (3) possesses the following properties: (1) Asym-
metry: In general cK

i,j
≠ cK

j,i
 . (2) cK

i,j
≥ 0 and when it is zero, we have . 

(3) Decomposition: cK
i,{j,k}

= 0 implies cK
i,j
= cK

i,k
= 0 . (4) Weak union: If cK

i,{j,k}
= 0 , 

then cK∪{k}

i,j
= c

K∪{j}

i,k
= 0 . (5) Contraction: If cK

i,j
= ci,K = 0 , then ci,K∪{j} = 0 . (6) 

Intersection: If cK∪{k}

i,j
= c

K∪{j}

i,k
= 0 , then cK

i,{j,k}
= 0.

Note that unlike the intersection property of the conditional independence, which 
does not always hold, the intersection property of the dependency measure in (3) 
always holds. This is due to the fact that (3) is defined for all realizations (xj, xK) not 
only those with positive measure. See Example 1 for the asymmetric property of cK

i,j
.

(11)cC=c
y,x

∶= sup
x≠x�

Wd

(
P(Y|x, c),P(Y|x�, c)

)

d(x, x�)
.
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We say a DAG possesses global Markov property with respect to (3) if for any 
node i and disjoint sets B , and C for which i is d-separated from B by C , we have 
cC
i,B

= cC
B,i

= 0 . Using the above Lemma and the results of Theorem  3.27 in Lau-
ritzen  (1996), it is straightforward to show that a faithful network of m random 
variables whose causal structure is a DAG possesses the global Markov property5. 
This property can be used to develop reconstruction algorithms (e.g., PC algorithm 
(Spirtes et al. 2000b)) for the causal structure of a network.

5.1  Estimation

The measure introduced in (3) can be computed explicitly for special probability 
measures. For instance, if the joint distribution of X is Gaussian with mean � and 
covariance matrix Σ , then using the results of Givens and Michael (1984), we obtain

cK
i,j
= |Σi,{j,K}

(
Σ
{j,K},{j,K}

)−1
�1|, where Σi,{j,K}

 denotes the sub-matrix of Σ com-
prising row i and columns {j,K} , and �1 = (1, 0, ..., 0)T . Hence, in such systems, one 
can estimate the dependency measure by estimating the covariance matrix. How-
ever, this is not the case in general. Therefore, we introduce a non-parametric 
method for estimating our dependency measure using kernel method.

Given {x(1), ..., x(N1)} and {x(N1+1), ..., x(N1+N2)} that are i.i.d. samples drawn ran-
domly from �1 and �2 , respectively, the estimator of (6) is given by Sriperumbudur 
et al. (2010),

such that |�i − �j| ≤ d(x(i), x(j)), ∀i, j. In this equation, �̂�1 and �̂�2 are empirical estima-
tor of �1 and �2 , respectively. The estimator of MMD is given by

where yi ∶= 1∕N1 for i ≤ N1 and yi ∶= −1∕N2 , elsewhere. k(⋅, ⋅) represents the ker-
nel of H . It is shown in Sriperumbudur et al. (2010) that (12) converges to (6) as 
N1,N2 → ∞ almost surely as long as the underlying metric space is totally bounded. 
It is important to mention that the estimator in (12) depends on {x(j)} s only through 
the metric d(⋅, ⋅) , and thus its complexity is independent of the dimension of x(i) , 
unlike the KL-divergence estimator (Qing et  al. 2005). The estimator in (13) also 
converges to (7) almost surely with the rate of order O(1∕

√
N1 + 1∕

√
N2) , when 

k(⋅, ⋅) is measurable and bounded.
Consider a network of m random variables X . Given N i.i.d. realizations of X , 

{z(1), ..., z(N)} , where z(l) ∈ Em , we use (12) and define

(12)�Wd(�̂�1, �̂�2) ∶= max
{𝛼i}

1

N1

N1∑
i=1

𝛼i −
1

N2

N2∑
j=1

𝛼j+N1
,

(13)(�MMD(�̂�1, �̂�2))
2
∶=

N1+N2∑
i,j=1

yiyjk(x
(i), x(j)),

5 See Appendix for more details.
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such that z(l)
K∪{j}

= z
(k)

K∪{j}
off j . Similarly, one can introduce an estimator for c̃K

i,j
 using 

(13). By applying the result of Corollary 5 in Spirtes et al. (2000a), we obtain the 
following result.

Corollary 1 Let (E, d) be a totally bounded metric space and a network of random 
variables with positive probabilities, then ĉK

i,j
 converges to cK

i,j
 almost surely as N 

goes to infinity.

6  Experimental results

Herein, we present two simulations in order to verify the theoretical results. In par-
ticular, the first experiment verifies the group selection advantages and the second one 
shows an application of the measure for capturing rare dependencies.

Group selection for: In this simulation, we considered a group of individuals 
( C ∈{male,female}) to study the effect of an special treatment X on their health con-
dition Y. For instance, X can denote sleep aids and Y can represent the individual’s 

(14)�cK
i,j
∶= max

1≤l,k≤N

�Wd

(
�̂�i

(
z
(l)

K∪{j}

)
, �̂�i

(
z
(k)

K∪{j}

))

d(z
(l)

j
, z

(k)

j
)

,

N
100 200 300 400 500 600 700 800 900 1000 1100 1200

0.5

1

1.5

2

2.5

3

3.5

I(X;Y|C=female)
I(X;Y|C=male)
Our measure (C=female)
Our measure (C=male)

Fig. 2  Estimated measures for different N 
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awareness level in the next morning. Most psychotropic drugs are metabolized in 
the liver. Because the male body breaks down Ambien and other sleep aids faster, 
women typically have more of the drug in their system the next morning. For 
this simulation, we considered a mathematical model between X, Y, and C as fol-
lows: X = N(1.5, 1) and Y = 2X +N(0, 1) , when C = female and X = N(1, 4) and 
Y = 3X +N(0, 9) , otherwise.

Accordingly, we generated different sample sizes N ∈ {40, ..., 1200} and esti-
mated I(X;  Y|c) and ĉc

y,x
 . Figure  2 depicts the results. Since for given c, (X,  Y) is 

jointly Gaussian, we estimated I(X; Y|c) by estimating the covariance matrix Cover 
and Thomas (2012), and estimated our measure using (13) with Gaussian kernels. 
As Fig. 2 shows, although the treatment has different effects on different genders, 
I(X; Y|C) cannot capture that.

Capturing rare dependencies: We simulated the following non-linear system 
with Wi ∼ U[−1, 1] and learned its corresponding structure.

In this example, the event that X3 is a natural number occurs rarely since the measure 
of natural numbers is zero in [−1, 1] . We used the estimator of MMD given in (13) 
with Gaussian kernels and estimated the dependency measures. We obtained the cor-
responding DAG of this network given a set of observation of size N ∈ {900, 2500} . 
Using the results on the convergence rate of the MMD estimator, we used a thresh-
old of order O(1∕

√
N) to distinguish positive and zero measure. Fig.  3 depicts 

the resulting DAGs. We also compared the performance of our measure with the 
kernel-based method proposed in Zhang et  al. (2011). Note that in this example, 
since the influence of X3 on X5 is not detectable by mere observation, the best we 
can learn from mere observation is the DAG presented in Fig.  3b. This is due to 
the fact that the probability of X3 being a natural number is zero and therefore, in 

(15)

X1 = W1, X2 = X2
1
+ 2X4 − �X5� +W2,

X4 = X3 − X5 +W4, X3 = W3,

X5 = W5, if X3 is a natural number, X5 = 2
√�X1� +W5, o.t.

Fig. 3  Recovered DAGs of the system given in (15) for different sample sizes. a, b Use the measure in 
(3) and pure observation. c, d Use kernel-based method and pure observation. e, f Use the measure in (3) 
and interventional data. f Shows the true structure.
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the observational data, we have X5 = 2
√�X1� +W5 , almost surely. However, with 

the same number of observations, the kernel-based method identifies an extra edge, 
Fig. 3d.

Next, we fixed the value of X3 to be natural number and irrational, separately and 
observed the outcome of the other variables for different sample sizes. Figure 3e, f 
depict the outcomes of the learning algorithm that uses our measure. In this case, 
X3 → X5 was identified and then the Meek rules helped to detect all the directions 
even the direction of X1 − X5 as it is shown in Fig. 3f.

7  Conclusion

We studied several shortcomings of the existing dependency measures in detect-
ing direct causal influences in the literature and introduced a new statistical 
dependency measure to overcome them. This measure is inspired by Dobrushin’s 
coefficients and is based on the fact that there is no dependency between two vari-
ables if and only if the conditional distribution between them remains unchanged 
after assigning different realizations to the conditioning variable. We presented 
the advantages of this measure over the related measures. By establishing the 
connections between our measure and the integral probability metric (IPM), we 
developed low complexity estimators for our measure compared to other state-of-
the-art relevant information-theoretic-based measures such as conditional mutual 
information.

Appendix

Preliminaries

Herein, we present additional information about Wasserstein (or Kantorovich) 
metric and IPM.

Definition 2 Let (ℝ, d) be a metrical complete and separable space, and let M be the 
space of all probability measures on ℝ . If P and Q are the distribution functions of 
probability measures � and � ∈ M , respectively, the Kantorovich metric is defined 
by

For any separable metric space, this is equivalent to

dK(�, �) ∶= ∫
∞

−∞

|P(x) − Q(x)|dx = ∫
1

0

|P−1
(t) − Q−1

(t)|dt.

dK(�, �) ∶= sup

{|||� hd� − � hd�
||| ∶ ∀h(x), s.t. |h(x) − h(y)| ≤ d(x, y)

}
.
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By the Kantorovich–Rubinstein theorem, the Kantorovich metric is equal to 
the Wasserstein metric defined in 1. For an overview, see (Gibbs  and Edward 
2002).

Definition 3 Let (E,  d) be a metrical complete and separable space. The integral 
probability metrics (IPM) between two measure � and � is defined by

where F  is a class of real-valued bounded measurable functions on E.

The choice of function class F  determines the type of IPM metric. For instance, 
if F  is set to be the class of all continuous Lipschitz functions, then it becomes the 
Wasserstein metric. For MMD, E = H is a RKHS and F = FH ∶= {f ∶ ||f ||H ≤ 1} . 
When F  is set to be {f ∶ ||f ||

∞
≤ 1} , we obtain the total variation metric. For fur-

ther details, see (Sriperumbudur et al. 2010) and the references within.

Proof of Lemma 1

∙ cK
i,j
≥ 0 since Wasserstein is a metric. If cK

i,j
= 0 , we have

for all realizations xj, yj and x
K

 . Using the fact that Wasserstein is a metric on the 
space of probability measures, the above equality, and total probability law, we 
obtain

The above equality holds for all yj and x
K

 . This implies .
∙ We show this by an example. Let X = U

[0,1] to be uniformly distributed 
between zero and one, and

where A = {
i

i+1
∶ i ∈ ℕ} , and V

[0,1] is a random variable independent of U that is 
distributed non-uniformly over [0, 1]. In this case, we have

IPM(�, �) ∶= sup
f∈F

||||∫E

fd�1 − ∫E

fd�2
||||,

Wd

(
P(Xi|xj, xK),P(Xi|yj, xK)

)
= 0,

P(Xi|xK) =
∑
xj

P(Xi|xj, xK)P(xj|xK)

= P(Xi|yj, xK)
∑
xj

P(xj|xK) = P(Xi|yj, xK).

Y =

{
V
[0,1] if X ∈ A,

U
[0,1] otherwise,



358 Behaviormetrika (2022) 49:343–362

1 3

On the other hand, it is easy to see that Y has a uniform distribution over [0,  1] 
almost surely. Furthermore, for two measurable sets C and B in the �-algebra, we 
have

The last equality uses the fact that P(Y ∈ B) = P(Y ∈ B|X ∉ A) = P(Y ∈ B|X ∈ C ⧵A) . 
Thus, changing the value of Y will not affect the conditional distribution of X given 
Y, i.e., cx,y = 0.

∙ If cK
i,{j,k}

= 0 , Wd(P(Xi|xj, xk, xK),P(Xi|yj, yk, xK)) = 0, for all realization 
xj, yj, xk, yk, xK . By the total probability law, we obtain

This implies that P(Xi|xk, xK) = P(Xi|yj, yk, xK) = P(Xi|yk, xK) . Hence, cK
i,k

= 0 . Sim-
ilarly, we can prove that cK

i,j
= 0.

∙ Suppose cK
i,{j,k}

= 0 , then from the previous proof, we have 
P(Xi|xk, xK) = P(Xi|yk, yj, xK) , for all realizations yj, xk, yk, xK . Thus,

This is equivalent to say cK∪{j}

i,k
= 0 . The other part can be shown similarly.

∙ If cK
i,j
= ci,K = 0 , then from cK

i,j
= 0 and total probability law, we obtain that

On the other hand, using the triangle inequality of the Wasserstein metric, we have

The first and third expressions on the right-hand side are zero due to (16) and the 
second expression is zero due to ci,K = 0.

cy,x ≥ Wd(P(Y�X = 1∕2),P(Y�X =

√
2))

d(1∕2,
√
2)

> 0.

P(X ∈ C|Y ∈ B) =
P(Y ∈ B|X ∈ C)P(X ∈ C)

P(Y ∈ B)
=

P(Y ∈ B|X ∈ C ∩A)P(X ∈ C ∩A) + P(Y ∈ B|X ∈ C ⧵A)P(X ∈ C ⧵A)

P(Y ∈ B)

=
P(Y ∈ B|X ∈ C ⧵A)P(X ∈ C ⧵A)

P(Y ∈ B)
= P(X ∈ C ⧵A).

P(Xi|xk, xK) =
∑
xj

P(Xi|xj, xk, xK)P(xj|xk, xK)

= P(Xi|yj, yk, xK)
∑
xj

P(xj|xk, xK) = P(Xi|yj, yk, xK).

P(Xi|xk, xK) = P(Xi|yk, xj, xK)

(16)Wd(P(Xi|xj, xK),P(Xi|xK)) = 0.

Wd(P(Xi|xj, xK),P(Xi|yj, y
K
)) ≤

Wd(P(Xi|xj, xK),P(Xi|xK)) +Wd(P(Xi|xK),P(Xi|y
K
))

+Wd(P(Xi|y
K
),P(Xi|yj, y

K
)).
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∙ If c
K∪{k}

i,j
= 0 , Wd(P(Xi|xj, xk, xK),P(Xi|yj, xk, xK)) = 0. This implies that 

P(Xi|xj, xk, xK) = P(Xi|xk, xK) for all realizations xj, xk , and x
K

 . Similarly, because of 
c
K∪{j}

i,k
= 0 , we have P(Xi|xj, xk, xK) = P(Xi|xj, xK) for all realizations xj, xk , and x

K
 . 

Hence, for all realizations, we have P(Xi|xj, xK) = P(Xi|xk, xK). This result and the 
total probability law will establish the result.

The global Markov property

Since the influence structure of this network is a DAG, there exists an ordering of 
the variables such that for every node i, all its parents have indices less that i. With-
out loss of generality suppose that {X1, ...,Xm} is that ordering. Furthermore, using 
the chain rule, we have

where X
{<i}

 denotes all the variables with indices less than i. Due to the nature of 
this ordering, all the nodes in {< i} that do not belong to Pai are non-descendants 
of node i. Hence, by the definition of ID, they have zero influence on Xi given the 
parents of i and because of the first property in Lemma 1, they can be dropped from 
the conditioning in (17).

The global Markov property is a direct consequence of Lemma 1 and Theo-
rem 3.27 in Lauritzen (1996).

Proof of theorem 1

To complete the proof, we need the following technical lemmas. When d(⋅, ⋅) is the 
Euclidean distance, we denote the Wasserstein metric by WE(⋅, ⋅).

Lemma 2 For real-valued random variables, we have

where � is any joint distribution of x and y such that its marginals are �1 and �2.

Proof The lower bound is due to the dual representation of the Wasserstein metric 
and the fact that f (x) = x is Lipschitz.

For the upper bound, we use the Jensen’s inequality, that is

for p ≥ 1 . For p = 2 , we use the monotonicity of 
√
x , and the fact that the space of 

probability measures is complete and obtain the result.   ◻

(17)P(X) =

m∏
i=1

P(Xi|X{<i}
),

(18)

|||��1
[x] − ��2

[y]
||| ≤ WE(�1, �2)

≤
√

��1
[x2] + ��2

[y2] − 2��[xy],

(19)Wd(�1, �2) ≤ inf
�

(
��[d

p
(x, y)]

)1∕p
,
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Consider a network of variables in which every variable Xi functionally depends 
on a subset of other variables X

Fpi
 (the parent set of node i) as follows,

where Fi,Gi are arbitrary functions such that Gi ≠ 0 . {Wi} s denote exogenous noises 
with mean zero.

Lemma 3 For a system described by (20), the influence of node j on its child i given 
the rest of i’s parents Fpi ⧵ {j} under Euclidean metric, is bounded as follows

where the supremum is taking over all realizations of X
−{i}

 that are only different at 
Xj.

Proof Using the lower bound in Lemma 2 and the fact that Wi s have zero mean, we 
obtain the lower bound in (21).

To obtain the upper bound, we again use the result of Lemma 2, with the follow-
ing joint distribution �(Xi, Yi),

where

and fWi
 denotes the probability density function of Wi and � denotes the indicator 

function. Using this joint distribution, we obtain the upper bound in (21).   ◻

Applying the above result to a linear system in which Fi(yFpi) = (�x)i and 
Gi(xFpi) = 1 , we obtain that cFpi⧵{j}

i,j
= |Ai,j|.

Funding Open access funding provided by EPFL Lausanne. This work was supported by ONR grant 
W911NF-15-1-0479 and SNSF grant 200021-20435.

(20)Xi = Fi(XFpi
) + Gi(XFpi

)Wi, ∀i,

(21)

sup

xFpi = yFpi
off j

���
Fi(xFpi ) − Fi(yFpi )

x − y

��� ≤ c
Fpi⧵{j}

i,j
≤ sup

xFpi = yFpi
off j

⎡
⎢⎢⎣

�
Fi(xFpi ) − Fi(yFpi )

x − y

�2

+

�
Gi(xFpi ) − Gi(yFpi)

x − y
�i

�2⎤
⎥⎥⎦

1∕2

,

1

|Gi(xFpi )|
fWi

(
ΘxFpi

(Xi)

)
�
{ΘxFpi

(Xi)=ΘyFpi
(Yi)}

,

ΘxFpi
(Xi) ∶=

Xi − Fi(xFpi )

Gi(xFpi)
,
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