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Abstract

In this paper, we formulate a mixed integer linear program (MILP) for the simulated maximum
likelihood estimation (MLSE) problem and devise a Benders decomposition approach to speed
up the solution process. This framework can be applied to any advanced discrete choice model
and exploits total unimodularity to keep the master problem linear in the decomposition. The
proposed decomposition approach is benchmarked against the original MILP formulation and
PandasBiogeme. Computational experiments are performed on a binary logit mode choice
model with up to 200 respondents. Results show that the Benders decomposition approach
solves instances on average 35 and up to 100 times faster than the MILP while maintaining high
quality solutions. We furthermore give detailed descriptions of ideas for future enhancements of
the approach.
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1 Background

Maximum likelihood estimation (MLE) is a broadly used method to estimate the parameters,
given observed data (Myung, 2003). It finds its use in many areas of mathematical statistics (Sur
and Candès, 2019), physics (Hauschild and Jentschel, 2001), machine learning (Goodfellow
et al., 2016) and discrete choice modeling (Ben-Akiva and Bierlaire, 2003). The latter specifi-
cally relies on the use of MLE to estimate the optimal parameters of convex and non-convex
discrete choice models (Bierlaire, 1998). The state-of-the-art approach for the estimation process
is to use classical non linear optimization algorithms, that require that the likelihood function to
be continuous in the unknown parameters, and to have a closed form, which is also concave.
These requirements are actually verified only for the estimation of logit models with linear-in-
parameters utility functions. More complex models (the nested logit model, the cross-nested
logit model, choice models with latent classes) are associated with non concave likelihood
functions. Non linear optimization algorithms may easily be trapped in a local optimum. Models
based on mixtures (including choice models with latent variables) are associated with a likeli-
hood function that has no closed form, and involves complex integrals. Monte-Carlo simulation
is therefore required to approximate it (Train, 2009). Discrete specification decisions, such as
including an explanatory variable or not, or including an alternative in a nest) are handled "by
hand", in the sense that all possible specifications are explicitly enumerated, and each of them
estimated separately. A general implementation approach for MSLE, that is able to handle all of
these cases, has been proposed in Fernández Antolín (2018), where the problem is formulated
as a mixed integer linear program (MILP). The approach relaxes any assumption on the specific
shape of the error term distribution and instead only assumes that it is possible to take draws.
This allows it to be flexibly applied to any model. The approach is especially well suited to
handle integral estimation parameters, like class membership variables in a latent class model or
to implement an assisted / automatic specification approach (Fernandez-Antolin et al., 2018).
With a sufficiently large number of draws, the MILP formulation guarantees convergence to
global optimal solutions. However, since the complexity of MILP scales exponentially with the
number of draws, the approach can currently only be applied to solving small-scale instances,
i.e., with few individuals and alternatives (Pacheco et al., 2021).
Recent research studies from the literature have shown that the computational complexity
resulting from simulation-based optimization approaches can be overcome by mathematical de-
composition techniques (e.g. Bront et al. 2009; Koch et al. 2017). Mathematical decomposition
is an optimization field that aims at exploiting specific structural properties of decision-making
problems to speed-up the solution process by parallelization, size reduction, and simplification
(Conejo et al., 2006). Discrete decision-making problems can be characterized broadly by the
two following structural properties: (i) a set of complicating decision variables, (ii) a set of com-
plicating constraints. Both of these properties have been addressed through specific mathematical





            

decomposition techniques. Namely, (i) Benders’ decomposition (Rahmaniani et al., 2020), (ii)
column generation (Desaulniers et al., 2006), and (iii) Langrangian decomposition (Fisher,
1981). For example, Benders’ decomposition has been widely applied to relax complicating
variables in the integrated airline scheduling problem (e.g. Cordeau et al. 2001; Papadakos
2009). For the same problem, (Yan et al., 2020) proposed a new choice-based reformulation
that employs mathematical decomposition to reduce the size of the problem. Bortolomiol et al.

(2021) implemented a Branch-and-Benders-Cut procedure for tackling a discrete assortment
pricing problem. Similarly to Benders, Lagrangian decomposition has been widely applied to
relax complicating constraints in network design problems (e.g. Heidari-Fathian and Pasandideh
2018; Gendron 2019; Shan et al. 2020) or facility location problems (e.g. Alenezy 2020; Yu
et al. 2017). A recent choice-based network design problem employing Lagrangian relaxation
to determine hub locations was proposed in Tiwari et al. (2021). Pacheco et al. (2018) employ
a Lagrangian decomposition for choice-based optimization problems, by first duplicating the
complicating variables for each simulation scenario and then adding constraints that force the
duplicates to take equal values over all scenarios. In order to strengthen the decomposition and
prevent loss of structure, scenarios were clustered into groups. However, the approach yielded
only limited success, leading to the conclusion that this decomposition technique might not be
the most appropriate for this problem. Finally, column generation has been widely applied to
solve large-scale scheduling and problems (e.g. Desaulniers et al. 2002; Feillet 2010; Boyer
et al. 2014). A recent choice-based multi-project scheduling and staffing problem employing
column generation was proposed in Van Den Eeckhout et al. (2021).

In this work, we formulate a Benders’ decomposition approach, which speeds-up the MILP solu-
tion process for the MSLE and enables to scale-up the tackled instances. Our designed Benders’
decomposition approach exploits total unimodularity to keep the master problem linear, thus
eliminating the bottleneck in computational time usually associated with Benders decomposition.
The proposed approach is benchmarked against the full MILP and PandasBiogeme Bierlaire
(2020). Although the method is general, the developed approach is currently being investigated
on a binary logit mode choice model with up to 200 respondents. Initial results show that, while
being very competitive in terms of computational time, our Benders’ decomposition approach
produces small optimality gaps. We present the approach in section 2 and show results, together
with investigations of different remedies for the optimality gaps in Section 3.





            

2 Methodology

In this section, we formally introduce an MILP formulation for the MSLE problem, based on
the work in Fernández Antolín (2018), and a problem-specific Benders decomposition approach.
Without loss of generality, the formulation is presented in the context of a multinomial logit
formulation, with examples on how to extend it to other model classes, such as probit and latent
class models.

2.1 MILP formulation

Figure 1: MSLE as an MILP

max
β ,ω,s,z,U,H

∑
n

∑
i

yinzin

s.t.

∑
i

ωinr = 1 (µnr)

Hnr = ∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

sin = ∑
r

ωinr (θin)

zin ≤ Lr −Krsin (ξinr)

Uinr = ∑
k

βkxink + εinr (κinr)

ω ∈ {0,1}INR

U,H ∈ RINR

s,z ∈ RIN

β ∈ RK

Consider a set of n = {1, . . . ,N} individuals
choosing exactly one alternative among a set
of i = {1, . . . , I} alternatives. The data under-
lying the problem consists of such choices,
depicted by a binary input parameter yin. For
each alternative i we define a utility function
Uin = Uin(β ,εin), where β is a vector of un-
known parameters, and εin is a random vec-
tor. We assume the utility to be linear in β

and the distribution of ε such that we can
generate draws from it. These error term
draws are necessary to get a linear specifi-
cation, and we denote them as εinr, for R

scenarios r ∈ {1, . . . ,R}. This allows us to
write the utilities Uinr in a deterministic way,
meaning that they only depend on β . For this
exposition, we write Uinr = ∑k βkxink + εinr,
but more complex specifications are possi-
ble, if linearity in β is maintained. Denote by
ωinr the binary decision variable that indicates
whether individual n chooses alternative i in

scenario r. Random utility theory dictates that, in each scenario r, each individual n selects the
alternative i corresponding to the maximal utility Uinr, i.e. ωinr = 1 ⇔Uinr = max j U jnr. The
objective is to maximize the likelihood function, given by ∏n ∏i Pn(i)yin , where Pn(i) represents
the probability of individual n choosing alternative i. The choice probabilities are approx-
imated by Pn(i) ≈ 1

R ∑r ωinr and are guaranteed to converge to the real probabilities with a





            

sufficiently large number of scenarios R (Pacheco et al., 2021). Taking the log of the likelihood
and replacing Pn(i) by its estimator yields an objective that still contains the nonlinear term
ln(∑r ωinr). This issue is tackled by introducing the auxiliary decision variable sin = ∑r ωinr,
which is defined in constraints (θin). Similarly, an auxiliary variable zin is introduced to represent
the piece-wise linearization of the logarithm. The latter is defined in Constraints (ξinr), where
Lr = (1+ r) ln(r)− r ln(1+ r) and Kr = ln(r)− ln(1+ r) are constants representing intercepts
and slopes used for the linearization. With such pre-processing steps and by ignoring the
constant term −N ln(R), the objective of the problem can be rewritten as stated in Formulation
1. The rest of the constraints model individual choices. Constraints (µnr) guarantee that only
one alternative can be chosen per individual and scenario. Constraints (κinr) model the utility of
each alternative i for individual n in scenario r, i.e. Uinr. Constraints (ζnr), which can be easily
linearized using a standard big-M approach, and constraints (αinr) ensure that the choice being
made corresponds to the one with the highest utility. Note that Formulation 1 is characterized by
the complicating binary decision variables ω .
The MILP formulation can be easily adapted to other model speficiations. For example, in order
to tackle a probit model, it is sufficient to add the cholesky factor of the covariance matrix (Dow
and Endersby, 2004) in the right-hand side of constraints (κinr). Note that this transformation
increases the number of parameters to be estimated by I(I+1)

2 . Similarly, in order to tackle a
latent class model, it is sufficient to add a class membership indicator γcn where c is the class
index. For each class c, the constraints corresponding to making the best choice ωcinr for that
class are duplicated, and finally a global choice variable is defined as ωinr = ∑c ωcinrγcn.

2.2 Benders decomposition approach

Combinatorial optimization problems that are characterized by complicating variables are
typically tackled by a Benders decomposition approach (Benders, 1962). The logic of this
approach lies in temporarily fixing the (usually integral) complicating variables to give rise to
much simpler linear sub-problems to be solved. With this premise, a mathematical program is
therefore split into two problems: (i) a problem containing all integer decision variables and
constraints (i.e. the restricted master problem), and (ii) a problem containing all continuous
decision variables and constraints (i.e. the sub-problem). The master problem is solved, and
an integer-feasible solution is found, giving a lower bound on the objective value. This integer
solution is successively used to solve the dualized linear sub-problem and produce: (i) feasibility
cuts, if the subproblem is infeasible with the integer solution from the master problem; or (ii)
optimality cuts, if the subproblem provides an optimal solution given the fixed integer solution
from the master problem. The produced cuts are fed to the restricted master problem to tighten





            

the upper bound, after which the restricted master problem is re-solved to provide a new integer
solution. The whole Benders’ process repeats up until a satisfactory solution has been found
(i.e. the gap between upper and lower bound is small enough). A flowchart describing the steps
for Benders’ decomposition is shown in Figure 2. For a review on Benders’ decomposition, we
refer to Rahmaniani et al. (2017).
In most applications, the complicating variables are integral, resulting in the need to solve an
integral master problem at each iteration. This makes Benders notorious for its slow convergence
(Rahmaniani et al., 2020). In our case, we can use an elegant trick to avoid this issue: by
identifying the continuous estimation parameters β as the complicating variables and fixing
them in the subproblem, the utilities of all the alternatives become fixed as well. Thus the
problem of choosing the highest utility alternative simplifies to a knapsack problem, which is
totally unimodular. This mathematical property allows us to drop the integrality constraints on
the choice variables. Formulation 3 and Formulation 4 give the respective definitions of the
primal and dual of the subproblem, while Formulation 5 describes the master problem.

Figure 2: Flowchart for Benders’ decomposition

RESTRICTED MASTER PROBLEM (LB)

(DUAL) SUB-PROBLEM (UB)

OPTIMALITY/FEASIBILITY CUT

INTEGER-FEASIBLE SOLUTION

EXTREME POINT OR EXTREME RAY

WHILE:
UB−LB > ε





            

min
β ,ω,χ,η ,s,z,H

−∑
n

∑
i

yinzin

s.t.

∑
i

ωinr = 1 (µnr)

∑
k

βkxink −Hnr ≤ −εinr (αinr)

Hnr −∑
ik

ηinrkxink ≤ ∑
i

ωinrεinr (ζnr)

χinr +ωinr = 1 (πinr)

ηinrk +β
fixed
k χinr = β

fixed
k (λinrk)

βk −∑
i

ηinrk = 0 (ϕβ

nrk)

sin −∑
r

ωinr = 0 (θin)

zin +Krsin ≤ Lr (ξinr)

ω,χ,s ∈ R≥0

β ,η ,z,H ∈ R

Figure 3: MSLE - Primal subproblem

max
µ,α,ζ ,µ,λ ,ϕβ ,θ ,ξ

∑
nr

µnr −∑
inr

εinrαinr +∑
inr

πinr

+ ∑
inrk

β
fixed
k λinrk +∑

inr
Lrξinr

s.t.

µnr −ζnrεinr +πinr −θin ≤ 0 (ωinr)

πinr +∑
k

β
fixed
k λinrk ≤ 0 (χinr)

−∑
i

αinr +ζnr = 0 (Hnr)

−ζnrxink +λinrk −ϕ
β

nrk = 0 (ηinrk)

θin +∑
r

Krξinr ≤ 0 (sin)

∑
r

ξinr = −yin (zin)

∑
inr

αinrxink +∑
nr

ϕ
β

nrk = 0 (βk)

µ,π,λ ,θ ,ϕβ ∈ R

α,ζ ,ξ ∈ R≤0

Figure 4: MSLE - Dual subproblem

As the linearization of Constraint (ζnr) using a big-M approach no longer works when integrality
constraints are relaxed, the formulation in the primal subproblem needs to be modified: The
product ηinrk = ωinrβk is modeled directly using Constraints (πinr), (λinrk) and (ϕβ

nrk). This
formulation is equivalent to Formulation 1. It is important to mention that, in order to guarantee
total unimodularity of the primal, information about β fixed had to be kept in its coefficient matrix,
which implies it also being contained in the matrix of the dual, i.e. Constraints (χinr). This
means the feasible region of the dual subproblem is not constant over iterations, which might
distort the Bender cuts (Rahmaniani et al., 2020). Lastly, both the primal and the dual models
are fully decomposable on the individuals n, as individuals select alternatives independently
from each other.

Finally, the master problem reduces to finding optimal values for the estimation parameters β .
For each β fixed, after solving the dual subproblem, a Benders cut of the same type as Constraint
(1) is added. The parameters of the Benders cuts are determined by the achieved objective L ∗

and φ∗
nk = ∑ir λ ∗

inrk. Each optimal objective value of the master problem serves as a new lower





            

Figure 5: MSLE - Master problem

min
L ,β

L

s.t.

L ≥ L ∗+∑
n

∑
k

φ
∗
nk(βk −β

fixed
k ) (1)

L ≥ L best (2)
L ∈ R
β ∈ RK

bound on the objective, enforced in Constraint (2).

3 Results and discussion

3.1 Application to a mode choice problem

Our approach is tested on a binary logit model. A mode choice problem between two alternatives,
public transport (pt) and car, is considered. The utilities of the alternatives consist of a systematic
part V and a stochastic part ε . The utilities of the alternatives for individual n are:

Ucar, n = βtime · traveltimecar, n + εcar, n

Upt, n = βtime · traveltimept, n + εpt, n

where as the stochastic part is defined by independent and identically distributed random error
terms following a standard extreme value distribution, i.e. ε ∼ i.i.d. EV(0,1). The dataset
is extracted from revealed preference data on mode choice collected in 1987 for the Nether-
lands Railways, consisting of 228 respondents (CASE, 2017). Experiments are performed
using GUROBI 9.5.0 (Gurobi Optimization, LLC, 2021) on a 2.6 GHz 6-Core Intel Core i7
processor with 16 GB of RAM, with a three hour time limit per instance. Our proposed Ben-
ders approach is benchmarked against PandasBiogeme (Bierlaire, 2020) and the full MILP, in
terms of objective values and runtimes. Biogeme’s objective function is the Log-Likelihood
(LL = ln(∏n ∏i Pn(i)yin)) , which is approximated by the simulated Log-Likelihood (sLL), the
MILP objective. For the purpose of comparison, the LL is also evaluated for the decomposition





            

and the MILP using the estimated parameters. We take random subsets of individuals from the
population to get instances that are manageable for the MILP.
Table 1 shows the comparison between the decomposition and the full MILP in terms of sLL

and computation times, while Table 3 shows the results in terms of LL. We highlight the
following: (i) the decomposition solves the problem on average 35 and up to 100 times faster,
(ii) comparing the optimal solution values for the full MILP and our decomposition reveals gaps
in optimality, which are small for the objective value but larger for the estimated parameters,
and (iii) increasing the number of draws reduces the optimality gap between the exact solution
(PandasBiogeme) and the approximation (MILP and decomposition).

Table 1: Comparing our decomposition method with the full MILP in terms of sLL and runtime
(N = population size, R = number of draws, sLL = simulated Log-Likelihood, M = MILP, D =
decomposition, T = time in sec.)

N R sLL-M sLL-D Gap [%] T-M T-D
20 50 -12.607 -12.658 -0.40 64.942 10.061
20 100 -12.212 -12.258 -0.38 403.694 9.902
20 200 -12.283 -12.648 -2.97 1117.064 16.939
50 50 -30.848 -31.030 -0.59 286.679 29.780
50 100 -30.461 -31.040 -1.90 1558.604 65.006
50 200 -30.566 -30.692 -0.41 5375.655 98.206

100 50 -65.204 -65.801 -0.92 2820.229 28.781
100 100 -65.784 -67.419 -2.49 4346.067 274.163
100 200 -65.699 -66.018 -0.49 10800+ 295.741
200 50 -123.551 -124.027 -0.39 1476.185 120.579
200 100 -124.000 -124.243 -0.20 10800+ 327.253
200 200 -124.707 -124.106 0.48 10800+ 1262.755

Table 2: Comparing our decomposition method with the full MILP and PandasBiogeme in terms
of LL (N = population size, R = number of draws, LL = Log-Likelihood, Biog = PandasBiogeme,
M = MILP, D = decomposition)

N R LL-Biog LL-M Gap [%] LL-D Gap [%]
20 50 -12.303 -12.444 -1.15 -12.493 -1.55
20 100 -12.303 -12.395 -0.75 -12.411 -0.88
20 200 -12.303 -12.378 -0.61 -12.463 -1.30
50 50 -30.265 -30.326 -0.20 -30.683 -1.38
50 100 -30.265 -30.326 -0.20 -30.481 -0.72
50 200 -30.265 -30.325 -0.20 -30.283 -0.06

100 50 -64.883 -64.898 -0.02 -65.396 -0.79
100 100 -64.883 -64.883 0.00 -66.031 -1.77
100 200 -64.883 -64.893 -0.02 -64.925 -0.06
200 50 -122.689 -122.735 -0.04 -122.690 0.00
200 100 -122.689 -122.920 -0.19 -122.739 -0.04
200 200 -122.689 -123.342 -0.53 -122.721 -0.03





            

Table 3: Comparing our decomposition method with the full MILP and PandasBiogeme in terms
of β (N = population size, R = number of draws, Biog = PandasBiogeme, M = MILP, D =
decomposition)

N R Beta-Biog Beta-MILP Gap [%] Beta-D Gap [%]
20 50 -1.558 -1.048 32.72 -0.97 37.71
20 100 -1.558 -1.143 26.62 -1.11 28.77
20 200 -1.558 -1.182 24.11 -2.16 -38.67
50 50 -1.41 -1.223 13.26 -0.935 33.64
50 100 -1.41 -1.223 13.26 -1.783 -26.46
50 200 -1.41 -1.223 13.22 -1.307 7.26

100 50 -0.948 -0.889 6.23 -0.612 35.48
100 100 -0.948 -0.943 0.53 -0.451 52.4
100 200 -0.948 -0.899 5.21 -0.85 10.33
200 50 -1.31 -1.39 -6.11 -1.322 -0.92
200 100 -1.31 -1.49 -13.73 -1.393 -6.33
200 200 -1.31 -1.021 22.04 -1.377 -5.11

Although Benders decomposition is an exact approach, our formulation contains mathematical
aspects that may currently prevent the convergence to the real global optimum. As mentioned in
the methodology, a possible explanation for the deviations is the fact that information about the
master variables is maintained in the coefficient matrix of the dual. Other explanations include
numerical issues, stemming for example from the linearization of the logarithm or the way
certain solvers handle specific constraints.

3.2 Application to a continuous pricing problem

The suspicion that the log-linearization might influence the Benders cuts leads us to an immediate
first attempt to fix it: apply the framework to a choice based optimization problem that does not
rely on piece-wise linearization of the objective. A very important problem that displays this





            

characteristic is the continuous pricing problem (CPP). It can be written as follows:

max
p,ω,U,H

∑
n

∑
r

∑
i

1
R

θin piωinr

s.t.

∑
i

ωinr = 1 (µnr)

Hnr = ∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

Uinr = ∑
k ̸=l

βkxink +βl pi + εinr (κinr)

ω ∈ {0,1}

p,U,H ∈ R

applying the exact same methodology as for the MSLE problem, we arrive at the following
primal subproblem:

max
p,ω,U,H

∑
n

∑
r

∑
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1
R

θin pixinr

s.t.
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∑
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Hnr −∑
ik

ηinrxink ≤ ∑
i

ωinrεinr (ζnr)

ηinr = pfixed
i ωinr (λinr)

χinr +ωinr = 1 (πinr)

ηinr + pfixed
i χinr = pfixed

i (λinr)

pi −∑
i

ηinr = 0 (ϕβ
nr)

ω,χ ∈ R≥0

p,η ,H ∈ R

We can apply the same Netherlands mode choice data as in the MSLE problem to the CPP, with
the slight change that the utilities are now defined as follows:

Ucar, n = βtime · traveltimecar, n +βcost · costcar, n + εcar, n

Upt, n = ASCpt +βtime · timept, n +βcost · costpt, n + εpt, n





            

We now first estimate the optimal β -parameters using Biogeme and then replace the attribute
costpt by a variable ppt which is to be optimized. The problem can be thus seen as the rail
company deciding on the optimal price for their service. Running experiments with the above
framework leads to the results shown in table 4. Clearly. the gaps are still existent, proving that
the linearization of the log in the MSLE problem is not the (only) source of the issue.

Table 4: Comparing our decomposition method with the full MILP in terms of objective, price
and runtime (N = population size, R = number of draws, obj = objective, P = price, M = MILP,
NL = Nonlinear, D = decomposition, R = decomp along scen, T = time in sec.)

N R obj-MILP obj-D Gap [%] P-MILP P-D Gap [%] T-MILP T-MILP (NL) T-D T-D (R)
20 50 216.407 209.196 3.33 28.475 30.764 -8.04 7 2 11 17
20 100 202.642 201.712 0.46 28.302 26.576 6.1 37 7 21 65
20 200 200.901 200.185 0.36 30.03 28.721 4.36 205 252 49 50
50 50 440.686 437.243 0.78 28.579 29.989 -4.94 55 24 27 20
50 100 431.088 426.669 1.03 28.99 27.778 4.18 241 235 62 51
50 200 429.605 429.108 0.12 28.574 28.655 -0.28 1022 2125 163 323

100 50 990.026 988.732 0.13 29.118 28.944 0.6 252 202 31 147
100 100 977.606 976.149 0.15 30.099 29.925 0.58 1224 595 69 315
100 200 978.589 976.932 0.17 30.106 30.185 -0.26 3039 3057 304 737
200 50 1906.696 1904.189 0.13 28.977 28.678 1.03 1144 766 65 351
200 100 1882.793 1877.641 0.27 29.277 30.052 -2.65 4104 3149 359 895
200 200 1873.964 1871.614 0.13 29.276 29.343 -0.23 10811 9672 690 1539

3.3 Large numbers of draws

We want to investigate the effects that a larger number of simulation draws has on the gap. This
is interesting, among other reasons, because we can expect more complex advanced discrete
choice models to require a higher number of draws to be accurately simulated (Pacheco, 2020).
We solve the same problem instance as in the previous subsection, this time with up to R =
1000 draws. The number of participants has been kept at N = 50, in order to guarantee that the
MILP still finds a feasible solution. The results (for the MSLE problem) can be seen in Table 5.
It appears that a higher number of draws indeed has the effect of reducing the optimality gap,
however, it has to be taken into account that very often the MILP will not converge in the given
time limit of three hours for such large instances, making it more likely that we compare our
output to solutions that are actually sub-optimal. On the other hand, by far the biggest part of
computational time in the MILP is spent proving the lowerbound, i.e. optimality, meaning that
the objective value of the solution often is already optimal, even if at the time limit there is a
nonzero gap to be observed. Furthermore, for 800 draws and more, the MILP does not manage
to find a feasible solution in three hours, indicating that our approach could be applied as a
heuristic to find good feasible solution fast in large scale scenarios, which could then be used as





            

warm start solutions for the MILP.

Table 5: Comparing our decomposition method with the full MILP in terms of sLL and runtime
for large numbers of draws (N = population size, R = number of draws, sLL = simulated
Log-Likelihood, M = MILP, D = decomposition, T = time in sec.)

N R sLL-M sLL-D Gap [%] T-M T-D
50 20 -29.417 -29.908 1.67 22 6
50 50 -29.294 -31.173 6.41 279 26
50 100 -28.885 -29.42 1.85 1375 42
50 150 -29.973 -30.092 0.4 2852 70
50 200 -30.091 -30.101 0.03 10800 131
50 250 -30.741 -30.775 0.11 10800 156
50 300 -30.837 -30.843 0.02 10800 133
50 400 -30.632 -30.638 0.02 10800 130
50 600 -30.479 -30.51 0.1 10800 289
50 800 -32.035 10800 319
50 1000 -30.523 10800 349

3.4 Decomposition as a warm start

Another interesting perspective is to investigate the effectiveness of using our fast, yet slightly
suboptimal decomposition algorithm to generate a good warm start solution for the MILP. This
allows to still speed up computation, while maintaining guaranteed optimality. The results (for
the MSLE problem) can be seen in Table 6. We observe varied outcomes: For smaller instances
(N ≤ 100) most instances show a speed-up of around 50%, however, outliers exist where the
warm start solution influences the computational time negatively. For larger instances, in almost
all cases the warm start solution does not seem to lead to a significant speed-up. Interesting to
observe is also that we can have slightly better or worse solutions when solving the MILP with a
warm start versus solving it without, even though the Branch & Bound algorithm used by Gurobi
to solve the MILP guarantees optimality in both cases. This is an indication that the problem
might be highly susceptible to numerical issues. This is insofar illuminating that the gaps we
achieve with our decomposition method might be small enough to be ignored, especially with
higher numbers of draws, as seen in subsection 3.3. In general the utility of using our method as
a warm start solution is not clearly ascertainable, and thus requires further investigation.





            

Table 6: Comparing our decomposition method as a warm start with the full MILP in terms of
sLL and runtime (N = population size, R = number of draws, sLL = simulated Log-Likelihood,
M = MILP, D = decomposition, M+ = MILP with warm start, T = time in sec.)

N R sLL-M sLL-D Gap [%] sLL-M+ Gap[%] T-M T-D T-M+ rel. Speed-up [%]
50 50 -29.685 -29.842 -0.53 -29.685 0 578 38 290 49.87
50 100 -29.956 -30.954 -3.33 -29.956 0 2444 70 1308 46.48
50 150 -30.295 -30.356 -0.2 -30.295 0 1759 106 1846 -4.95
50 200 -30.352 -30.414 -0.2 -30.352 0 5074 131 10800 -112.86

100 50 -64.812 -65.555 -1.15 -64.886 -0.11 4181 60 630 84.93
100 100 -63.995 -64.118 -0.19 -63.918 0.12 10800 177 3890 63.98
100 150 -64.524 -64.551 -0.04 -64.524 0 10800 379 5184 52
100 200 -65.669 -66.48 -1.23 -65.309 0.55 10800 122 10800 0
200 50 -124.5 -124.5 0 -125.343 -0.68 6341 157 2988 52.88
200 100 -122.97 -122.823 0.12 -131.467 -6.91 10800 319 10800 0
200 150 -124.1 -123.973 0.11 -124.104 0 10800 464 10800 0
200 200 -124.34 -123.786 0.45 -124.468 -0.1 10800 467 10800 0





            

4 Plan for future research

4.1 Modeling framework

This section formally introduces the groundwork on the methodology that is going to be investi-
gated in future research.
Choice based optimization problems like MSLE complicate the direct application of decompo-
sition methods due to an inherent non-linearity of the constraints modeling the choice of the
alternative with the highest utility. There are multiple ways to tackle non-linearity in MILPs, for
example with big-M reformulations, piece-wise linearization or the modeling of the problem as
a (mixed-integer) convex quadratic program. An additional, original, linearization technique has
been developed by the authors, however, it is more appropriate to characterize it as a "quasi"-
linearization, as the product of two variables is defined with the use of fixed constants, depending
on the variable value. It only makes sense to use the quasi linearization technique in the context
of knapsack Benders (and extensions thereof). We furthermore give a brief summary on column
generation, as it as promising alternative to Benders decomposition. Table 7 below shows the
compatibility of different decomposition methods with various linearization techniques.

Table 7: Compatibility between decomposition methods and linearization methods

Big-M Quasi Piece-wise MICQP
Benders (knapsack) × ✓ ✓ ?
Benders (standard) ✓ × ✓ ✓
Column generation ✓ × ✓ ✓
Benders + Col. gen. ✓ ✓ ✓ ✓

It is important to note that there are possible issues arising from the piece-wise approximation of
products involving relaxed integral variables in the context of total unimodularity. Furthermore
it is difficult to predict the compatibility of knapsack Benders and MICQP, as no previous theory
exists to rely on. What follows are short descriptions of the methods that are to be explored.





            

4.2 Decomposition methods

Column generation Combinatorial optimization problems featuring complicating constraints
can be addressed by a column generation approach (Desaulniers et al., 2006). Such an approach
iteratively adds the decision variables involved in the complicating constraints, employing
duality theory to determine whether there are more decision variables that can be added (i.e.
enter the basis) and provide an improved solution (i.e. they have negative reduced costs). This is
achieved by solving a pricing sub-problem, in which the objective function is the reduced cost
of the new candidate variable subject to problem-specific constraints. After solving the pricing
sub-problems, if there are multiple variables that can potentially enter the basis, the variable
exhibiting the most negative reduced cost can be added. Instead, if there are no variables that can
be added to the basis, an optimal solution has been found and the algorithm can be terminated
at an early stage. A flowchart describing the several steps for column generation is shown in
Figure 6. Column generation is especially interesting for choice-based problems, as many of the
complicating choice variables are set to zero, while only the variable corresponding to the choice
with the highest utility is set to be equal to tone. This means all other choice variables will remain
non-basic and can technically be excluded. It is furthermore possible, that the performance of a
column generation approach could further be improved by grouping certain variables together,
instead of treating them all individually. A similar "smoothing" approach showed to improve
the performance of for example Lagrangean decomposition in the same context, see Pacheco
et al. (2018). The extension of column generation methods to mixed-integer convex quadratic
problems is often referred to as Simplicial Decomposition (SD) or the Frank-Wolfe algorithm
(see Bettiol, 2019). For a review on column generation, we refer to Lübbecke (2010).

Figure 6: Flowchart for column generation

RESTRICTED MASTER PROBLEM

PRICING SUB-PROBLEM

VARIABLE SELECTION

OBJECTIVE FUNCTION VALUE

VARIABLES REDUCED COSTS

WHILE:
REDUCED COSTS ̸= /0





            

4.3 Linearization methods

In this subsection we briefly describe the different methods anticipated to be capable of lineariz-
ing the nonlinear choice-constraints, i.e.

Hnr = ∑
i

Uinrωinr (⋆)

where Hnr represents the highest utility and ω the choice variables for every alternative i,
individual n, and scenario r.

big-M linearization This is the most standard way of dealing with nonlinear constraints as the
ones in (⋆). It gets its name from utilizing a large enough constant M to deactivate constraints if
needed. The nonlinear product is modeled with an auxiliary variable ηinr =Uinrωinr:

Hnr = ∑
i

ηinr

ηinr ≤ ωinrM

ηinr ≥ −ωinrM

ηinr ≤ Uinr +(1−ωinr)M

ηinr ≥ Uinr − (1−ωinr)M

This linearization method only works if ω is kept integral, thus making it incompatible with
knapsack Benders.

Quasi linearization This linearization method only works in the context of knapsack Benders,
where in the subproblem, the parameter to be optimized is fixed, and thus the utilities are as
well. However, in order to derive Benders cuts, the fixing of variables to a given value has to
happen in specific way, with the fixed value isolated on the rhs of the constraint. Technically,
the fixed value should also not appear in the coefficient matrix, but so far we have not been
able to come up with a reformulation that achieves this. The current approach, implemented for
the maximum simulated likelihood estimation problem, where the parameter to be estimated
is called βk, is shown below. Note that, instead of modelling the product Uinrωinr we instead
model the k products ηinrk = βkωinr, where k is the dimension of the optimization variable.

χinr +ωinr = 1
ηinrk +β fixed

k χinr = β fixed
k

∑i ηinrk = βk





            

Piece-wise linearization For this method, we should first write the product βkωinr in terms of
quadratic expressions: we define two new variables ηinrk and φinrk in the following way:

ηinrk = 1
2(βk +ωinr)

φinrk = 1
2(βk −ωinr)

Now it holds that:

βkωinr = η2
inrk −φ 2

inrk

We then need to come up with good bounds on βk ∈ [lbk,ubk], as for ω these bounds are
already given by [0,1]. Then the classical way of piece-wise linearizing would be to first
divide [lbk,ubk] into m separate segments and define a j, ( j ∈ {0,1, . . . ,m}) as the breakpoints,
a0 < a1 < · · ·< am. Then, we can approximately linearize the non-linear function f (x) = x̄ for
x ∈ [a0,am] as follows:

∑ j λ ja j = x

∑ j λ j f (a j) = x̄

∑ j λ j = 1
λ ≥ 0

with the restriction that only two adjacent λ j’s are allowed to be nonzero. This is usually
modeled using SOS2 constraints, however, this requires the use of m+ 1 binary variables,
which, in the context of relaxed choice variables ω , would make little sense. However, in
some scenarios these adjacency constraints can be redundant, for example if the function to
be linearized is either convex and minimized by the objective, or concave and maximized
(see Aimms, 2016). It is thus open to investigation if the approach can be made to work in a
relaxation setting. Another approach worth investigating is to employ a method developed by
Li and Yu (1999), which uses the fact that, if the slope of f is non-decreasing, which is the
case for f (x) = x2, its possible to write a piece-wise linearization using absolute values, without
having to introduce auxiliary binary variables to deal with non-convex parts. First, a univariate
mathematical function is formulated via a piece-wise linear sum of absolute expressions. Denote
s j, ( j ∈ {0,1, . . . ,m−1}) as the slopes of each line between a j and a j+1 computed using the
following equation:

s j =
f (a j+1)− f (a j)

a j+1 −a j
, ∀ j ∈ {0, . . . ,m−1}





            

An equivalent piece-wise linear form of non-linear function f (x) can then be reformulated as
follows:

L( f (x)) = f (a0)+ s0(x−a0)+
m−1

∑
j=1

s j − s j−1

2
(|x−a j|+ x−a j)

where the absolute expressions can be linearized as follows:

L( f (x)) = f (a0)+ s0(x−a0)+
m−1

∑
j=1

(s j − s j−1)(
j−1

∑
h=0

dh + x−a j)

x+
m−2

∑
j=0

d j ≥ am−1

d j ≤ a j+1 −a j ∀ j ∈ {0, . . . ,m−1}
d ≥ 0

The overall advantage of a piece-wise linear approximation is that the accuracy of the lin-
earization can be controlled using the number of breakpoints a j, thus a clear trade-off between
accuracy and efficiency is given. A clear downside is that it is very unclear whether the beneficial
and crucial properties of the knapsack reduction still hold when the products with the integral
variables are approximated. Positive in this regard is the fact that the approximation is most
crucial at 0, where it can be made equal to the function by adding a breakpoint. Furthermore,
there is the need for valid bounds on the parameters β to be estimated, however, if we manage to
employ this method successfully in a relaxation context, adding more breakpoints simply means
adding more continuous variables to a linear program, which is not expensive. This allows to
approximate the square function over a large interval with high accuracy.

MICQP formulation Another way of dealing with nonlinearity in an MILP would be switch
the paradigm completely and regard the problem as mixed-integer convex quadratic program.
It is yet to be shown that choice-based optimization programs can be written in a convex way,
and it might well depend on problems specifics. The intuition to why it might work is the
following: since we can always shift the utilities without changing the optimal solution, we can
wlog assume all utilities are negative. This means that in the product Uinrωinr, again lets say in a
relaxation setting where both variables are continuous, we are multiplying a negative continuous
variable with a positive continuous variable, plus the constraint (⋆) can be wlog written as

Hnr ≤ ∑
i

Uinrωinr





            

since the lower bound is given by the constraints

Hnr ≥ Uinr, ∀i

This means we have a variable Hnr which is trying to stay below a sum of concave curves, which
implies that the feasible region for this constraint is, in theory, convex.

5 Conclusion

In this paper, we develop a mixed integer linear program (MILP) for the simulated maximum
likelihood estimation (MLSE) problem and construct a Benders decomposition approach to
speed up the solution process. The methodology can be applied to any advanced discrete
choice model and makes use of total unimodularity to keep the master problem linear in the
decomposition, avoiding the typical bottleneck in efficiency for a Benders decomposition. The
results on a binary logit discrete choice model show an average speed up of factor 35, with
instances being solved up to 100 times faster. Small deviations in the optimal solution values
between decomposition and full MILP are present. This issue will be tackled in future research
by investigating different ways of dealing with non-linearity, before moving on to alternative
decomposition approaches.
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