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Abstract
Time-sensitive networks provide worst-case guarantees for applications in domains such as

the automobile, automation, avionics, and the space industries. A violation of these guarantees

can cause considerable financial loss and serious damage to human lives. To avoid this, it is

crucial to provide a deterministic analysis of time-sensitive networks. Our analysis is based on

network calculus, a framework for computing bounds on delay and backlog by using bit-level

arrival-curve and service-curve characterizations. In this thesis, we focus on the analysis of

time-sensitive networks to address four key requirements, specifically, bounded worst-case

delay and delay jitter (defined as the difference between worst-case and best-case delays),

zero congestion loss, and in-order packet delivery.

In time-sensitive networks, source flows are constrained by the number of packets. A

common approach for obtaining a delay bound is to derive a bit-level arrival curve from a

packet-level arrival curve, and then to use network calculus. However, such a method is not

tight: we show that better bounds can be obtained by directly exploiting the arrival curves

expressed at the packet level. By exploiting the information on the packet transmission rate,

our analysis method also leads to better bounds when flows are constrained with bit-level

arrival curves.

Second, we focus on the computation of delay and backlog bounds for an asynchronous

configuration of IEEE Time-Sensitive Networking with a Credit-Based Shaper (CBS) and

Asynchronous Traffic Shaping (ATS). ATS is an implementation of the interleaved regulator

that regulates traffic in the network before admitting it into a CBS buffer, thus avoiding

burstiness cascades. Due to the interleaved regulator, traffic is regulated at every switch, which

allows for the computation of explicit delay and backlog bounds. Furthermore, we obtain

a per-flow bound for the response time of CBSs by deriving novel results on service curves

and credit bounds for CBSs. We also compute a per-flow bound on the response time of the

interleaved regulator. Using the above results, we compute bounds on the per-class backlogs.

Then, we use the newly computed delay bounds, along with recent results on interleaved

regulators from the literature, to derive tight end-to-end delay bounds; then, we show that

these derived bounds are less than the sums of per-switch delay bounds.

Third, we analyze the effects of re-sequencing buffers, used to provide in-order packet

delivery in time-sensitive networks. To provide worst-case guarantees, up until recently, there

has not been a precise understanding of per-flow reordering metrics or of the dimensioning of

re-sequencing buffers. We show that a previously proposed per-flow metric, called reordering

late time offset (RTO), determines the timeout value. If the network is lossless, another
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Abstract

previously defined metric, called reordering byte offset (RBO), determines the required buffer.

If packet losses cannot be ignored, the required buffer can be larger than RBO, and depends on

the jitter, on the arrival curve of the flow at its source, and on the timeout. Then, we develop a

calculus for computing the RTO for a flow path. Our method uses a novel relation with the jitter

and the arrival curve, together with a decomposition of the path into non-order-preserving

and order-preserving elements. We also analyze the effect of re-sequencing buffers on the

worst-case delay, the jitter, and the propagation of arrival curves. We show in particular that,

in a lossless (but non-order-preserving) network, re-sequencing is “for free”, in other words,

it does not increase worst-case delay or jitter, whereas in a lossy network, re-sequencing

increases the worst-case delay and jitter. We apply the analysis to evaluate the performance

effect of placing re-sequencing buffers at intermediate points and illustrate the results on two

industrial test-cases.

Finally, we focus on the analysis of dampers as asynchronous mechanisms for reducing

delay jitter by delaying packets for the amount written in packet headers. Dampers have

the potential to solve the burstiness cascade problem of time-sensitive networks; this can be

done in a scalable way, as dampers can be stateless. Dampers exist in several variants: Some

apply to only the earliest-deadline-first schedulers, whereas others can be associated with

any packet schedulers; some enforce FIFO ordering, whereas some others do not. Existing

analyses of dampers are specific to some implementations and some network configurations;

also, they assume ideal, non-realistic clocks. We provide a taxonomy of all existing dampers

in general network settings and analyze their timing properties in presence of non-ideal

clocks. We give, in particular, formulas for computing residual jitter bounds of networks with

dampers of any kind. We show that non-FIFO dampers can cause reordering due to clock

non-idealities and that the combination of FIFO dampers with non-FIFO network elements

can very negatively affect the performance bounds. Our results can be used to analyze timing

properties and burstiness increases in any time-sensitive networks, as we illustrate on an

industrial case-study.

Keywords: Network calculus, Time-Sensitive Networking, Deterministic Networking, Asyn-

chronous mechanisms, Delay bound, Zero congestion-loss, Jitter, In-order packet delivery,

Burstiness cascade, Packet-level constraint, Bit-level constraint, Interleaved Regulator,

Damper, Credit-based shaper, Re-sequencing buffer, Non-ideal clocks
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Résumé
Les réseaux temps-réel fournissent des garanties pire-cas aux applications dans les domaines

tels que l’asservissement, l’avionique, les industries automobiles et spatiales. Le non-respect

de ces garanties peut entraîner une perte financière considérable ou mettre en péril des vies

humaines. Pour éviter cela, il est crucial de réaliser une analyse déterministe des réseaux

temps-réel. Notre analyse est basée sur le calcul réseau, une théorie pour obtenir des bornes

de latence et de backlog grâce aux représentations que sont les courbes d’arrivée par bits et les

courbes de service. Dans cette thèse, nous nous focalisons sur l’analyse des réseaux temps-réel

pour évaluer quatre exigences clés : un délai pire-cas borné, une gigue bornée (définie comme

étant la différence entre le délai pire-cas et le délai minimal), aucune perte par congestion et

une préservation de l’ordre des paquets.

Dans les réseaux temps-réel, les flux sont contraints à leur source en termes de nombre de

paquets. Une approche classique pour obtenir des bornes de délai est alors de construire une

courbe d’arrivée par bits grâce à la courbe d’arrivée par paquets et d’utiliser le calcul réseau

par la suite. Cependant, cette technique n’est pas précise : nous montrons que de meilleures

bornes peuvent être obtenues en exploitant directement les courbes d’arrivée exprimées

au niveau des paquets. En utilisant l’information sur le taux de transmission des paquets,

notre analyse améliore également les bornes lorsque les flux sont contraints par des courbes

d’arrivée par bit.

Ensuite, nous nous intéressons au calcul de bornes de délai et de backlog pour une configu-

ration asynchrone de IEEE Time-Sensitive Networking avec Credit-Based Shaper (CBS, lissage

par crédit) et Asynchronous Traffic Shaping (ATS, lisseur de trafic asynchrone). ATS est une

implémentation du régulateur entrelacé (interleaved regulator) qui lisse le trafic dans le réseau

avant de l’admettre dans un buffer CBS, évitant ainsi les cascades de burst. Grâce au régulateur

entrelacé, le trafic est lissé à chaque commutateur, ce qui permet le calcul de bornes de délai

et de backlog explicites. De plus, nous obtenons une borne pour chaque flux sur le temps

de réponse des CBSs grâce à des résultats originaux sur les courbes de service et les bornes

de crédit des CBSs. Nous calculons aussi une borne sur le temps de réponse du régulateur

entrelacé pour chaque flux. En utilisant ces résultats, nous obtenons les bornes de backlog

pour chaque classe. Ensuite, nous combinons ces nouvelles bornes de délai avec des résultats

récents de la littérature sur les régulateurs entrelacés pour obtenir des bornes précises sur la

latence de bout en bout. Nous montrons également que ces bornes sont inférieures à celles

obtenues en sommant les bornes de délai obtenues pour chaque commutateur.

Puis nous analysons les effets des buffers de re-séquencement utilisés dans les réseaux
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Résumé

temps-réel pour garantir la distribution des paquets dans l’ordre. Jusqu’à récemment, il n’y

avait pas de compréhension précise – ni sur les métriques de ré-ordonnancement, ni sur le

dimensionnement des buffers de re-séquencement – qui permette l’obtention de garanties

pire-cas. Nous montrons que le reordering late time offset (RTO), une métrique par flux définie

dans la littérature, fournit la valeur de timeout. Si le réseau est sans pertes, une autre métrique

de la littérature, le reordering byte offset (RBO) fournit la taille requise du buffer. Si les pertes

de paquets ne peuvent pas être négligées, la taille du buffer requise est plus grande que le RBO

et dépend de la gigue, de la courbe d’arrivée du flux à sa source et du timeout. Ensuite, nous

développons une théorie de calcul du RTO pour le chemin d’un flux. Notre méthode utilise une

nouvelle relation avec la gigue et la courbe d’arrivée, ainsi qu’une décomposition du chemin

en segments, selon qu’ils préservent ou non l’ordre de paquets. Nous analysons également

l’effet des buffers de re-séquencement sur le délai pire-cas, la gigue et la propagation des

courbes d’arrivée. Nous montrons en particulier que le re-séquencement est “gratuit” dans les

réseaux sans pertes de paquets, c’est à dire qu’il n’augmente pas les bornes de délai pire-cas

ou de gigue. En revanche, dans un réseau avec pertes, le re-séquencement augmente le délai

pire-cas et la gigue. Nous appliquons notre théorie pour évaluer l’effet sur les performances

d’un placement des buffers de re-séquencement aux points intermédiaires du réseau et nous

illustrons nos résultats sur deux études de cas industrielles.

Enfin, nous nous intéressons à l’analyse des amortisseurs (dampers). Ce sont des méca-

nismes asynchrones qui réduisent la gigue en retardant les paquets selon une durée inscrite

dans leur en-tête. Les amortisseurs ont le potentiel de résoudre le problème de cascade des

bursts dans les réseaux temps-réels. Ils peuvent passer à l’échelle car il ne conservent pas

d’état pour les flux. Il existe plusieurs variantes d’amortisseurs. Certains n’existent qu’en com-

binaison avec un ordonnanceur de type earliest deadline first (EDF, plus proche date limite

en premier), tandis que d’autres peuvent être associés avec n’importe quel ordonnanceur de

paquet. Certains assure la conservation de l’ordre des paquets tandis que d’autres ne l’assurent

pas. Les analyses existantes des amortisseurs sont limitées à certaines implémentations et

configurations de réseau. Elles supposent en outre des horloges idéales donc non-réalistes.

Nous fournissons une taxonomie des amortisseurs existants dans des réseaux aux paramètres

généraux et nous analysons leurs propriétés temporelles en présence d’horloges non-idéales.

En particulier, nous donnons les formules pour calculer la gigue résiduelle dans les réseaux

avec amortisseurs, quelque soit le type de ces derniers. Nous montrons que les amortisseurs

non-FIFO peuvent amener à un ré-ordonnancement des paquets en raison des imperfections

des horloges et que l’association d’amortisseurs non-FIFO avec des éléments de réseau FIFO

peut affecter très négativement les bornes de performance. Nos résultats peuvent être utilisés

pour analyser les propriétés temporelles et l’augmentation de burst dans n’importe quel

réseau temps-réel, ce que nous illustrons avec un cas industriel.

Mots-clés : Calcul réseau, Réseaux temps-réel, Réseaux déterministes, Mécanismes asyn-

chrones, Bornes de délai, Absence de perte par congestion, Gigue, Distribution des paquets

dans l’ordre, Cascade de bursts, Contraintes de niveau paquet, Contrainte de niveau bit,

Amortisseur, Lissage par crédit, Buffer de ré-séquencement, Horloges imparfaites
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1 Introduction

Make everything as simple as possible, but not simpler.

— Albert Einstein

Classic communication networks were designed to provide statistical guarantees in terms of

average delay, bandwidth, and packet loss to the end users for the applications such as internet

surfing, file transfer, and e-mail services. In contrast, a set of other applications requires

deterministic guarantees in the services offered to them: For example, the transmission of

safety-relevant control messages in automotive networks requires a worst-case delay of 1 ms

[4], the transmission of event-based control messages in industrial environment must be done

within 10 ms [5], parametric data for fly-by-wire system in avionics networks must be delivered

within 2 ms [6], and fault detection (e.g., occurrence of short circuits) in power-line equipment

should be taken care of within 100 ms [7]. In these applications, a violation of the delay

constraints or a loss of messages can cause severe damage to the human (e.g., operators and

passengers) and equipment (e.g., electrical systems and machines); we refer to the networks

that provide such guarantees as time-sensitive networks1.

Time-sensitive networks aim primarily to provide deterministic guarantees on delay upper-

bounds, in contrary to classic networks that focus on average delays. Moreover, due to the

criticality of the applications, time-sensitive networks also guarantee zero congestion-loss

by setting enough buffer spaces at the intermediate systems. However, feedback that slows

down the flow of messages to avoid congestion is not an option for the applications in such

networks. Today, with the emergence of applications, such as the tactile Internet, industrial

Internet of Things [8], electricity distribution[9], and Industry 4.0 [10], the need for worst-case

performance guarantees is on the rise. Hence, it is crucial to analyze time-sensitive networks

by using proper methods and tools in order to achieve deterministic guarantees as required in

such networks.

1The term "time-sensitive network" is not equal to IEEE Time-Sensitive Networking (TSN), but it does cover
any network implementing IEEE TSN.
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Chapter 1. Introduction

1.1 Background and Motivation

Traditionally, time-sensitive networks were built over field buses such as controller area net-

work (CAN) [11] and FlexRay [12]. These technologies have limitations in terms of scalability

and bandwidth (to the order of a few Mbps). To overcome these limitations, the most promis-

ing solutions were provided as extensions over Ethernet as a well-established technology [13];

extensions such as time-triggered Ethernet (TTEthernet), Ethernet for control automation

technology (EtherCAT), process field net (PROFINET) and Avionics Full-Duplex Switched Eth-

ernet (AFDX) [14, 15, 16]. Ethernet was standardized well in IEEE802.3 [17]. However, it was

not initially designed to provide worst-case guarantees. To this end, the Institute of Electronics

and Electrical Engineers (IEEE) took a step toward the standardization of the requirements

(such as flow behavior and quality of service) and mechanisms (including scheduling, shaping,

and reservation) to provide performance guarantees for multimedia applications; this was

published as IEEE802.1BA Audio Video Bridging (AVB) [18].

Later, due to the increasing need for the standardization of mechanisms for applications

with requirements stricter than the guarantees provided by IEEE802.1BA AVB, e.g., control-

data traffic, the IEEE 802.1 Time Sensitive Networking (TSN) task group [19] is now in the

process of providing standardization for a wider range of applications, including control-data

traffic and multimedia streams over Link Layer (L2) of Internet protocol suite [20]. In fact,

IEEE TSN aims to unify the requirements and mechanisms of the existing Ethernet-based

solutions for time-sensitive networks with interconnections of switches and end systems.

While IEEE TSN mainly considers local area networks (LANs), the Deterministic Networking

(DetNet) working group of Internet Engineering Task Force (IETF) [21] intends to enable

time-sensitive networks on a large scale by incorporating Internet Layer (L3) and by using

IP packets; some applications of such networks are electrical utilities, building-automation

systems, and industrial machine-to-machine[7].

An analysis of time-sensitive networks can be made by measurement or analytical approaches.

The measurement can be done through a real network or by simulation. Even though measur-

ing the metrics over a real network brings realistic measurements, it still requires a complex

setup and access to the network, and this might not be always feasible. To avoid these com-

plications, an alternative is to use software simulators and to implement an abstraction of

the systems in a network, e.g., using NeSTiNg [22]. The main drawback of this method is

the difficulty of detecting rare events (e.g., with probability of 10e-7). In contrast, analytical

methods use mathematical modeling of the systems in a network with a certain level of ab-

straction; they can be probabilistic or deterministic. The probabilistic analytical methods,

such as stochastic network calculus [23, 24], perform stochastic modeling of the systems and

provide probabilistic measurements (e.g., probability of missing a deadline is 10e-6). Whereas,

deterministic analytical methods model the systems based on their worst-case behaviors and

obtain bounds on the metrics of interest. As a result, if the bounds are tolerable by the appli-

cations in time-sensitive networks, the performance guarantees are achieved; otherwise, a

configuration change or extra resource allocation will be necessary to make it possible. In this
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1.2 Challenges

thesis, we follow this approach by using deterministic network calculus [25, 26]; hence, we can

provide proven performance guarantees within time-sensitive networks because, otherwise,

it could lead to high financial losses, as well as dangers for humans and the environment.

In the remainder of this document, by "network calculus" we mean "deterministic network

calculus".

Network calculus is a mathematical framework with a set of tools and results for computing

delay and backlog bounds by the means of arrival envelopes and service abstractions of the

systems. The fundamentals were established by Parekh and Gallager [27] and Rene Cruz

[28, 29, 30], then it was extended by [31]. Le Boudec and Thiran [25], as well as Chang [26],

introduced the concepts of arrival and service curves that are the main building blocks of the

currently-known network calculus: A service curve is an abstraction of a system, and an arrival

curve is a bound on the amount of input traffic to this system within any duration of time.

The network calculus tool-set in [25] enables us to compute delay and backlog bounds for a

system by using the arrival and service curves. Moreover, the theory presented in [25] eases

the analysis of systems in sequence by the means of service-curve concatenation, shaping

and arrival-curve propagation. This makes network calculus a proper choice to be used in

time-sensitive networks. Over several years, a plentiful of research papers and tools were

published based on network calculus; the textbook by Bouillard et. al. [2] is the most recent

collection of methods and results in this domain.

1.2 Challenges

According to the published and draft documents on time-sensitive networks [32, 33, 34, 35,

36, 37], the performance guarantees in such networks are defined in terms of worst-case

delay, zero congestion-loss, jitter, as well as in-order packet delivery and seamless redundancy.

Packet losses in networked systems could stem from buffer overflow (as a result of network

congestion), transmission failure, network-element malfunction, etc. In time-sensitive net-

works, the goal is to avoid congestion losses by a proper configuration of buffer sizes and to

recover from other possible network failures by the use of redundancy methods.

To this end, the documents on time-sensitive networks specify a number of scheduling mech-

anisms, redundancy methods, and packet ordering functions [35, 37]. In the analysis of

time-sensitive networks, we first need a proper abstraction of these scheduling mechanisms

in isolation, and their input traffic, by means of service and arrival curves; then, we can obtain

delay and backlog bounds for a network element in isolation using network calculus. Sec-

ond, we need to extend the analysis for an interconnection of such mechanisms to obtain

end-to-end bounds. Finally, we need to capture the effect of redundancy methods and packet

ordering functions on the other metrics of interest in time-sensitive networks. Hereafter, we

discuss the challenges and the open problems in the analysis of the aforementioned metrics

in time-sensitive networks.
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Chapter 1. Introduction

1.2.1 Worst-Case Delay

The “worst-case delay" of a flow is the maximum delay of all non-lost packets sent by the

flow during its lifetime; it is one of the most common requirement across time-sensitive

applications. To this end, the documents in time-sensitive networks specify a number of

per-class queuing and scheduling mechanisms such as credit-based shaper [35, Annex L] and

strict priority. Because the mechanisms are per-class, one key issue in this context is knowing

how to deal with the burstiness cascade: individual flows that share a resource dedicated to a

class can see their burstiness increase, which can in turn cause increased burstiness to other

flows downstream of this resource; as a consequence, this can lead to increased delay bound

at the downstream systems. Another key issue in this context is cyclic dependency: some flows

partially share their paths with other flows and form a cycle. The presence of the burstiness

cascade in a network with cyclic dependencies can make the computation of end-to-end delay

bounds hard and can lead to network instability [38, 39].

In this thesis, we focus on the analysis of two mechanisms, interleaved regulators and dampers.

They break cyclic dependencies and avoid the burstiness-cascade issue by recreating arrival

curve of flows according to their sources.

1.2.2 Zero Congestion-Loss

A congestion occurs when the input rate to an output queue exceeds the output rate for a

sufficient amount of time; this in turn causes the queue to be overflowed and packets to be

discarded. Time-sensitive networks seek to avoid such phenomenon as one of its goals called

“zero congestion-loss". To provide such a guarantee, it is necessary to compute an upper

bound on the backlog present in any queuing system within a flow path; then, the queue size

should be set at least as much as the backlog bound. We can compute backlog bounds for any

queuing system by using network calculus, as long as we know an arrival curve of the input

traffic and a service curve offered to this queue.

1.2.3 Worst-Case Jitter

The “delay jitter" (also called “jitter") for a given flow is the difference between the worst-case

delay and “best-case delay" (i.e., the minimum delay of all packets sent by the flow during its

lifetime); it is referred to as IP Packet Delay Variation in RFC 3393 [40].

Most of the mechanisms proposed in time-sensitive networks such as a credit-based shaper,

IEEE802.1 Qcr Asynchronous Traffic Shaping [41], and deficit round-robin [1] are designed

to provide guarantees over worst-case delays. These mechanisms, on their own, do not

provide low jitter as required by a set of applications that include industrial automation[5] and

avionics [6], and by the emerging applications in large-scale time-sensitive networks, such as

the industrial Internet of Things [8] and electricity distribution[9]. This issue can be addressed

with dampers that are asynchronous mechanisms to reduce delay jitter [42, 43, 44]. A damper
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delays every time-sensitive packet by an amount written in a packet header field that carries

an estimate of the earliness of this packet with respect to a known delay upper-bound of

upstream systems. The main challenge with respect to dampers is the lack of a proper analysis;

in the existing works, the analysis is done under limited assumptions on the network settings.

Also, the existing analyses assume that the network operates with one ideal clock. Whereas, in

practice, this assumption does not hold and can have non-negligible side effects [45].

In this thesis, we focus on the analysis of dampers, as asynchronous jitter-reduction mecha-

nisms. The analysis of time-triggered mechanisms, such as cyclic queuing and forwarding

[46] and time-aware shapers, [47] are out of the scope of this thesis.

1.2.4 In-Order Packet Delivery

Time-sensitive networks permit some limited amount of packet reordering. This can occur

due to parallelism in network elements such as switches and routers, the routing of packets

via different paths, or packet duplication [48, 49, 50]. The IETF DetNet states in [37] that the

amount of reordering is a key quality-of-service attribute of a flow; but neither IETF DetNet

nor IEEE TSN specify the meaning of this in detail. If a time-sensitive flow is subject to possible

reordering and the application requires in-order packet delivery, a re-sequencing buffer is

used to restore packet order [51]. The buffer is typically placed at the final destination, but it

is also proposed in [37] to be placed at intermediate points inside the network. This would

be done, for example, when the network path between the re-sequencing buffer and the

destination preserves order, or simply in order to reduce the amount of reordering.

A re-sequencing buffer stores the early packets until all packets with smaller sequence numbers

arrive [51, 52, 53, 54]. A timer is used to limit the waiting time of a packet in the re-sequencing

buffer because, otherwise, the loss of a packet in the network would cause indefinite holding

of the packets with larger sequence numbers. A challenge in this context is to analyze the

effect of placing re-sequencing buffers on the computation of worst-case delay and jitter.

Surprisingly, such computations are currently done without taking into account the effect of

re-sequencing buffers. Therefore, in this thesis, we fill this gap.

1.2.5 Seamless Redundancy

Due to the criticality of the applications in time-sensitive networks, redundancy mechanisms

are provided in order to recover from potential network failures such as broken transmission

links. The existing mechanisms are the high-availability seamless redundancy (HSR) and

parallel redundancy protocol (PRP) [55]. In both mechanisms, a source replicates any packet

and sends it through all of its ports; then the replicates are eliminated at destination. Newer

methods, i.e., IEEE802.1CB frame replication and elimination for redundancy[56] and DetNet’s

packet replication and elimination functions (PREF)[57], suggest to replicate and to eliminate

packets also at intermediate switches or routers.

5



Chapter 1. Introduction

A challenge of such redundancy protocols is knowing how to analyze their effect on other

metrics, i.e., bounds on delay, jitter, backlog, and the amount of packet reordering: As a packet

might be replicated and eliminated at multiple points, each replica experiences different

delays. At the intermediate points, this in turn causes the flows to have increased burstiness,

which ultimately leads to an increase of worst-case delay, jitter, and backlog; also, as a direct

side-effect of such delay variations, the order of packets might not be preserved. An analysis

of time-sensitive networks in the presence of such redundancy protocols is done in [58] and is

out of the scope of this thesis.

1.3 Contributions

In this dissertation, we provide a network-calculus toolbox for analyzing asynchronous mech-

anisms in time-sensitive networks, and we address the challenges mentioned in the previous

section, in particular the following:

1. We derive novel delay bounds for flows with packet-level constraints; these flows share

a FIFO system with a known service curve and a fixed transmission rate. Our bounds

dominate the existing ones in time-sensitive networks; these bounds are obtained by

deriving bit-level arrival curve from packet-level constraints.

2. Using this method of proof, we obtain improved delay bounds for flows with other

regulation constraints, i.e., bit-level arrival curves (e.g., token bucket) and g-regulation

(e.g., length-rate quotient).

3. We derive and formally prove credit upper-bounds for the credit-based shaper (CBS) in

a TSN scheduler, in the presence of a higher priority class for control-data traffic; our

bounds improves on the existing bounds.

4. Using the computed credit bounds, we obtain a service curve for every AVB (audio-video

bridging) class at a CBS system in a TSN scheduler.

5. We obtain delay and backlog bounds for an interleaved regulator that is followed by a

FIFO system with CBS. We show numerically that the obtained delay bound is tight.

6. We show that one of the metrics in RFC4737 [59], the reordering late time-offset (RTO),

equals the minimal timeout value for a re-sequencing buffer such that no packet is lost

due to spurious timeout and such that packets are delivered in-order.

7. We show that another metric in RFC4737, the reordering byte offset (RBO), is equal

to the required size of the re-sequencing buffer when the network can be assumed

to be lossless. Otherwise, we show that, if packet losses cannot be ignored, the RBO

underestimates the required buffer size for which we give a formula that involves the

RTO.
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8. We show that, if a flow is lossless between its source and a re-sequencing buffer, the

worst-case delay and the delay jitter are not increased by the re-sequencing buffer (i.e.,

re-sequencing is ”for free“ in terms of delay in the lossless case). In contrast, if the flow

can be subject to packet losses on its path from the source to the re-sequencing buffer,

then the worst-case delay can be increased by an amount up to the timeout value of the

re-sequencing buffer.

9. We evaluate the value of re-sequencing buffers at intermediate points, in addition to

the destination. We find that the placement of re-sequencing buffers— after every non-

order-preserving element (typically a switching fabric)— does not improve the worst-

case delay or the delay jitter if the network is lossless. But, in the presence of network

losses, it does reduce the worst-case delay, delay jitter, and RTO at the destination.

10. We present a taxonomy of dampers that classifies the existing implementations as

dampers with or without FIFO constraint.

11. We provide formulas for computing tight delay and jitter bounds for dampers without

FIFO constraints under general network configuration with non-ideal clocks. We see

that the effect of non-ideal clocks can be non-negligible in cases with low jitter require-

ments. As a result of this analysis, we derive conditions in which clock synchronization

throughout a network does not affect the performance of dampers.

12. We capture the propagation of arrival curve at the output of dampers and see how

dampers can solve the burstiness cascade issue.

13. We show that existing implementations of dampers without FIFO constraints might

cause undesired packet reordering due to clock non-idealities, even in synchronized

networks. This problem is avoided with dampers that enforce FIFO constraints.

14. We model two classes of dampers with FIFO constraints: re-sequencing dampers and

head-of-line dampers. For the former class, we show that when all network elements are

FIFO, the delay and jitter bounds are not affected by the re-sequencing operation. For

the latter class, there is a small penalty, which we quantify exactly, due to head-of-line

queuing. In contrast, if some network elements are non-FIFO, the jitter bounds for

dampers with FIFO constraints can be considerably larger.

1.4 Roadmap

This thesis is organized as follows.

In Chapter 2, we explore the literature on the analysis of various aspects of time-sensitive

networks such as traffic specification, scheduling mechanisms, and traffic regulation and

dampers. In Chapter 3, we provide the necessary mathematical background, as well as

network-calculus concepts and existing results.

7



Chapter 1. Introduction

In Chapter 4, we present a novel delay bound in time-sensitive networks; it improves the delay

bound obtained by classic network-calculus. The main result of Chapter 4 is the derivation of

delay bounds for flows with packet-level constraints that are aligned to the traffic specification

in time-sensitive networks. Currently, an approach for obtaining a delay bound is to derive a

bit-level arrival curve from a packet-level constraint then to apply the classic network-calculus

delay bound. We show that such a method is not tight and that better bounds can be obtained

by directly exploiting the arrival curves expressed at the packet level. Our analysis method also

obtains better bounds when flows are constrained with bit-level arrival curve and g-regulation,

such as the recently proposed length-rate quotient rule. The content of this chapter was

published in [60, 61].

In Chapter 5, we study an asynchronous configuration of IEEE TSN scheduling with CBSs and

in the presence of interleaved regulators. In this chapter, we first derive and formally obtain

novel credit upper-bounds for the CBS; our bounds improve on existing bounds. Then, by

applying the obtained credit bounds, we derive a service-curve characterization for a CBS and

obtain a per-flow bound for the response time of the CBS. We also compute a per-flow bound

on the response time of an interleaved regulator. Using the above results, we compute bounds

on the per-class backlogs. Then, we use the newly computed delay bounds, along with recent

results on interleaved regulators from the literature, to derive tight end-to-end latency bounds

and to show that these are less than the sums of per-switch delay bounds. The content of this

chapter was published in [62, 63].

In Chapter 6, we analyze time-sensitive networks for when in-order packet delivery is required.

This is typically done by the means of re-sequencing buffers with two parameters, time-out

value and buffer size. First, we show that a previously proposed per-flow metric, reordering late

time-offset (RTO), determines the timeout value. If the network is lossless, another previously

defined metric, the reordering byte offset (RBO), determines the required buffer. If packet

losses cannot be ignored, the required buffer might be larger than RBO and depends on jitter,

an arrival curve of the flow at its source, and on the timeout. Then we develop a calculus to

compute the RTO for a flow path: the method uses a novel relation with jitter and arrival curve,

together with a decomposition of the path into non-order-preserving and order-preserving

elements. We also analyze the effect of re-sequencing buffers on worst-case delay, jitter, and

the propagation of arrival curves. We show in particular that, in a lossless (but non order-

preserving) network, re-sequencing is “for free”, in other words, it does not increase worst-case

delay nor jitter; whereas, in a lossy network, re-sequencing increases the worst-case delay

and jitter. We apply the analysis to evaluate the performance impact of placing re-sequencing

buffers at intermediate points and illustrate the results on two industrial test cases. The

content of this chapter was published in [64].

In Chapter 7, we focus on dampers and provide a taxonomy of all existing implementations

in general network settings and analyze their timing properties in the presence of non-ideal

clocks. We give, in particular, formulas for computing residual jitter bounds of networks with

dampers of any kind. We show that non-FIFO dampers can cause reordering due to clock
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non-idealities and that the combination of FIFO dampers with non-FIFO network elements

can very negatively affect the performance bounds. Our results can be used to analyze timing

properties and burstiness increase in any time-sensitive networks, as we illustrate on an

industrial case-study. The content of this chapter was published in [65].

We conclude this thesis in Chapter 8 by summarizing our results. The proofs of theorems,

propositions, and lemmas are given in the appendices.
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2 Time-Sensitive Networks

The science of today is the technology of tomorrow.

— Edward Teller

As mentioned in Chapter 1, the applications in time-sensitive networks require guarantees in

terms of delay and delay-jitter bounds, zero congestion-loss and in-order packet delivery. Such

guarantees are different across applications[66]: For example, audio and video applications

require delay bounds of, respectively, 2 ms and 50 ms with a jitter not more than 100 µs for

a proper interactive communication, and in the automotive industry, the requirement on

delay bounds is sub-milliseconds and on the delay jitter is a few microseconds. Therefore,

time-sensitive networks should be able to provide a wide range of QoS guarantees.

Being able to provide such guarantees depends on the behavior of the flow sources and the

intermediate systems that are in charge of forwarding the flows of data to their destinations.

In time-sensitive networks, a flow is characterized with certain traffic specification (TSPEC),

e.g., the classic token-bucket and periodic data-generator. The coexistence of numerous flows

raises the need to share the network resources, in particular the physical transmission line.

This leads to queuing within intermediate systems (also sources, if they generate multiple

flows) that, in turn, affect the end-to-end delay. The queuing inside intermediate systems is of-

ten per aggregate rather than per flow. To arbitrate among the flows, a scheduling mechanism

is placed before the shared medium to decide which queue can use the link. Strict-priority and

round-robin scheduling, as well as weighted fair queuing, are examples of such scheduling

mechanisms. As mentioned in Chapter 1, the burstiness cascade and the circular dependen-

cies make the computation of delay bounds difficult in networks with aggregate queuing. To

avoid them, a solution is to regulate flows at intermediate systems [67, 43].

A regulator, called a shaper in RFC 2475 [68]1, delays some or all of the packets of a flow in

1In time-sensitive networks, the word "shaper" is commonly used in some scheduling mechanisms such as
"credit-based shaper“ and "time-aware shaper“, which do not perform as shapers defined in RFC2475. Moreover,
the term "regulator” has been used frequently in the literature especially with the emergence of "interleaved
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order to bring it into compliance with a traffic profile, typically the same as the flow TSPEC. A

damper delays the packets of the flows in order to preserve their inter-spacing hence is able

to provide low jitter. Therefore, regulators and dampers break the cyclic dependencies and

avoid the burstiness cascade, and facilitate achieving the QoS guarantees in time-sensitive

networks.

In this chapter, we provide an overview of the most common TSPEC and scheduling mecha-

nisms, as well as traffic regulation and dampers in time-sensitive networks.

2.1 Traffic Specification

Token (leaky) bucket is among the first regulation considered for real-time application, such

as audio and video, in communication networks[69, 27, 70]. A token-bucket regulator has two

parameters, rate r and bucket size b. It is often seen as a bucket with size b that is filled with

tokens by rate r . A source with token-bucket TSPEC can generate traffic only as much as the

amount of tokens stored in the bucket. Parallel to the token-bucket regulator, the generic cell

rate algorithm (GCRA) was used within ATM2 networks [71], and has two parameters: drain

rate r , and bucket depth b. In ATM networks, a flow is characterized by a peak cell rate, a

sustainable cell rate, a maximum burst size and a cell delay variation tolerance [72, 73]. Then

the source of a flow is tested with two GCRAs: The first is with r = peak cell rate and b=cell delay

variation tolerance, and the second is with r =sustainable cell rate and b=burst tolerance+cell

delay variation tolerance. The integrated service (IntServ) unifies the token bucket and GCRA,

and it defines the general TSPEC with four tuples, burst tolerance b, sustainable rate r , peak

rate p and maximum packet size L [74]. The IntServ TSPEC, called a dual token-bucket in [23],

can be interpreted as two token buckets, where the first has size L and rate p, and the second

has size b and rate r .

In industrial communication, as well as in the automotive and aerospace industries, sources

of flows can generate periodic messages such as command and control data or non-periodic

messages, e.g., even-based control, alarms and warnings [33, 32, 75, 66, 76, 77, 78, 79]. The

message periods are different based on application, e.g., parametric data for fly-by-wire or

military sensing in aerospace has a period in range 1−10 ms, the safety-relevant commands

in automotive network are sent with a period within 1−20 ms, and isochronous traffic in

industrial communication is generated within a period less than 2 ms.

IEEE TSN unifies the TSPEC from various industries, by using three terms: MaxIntervalFrame

(MIF), MaxFrameSize (MFS), and Class Measurement Interval (CMI) [35, Section 34.6.1].

According to TSN TSPEC, a talker (the TSN term for a source) can generate up to MIF frames

with a maximum size of MFS, within each duration equal to a CMI. In IETF DetNet, the TSPEC

is defined with more terms due to a vast variety of applications that DetNet intends to cover[7].

The DetNet TSPEC consists in Interval, MaxPacketsPerInterval (MaPPI), MaxPayloadSize

regulators“. Hence to avoid possible confusion regarding the term "shaper“, we decided to use “regulator“.
2Asynchronous Transfer Mode

12



2.2 Scheduling Mechanisms

(MaPS), MinPayloadSize (MiPS), and MinPacketsPerInterval(MiPPI) [80]. The Interval is the

period of time in which the TSPEC is specified; MaPS [resp., MiPS] is the maximum [resp.,

minimum] size of packet that is sent within one Interval; MaPPI [resp. MiPPI] the maximum

[resp., minimum] number of packets that is sent within one Interval.

As we saw, the TSPEC in time-sensitive networks can be periodic or non-periodic and at the

bit level or packet level. In this thesis, we map the TSPEC to arrival curves in order to perform

our analysis. An arrival curve can be at the bit or packet level, hence making a proper choice

affects the delay bounds, as we will explore more in Chapter 4.

2.2 Scheduling Mechanisms

The mechanisms in time-sensitive networks can be categorized into two main families of

synchronous (time-driven) and asynchronous (event-driven) schedulers. The synchronous

schedulers perform the arbitration among the queues, based on a known time schedule,

e.g., IEEE802.1Qbv Time-Aware Shaper (TAS) [81] and IEEE802.1Qch Cyclic Queuing and

Forwarding (CQF)[46]. TAS has a number of gates. Each gate is associated with a queue,

permits packets to pass when opened, and blocks packets when closed. The states of the

gates are determined by the gate control list (GCL). CQF (also known as a peristaltic shaper)

is a two-buffer scheduling mechanism; the buffers operate in cyclic manner: At any cycle

time, one buffer accumulates the received packets and the other one transmits the already

stored packets from the previous cycle. The time-dependency of such schedulers requires time

synchronization and global scheduling throughout network in order to achieve end-to-end

guarantees. The asynchronous schedulers such as a credit-based shaper (CBS), strict priority

(SP) scheduler, and a deficit round-robin (DRR), run independent of time schedules. Their

operations rely on packet arrivals/departures, as well as scheduler parameters and variables,

e.g., an idleslope and credit value for CBS, a priority value for SP, and a quantum value for

DRR. In this thesis, we focus on asynchronous mechanisms. Further studies of synchronous

mechanisms are beyond the scope of this thesis and can be found in [82, 83, 84, 85].

In the rest of this section, we explore the most common asynchronous scheduling mecha-

nisms in time-sensitive networks. From the network-calculus perspective, we abstract these

mechanisms by using service curves (see Section 3.2), as we will see in Chapter 5.

2.2.1 Strict Priority

Strict-Priority (SP) scheduling is among the simplest schedulers used in time-sensitive net-

works and has been extensively studied [86, 87, 88, 89]. In this scheme, each queue is associ-

ated with a priority level. Whenever one or multiple queues have packets to transmit, the SP

scheduler selects the one with highest priority to send its head packet. This process is repeated

at the end of each packet transmission, until all queues become empty. This is referred to as a

non-preemptive SP, as the transmission of a packet is not interrupted until it is completed.
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On the contrary, a preemptive SP interrupts the packet transmission, when a queue of higher

priority has packets to send, and then starts the transmission of the head packet from the

higher priority queue.

The SP scheduling enforces a priority queue to wait until all the higher priority queues (if

any) are empty. Therefore, providing guarantees for a priority queue, except the highest, is

dependent on the input traffic of higher priority queues. Such guarantees are only possible

when the traffic of higher priority queues is regulated. This is the reason that an SP is often

used in combination with other mechanisms such as CBS and BLS (see Section 2.2.3).

2.2.2 Fair Queuing

Generalized processor sharing (GPS) is a theoretical scheduling policy proposed for providing

minimum rate guarantees [90, 91, 92]. With the GPS, each queue is assigned a weight used to

tune the minimum rate offered to each queue. The rate guarantees provided by the GPS are

based on the assumption of a fluid flow of data; in practice, this assumption does not hold as

flows are often packetized. Therefore, several packet-based approximations of this policy are

proposed, among which is the packetized GPS (PGPS), also known as weighted fair queuing.

PGPS operates as follows. When the server is ready to transmit the next packet (either at

the start of a backlog or at the end of a packet transmission), a theoretical finish time is

computed based on the GPS policy for all packets in the queues and in the absence of future

arrivals. Then, the scheduler selects a packet, with smallest finish time among all packets,

for transmission. Compared to the GPS, the PGPS increases the worst-case delay, only by

the transmission of one maximum packet size [91, Theorem 1]. Even though the PGPS is a

practical approximation of the GPS, its implementation is still hard due to the complexity of

selecting a packet with smallest finish time [93].

Round-robin (RR) scheduling resembles the GPS policy and provides minimum rate guaran-

tees among the queuing systems [94, 95]. The original RR scheduling arbitrates among the

queues in a circular pattern and gives a fixed time to each queue with packets to send them.

When queues are subject to addressing various QoS requirements, a proper arbitration is to

treat them differently by allocating weights; the scheme that is referred as Weighted RR (WRR)

[96, 97]. The classic WRR assigns a weight, in unit of packet, to each queue. When a queue is

selected for transmission, the scheduler sends packets up to the assigned weight or the end of

queue. This behavior of WRR makes it a simple work-conserving scheduler. However, multiple

packets (up to the weight) can be served consecutively for each queue, which causes a large

worst-case waiting time for other queues [98]. Interleaved WRR (IWRR) is an implementation

of WRR that avoids this issue [96]. With IWRR, each cycle is split into a number of rounds

equal to the maximum of the weights assigned to the queues. At any round r , a queue can

send one packet, only if r is less than its weight. Compared to WRR, IWRR has smaller packet

bursts, which causes smaller worst-case delays for the queues. As both WRR and IWRR assign

weights in units of packets, these schedulers are good approximations of the GPS in providing
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minimum rate allocations, but only when the packets are of the same size, e.g., in classic ATM

networks. In time-sensitive networks, this assumption often does not hold as packets can have

variable lengths. The deficit RR (DRR) scheduling [99] is proposed to address this limitation of

WRR and IWRR, by keeping track of the transmitted traffic, at the byte level, for each queue.

In DRR, each queue has a parameter quantum and a variable deficit counter, both in bytes. At

each cycle, when a queue is not empty, its deficit counter is increased by the quantum (the

value of deficit counter expresses the maximum amount of data, in bytes, that a queue can

send at each cycle). Then, if the size of the head packet is not larger than the deficit counter, it

is emitted and the deficit counter is decreased by the size of the packet. This continues until

the deficit counter is smaller than the size of the head packet and then the scheduler moves to

the next queue. The deficit counter of a queue remains for the next cycle, except when the

queue becomes empty that resets the deficit counter to zero.

Among the RR scheduling mechanisms, DRR catches the most attention in time-sensitive

networks due to adaptive rate guarantees among the queues, by means of the quantum values,

and O(1) complexity (under the condition that the quantum value of each queue is larger

than the maximum packet length). However, achieving low delay bounds and a proper tuning

of the quantum values are the known issues [100]. A worst-case analysis of DRR has been

done extensively in literature [100, 101, 1], among which [1] gives the most recent results using

network calculus.

2.2.3 Credit-Based Mechanisms

As mentioned in Section 2.2.1, SP scheduling can provide guarantees only when the traffic

of higher priority queues is well-behaved. To this end, mechanisms such as CBS and BLS are

proposed to make the guarantees for a priority queue, in SP scheduling, independent of the

input traffic of the higher priority queues. We explore them hereafter.

Credit-Based Shaper

In time-sensitive networks, CBSs are initially proposed in IEEE802.1BA AVB [18] to control

the guaranteed rates given to the two highest priority classes that are dedicated to audio and

video traffic. CBSs are placed behind the SP scheduler. For any queue with a CBS, packets are

sent according to the available credit for that queue. Each CBS is assigned two parameters,

idleslope and sendslope, and it has a counter to keep track of the available credit [35, Annex L]:

The credit of a queue increases with the rate of the idleslope when the queue is non-empty

and the other queues with CBSs transmit packets; the credit decreases with the rate of the

sendslope when the queue is sending packets. A detailed description of CBS is covered in

Chapter 5.

There are a number of works on the analysis of CBS [13, 102, 103, 104, 79, 105, 106]. Among

them, some use network calculus to perform the analysis: [13] is the primary work on the
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analysis of CBS in IEEE802.1BA AVB [18]; [103, 79] perform the analysis on a IEEE TSN sched-

uler, in which the highest priority class is without a CBS; and [104] extend the analysis in the

presence of multiple queues with CBSs in a TSN scheduler.

Burst-Limiting Shaper

BLSs are primarily presented to be used for the highest priority class, namely Control Data

Traffic (CDT), in IEEE TSN [107]. Their purpose is to provide fairness among CDT and lower

priority classes, such as audio and video, while still guaranteeing a low latency to the CDT

class. Differently from the CBS, the BLS alternates the priority of the queues, seen by the

non-preemptive SP, between the highest value and a lower value. This alternation is done

based on the amount of BLS’s credit and on its low- and high-threshold parameters: If the

credit reaches the high threshold, the queue is given the low priority, and if it reaches the low

threshold, the priority of the queue is set to high; in other cases, the priority is unchanged.

The credit evolution in BLS is as follows. The credit of a queue increases with the rate of

the sendslope, when the queue transmits packets; it stops when the credit reaches the high

threshold, and stays at this level until the end of transmission of the current packet. If the

queue does not transmit packets, its credit is decreased with the rate of the idleslope until it

reaches 0. Note that the priority change occurs as soon as the credit value reaches the lower

threshold, a further decrease is often due to an ongoing packet transmission of other queues.

We see that the credit in BLS evolves in the opposite manner than in CBS: In BLS, sending

packets results in an increase of credit, whereas in CBS it leads to a credit reduction.

An analysis of BLS is conducted in several studies [108, 109, 110, 111]. [108] presents the very

first results on the performance of BLS; a formal analysis of BLS is made in [109], assuming

zero interference from higher priority queue. A more general, yet formal, analysis is performed

by [110]. [111, 112] analyze BLS in the presence of a mixture of critical flows by using a

network-calculus approach. [113, 114] provide the timing analysis for multiple queues with

BLSs.

2.2.4 TSN and DetNet

IEEE TSN specifies a number of per-class scheduling mechanisms, called Transmission Se-

lection Algorithm in [35]. In the current version of the IEEE 802.1Q document [35], there are

three scheduling algorithms3, i.e., SP, CBS, and Enhanced Transmission Selection (ETS), and

one enhancement to be used for time-triggered traffic. The ETS is added to the document

in order to provide an allocation of bandwidth to less sensitive traffic classes with larger

bandwidth requirements so that these classes can coexist with low delay traffic (which use SP

and CBS). The ETS includes any scheduling mechanisms, such as the family of fair queuing

3These mechanisms are agreed to be a part of TSN document. The working group still permits the vendors to
implement their own scheduling mechanism, as stated in [35, Table 8.6].
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(Section 2.2.2), able to provide the required performance guarantees. The TSN enhancement

for time-triggered traffic uses the IEEE Time-Aware Shaper that is a synchronous mechanism.

This TSN enhancement is called "enhancement" because a set of TAS is added in front of

the aforementioned scheduling mechanisms to enable transmission of the traffic scheduled

relative to a known timescale.

Contrary to IEEE TSN, the DetNet working group of IETF does not focus on the standardization

of specific queuing and forwarding mechanisms; rather, the group discusses the requirements

for the forwarding behavior of DetNet systems[21].

2.3 Flow Regulation and Dampers

Zhang and Ferrari propose the concept of regulators as a part of the rate-control service

discipline (RCSD) for real-time flows [115]. Each regulator in RCSD scheme monitors one flow

and forces it to follow a desired traffic pattern. An end-to-end delay bound is then computed

by summing up the delay bound of each individual system in a flow path. Then, it is proved

in [116] that using per-flow regulation leads to improvement over the bounds obtained by

[115]. A first formal analysis on regulators was done by Cruz, with a focus on token-bucket

regulators [30]. A generalization of the flow regulators is then defined within network calculus

as a bit-processing device that forces its output to conform an arrival curve [117, 118]. Later, it

was shown that obtaining end-to-end delay bounds in a network with aggregate scheduling is

difficult unless flows are regulated [67]. In time-sensitive networks, flow regulation is used as

a method for addressing the issue of burstiness cascade and for avoiding cyclic dependency

(discussed in Chapter 1) and is studied in various domains, e.g., embedded real-time systems

[119], automotive communication [120], and avionic communication [121].

Traffic regulation using per-flow queues, as in the original RCSD scheme, has scalability issues

in time-sensitive networks. This was the inspiration for the introduction of the urgency-based

shaper (UBS) as a per-flow regulator with aggregate queuing [122]. The UBS is standardized

within TSN under the name of IEEE802.1Qcr Asynchronous Traffic Shaping (ATS) [41]. The

analysis of UBS in the original paper is limited to two regulation algorithms: token bucket

and length-rate quotient (Section 4.2.2). UBS, as well as ATS, are formally analyzed under a

general family of interleaved regulators (IR) [123]. With IR, the packet at the head of the queue

is regulated based on its regulation constraints (e.g., token bucket); the packet is released

at the earliest time possible, without violating the constraint. One key feature of the IRs is

their "for-free" property, i.e., when an interleaved regulator is appended to a FIFO subsystem,

it does not increase the worst-case delay of the latter [123, Theorem 5]. Using IRs within

time-sensitive networks is a sound choice, as the IRs address the burstiness cascade and cyclic

dependency issues with aggregate queuing (instead of per-flow queuing) and they have the

"for free" property.

Dampers are introduced to reduce delay jitter in time-sensitive networks [42, 43, 44]. A damper

delays every packet by an amount written in a packet-header field, called the damper header:
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The damper header of a packet is an estimate of the earliness of this packet with respect

to a known delay upper-bound of upstream systems. Similarly to IRs, dampers address the

burstiness cascade and cyclic dependency issues. Unlike IRs, the dampers do not need any

flow-state information at the intermediate systems as the required information is carried

over in the packet header. This makes dampers a more scalable solution for time-sensitive

networks. Using dampers or IRs adds hardware complexity to intermediate systems: Dampers

require time stamping of packets at their arrival, and IRs need to modify the flow information

for every packet. Furthermore, with dampers, a packet-level modification for the flows is also

needed in order to carry the damper header. Chapter 7 gives details about dampers, including

existing implementations.

2.4 Conclusion

In this chapter, we have explored the literature on the TSPECs of flows and scheduling mech-

anisms commonly used in time-sensitive networks. We have further investigated the flow

regulation and dampers as asynchronous mechanisms for tackling the issues of burstiness

cascade and cyclic dependencies. In this thesis, our analysis is based on network calculus, and

uses the arrival-curve mappings for the TSPECs of flows and the service-curve characteriza-

tions for the scheduling mechanisms in systems within time-sensitive networks.
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3 Technical Background

Mathematics is the queen of science, and arithmetic the queen of mathematics.

— Carl Friedrich Gauss

In this chapter, we cover the general technical concepts in order to follow the subsequent

chapters of this thesis. It consists, in particular, in mathematical concepts such as pseudo-

inverse functions and a general overview of min-plus algebra as the foundation of network

calculus. Finally, we provide a summary of network-calculus, including the most important

concepts and results used throughout this thesis. The necessary notation and symbols used in

this chapter are given in Section 3.4.

3.1 Mathematical Foundation

In this thesis, we often use wide-sense increasing functions. A function w is wide-sense

increasing if and only if ∀s ≤ t : w(s) ≤ w(t). Then, F 0
inc is the set of wide-sense increasing

functions w : [0,+∞) → [0,+∞] such that w(0) = 0.

3.1.1 Pseudo-inverse Functions

Consider a function w ∈F 0
inc. Then, the lower pseudo-inverse of w is w↓, defined as

w↓(x)
def= inf{s ≥ 0 | w(s) ≥ x} = sup{s ≥ 0 | w(s) < x}. (3.1)

and the upper pseudo-inverses is w↑, defined as

w↑(x)
def= sup{s ≥ 0 | w(s) ≤ x} = inf{s ≥ 0 | w(s) > x}. (3.2)

Figure 3.1 illustrates the pseudo-inverse functions and the differences between them. The

pseudo-inverse functions are obtained by flipping the graph of w around the line y = x.
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The resulting graph does not correspond to a function as the plateau part of w i.e., x1 to x2,

causes ambiguity. With the lower pseudo-inverse (left figure), w↓, the ambiguity is resolved by

selecting the infimum, i.e., w↓(y1) = x1. With the upper pseudo-inverse (right figure), w↑, the

ambiguity is resolved by selecting the supremum, i.e., w↑(y1) = x2.
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Figure 3.1: Illustration of pseudo-inverse functions.

By [124, Section 10.1]:

• w↓ is non-decreasing and left continuous.

• w↑ is non-decreasing and right continuous.

Some of the common functions and their lower-pseudo inverses are

F (t ) = r t +b, t > 0;F (0) = 0 =⇒ F ↓(x) = F ↑(x) =
[

x −b

r

]+
,

F (t ) = bd t

τ
e =⇒ F ↓(x) = τdx −b

b
e, x > 0;F ↓(0) = 0, F ↑(x) = τbx

b
c,

F (t ) = R[t −T ]+ =⇒ F ↓(x) = T + x

R
, x > 0;F ↓(0) = 0, F ↑(x) = T + x

R
. (3.3)

3.1.2 Min-plus Algebra

A min-plus algebra refers to a dioid (R∪ {+∞},∧,+) [25, Chapter 3.1][124, Chapter 9], where

the operations are the minimum (∧) and the addition (+), and R is the set of real numbers. In

network calculus, the commonly used operations of min-plus algebra are the convolution and

deconvolution of functions that are defined as follows.

Definition 3.1 (Min-plus Convolution and Deconvolution). Consider two functions w, w ′ ∈
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3.1 Mathematical Foundation

F 0
inc. The min-plus convolution and deconvolution of w and w ′ are respectively defined as

(w ⊗w ′)(t )
def= inf

0≤s≤t
{w(t − s)+w ′(s)}, (3.4)

(w ®w ′)(t )
def= sup

s≥0
{w(t + s)−w ′(s)}, (3.5)

for all t ≥ 0.

The sub-additive functions are another set of important functions used in network calculus. A

function w ∈F 0
inc is sub-additive if and only if

w(t )+w(s) ≥ w(t + s) ∀s, t ≥ 0. (3.6)

For a given function w ∈ F 0
inc, 0 ≤ w ⊗w ≤ w . The sequential application of min-plus con-

volution on w , tends to decrease the function each time until it converges to some function

referred to as sub-additive closure that is defined formally as follows.

Definition 3.2 (Sub-additive closure). Consider a function w ∈F 0
inc. Then, the sub-additive

closure of w is defined as

w̄
def= δ0 ∧w ∧ (w ⊗w)∧ (w ⊗w ⊗w)∧ . . . , (3.7)

where δ0 is the impulse function with T0 = 0 defined as

δT0 (t ) =
0 t ≤ T0

+∞ t > 0
. (3.8)

Two important quantities in network calculus are the maximal vertical and horizontal devia-

tions between two wide-sense increasing functions. The mathematical definitions for these

quantities are as follows [25] and illustrated in Figure 3.2.

Definition 3.3 (Vertical and horizontal deviations). Consider two functions w, w ′ ∈F 0
inc. The

vertical deviation v(w ′, w) and the horizontal deviation h(w ′, w) are defined as

v(w ′, w)
def= sup

t≥0
{w ′(t )−w(t )}, (3.9)

h(w ′, w)
def= sup

t≥0

{
w↓ (

w ′(t )
)− t

}
. (3.10)

The vertical and horizontal deviations can be expressed with min-plus deconvolution. Specifi-
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Figure 3.2: The horizontal and vertical deviations from w ′ to w .
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Figure 3.3: A c-Lipschitz function w (left, DRR service curve in [1]) and a non c-Lipschitz
function w ′ (FIFO residual service curve in [2, Section 7.3.1]). The slope of the function is
within [−c,c] at any point in time for w . The function w ′ is not continuous at time θ.

cally,

v(w ′, w) = (w ′®w)(0), (3.11)

h(w ′, w) =
(
(w ′↓ ◦w)®λ1

)
(0), (3.12)

where λ1(t ) = t .

3.1.3 Additional Definitions

Definition 3.4. A function w ∈F 0
inc is called c-Lipschitz (for c ≥ 0) if ∀t1, t2 ∈R+ [125, Section

41.5]:

|w(t2)−w(t1)| ≤ c|t2 − t1|. (3.13)

A c-Lipschitz function is necessarily continuous, and the slope of the function is within [−c,c]

at any point in time. Fig. 3.3 shows examples of a c-Lipschitz and non-c-Lipschitz functions.
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3.2 Network Calculus

For w ∈F 0
inc, w+ and w− are the right and left limits, defined as

∀x ∈R+ : w+(x) = lim
ε→0
ε>0

w(x +ε), (3.14)

∀x ∈R+ : w−(x) = lim
ε→0
ε>0

w(x −ε). (3.15)

3.2 Network Calculus

Network calculus is a theory designed to compute backlog and delay bounds in networks by

the means of arrival and service curves. In this section, we first provide a summary of the basic

concepts in network calculus; then, we present the main theorems for obtaining backlog and

delay bounds for a system in isolation. Finally, we give a list of methods and techniques to

compute end-to-end delay bounds within a network.

3.2.1 Flow Model

In network calculus, a common approach to modeling the data flows is to use cumulative

functions [25]. A cumulative function A (t ) ∈F 0
inc is the number of bits observed on the flow

within an interval [0, t ). By definition, this function is necessarily wide-sense increasing. The

cumulative functions are a general way to model flows at the bit level; however, a flow is often

made of packets with specific lengths. To this end, network calculus defines the concept of

packetizers. A packetizer is a server that groups the bits of a flow into packets. More specifically,

it stores the bits of traffic until the last bit of the packet is arrived; then it releases the whole

packet. Let L (n) be a cumulative length of the first n packets, i.e., L (n) =∑n
k=1 lk ,L (0) = 0,

where lk is the length of packet k. Then an L -packetizer for A is defined as [2, Section 8.1]:

PL (A )(0) = 0, PL (A )(t ) = sup
n∈N∪{0}

{L (n) |∃u < t ,A (u) ≥L (n)} ∀t > 0. (3.16)

A flow A is L -packetized if A = PL (A ).

To model a packetized flow, another alternative is to use packet sequence (called marked

point process in [126]). A packet sequence (A,L) consists of two sequences of variables

A = {A1, A2, A3, . . .} and L = {l1, l2, l3, . . .}, where An and ln are the arrival time and the length of

packet n.

For a packetized flow, these two models can be derived from each other. Assume a flow

modeled as a packet sequence (A,L). Then, the corresponding L -packetized cumulative
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function is A , obtained as

A (t ) = ∑
n∈N

ln1{An<t },

L (0) = 0, L (n) =
n∑

k=1
lk ∀n ∈N. (3.17)

Now consider an L -packetized flow A . Then, the corresponding packet sequence model is

obtained as

An = inf{s ≥ 0 | A (s) ≥L (n)} =A ↓ (L (n)) ∀n ∈N,

ln =L (n)−L (n −1) ∀n ∈N. (3.18)

Using the aforementioned models, we present the main building blocks of network calculus,

i.e., arrival and service curves.

3.2.2 Arrival and Service Curves

In network calculus, flows are constrained by the mean of arrival curves, defined as below [25].

Definition 3.5 ((Bit-level) arrival curve). Consider a flow expressed as a cumulative function

A ∈F 0
inc. The flow is constrained by a bit-level arrival-curve α ∈F 0

inc if and only if

A (t ) ≤ (A ⊗α)(t ) ∀t ≥ 0. (3.19)

As shown in [123], for a packet sequence (A,L), the above definition of arrival curve is equiva-

lent to

n∑
k=m

lk ≤α+(An − Am) ∀m,n ∈N,m ≤ n (3.20)

The above equation is also equivalent to

An − Am ≥α↓(
n∑

k=m
lk ) ∀m,n ∈N,m ≤ n. (3.21)

Frequently used arrival-curves are [25, 1.2.2]

• the token-bucket (or leaky-bucket) arrival-curve with rate r and burst b, defined by

α(t ) = r t +b; t > 0, α(0) = 0;

• the staircase function with burst b and interval τ defined by α(t) = bd t
τe. It expresses

the constraint that the flow has at most b bits within any interval of duration τ.
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Figure 3.4 illustrates the two arrival curves.
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Figure 3.4: Token-bucket (r,b) and staircase (τ,b) arrival curves.

Whereas arrival curves are used to deliver information on the input traffic to a system, service

curves provide an abstraction of the system and the service offered to the input traffic.

Definition 3.6 ((Minimum) Service Curve). Let A ,D ∈ F 0
inc be such that A (t) [resp. D(t)]

denotes the cumulative number of bits arrived in [resp. departed from] a system until time t

(excluded). A function β ∈F 0
inc is a (minimum) service curve for the system if

D(t ) ≥ (
A ⊗β)

(t ) ∀t ≥ 0. (3.22)

The above definition is equivalent to

D(t ) ≥β(t − s)+A (s) ∀t ≥ 0,∃s ∈ [0, t ]. (3.23)

A service-curve characterization is available for many systems, see for example [103, 127, 111,

128, 129]. Rate-latency service curves are functions of the form β(t ) = R[t −T ]+ with R,T

being the rate and latency terms. A system that offers a rate-latency service curve can be

interpreted as behaving, for the flows of interest, as if it would be a server with rate R and

vacation T . The rate R is the rate guaranteed to the flow and is typically less than the line rate c .

Rate-latency service curves are often used because of their simplicity, but better delay bounds

can also be obtained with more complex service-curves [1]. Figure 3.5 shows a rate-latency

service curve and the best existing service-curve for a deficit round-robin scheduler.

In the analysis of networks, we might encounter a number of systems where we know only an

upper bound on the delay, e.g., switching fabric, and the network backbone. The question is

how to abstract a service curve for such systems. Assume a system with delay bound D . Then,

for this system we have

D(t ) ≥A (t −D), ∀t ≥ 0. (3.24)

The definition of the impulse function in 3.8 implies that A (t −D) = (A ⊗δD )(t ), thus
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Figure 3.5: Rate-latency service curve with rate R and latency T (left), and a DRR service-curve
connected to a physical link with rate c [1] (right).

D ≥A ⊗δD ; hence, δD is a service curve for this system.

The concept of strict service-curves is less general than the minimum service-curve. However,

as we will see later, it is needed for some analysis. To define strict service-curves, we first need

to define backlog period: an interval of time (s, t ] is a backlog period when A (s) =D(s) and

∀u ∈ (s, t ] : A (u)−D(u) > 0.

Definition 3.7 (Strict Service-Curve). Let A ,D ∈F 0
inc be such that A (t) [resp., D(t)] denotes

the cumulative number of bits arrived in [resp., departed from] a system until time t (ex-

cluded). A function β ∈F 0
inc is a strict service-curve for the system if for any backlog period (s, t ],

D(t )−A (s) ≥β(t − s).

One of the strongest results of network calculus is the service-curve concatenation for a

tandem of systems [25].

Theorem 3.1 (Service-Curve Concatenation). Assume a flow traverses a sequence of M systems

where system i ∈ {1,2, . . . , M } offers a service curve βi ∈F 0
inc to this flow. Then, the concatenation

of the systems offers a service curve β=β1 ⊗β2 ⊗·· ·⊗βM to the flow.

Let us observe this result in an example. Assume two systems where system i ∈ {1,2} offers a

rate-latency service βi (t) = Ri [t −Ti ]+. Then, the concatenation of the two systems offers a

service curve:

β(t ) = (β1 ⊗β2)(t ) = R[t −T ]+, R = min(R1,R2),T = T1 +T2. (3.25)

3.2.3 Local Analysis

As discussed in Chapter 1, obtaining bounds on backlog and delay is crucial in time-sensitive

networks. The goal of this section is provide these bounds for a single system in isolation by

the means of network calculus. In this context, the backlog of a flow is the amount of bits held

in a system, and the delay is defined as the minimum time to serve a bit, provided that all the

bits received earlier are served before it. They are defined mathematically as follows.
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Definition 3.8 (Backlog). Let A ,D ∈F 0
inc be such that A (t ) [resp. D(t )] denotes the cumulative

number of bits arrived in [resp., departed from] a system until time t (excluded). The backlog

b(t ) at any given time t ≥ 0 is defined as

b(t )
def= D(t )−A (t ). (3.26)

Alternatively, for a packetized flow, let (A,L) [resp., (D,L)] be the arrival [resp., departure] packet

sequence. Then, the backlog b(t ) at any given time t ≥ 0 is defined as

b(t )
def= ∑

n∈N
ln1{Dn<t } −

∑
m∈N

lm1{Am<t }. (3.27)

Definition 3.9 (Delay (Latency)). Let A ,D ∈F 0
inc be such that A (t) [resp., D(t)] denotes the

cumulative number of bits arrived in [resp., departed from] a system until time t (excluded).

The delay of a bit arriving at any given time t ≥ 0 is d(t ), defined as

d(t )
def= inf{τ≥ 0 : D(t +τ) ≥A (t )}. (3.28)

Alternatively, for a packetized flow with arrival [resp., departure] packet sequence (A,L) [resp.

(D,L)], the delay of a packet n is defined as

dn = Dn − An . (3.29)

Definition 3.10 (Delay-Jitter (Jitter)). Let A ,D ∈F 0
inc be such that A (t) [resp. D(t)] denotes

the cumulative number of bits arrived in [resp., departed from] a system until time t (excluded).

Also, let d(t ) be the delay of a bit arriving at any given time t ≥ 0 as defined in (3.28). Then, the

“delay jitter" is defined as

V = sup
t≥0

{d(t )}− inf
s≥0

{d(s)}. (3.30)

Alternatively, for a packetized flow, let (A,L) [resp., (D,L)] be the arrival [resp., departure] packet

sequence. Also, let dn be the delay of the packet n as defined in (3.29). The worst-case delay

of the flow is maxn{dn} where the max is over all packets sent by the flow during its lifetime.

Similarly, the ‘best-case delay of the flow is minm{dm}. The delay jitter is the difference, i.e.,

V = max
n

{dn}−min
m

{dm}, (3.31)

so that dm −dn ≤V for any m,n.

Delay jitter is called, in RFC 3393 [40], IP packet delay variation. In the definitions of delay and

delay jitter, times are assumed to be measured according to the true time, i.e., the international

atomic time (temps atomique international, TAI). In reality, times are measured with local

clocks that might not be synchronized. Some small corrections could need to be applied to

delay and jitter bounds [45].
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The primary results on network calculus use the vertical and horizontal deviations to obtain

backlog and delay bounds as stated below [25].

Theorem 3.2 (Backlog Bound). Assume a flow, constrained by an arrival curve α ∈F 0
inc, tra-

verses a system that offers a service curve β ∈F 0
inc to this flow. Then the backlog at the system is

bounded by the vertical deviation, v(α,β), defined in Definition 3.3.

Theorem 3.3 (Delay Bound). Assume a flow constrained by an arrival curve α ∈F 0
inc traverses

a system that offers a service curve β ∈F 0
inc to this flow. Then the delay of the flow is bounded by

the horizontal deviation, h(α,β), defined in Definition 3.3.

As proven in [25], the above theorems provide tight bounds. The tightness means that there is

a causal system with an input flow A and output flow D, where the input is constrained by an

arrival curve α and offered a service curve β, where the bounds are achieved. A causal system

means A ≤D.

The third important result is the obtainment of an arrival curve at the output of a system.

The result is useful for obtaining backlog and delay bounds for downstream systems and

end-to-end analysis of complex networks.

Theorem 3.4 (Arrival-Curve Propagation). Assume a flow constrained by an arrival curve

α ∈F 0
inc traverses a system that offers a service curve β ∈F 0

inc to this flow. Then, at the output of

the system, the flow is constrained by an arrival curve α∗ =α®β.

Let us now examine the above results in a simple example. Assume a flow constrained by

token-bucket arrival curve α(t) = r t +b, t > 0,α(0) = 0 traversing a system that offers a rate-

latency service curve β(t) = R[t −T ]+ to this flow, where R ≥ r . Then, by Theorem 3.2, the

backlog at this system is

B = v(α,β) = sup
t≥0

{α(t )−β(t )} = 0∨
(

sup
0<t≤T

{r t +b −0}

)
∨

(
sup
t>T

{r t +b −R(t −T )}

)
= 0∨ (r T +b)∨

(
sup
t>T

{(r −R)t +b +RT }

)
= (r T +b)∨ ((r −R)T +b +RT ) = r T +b, (3.32)

where ∨ is the maximum operator. The delay bound for this flow is obtained by applying

Theorem 3.3:

δ= h(α,β) = sup
t≥0

{
β↓ (α(t ))− t

}
= 0∨ sup

t>0

{
β↓ (α(t ))− t

}
= 0∨

(
sup
t>0

{
T + α(t )

R
− t

})
= 0∨

(
sup
t>0

{
T + r t +b

R
− t

})
= 0∨

(
T + b

R
+ sup

t>0

{
r t −Rt

R

})
= T + b

R
. (3.33)
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And finally, the propagated arrival curve of the flow is obtained by Theorem 3.4 as

α∗(t ) = (α®β)(t ) = sup
s≥0

{α(t + s)−β(s)} = 0∨
(

sup
0<s≤T

{α(t + s)−β(s)}

)
∨

(
sup
s>T

{α(t + s)−β(s)}

)
= 0∨

(
sup

0<s≤T
{r (t + s)+b −0}

)
∨

(
sup
s≥T

{r (t + s)+b −R(s −T )}

)
= 0∨ (r t +b + r T )

∨
(
r t +b +RT + sup

s>T
{r s −Rs}

)
= (r t +b + r T )∨ (r t +b +RT + r T −RT ) = r t +b + r T.

(3.34)

3.2.4 End-to-End Analysis

In the previous section, we have seen how to obtain delay and backlog bounds for service-

curve elements. In practice, a flow typically passes by a sequence of systems from its source to

its destination. The question is how to obtain end-to-end delay bound for the flow under such

condition. Hereafter, we explore various techniques and methods for obtaining end-to-end

delay bounds.

Total-Flow Analysis (TFA)

The TFA algorithm uses the primary network-calculus theorems to obtain end-to-end delay

bound, within a feed-forward network 1[131]. The TFA algorithm, first sums up the arrival

curves of the flows that share a service-curve element. Then, it computes backlog and delay

bounds for each individual system by applying Theorems 3.2 and 3.3. Finally, it computes

a propagated arrival-curve of every flow at the output of each system (i.e., entrance of the

downstream system) by using Theorem 3.4. An end-to-end delay bound is computed as the

sum of each individual delay bound.

TFA++ is an improved version of the original TFA algorithm [132]. The main idea in TFA++ is to

exploit the information on the physical-line rate to improve the aggregate input arrival-curves,

as well as per-flow propagated arrival-curves.

As both TFA and TFA++ can be applied only to feed-forward networks, the fixed-point TFA

(FP-TFA) algorithm is proposed to overcome this limitation [133]. The FP-TFA algorithm

initially performs cuts in a network with cyclic dependencies to make it feed forward. The next

steps are iterative: (1) Assuming an initial vector of bursts for the flows at the cuts, it computes

the local delay bounds and the propagated arrival curves using TFA++ and the improvement

due to the effect of packetization [133]. (2) It compares the propagated arrival curves at the

cuts with the initial vector; if it is larger, it redoes the iteration using the new vector of bursts,

otherwise, the obtained delay bounds are valid and the iteration is over. Finally, an end-to-end

delay bound is computed by summing up the local delay bounds.

1A network is feed forward, if there exists a numbering of its links where for any flow there is an increasing
sequence of links the flow traverses [130].

29



Chapter 3. Technical Background

Separated-Flow Analysis (SFA)

The SFA algorithm performs the end-to-end analysis by isolating the arrival and service curves

for each individual flow in feed-forward networks. For any flow, SFA first computes the aggre-

gate arrival-curve for the competing flows by summing the individual arrival-curves. Second,

it obtains the residual service-curve for the flow within its path by using residual service-

curves [2, Theorem 7.5]. Then, it uses the concatenation result in Theorem 3.1 to compute an

end-to-end service curve for the flow. Finally, the SFA algorithm applies Theorem 3.3 using

this service curve and the flow arrival-curve at the source, and computes an end-to-end delay

bound for the flow.

Pay-Multiplexing-Only-Once (PMOO)

The PMOO analysis consists in a smart way of aggregating the flows that share the same

path, and applying the concatenation result in Theorem 3.1 [130]. Specifically, the PMOO

analysis tries to group together the flows that share a consecutive sequence of systems and to

obtain an aggregate arrival-curve for each group. Then, it computes a residual service-curve

[2, Theorem 7.5] for the group of the flows and applies the concatenation result in Theorem 3.1

to obtain a service curve for a sequence of systems. Finally, for the flow of interest, it computes

a residual service-curve for the concatenated systems. With PMOO analysis, the burst of the

competing flows is accounted once within a flow path hence improves the end-to-end delay

bound.

Machine-Learning-Based Analysis

As we have seen in the previous analysis methods for computing end-to-end delay bounds,

a proper concatenation of systems and an aggregation of interfering flows can lead to an

improvement in the computation of delay bounds, due to the PBOO and PMOO effect. The

exhaustive search to find the best flow aggregation and system concatenation is time con-

suming [134]. One way to tackle this issue is to use machine learning to find out an efficient

composition for computing end-to-end delay bounds. DeepTMA [135] and DeepFP [136] are

two such methods based on graph neural networks and reinforcement learning.

Optimization-Based Analysis

A number of analysis methods use linear programming to compute worst-case delay. The

main idea in these approaches is to transform the network-calculus relations, including arrival

and service curves, into linear constraints and to maximize the delay. A least upper delay

bound (LUDB) [137] obtains a number of linear programming (LP) problems by using the

arrival and service curves in a tandem network; solving each one of the LPs produces an upper

bound on the worst-case delay. Then, the least upper bound is given by solving each individual

LP problem and by taking their minimum. LUDB provides tight delay bounds for certain
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scenarios in tandem networks; then the mixed-integer LP (MILP) method in [138] fills in the

gap by obtaining worst-case delays in FIFO tandem networks. As the method contains integer

variables, it can be applied to only small networks in practice. Hence, [138] also proposes a

relaxed LP version of the MILP method that leads to a delay that is close to the worst-case

delay. However, these approaches are still costly due to an exponential number of variables.

The most recent approach is the polynomial-size LP (PLP) [139] that keeps the number of

constraints and variables polynomial in network size. Keeping this number polynomial can

lead to pessimism. However, the PLP method incorporates the delay bounds obtained by the

SFA and TFA++ algorithms in order to improve the delay bounds.

3.3 Conclusion

We have presented a summary of required mathematical backgrounds, including pseudo-

inverse functions, Lipschitz continuity, and min-plus algebra. We have given an overview of

the main network-calculus concepts, including flow models, arrival and service curves, and

the classic results to compute backlog and delay bounds. Finally, we have presented a list

of methods for computing end-to-end delay bounds, among which we will use the FP-TFA

method to perform our evaluations as we consider networks with cyclic dependencies.
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3.4 Notation

Term Description

b The burst of arrival curve, when α is token-bucket.

h(w ′, w) The horizontal deviation from function w ′ to function w (Definition 3.3).

r The rate of arrival curve, when α is token-bucket.

v(w ′, w) The vertical deviation from function w ′ to function w (Definition 3.3).

R The rate of service curve, when β is rate-latency.

T The latency of service curve, when β is rate-latency.

L (n) The cumulative length of the first n packets.

PL (A ) The L -packetizer for a cumulative function A .

α The arrival curve of at the entrance of a system.

β The service curve of a system.

F 0
inc The set of wide-sense increasing functions such that ∀w ∈F 0

inc : w(0) = 0.

N The set of positive integers, i.e., {1,2, . . . , }.

w+ The right limit of function w (Section 3.1.3).

w− The left limit of function w (Section 3.1.3).

w↓ The lower pseudo-inverse of function w (Section 3.1.1).

w↑ The upper pseudo-inverse of function w (Section 3.1.1).

dxe The ceiling of x.

bxc The floor of x.

[x]+ max{x,0}.

∧ The minimum operator.

∨ The maximum operator.

⊗ The min-plus convolution operator (Definition 3.1).

® The min-plus deconvolution operator (Definition 3.1).

32



4 Novel Network Calculus Delay Bounds
in Time-Sensitive Networks

All truths are easy to understand once they are discovered;

the point is to discover them.

— Galileo Galilei

As mentioned in Chapter 1, one of the main goals in time-sensitive networks is to provide

guarantees on worst-case delay, and not average delay. In order to obtain such guarantees,

flows are assumed to be regulated at the sources. A classical form of source regulation is the

bit-level arrival curve constraint. As described in Chapter 3, formally proven delay bounds

can be obtained by using classical network calculus by taking the horizontal deviation of the

arrival and service curves.

As discussed in Chapter 2, in time-sensitive networks, flow regulation at sources is often

expressed in terms of number of packets rather than number of bits [80] [35, Section 35.2.2.8.4];

for example in TSN, the number of packets observed within any fixed class measurement

interval is upper-bounded by a constant value. To obtain delay bounds for such flows, network

calculus is often used [140], for which a bit-level characterization is required. Hence, a

common approach is to derive a bit-level arrival-curve from the packet-level constraint and

then apply network calculus [141, 142]. However, as we show in Table 4.1 and Section 4.7, this

leads to delay bounds that can be improved. Indeed, our main result, in Theorem 4.1, is a

novel delay bound for flows regulated with packet-level constraints, which improves on the

one that is obtained by deriving a bit-level arrival-curve from the packet-level constraint. We

show that the obtained delay bound is tight at least for c-Lipschitz [125] service curves where

c is the physical line-speed (theorems 4.2 and 4.3).

Our method uses a novel modelling of packet-level constraint with g-regulation (Proposition

4.2). The concept of g-regulation was introduced by C.S. Chang [126] as an alternative to bit-

level arrival-curve and uses max-plus algebra, whereas results for bit-level arrival-curves tend

to use min-plus algebra. Our improvement in the delay bound is made possible by combining

min-plus representation of service curves and max-plus representation of the input traffic to
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obtain a bound on the queuing delay (Lemma 4.1).

As a by-product of our method of proof, we also obtain delay bounds for flows with g-regulation

which share a FIFO system with known service curve (Theorem 4.4). The most common form

of g-regulation is length-rate quotient (LRQ) [122] that is among the simplest regulation

constraints to control flow rate. These bounds improve on the ones obtained by deriving a

bit-level arrival curve from g-regulation and then using the classic network-calculus bound.

Moreover, it generalizes the results by [122] that was specifically applicable to flows with

LRQ constraints and priority queues with constant rate servers. Moreover, using the same

method, we provide a delay bound for flows with bit-level arrival curve that improved the

bound obtained by classical network calculus presented in Chapter 3 (Theorem 4.5). We

already published a subset of these results for bit-level arrival curve and rate-latency service

curves [60]; in this chapter, we present the generalized result that can be applied to a wider

family of service curves than rate-latency ones.

The rest of this chapter is organized as follows. Section 4.1 presents the state-of-the-art and

related works. Section 4.2 includes the system model, notation, and the definition of the

considered flow regulation constraints. Section 4.3 presents the relations among different

regulation constraints. In Section 4.4, we present the main contribution of this chapter, namely,

novel delay bounds for flows with packet-level constraints, and we show that these bounds are

tight. Section 4.5 gives a generalization of the existing delay bounds for flows with g-regularity

constraint and bit-level arrival-curve, as a by-product of our method of proof in Section 4.4.

Section 4.6 shows that the best delay bound for a given flow is obtained by directly applying the

theorem corresponding to its initial constraint. Section 4.7 provides a numerical illustration of

the theorems presented in this chapter and Section 4.8 concludes the chapter. For the reader’s

convenience, Section 4.9 gives the notation used throughout this chapter. Appendix A gives

proofs.

4.1 Related Works

As we saw in Chapter 3, the classical network-calculus proves delay bounds for a FIFO system

with bit-level arrival and service curves [25, 2]. Specifically, for a flow with bit-level arrival-

curve α that enters a FIFO system with service curve β, the bound is obtained by taking the

horizontal deviation between the two curves, i.e., h(α,β), which is defined in Definition 3.3.

For example, when a flow has leaky bucket arrival curve α(t) = r t +b and the FIFO system

has rate-latency service-curve β(t ) = max(R(t −T ),0), we have h(α,β) = T + b
R provided that

r ≤ R . This bound is tight if only arrival and service curves are known. However, we often have

more information, specially in the context of time-sensitive networks, e.g., TSN schedulers

with credit-based shapers [63] and DRR schedulers [1]: when a packet starts its transmission,

it is transmitted with full line rate. In our initial result, such information was exploited for rate-

latency service-curves to provide a delay bound that improves the classical network-calculus

bound [62]; more precisely, the classical network-calculus bound is reduced by Lmin
( 1

R − 1
c

)
,
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where c is the physical line-rate and Lmin is the minimum packet length of the input traffic.

While rate-latency service-curves are commonly used in the literature, they may not provide

a perfect characterization of a system. A number of works provide more complex service

curves that in turn leads to better delay bounds. In [1], the authors obtained a non rate-latency

service-curve for DRR schedulers that can incorporate the arrival curves of the interfering

flows. Such non rate-latency service-curves are obtained as well for weighted round-robin

[2, Section 8.2.4] and interleaved weighted round-robin [98]. Hence, the improvement of [62]

does not apply to these service curves. In this chapter, we present a generalized version of the

results of [62] to improve delay bounds for non rate-latency service-curves. Furthermore, we

improve the bounds in [62] when the flows have packet-level constraints.

A number of other works focus on improving the arrival curves of the flows in time-sensitive

networks by taking advantage of input-line shaping effect. For example, for a flow with leaky-

bucket arrival curve α(t ) = r t +b that passes a physical line with rate c , we can obtain a better

arrival curveα′(t ) = min(r t+b,ct ). In [141, 142], the authors study a TSN network and assume

the input traffic has packet-level constraint [35, Section 35.2.2.8.4]. To obtain delay bounds,

they first derive a bit-level arrival-curve from the packet-level constraint; then they exploit

input-line shaping to improve the obtained arrival curve. Finally, they use network calculus to

obtain delay bounds. The improvement by the input-line shaping effect is complementary to

the improvements shown in this chapter.

Recently, LRQ was introduced in the context of interleaved regulators in [122] as a per-flow

regulation constraint that is simpler to implement than token-bucket. LRQ is in fact a spe-

cific case of a shifted-rate regulator (when the delay term is set to zero) [126, Section 6.2.1],

which belongs to the family of g-regulation. [122] obtains delay bounds for flows with LRQ

constraint within constant-rate servers and strict-priority queuing. This analysis was extended

for guaranteed-rate servers [143]. Unlike the previous works, our results on g-regulated flows

cover the whole family of g-regulation (i.e., are not limited to LRQ constraint) and apply to a

broader class of network nodes (i.e., nodes with arbitrary service curves).

4.2 System Model

We study a FIFO system with a queue and a transmission link, as in Fig. 4.1. Each queue is

shared among a number of flows. Upon arrival, packets of different flows enter the queue and

are stored in FIFO order. A scheduler decides when the packet at the head of the queue is

selected for transmission. The scheduler typically arbitrates between this queue and other

queues (not shown), therefore the packet at the head of the queue may have to wait even if

there is no packet of this queue in transmission. When the packet at the head of this queue is

selected for transmission, it is transmitted at a constant rate c until it is completely transmitted,

i.e., there is no preemption.

Every flow is assumed to be constrained by either bit-level arrival curve (Section 3.2.2), g-
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Figure 4.1: The considered FIFO system.

regulation (Section 4.2.2) or packet-level arrival curve (Section 4.2.3). For each flow f , let Lmin
f

and Lmax
f denote the minimum and maximum packet lengths, in bits. We also assume that

the total flow of all incoming packets is packetized, i.e., we consider that all bits of any packet

arrive at the same time instant.

Let An be the arrival time of packet n to the FIFO system, where the numbering of packets is

by order of arrival and Qn be the time at which packet n is selected for transmission. The FIFO

assumption means that Qn ≤Qn+1. We call Qn − An the queuing delay of packet n in the FIFO

system. Let ln be the length in bits of packet n and assume that it belongs to flow f , so that

Lmin
f ≤ ln ≤ Lmax

f ; then packet n leaves the system at time Dn =Qn + ln
c . We call Dn − An the

response time of the FIFO system for packet n.

We assume that the scheduler is such that the FIFO system offers to the total flow of all

incoming packets a service curve β, defined in Section 3.2.2.

4.2.1 Bit-level Arrival Curve

We follow the definition of bit-level arrival curve as in Section 3.2.2. Moreover, we know by

[25, Lemma 1.2.1] that if α is an arrival-curve for a flow, then so is its left limit, i.e., α−. Also,

since input is packetized, α+(0) is an upper bound on the size of any packet. Therefore, in this

chapter, we assume that α is left-continuous and α+(0) ≥ Lmax.

4.2.2 g-regulation

The g-regulation constraint was introduced in [126]; it specifies that the time inter-spacing

between packets is lower bounded by a left-continuous function g ∈F 0
inc

1[126]. A packetized

1The original g-regularity in [126] uses functions defined on N∪ {0} but it is simpler to consider functions
defined on R+.
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input has g-regulation constraint if and only if for any packet indices m,n, where m ≤ n:

An − Am ≥ g

(
n−1∑
k=m

lk

)
. (4.1)

Note the difference between the bit-level arrival-curve in (3.21) and the g-regulation in (4.1):

for the g-regulation the length of the last packet, i.e., ln , does not play a role in (4.1) while it

is included in (3.21). Since the argument of the function g only takes values in a discrete set

containing sums of packet sizes, we assume g is left continuous at each point in this set.

Shifted-rate regulation [126, Section 6.2.1] is a type of g-regulation with g (x) = 1
r [x −d ]+,

where r is the regulation rate and d is the regulation delay, i.e., the constraint is

An − Am ≥ 1

r

[(
n−1∑
k=m

lk

)
−d

]+
,∀m,n ∈N,m ≤ n. (4.2)

Length-rate quotient, introduced by [122], is a traffic regulation which specifies the minimum

interspacing between two consecutive packets as a function of a regulation rate r and the

length of the earlier packet. i.e. the constraint is

An − An−1 ≥ ln−1

r
, ∀n ∈N,n ≥ 2. (4.3)

By LRQ, the arrival of packet n is constrained by the regulation rate, the arrival time and the

length of the previous packet; the fact that there is dependency on only the last packet, renders

the implementation of LRQ very simple. It is easy to see that, when d = 0, (4.2) is equivalent to

(4.3), namely, LRQ is shifted-rate regulation with d = 0; therefore, LRQ is a form of g-regulation

with g (x) = x
r .

4.2.3 Packet-level Arrival Curve

The packet-level arrival-curve is mainly used in the context of IEEE TSN and IETF DetNet and

expresses traffic constraints at the packet level. More formally, consider a left-continuous

wide-sense increasing function N :R+ →N∪ {0}, where N (t) is the cumulative number of

packets observed on a flow of interest until time t (excluded). Then, we say that the flow has a

packet-level arrival-curve αpkt :R+ →N, αpkt(0) = 0, if and only if

N (t )−N (s) ≤αpkt(t − s),∀t ≥ 0 and s ∈ [0, t ]. (4.4)

Similarly to the bit-level arrival-curve constraint, (4.4) is equivalent to

n −m +1 ≤α+
pkt(An − Am)∀m,n ∈N,m ≤ n. (4.5)
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Figure 4.2: The two interpretations of TSN and DetNet interval.

It is known that an arrival curve can always be assumed to be sub-additive as defined in

(3.6), since otherwise it can be replaced by its sub-additive closure (Definition 3.2)[25]. Also,

following the same steps as the proof of [25, Lemma 1.2.1], we can prove that if αpkt is a

sub-additive packet-level arrival-curve for a flow, then so is its left limit α−
pkt. Also, since the

input is packetized, α+
pkt(0) gives an upper bound on one packet. Therefore, in the rest of this

chapter, we assume that αpkt is sub-additive, left continuous and α+
pkt(0) ≥ 1.

As discussed in Chapter 2, in IEEE TSN the traffic specifications for a flow is defined as [35,

Section 34.6.1]:

“... during each class measurement interval, it [a source] can place up to MaxIn-

tervalFrames data frames, each no longer than MaxFrameSize into that stream’s

queue.”

Similarly, the traffic specification in IETF DetNet allows packet level constraint [80, Section 5.5]

by the attributes “Interval” as the period of time in which the traffic specification is specified

and “MaxPacketsPerInterval” as the maximum number of packets that a source transmits in

one Interval.

By the above specifications, the interval (i.e. class measurement interval in TSN or Interval in

IETF DetNet) can be interpreted differently as seen in Fig. 4.2:

1. Sliding interval (τ,K ): the number of packets is limited by K =MaxIntervalFrames (or

MaxPacketsPerInterval) at any sliding interval of duration τ.

2. Fixed interval (τ,K ): the number of packets is limited by K =MaxIntervalFrames (or

MaxPacketsPerInterval) at any reference interval of duration τ; the reference intervals

are consecutive and non-overlapping.

The first interpretation, sliding interval (τ,K ), is equivalent to

N (t +τ)−N (t ) ≤ K ; ∀t ≥ 0, (4.6)
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which is also equivalent to saying that the flow has a packet-level arrival-curve given by

αpkt(t ) = K d t

τ
e. (4.7)

This is a staircase packet-level arrival-curve with burst equal to K packets and period τ. It is

easy to verify that it is sub-additive and left-continuous. Applying the right limit of (4.7) into

(4.5), (4.6) is equivalent to the following for any packet indices m,n, m ≤ n:

n −m +1 ≤ K b An − Am

τ
c+K . (4.8)

The second interpretation, fixed interval (τ,K ), is equivalent to saying that there exists some

offset θ such that:

N (θ) = N (0) = 0,

N (θ+ (i +1)τ)−N (θ+ iτ) ≤ K ; ∀i ∈N. (4.9)

As shown in Lemma A.3 in Appendix A, the second interpretation, fixed interval (τ,K ), implies

a packet-level arrival-curve with,

αpkt(0) = 0, αpkt(t ) = K d t

τ
e+K : t > 0, (4.10)

It is easy to verify that this function is sub-additive and left-continuous. However, the converse

does not hold, i.e., it is not true that all flows that have the packet-level arrival curve in (4.10)

satisfy fixed interval (τ,K ) (because such an arrival curve allows 2K packets in an interval of

duration less than τ). Nonetheless, we show in Section 5.2 that the delay bound obtained

using the packet-level arrival-curve in (4.10), is tight for flows with the fixed interval (τ,K )

regulation constraint.

Another form of packet-level regulation found in the literature is the token-bucket packet-level

constraint [123], which limits the number of packets within any time interval t to ρt +B ,

where ρ > 0 and B ≥ 1 are respectively the packet rate and burst. This constraint enjoys

the superposition property, i.e., for an aggregation of flows each with such constraint, the

superposition is constrained by a token-bucket packet-level constraint with ρ and B equal to

the sum of the packet rates and bursts of the flows respectively. Such a constraint is equivalent

to the following packet-level arrival-curve:

αpkt(0) = 0, αpkt(t ) = dρt +B −1e : t > 0. (4.11)

It can be easily verified that this function is sub-additive and left-continuous. Now, by (4.5),

for any packet indices m,n, where m ≤ n, (4.11) is equivalent to:

n −m +1 ≤ bρ(An − Am)+Bc. (4.12)
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The (λ,ν)-constraint introduced in [144], is equal to the token-bucket packet-level arrival-

curve with ρ =λ and B = ν+1. The staircase packet-level arrival-curve in (4.5) implies a

token-bucket packet-level arrival-curve with ρ = τ
K , B = K .

4.3 Relations among Flow Regulations

We have seen various families of traffic regulations in Section 4.2. We can find regulation-

specific toolbox for delay analysis, e.g., [25, 2] for bit-level arrival curves. The immediate

question is whether there is a relation among these regulation types. Such relations can open

up new opportunities to apply the existing toolbox of one regulation type to another, that may

lead to delay improvements, as we will see in Section 4.4. The goal of this section is to present

such derivations between the regulation types.

In the next proposition, we present a relation between g-regularity and bit-level arrival-curve.

The derivation of bit-level arrival-curve from g-regularity already exists in literature and we

put it here for completeness [126].

Proposition 4.1. Consider a flow f .

1. If f has a bit-level arrival-curve α(t ), it also conforms to a g -regularity constraint with

g (x) =α↓(x +Lmin), x > 0; g (0) = 0.

2. If f conforms to a g -regularity constraint, it also has a bit-level arrival-curve α(t) =
g ↓(t )+Lmax.

3. The sequential application of items 1 and 2 or items 2 and 1 gives a regulation constraint

that is weaker than the initial one, except if all packets have the same size.

The proof is in Appendix A.2.1. Proposition 4.1 shows that even though bit-level arrival-curve

and g-regularity are two different families of traffic constraints, they can be derived from each

other in items (1) and (2). However, item (3) shows that when packets are of different sizes,

such derivations lead to weaker constraints than the initial traffic constraints.

Proposition 4.2. Consider a flow with packet-level arrival-curve αpkt, then:

1. The flow conforms to a g -regularity constraint with:

g (x) =α↓
pkt(

x

Lmax +1), (4.13)

and to a bit-level arrival-curve constraint, α, with:

α(t ) = Lmaxαpkt(t ). (4.14)

2. The g -regularity constraint in (4.13) is stronger than the bit-level arrival-curve constraint

in (4.14); i.e., the sequential application of (4.13) and then item 1 of Proposition 4.1 gives
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(4.14) while the sequential application of (4.14) and then item 2 of Proposition 4.1 gives

a looser constraint than (4.13), except if all packets have the same size.

The proof is in Appendix A.2.2. By item (1), we can use the bit-level arrival-curve and g-

regularity to compute delay bounds for flows with packet-level arrival-curves. In fact, for

TSN/DetNet traffic regulation, such bit-level arrival-curve derivation already exists [141] and

is used for delay-bound computation. While in literature only the bit-level arrival-curve

derivation is used to obtain delay bounds, item (2) shows that the g-regularity derivation is a

stronger constraint, and it leads to delay improvements as we will see in Theorem 4.1.

4.4 Delay Bounds for Packet-level Arrival Curves

The focus of this section is to find delay bounds for flows with packet-level arrival-curve

that share a FIFO system described in Section 7.2. To do so, we use a novel combination of

g -regularity and bit-level arrival-curves derived from packet-level arrival-curves. We start

with a technical lemma about queuing delay.

Lemma 4.1. Consider a FIFO system with service curve β ∈F 0
inc. Assume that we know some

w ∈F 0
inc such that for any two packet indices m,n, m ≤ n, we have

n−1∑
k=m

lk ≤ w(An − Am), (4.15)

where Am , An are packet arrival times and lk is the length of packet k. Then, the queuing delay

of the FIFO system is bounded by h(w,β), i.e. for any packet index n:

Qn − An ≤ h(w,β)

where h(.) is the horizontal deviation.

The proof is in Appendix A.2.3; it combines min-plus representation of the service curve and

the max-plus representation of the input traffic in (4.15). Using Lemma 4.1, we obtain our first

result on delay bounds, on which all delay bounds found in this chapter are based.

Lemma 4.2. Consider a FIFO system offering a service curve β to the aggregate of the flows

sharing it. Assume that (i) flow 1 is the flow of interest and conforms to a g -regularity constraint,

and (ii) flow 2 represents the aggregate of the remaining flows sharing the FIFO system and has

bit-level arrival-curve α. In addition, assume that as soon as a packet starts to be transmitted, it

is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with length l of flow 1 at this FIFO system

is:

∆AG(l ) = h(g ↑+α+,β)+ l

c
, (4.16)
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(ii) An upper bound on the response time of any packet of flow 1 at this FIFO system is:

∆AG = h(g ↑+α+,β)+ Lmax
1

c
. (4.17)

The proof is in Appendix A.2.4. We can now apply Lemma 4.2 to packet-level arrival curves

and obtain the following theorem:

Theorem 4.1. Consider a FIFO system offering a service curve β to the aggregate of the flows

sharing it. Assume any flow f ∈ {1, . . . , M } hasαpkt, f as packet-level arrival-curve at the entrance

of the FIFO system and has maximum packet length Lmax
f . In addition, assume that as soon as a

packet starts to be transmitted, it is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with length l of a flow f at this FIFO system

is:

∆pkt(l ) = h

(
M∑

i=1
Lmax

i α+
pkt,i −Lmax

f ,β

)
+ l

c
. (4.18)

(ii) An upper bound on the response time of any packet of flow f at this FIFO system is:

∆pkt = h

(
M∑

i=1
Lmax

i α+
pkt,i −Lmax

f ,β

)
+

Lmax
f

c
. (4.19)

Proof. Use item 1 of Proposition 4.2 to derive a g-regularity constraint for the flow of interest

and a bit-level arrival-curve for the competing flows. Then apply Lemma 4.2.

The delay bound in Theorem 4.1 improves the state-of-the-art delay bounds at least when

packet sizes are different. Let us observe the improvement for a simple case of rate-latency

service-curves in the following example; the bounds are summarized in Table 4.1.

Example. Consider a FIFO system with rate-latency service-curve β(t ) = R[t −T ]+ connected

to a link with transmission rate c > R. Assume flows 1 and 2 have packet-level arrival-curves

αpkt(t) = K b t
τc and α′

pkt(t) = K ′b t
τ′ c respectively (K ,K ′ ∈ N, τ,τ′ > 0). To avoid unbounded

response time, we assume
K Lmax

1
τ + K ′Lmax

2
τ′ ≤ R. We want to compute a delay bound for flow 1.

The classical approach is to first derive the bit-level arrival curves corresponding to the two

flows. By Proposition 4.2, they are:

α(t ) = Lmax
1 αpkt(t ) = K Lmax

1 b t

τ
c,

α′(t ) = Lmax
2 α′

pkt(t ) = K ′Lmax
2 b t

τ′
c. (4.20)
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4.4 Delay Bounds for Packet-level Arrival Curves

Table 4.1: Comparison of the delay upper-bound for packet-level arrival-curve in the example
of Section 4.4.

Approach Delay upper-bound

Classical approach:

bit-level arrival-curve + classical network-calculus bound
∆NC = T + K Lmax

1 +K ′Lmax
2

R

Improved approach:

bit-level arrival-curve + improved bound in Theorem 4.5
∆A =∆NC −Lmin

1

( 1
R − 1

c

)
Improved approach:

packet-level arrival-curve + new bound in Theorem 4.1
∆pkt =∆NC −Lmax

1

( 1
R − 1

c

)

Then, a delay bound is computed by the classical network-calculus bound. For rate-latency

service-curves, the classical network-calculus bound is improved by [62], which is a special

case of our result in Theorem 4.5 (we will see in the next section). Our approach, however, is

to consider the original packet-level arrival-curves and directly apply Theorem 4.1. Table 4.1

shows the obtained bounds for the above approaches.

Comparing the bound of Theorem 4.1 with the improved version of the classical approach, we

have:

∆pkt −∆A =−(Lmax
1 −Lmin

1 )

(
1

R
− 1

c

)
< 0, (4.21)

which implies that the bound obtained by Theorem 4.1 is strictly less than the improved

classical approach, except when all packets of flow 1 are of the same size (Lmin
1 = Lmax

1 ).

The novel delay bound in Theorem 4.1 is derived from Lemma 4.2 and thus uses g-regularity

constraint and bit-level arrival-curves derived from the packet-level arrival-curves. Therefore,

it is legitimate to wonder whether it is the best possible bound derived from packet-level

arrival curves. We show in the following theorem that this is indeed the case.

Theorem 4.2. The bound of Theorem 4.1 is tight.

More specifically, consider a c-Lipschitz service curve β, sub-additive left-continuous functions

αpkt, f as packet-level arrival-curves for flow f ∈ {1, . . . , M }, with maximum packet lengths Lmax
f ,

and a transmission rate c. There exists a simulation trace of a FIFO system, shared between the

M flows, where a packet of flow 1 reaches the bound in (4.19) of Theorem 4.1.

The proof is in Appendix A.2.5; it consists in building a trajectory with greedy sources, i.e. with

sources for which the cumulative packet arrival function N (t ) satisfies N (t ) =αpkt(t − t0) for

some offset t0.

Recall that there are two interpretations of the packet-level regulation constraint of TSN/Det-
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Net (Section 4.2.3). The former, sliding interval, is equivalent to a packet-level arrival curve

constraint; the latter, fixed interval, implies a packet-level arrival curve constraint but is not

equivalent to it. However, as we show in the next theorem, the delay bound obtained by

using packet-level arrival-curves and Theorem 4.1 is the best possible bound for flows with

TSN/DetNet constraints.

Theorem 4.3. Consider a FIFO system offering a c-Lipschitz service curve β to an aggregate

of M flows, where, as soon as a packet starts to be transmitted, it is transmitted with rate c.

Assume that every flow f ∈ {1, . . . , M } conforms to either the Sliding interval (τ f ,K f ) or the Fixed

interval (τ f ,K f ) constraint of TSN/DetNet (Section 4.2.3) and has maximum packet size Lmax
f .

For every flow f , we can derive a packet-level arrival curve, by using (4.7) or (4.10), and apply

Theorem 4.1 to obtain a delay bound ∆pkt
f .

Then, for every flow f and every ε > 0, there exists a simulation trace of this system where a

packet of flow f experiences a delay in the interval [∆pkt
f −ε,∆pkt

f ].

The proof is in Appendix A.2.6. The main issue here is that a flow that conforms to Fixed interval

(τ,K ) has packet-level arrival curve given by (4.10), but a greedy source for this arrival curve

does not satisfy Fixed interval (τ,K ) (as it generates 2K packets in one interval of duration τ).

We overcome this by considering, for every ε> 0, a greedy source for the packet-level arrival

curve K d [t−ε]+
τ e+K , which does conform to Fixed interval (τ,K ).

4.5 Improvements on Existing Network-Calculus Delay-Bounds

In this section, as a by-product of Lemmas 4.1 and 4.2, we derive novel delay bounds for flows

with g-regularity constraints (Theorem 4.4) and bit-level arrival-curves (Theorem 4.5). The

obtained delay bounds for flows with g-regularity constraint generalize the results of [122],

which are specific to LRQ and strict-priority schedulers. Similarly, for flows with bit-level

arrival-curve, our delay bounds improve on the ones obtained by classical network-calculus

and generalize the results of [62], which are specific to rate-latency service-curves.

Theorem 4.4. Consider a FIFO system offering a service curve β to the aggregate of n flows

sharing it. Assume any flow f ∈ {1, . . . , M } has g f -regulation constraint at the entrance of the

FIFO system and has maximum packet length Lmax
f . In addition, assume that as soon as a

packet starts to be transmitted, it is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with length l of a flow f at this FIFO system

is given as follows:

∆G (l ) = h

(
M∑

i=1
g ↑

i +
M∑

i=1
Lmax

i 1i 6= f ,β

)
+ l

c
, (4.22)

(ii) An upper bound on the response time of any packet of flow f at this FIFO system is given as
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follows:

∆G = h

(
M∑

i=1
g ↑

i +
M∑

i=1
Lmax

i 1i 6= f ,β

)
+

Lmax
f

c
. (4.23)

The proof consists in two steps; we first take the sum of the bit-level arrival-curves of the

competing flows derived using item 1 of Proposition 4.1; second, we apply Lemma 4.2.

For the most common form of g-regularity constraint, i.e., LRQ, the current available delay

bound is by [122] which only applies to strict-priority schedulers; under the same assumption,

Theorem 4.4 gives the same delay bounds as [122]. The delay bounds presented in [122] do

not apply to a vast majority of schedulers, e.g., WRR, IWRR, and DRR. Theorem 4.4, however,

can be used to obtain delay bounds for such scheduling mechanisms. We provide a numerical

illustration of Theorem 4.4 for a DRR scheduler in Section 4.7.2.

Next, we present the delay bounds for flows with bit-level arrival-curves. It follows from

the definition that the bit-level arrival-curves can be superimposed: an aggregate of flows

conforms to a bit-level arrival-curve equal to the sum of the bit-level arrival-curves of the

flows. Hence, in the next theorem, we assume an aggregate of flows (that share a FIFO system

with the flow of interest) is constrained by one bit-level arrival-curve constraint.

Theorem 4.5. Consider a FIFO system offering a service curve β to the aggregate of the flows

sharing it and such that, as soon as a packet starts to be transmitted, it is transmitted with rate c.

Flow 1 is the flow of interest and flow 2 represents the aggregate of the remaining flows sharing

the FIFO system. Assume that that flows 1,2 have bit-level arrival-curves α, α′ respectively;

then,

(i) an upper bound on the response time of a packet with length l of flow 1 at this FIFO system is

∆A(l ) = h(α++α′+− l ,β)+ l

c
; (4.24)

(ii) if β is c-Lipschitz, an upper bound on the response time of any packet of flow 1 at this FIFO

system is

∆A = h(α+α′−Lmin
1 ,β)+ Lmin

1

c
. (4.25)

The proof is in Appendix A.2.7; it consists in two steps. We first derive the queuing delay

bound for the FIFO system using Lemma 4.1 and then we add the transmission time for the

packet of interests. To obtain the per-flow delay-bound in item (ii), we take the supremum of

per-packet delay-bound in item (i) for all the range of packet lengths, i.e., [Lmin
1 ,Lmax

1 ]. When

the service-curve is c-Lipschitz (Definition 3.4), the supremum is achieved at l = Lmin
1 (in

Appendix A.3, we show that this does not always hold for a non c-Lipschitz service-curve). The

c-Lipschitz condition in Theorem 4.5 implies that the slope of the service curve is not more

than the transmission rate c at any point in time. In fact, the rate-latency service-curves as

well as the existing service-curves for the common scheduling mechanisms in time-sensitive
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networks, e.g., TSN schedulers with credit-based shapers [63, 145], DRR [1, 127], IWRR[98],

are c-Lipschitz; therefore, the bound in Theorem 4.5 can be applied to such systems.

Theorem 4.5 gives the same delay bound as [62] (our initial result on delay improvement of

service-curve elements) for rate-latency service-curves. For a number of scheduling mech-

anisms, e.g., DRR and IWRR, the rate-latency service-curves are not accurate; to this end,

better non rate-latency service-curves are obtained that provide more precise characterization

for these mechanisms [1, 98]. For such non rate-latency service-curves, the delay-bound

improvement of [62] cannot be used; instead, the existing approach is to use classical network

calculus to obtain a delay bound, which is h(α+α′,β). This bound is improved by Theorem 4.5.

We provide a numerical illustration of Theorem 4.5 for a non rate-latency service-curve in

Section 4.7.3.

4.6 Comparison of the Different Bounds

In sections 4.4 and 4.5 we obtained delay bounds for flows with various regulation types.

Moreover, we showed in Section 4.3 that regulation types can be derived from each other.

Combining the mentioned results, we can derive a regulation type from another and then

apply the corresponding theorem, e.g., deriving bit-level arrival-curve from g-regularity using

item (1) of Proposition 4.1 and then apply Theorem 4.5. Now, the question is how such delay

bounds are compared with the ones obtained by directly applying the theorem to initial flow

constraint. The goal of this section is address this question.

We start with packet-level arrival-curve. Our tight delay bound for packet-level arrival-curves

in Theorem 4.1 uses the g-regularity derivation of Proposition 4.2 for the flow of interests. The

other approach is to use bit-level derivation of packet-level arrival-curves in Proposition 4.2;

this is indeed the state-of-the-art approach. We already showed in Table 4.1 that this leads to

sub-optimal delay bounds for rate-latency service-curves. The following proposition shows

that this is not accidental and is true in general.

Proposition 4.3. Consider the assumptions in Theorem 4.1. Using Proposition 4.2 we can

derive a bit-level arrival-curve and, by applying Theorem 4.5, obtain a delay bound ∆A
f for

every flow f . Let ∆pkt
f be the delay bound obtained by a direct application of Theorem 4.1. Then

∆
pkt
f ≤∆A

f . Furthermore, if packets of flow f have a constant size (Lmin
f = Lmax

f ) then ∆pkt
f =∆A

f ,

else ∆pkt
f <∆A

f , in general.

The proof is in Appendix A.2.8. In the above, “in general" means that we can find schedulers

for which the inequality is strict, for example when the service curve is rate-latency with rate

R < c.

Similarly, we evaluate the delay bounds achieved by deriving g-regularity from bit-level arrival-

curve [resp. bit-level arrival-curve from g-regularity] and then applying Theorem 4.4 [resp.

Theorem 4.5]. Then, the question is whether we obtain the same delay bounds by applying
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theorems 4.4 and 4.5 respectively to the derived g-regularity constraint and bit-level arrival-

curve. The following proposition shows that the answer to this question is negative and the

obtained delay bound is generally worse, except for flows with packets of constant size.

Proposition 4.4. Consider the FIFO system assume in Theorem 4.5.

1. Assume that the flows have bit-level arrival-curves. Then, Theorem 4.5 gives a better

response time upper-bound than the sequential application of item 1 of Proposition 4.1

and Theorem 4.4. Specifically: ∆A
f ≤∆G

f ; furthermore, if packets of flow f have a constant

size (Lmin
f = Lmax

f ) then ∆A
f =∆G

f and else ∆A
f <∆G

f in general.

2. Assume that the flows have g -regularity constraints. Then, Theorem 4.4 gives a better

response time upper-bound than the sequential application of item 2 of Proposition 4.1

and Theorem 4.5. Specifically: ∆A
f ≤∆G

f ; furthermore, if packets of flow f have a constant

size (Lmin
f = Lmax

f ) then ∆A
f =∆G

f and else ∆G
f <∆A

f in general.

The proof is in Appendix A.2.9. Propositions 4.3 and 4.4 indicate that the best delay bound for

a given flow is obtained by directly applying the theorem corresponding to its initial constraint,

as delay bounds obtained from derived flow constraints are pessimistic.

4.7 Numerical Illustration

This section provides three example applications of the theorems presented in this chapter

to commonly used schedulers. To compute the delay bounds, we use the RealTime-at-Work

(RTaW) tool[146] that has efficient implementation of network calculus operations.

4.7.1 Flows with Packet-level Arrival Curve

Consider a FIFO system with TSN scheduler and CBSs with per-class FIFO queuing [63]; from

highest to lowest priority, the classes are CDT, A, B, and Best Effort (BE). The CBSs are used

separately for classes A and B. The CBS parameters idleslopes are set to 50% and 25% of the

link rate, c = 1 Gbps, respectively for classes A and B. The CDT traffic has a token-bucket

arrival curve with rate 6.4 Kbps and burst 64 Bytes. The maximum packet length of class BE

is 1.5 KB. Using the results in [63], a rate-latency service curve offered to class A has latency

TA = 12.5µs and rate RA = 499.92 Mbps, and the one offered to class B has TB = 36.6µs and

rate RB = 249.75 Mbps. There are 5 periodic flows for each of classes A and B; each flow send

1 packet at each period. Table 4.2 shows the flow information. We want to compute delay

bounds for flows 1 and 6 in classes A and B.

The state-of-the-art approach is to obtain bit-level arrival-curve for all flows using Proposition

4.2; then by Theorem 4.5 we obtain a delay bound of 63.58 µs for flow 1 (class A) and 158.47 µs

for flow 6 (class B). However, we can also directly apply Theorem 4.1 to obtain delay bounds;
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Table 4.2: Flow information for Section 4.7.1.

Class A Class B
id Lmax (Bytes) period (ms) id Lmax (Bytes) period (ms)
1 1442 16 6 1438 64
2 185 4 7 619 64
3 537 16 8 773 128
4 414 4 9 459 128
5 350 8 10 592 128

for flows 1 and 6 we obtain 50.46 µs and 126.32 µs respectively, which shows 20% improvement

in both cases.

4.7.2 Flows with g-regulation

Consider a FIFO system with aggregate queuing and DRR arbitration policy, with n = 8 queues

sharing a link with rate c = 1 Gbps. Assume all flows have maximum packet length of Lmax =
1.5 KB and the queues have same quantum value Q = Lmax. Then, by [1, Theorem 1], we obtain

a service curve offered to any queue,

β(t ) = (θ ◦ζ) (t )+min
([

ct −2(n −1)(2Lmax −ε)
]+ ,ε

)
, (4.26)

with,

θ(t ) = inf
0≤s≤t

{
t − s +Qb s

(n −1)Q
c
}

ζ(t ) = [ct − (n −1)(4Q −ε)+ε]+,

and we set ε= 1 Byte.

Now, assume a flow of interest, conforms to LRQ with rate r , shares a queue with a number of

other flows with LRQ regulation where the sum of their maximum packet lengths is 5 KB. Also

assume that the minimum packet length of the flow is 100 Bytes.

We obtain a bit-level arrival-curve constraint for the flows using Proposition 4.1. Then by

Theorem 4.5 we obtain a delay bound of 632.75 µs for the flow of interest. Using the results

of this chapter, we can also directly apply Theorem 4.4 to obtain delay bounds that gives

552.74 µs, which shows 12.6% improvement.

4.7.3 Flows with Bit-level Arrival curve

Consider a FIFO system with per-flow queuing and DRR arbitration policy, with n = 16 queues

sharing a link with rate c = 1 Gbps. Assume all flows have maximum packet length of Lmax =
1.5 KB and the queues have same quantum value Q = Lmax. Then, similarly to the previous
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case, we obtain a service curve β as in (4.26) offered to any per-flow queue.

Consider a flow withα(t ) = r t+2Lmax and minimum packet length of 0.5 KB. Since, the service

curve is not rate-latency, we cannot apply the improvement in [62]. Hence, the state-of-the-art

approach is to use the classical network-calculus bound, h(α,β); it is equal to 915.88 µs. Using

our improved delay bound in Theorem 4.5, the delay bound is reduced to 743.88 µs, which

improves the classical network-calculus bound by 18.8%.

4.8 Conclusion

We presented a theory to compute delay bounds for flows with packet-level arrival-curve,

which improves the state-of-the-art bounds. The improvement is made possible by a novel

modelling of packet-level arrival-curve with g-regularity and bit-level arrival-curve together

with exploiting the information on the transmission rate. Our method of proof also led to delay

improvement for flows with g-regularity constraint and bit-level arrival-curve. These results

can be easily integrated with FP-TFA and PLP to improve the end-to-end delay bounds. In

time-sensitive networks, this result can open a discussion on the operation of flow regulation:

even though in such networks the traffic specification at a source is at the packet level, flow

regulation is performed at the bit level, based on a bit-level arrival-curve derived from the

flow constraints at the source. As a result of the analysis of this chapter, using packet-level

traffic regulation leads to better delay bounds at the intermediate routers and switches. As the

operation of bit-level regulation mechanisms is mainly based on full reception of a packet,

e.g., as in IEEE802.1 Qcr Asynchronous Traffic Shaping, an implementation of packet-level

regulation appears to be feasible and even simpler.
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4.9 Notation

Term Description

An The arrival time of packet n to the FIFO system

c The transmission rate of the output link

Dn The departure time of packet n from the FIFO system

h(w ′, w) The horizontal deviation from function w ′ to function w (Definition 3.3)

K The maximum number of packets in each interval of TSN/DetNet traffic constraint

Lmax
f Maximum packet length of flow f

Lmin
f Minimum packet length of flow f

ln The length of packet n in bits

N (t ) The cumulative number of packets arrived at the FIFO system until time t (excluded)

Qn The start of transmission of packet n from the FIFO system

R Rate of service curve, when β is rate-latency

T Latency of service curve, when β is rate-latency

β The service curve of the FIFO system

∆A The response time bound on a flow with bit-level arrival-curve

∆AG The response time bound on a flow with g -regularity constraint competing with an

aggregate of flows with bit-level arrival-curve

∆G The response time bound on a flow with g -regularity constraint

∆pkt The response time bound on a flow with packet-level arrival-curve

τ The interval duration in TSN/DetNet traffic constraint

N The set of positive integers, i.e., {1,2, . . . , }

R+ The set of non-negative real numbers, i.e., [0,∞)

F 0
inc The set of wide-sense increasing functions such that ∀w ∈F 0

inc : w(0) = 0

w+ The right limit of function w (Section 3.1.3)

w− The left limit of function w (Section 3.1.3)

w↓ The lower pseudo-inverse of function w (Section 3.1.1)

w↑ The upper pseudo-inverse of function w (Section 3.1.1)

dxe The ceiling of x

bxc The floor of x

[x]+ max{x,0}

◦ The function-composition operator, i.e., ( f ◦ g )(x) = f (g (x))

1{C } It is equal to 1 when the condition C is true and is equal to 0 otherwise.
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5 Delay and Backlog bounds in TSN
with Interleaved Regulators

Science is bound, by the everlasting vow of honour,

to face fearlessly every problem which can be fairly presented to it.

— William Thomson, 1st Baron Kelvin

As discussed in Chapter 1, the per-class mechanisms in TSN can lead to two key issues of

burstiness cascade and cyclic dependency. To this end, computing delay upper-bounds for

per-class networks is difficult, unless flows are regulated at every hop [67, 147, 16, 148]. This is

why a TSN proposal is to regulate flows at every hop, using the concept of interleaved regulator

introduced in [122] and analyzed in [123] (called IEEE 802.1Qcr Asynchronous Traffic Shaping

within TSN). An interleaved regulator regulates individual flows without per-flow queuing.

In [122], an end-to-end delay bound is computed for a network of FIFO constant rate servers

with aggregate multiplexing that uses interleaved regulators to avoid the burstiness cascade.

However, this does not account for the multi-class nature of a TSN network and for a rep-

resentative combination of queuing and scheduling mechanisms proposed by TSN, called

credit-based shaper. The first goal of this chapter is to extend these calculations to a more

generic TSN network. However, the calculations in [122] are very complex; extending them

seems to be intractable unless some higher level of abstraction is used, as described below.

The second goal of this chapter is to provide backlog bounds, which can be used to dimension

buffers.

To address these goals, we use network calculus concepts such as a service-curve characteriza-

tion of CBS and extend the results in [13] to include high-priority control-data traffic (CDT).

We combine this with the max-plus representation of interleaved regulators proposed in [123].

Further, we use the result of [123] that the upper bound on the delay in the combination of an

interleaved regulator following a FIFO system is no greater than the upper bound on the delay

of the FIFO system. Overall, in this chapter we compute delay upper bounds for the CBS, the

interleaved regulator and end-to-end delay bounds along with backlog bounds for the first

two. Our main contributions are listed below.
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1. we derive and formally prove novel credit upper-bounds for CBS (Theorem 5.1). This is

a general result and is applicable to any number of AVB classes with CBS.

2. We obtain a service curve for every AVB class at a CBS system, extending a similar result

in [13] by accounting for the presence of CDT (Theorem 5.2). The service curves are

used to decouple the interleaved regulator from CBS and are essential to obtain the

other results mentioned below.

3. We obtain a delay bound for the interleaved regulator (Theorem 5.3), by using the delay

bound at a CBS subsystem and that an interleaved regulator does not increase the delay

bound of a FIFO system [123].

4. We use the delay bound of the interleaved regulator to derive a service curve for the

interleaved regulator and hence a backlog bound at the interleaved regulator.

5. We are the first to compute a tight end-to-end delay bound for a TSN network of this

kind. We show that the end-to-end delay bound obtained is less than the sum of delay

bounds computed at every switch along the path of a flow. Ignoring this, as is often

done, leads to a gross overestimation of the worst-case end-to-end latency.

The rest of this chapter is organized as follow. Section 5.1 describes the system model. Sec-

tion 5.2 provides: credit upper-bounds for CBS; a service curve for the CBS subsystem; a delay

bound on the response time in the CBS subsystem; a delay bound for the interleaved regulator;

and a tight end-to-end delay bound. Section 5.3 uses these results to derive backlog bounds.

Section 5.4 provides case studies, shows the tightness of the bounds and the sub-additivity of

the end-to-end delay bound. Section 5.5 concludes the chapter. For the reader’s convenience,

Section 5.6 gives the notation used throughout this chapter. Appendix B gives the proofs.

5.1 System Model

We consider a network with a set S of nodes (switches and hosts) along with a set of flows, F ,

between hosts. Hosts are sources or destinations of flows. There are four types of flows, namely,

control-data traffic (CDT), AVB class 1, AVB class 2, and best effort (BE) [149] in decreasing

order of priority. Flows of AVB classes 1 and 2 are often called respectively class A and class B

[150, 13]. We focus on delay and backlog bounds for AVB traffic. We assume a subset of TSN

functions as described next.

5.1.1 Architecture of a TSN node

We assume that contention occurs only at the output port of a TSN node. Each node output

port performs per-class scheduling with eight classes: one for CDT, one for class A traffic,

one for class B traffic, and five for BE traffic denoted as BE0, . . . , BE4 (TSN standard [151]).

In addition each node output port also performs per-flow regulation for AVB flows using an
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Figure 5.1: Architecture of the considered TSN node output port.

interleaved regulator. Thus, at each output port of a node, there is one interleaved regulator

per-input port and per-class [123, 122]. The detailed picture of scheduling and regulation

at a node output port is given by Fig. 5.1. The packets received at a node input port for a

given class are enqueued in the respective interleaved regulator at the output port. Then, the

packets from all the flows, including CDT and BE flows, are enqueued in a class based FIFO

system (CBFS). The CBFS includes two CBS subsystems, one for each class 1 (A) and class 2

(B), operation of which is described in [35, Annex L] and recalled in Section 5.1.2. The CDT

and BE0-BE4 flows in the CBFS are served by separate FIFO subsystems. Then, packets from

all flows are served by a transmission selection subsystem that serves packets from each class

based on its priority. All subsystems are non-preemptive.

Guarantees for AVB traffic can be provided only if CDT traffic is bounded; we assume that the

CDT traffic from node i to node j has a token bucket arrival curve ri j t +bi j . How to derive

such arrival curves involves other TSN mechanisms and is outside the scope of this chapter.

Fig. 5.2 shows a part of a TSN network with three switches serving four flows of class A. In

switches SW1 and SW2 two flows are coming from two different input ports, thus, they use

different interleaved regulators. The flows entering switch SW3 from switch SW1 are going to

different output ports, and use different interleaved regulators.

5.1.2 Operation of CBS

The CBS of an AVB class x has two parameter, the idleslope and the sendslope, I x > 0. The

sendslope, Sx < 0, is often defined by I x −Sx = c, where c is the line transmission rate. The

idleslope is the rate guaranteed to class x. Thus, it is assumed that
∑p

i=1 I i < c with p being the

total number of AVB classes. Packets are scheduled according to the following rules (we repeat

here the description in [152]):

R1: If the transmission line is free, the scheduler transmits a packet of the highest priority

class that satisfies all the conditions: 1) its queue is not empty; 2) it has a non-negative credit
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Figure 5.2: Illustration of the queuing policy in interleaved regulators (IR) by TSN switches for
four flows of class A.

if it is an AVB class.

R2: The credit of the AVB class x reduces linearly with rate the sendslope, Sx , if x transmits.

R3: The credit of the AVB class x increases linearly with rate I x , when the following conditions

hold simultaneously for class x: 1) CDT is not transmitting; 2) its queue is not empty; and 3)

other AVB or BE classes are transmitting.

R4: The credit of an AVB class remains constant if CDT is transmitting packets.

R5: Whenever class x has a positive credit and its queue becomes empty, the credit is set to

zero; this is called credit reset. If the credit is negative and the queue becomes empty, the

credit increases with rate I x until the zero value.

Let Vx (t ) denote the value of the credit counter for AVB class x at time t ≥ 0. We assume that

the system is idle at time 0 and Vx (0) = 0. The function Vx () can take positive or negative

values and is continuous, except at credit reset times, which by R5, can occur only when the

queue of class x becomes empty. At all other times, it linearly increases, decreases or remains

constant. Negative credit value is reached when a packet with length larger than − cVx (t )
Sx starts

its transmission at time t .

5.1.3 Flow Regulation

Following [122], we assume that flows are regulated at their source, according to either leaky

bucket (LB) or LRQ. As mentioned in Section 3.2.2, the LB-type regulation forces flow f to

conform to the arrival curve r f t +b f . Recall from Section 4.2.2 that the LRQ-type regulation

with rate r f ensures that the time separation between two consecutive packets of sizes ln

and ln+1 is at least ln/r f . Note that if flow f is LRQ-regulated, it satisfies the arrival curve

constraint r f t +L f where L f is its maximum packet size (but the converse may not hold). For
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5.1 System Model

Figure 5.3: Timing Model in TSN

an LRQ regulated flow we set b f = L f . We also call M f the minimum packet size of flow f . We

assume that, at the source hosts, the traffic satisfies its regulation constraint, i.e. we can ignore

the delay due to interleaved regulator at hosts.

According to [123], at each switch implementing an interleaved regulator, packets of multiple

flows are processed in one FIFO queue; the packet at the head of the queue is regulated based

on its regulation constraints; it is released at the earliest time at which this is possible without

violating the constraint. The regulation type and parameters for a flow are the same at its

source and at all switches along its path.

5.1.4 Other Notations and Definitions

The indices for nodes, e.g., i , j ,k lie in [1, |S |]. A directed link from node i to j is denoted

by (i , j ) with a capacity of ci j . Also, n ∈N is used as an index for packets, f ∈ F is used as an

index for flows, and x ∈ {A,B ,E } is used as an index for AVB classes A and B , and BE flows,

respectively. The set of packets belonging to flow f is N f . The set of flows of class x going from

node i to node j is denoted by F x
i j and those that continue to node k, by F x

i j k . The maximum

packet size of flows in F x
i j is defined as Lx

i j . The flows in F x
i j k use the same CBFS in node i and

interleaved regulator in node j . As mentioned in Section 5.1.1, for each output port, there is a

per-class per-input port interleaved regulator. Thereby, the interleaved regulator in node j

connected to link ( j ,k) indicates an output port of node j connected to node k.

Fig. 5.3 shows the various delays of a packet n of a flow in F x
i j k . We see five important time

instants: (1) An is the arrival time of packet n in CBFS, (2) Qn is the time that packet n starts

transmission from CBFS, (3) Dn is the time that packet n is received at a node, (4) D ′
n is the

time that packet n is enqueued in the interleaved regulator, and (5) En is the time that packet

n leaves the interleaved regulator.

(D ′
n −Dn) is the processing time at node j , which is defined as the delay from the reception

of the last bit of a packet, coming from node i , to the time the packet is enqueued at the

interleaved regulator. We assume that D ′
n −Dn ∈

[
T proc,min

i j ,T proc,max
i j

]
. (Dn −Qn) is the output

delay for packet n traversing form node i to node j , which is defined as the time required from

the selection of a packet for transmission from a CBFS queue of node i to the reception of
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the last bit of the packet by the node j . Also, Dn −Qn = ln
ci j

+T out,n
i j , where ln is the length of

packet n and T out,n
i j is in

[
T out, min

i j ,T out, max
i j

]
.

We compute the following bounds for packets of AVB flows belonging to class x going from

node i to j (see Fig. 5.3):

• S( f , i , j , x): upper bound on the response time for flow f in CBFS, i.e. on (Dn − An);

• H( f , i , j ,k, x): upper bound on the response time for flow f in the interleaved regulator

at node j ’s output port for link ( j ,k), i.e. a bound on (En −D ′
n);

• C (i , j ,k, x): upper bound for all flows on the response time in the combination of the

CBFS at node i and the interleaved regulator at node j for link ( j ,k), i.e. a bound on

(En − An) for all flows.

5.2 Delay Bounds in TSN

The aim of this section is to compute bounds on the delays that an AVB flow experiences

through CBFS, S( f , i , j , x), and interleaved regulator at a node, H( f , i , j ,k, x). To do so, we

derive a service curve of CBFS for an AVB flow, in presence of CDT with an LB arrival curve;

this is directly affected by the upper bounds on the credit counters values of the CBS, denoted

as credit upper bounds. Therefore, in Section 5.2.1, we first present our novel result on credit

bound and then in Section 5.2.2, we obtain a service curve of CBFS for an AVB flow, in presence

of CDT with an LB arrival curve. Then, in Section 5.2.3, we use this service curve to compute

a bound on the response time for an AVB flow in the CBFS of a node, i.e., S( f , i , j , x). Using

S( f , i , j , x), we compute C (i , j ,k, x). Consequently, we can compute a bound on the response

time of an interleaved regulator, H( f , i , j ,k, x) in Section 5.2.4, and therefore we have all the

elements to compute a bound on the delay of a single TSN node. We also compute a tight

end-to-end delay bound for an AVB flow in Section 5.2.5.

5.2.1 Novel Credit Bound for CBS

In this section, we present our novel and general result on credit bound for CBS for multiple

classes x = 1, ..., p; in the delay analysis we use part of this result for the two AVB classes1.

Regarding credit upper bounds, two sets of results were published. The first, by J. Cao et

al, (“J-bounds", [153]) provides tight credit upper bounds for the first two AVB classes. Note

that since these bounds are tight, they cannot be improved. The second, by H. Daigmorte

et al (“H-bounds", [152]), applies to any number of AVB classes. For the top priority AVB

class, J- and H-bounds are identical. For the second priority class, J-bounds are smaller than

1This section is taken from our published paper [62] and it is adapted to the content of this chapter. The results
in the original paper can be applied to several integration policies mentioned in [152] including the preemption or
non-preemption of CDT over the rest of the classes.
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H-bounds. For third and lower priority classes, only H-bounds are available. The credit bound

of a class depends on lower priority classes only via their maximum packet length. Thus, the

J-bounds can be applied for the first two priority classes for any system, independently of the

total number of classes. For the second priority class, the H-bound is larger than the J-bound,

which suggests that the H-bounds can be improved for all classes.

The J-bounds in [153] for the first two AVB classes are,

V1(t ) ≤ L̄
I 1

c
:=V max,J

1 , (5.1)

V2(t ) ≤ I 2

c

(
LBE +L1 +LBE I 1

−S1

)
:=V max,J

2 , (5.2)

where Li and LBE are maximum packet lengths of AVB class i and BE. The H-bounds in [152]

apply to any value of p and give, for x = 1, ..., p:

Lx Sx

c
≤Vx (t ) ≤ L̄x

c

x∑
j=1

I j −
x−1∑
j=1

S j L j

c
:=V max,H

x , (5.3)

where L̄x = max(LBE ,L>x ), and L>x is the maximum packet length of the classes having less

priority than class x.

For class 1, the J-bounds and H-bounds are identical, i.e., V max,J
1 =V max,H

1 . For class 2, we have

V max,J
2 <V max,H

2 .

Theorem 5.1 (Improved Credit Bounds). The credit of an AVB class x, Vx (t ), is upper bounded,

∀t ≥ 0, by:

V max
x = I x

c(c −∑x−1
j=1 I j )

(
cL̄x −

x−1∑
j=1

S j L j

)
. (5.4)

The proof is in Appendix B.1.

Remark. The bounds are valid for any number of classes, p, existing in the system as long as

L̄x , ∀x is appropriately determined for the corresponding system.

For the two top priority classes, the bounds, V max
x (Eq. (5.4)), are equal with the J-bounds.

Hence, they are tight for the top two priority classes, i.e., for each set of parameters and each

class 1, 2, there is a scenario for which the credit counter attains the bound. The proof of

tightness is in [153]. Note that, V max
x depends on lower priority classes only through the

parameter L>x , and not on their number. We show that our bounds, V max
i , are always better

than the existing bounds, V max,H
i , for classes i ≥ 3.

Proposition 5.1. For any AVB class x ≥ 3, V max
x <V max,H

x .
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Proof. After some algebra we find

V max,H
x −V max

x =
c −∑x

j=1 I j

c
(
c −∑x−1

j=1 I j
)(

L̄x
x−1∑
j=1

I j −
x−1∑
j=1

S j L j
)
. (5.5)

By hypothesis, c > ∑x
j=1 I j . Since I j > 0, S j < 0 and x ≥ 2, it follows that L̄x ∑x−1

j=1 I j −∑x−1
j=1 S j L j > 0, thus the last term of Eq. (5.5) is strictly positive.

5.2.2 Service Curve Offered by CBFS to AVB flows

The following theorem provides service curves offered by a CBFS at a TSN node, for AVB flows

in presence of CDT flows with LB arrival curve. In [13], the authors compute service curves for

AVB flows according to the IEEE AVB standard [18], i.e., in absence of CDT. Note that service

curves for AVB flows in TSN are proposed in [145]; however in their proof credit reset is not

considered, and we show in Section 5.4 that it leads to incorrect response time bound for CBFS.

We obtain different service curves than [145] and we use them to obtain tight delay bounds.

Theorem 5.2. Assume a node i and a link (i , j ), where the CDT has an LB arrival curve with

parameters (ri j ,bi j ) and the line rate is ci j . Then, the CBFS offers to class A flows a rate-latency

service curve with parameters,

T A
i j =

1

ci j − ri j

(
L̄ A

i j +bi j +
ri j L̄i j

ci j

)
, (5.6)

R A
i j =

I A
i (ci j − ri j )

I A
i j −S A

i j

, (5.7)

where I A
i j and S A

i j are the idle slope and send slope, correspondingly, of the CBS for class A and

link (i , j ), L̄ A
i j = max(LB

i j ,LE
i j ), and L̄i j = max(L A

i j ,LB
i j ,LE

i j ). Similarly for class B flows, CBFS

offers a rate-latency service curve with parameters,

T B
i j =

1

ci j − ri j

(
L A

i j −
cL̄B

i j

S A
i j

+bi j +
ri j L̄i j

ci j

)
, (5.8)

RB
i j =

I B
i j (ci j − ri j )

I B
i j −SB

i j

, (5.9)

where I B
i j and SB

i j are the idle slope and send slope, correspondingly, of the CBS for class B and

link (i , j ).

The proof is available in Appendix B.2.
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5.2.3 Upper Bound on the Response Time in CBFS

The rate-latency service curve offered by CBFS at node i for link (i , j ) to class x ∈ {A,B} has

parameters Rx
i j , T x

i j , as calculated in Theorem 5.2. Also, let btot,x
i j =∑

f ∈F x
i j

b f . Then, applying

Lemma 4.2 and Theorem 4.5, we obtain an upper bound on the response time for a flow f at a

CBFS of node i .

Corollary 5.1. A tight upper bound on the response time in the CBFS of node i (following the

interleaved regulator) for flow f of class x ∈ {A,B}, going from node i to j , is:

S( f , i , j , x) = T x
i j +

btot,x
i j −ψ f

Rx
i j

+ ψ f

ci j
+T out,max

i j , (5.10)

where the parameter ψ f depends on the flow f and the type of regulator, namely, for LRQ:

ψ f = L f and for LB: ψ f = M f .

It is known from [123] that for all flows belonging to class x sharing the same CBFS queue at

node i and interleaved regulator at node j (e.g., for link ( j ,k)), we have

C (i , j ,k, x) = sup
f ′∈F x

i j k

S( f ′, i , j , x)+T proc,max
i j . (5.11)

Therefore, the following Corollary is a direct result.

Corollary 5.2. Assume flows of class x ∈ {A,B}, going from node i to j , and enqueued in the

interleaved regulator at node j for link ( j ,k). An upper bound, for each flow, of the combina-

tion of the response time in CBFS of node i (following the interleaved regulator of i ) and the

interleaved regulator at node j for link ( j ,k) is given by:

C (i , j ,k, x) =T x
i j +

btot,x
i j

Rx
i j

+T out,max
i j + sup

f ′∈F x
i j k

(
ψ f ′

ci j
− ψ f ′

Rx
i j

)
+T proc,max

i j , (5.12)

where for LRQ: ψ f = L f and for LB: ψ f = M f .

5.2.4 Bound on the Response Time in the Interleaved Regulator

The following theorem proves an upper bound on the response time in the interleaved regula-

tor, H( f , i , j , x).

Theorem 5.3. An upper bound on the response time for flow f of class x ∈ {A,B} in the inter-

leaved regulator at node j for link ( j ,k) that follows the CBFS of node i is:

H( f , i , j ,k, x) =C (i , j ,k, x)− M f

ci j
−T out,min

i j −T proc, min
i j . (5.13)

The proof is given in Appendix B.3.
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Remark. It is shown numerically in Section 5.4, that H is tight for the flow f that achieves the

maximum response time at the CBFS, i.e., for which S( f , i , j , x) =C (i , j ,k, x).

5.2.5 Upper Bound on the End-to-End Delay

Assume an AVB flow f routed through the nodes (i1, ..., ik ), where the source is i1 and desti-

nation is ik . It is assumed that the arrival curves of the generated flows in source conform to

the flows’ regulation policies, and thus the flows do not experience delay at the interleaved

regulators of the source nodes. An upper bound on the end-to-end delay for flow f of class x,

namely, Dx
f , is,

Dx
f =

k−2∑
j=1

C (i j , i j+1, i j+2, x)+S( f , ik−1, ik , x). (5.14)

Dx
f can be easily computed by using Eqs. (5.10), (5.12). In Section 5.4.5, we show numerically

that this bound is tight, in the sense that we exhibit an example that it achieves this bound.

5.3 Backlog Bounds

In this section, we determine an upper bound on the backlog for each AVB class of interleaved

regulator and CBFS.

5.3.1 Backlog Bound on Interleaved Regulator

As mentioned in Section 3.2.3, computing upper bounds on the backlog requires information

on arrival and service curves [25].

Service Curve Offered by Interleaved Regulator

Recall the “impulse" function δD (t )2 from Section 3.2; it is known that a service curve offered

by a FIFO system which guarantees a maximum delay D is equal to δD (t). The interleaved

regulator is a FIFO system, for which a delay upper bound is computed in Section 5.2.4.

Therefore, a service curve offered by the interleaved regulator for class x, at node j for link

( j ,k), that follows a CBFS of node i is δD(i , j ,k,x)(t ), where D(i , j ,k, x) = sup f ′∈F x
i j k

H( f ′, i , j , l , x)

is computed using Theorem 5.3.

Arrival Curve of Interleaved Regulator Input

The output flows of the upstream CBFS (node i ) may not share the same interleaved regulator.

Let us consider the interleaved regulator of node j for link ( j ,k) that follows the CBFS of node

i . Suppose that rs and bs are the sum of rates and bursts of the flows f ′ ∈ F x
i j k for x ∈ {A,B}.

2defined as δD (t ) = 0, 0 ≤ t ≤ D , else δD (t ) =+∞.
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In addition, rw and bw are the sum of rates and bursts of the flows that do not use the same

interleaved regulator in downstream node with the previous flows. The CBFS offers a rate-

latency service curve with parameters (Rx
i j ,T x

i j ) to the class x ∈ {A,B} (Theorem 5.2). Then,

by Theorem 3.4, the output arrival curve of the former flows is an LB one, rs t +bout with

bout = bs + rs(T x
i j + bw

Rx
i j

).

On the other hand, the upstream line has constant rate, ci j . Therefore, it also enforces an

arrival curve to the input of the interleaved regulator equal to ci j t + sup f ′∈F x
i j k

{L f ′}.

As the CBFS follows the interleaved regulator, the input arrival curve of the interleaved regula-

tor is,

α(t ) = min
(
ci j t + sup

f ′∈F x
i j k

{L f ′},rs t +bs + rs(T x
i j +

bw

Rx
i j

)
)
. (5.15)

Backlog Bound on Interleaved Regulator

By Theorem 3.2, the backlog bound is calculated as v(α,β) = sups≥0{α(s)−β(s)}, where α(t)

is the arrival curve and β(t), the service curve. By replacing the arrival and service curves

obtained in the two previous subsections, we obtain the backlog bound of the interleaved

regulator for class x ∈ {A,B} at node j for link ( j ,k) that follows the CBFS of node i , denoted as

B IR,x
i j k and given:

B IR,x
i j k = min

(
ci j D(i , j ,k, x)+ sup

f ′∈F x
i j k

{L f ′},rsD(i , j ,k, x)+bs + rs(T x
i j +

bw

Rx
i j

)
)
, (5.16)

where T x
i j , Rx

i j are computed in Theorem 5.2.

5.3.2 Backlog Bound on Class-Based FIFO System

Consider all flows f ∈ F x
i j . The input of the CBFS for class x has an arrival curve equal to

the sum of all α f . Using Theorem 5.2 and following a process similar to the one followed for

the interleaved regulator, the backlog bound of the CBFS at node i for link (i , j ) and class x,

denoted as B CBFS,x
i , j is

B CBFS,x
i , j = ∑

f ′∈F x
i j

b f ′ + ∑
f ′∈F x

i j

r f ′T x
i j . (5.17)

5.4 Case Study

In this section, we apply the results obtained in the previous sections to practical TSN networks

(Fig. 5.4, 5.6). We highlight the tightness of the delay bounds obtained and the sub-additivity

property of the end-to-end delay bound.

61



Chapter 5. Delay and Backlog bounds in TSN with Interleaved Regulators

Figure 5.4: A practical TSN network used for the case study.
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Figure 5.5: Cumulative data input and output curves for the CBFS of H1 and interleaved
regulator of switch 1, with respect to Fig. (5.4).

5.4.1 TSN Network Setup and Flows

We use the network shown in Fig. 5.4. It consists of five switches labeled 1-5, and five hosts

(as sources and destinations of flows), namely H1-H5, with five class-A flows f1- f5. Flow f1

is LRQ-regulated with rate r f1 = 20 Mbps and has maximum packet length L f1 = 1 Kb. Flows

f2- f5 are LRQ regulated with rate 20 Mbps and maximum packet length 2 Kb. It is assumed

that on each output port there is a CDT flow with an LB arrival curve (20 Mbps,4 Kb), and a BE

flow with maximum packet length of 2 Kb. As is shown in the Fig. 5.4, the network introduces

circular dependency among the flows, in which case obtaining end-to-end delay bounds for

the flows without the use of interleaved regulators is difficult.

For ease of presentation, we assume that the CBFS has only three classes: CDT, class A, and

one BE. Moreover, T out,max
i j and T proc,max

i j are zero in all switches i , links (i , j ) and all packets

of a same flow have the same size. The line rate is equal to 100 Mbps. The parameters of CBS

are I A
i j = 50 Mbps and S A

i j =−50 Mbps, ∀ i , j , H1 −H5. We are interested in studying the worst

case response time of flow f1 in CBFS of host H1 and its corresponding interleaved regulator

in switch 1. Also, we compute the theoretical end-to-end delay bound of this flow and show its

sub-additivity property.

62



5.4 Case Study

5.4.2 Computation of Theoretical Bounds

We compute the obtained upper bounds for the response time in CBFS and interleaved

regulator for flow f1, and the backlog bounds for the host H1 and switch 1. According to

Corollary 5.1, the bound on the CBFS response time for flow f1 in the host H1 is S( f1, H1,1, A) =
140 µs. Also, from Theorem 5.3, the bound on the response time in interleaved regulator for

flow f1, enqueued in the output port for link (1,2) on switch 1 is H( f1, H1,1,2, A) = 130 µs.

Also, the backlog bound for the same interleaved regulator (Eq. (5.16)) is 11.4 Kb. The backlog

bound for CBFS of class A in host H1 is 6.2 Kb (Eq. (5.17)). To compute the end-to-end delay,

we use Eq. (5.14). Using Eq. (5.12), we find that C (H1,1,2, A) = C (1,2,3, A) = C (2,3,4, A) =
C (3,4, H4, A) = 140 µs, and S( f1,4, H4, A) = 140 µs. Thus, for flow f1 of class A we have the

upper bound on delay D A
f1
= 700 µs.

5.4.3 Numerical Example of Tightness

Next, we show how these bounds are tight by presenting a particular series of packet arrivals

as shown in Fig. 5.5. This figure shows the input and output curves related to f1, f2, CDT and

BE flows in host H1 and switch 1. A step in the input curve indicates the time of reception

of the entire packet. According to Fig. 5.5a, at time 0, a packet of BE arrives and starts being

transmitted. At time 0+, a burst of CDT traffic arrives and then for time t > 0, CDT traffic

continues to arrive with rate 20 Mbps up to the time 75 µs. The transmission of CDT traffic at

time 0+ is blocked by the transmission of the BE packet as all switches are non-preemptive. At

time 20 µs, CDT traffic has accumulated a backlog and starts its transmission.

From Fig. 5.5b, we see that time 20 µs is the start of the backlog period of class A since a packet

of flow f2 and a packet of f1 arrive, with first of the two being the former. The first packet of

flow f2 reaches at time 95 µs the interleaved regulator in switch 1 for link (1,2) that implies a

response time of 75 µs for flow f2 in the CBFS of host H1. The first packet of flow f1 finishes

its transmission at time 160 µs from CBFS in H1, due to its earlier blockage by the CDT and

f2 traffic. This implies a response time of 140 µs for flow f1 in CBFS of H1, i.e., equal to the

bound in Section 5.4.2.

Remark. Using the service curve computed in Theorem 1 of [145] gives a bound equals to

135 µs for the response time of CBFS for f1. In the described scenario, flow f1 faced a response

time of 140 µs that is higher than 135 µs.

From Fig. 5.5c, we notice that the worst-case response time in the interleaved regulator for

flow f1 at switch 1 is for the packet that arrives at time 230 µs. This packet is declared eligible

by the interleaved regulator at time 360 µs. This implies the response time of 130 µs in the

interleaved regulator that is the upper bound for flow f1 as computed in Section 5.4.2. The

maximum response time seen in Fig. 5.5c for flow f2 is for its packet that arrives at time 260 µs

at the interleaved regulator at switch 1 and is equal to 100 µs.

Note that this packet of flow f2 could have been declared eligible by the interleaved regulator
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Figure 5.6: TSN network for tightness of end-to-end delay bound.

already at 260 µs but is blocked by preceding packets of flow f1 that were not yet eligible at

that time. Based on figures 5.5b and 5.5c, we observe that packets of flow f1 experience a

maximum delay of 140 µs from the time being enqueued in the CBFS of H1 to the time being

declared eligible by the interleaved regulator at switch 1 (equal to C (H1,1,2, A), computed in

Section 5.4.2).

The maximum observed backlog for class A used in the CBFS at the output port of H1 is equal

to 4Kb during times 70 µs to 75 µs, which is 65% of the computed bound. Furthermore, the

maximum backlog observed in the interleaved regulator at output port of switch 1 is equal to

5Kb during times 230 µs to 260 µs, which is 43% of the computed bound.

5.4.4 Sub-additivity of End-to-End Delay Bound

In TSN, the common way of computing the end-to-end delay bound is by adding the delay

bounds of each switch in the path of a flow. However, Eq. (5.14) provides a much better upper

bound. To show this, we first compute the delay upper bound for switch i following switch j

and followed by switch k in the path of a flow f of class x. The bound is given by

d x, f
j ,i ,k =H( f , j , i ,k, x)+S( f , i ,k, x)+T proc,max

i , (5.18)

where for i being a source, H( f , j , i ,k, A) is equal to zero. Considering T proc,max
i equal to zero

in this case, an end-to-end delay bound for flow f1 over the path (H1,1), (1,2), (2,3), (3,4), (4, H4)

can be computed as (0+140)+4× (130+140) = 1220 µs.

From Section 5.4.3, we know that an upper bound on the end-to-end delay for flow f1 is 700 µs

which is 57% of 1220 µs, obtained using Eq. 5.18.

5.4.5 Tightness of End-to-End Delay Bound

Consider the network shown in Fig. 5.6, having four switches labeled 1 - 4, and six hosts,

namely H1 - H6, with six class A flows f1 - f6. The assumptions on f1 − f5, CDT and BE traffic

are as in Section 5.4.1 and f6 is similar to f2 − f5.

To show the tightness of end-to-end delay bound of Eq. (5.14), we claim that each pair of f1,
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f3 at switch 1, f1, f4 at switch 2, f1, f5 at switch 3, and f1, f6 at switch 4 experience the same

input/output curves as the pair of flows f1, f2 in Fig. 5.5 but appropriately shifted in time,

so that they take place sequentially. Thus, flow f1 has a delay of 140 µs from the time being

enqueued in the CBFS of H1 to the time declared eligible from the interleaved regulator at

1. The same delay is experienced by flow f1 at the rest pairs of switches in its path. Similar

to Section 5.4.3, the response time of f1 at CBFS of switch 4 is equal to 140 µs. Therefore,

the end-to-end delay for f1 is equal to 4×140+140 = 700 µs, which is equal to the bound

computed from Eq. (5.14).

5.5 Conclusion

We have provided a set of formulas for computing bounds on end-to-end delay and backlog for

class A and class B traffic in a TSN network that uses CBS and ATS. The bounds are rigorously

proven, while we provide a representative case study that highlights the tightness of the delay

bounds provided and shows the sub-additivity of the end-to-end delay bound.
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5.6 Notation

Term Description

An The arrival time of packet n in CBFS.

ci j The rate of link (i , j ).

C (i , j ,k, x) An upper bound on the response time of all flows in the combination of

the CBFS at node i and the interleaved regulator at node j for link ( j ,k)

(Fig. 5.3).

Dn The time that packet n is received at a node.

D ′
n The time that packet n is enqueued in the interleaved regulator.

En The time that packet n leaves the interleaved regulator.

F x
i j The set of flows of class x going from node i to node j .

F x
i j k The set of flows of class x going from node i to node j and continue to node

k.

H( f , i , j ,k, x) An upper bound on the response time for flow f in the interleaved regulator

at node j ’s output port for link ( j ,k) (Fig. 5.3).

I x The CBS idleslope for class x.

Lx The maximum packet size of class x.

L f The maximum packet size of flow f .

Lx
i j The maximum packet size of flows in F x

i j .

M f The minimum packet size of flow f .

ln The length of a packet n.

N The set of positive integers, i.e., {1,2, . . . , }.

Qn The time that packet n starts transmission from CBFS.

N f The set of packets belonging to flow f is N f .

S The set of all nodes.

S( f , i , j , x) An upper bound on the response time for flow f in CBFS of link (i , j )

(Fig. 5.3).

Sx The CBS sendslope for class x.

T proc
i j The processing delay from the reception of the last bit of a packet, coming

from node i , to the time the packet is enqueued at the interleaved regulator

of node j , which is ∈ [T proc,min
i j ,T proc,max

i j ] (Fig. 5.3).

T out
i j The output delay from the selection of a packet for transmission from a

CBFS queue of node i to the reception of the last bit of the packet by the

node j , which is ∈ [
T out, min

i j ,T out, max
i j

]
(Fig. 5.3).

Vx (t ) The value of the credit counter for AVB class x at time t ≥ 0.

V max,H
x (t ) The H-bound, i.e., the credit upper-bound by [152], for AVB class x.

V max,J
x (t ) The J-bound, i.e., the credit upper-bound by [153], for AVB class x.
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6 Packet Reordering

There should be a place for everything, and everything in its place.

— Isabella Beeton

As discussed in Chapter 1, re-sequencing buffers are typically used to restore packet order

and provide in-order packet delivery in time-sensitive networks. A re-sequencing buffer uses

the assumption that the source increments a sequence number field by 1 for every packet

of the flow. Early packets are stored until all packets with smaller sequence numbers arrive

[52, 53, 54]. A timer is used to limit the waiting time of a packet in the re-sequencing buffer, as

otherwise the loss of a packet in the network would cause indefinite holding of packets with

larger sequence numbers. In time-sensitive networks, flows require a guarantee on worst-case

delay and delay jitter, together with zero congestion-loss (no packet is discarded due to buffer

overflow). Using network calculus as seen in chapters 3 and 5, the control or management

plane computes worst-case delay and jitter bounds, together with the buffer sizes required for

zero congestion-loss; such computations are currently done without taking into account the

impact of re-sequencing buffers.

The main goal of this chapter is to bridge this gap and provide a theory to compute worst-case

performance guarantees in presence of packet reordering and with re-sequencing buffers.

Specifically, a first issue is to find appropriate per-flow information that enables proper setting

of timeout value and buffer size at a re-sequencing buffer, such that deterministic guarantees

hold for a time-sensitive flow, namely, no packet is lost due to spurious timeout or buffer

overflow and packets are delivered in-order. A second issue is how to compute such per-flow

information. A third issue is the effect of the re-sequencing buffers on worst-case delay and

on delay jitter. Furthermore, an intriguing topic is to study the aforementioned issues in

the interconnection of various network elements and intermediate re-sequencing buffers.

A first challenge is how to systematically compute the propagation of per-flow information

in a sequence of network elements that affect the re-sequencing parameters. The second

challenge is to evaluate the impact of intermediate re-sequencing buffers on the end-to-end
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worst-case delay and delay jitter.

To address the first and second issues, we need appropriate metrics for per-flow reordering.

We show in Theorem 6.2 that one of the metrics in RFC4737 [59], the reordering late time offset

(RTO, the definition of which is recalled in Section 6.2.2), equals the minimal timeout value.

Furthermore, combined with other information on the flow (namely arrival curve at source

and delay jitter), the RTO can be used to derive the required buffer size (Theorem 6.3). In-line

with the operation mode of time-sensitive networks, such a metric, or an upper bound on it,

must be computed by the control or management plane before a flow is set up. This differs

from the intended use of the metrics in RFC4737, which focus on ex-post measurements.

Therefore, we propose a theory to compute tight upper bounds on RTO for flows, given the

information that is otherwise available to the time-sensitive network control or management

plane (Section 6.4). Such information includes bounds on delay jitter, arrival curve constraints

of flows at their sources, and whether a network element is guaranteed to preserve per-flow

order or not.

Another metric in RFC4737 is the reordering byte offset (RBO). We show in Theorem 6.3

that it is equal to the required size of the re-sequencing buffer when the network can be

assumed to be lossless. Otherwise, if packet losses cannot be ignored, we show that the RBO

underestimates the required buffer size, for which we give a formula that involves the RTO.

This closes the first issue.

Concerning the third issue, observe that re-sequencing buffers may delay packets until they

can be delivered in-order, therefore, they may increase the worst-case delay and the delay

jitter. However, we show in Theorem 6.4 that, if a flow is lossless between its source and

a re-sequencing buffer, the worst-case delay and the delay jitter are not increased by the

re-sequencing buffer (i.e. re-sequencing is for free in terms of delay in the lossless case).

In contrast, if the flow may be subject to packet losses on its path from source to the re-

sequencing buffer, then the worst-case delay may be increased by an amount up to the

timeout value of the re-sequencing buffer, which must be at least as large as the RTO between

the source and the input of the re-sequencing buffer. These results are based on a novel

input-output characterization of the re-sequencing buffer.

Finally, our theory also allows to evaluate the value of re-sequencing buffers at intermediate

points, in addition to the destination, in time-sensitive networks. Regarding the first challenge,

our formulas in Section 6.4.2 capture in particular the pattern of RTO amplification by down-

stream jitter: if a non order-preserving element (typically a switching fabric) has very small

RTO but is followed by a per-flow order-preserving element (typically the queuing system on

an output port) with large delay jitter, then the concatenation of the two produces a large RTO.

This motivates some vendors to perform per-flow re-sequencing after every switching fabric.

With respect to the second challenge, we find that such intermediate re-sequencing buffers

do not improve the worst-case delay nor delay jitter if the network is lossless; but they do

reduce the worst-case delay, delay jitter and RTO at destination in presence of network losses.
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6.1 Related Work

To quantify the effect of intermediate re-sequencing buffers, we also need to evaluate how

arrival curves of flows are modified by re-sequencing, since such arrival curves are required to

compute delay and jitter bounds (Section 6.3.3). We illustrate the application of our theory to

two industrial test cases.

The rest of this chapter is organized as follows. The state-of-the-art is presented in Section 6.1.

Common assumptions, including a formal description of the RTO and RBO metrics, are given

in Section 6.2, together with background results on network calculus in non-FIFO networks,

and a notation list. In Section 6.3 we provide a formal input-output characterization of the

re-sequencing buffer, which is then used to establish the link between RTO and its required

parameters, and to establish its effect on worst-case delay, delay jitter and output arrival

curve. In Section 6.4, we show how RTO and RBO can be computed, as required to establish

performance guarantees for time-sensitive flows; the method is in two parts: first, we develop

formulas for an individual network element, given delay jitter and an arrival curve of the

flow; then we develop a calculus to concatenate network elements. In Section 6.5 we apply

the results to analyze the performance of intermediate re-sequencing in two industrial case

studies. Section 6.6 concludes this chapter. For the reader’s convenience, Section 6.7 gives the

notation used throughout this chapter. Proofs of theorems and details of computations are in

Appendix C.

6.1 Related Work

Kleinrock et al obtain the average re-sequencing delay in [154], assuming Poisson arrival

of messages and a number of other simplifying assumptions. A more complete analysis is

then performed in [155], where the distribution of the end-to-end response time, including

re-sequencing delay, is obtained.

Later studies mainly focus on the statistical measurement of the occurrence of reordering in a

communication network; in [156, 48], the authors indicate that the rate of packet reordering

is high inside the network. Later, other works focus on the real-time techniques to measure

packet reordering [157, 158, 159]. In [157], the authors provide a collection of measurement

techniques that can estimate end-to-end reordering rates in TCP connections. In [158], the

authors propose and implement an algorithm to measure reordering at a TCP receiver. The

authors in [159] provide the probability density function for the amount of reordering of an

arbitrary packet, based on received packets.

All the aforementioned works focus on the techniques to capture statistical information on

packet reordering inside the network. Few works study the sizing of re-sequencing buffers:

[54, 53] provide probability distribution of the re-sequencing buffer size. To the best of our

knowledge, there is no prior work that computes the size of re-sequencing buffer and its

timeout value in the context of worst-case performance (as required with time-sensitive

networks) nor the effect of re-sequencing on worst-case delay and delay jitter.
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6.2 Background Information

6.2.1 Network Assumptions

We consider a network that contains a set of nodes, a set of hosts, and a set of links with

fixed capacity. Nodes are switches or routers. A node consists of elements that can be order-

preserving for the flow of interest (e.g. output port FIFO queues) or non order-preserving (e.g.

switching fabric). Every flow follows a fixed path, has a finite lifetime and emits a finite, but

arbitrary, number of packets. We consider unicast flows (extension to single-source multicast

flows is straightforward) with known bit-level or packet-level arrival curves at their sources

(sections 3.2.2 and 4.2.3). A node may also implement a re-sequencing buffer to provide

in-order packet delivery for one or several flows of interest. If a flow requires in-order packet

delivery and if there is at least one non-order-preserving element on its path, then one re-

sequencing buffer is required, and can be placed anywhere after the last non order-preserving

element on the path. In some configurations, we will also consider that some additional

intermediate re-sequencing buffers are placed inside the network.

Hosts are sources or destinations of flows. Packet sequence numbers are written at the

source, starting with number 1 for the first packet sent by the flow. The sequence number

is incremented by 1 for every packet of the flow, i.e., sequence numbering is per-packet per-

flow. If a packet is lost in the network, with most time-sensitive applications, there is no

packet retransmission; instead, the application hides the loss using some application-specific

robustness mechanism (see e.g. [160]). If the source happens to retransmit the missing data,

the resulting packets are assumed to have a new sequence number (larger than the already

sent packets of the same flow).

This section provides a set of general assumptions to present a high-level view of the con-

sidered network. Further details, e.g., scheduling policy inside the nodes, are not required

for understanding the theory presented in this chapter. In Section 6.5 we describe two case

studies; there, we describe the network and flows with all details.

6.2.2 Packet Reordering Metrics

RFC 4737 defines a number of packet reordering metrics, two of which are of interest in the

context of time-sensitive networks: the reordering late time offset (RTO) and the reordering

byte offset (RBO), which we now formally define. Both metrics are defined for a flow and

between an input and an output observation points. When the input observation point is not

specified, it is implicitly assumed that it is the source of the flow.

We call packet with index n the nth packet observed at the input observation point, in chrono-

logical order. If the input observation point is the source, then packet n is the packet with

sequence number n. Let En be the time at which packet n is observed at the output observa-

tion point. If this packet is lost between the two observation points, we take En =+∞. Note
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that, since some network elements may be non order-preserving, En cannot be assumed to be

a monotonic sequence. Simultaneous packet observations might be possible in some cases

(e.g. if the observation of a packet depends on the realization of a software condition) and

the system must use some tie-breaking rule to determine a processing order for packets; if

this happens, we assume that we modify the timestamps En by some small amounts to reflect

the tie-breaking rule i.e. we assume that if j 6= n then E j 6= En . If packet n is not lost, i.e. if

En <+∞, its reordering late time offset is

λn = En − min
j | j≥n,E j≤En

E j (6.1)

i.e. λn is the largest amount of time by which a packet with index larger than n arrives earlier

than packet n, i.e. the maximum amount of “overtaking” undergone by packet n; if there is no

reordering after packet n, then λn = 0. The reordering late time λn is undefined if packet n is

lost.

The reordering late time offset, RTO, of the flow between the two observation points is λ=
maxn|En<+∞λn . It follows that, if packet n is not lost, then for any packet index p ≥ n:

Ep ≥ En −λ. (6.2)

We always have λ≥ 0 and it is easy to see that λ= 0 if and only if the network path between

the two observation points preserves the order of packets for this flow.

For the second metric, we need to count misordered bytes; observe that packet n is misordered

between the two observation points if there exists some j > n such that E j < En . Then, if

packet n is not lost, its reordering byte offset is defined by

πn = ∑
j | j>n,E j<En

l j . (6.3)

where l j is the size, in bytes, of packet j . Thus πn is the cumulated number of bytes of packets

with index larger than n that arrive earlier than packet n; if there is no reordered packet after

n, then the sum is empty and πn = 0. The reordering byte offset πn is undefined if packet n

is lost. The reordering byte offset, RBO, of the flow between the two observation points is

π= maxn|En<+∞πn .

This definition of RBO is in bytes and not in bits as is often done for buffer and packet lengths

in the context of time-sensitive networks; this is to be consistent with the terminology in

RFC 4737. Also observe that a similar definition could be given by counting packets rather

than bytes, as is done in [52].
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6.2.3 Re-sequencing Buffer

A re-sequencing buffer stores the packets of a flow until the packets with smaller sequence

numbers arrive; then it delivers them in the increasing order of their sequence numbers. A

re-sequencing buffer has two parameters, a size in bytes, B , and a timeout value, T . For any

individual packet that is stored in the buffer, a timer is set that expires after T seconds. Then,

if a timer for a packet expires, all the stored packets with smaller or equal sequence number

are released in-order. Hence, a packet is released if any one of the following conditions holds:

1) all packets with smaller sequence numbers are received, 2) its timer expires or 3) the timer

of a received packet with a larger sequence number expires. A detailed description of the

re-sequencing buffer algorithm is provided in Appendix C.1.

By construction, the re-sequencing buffer delivers the packets that it does not discard in

increasing sequence numbers. Furthermore, a packet is discarded by the re-sequencing buffer

either when the buffer is full or when the sequence number of the arriving packet is less

than the largest sequence number that was already released. The latter occurs when the

timeouts of packets are too early, compared to the lateness of misordered packets. Therefore,

to avoid discarding packets, the re-sequencing buffer size and the timeout value should be

large enough. In Section 6.3, we analyze how to set the parameters such that these conditions

hold.

6.2.4 Assumptions on Arrival Curves

We follow the definition of arrival curve in Section 3.2.2. Without loss of generality [25], the

arrival curve α can be assumed to be sub-additive (Eq. (3.6)) and left-continuous. In this

chapter we assume that entire packets are observed at the observation point, which imposes

that α+ ≥ Lmax, where Lmax is the maximal packet size, otherwise no packet of maximal size

can be sent by the flow.

An arrival curve α is “achievable” if, for any sequence of packet sizes between Lmin and Lmax,

there is a source with these packet sizes that achieves equality in the arrival curve constraint,

or more specifically, if the sequence of packets obtained by packetizing the fluid source

R(t ) =α(t ) satisfies the arrival curve constraintα. Note that the fluid source R(t ) =α(t ) always

satisfies the arrival curve constraint α since we can always assume that α is sub-additive;

however packetization may introduce some violations [161]. Any concave arrival curve that

satisfies α(0) = 0 and α(0+) ≥ Lmax is achievable [25, Theorem 1.7.3][161]. For a flow with

packets of constant size, any arrival curve whose values are integer multiples of the packet size

is achievable as soon as it is sub-additive, left-continuous and satisfies α(0) = 0. Leaky-bucket

arrival curve, α(t ) = r t +b, t > 0 and α(0) = 0, is always achievable. The staircase arrival curve,

α(t ) = b
⌈ t
τ

⌉
, is achievable if all packets are of size b. If for example, in contrast, b = 1500bytes

but the packets emitted by the source all have a size equal to 1200bytes, then this arrival curve

is not achievable: b should be set to 1200, i.e. α should be replaced by a smaller arrival curve,

which is then achievable.
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As we saw in Section 4.2.3, instead of counting bytes, constraints can be expressed in number of

packets using packet-level arrival curves. The common form of such arrival curves use in IEEE

TSN is staircase one defined by αpkt(t ) = K
⌈ t
τ

⌉
, with period τ and burst of K packets. Packet-

level arrival curves can always be replaced by an integer-valued sub-additive, left-continuous

function that vanishes at zero; it is then always achievable.

Last, we also need two technical assumptions. First, we assume that arrival curves are not

bounded from above, i.e. limt→+∞α(t) = +∞. This holds for all arrival curves of interest.

Second, we assume that every flow has a maximum and minimum packet size Lmax and

Lmin; then the number of bytes observed on any time interval must be an element of L ,

the set of all possible sums of a finite number of packet sizes. If Lmax ≥ 2Lmin, then L is

made of all numbers ≥ Lmin; if Lmax = Lmin then L is made of all multiples of Lmax = Lmin.

Unless otherwise specified, we assume either of these conditions holds, as otherwise L is

cumbersome and tightness results would become very complex.

6.2.5 Network Calculus Results in Non-FIFO Networks

In a time-sensitive network, the burstiness of a flow may increase at every node, due to

multiplexing and random delays. Thus an arrival curve constraint at the source is usually

no longer valid inside the network. Analysis of time-sensitive networks uses bounds on the

propagation of arrival curves [2]. Such results are based on network calculus theorems that

were derived for order-preserving networks[25, Section 1.4.1], but which can be extended to

non order-preserving networks, as we show next. Specifically, we will use the following two

results, the proofs of which are in appendices C.2.1 and C.2.2.

Lemma 6.1. Assume a flow has arrival curve α at the input of some system S , which needs

not preserve the order of packets of the flow. Assume the delay jitter of the flow through S is

upper bounded by some quantity V . At the output of S , the flow has arrival curve α′ given by

α′(t ) =α(t +V ). The same holds, mutatis mutandi, for packet-level arrival curves.

Lemma 6.2. Assume a flow has arrival curve α at the input of some system S , which needs not

preserve the order of packets of the flow. Assume the worst-case delay of the flow through S is

upper bounded by some quantity U . At any point in time, the amount of data of the flow that

is present in S is upper-bounded by α(U ). The same holds, mutatis mutandi, for packet-level

arrival curves.

6.3 Properties of the Re-sequencing Buffer

In this section we first provide a formal input-output characterization of the re-sequencing

buffer. Then we use it to analyze the optimal parameter setting, assuming that bounds on

RTO and RBO of the flow are known. Last, we characterize the performance effect of a re-

sequencing buffer in terms of delay, delay jitter and arrival curve propagation.
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6.3.1 Input-output Characterization of the Re-sequencing Buffer

We use the notation in Figure 6.1, where packets of the flow of interest are emitted in sequence

by a source. Packet with sequence number n is emitted at time An , traverses a non order-

preserving network, reaches the re-sequencing buffer at time En , from which it is released

at time Dn . If the packet is lost by the network, then En = Dn = +∞. If the re-sequencing

buffer discards packet n, then Dn =+∞. Recall that a packet may be lost in the network or

discarded by the re-sequencing buffer. The latter may occur either (1) when the packet arrives

after a packet with smaller sequence number was released; this is due to the timeout value T

being too small; or (2) if the buffer size B is too small. In this subsection, we assume the buffer

is large enough, and in Section 6.3.2 we compute the maximum buffer occupancy, which

will give the required buffer size for a given flow. The following theorem characterizes the

departure times from the re-sequencing buffer and is the basis from which the results in the

rest of this section are derived.

source network

𝐴" 𝐸" 𝐷"

Re-sequencing buffer (𝑇,𝐵)

Figure 6.1: Notation used in Section 6.3.

Theorem 6.1. Consider the re-sequencing buffer described in Section 6.2.3 with timeout value

equal to T and with infinite buffer capacity B =+∞. See Figure 6.1 for the notation.

1. The packet with sequence number n leaves the re-sequencing buffer at time Dn given by

Dn =
In if n = 1,

max{Gn , In} if n > 1
(6.4)

with In =
+∞ if En > min j≥n{E j }+T,

En otherwise
(6.5)

and, for n ≥ 2 : Gn = min

(
Dn−1,T +min

j≥n
{E j }

)
. (6.6)

2. Let λ be the RTO of this flow between the source and the input of the re-sequencing buffer.

If T ≥λ and packet n is not lost in the network (i.e. En <+∞) then it also holds that

Dn =
E1 if n = 1,

max{Gn ,En} if n > 1
(6.7)

where Gn is defined in (6.6).
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3. If T ≥ λ and the network is lossless (i.e. En < +∞ for all n), then it also holds that

Dn = maxk≤n {Ek }.

The proof is in Appendix C.2.3. It is based on induction and uses the description of re-

sequencing buffer presented in Section 6.2.3.

6.3.2 Optimal Dimensioning of the Parameters of the Re-sequencing Buffer

Recall that, by construction, the re-sequencing buffer always delivers packets in-order. How-

ever, it may do so by discarding late packets. We can now use the previous theorem to derive

the minimal values of the timeout T and the size B of the re-sequencing buffer, such that it

never discards any packet. We start with the timeout value.

Theorem 6.2. Consider the re-sequencing buffer described in Section 6.2.3 and Figure 6.1, with

timeout value of T and infinite buffer size B = +∞. Let λ be the RTO of the flow of interest

between the source and the input of the re-sequencing buffer. The minimum value of T that

guarantees that the re-sequencing buffer never discards packets of this flow is T =λ.

The proof of Theorem 6.2 is in Appendix C.2.4. It consists in two steps. First, using Theorem 6.1,

item 2, we show that, if T ≥ λ, there is no packet discard due to spurious timeout. Second,

using Theorem 6.1, item 1, we show that, for any λ> 0, if T <λ we can construct an execution

trace with RTO λ such that a packet is discarded due to spurious timeout.

Theorem 6.2 thus establishes the central role of the RTO metric as far as the timeout value is

concerned. For the required buffer size, the results are more complex, as shown in the next

theorem.

Theorem 6.3. Consider the re-sequencing buffer described in Section 6.2.3 and Fig. 6.1, with

timeout value of T and buffer size B. Let λ, π and V be the RTO, RBO and delay jitter of the flow

of interest between the source and the input of the re-sequencing buffer. Assume that T ≥λ. Also

assume that the flow has arrival curve α at its source. The minimal size of the re-sequencing

buffer required to avoid buffer overflow is

1. B =π, if the network in Fig. 6.1 is lossless for the flow;

2. B =α(V +T ), if the network in Fig. 6.1 is not lossless for the flow.

The proof is in Appendix C.2.5. It consists in four steps. First, assuming the network in

Figure 6.1 is lossless for this flow and using Theorem 6.1, we show that the actual buffer

content is upper bounded by π, which shows that a buffer of size B =π is sufficient. Second,

we show that for any λ > 0 and any valid RBO value π (a valid RBO value is a number that

can be decomposed as the sum of an arbitrary number of packet sizes) there always exists

one execution trace of a flow with RTO λ and RBO π, that achieves a buffer content equal to
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π; therefore the minimal size cannot be less than π. If λ = 0, the network preserves packet

order for this flow and thus π = 0 as well and the result is clear. This shows item 1. Third,

using Lemmas 6.1 and 6.2 in Section 6.2.4, we show that, if the network is not lossless for this

flow, the actual buffer content is upper bounded by α(V +T ). Fourth, we show that, for any

achievable arrival curve α, RTO λ, jitter V and timeout value T , we can construct an execution

trace with RTO λ in which the buffer content can become arbitrarily close to α(V +T ). This

shows item 2.

Remark. It follows from Theorem 6.6 that the bound, π, in item 1, is always less than the

bound, α(V +T ), in item 2, as expected.

Remark. Loss-free operation is often considered as the normal case in time-sensitive net-

works, since congestion losses are avoided and transmission losses are very rare; a packet

loss might then seen as an exceptional error case, treated by exception-handling routines. If

such an assumption can be made, Theorem 6.3 shows that the required buffer content is only

dependent on the RBO of the flow.

However, such an interpretation should be taken with care. Indeed, the loss of a single

packet before the input to the re-sequencing buffer may delay a number of other packets:

the first arriving packet with sequence number larger than the lost packet is delayed at the

re-sequencing buffer by T , and, depending on the scenario, following packets may be delayed

as well. Thus, the loss of a single packet, even rarely, may impose a delay increase to many

more subsequent packets and may lead to the violation of the bound in item 1. Hence, if the

bound in item 1 is used for dimensioning the re-sequencing buffer, then the loss of a single

packet in the network may cause the loss of many more packets at the re-sequencing buffer

due to an insufficient buffer size (since the bound in item 2 is always larger than in item 1).

Quantifying this in detail is left for further study.

Remark. The RBO and buffer size B in Theorem 6.3 are expressed in bytes. Obviously, a similar

result holds if we count in packets: if the flow is constrained at the source by a packet-level

arrival curve αpkt, then the size of the re-sequencing buffer, counted in packets, is upper-

bounded by αpkt(V +T ).

6.3.3 Effect of Re-sequencing on Worst-case Delay, Jitter and Arrival Curve

When re-sequencing buffers are used, they may affect packet delay. In this section, we quantify

this effect in the sense of worst-case delay and delay jitter, as required in time-sensitive

networks.

Theorem 6.4. Consider a flow as in Figure 6.1, and let λ be the RTO of the flow between the

source and the input of the re-sequencing buffer. Assume that the timeout value T of the

re-sequencing buffer satisfies T ≥λ. The worst-case delay and the delay jitter of the flow

1. are not increased, if the network is lossless;

2. are increased by up to T , if the network is not lossless.
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Formally, with the notation in Figure 6.1, the theorem means that, if the network is lossless (i.e.

En <+∞ for every n), then

max
n

(Dn − An) = max
n

(En − An), (6.8)

max
n

(Dn − An)−min
n

(Dn − An) = max
n

(En − An)−min
n

(En − An) (6.9)

as the former is the worst-case delay and the latter is the delay jitter.

In contrast, if there are some losses in the network, the theorem means that

max
n

(Dn − An) ≤ max
n

(En − An)+T, (6.10)

max
n

(Dn − An)−min
n

(Dn − An) ≤ max
n

(En − An)−min
n

(En − An)+T (6.11)

The proof is in Appendix C.2.6. It uses the input-output characterization of re-sequencing

buffers in Theorem 6.1.

Remark. Item (2) of Theorem 6.4 is tight. Consider a packet n that experiences maximum

delay δmax while packet n −1 is lost in the network. Therefore, packet n should wait in the

re-sequencing buffer until its timer expires after T seconds. Then, packet n is delayed by

δmax +T .

Remark. Item (2) quantifies the price of misordering under lossy operation: the re-sequencing

buffer, which is caused by the presence of misordering, increases the worst-case delay and the

delay jitter of the flow by an amount (T ) that is at least equal to the RTO.

Remark. The same remark about loss-free operation holds as in Section 6.3.2. Specifically, the

loss of a single packet may impose a delay increase to many more subsequent packets (e.g. to

all packets that arrive before timeout). For example, if the flow has packet-level arrival curve

αpkt at the source and jitter V between the source and the input of the re-sequencing buffer, it

can easily be seen, using the same arguments as in the proof of Theorem 6.3, that the loss of

a single packet may cause the delay bound in item 1 to be violated for a number of packets

equal to αpkt(V +T ). This stresses again that the result in item 1 should be taken with care,

and that the delay bounds in item (2) are more realistic.

We can apply Lemma 6.1 to the previous theorem and quantify the propagation of arrival

curves through a re-sequencing buffer:

Corollary 6.1. Consider a flow as in Figure 6.1; assume that it satisfies the arrival curve α at the

source and that the delay jitter between source and input to the re-sequencing buffer is V . Also

assume that the timeout value T of the re-sequencing buffer satisfies T ≥λ, where λ is the RTO

of the flow between the source and the input of the re-sequencing buffer. At the output of the

re-sequencing buffer, the flow has arrival curve α′ defined by
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1. α′(t ) =α(t +V ), if the network is lossless;

2. α′(t ) =α(t +V +T ), if the network is not lossless.

The same applies, mutatis mutandi, to packet-level arrival curves.

Remark. Part (2) of the corollary is tight. This can be shown using the same arguments as in

step (4) of the proof of Theorem 6.3. Specifically, the bound is achieved in a scenario where an

isolated packet loss occurs, followed by a burst of in-order packets.

6.4 Computing RTO and RBO

In the previous section we saw how to dimension a re-sequencing buffer in the context of

time-sensitive networks, assuming that we know the RTO of the flow and, to the extent that

lossless metrics are of interest, its RBO. It remains to see how the RTO/RBO, or bounds on

them, can be estimated by the control or management plane in order to setup the flow. To this

end, we decompose a network path into elements that are either per-flow order-preserving or

not. Examples of the former are the IEEE TSN class-based queuing subsystems [63]; examples

of the latter are some switching fabrics which use parallel paths to improve throughput [162].

In Section 6.4.1 we give tight RTO and RBO bounds for network elements; in Section 6.4.2 we

show how to concatenate them.

6.4.1 RTO and RBO for Network Elements

Theorem 6.5. Consider a flow that traverses a system, with delay jitter upper-bounded by V .

Then an upper bound on the RTO of this flow between the input and the output of the system is:

1.
[
V −α↓(2Lmin)

]+
, if the flow has arrival curve α at the input of the system;

2.
[

V −α↓
pkt(2)

]+
, if the flow has packet level arrival curve αpkt at the input of the system.

The bounds are tight, i.e. for every achievable arrival curve and every value of Lmin and V there

is a system and an execution trace that attains the bound.

The proof is in Appendix C.2.7. It consists in two steps. First, based on the definition of jitter in

Definition 3.10 and the alternative definitions of arrival curves in Sections 3.2.2 and 4.2.3, we

show that the RTO is not larger than the bound in Theorem 6.5. Second, we show that there

always exists one execution trace of a flow that its RTO is equal to the bound. Specifically, the

bound is achieved in a scenario where the two packets enter a system in a greedy manner and

the first one experiences the worse-case delay and the second one experiences the best-case

delay.
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Remark. If no arrival curve is known for the flow, we can always take α(t ) =+∞ for t > 0 and

then α↓ (x) = 0; this gives the RTO bound λ=V , i.e. jitter is a valid RTO bound for any system

and any flow.

Remark. If α↓(2Lmin) ≥V or α↓
pkt(2) ≥V then the RTO bound given by the theorem is 0, i.e.,

there is no reordering for this flow. Thus, the theorem captures the cases where the packets

sent by the flow are rare and the delay jitter of the non order-preserving system is small, so

that reordering is impossible. See the next two examples.

Remark. If the RTO of the flow is larger than zero, according to the theorem α↓(2Lmin) < V

or α↓
pkt(2) <V . Then by [124, Property P7, Section 10.1], we have α(V ) ≥ 2Lmin or αpkt(V ) ≥ 2.

This implies that if a flow has reordering, the input generates at least two packets within the

duration of V .

Hereafter, we provide examples on computation of RTO for multi-path connections and

common forms of arrival curves, i.e., staircase and leaky bucket.

Example. Consider an interconnection system with K paths. Every path k has a worst-case

delay d max
k and a best-case delay d min

k . The delay jitter of this interconnection system is

V = maxk=1...K d max
k −mink=1...K d min

k ; the RTO for a flow at the output of this interconnection

is then given by Theorem 6.5. Non order-preserving switching fabrics fall into this category;

here, the delay jitter, and hence the RTO, are typically very small.

Example. Consider a flow that has packet-level arrival curve αpkt(t ) = K d t
τe, expressing that

at most K packets are allowed in any time window of τ seconds. Here we have α↓
pkt (x) =

τd x−K
K e, x > 0 and Theorem 6.5 gives an RTO bound equal to λ= [

V −τd2−K
K e]+.

Applying this with K = 1 gives that, for a flow that generates at most one packet every τ

seconds:

1. if τ≥V , the flow experiences no reordering, i.e., λ= 0.

2. if τ<V , the flow may experience reordering, and λ=V −τ.

Example. Consider a flow that has a leaky bucket arrival curve, i.e.,α(t ) = r t+b, t > 0, with rate

r and burst b ≥ Lmax. Then, we haveα↓ (x) =
[

x−b
r

]+
and the RTO bound given by Theorem 6.5

is λ=
[

V −
[

2Lmin−b
r

]+]+
. It follows that:

1. if b < 2Lmin and V ≤ 2Lmin−b
r , the flow experiences no reordering, i.e., λ= 0;

2. if b < 2Lmin and V > 2Lmin−b
r , the flow may experience reordering, and the RTO is

bounded by λ=V − 2Lmin−b
r ;

3. if b ≥ 2Lmin the flow may experience reordering, and the RTO is bounded by λ=V .

The first case requires Lmax < 2Lmin, which we excluded when Lmax ≥ 2Lmin, but it may occur

when packets are all of the same size l ; then reordering is impossible if the delay jitter is ≤ 2l−b
r .
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Theorem 6.6. Consider a flow that traverses a system, with delay jitter upper-bounded by V

and with RTO upper-bounded by λ> 0. Then a bound on RBO of the flow between the input

and the output of this system is:

1. α(V )−Lmin, if the flow has arrival curve α at the input of the system and α(V ) ≥ 2Lmin,

and 0 if α(V ) < 2Lmin;

2. Lmax
(
αpkt(V )−1

)
, if the flow has packet-level arrival curveαpkt at the input of the system

and αpkt(V ) ≥ 2, and 0 if αpkt(V ) < 2.

The bounds are tight, i.e. for every achievable arrival curve and every value of Lmin, Lmax, V

and λ> 0 there is a system and an execution trace such that the RBO of the flow is arbitrarily

close to the bound.

The proof is in Appendix C.2.8. It consists in two steps. First, based on the definition of jitter

in Definition 3.10 and the alternative definitions of arrival curves in Sections 3.2.2 and 4.2.3,

we show that the RBO is not larger than the bound in Theorem 6.6. Second, we show that

there always exists one execution trace of a flow that its RBO is arbitrary close to the bound.

Specifically, it is achieved in a scenario where a sequence of packets enter a system in a greedy

manner and the first packet experiences the worst-case delay while the other packets already

left the system.

Observe that we must have α+(0) ≥ Lmax and α+
pkt(0) ≥ 1, therefore the expressions in items (1)

and (2) are always non-negative. Also notice that the RBO bounds do not depend on λ but

require that λ> 0; otherwise, namely if λ= 0, there is no reordering and the RBO is 0. Last,

observe that the tightness result implies that the RBO can be extremely large if the arrival curve

can also be large. In other words, it is not possible to bound the RBO solely by constraining the

delay jitter; for example, a non order-preserving switching fabric can have a very large RBO,

limited only by the speed of the input ports, if the flows are not otherwise constrained.

Example. Consider a flow that has a packet-level arrival curve αpkt(t) = K d t
τe, expressing

that K packets are observed in any time window of τ seconds. An RBO bound for this flow is

π= K LmaxdV
τ e−Lmax except if K = 1 and V ≤ τ in which case it is 0.

Example. Consider a flow that has a leaky bucket arrival curve, i.e., α(t) = r t +b, t > 0, with

rate r and burstiness b ≥ Lmax. Applying Theorem 6.6 for a system with jitter bound V , an RBO

bound for this flow is π= r V +b −Lmin.

Remark. If we count reordering offset in packets instead of bytes as in [52], the bound in item

(2) should be replaced by αpkt(V )−1.

6.4.2 Concatenation Results

So far, we are able to compute RTO and RBO of a flow with known arrival curve for any system

with known delay jitter. In practice, a flow typically traverses a sequence of network elements,
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of which some cause packet reordering and the rest preserve order. We are interested to

compute RTO and RBO of the flow under such situation. To tackle this problem, a trivial

method is to concatenate all the elements as a single system with a delay jitter equal to the

sum of delay jitters of each network element; then by applying theorems 6.5 and 6.6, we

compute RBO and RTO of the combination. However, we can do better, in two ways. First, as

shown in Corollary 6.2, we can ignore all prefix order-preserving elements when computing

RTO and all suffix order-preserving elements when computing the RBO of the sequence.

Second, we can use extra information about the RTO of every network element, as shown in

Theorem 6.7.

𝑉! 𝑉"#! 𝑉!"# 𝑉$

𝑆! 𝑆"#! 𝑆%&! 𝑆$
𝑉" 𝑉%

𝑆" 𝑆%Arrival
curve 
𝛼

𝛼"

Order preserving Order preservingNon 
order-preserving

Non 
order-preserving

Order preserving or 
non order-preserving

Figure 6.2: Notation for the sequence of network elements used in Section 6.4.2. Ss and Se are
respectively the first and the last non order-preserving elements in the sequence. α and αs are
arrival curves at the entrance of S1 and Ss respectively.

Corollary 6.2. Consider the notation in Fig. 6.2. An upper bound on the RTO of the flow between

the input and the output of the sequence S1, ...,SK , denoted as Λ′(K ), is obtained by applying

Theorem 6.5 only to Ss , ...,SK . Specifically:

Λ′(K ) =
K∑

h=s
Vh −α↓

s (2Lmin), (6.12)

where αs is an arrival curve of the flow at the entrance of Ss .

Moreover, an upper bound on the RBO of the flow between the input and the output of the

sequence S1, ...,SK is obtained by applying Theorem 6.6 and setting the jitter term as
∑e

h=1 Vh

and the arrival curve term as the one at the entrance of S1.

The proof of the Corollary is immediate: the RTO bound is justified by the definition of RTO

and S1, ...,Ss−1 being order preserving. Similarly, since Se+1, ...,SK are order preserving, they do

not affect the RBO of the whole sequence. In (6.12), note that since Ss is non order-preserving,

Vs −α↓
s (2Lmin)) > 0, thus

∑K
h=s Vh −α↓

s (2Lmin) > 0.

The bounds in Corollary 6.2 only exploit the information on the jitter of each element. However,

as we now show, there are cases where an RTO bound λh for each element Sh can also be

provided such that λh <λ′
h , where λ′

h is obtained by Theorem 6.5 using Vh and an arrival curve

at the entrance of Sh . Let us see the following example to see how this extra information can
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be available. Consider a switch with different internal elements including order-preserving

input processing units with jitter V1, non order-preserving switching fabric with jitter V2,

and order-preserving output ports with jitter V3. The jitter of the switch is V = V1 +V2 +V3

and, a bound on the RTO of a flow with arrival curve α at the entrance of the switch is

λ= [
V2 +V3 −α↓(2Lmin))

]+
(Corollary 6.2). If only the jitter V is exported by the switch, the

RTO bound that can be computed by the control plane is λ′ = [
V −α↓(2Lmin))

]+
and λ′ > λ

in most cases (i.e whenever α↓(2Lmin) <V ). Therefore, it is desirable that this switch exports

both its jitter bound V and its RTO bound λ.

This asks the question of which best RTO bound can be obtained from a concatenation of

network elements, for each of which both jitter and RTO bounds are known. The answer is

provided by the following theorem.

Theorem 6.7. Assume that for every network element Sh and for the flow of interest, we know a

bound Vh on the delay jitter and a bound λh on the RTO between the input and the output of

Sh . Let Ss be the first network element in the sequence that has λs > 0. Then the RTO of the flow

between the input and the output of the sequence is upper-bounded by

Λ(K ) =λs +
K∑

h=s+1
Vh . (6.13)

The bound is tight, i.e., for every pair of sequences Vh ,λh there exists a system and an execution

trace that comes arbitrarily close to the bound.

The proof is in Appendix C.2.9. Obviously, we can assume that Vs −α↓
s (2Lmin) > 0, since Ss is

not order preserving for this flow, and, furthermore, that λs ≤Vs −α↓
s (2Lmin), since otherwise,

by Theorem 6.5, we can replace λs by Vs −α↓
s (2Lmin). It follows that the RTO bound given by

Theorem 6.7 is always at least as good as that of Theorem 6.5, and improves on it whenever

λs < Vs −α↓
s (2Lmin), i.e. whenever the RTO bound exported by Ss does improve over the

knowledge of its jitter alone.

Remark. Theorem 6.7 indicates that the only RTO that matters is that of the first non order-

preserving element in the sequence (i.e. Ss). For subsequent network elements, it is their

delay jitter Vh , not their RTO λh , that matters. Observe that RTO is always upper bounded by

delay jitter (see remark after Theorem 6.5). Therefore, the RTO of the flow through a sequence

of nodes may be larger than the sum of the RTOs of the flow through each individual node.

This can be explained as follows: if packet 2 overtakes packet 1 at node Ss by a small amount

up to λs , it may still happen that the delay of packet 2 through the subsequent nodes is

much less than the delay of packet 1, by an amount up to the delay jitter
∑K

h=s+1 Vh . Thus, as

destination, we observe that packet 2 overtakes packet 1 by an amount up to λs +∑K
h=s+1 Vh .

Imagine that all non-order preserving network elements are switching fabrics, for which the

RTO is tiny (sub-microseconds) and that other network elements are class-based queuing

subsystems, which preserve packet order for every flow, but may have a much larger delay

jitter (milliseconds or more). The end-to-end RTO is then of the order of milliseconds, orders
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of magnitude larger than the amount of reordering introduced by any single network element.

This is the pattern of “RTO amplification by downstream jitter”.

Similarly, we can ask whether the information on RTO bound of every element can improve

the RBO bound presented in Corollary 6.2. The following theorem shows that the answer is no.

Theorem 6.8. The RBO bound in Corollary 6.2 is tight, i.e., for every pair of sequences Vh ,λh

and every achievable arrival curve there exists a system and an execution trace that comes

arbitrarily close to the bound.

The proof of tightness is similar to the proof of tightness in Theorem 6.6.

6.5 Application to Performance of Intermediate Re-sequencing

In this section we illustrate how the results in the previous sections can be combined in order

to evaluate the performance impact of intermediate re-sequencing.

6.5.1 Methodology

For a flow that requires in-order delivery but traverses a network where some elements do

not preserve packet order, re-sequencing can be performed at the destination, but it is also

possible to insert re-sequencing buffers at intermediate points. For example if one is placed

for every flow at the output of every non order-preserving switching fabric, then the network

becomes order-preserving and the end-system is relieved from the need to re-sequence. Every

choice obviously comes with a different implementation cost; here we do not address such a

cost. Instead, we focus on the performance impact, primarily in terms of end-to-end worst-

case delay and delay jitter. In this illustration, we consider networks that do not perform flow

regulation inside the network.

If losses in the network are rare enough to be ignored for standard operation, the conclusion

is straightforward. Indeed, we know from Theorem 6.4 that, under such an assumption,

re-sequencing does not increase the worst-case delay and the delay jitter.

In contrast, if lossy operation cannot be ignored, we also know from Theorem 6.4 that re-

sequencing adds a penalty to worst-case delay and jitter that is at least equal to the upstream

RTO. Furthermore, the pattern of RTO amplification due to downstream jitter may mean that

the RTO at the destination is very large, even though RTOs at non order-preserving elements

are minuscule. This suggests that intermediate re-sequencing may be beneficial. However,

intermediate re-sequencing also introduces a delay penalty and modifies the propagated

arrival curves, which must be accounted for.

To fix ideas, we consider a prototypical scenario as in Figure 6.3, where the path of the flow

of interest goes through three subnetworks, with jitters {Vi }3
i=1 and RTOs {λi }3

i=1. The first
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Figure 6.3: A prototypical scenario used to analyze the performance impact of intermediate
re-sequencing. Potential placements of re-sequencing buffers are at points 1, 2, or 3.

subnetwork may for example represent the source output queuing, a transmission link and

the switching fabric of the next node. The second may represent the output queuing that

follows this switching fabric, plus transmission links and the switching fabric of the following

node. The third may represent the output queuing that follows the second switching fabric,

plus transmission links to the final destination. By Theorem 6.7, we would have λ1 <<V1 and

λ2 <<V2. We consider the following possible placements of re-sequencing buffers:

• Only at 3 (at destination end-system).

• Only at 2 (at destination edge-switch). This is the case where the last edge-switch per-

forms re-sequencing on behalf of the destination, just after the last non order-preserving

element.

• At 1 and 2 (at every switch). This occurs when the network wants to guarantee that all

switches preserve per-flow order, as some vendors do.

• At 1 and 3 (at the first switch and the destination end-system). This occurs when

the network wants to guarantee that all switches except the destination edge-switch,

preserve per-flow order. Then the destination performs re-sequencing with smaller

timeout value.

We take as baseline the case where no re-sequencing is applied and compute the increase

in worst-case delay and delay jitter with respect to the baseline, for each of the placements.

We give the details for delay jitter, the computations are similar for the worst-case delay. We

assume the timeout values are optimal, as given by Theorem 6.5. The delay jitter of the baseline

is V1 +V2 +V3.

For the first placement (only at 3), the re-sequencing buffer at destination increases the delay

jitter in the lossy case by T3, the timeout value of the re-sequencing buffer at point 3, which is

equal to the RTO between the source and point 3. By Theorem 6.7, it is equal to λ1 +V2 +V3.

By Theorem 6.4, the increase on jitter is also λ1 +V2 +V3.

For the last placement (at 1 and 3), the re-sequencing buffer at 1 modifies the arrival curve

of the flow. This affects, in general, the downstream worst-case delay and jitter. We call ∆V2
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Table 6.1: Re-sequencing buffer optimal timeout value and increase on end-to-end jitter and
delay upper bound (with respect to the baseline with no re-sequencing buffer) for the four
placement strategies in Section 6.5.1. Ti is the timeout of re-sequencing buffer placed at point
i . We see that placing re-sequencing buffers at 1 and 2 provides better end-to-end delay and
jitter comparing to the placement at 1 and 3.

Re-sequencing
Timeout Increase to end-to-end jitter and delay with

respect to no re-sequencing buffer at all.T1 T2 T3

Lossless and lossy Lossless Lossy
Only at 3 - - λ1 +V2 +V3 0 λ1 +V2 +V3

Only at 2 - λ1 +V2 - 0 λ1 +V2 +∆V3

At 1 and 2 λ1 λ2 - 0 λ1 +λ2 +∆V2 +∆V3

At 1 and 3 λ1 - λ2 +V3(+∆V3 for lossy) 0 λ1 +λ2 +V3 +∆V2 +2∆V3

and ∆V3 the increase on delay jitter at subnetworks 2 and 3 with respect to the baseline. In

the following subsection we estimate these increases numerically on two industrial cases.

The re-sequencing buffer at 1 has timeout T1 = λ1, given by the RTO of subnetwork 1. For

the RTO at point 3, observe that the subnetwork 1 combined with the re-sequencing buffer

at point 1 is an order-preserving element; this causes the RTO at point 3 to be independent

of subnetwork 1 (Theorem 6.7). We obtain the timeout value T3 = λ2 +V3 +∆V3. Finally,

the end-to-end delay jitter is increased by T1 at point 1 and T3 at point 3, thus it is equal to

V1 +T1 +V2 +∆V2 +V3 +∆V3 +T3, which gives an increase with respect to the baseline equal

to λ1 +λ2 +V3 +∆V2 +2∆V3.

The reasoning is similar for the two other placements. The results are given in Table 6.1. A

similar line of reasoning can be used to compute the required sizes of re-sequencing buffers.

We observe the following. In this scenario, we expect λi to be much smaller than Vi , so if ∆Vi

is small, it is beneficial to place an intermediate re-sequencing buffer, and it is also beneficial

to place one at the edge-node rather than at the destination. This is because intermediate re-

sequencing reduces the downstream RTO and avoids the RTO amplification pattern. However,

if ∆Vi is large this benefit may be lost due to the burstiness increase caused by re-sequencing

under lossy operation. In the numerical examples of the next sections, we find that, except

in one case, the former effect is largely dominant. Also note that if per-flow regulation were

performed at every hop, the latter effect would disappear and intermediate re-sequencing

would reduce the worst-case delay and jitter under lossy operation.

6.5.2 Case Study 1: Automotive Network

We apply the methodology in Section 6.5.1 to the double star automotive network of [3]

depicted in Fig. 6.4. To obtain the re-sequencing buffer size and timeout, as well as the

jitter and delay upper bounds, we used FP-TFA [133, 132] (details of computations are in

Appendix C.3).

The network consists of two switches and eight hosts and the rates of the links are c = 1 Gbps.
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Figure 6.4: Double star automotive network [3].

Table 6.2: Bounds on end-to-end jitter and worst-case delay for case study 1 with the four
placement strategies in Section 6.5.1, under both lossless and lossy network conditions, fol-
lowed by timeout value and size of the re-sequencing buffers.

Re-sequencing buffers
placement

Lossless Lossy
Delay (µs) Jitter (µs) Delay (µs) Jitter (µs)

Only at h2 95.22 92.69 124.72 122.19
Only at S2 95.22 92.69 127.22 124.69

At S1 and h2 95.22 92.69 111.72 109.19
At S1 and S2 95.22 92.69 99.22 96.69

Re-sequencing
buffers

placement

Lossless and Lossy Lossless Lossy
Timeout T (µs) Size B (bytes) Size B (bytes)

S1 S2 h2 S2 S2 h2 S1 S2 h2

Only at h2 − − 29.49 − − 6336 − − 6400
Only at S2 − 15.99 − − 6336 − − 6400 −

At S1 and h2 0.98 − 14.49 6336 − 6336 6400 − 6400
At S1 and S2 0.98 0.98 − 6336 6336 − 6400 6400 −

The output ports are FIFO and the scheduling mechanism is non-preemptive strict priority.

The output ports of h1, S1 and S2 offer the same service curve β(t) = 125e6[t −12µ]+ bytes

to the highest priority queue. In each switch, the switching fabric is implemented in parallel

stages, i.e., reordering of packets may occur. The delay of switching fabrics is between 0.5µs to

2µs [163].

According to [3], the traffic is made of various flows with different priorities. In our example,

we focus on ControlData flow as the only highest priority flow; it is shown as flow f in Fig. 6.4

and the path is taken from [3]; the flow is initiated by Control Data Unit (h1) and destined to

Control Unit (h2) in the network. The source arrival curve for flow f is leaky bucket with rate

6400 bytes per second and burstiness 6400 bytes. All packets are the same size and equal to

64 bytes.

We implemented the four placement strategies in Section 6.5.1. The results are in Table 6.2. We

see that re-sequencing at every switch fabric significantly reduces delay and jitter bounds. In

contrast, re-sequencing at edge node (S2 only) is not beneficial: this is an instance where the

burstiness increase due to re-sequencing does have an impact. We also see that the required

size of the re-sequencing buffer is independent of the placement strategy.
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6.5.3 Case study 2: Orion network

We now consider the Orion crew exploration vehicle network, as described in [164] and

depicted in Fig. 6.5. For the delay and jitter analysis, we used FP-TFA [133, 132] as there are

cyclic dependencies in the placement of flows. The output ports in the hosts and switches are

connected to the links with a rate of 1 Gbps. The output ports use the non-preemptive TSN

scheduler with CBSs with per-class queuing as in Chapter 5; from highest to lowest priority, the

classes are CDT, A, B, and Best Effort). The CBSs are used separately for classes A and B. The

CBS parameters idleslopes are set to 50% and 25% of the link rate respectively for classes A and

B [103]. In each switch, the switching fabric is implemented in parallel stages, i.e., reordering

of packets may occur. The delay of switching fabrics is between 0.5µs to 2µs [163]. The CDT

traffic has a leaky bucket arrival curve with rate 6.4 kilobytes per second and burst 64 bytes.

The maximum packet length of classes B and BE is 1500 bytes. We focus on class A. Using

Theorem 5.2, a rate-latency service curve offered to class A is β(t ) = 62.49e6[t − t0]+ bytes with

t0 = 12.5µs.

Figure 6.5: The Orion crew exploration vehicle network.

Class A contains 30 flows with constant packet size 147 bytes, which transmit 3 packets every

8 ms. Among these flows, 10 require in-order packet delivery. The flows traverse between 2 to

7 hops. We apply two placement strategies for re-sequencing buffers: at destinations only, and

at every switch (immediately after the switching fabrics).

Fig. 6.6 shows the end-to-end delay and jitter bounds for the flows with in-order delivery

requirement, for both strategies under lossy condition. The figure also shows the delay and

jitter under lossless conditions, which are the same for both strategies and, as we know from

Theorem 6.4, are also equal to the values when there is no re-sequencing buffer. First, we
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Figure 6.6: The end-to-end delay bounds (left) and jitter bounds (right) for the flows with
in-order delivery requirement for the two strategies, i.e., placing re-sequencing buffers at the
destinations or at every switch. In the lossless condition, the delay and jitter bounds do not
depend on the strategy.

see that if re-sequencing is at destinations only, the effect on delay and jitter under lossy

conditions is large: for more than half of the flows, the re-sequencing buffer doubles the delay

and jitter, the increase being of the order of 100µs. This occurs even though the amount of

reordering late time offset at every switching fabric is minuscule: every flow has at most 7 hops

and the switching fabric re-orders packet by at most 324 ns at every hop (by Theorem 6.5 this

is less than the jitter of the switching fabric). This illustrates the pattern of RTO amplification

by downstream jitter. Second, we see that if re-sequencing is performed at every switch, the

increase in delay and jitter under lossy conditions is negligible, as expected from Section 6.5.1,

because such a strategy prevents amplification of RTO.

We also find that the size of re-sequencing buffers are the same for the two strategies; this

implies that intermediate re-sequencing does not provide any benefit in terms of buffer size.

It is equal to two packet size, i.e., 294 bytes, under lossless network condition; and it is equal

to three packet size, i.e., 441 bytes, under lossy network conditions.

6.6 Conclusion

We have developed a theory of packet reordering in the context of time-sensitive networks,

i.e. in networks where worst-cases are more relevant than averages. We showed that, if the

network can safely be assumed lossless, re-sequencing does not modify worst-case delay nor

delay jitter. In contrast, if performance under lossy operation is relevant, then re-sequencing

comes with a penalty on delay equal at least to the RTO of the flow being re-sequenced. We

showed that the RTO may be very large even though the RTO of every individual non order-

preserving element is very small, due to amplification by downstream jitter. We provided a

calculus to capture the RTO and RBO of a flow, given its arrival curve and simple properties of

the network elements that are on its path. We applied the theory to evaluate the performance

of re-sequencing strategies in industrial networks without flow regulation.
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6.7 Notation

Packet n is the packet with sequence number n if the input point of observation is the source

of the flow, otherwise it is the nth packet in chronological order at the input of the system of

interest.

Term Description

An The time at which packet n is released by its source.

B The size of re-sequencing buffer.

Dn The departure time of packet n from a re-sequencing buffer.

En The exit time of packet n from a non order-preserving or order-preserving element.

Lmax The maximum packet length of a flow, in bytes.

Lmin The minimum packet length of a flow, in bytes.

ln The length of a packet n, in bytes.

T The timeout value of a re-sequencing buffer.

λ The reordering late time offset (RTO) of a flow.

π The reordering byte offset (RBO) of a flow.

w↓ The lower pseudo-inverse of function w (Section 3.1.1).

w+ The right limit of function w (Section 3.1.3).

dxe The ceiling of x

[x]+ max(0, x)
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7 Analysis of Dampers in Time-
Sensitive Networks with Non-ideal
Clocks

Patience is bitter, but its fruit is sweet.

— Jean-Jacques Rousseau

As mentioned in Chapter 1, the emergence of applications with low jitter requirement in

large-scale time-sensitive networks, such as industrial Internet of Things [8] and electricity

distribution[9], questions the performance of existing queuing and shaping mechanisms such

as credit-based shaper, IEEE 802.1Qch Cyclic Queuing and Forwarding [46], and deficit round

robin [1]. This issue can be addressed with dampers, which are asynchronous mechanisms to

reduce delay jitter in time-sensitive networks [42, 43, 44].

A damper delays every time-sensitive packet by an amount written in a packet header field,

called damper header, which carries an estimate of the earliness of this packet with respect

to a known delay upper-bound of upstream systems. This ideally leads to zero jitter; in

practice, there is still some small residual jitter, due to errors in acquiring timestamps and in

computing and implementing delays. As a positive side effect, dampers create packet timings

that are almost the same as at the source, with small errors due to residual jitter, and thus

cancel most of the burstiness increase imposed by the network. [64, Lemma 1]. The residual

burstiness increase that remains when dampers are used is not influenced by the burstiness of

cross-traffic. Thus, dampers solve the burstiness cascade issue [165] described in Chapter 1:

individual flows that share a resource dedicated to a class may see their burstiness increase,

which may in turn increase the burstiness of other downstream flows. Furthermore, dampers

are stateless, unlike some TSN regulation mechanisms, e.g., Asynchronous Traffic Shaping

[41]. Solving the burstiness cascade in a stateless manner makes the dampers of interest for

large-scale time-sensitive networks.

Several implementations of dampers have been proposed; the older ones are associated with

specific schedulers such as earliest-deadline-first [42, 44] and static priority [43]; the recent

implementations can coexist with any scheduling mechanism [166, 167, 168]. Some of these

implementations enforce dampers to behave in a FIFO manner [44, 168, 166] and some do not
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[43, 167]. Analysis of damper is crucial to provide guarantees for applications in the context of

time-sensitive networks. In the existing works, [167, 168] did not provide any analysis; others

analyze only their implementation and under limited assumptions on the network settings.

Also, existing analyses assume that the network operates with one ideal clock; in practice, this

assumption does not hold and may have non-negligible side effects. Recently, the effect of

non-ideal clocks on regulators was analyzed and a clock model was proposed in the context of

time-sensitive networks [45], which we use in this chapter.

We first present a taxonomy of dampers that classifies the existing implementations into

dampers with or without FIFO constraint. Then, under general network configuration with

non-ideal clocks, we provide formulas to compute tight delay and jitter bounds for dampers

without FIFO constraint (Theorems 7.1 and 7.2); we see that the impact of non-ideal clocks

can be non-negligible in cases with low jitter requirements. As a result of this analysis, we

derive conditions in which clock synchronization throughout a network does not affect the

performance of dampers. Moreover, we capture the propagation of arrival curve at the output

of dampers and see how this can solve the burstiness cascade issue. Next, we show that existing

implementations of dampers without FIFO constraints may cause undesired packet reordering

due to clock non-idealities, even in synchronized networks. This problem is avoided with

dampers that enforce FIFO constraints; however, the effect on their timing properties was

not analyzed in the literature and we bridge this gap in this chapter. We model two classes of

dampers with FIFO constraint: re-sequencing dampers and head-of-line dampers. For the

former class, we show that when all network elements are FIFO, the delay and jitter bounds

are not affected by the re-sequencing operation (Theorem 7.3). For the latter class, there is

a small penalty due to head-of-line queuing, which we quantify exactly (Theorem 7.4). In

contrast, if some network elements are non FIFO, the jitter bounds for dampers with FIFO

constraint can be considerably larger (Theorems 7.5 and 7.6). We finally evaluate our results

in an industrial case-study.

The rest of this chapter is as follows. Section 7.1 presents the state-of-the-art. Section 7.2

describes the system model, terminology, clock model and all assumptions. Section 7.3

presents a taxonomy of the existing dampers. The analysis of dampers without FIFO constraint

is presented in Section 7.4. Packet reordering scenarios due to non-ideal clocks are presented

in Section 7.5. The analysis of dampers with FIFO constraint is given in Section 7.6. Section

7.7 provides a numerical evaluation for an industrial case-study and Section 7.8 concludes

this chapter. For the reader’s convenience, Section 7.9 gives the notation used throughout this

chapter. Appendix D gives the proofs.

7.1 Related Works

The concept of dampers was introduced by Verma et. al [42], under the name delay-jitter

regulator, in combination with earliest-deadline-first (EDF) scheduling. In this scheme, a per-

flow regulator is placed at every node to delay a packet as much as its earliness in the previous
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node; the earliness is the time difference between the delay that a packet was supposed

to experience and the actual delay that is measured by time-stamping. Later, Zhang et.

al. [43] proposed rate-control static priority (RCSP) scheduling to avoid coupling of delay

and bandwidth allocation in the EDF schedulers mentioned in [42]. We describe RCSP in

Section 7.3.

The term damper was first used by Rene Cruz [44] as a conceptual network element that slows

down the traffic passing through it. In [44], dampers are used in relationship with service-curve

earliest deadline (SCED) scheduling to avoid extra queuing as was proposed by [43]. With this

scheme, called SCED+, a flow traverses a few virtual paths (each is a sequence of switches)

with guaranteed service curves and damper curves. Then, at the entrance of each virtual path,

for every packet of the flow and every switch in the virtual path, initial and terminal eligibility

times are computed using the service and damper curves; a packet is released from a switch

within its initial and terminal eligibility times.

Recently, a few implementations of damper are proposed that can be used in combination

with any scheduling mechanism. Grigorjew et. al. [166] implement damper as a shaper in

relation with IEEE 802.1 Qcr Asynchronous Traffic Shaping [41]; we refer to their scheme as

jitter-control ATS. It is assumed in [166] that the input flows are constrained by leaky-bucket

arrival curve and all the elements inside the network, including the switching fabrics, output

port queues and the ATS, are FIFO for the packets that share the same queues inside ATS.

Rotated gate-control-queues (RGCQ) [167] is an implementation of a damper integrated with

the queuing system of a scheduler. Flow-order preserving latency-equalizer (FOPLEQ) [168] is

an extension of RGCQ to preserve the per-flow order of the packets according to its entrance

to FOPLEQ. Section 7.3 describes the details of these implementations. These previous works

do not provide delay analysis or do it in restricted settings. In particular, clock non-idealities

are ignored. In [45] clock non-idealities are modelled in the context of time-sensitive networks

and the impact on timing analyses is explained in detail. In this chapter, we apply this clock

model to networks with dampers of various kinds.

7.2 System Model

We consider a network that contains a set of switches or routers, hosts and links with fixed

capacity. Every flow follows a fixed path, has a finite lifetime and emits a finite, but arbitrary,

number of packets. We consider unicast flows with known arrival curves at their sources (i.e.

there are known bounds on the number of bits or packets that can be emitted by a flow within

any period of time).

7.2.1 Terminology

We call jitter-compensated system (JCS) any delay element or aggregate of delay elements with

known delay and jitter bounds, for which we want to compensate jitter by means of dampers.
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This is typically the queuing system on the output port of a switch or router used in time-

sensitive networks. It can also be a switching fabric or an input port processing unit, or even

a larger system. For time-sensitive flows, a JCS should be able to time stamp packet arrivals

and departures using the available local times. It should also increment the damper header

field in every time-sensitive packet (if one is present) by an amount equal to an estimate of

the earliness of this packet with respect to the known delay upper-bound at the JCS for the

class of traffic that this packet belongs to. If no damper header is present, it inserts one, with a

value equal to the estimated earliness.1 The operation of the damper header update (DHU)

unit is described in Section 7.3.3. When a time-sensitive flow crosses a JCS, for actual jitter

removal to occur, there must be a downstream damper on the path of the flow. For example, if

the JCS is a switch output port, the next downstream damper is typically located on the output

port of the next downstream switch.

It is generally not possible, or required, to remove delay jitter in all network elements, because

time stamping and DHU come with a cost. Therefore, it is required, for our timing analysis,

to consider what we call bounded-delay systems (BDSs), defined as any delay element or

aggregate of delay elements with known delay and jitter bounds, and for which we do not

compensate jitter. Constant delay elements (e.g. an output link propagation delay), variable

delay elements with very low jitter (e.g., very high speed backbone network) and other delay

elements without DHU unit are examples of BDSs.

A damper is a system that delays every time-sensitive packet, using its local clock, for a

duration approximately equal to the damper header (if any, else the damper does not delay

the packet). Such a damper header was inserted/updated in the upstream JCSs between

this damper and the previous upstream damper or the source of the flow. The damper also

resets the damper header, so that the next downstream damper will see only the earliness

accumulated downstream of this damper. Designing a stand-alone damper is a challenge,

because such a damper may need to release a large number of packets instantly or within a

very short time, which might not be feasible. This is why damper implementations are often

associated with queuing systems; then, the time at which a damper releases a packet is simply

the time at which the packet becomes visible to the queuing system. We classify and model

existing designs of dampers in Section 7.3.

Example 1. Fig. 7.1 shows an example flow path within a local-area time-sensitive network

where we want to compensate the jitter imposed by the output queuing systems and switching

fabrics by means of dampers. A DHU is placed after every switching fabric and every queuing

system. For example, the first DHU, at the queuing system of the source node, writes into the

damper header the earliness of the packet at the queuing system; the second DHU, at the first

switch, increments the damper header by the earliness at the switching fabric. The multiple

DHUs allow to accumulate earliness with non-synchronized local clocks, as packet arrival

1We choose this method of carrying earliness in packet headers for ease of presentation. Another method
consists in each JCS inserting a separate damper header: a packet then has as many damper headers as JCSs
between dampers, and the earliness to be compensated at a damper is the sum of all these values. The discussion
of such methods is out of the scope of this chapter, as it does not affect the timing analysis presented here.
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Figure 7.1: A local-area time-sensitive network example.

and departure times are measured locally. A damper is placed before each queuing system to

remove the delay jitter imposed by the upstream switching fabric and queuing system. For

example, the damper in the first switch compensates the jitter imposed by the queuing system

of the source and the switching fabric of the first switch. Note that the propagation delay is

constant and seen as a BDS. Here, the different clocks need not be synchronized.
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Figure 7.2: A large-scale time-sensitive network example with no jitter removal at backbone
network.

Example 2. Fig. 7.2 shows an example flow path within a large-scale time-sensitive network.

Assume that the backbone network has relatively low delay (because of high-speed links, e.g.

100 Gbps or more, worst-case delays tend to shrink [169]) and then the main source of jitter is

the access network. For a given class of traffic, we want to remove the jitter imposed by the

access network, in particular the forwarding plane and output queuing of each access router

(each is treated as a JCS); therefore, each of these should have a DHU and a damper upstream

of the output queuing system. In this example, the backbone network is modelled as a BDS;

also, the source is unaware of any downstream damper and does not have a DHU and hence

treated as a BDS. The jitter imposed by the access network is removed, but not the jitter caused

by the backbone. The different clocks need not be synchronized and the backbone nodes are

unmodified.
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Figure 7.3: A large-scale time-sensitive network example with jitter removal at backbone
network.

Example 3. We continue in Fig. 7.3 with the previous example but assume now that, for some

class of traffic with very low jitter requirement, the jitter induced by the backbone should be

compensated. In such a case, we need to treat the backbone network as a JCS, i.e., we need to

time stamp the arrival of each time-sensitive packet to the backbone and modify their damper

header at the departure from the backbone. This can be done as in Fig. 7.3, where, at the

upstream provider edge (PE) router, a time stamping unit should be added that inserts a field

in the packet header equal to the departure time of each time-sensitive packet from the PE

router in its local time (this operation can be done within the upstream DHU unit to avoid

placement of a time-stamping unit); then at the egress of the downstream PE router, a DHU

is placed that reads the departure time of the packet from packet header, removes it from

packet header, computes earliness with its local clock and finally modifies the damper header.

In this case, differently from previous examples, the time stamping and DHU are performed

with different clocks; therefore, the PE routers should be time-synchronized, as otherwise

the computation of earliness is impossible (time synchronization is never absolute and, in

sections 7.2.2 and 7.3.3, we analyze how to account for clock non-idealities). The jitter induced

by the backbone network is compensated in the damper placed in the downstream PE router

and hence removed. The PE routers must be time-synchronized (in provider networks, they

typically are); backbone nodes are unmodified but time-sensitive packets carry an additional

header for timestamps.

7.2.2 Assumptions on the Clocks

We call HTAI the perfect clock, i.e. the international atomic time (TAI2). In practice, the

local clock of a system deviates from the perfect clock [45]. Typically the JCSs upstream

of a damper operate with different clocks than the damper itself, and this can affect the

performance of the damper as we see in Section 7.4. In time-sensitive networks, clocks can be

synchronized or non-synchronized. Non-synchronized clocks are independently configured

2Temps Atomique International
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and do not interact with each other; this corresponds to the free-running mode in [170, Section

4.4.1]. When clocks are synchronized, using methods like Network Time Protocol (NTP) [171],

Precision Time Protocol (PTP) [172], WhiteRabbit [173], Global Positioning System (GPS) [174],

the occurrence of an event, when measured with different clocks, is bounded by the time error

bound (∼ 1µs or less in PTP, WhiteRabbit, and GPS; ∼ 100 ms in NTP).

We follow the clock model in [45], which applies to time-sensitive networks. Consider a clock

H i that is either synchronized with time error bound ω, or not synchronized (in which case

we set ω=+∞). Let dH i [resp. dHTAI ] be a delay measurement done with clock H i [resp. in

TAI], then [45]:

dHTAI −dH i ≤ min
(
(ρ−1)dH i +η,2ω

)
,

dHTAI −dH i ≥−min

((
1− 1

ρ

)
dH i + η

ρ
,2ω

)
, (7.1)

where ρ is the stability bound and η the timing-jitter bound of the clock H i . Note that this set

of bounds is symmetric, i.e. we can exchange the roles of H i and HTAI in (7.1). We assume

that the parametersω,ρ,η are valid for all clocks in the network, i.e. we consider network-wide

time-error, stability and time-jitter bounds. When a flow has αH i as arrival curve with clock

H i , then an arrival curve in TAI is [45]:

αHTAI : t →αH i
(
min

{
ρt +η, t +2ω

})
. (7.2)

In a TSN network, ρ−1 = 10−4 [175, Annex B.1.1] and η = 2ns [175, Annex B.1.3.1]]; if the

network is synchronized with gPTP (generic PTP) then ω= 1µs [175, Section B.3] and if it is

not synchronized then ω=+∞.

7.3 Taxonomy of Dampers

As mentioned earlier, designing a damper is a challenge and there exist very different imple-

mentations. In this section we classify such implementations in a manner that will be useful

for our timing analysis. In the rest of this chapter, we call “eligibility time" the time at which a

damper releases a packet, as in most implementations the packet is not actually moved, but

simply made visible to the next processing element.

7.3.1 Dampers without FIFO constraint

An ideal damper delays a packet by exactly the amount required by the damper header.

Consider a packet n with damper header Hn that arrives at local time Qn to a damper. The

theoretical eligibility time Ẽn for the packet is:

Ẽn =Qn +Hn , (7.3)
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and the ideal damper releases the packet at time Ẽn . Jitter-control EDF [42] is an ideal damper,

used in combination with an EDF scheduler.

Many other implementations of dampers use some tolerance for the packet release times,

due to the difficulty of implementing exact timings. We call damper with tolerances (∆L,∆U) a

damper such that the actual eligibility time En , of packet n, in local time, satisfies:

Ẽn −∆L ≤ En ≤ Ẽn +∆U. (7.4)

The tolerances can vary from hundreds of nanosecond to a few microsecond based on imple-

mentation. Hereafter, we study two instances of dampers with tolerances (∆L,∆U), namely,

RCSP [43] and RGCQ [167].

RCSP is an implementation of a damper in relation with static-priority scheduler; each queue

of the scheduler is implemented as a linked list and the damper is implemented as a set of

linked lists and a calendar queue [176]. A calendar queue contains a clock and a calendar

where each calendar entry points to an array of linked lists (each for one priority queue).

The clock ticks at every fix interval ∆. On each clock tick, the linked list that the current

clock time of the calendar points is appended to the corresponding priority queue of the

scheduler. Whenever a packet n arrives, its theoretical eligibility time is computed based on

(7.3); then the actual eligibility time of the packet, En,RCSP, is computed by rounding down

the theoretical eligibility time, En,RCSP =∆b Ẽn
∆ c. Then, if En,RCSP is equal to the current clock

time, it is appended to the corresponding priority queue of the scheduler; otherwise, it is

appended to the linked list that the entry En,RCSP of the calendar points to. The computation

of theoretical eligibility time is done with some errors in acquiring true local-time on packet

arrival and in computation due to finite precision arithmetic that is bounded by ε (typically, in

the order of a few nanoseconds). We can see that ERCSP satisfies (7.4) when (∆L,∆U) = (∆+ε,ε).

RGCQ, inspired by the idea of Carousel [177], is an implementation of a damper combined with

a queuing system of a scheduler; in other words, each queue of a scheduler is replaced with an

RGCQ. An RGCQ consists in a timer and a set of gate-control queues (GCQs). By default, the

GCQs are closed and are assigned unique increasing openTimes with interspacing of ∆. A GCQ

is opened whenever the timer reaches its openTime, and is closed after it is emptied or being

opened for a fixed amount of expiration time; when a GCQ is closed, its openTime is set as the

largest openTime+∆. The scheduler selects a packet for transmission from an open GCQ with

smallest openTime. Whenever a packet n arrives, its theoretical eligibility time is computed

based on (7.3); then the actual eligibility time of the packet, En,RGCQ, is computed by rounding

up the theoretical eligibility time, i.e., En,RGCQ =∆d Ẽn
∆ e. Then, the packet is enqueued to the

GCQ whose openTime is En,RGCQ. Similarly to RCSP, due to timing acquisitions and arithmetic

rounding bounded by ε, we see that ERGCQ satisfies (7.4) when (∆L,∆U) = (ε,∆+ε).
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7.3.2 Dampers with FIFO constraint

The definition of damper with tolerance given in the previous section does not mention

whether the damper preserves packet order, and the satisfaction of (7.4) does not preclude

packet misordering. Indeed, we show in Section 7.5 that our two examples of dampers with

tolerance, namely RCSP and RGCQ, can cause packet misordering due to clock non-idealities.

Such a behavior is not possible with a class of proposed damper designs, which enforce the

FIFO constraint, and which we now cover.

Re-sequencing damper

We call re-sequencing damper with tolerances (∆L,∆U) a system that behaves as the concate-

nation of a damper with same tolerances and a re-sequencing buffer that, if needed, re-orders

packets based on the packet order at the entrance of the damper. The packet order is with

respect to a flow of interest.

Formally, a system is a re-sequencing damper if there exists a sequence Ēn such that the

release times for the flow of interest, in local time, satisfy:

Ẽn −∆L ≤ Ēn ≤ Ẽn +∆U,

E1 = Ē1, En = max
{
Ēn ,En−1

}
, (7.5)

where Ẽn is the theoretical eligibility time defined in (7.3) and packet numbers n = 1,2, ... are

in order of arrival at the damper.

It follows that such a damper is FIFO for the flow of interest and that3:

max
i≤n

{
Ẽi

}−∆L ≤ En ≤ max
i≤n

{
Ẽi

}+∆U. (7.6)

We say that a re-sequencing damper is ideal if has zero tolerances. Hereafter, we describe two

instances of re-sequencing dampers, namely, SCED+ [44] and FOPLEQ [168].

SCED+ is an implementation of a damper in combination with SCED scheduling. The damper

in [44] is defined as a conceptual element with tolerance ∆. Accordingly, each packet is

assigned an initial eligibility time and a terminal eligibility time where the difference between

the two is ∆. In SCED+, the damper ensures that the damper is released after the initial

eligibility time and before the terminal eligibility time. In fact, the dampers assigns a tentative

eligibility time, Ēn to a packet n, where:

Ẽn −∆≤ Ēn ≤ Ẽn . (7.7)

3The converse does not hold, i.e., any system that is FIFO for the flow of interest and satisfies (7.6) is not
necessarily a re-sequencing damper.
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SCED+ assumes that the damper serves packets in FIFO manner; then, the actual eligibility

time of the packet n is:

E1 = Ē1, En = max
{
Ēn ,En−1

}
; n ≥ 2. (7.8)

so that SCED+ is a re-sequencing damper with tolerances (∆+ε,ε), where ε is a bound on the

errors on timing acquisition and arithmetic rounding.

FOPLEQ, similarly to RGCQ, is inspired by the architecture of Carousel [177]. Accordingly, it

has a set of time-based queues along with a table, called eligibility time table (ETT), for the

purpose of preserving the order of packets inside FOPLEQ. Each row in ETT belongs to a flow

that has a packet in the Carousel and stores a tentative eligibility time of the latest packet

belonging to the corresponding flow. The tentative eligibility time of a packet is obtained by

dividing its theoretical eligibility time by ∆ and rounding down the computed value. Consider

a packet n of the flow of interest, where number is in the order of arrival at the FOPLEQ. First

a theoretical eligibility time is computed using (7.3); second, a tentative eligibility time is

obtained by rounding down to a multiple of ∆, i.e. Ēn =∆b Ẽn
∆ c; then, the actual eligibility time

of the packet is the maximum of its tentative eligibility time and the stored tentative eligibility

time of the flow of interest in the ETT. The tentative eligibility times correspond to a damper

with tolerances (∆+ε,ε), where ε is a bound on the errors on timing acquisition and arithmetic

rounding, and therefore FOPLEQ is a re-sequencing damper with tolerances (∆+ε,ε).

Head-of-line (HoL) damper

The idea is introduced in [166]. An HoL damper is implemented as a FIFO queue. When a

packet arrives, its arrival time is collected and the packet is stored at the tail of the queue.

Only the packet at the head of the queue is examined; if its eligibility time is passed, it is

immediately released, otherwise it is delayed and released at its eligibility time. When the

head packet is released, it is removed from the damper queue and the next packet (if any)

becomes the head of the queue and is examined. When an arriving packet finds an empty

queue, it is immediately examined. By construction, packet ordering is preserved.

As before, the model should incorporate some tolerance to account for the timing inaccuracy

and for processing times. Unlike with previous damper models, these two things cannot be

aggregated because the head-of-line property has the effect that processing times may have

an effect over subsequent packets (this is visible in Theorem 7.4).

Formally, we model a head-of-line damper as follows. It has tolerance parameters ∆L,∆U that

account for the accuracy of timings, as well as processing bounds φmin,φmax that account

for non-zero processing times. We must have ∆L ≥ 0,∆U ≥ 0 and 0 ≤ φmin ≤ φmax. Packet

numbering is with respect to the order of arrivals at the damper and is global for this damper

(not per-flow). We say that a system is a head-of-line damper if the release times En , in local
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time, satisfy:

Ẽ1 −∆L +φmin ≤ E1 ≤ Ẽ1 +∆U +φmax,

max(Ẽn −∆L,En−1)+φmin ≤ En ≤ max(Ẽn +∆U,En−1)+φmax, (7.9)

where Ẽn is the theoretical eligibility time as in (7.3).

The definition in (7.9) can be explained as follows. First, the eligibility times are obtained

with some errors due to timing acquisition and arithmetic rounding. Let Ēn be the resulting

tentative eligibility times, so that

Ẽn −∆L ≤ Ēn ≤ Ẽn +∆U. (7.10)

Second, packet n is examined only when packet n − 1 is released, and this action takes a

processing time φn ∈ [φmin,φmax]. The actual release time is therefore

En = max(Ēn ,En−1)+φn . (7.11)

Using Lemma D.2 in Appendix D.1 with a = En−1, xmin =φmin, xmax = φmax, ymin = Ẽn −
∆L, ymax = Ẽn +∆U, x = φn , y = Ēn and z = En we obtain that (7.10) and (7.11) imply (7.9);

conversely, if (7.9) holds, there exists sequences Ēn and φn ∈ [φmin,φmax] such that (7.10) and

(7.11) hold.

If the tolerances and processing bounds are all equal to 0, then the HoL damper is called ideal.

It follows immediately from (7.9) and (7.5) that an ideal HoL damper is the same as an ideal

re-sequencing damper.

In [166], jitter-control ATS is presented as an ideal head-of-line damper in combination with

ATS [41] within a switch where each FIFO queue is shared among all time-sensitive flows that

come from the same input port, have the same class, and go to the same output port. In [166],

the authors implicitly assume that the tolerances and processing times are zero and therefore

ignore them in their analysis. This assumption might not hold in practical cases, specifically

when a large number of packets become eligible at the same time in a jitter-control ATS. The

effect of non-zero tolerances and processing times appear in Theorem 7.4 and is illustrated

numerically in Section 7.7.

7.3.3 Damper Header Computation

In this subsection, we first describe the operation of damper header update unit. Then, we

discuss the possible sources of error in the computation.
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DHU unit operation

The DHU unit of a JCS computes the earliness of a packet and updates the damper header. A

classical approach to compute the earliness is to first measure the actual delay of the packet

in the JCS with the clock of DHU unit; then set the earliness as the difference between the

known delay bound δ of the system for this class of traffic and the actual delay of the packet

[42, 43]. More precisely, for a packet n, its arrival time is time stamped with local clock HTS

and stored locally (Examples 1 and 2 in Section 7.2.1) or delivered by the packet (Example 3 in

Section 7.2.1); let ÃHTS
n denote the stored/delivered value. Then the DHU unit time stamps

the departure time of the packet with its local clock HDHU; let W̃ HDHU
n denote the departure

time. Then, the DHU unit computes the earliness of the packet as

earlinessn = δ−
(
W̃ HDHU

n − ÃHTS
n

)
. (7.12)

The last step for the DHU unit is to update the damper header that is equal to the current

damper header incremented by the computed earliness, and write the result in the damper

header field. Then the packet leaves the JCS. In the case that the JCS is connected to an output

link, the departure time of a packet is the complete packet transmission and thus the packet

header is accessible to write the damper header just before packet transmission. Therefore, the

start of transmission time of the packet is time stamped (T HDHU
n ) and the transmission time

is inferred as τ̃HDHU
n =

{
ln
c

}HDHU
with ln as the packet length and c as the transmission rate.

Then, we set the departure time to W̃ HDHU
n = T HDHU

n + τ̃HDHU
n and compute the earliness using

(7.12). This method of damper header computation is used in most of the existing damper

variants like RCSP [43], FOPLEQ [168] and jitter-control ATS [166]. We call this the default

method of damper header computation.

Recently, [167] proposed a subtle change in the computation of earliness when a JCS comes

immediately after a damper with tolerances (∆L,∆U). In particular, they suggest to time stamp

the theoretical eligibility time Ẽn of packet from the damper instead of the arrival time to the

JCS; as a consequence, the jitter imposed by the tolerance of the damper is compensated by

the next downstream damper. In such proposal, note that the delay upper-bound between the

theoretical eligibility time to the arrival time to the JCS (i.e., the actual eligibility time from

the damper) should be added to the earliness; by (7.4), this upper bound is ∆U. Hence, the

earliness for theoretical eligibility time stamping is:

earlinessn = δ+∆U −
(
W̃ HDHU

n − ÃHTS
n

)
. (7.13)

We call this method of damper header computation TE time-stamping.

Errors in damper header computation

The DHU unit computes a damper header equal to the current damper header incremented

by the computed earliness, and write the result in the damper header field. This step is
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imperfect due to finite precision arithmetic and finite resolution of the damper header. The

corresponding error is eupdate,n = Hn − H̃n , where H̃n is the theoretical value of the damper

header and Hn is the actual value written in the packet.

In the computation of earliness ((7.12) and (7.13)), when ÃHTS
n is delivered within a packet

header field (Example 3 in Section 7.2.1), there is some error induced due to the finite resolu-

tion of the header field. The corresponding error is ets,n = A′HTS
n − ÃHTS

n , where A′HTS
n is the

time stamped value at the packet arrival to the JCS.

As discussed earlier, when the JCS is connected to a transmission link, the DHU unit can infer

the transmission time by dividing the packet length over the nominal transmission rate of the

link. Due to transmission of preamble and inexact knowledge of actual transmission rate, the

inference of transmission time is done with some error etran,n = τ̃HDHU
n −τHDHU

n , where τHDHU
n

and τ̃HDHU
n are the actual and inferred transmission times. The error etran,n can go up to tens

of nanoseconds [178, 179].

Acquiring the true local-time on packet arrival and within the DHU unit usually comes with an

error. We define the clock acquisition error as: eacq,n =
(
W HDHU

n −W̃ HDHU
n

)
+

(
AHTS

n − A′HTS
n

)
,

where AHTS
n and W HDHU

n are the true local times on packet arrival and departures.

The two clocks HDHU and HTS are often the same (Examples 1 and 2 in Section 7.2.1), but

not always (Example 3 in Section 7.2.1). We select HDHU as the reference clock of a JCS to

compute damper header; then we define the error with respect to the reference clock as:

eclk,n = AHDHU
n − AHTS

n , where AHDHU
n is the time that would be displayed at packet arrival if

HDHU would be used. If the clocks are the same, eclk = 0; if the clocks are synchronized with

error ω with respect to TAI, |eclk| ≤ 2ω; and finally if the clocks are not synchronized, eclk can

get arbitrary large, which is incompatible with the goal of removing jitter. Therefore, in this

chapter, we assume that both clocks HTS and HDHU are either one and the same, or are

synchronized.

To summarize, the value of a damper header, as written in a packet n, suffers from some error

en equal to: en = eupdate,n +ets,n +etran,n +eacq,n +eclk,n . Each of these sources of error can

be bounded, depending on the technology used by the routers and switches. The variable ε

denotes an upper bound on the error en , i.e., |en | ≤ ε. When HDHU and HTS are the same, ε is

typically of the order of tens of nanoseconds; if they are synchronized, ε is mainly dominated

by the time error bound (e.g. ε= 2 µs for gPTP).

7.4 Delay Analysis of Dampers without FIFO constraints

In this section we study the end-to-end delay and jitter of a flow when dampers without FIFO

constraint are used. The first step is to decompose a flow path into a set of blocks that can be

analyzed separately. Every block is as in Fig. 7.4; it contains a number of JCSs and BDSs and

ends in a damper with tolerance. The second step, given in the rest of this section, is to give
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delay and jitter bounds for a flow through such a block. The bounds are valid whether the JCSs

and the BDSs of the block are FIFO or not. The last step, to obtain end-to-end results, simply

consists in summing up the delays and jitters of every block and, possibly, of remaining BDSs.

For example, in Fig. 7.2, from source to the first router and from the queuing system of the last

router to the destination are BDSs and the rest are decomposed in blocks as in Fig. 7.4.

In the following, we give delay and jitter bounds for a block as in Fig. 7.4. Theorem 7.1 gives

the result for dampers without FIFO constraint when the default mode of header computation

is used (as explained in Section 7.3.3) and Theorem 7.2 when TE time-stamping is used. In

both cases, we capture the effect of errors and non-ideal clocks. We also illustrate cases where

the errors and non-ideal clocks make a major contribution to the jitter bound.

JCS 1
Delay upper 

bound 𝛿!

BDS
1

damper 
with 

tolerances
(Δ", Δ#)

(𝜋!, 𝜋!, 𝜈!)

JCS K
Delay upper 

bound 𝛿$

BDS
K’

(𝜋"! , 𝜋"! , 𝜈"!)Delay lower-bound
Delay upper-bound
Jitter bound

Figure 7.4: Structure of a block whose delay and jitter bounds are computed in Theorem 7.1.

Theorem 7.1. Consider a flow of interest that traverses the block in Fig. 7.4. The block contains

a sequence of JCSs and BDSs and terminates in a damper with tolerances (∆L,∆U). Assume that

the clock of every system has stability bound ρ, timing-jitter bound η and time-error bound

ω with respect to TAI (Section 7.2.2). Assume that JCS i has a delay upper bound δi , which is

used for damper header computation, in its local time. Also, assume that the BDS j has delay

lower and upper bounds πHTAI
j and πHTAI

j and jitter bound νHTAI
j , all in TAI. Then, the delay of a

packet from entrance to the exit of the block, in TAI, is upper-bounded by D, lower-bounded by

D and has jitter bound V , with

D =
K∑

j=1
δ j +

K ′∑
j=1

π
HTAI
j +∆U +K ε+ψ,

D =
K∑

j=1
δ j +

K ′∑
j=1

π
HTAI
j −∆L −K ε−ψ,

V =
K ′∑

j=1
ν

HTAI
j +∆U +∆L +2K ε+ψ+ψ,
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where ψ and ψ are due to clock non-idealities,

ψ= min
(
(ρ−1)

(
∆U +

K∑
j=1

(δ j +ε)
)+ (K +1)η,2(K +1)ω

)
,

ψ= min
((

1− 1

ρ

)(−∆L +
K∑

j=1

(
δ j −ε

))+ (K +1)η

ρ
,2(K +1)ω

)
. (7.14)

The bounds are tight, i.e., for any tolerances (∆L,∆U), every δi , any πHTAI
j , πHTAI

j , νHTAI
j , there is

a system and two individual execution traces such that in one of them a packet experiences a

delay of D and in the other one a packet experiences a delay of D.

The proof is in Appendix D.2.

Remark. The second arguments of the min(,) functions in (7.14) capture the impact of clock

time error bounds when all the K + 1 clocks (K JCSs and one damper with tolerance) are

different from each other. If some systems share a common clock, so that there are X ≤ K

different clocks in total, the second argument of the min(,) functions should be replaced by

2(X +1)ω.

Hereafter, we provide an application of Theorem 7.1 to obtain delay and jitter bounds for the

three examples of Section 7.2.1. Then we compare the bounds with the basic bounds obtained

when assuming that clocks are perfect, i.e. by summing the tolerances of dampers and the

jitters of BDSs.

Example 1. Consider Example 1 in Section 7.2.1 for a flow that traverses 6 switches. Assume

that the switching fabrics (as JCSs) have a delay upper-bound of 2 µs and the delay bound at

each queuing system (as a JCS) is 250 µs. Suppose that the error ε= 50 ns and all the dampers

are RCSP with (∆L,∆U) = (1 µs,2 ns). Assume the propagation delay (as a BDS) is fixed and

equal to 5 µs for all links. Assume first that the clocks of the switches are not synchronized,

i.e. we set the time-error bound ω to ∞ in (7.14). Then, by applying Theorem 7.1 from source

to the output of the first damper, the delay upper-bound is D = 257.13 µs; the delay jitter is

V = 1.264 µs of which 200 ns is due to errors and 62 ns is due to non-ideal clocks. The basic

jitter bound is 1.002 µs and is due to the tolerance of the first damper. We can see that the

error and non-ideal clocks add 262 ns (26%) to the basic jitter bound. The end-to-end delay

and jitter bounds are computed by summing up the delay and jitter bounds from the output

of one damper to the output of the next downstream damper until the destination; this gives

an end-to-end delay upper-bound of 1.799 ms and end-to-end jitter bound of 8.834 µs. The

values remain the same if we assume next that the clocks of the switches are synchronized

with a time-error bound of 1 µs, as is typical in IEEE TSN systems.

Example 2. Consider Example 2 in Section 7.2.1 for a flow that traverses four access routers

to reach the backbone and traverses four other access routers to reach to the destination.

Assume that 1) the queuing delay at source has a delay upper-bound of 100 µs and the jitter
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bound of 80 µs, 2) the delay upper-bound at the output queuing and packet forwarding of each

access router are 500 µs and 5 µs and the output queuing has jitter of 100 µs, 3) the backbone

network has a delay upper-bound of 30 ms and jitter bound of 1 ms, 4) the propagation delay

is 10 µs, 5) the error ε= 50 ns and 6) all dampers are RCSP with (∆L,∆U) = (1 µs,2 ns). Then,

by using Theorem 7.1, the end-to-end delay upper-bound is De2e = 34.211 ms; delay jitter

is Ve2e = 1.190 ms of which 1.5 µs is due to the errors and 800 ns is due to non-ideal clocks.

The basic jitter bound is 1.188 ms that is due to the tolerance of the dampers, as well as the

BDSs, i.e., the backbone network, the source output queuing and the output queuing of the

last access router (before the destination). We can see that here the effect of the errors and

non-ideal clocks is negligible due to the jitter of the BDSs captured by the basic jitter bound.

Example 3. Consider Example 3 in Section 7.2.1 for a flow that traverses four access routers to

reach the backbone and then traverses four other access routers to reach to the destination.

Also, consider the same numerical assumptions as the previous example. We want to remove

jitter of the backbone network using time stamping at the upstream PE router. Assume that

the PE routers are synchronized with time-error bound of 1 µs; hence the error damper header

computation at the downstream PE router of the backbone network is bounded by 2.05 µs (the

error at the other JCSs is bounded by 50 ns). Then, by using Theorem 7.1, the end-to-end delay

upper-bound is De2e = 34.216 ms; delay jitter is Ve2e = 21.74 µs of which 5.8 µs is due to the

errors and 6.92 µs is due to non-ideal clocks. Comparing to the previous example, the basic

jitter bound is reduced to 9.02 µs as the jitter of the backbone network, queuing at source

and the queuing at the last access router are removed. We can see that the errors and clock

non-idealities add 12.72 µs (141%) to the basic jitter bound.

We see from these examples that, when the remaining end-to-end delay-jitter is still large after

applying dampers (ms or more, Example 2) then the timing errors and clock non-idealities do

not play a significant role and can be ignored. In contrast, for very small residual delay-jitter

(Examples 1 and 2, 10 µs or less), ignoring timing errors and clock non-idealities can lead to

significant under-estimation.

Remark. In Example 1, we see that the delay-jitter bound is not affected by the time-error

bound, i.e., here, time synchronization does not improve the performance of dampers. We can

easily analyze when this is the case, by comparing the terms in the min(.) functions in (7.14).

We find that time synchronization does not improve the performance of dampers if and only if

K∑
j=1

δ j ≤ K +1

ρ−1

(
2ω−η)−∆U −K ε. (7.15)

It follows that if
∑K

j=1δ j > 2
ρ−1

(
2ω−η)

, the time error bound affects the delay and jitter bounds

of Theorem 7.1; i.e., it is the relation between the delay (not delay-jitter) bound and the time-

error bound that matters (see Table 7.1).

TSN networks are typically synchronized with gPTP (ω= 1 µs) [175, Section B.3]. Three main

delay sensitive classes are CDT, class A for audio traffic and class B for video traffic. According
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Table 7.1: Minimum values of the sum of delay bounds for the JCSs within a block such that
clock synchronization improves the delay and jitter bounds in Theorem 7.1.

Synchronization method Time-error bound (ω) Minimum value of
∑K

j=1δ j

White Rabbit 100ns 3.96ms

gPTP 1µs 39.96ms

NTP 100ms 3.99s

to TSN documents [180, 181, 9], the end-to-end delay requirement for CDT, classes A and B

are respectively 100 µs in 5 hops, 2 ms and 50 ms in 7 hops. According to Table 7.1, the gPTP

synchronization does not impact the obtained delay bound using Theorem 7.2 for CDT and

class A. For class B, if we consider that for each block the sum of JCS delay bounds is less

than 39.96 ms, similarly the gPTP synchronization does not play a role. This implies when

all switches and the destinations in a TSN network implement dampers with tolerances and

the source performs time stamping (as a JCS), then without gPTP synchronization the same

performance is achieved.

In order to provide delay and delay-jitter guarantees to time-sensitive flows, it is often required

to bound the burstiness of flows inside the network, which is typically larger than at the source.

Finding such bounds may be difficult, and worst-case bounds may be large when there are

cyclic dependencies [133]. Here, dampers can help a lot, as shown by the following Corollary,

which comes by direct application of the jitter bound in Theorem 7.1 and [64, Lemma 1].

Corollary 7.1. Consider Fig. 7.4. Suppose that a flow has αHTAI as arrival curve at the en-

trance of the block. Then an arrival curve at the output of the block, in TAI, is given by

α
HTAI

h (t ) =αHTAI (t +V ) where V is the jitter bound of the block defined in Theorem 7.1.

Example. In Example 1 of Section 7.2.1, suppose that the flow has leaky-bucket arrival curve

with rate 16 Mbps, in TAI, and burstiness 10 KBytes at source. We computed that the jitter

bound is 1.262 µs from source the output of the first damper. Then the arrival curve at the

output of the first damper has the same rate and the burstiness is increased by 3 Bytes. Without

damper, the burstiness increase would be 515 Bytes: we see that the burstiness increase due

to multiplexing is almost entirely removed.

Remark. The arrival curve constraint at source may be available in its local time rather than

in TAI. Then, we can apply (7.2), to obtain an arrival curve in TAI and then use the result of

Corollary 7.1.

When dampers use TE time-stamping for damper header computation rather than the default

method, the delay and jitter bounds computation with TE time-stamping are slightly different

than in Theorem 7.1. A JCS is affected only when the upstream damper uses TE time-stamping
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(otherwise, the bounds are the same). The next theorem gives end-to-end delay and jitter

bounds when DHU unit uses TE time-stamping.

JCS 
N

damper 
with 

tolerances
(Δ!" , Δ!#)

JCS 
1

damper 
with 

tolerances
(Δ$", Δ$#)

JCS 
3

JCS 
2

damper 
with 

tolerances
(Δ%", Δ%#)

Block 1 Block 2 Block N

The same clock The same clock

Figure 7.5: The notation used in Theorem 7.2.

Theorem 7.2. Consider Fig. 7.5 where a sequence of N blocks are concatenated and TE time-

stamping is used for damper header computation. Assume that clocks follow the description

in Section 7.2.2 and damper with tolerances at block i (i = 1, . . . , N −1) and JCS i +1 operate

with the same clock. Assume that there are M JCSs in total. Let us call the sum of the delay

bounds of the JCSs δe2e and the sum of delay lower and upper bounds and jitter bound of the

BDSs πe2e,πe2e and νe2e respectively. Then,

DTE = δe2e +πe2e +
N∑

j=1
∆U

j +Mε+ΨTE,

DTE = δe2e +πe2e +
N−1∑
j=1

∆U
j −∆L

N −Mε−ΨTE,

VTE = νe2e +∆U
N +∆L

N +2Mε+ΨTE +ΨTE, (7.16)

where ΨTE and ΨTE are the errors due to non-ideal clocks:

ΨTE = min
(
(ρ−1)

(
δe2e +

N∑
i=1

∆U
i +Mε

)+ (M +N )η,2(M +N )ω
)
,

ΨTE = min
((

1− 1

ρ

)(
δe2e −∆L

N +
N−1∑
i=1

∆U
i +Mε

)+ (M +N )η

ρ
,2(M +N )ω

)
. (7.17)

The proof is available in Appendix D.3.

Example. Let us redo the end-to-end delay and jitter bounds computation for the three

examples of Section 7.2.1 using Theorem 7.2 and compare them with the ones obtained

with Theorem 7.1. Let us consider the same assumptions made when applying Theorem 7.1.

We can see that the delay upper-bounds obtained by Theorem 7.2 are the same as the ones

computed after Theorem 7.1; however, the end-to-end jitter is reduced. Using Theorem 7.2,

the end-to-end jitter bound for Example 1 is VEx1 = 2.834 µs, Example 2 is VEx2 = 1.183 ms,

Example 3 is VEx3 = 13.74 µs. The reason for jitter bound reduction by Theorem 7.2 is the
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elimination of the jitter imposed by the tolerances of all the intermediate dampers by the next

downstream dampers. In examples 1 and 3, the jitter bounds are considerably reduced, by

68% and 36%; however, this is not the case for Example 2 as the main sources of jitter are the

BDSs. Furthermore, the jitter imposed by the errors and the non-ideal clocks incorporate

65% and 92% of the the end-to-end jitter bounds computed for examples 1 and 3, which are

respectively 2.8 and 13.74 times the basic jitter bounds.

7.5 Packet Reordering in Dampers without FIFO Constraints

In this Section we show that dampers without FIFO constraint can cause packet misordering,

and we quantify the corresponding reordering metrics.

Obviously, a damper modifies packet order if the sequence of theoretical eligibility times is

not monotonic. Since the theoretical eligibility time is equal to the arrival time at the JCS plus

a constant, this may occur only if the packet order at the entrance to the damper is not the

same as at the entrance to the JCS, i.e. this requires the JCS to be non FIFO. But, as we show

next, this may occur even if the JCS is FIFO, due to timing inaccuracies.

RGCQ and RCSP are two instances of dampers with tolerance; by design, they avoid packet

reordering due to the tolerances by enforcing FIFO behavior after computation of theoretical

eligibility times. However, as we show next, packet reordering may still occur within RGCQ

and RCSP due to the errors of damper header computation and non-ideal clocks.

JCS
Delay upper 

bound 𝛿

RGCQ
(Δ!, Δ")BDS

1
2

1
2

𝐸" 𝐸𝑄𝐴 𝑊

Clock ℋ# Clock ℋ$

Figure 7.6: Packet reordering scenario when two packets enter back-to-back to a JCS.

Reordering example with RGCQ. Consider Fig. 7.6 where the damper is RGCQ with tolerances

(∆L,∆U) and clocks are not synchronized. Assume that the JCS represents a FIFO queue

connected to a transmission line with a fixed rate and the BDS has zero jitter and represents

constant propagation delay (similar to the first hop in Example 1 of Section 7.2.1). Suppose

that two packets 1 and 2 enter the JCS at the same time while 1 is prior to 2. Then packet 1
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leaves before packet 2. The damper headers in the packets are:

H1 = δ− τ̃H0
1 ,

H2 = δ− τ̃H0
1 − τ̃H0

2 = H1 − τ̃H0
2 , (7.18)

where τ̃H0

i is the inferred transmission times of packets i ∈ {1,2} measured with H0. Then, the

interspacing of the two packet at the output of the JCS is:

W H0
2 −W H0

1 = τH0
2 , (7.19)

where τH0
2 is the actual transmission time of packet 2 and W H0

i is the departure time of packet

i ∈ {1,2} from the JCS. Both packets experience the same delay in the BDS. Therefore, the

interspacing between the two packets at the entrance of RGCQ when seen with clock H1 is:

QH1
2 −QH1

1 = τH1
2 = τH0

2 +
(
τ

H1
2 −τH0

2

)
, (7.20)

where QH1
i is the arrival time of packet i ∈ {1,2} to RGCQ. Then, by (7.18) and (7.3), the

difference between the theoretical eligibility times of packets 2 and 1 is:

ẼH1
2 − ẼH1

1 =QH1
2 −QH1

1 +H2 −H1

=
(
τ

H0
2 − τ̃H0

2

)
+

(
τ

H1
2 −τH0

2

)
. (7.21)

The difference between the theoretical eligibility times is the sum of the error between actual

and inferred transmission time and the measurement difference of packet 2 transmission

time seen from clocks H1 and H0. Therefore, if it happens that clock H1 is faster than H0

during the transmission time of packet 2 from the JCS, then τH1
2 < τH0

2 , hence ẼH1
2 − ẼH1

1 < 0,

i.e. packet 2 has smaller theoretical eligible time than packet 1. Then, by implementation of

RGCQ discussed in Section 7.3, packet 2 leaves RGCQ before packet 1.

Remark. In this scenario, reordering occurs because of the difference of speed between the

two clocks H0 and H1 at the microscopic scale and the error in inferring the transmission

time. The earliness of a packet written in the header is measured using the local clock H0

while the delay imposed to the packet is measured in the RGCQ using the local clock H1.

Even if both systems are time synchronized, there still remains a small difference in the time

measurements performed by the two clocks. Over the transmission time of a packet, there is

equal chance that one clocks ticks slightly faster than the other, i.e. there is 50% chance that

the change of order described in this scenario occurs.

Reordering example with RCSP. Consider Fig. 7.7 where the dampers are RCSP. Assume that

the first JCS represents a router, the second JCS is a FIFO queue connected to a transmission

line with a fixed rate and the BDS has zero jitter and represents a constant propagation delay;

this resembles the first and second access routers in Example 2 of Section 7.2.1. Now, focus on

the first JCS and the first RCSP. Suppose two packets 1 and 2 enter the JCS with interspacing

τHTAI , measured in TAI (e.g. transmission time of packet 2 from source, when packets are sent
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JCS
Delay upper 

bound 𝛿!

downstream
RCSP
(Δ"#, Δ"$)

BDS

1
2

JCS
Delay upper 

bound 𝛿%

RCSP
(Δ#, Δ$)

𝐴

1
2

𝐸𝐸#

𝜏ℋ!"#
1

2

back-to-back

Figure 7.7: A scenario that two packets become back-to-back after an RCSP and reordering
occurs in the downstream RCSP.

back-to-back from source), i.e.,

AHTAI
2 − AHTAI

1 = τHTAI . (7.22)

Let κ denote the delay difference of two packets from entrance of the JCS to the theoretical

eligibility time of the RCSP in TAI, i.e.,

κHTAI ,
(
ẼHTAI

1 − AHTAI
1

)
−

(
ẼHTAI

2 − AHTAI
2

)
. (7.23)

|κHTAI | is less than the jitter bound of Theorem 7.1 when∆L =∆U = 0; |κHTAI | ≤V 0 =ψ+ψ+2ε.

Then by (7.22), we have:

ẼHTAI
1 − ẼHTAI

2 = τHTAI +κHTAI , (7.24)

which shows the interspacing between the theoretical eligibility times of two packets at the

RCSP in TAI. Observing this interspacing with H2, we obtain

ẼH2
1 − ẼH2

2 = τHTAI +κHTAI +γ, (7.25)

where γ is the difference in the measurement of the interspacing between HTAI and H2,

bounded by (7.1). The actual eligibility times of the packets from RCSP are obtained by

getting the floor of the theoretical eligibility times divided by ∆ (Section 7.3). Hence, if

τHTAI +κHTAI +γ<∆L, the two packets may have the same actual eligibility times (leave RCSP

back-to-back). The probability of this phenomenon is

P [backToBack] = 1− τHTAI +κHTAI +γ
∆L

≈ 1− τHTAI

∆L
,

which implies that, the smaller the interspacing of the two packets when entering the JCS,

the larger is the probability of having the two packets with the same actual eligibility time

and leave the RSCP back-to-back. When two packets are back-to-back from one RCSP, then

similar to scenario 1, there is 50% chance of reordering for the two packets at the output of the
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next downstream RCSP. Due to the independence of the two events (being back-to-back at

the output of the RCSP and reordering at next downstream RCSP), the chance of reordering is

0.5
(
1−τHTAI /∆L

)
.

One approach to tackle the reordering issue of dampers with tolerance is to place re-sequencing

buffers after the dampers to correct the reordering that they cause. With this approach, it

is crucial to find proper time-out value and size for the re-sequencing buffers. As shown in

Chapter 6, two reordering metrics, namely reordering late-time offset (RTO) and reordering

byte offset (RBO) respectively give the time-out value and size of a re-sequencing buffer. We

obtain these metrics for dampers as a direct application of theorems 6.5 and 6.6:

Corollary 7.2. Consider Fig. 7.4 and a flow that has arrival curve αHTAI at the entrance of the

block. Then, the RTO for the flow from the entrance of the block to the output of the damper

with tolerance, measured in TAI, is λTAI and the corresponding RBO is ζ:

λTAI =
[

V −
(
αHTAI

)↓
(2Lmin)

]+
, (7.26)

ζ=αHTAI (V )−Lmin, (7.27)

where V is the jitter bound of the block, computed in Theorem 7.1, Lmin is the minimum packet

length of the flow and
(
αHTAI

)↓
is the lower pseudo-inverse function defined as(

αHTAI

)↓
(x) = inf

{
t ≥ 0|αHTAI (t ) ≥ x

}
.

Example. Consider Example 1 of Section 7.2.1 with the same assumptions made after Theo-

rem 7.1. Suppose that a flow has leaky-bucket arrival curve with rate 16 Mbps, in TAI, burstiness

10 KBytes at source and minimum packet length 100 Bytes. We computed that the jitter bound

is 1.262 µs from the source to the output of the first damper. Then the RTO (time-out value) is

1.262 µs and the RBO (required buffer size) is 10003 Bytes.

Another approach to tackle reordering is to use dampers with FIFO constraint, as discussed in

Section 7.3 and analyzed in the next section.

7.6 Analysis of Dampers with FIFO Constraints

As mentioned earlier, one way to avoid packet reordering within dampers with tolerance is to

replace them with dampers with FIFO constraint, namely, re-sequencing and HoL dampers.

The goal of this section is to provide delay and jitter bounds when dampers with FIFO con-

straint are used. In this context, “FIFO" and “re-sequencing" are per flow. When all the BDSs

and JCSs within a flow path are FIFO, using re-sequencing or HoL dampers, in contrary to

dampers with tolerances, can provide end-to-end in-order packet delivery. However, this

might impact the delay and jitter bounds computed in Theorem 7.1. To this end, we capture

the impact of using re-sequencing or HoL dampers instead of dampers with tolerances in
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terms of delay and jitter bounds in Theorem 7.3 and Theorem 7.4 when all systems are FIFO.

Then, we see in Theorem 7.5 and Theorem 7.6 that the presence of a non-FIFO system (BDS

or JCS) in the flow path considerably worsens the delay and jitter bounds obtained when all

systems are FIFO. This phenomenon does not occur with dampers without FIFO constraint

because the results in Section 7.4 hold whether the JCSs and BDSs are FIFO or not.
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Figure 7.8: The notation used in Theorem 7.3 and Theorem 7.4.

Theorem 7.3. Consider the block of systems in Fig. 7.8 where all the JCSs and BDSs are FIFO

and the damper is an instance of re-sequencing dampers with tolerances
(
∆L,∆U

)
. Assume that

the clocks follow the description in Section 7.2.2. Then, the delay and jitter bounds of the block,

in TAI, is the same as the bounds in Theorem 7.1.

The proof is in Appendix D.4. It consists in two steps. First, we use an abstraction of a re-

sequencing damper with tolerances
(
∆L,∆U

)
as a damper with tolerances

(
∆L,∆U

)
followed

by a re-sequencing buffer that preserve the order of packet at their entrance to the damper

with tolerances. Second, by the re-sequencing-for-free property of the re-sequencing buffers,

discussed in Chapter 6, we obtain the bounds.

Remark. We have seen in the previous section that even if all BDSs and JCSs are FIFO in a

flow path, dampers with tolerance may cause packet reordering due to the tolerances, non-

ideal clocks and errors in packet header computation. Theorem 7.3 indicates that in such a

case, placing a re-sequencing damper avoids packet reordering with the same delay and jitter

bounds as if dampers with tolerances are used.

Theorem 7.4. Consider the block of systems in Fig. 7.8 where all the JCSs and BDSs are FIFO and

the damper is an instance of head-of-line dampers with tolerances (∆L,∆U) and processing-time

bounds (φmin,φmax). Assume that the clocks follow the description in Section 7.2.2. Then if

φmax = 0, the delay and jitter bounds are the same as the bounds in Theorem 7.1. Otherwise, for

a flow with per-packet arrival curve α at the entrance of the block,

1. the delay upper-bound is increased by θ,

2. the delay lower-bound is increased by φmin,
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3. the jitter bound is increased by θ−φmin,

where θ is a delay upper-bound of a single-server FIFO queue with maximum processing time

of φmax, computed as

θ = max
k∈N

{
kφmax −α↓(k)+V

}
, (7.28)

where V is the jitter bound computed in Theorem 7.1 and

α↓(k) = inf{t ≥ 0|α(t ) ≥ k} .

The proof is in Appendix D.5. The proof consists in two steps. First, we prove that an HoL

damper is equivalent to re-sequencing damper with tolerances (∆L,∆U) followed by a single-

server FIFO queue with service times within (φmin,φmax). Second, using the bounds of The-

orem 7.3 and obtaining delay and jitter bounds on the single-server queue, the theorem is

proven.

Remark. HoL dampers, contrary to re-sequencing dampers, impose some queuing delay,

captured by θ in (7.28). The queuing delay is maximized for the last packet of a packet

sequence when all become eligible at the same time; then since the HoL damper examines

only the packet at the head of the queue, the last packet of the sequence is delayed as much as

the processing delay of all the preceding packets.
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Figure 7.9: The notation used in Theorem 7.5 and Theorem 7.6.

So far we provide delay and jitter bounds when all the systems are FIFO; however, the FIFO

condition might not be always met for all systems such as multi-stage switching fabrics, multi-

path routing of packets or packet duplication [48, 49, 50]. Hence, in the following theorems

we capture the impact of non-FIFO behavior of systems on the delay and jitter bounds when

re-sequencing and HoL dampers are used.

Theorem 7.5. Consider Fig. 7.9 where system e (a BDS or a JCS) is the last non-FIFO system in

the block and the damper is an instance of re-sequencing damper. Let us call J as the jitter from

JCS 1 to system e (included), in TAI. Then, the delay upper-bound and jitter bound of the block,

in TAI, are increased by J comparing to the bounds in Theorem 7.3.
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The bounds are tight, i.e., for any packet that experiences the delay equal to D, there is system

and an execution trace that another packet experiences a delay equal to D + J .

The proof is in Appendix D.6. The proof has two parts. First, we show that delay upper-bound

is increased by J while the delay lower-bound remains unchanged. Second, we provide a

scenario where two packets with interspacing J enter the block and leave the element e back-

to-back while their order is changed. We show that when the second packet experiences

a delay D, the first packet experiences a delay of D + J and the second packet leaves the

re-sequencing damper before the first packet.

Theorem 7.6. Consider Fig. 7.9 where system e (a BDS or a JCS) is the last non-FIFO system in

the block and the damper is an instance of HoL damper. Let us call J as the jitter from JCS 1 to

system e (included), in TAI. Then, comparing to Theorem 7.4, the delay upper-bound and jitter

bound of the block, in TAI, are increased by J if φmax = 0, and are increased by 2J if φmax > 0.

The proof is in Appendix D.7. The proof consists in two steps. First, similarly to the proof of

Theorem 7.3, we abstract an HoL damper as a re-sequencing damper followed by a single-

server FIFO queue. Second, by summing the bounds obtained in Theorem 7.5 and the bounds

on the FIFO queue, the statement is proven. In the case φmax > 0, the bounds are increased

once by J within the re-sequencing damper and once within the FIFO queue as a result of

propagated arrival curve at the output of the re-sequencing damper.

Remark. Similarly to Corollary 7.1, propagated arrival curve of a flow, with arrival curve

αHTAI (t) at the entrance of a block, is αHTAI (t + V̄ ) at the output of re-sequencing or HoL

damper, where V̄ is the jitter of the block computed by applying the corresponding theorem.

Remark. Theorem 7.5 and Theorem 7.6 show that when there is a non-FIFO system in a

block, placement of a damper with FIFO constraint is counterproductive. First, comparing to

placement of dampers with tolerances, the jitter is increased; in result, it leads to an increase

in the burstiness of the propagated arrival curve. Second, the damper with FIFO constraint

preserves the wrong order of the packets, which occurred within the non-FIFO system.

7.7 Numerical Evaluation

We illustrate our theoretical results on the Orion crew exploration vehicle network, as described

in [164] and depicted in Fig. 6.5. For the delay and jitter analysis, we used Fixed-Point TFA

[133, 132] as there are cyclic dependencies. The device clocks are not synchronized. The

link rates are 1 Gbps. The output ports use a non-preemptive TSN scheduler with CBSs and

per-class FIFO queuing [63, 103]; from highest to lowest priority, the classes are CDT, A, B,

and Best Effort (BE). The CBSs are used separately for classes A and B. The CBS parameters

idleslopes are set to 50% and 25% of the link rate respectively for classes A and B [103]. In each

switch, the switching fabric has a delay between 0.5 µs to 2 µs [163]. The CDT traffic has a

leaky-bucket arrival curve with rate 6.4 kilobytes per second and burst 64 bytes. The maximum
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packet length of classes B and BE is 1500 bytes. We focus on class A. Using Theorem 5.2, a

rate-latency service curve offered to class A is β(t ) = 62.49e6[t − t0]+ bytes with t0 = 12.5 µs.

Class A contains 40 flows with constant packet size 147 bytes, which transmit 10 packets every

8 ms. The flows traverse between 2 to 9 hops. We assume all switching fabrics and output

queuing systems implement DHU unit and therefore are JCSs; the propagation delays are

considered as BDSs with zero jitter. We examine the case where no damper is placed and

the case where dampers are placed at every switch and the destinations. For the choice of

dampers, we considered individually the full deployment of RCSP (∆L = 1 µs, ∆U = 2 ns),

RGCQ (∆L = 2 ns, ∆U = 1 µs) with TE time-stamping, FOPLEQ (∆L = 1 µs, ∆U = 2 ns) and a

head-of-line damper (φmin = 0,φmax = 5 ns, ∆L =∆U = 2 ns).

0 5 10 15 20 25 30 35 40

Flow ID

0

1

2

3

4

5

6

7

8

9

10

E
n

d
-t

o
-e

n
d

 j
it
te

r 
b

o
u

n
d

 (
m

ic
ro

s
e

c
o

n
d

s
)

RCSP

Basic-RCSP

RGCQ with TE time-stamping

Basic-RGCQ with TE time-stamping

Impact of non-ideal clocks and errors in end-to-end jitter bound for RGCQ and RCSP.

Figure 7.10: The end-to-end jitter bounds for RCSP and RGCQ with TE time-stamping using
basic jitter computation and using theorems 7.1 and 7.2.

Fig. 7.10 shows the end-to-end jitter bounds of the flows for full deployment of RCSP and RGCQ

with TE time-stamping. For each of the cases, the basic jitter computation only considers the

jitter imposed by the tolerances of the dampers and ignore the impact of non-ideal clocks

and errors in the computation of damper header. Fig. 7.10 also shows the true jitter bound

for the case of RCSP, using Theorem 7.1, and for the case of RGCQ with TE time-stamping

using Theorem 7.2. We see that non-ideal clocks and errors can increase jitter by 11% in the

case of RCSP and 106% in the case of RGCQ with TE time-stamping. We also see that the

TE time-stamping used with RGCQ can significantly reduce the end-to-end jitter comparing

to the default time-stamping used with RCSP. Fig. 7.11 shows the end-to-end delay and

jitter bounds of the flows when no damper is used and when there is a full deployment as
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Figure 7.11: The end-to-end delay bounds (left) and jitter bounds (right) for full deployment
of dampers and in the absence of dampers. For FOPLEQ and HoL dampers, we assume that
all the elements are FIFO.

above. All switching fabrics are FIFO. We see that without damper, the delay upper-bound

is smaller compared to full damper deployments; this is due to the line-shaping effect when

computing the queuing delay bounds in the absence of dampers. However, as expected, the

full deployment of dampers significantly reduces the jitter bounds. In this computation, the

HoL damper provides quasi similar jitter bound as RGCQ with TE time-stamping and FOPLEQ

gives the exact same jitter bound as RCSP as seen in Theorem 7.3.
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Figure 7.12: The end-to-end jitter bounds for FOPLEQ and head-of-line dampers when switch-
ing fabrics are FIFO or not.

Fig. 7.12 shows the end-to-end jitter bounds of the flows for FOPLEQ and HoL damper

considering the switching fabrics are FIFO and are not FIFO. The figure shows that with

FOPLEQ the jitter is significantly increased that is due to the jitter imposed by the output
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queuing, as seen in Theorem 7.5. It also shows that jitter bounds are worse in the case of HoL

damper as discussed in Theorem 7.6.

7.8 Conclusion

We have presented a theory to compute delay and jitter bounds in a network that implements

dampers with non-ideal clocks. We have shown that dampers without FIFO constraint can

cause packet reordering even if all network elements are FIFO; re-sequencing dampers and

head-of-line dampers avoid the problem; the former come with no jitter or delay penalty, and

the latter with a small, quantified penalty. However, when a flow path contains non-FIFO

elements, re-sequencing dampers and head-of-line dampers do not perform well.

7.9 Notation

Term Description

dH i The delay measurement with clock H i

En The actual release time of packet n from a damper

Ẽn The theoretical eligibility time of packet n from a damper

Hn The damper header of packet n

H i The clock of a device i or the true time (TAI)

Qn The arrival time of packet n to a damper

αH i The arrival curve of a flow seen with clock H i

δi The delay upper-bound for JCS i

ε An upper bound on the damper-header computation error

η The clock timing-jitter bound

ν j The delay-jitter bound of BDS j

π j ,π j The delay lower-bound and upper-bound for BDS j

ρ The clock stability bound

φmin,φmax The minimum/maximum processing times of HoL damper

ω The clock synchronization time-error bound

∆L,∆U Damper tolerances

w↓ The lower pseudo-inverse of function w (Section 3.1.1)

1{C } It is equal to 1 when the condition C is true and is equal to 0 otherwise

bxc The floor of x

[x]+ max(0, x)
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8 Conclusion and Future Work

What we know is a drop, what we don’t know is an ocean.

— Isaac Newton

In this thesis, in order to obtain bounds on delay, backlog, and delay jitter, we have provided a

network-calculus-based analysis for asynchronous mechanisms in time-sensitive networks.

The first set of our results is novel delay-bounds based on network calculus, as presented in

Chapter 4. Our obtained bounds supersede the classic network-calculus bounds for scheduling

mechanisms and can be used in the analysis of time-sensitive networks. The bounds were

obtained by decomposing the delay into queuing and transmission delays; this enabled us

to exploit the information on the physical-line rate, hence the improvements in the delay

bounds. Using this method of proof, together with a novel modelling of a packet-level arrival

curve with g-regularity and bit-level arrival curve, we obtain a delay bound for flows with

packet-level arrival curves. This delay bound improves the state-of-the-art approach that is

obtained by only arrival-curve modelling of a packet-level arrival curve. For a proof of concept

for our improved delay bounds, in Chapter 5, we have studied an asynchronous configuration

of TSN with CBSs and ATSs, for which we obtained end-to-end delay and backlog for class A

and class B traffic. The bounds are based on the obtainment of CBS service curves for classes

A and B.

The second set of our results is the analysis of re-sequencing buffers that are used to address

the in-order packet-delivery requirement in time-sensitive networks. Our analysis, presented

in Chapter 6, is the first one performed on this topic. We have shown that the RTO of a flow

determines the timeout value, and that the RBO is used to quantify the size of a re-sequencing

buffer. We have proven that when the network can be assumed lossless (due to a proper buffer

allocation in the systems and redundancy mechanisms), re-sequencing does not modify worst-

case delay or delay jitter. However, if the network is lossy and its performance is of interest, the

re-sequencing comes with a penalty, on the worst-case delay and jitter. The penalty is equal at

least to the RTO of the flow being in-ordered. Furthermore, we have provided a calculus for
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capturing the RTO and RBO of a flow as the main ingredients of our analysis. We have shown

that the RTO can be very large, even though the RTO of every individual non-order-preserving

element is very small, due to amplification by downstream jitter.

Finally, we have studied dampers that are asynchronous mechanisms for providing low end-to-

end delay jitter. The idea of dampers was proposed in the 1990s and recently caught attention

as a solution to be used in time-sensitive networks. Prior to this thesis, a proper analysis

of dampers was missing, i.e., in practice, unlike the literature assumption in the analysis,

dampers operate with clocks that differ from the clocks of other network elements. This makes

the analysis of dampers non-trivial, and we address this in Chapter 7. We have presented a

theory for computing delay and jitter bounds in a network that implements dampers with

non-ideal clocks. We have seen that dampers can be categorized into dampers with FIFO

constraints and those without. We have shown that dampers without FIFO constraints can

experience packet reordering, due to non-ideal clocks and to the errors in the damper-header

computation, even if all the network elements are FIFO. This problem can be avoided by

using re-sequencing dampers and head-of-line dampers: The re-sequencing dampers do not

come with either jitter or delay penalties, and the head-of-line dampers come with only a

small penalty. On the contrary, when a flow path contains non-FIFO elements, re-sequencing

dampers and head-of-line dampers do not perform well, in the sense that they provide a worse

jitter guarantee compared to dampers without FIFO constraints, and that they also preserve

the wrong packet order that occurs in the non-FIFO elements.

Hereafter, we mention a number of open problems and directions for future studies.

(1) A valid question regarding our improved delay bounds in Chapter 4 is about how they

can be used to provide good end-to-end bounds. When all systems implement dampers or

regulators, the question is trivial, as all flows recreate their source constraints. However, in the

absence of these mechanisms, the flow constraints are changed at intermediate systems due

to the input-line shaping. This especially affects the packet-level arrival curves, as the shaping

occurs at the bit level. Analyzing the delay bound by incorporating the input-line shaping

effect with our results (that exploit the information on the output transmission-line) would be

an interesting direction for future research.

(2) As mentioned in Chapter 2, there is also a set of synchronous mechanisms that we have not

studied in this thesis and that can be combined with asynchronous ones (e.g., the considered

TSN configuration in Chapter 5). An example of such a combination is a configuration of IRs,

CBSs, TASs and SP to enable the transmission of time-triggered traffic. The coexistence of

asynchronous and synchronous mechanisms adds more complexity to the computation of

the delay, jitter, and the backlog bounds, and is a challenging research direction.

(3) We have mentioned that the placement of dampers comes with hardware costs. Also,

in Chapter 7, we have shown that dampers can be partially deployed to reduce end-to-end

jitter in time-sensitive networks. This inspires us with the idea of placing dampers at certain

intermediate systems. The immediate question is how to choose these intermediate systems.
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In other words, "What is a proper placement of dampers in a network such that the flows meet

their required performance guarantees?". A similar question regarding the IR placement was

already addressed in [133].
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A Appendix (Chapter 4)

A.1 Technical Prerequisites

Consider a function f ∈ Finc, where Finc is the set of wide-sense increasing functions w :

[0,+∞) → [0,+∞]. Then by [124, Section 10.1][123],

( f +)↓ = f ↓, (A.1)

( f ↓)+ = f ↑, (A.2)

( f ↑)− = f ↓, (A.3)

( f −)↑ = f ↑, (A.4)

∀y ∈R+ : f (x) ≤ y =⇒ x ≤ f ↑(y), (A.5)

∀y ∈R+ : f (x) ≥ y =⇒ x ≥ f ↓(y), (A.6)

where f + is the right limit of the function f . Furthermore, by [124, Section 10.1][182], if f is

right continuous:

f = ( f ↓)↑, (A.7)

∀w ∈Finc : ( f ◦w)↓(x) = (w↓ ◦ f ↓)(x), (A.8)

and if f is left continuous:

f = ( f ↑)↓, (A.9)

∀w ∈Finc : ( f ◦w)↑(x) = (w↑ ◦ f ↑)(x). (A.10)

Note that ◦ is the composition operator, i.e., ( f ◦w)(x) = f (w(x)).

Lemma A.1. Consider a left-continuous function f ∈Finc. Then
((

f ↓)↑)− = f .
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Proof. By (A.3), we have: ((
f ↓

)↑)− =
(((

f ↑
)−)↑)−

. (A.11)

Then, by (A.4): (((
f ↑

)−)↑)− =
((

f ↑
)↑)−

. (A.12)

Then, by (A.3): ((
f ↑

)↑)− =
(

f ↑
)↓ = f , (A.13)

where the last equality is by (A.9) and left-continuity of f .

Lemma A.2. Let f be a wide-sense increasing and c-Lipschitz function. Then, for x ′ ≥ x, we

have:

f ↓ (
x ′)− f ↓ (x) ≥ x ′−x

c
. (A.14)

Proof. According to the definition of Lipschitz continuity and because f is wide-sense increas-

ing, we have for t ′ ≥ t :

f
(
t ′

)− f (t ) ≥ c(t ′− t ). (A.15)

Assume that f ↓ (
x ′)= t ′ and f ↓ (x) = t . Due to Lipschitz continuity, f is continuous. Therefore,

from (3.1), t = f ↓ (x) = inf{s ≥ 0| f (s) ≥ x} = sup{s ≥ 0| f (s) < x} = sup{s ≥ 0| f (s) ≤ x}. Thus,

f (t ) = x. Similarly, we can show that f
(
t ′

)= x ′. Therefore, we obtain

f ↓ (
x ′)− f ↓ (x) = t ′− t ≥ f

(
t ′

)− f (t )

c
= x ′−x

c
, (A.16)

which completes the proof.

Lemma A.3. A flow with fixed interval (τ,K ) conforms to a packet-level arrival-curve αpkt with

αpkt(0) = 0, αpkt(t ) = K d t

τ
e+K : t > 0. (A.17)

Proof. First, since N (s)−N (s) = 0;∀s ≥ 0, by (4.4) αpkt(0) = 0.

Next we prove the statement for t > 0. For all t > 0, there exists some 0 ≤ t ′ < τ such that

t = iτ+ t ′, i = d t

τ
e. (A.18)

Now, consider a time instant s. We cover the two cases s ≤ θ and s > θ separately.
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• 0 ≤ s ≤ θ. Then by (4.9) N (s) = 0. Therefore:

N (s + t )−N (s) = N (s + t ) ≤ N (θ+ t ). (A.19)

By (A.18):

N (θ+ t ) = N (θ+iτ+ t ′) = [
N (θ+ iτ+ t ′)−N (θ+ iτ)

]
+ [N (θ+ iτ)−N (θ+ (i −1)τ)]+·· ·+ [N (θ+τ)−N (θ)]+N (θ)

Using the definition of fixed interval constraint in (4.9), we have:

N (θ+ t ) ≤ (i +1)K +N (θ) = (i +1)K (A.20)

Since i = d t
τe, by (A.19) we have:

N (s + t )−N (s) ≤ K d t

τ
e+K . (A.21)

• s > θ. Then, there exists some n ∈N such that:

θ+nτ≤ s < θ+ (n +1)τ. (A.22)

Therefore,

N (s + t )−N (s) ≤ N (θ+ (n +1)τ+ t )−N (θ+nτ). (A.23)

By (A.18), the above equation gives:

N (s + t )−N (s) ≤ N (θ+ (n +1)τ+ iτ+ t ′)−N (θ+nτ)

= [
N (θ+ (n + i +1)τ+ t ′)−N (θ+ (n + i +1)τ)

]+[
N (θ+ (n + i +1)τ)−N (θ+ (n + i )τ)

]
+·· ·+ [

N (θ+ (n +1)τ)−N (θ+nτ)
]
. (A.24)

Since i = d t
τe, (A.24) gives:

N (s + t )−N (s) ≤ (i +1)K = K d t

τ
e+K . (A.25)

By (A.21) and (A.21), for all s ≥ 0:

N (s + t )−N (s) ≤ K d t

τ
e+K =αpkt(t ), (A.26)

which proves the lemma.
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A.2 Proofs

A.2.1 Proof of Proposition 4.1

1) Since the flow has an arrival curve α, by (3.20) for any packet index m,n such that m ≤ n,

we have:
n∑

i=m
li ≤α+(An − Am). (A.27)

By excluding the last packet from the left hand-side of the inequality, we have:

n−1∑
i=m

li ≤α+(An − Am)− ln ≤α+(An − Am)−Lmin. (A.28)

We define h(t ) = [t −Lmin]+ and x =∑n−1
i=m li . Then, (A.28) can be rewritten as:

x ≤ (h ◦α+)(An − Am). (A.29)

Applying (A.6) to (A.29):

An − Am ≥ (h ◦α+)↓ (x) . (A.30)

Since h is continuous, by (A.8) we have:

An − Am ≥ ((α+)↓ ◦h↓) (x) . (A.31)

Applying (A.1), we have:

An − Am ≥ (α↓ ◦h↓) (x) . (A.32)

Finally, by (3.1), we have h↓(x) = x +Lmin, x > 0;h↓(0) = 0. Then, for x > 0:

An − Am ≥α↓(x +Lmin) = g (x), (A.33)

and for x = 0:

An − Am ≥α↓(0) = 0 = g (0). (A.34)

2) By [[126], Lemma 6.2.8], g ↑(t )+Lmax is an arrival curve for the flow. Since, the left limit of

an arrival curve is also an arrival curve for the flow, we have:

α(t ) = lim
ε→0
ε>0

g ↑(t −ε)+Lmax =
(
g ↑

)−
(t )+Lmax = g ↓(t )+Lmax. (A.35)

The last equality is by (A.3).

3) Assume a flow with arrival curve α and let us first apply item 1 and then item 2. By item 1,

we can find a g -regularity constraint:

g (x) =α↓(x +Lmin) = (α↓ ◦h)(x), (A.36)
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where h(x) = x +Lmin. Now, we apply item 2 to the obtained g -regularity constraint in (A.36)

and derive an arrival curve α′:

α′(t ) = g ↓(t )+Lmax = (α↓ ◦h)↓(t )+Lmax =
(
(α↓ ◦h)↑

)−
(t )+Lmax, (A.37)

The last equality is by (A.3). Due to left continuity of α↓, by (A.10) we have:

α′(t ) =
((

h↑ ◦
(
α↓

)↑))−
(t )+Lmax =

[((
α↓

)↑)−
(t )−Lmin

]+
+Lmax. (A.38)

Note that h↑(t ) = [t −Lmin]+ = max(t −Lmin,0). Since α is left continuous and α(t ) ≥ Lmax, by

Lemma A.1 we have:

α′(t ) =α(t )−Lmin +Lmax. (A.39)

Eq. (A.39) shows that by applying item 1 and then item 2, the obtained arrival curve is not the

same as the initial one, i.e., α 6=α′, except from the case that Lmax = Lmin (when all packets

have the same length).

Let us now examine the opposite direction. Assume a flow has g -regularity constraint. By

applying item 2, we can find an arrival curve, α:

α(t ) = g ↓(t )+Lmax = (h ◦ g ↓)(t ), (A.40)

where h(t ) = t +Lmax. Now, we apply item 1 to the obtained arrival curve (A.40) and derive a

g ′-regularity constraint:

g ′(x) =α↓(x +Lmin) = (h ◦ g ↓)↓(x +Lmin) =
(
(h ◦ g ↓)↑

)−
(x +Lmin). (A.41)

By (A.10) and since h↑(x) = [
x −Lmax

]+, we have:

g ′(x) =
(
(g ↓)↑ ◦h↑

)−
(x +Lmin) =

(
(g ↓)↑

)−
([x −Lmax]++Lmin). (A.42)

Since g is left continuous, by Lemma A.1, we have:

g ′(x) = g ([x −Lmax]++Lmin). (A.43)

The above equation shows that applying item 2 and then item 1 does not give the same g -

regularity as the initial one, i.e., g 6= g ′, except from the case that Lmax = Lmin (when all packets

have the same length).
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A.2.2 Proof of Proposition 4.2

1) According to the min-plus representation of packet-level arrival-curve in Eq. (4.5), for any

packets m,n with m ≤ n, we have:

n −m +1 ≤α+
pkt(En −Em). (A.44)

Now let us multiply both sides of the inequality by Lmax:

(n −m +1)Lmax ≤ Lmaxα+
pkt(En −Em). (A.45)

For all packet indices i , it holds that li ≤ Lmax. Thus,

n∑
i=m

li ≤ Lmaxα+
pkt(En −Em). (A.46)

According to (3.20), the flow conforms to an arrival curve α= Lmaxαpkt.

To obtain g -regularity, we use Eq. (A.45) as well as the fact that li ≤ Lmax for all packets i , and

we have:
n−1∑
i=m

li +Lmax ≤ Lmaxα+
pkt(En −Em). (A.47)

Now, we divide the both sides by Lmax and set x :=∑n−1
i=m li . Then,

x

Lmax +1 ≤α+
pkt(En −Em). (A.48)

Using (A.6) and then (A.1):

En −Em ≥α↓
pkt(

x

Lmax +1) = g (x). (A.49)

2) First we show that we can derive (4.14) using (4.13). By item 1, the flow with packet-level

arrival-curve αpkt conforms to g -regularity with g =α↓
pkt ◦ f , where f (x) = x

Lmax +1. The flow

also conforms to a bit-level arrival-curveα′ that is derived by applying item 2 of Proposition 4.1

to (4.13), i.e., α′(t ) = g ↓(t )+Lmax; then,

α′(t ) = g ↓(t )+Lmax =
(
α↓

pkt ◦ f
)↓

(t )+Lmax =
((
α↓

pkt ◦ f
)↑)−

(t )+Lmax (A.50)

where the last equality is obtained by (A.3). Now, using (A.10) and left continuity of α↓
pkt:

α′(t ) =
(

f ↑ ◦
(
α↓

pkt

)↑)−
(t )+Lmax, (A.51)
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Since f ↑(t ) = [tLmax −Lmax]+, we have:

α′(t ) =
[

Lmax
((
α↓

pkt

)↑)−
(t )−Lmax

]+
+Lmax. (A.52)

Since αpkt is left continuous, by Lemma A.1:

α′(t ) = Lmaxαpkt(t )−Lmax +Lmax. (A.53)

Note that α+
pkt(t ) ≥ 1. Thus α′(t ) =α(t ) given by (4.14).

Second we show that (4.14) does not give (4.13). By item 1, the flow with packet-level arrival-

curve αpkt conforms to bit-level arrival-curve with α = f ′ ◦αpkt, where f ′(t) = tLmax. In

addition, the flow also conforms to a g ′-regularity constraint that derives by applying item of

Proposition 4.1 to (4.14):

g ′(x) =α↓(x +Lmin) = (
f ′ ◦αpkt

)↓ (x +Lmin) =
(
α↓

pkt ◦ f ′↓
)

(x +Lmin), (A.54)

where the last equality is obtained by using (A.8) and continuity of f ′. Now, since f ′↓(x) = x
Lmax ,

we have:

g ′(x) =α↓
pkt

(
x +Lmin

Lmax

)
. (A.55)

When all packets are of the same size (Lmax = Lmin), g ′ = g . When Lmin < Lmax, since α↓
pkt is a

wide-sense increasing function, we have g ′ ≤ g and g ′ 6= g , i.e. g ′ is a weaker constraint than g

given in (4.13).

A.2.3 Proof of Lemma 4.1

Let n be the index of the packet of interest with length ln . Using Lemma A.4, there exists an

m ≤ n such that:

β(Qn − Am) ≤
n−1∑
k=m

lk , (A.56)

where Qn is the beginning of transmission of packet n. Using (A.5), Eq. (A.56) gives:

Qn − Am ≤β↑
( n−1∑

k=m
lk

)
. (A.57)

Therefore Qn satisfies,

Qn ≤ max
m≤n

{
Am +β↑

( n−1∑
k=m

lk

)}
. (A.58)
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Since
∑n−1

k=m lk ≤ w(An − Am), we have:

Qn ≤ max
m≤n

{
Am +β↑

(
w(An − Am)

)}
. (A.59)

By defining t
def= An − Am ≥ 0, we further obtain,

Qn − An ≤ sup
t≥0

{
−t +β↑ (w (t ))

}
. (A.60)

Applying (A.2) to (A.60):

Qn − An ≤ sup
t≥0

{
(β↓)+ (w (t ))− t

}
. (A.61)

Next, we use Lemma A.5 and set β↓ = f ; therefore:

Qn − An ≤ sup
t≥0

{
β↓ (w (t ))− t

}
= h(w,β), (A.62)

which completes the proof.

Lemma A.4. If a FIFO system has (i) β as a service curve, and (ii) packetized input, then for

every packet n, there exists a packet index m ≤ n such that,

β(Qn − Am) ≤
n−1∑
k=m

lk ,

where lk is the length of the k th packet, Qn is the start of transmission of packet n and Am is the

arrival time of packet m.

Proof. Let I (t ) be the number of bits that have arrived up to (excluding) time t and O(t ) be the

number of bits that have been served up to (excluding) time t . Then by definition of service

curve in Eq. (3.23), the system is said to offer the flow a service curve β if for any t ≥ 0, there

exists an s ∈ [0, t ] such that

O(t ) ≥ I (s) + β(t − s). (A.63)

Let n be some packet index. We have O(Qn) =∑n−1
i=1 li , since Qn is the time at which packet n

starts being transmitted and, by the FIFO property, all packets before n have been served by

that time.

Now apply (A.63) with t =Qn . For the resulting s, let m be the smallest packet index such that,

s ≤ Am and thus I (s) =∑m−1
i=1 li , with the convention that an empty sum is equal to 0 (which

occurs when m = 1). Note that, at this point, we do not know if n ≤ m or if n > m (we know

that s ≤Qn , but, this does not imply that m ≤ n, for example it is quite possible that An+1 <Qn

since packets may wait in the queue). But, in any case, since s ≤ Am and β is wide-sense
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increasing:

β(Qn − s) ≥β(Qn − Am). (A.64)

By using (A.64) and the expressions of O(Qn) and I (s) in A.63, we obtain:

n−1∑
i=1

li ≥
m−1∑
i=1

li +β(Qn − Am). (A.65)

If m > n, we obtain β(Qn − Am) < 0, which is a contradiction; therefore, m ≤ n.

Lemma A.5. If f (.) is a wide-sense increasing function and f +(.) is its right-limit, then for any

R > 0:

sup
t≥0

(
f +(t )−Rt

)
= sup

t≥0

(
f (t )−Rt

)
. (A.66)

Proof. Let K = supt≥0

(
f (t )−Rt

)
and K ′ = supt≥0

(
f +(t )−Rt

)
. We want to prove that K = K ′.

To do so, first we show that K ≤ K ′; and second that K ≥ K ′.

• K ≤ K ′: The function f is wide-sense increasing; therefore for any t ≥ 0, we have:

f (t ) ≤ f +(t ) =⇒ f (t )−Rt ≤ f +(t )−Rt . (A.67)

Using (A.67), it is trivially shown that K ≤ K ′.

• K ≥ K ′: The function f is wide-sense increasing; therefore for any t ≥ 0 and ε> 0, we

have f +(t ) ≤ f (t +ε); thus:

f +(t )−Rt ≤ f (t +ε)−Rt = f (t +ε)−R(t +ε)+Rε

≤ sup
u≥0

(
f (u)−R(u)

)
+Rε= K +Rε, (A.68)

i.e., K +Rε is an upper bound on f +(t )−Rt . By definition, K ′ is the lowest such upper

bound. Thus K ′ ≤ K +Rε. This holds for any ε> 0, thus K ′ ≤ K .

A.2.4 Proof of Lemma 4.2

Let us remind that lk and Ak are the length and the arrival time of the k th packet with k = 1,2...

(Section 4.2). Let n be the index of the packet of interest belonging to flow 1 with length ln ,

ln = l . The sum of all packets can be split in two parts, one with packets belonging to flow 1

and the one with packets belonging to flow 2. Let F (k) be the flow id of k th packet, then for
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any 0 ≤ m ≤ n, we have:

n−1∑
k=m

lk =
n−1∑
k=m

1{F (k)=1}lk +
n−1∑
k=m

1{F (k)=2}lk . (A.69)

For flow 1 with g-regularity constraint, by applying (A.5) to (4.1), we have:

n−1∑
k=m

1{F (k)=1}lk ≤ g ↑(An − Am), (A.70)

For flow 2 with bit-level arrival-curve, using (3.20) we have:

n∑
k=m

1{F (k)=2}lk ≤α+(An − Am). (A.71)

Note that since packet n belongs to flow 1,
∑n

k=m 1{F (k)=2}lk = ∑n−1
k=m 1{F (k)=2}lk . Therefore,

together with (A.70) and (A.71):

n−1∑
k=m

1{F (k)=1}lk +
n−1∑
k=m

1{F (k)=2}lk ≤ g ↑(An − Am)+α+(An − Am). (A.72)

Using (A.72) in (A.69):
n−1∑
k=m

lk ≤ w(An − Am), (A.73)

where the function w :R+ →R+ is w = g ↑+α+. Then by Lemma 4.1 for packet n, we have:

Qn − An ≤ h(w,β), (A.74)

where Qn is start of transmission of packet n. Since the transmission time for the packet of

interest, n, is Dn −Qn = l
c , the delay bound is:

Dn − An = Dn −Qn +Qn − An ≤ h(w,β)+ l

c
, (A.75)

which concludes the proof for item 1. Now, since l ≤ Lmax
1 , h(w,β)+ Lmax

1
c is a delay bound for

flow 1 which completes the proof.

A.2.5 Proof of Theorem 4.2

Let us first define the function w as:

w(t ) =
M∑

u=1
Lmax

u αpkt,u(t ), (A.76)

The proof is in two steps: first, we construct a simulation trace; second, we verify its properties.
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Step 1. We start the construction of a simulation trace.

(a) We determine the smallest time instant t ′ with the following property:

β↓ (
w(t ′)−Lmax

1

)− t ′ = sup
t≥0

{
β↓ (

w(t )−Lmax
1

)− t
}
= h(w −Lmax

1 ,β). (A.77)

In fact, the time t ′ will be the time at which the packet of interest arrives at the system and

experiences the worst-case delay.

(b) Now, we generate the packet sequence for the M flows. Flow 1 has n1 =αpkt,1
+(t ′) packets

presented as a pair (A1,L 1) where A1 = (A1
1, A1

2, . . . , A1
n1

) is the sequence of packet arrival times

and L 1 = (l 1
1 , l 1

2 , . . . , l 1
n1

) is the packet length sequence, defined for all i ∈ {1, . . . ,n1} by:

l 1
i = Lmax

1 , (A.78)

A1
i = γ+ inf{s ≥ 0 | αpkt,1(s) ≥ i } = γ+α↓

pkt,1(i ),

where γ = t ′−α↓
pkt,1(n1). Lemma A.6 shows that α↓

pkt,1(n1) ≤ t ′ and hence γ ≥ 0. The afore-

mentioned packet sequence indicates that the packets have maximum length and the packet

arrival is greedy, starting at time γ, and the last packet (packet of interest) arrives at A1
n1

= t ′.

Any other flow f , f 6= 1, has n f = αpkt, f
+(t ′) packets presented as a pair (A f ,L f ) where

A f = (A f
1 , A f

2 , . . . , A f
n f

) is the packet arrival sequence and L f = (l f
1 , l f

2 , . . . , l f
n f

) is the packet

length sequence, that are defined for all j ∈ {1, . . . ,n f } as:

l f
j = Lmax

f ,

A f
j = inf{s ≥ 0 | αpkt, f (s) ≥ j } =αpkt, f

↓( j ). (A.79)

The aforementioned packet sequence indicate that the packets have maximum length and

their arrival is greedy starting at time A f
1 =αpkt, f

↓(1) = 0. With the above arrival construction,

we have the cumulative input packet-count function as:

Nu(t ) =


∑nu

i=1 1Au
i <t t ≤ t ′

nu t > t ′
, ∀u = 1,2, . . . , M . (A.80)

Now let us merge the two packet sequences to express the total traffic. We define the pair

(A,L ) with arrival sequence A = (A1, A2, . . . , An) and lengths sequence L = (l1, l2, . . . , ln) of

total packets and n =∑M
k=1 nk , i.e., (A,L ) =⋃M

k=1(Ak ,L k ). Lemma A.6 indicates that for any

f 6= 1:

A f
n f

≤ t ′ = A1
n1

.

In the case A f
n f

= A1
n1

= t ′, assume that the last packet of flow 1 is enqueued after the last

packet of other flows; hence, An = A1
n1

= t ′ and ln = Lmax
1 .
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Figure A.1: The execution trace used in the proof of Theorem 4.2. The delay of the packet with
length Lmax

1 that arrives at time t ′ is ∆pkt.

The cumulative input function, I (t ) is shown as the green line in Fig. A.1 that is obtained as:

I (t ) =
M∑

u=1
Lmax

k Nu(t ) =


∑∞
k=1 Lmax

k 1{Ak<t } t ≤ t ′∑M
u=1 nuLmax

u = w+(t ) t > t ′

(c) For the output, we first construct the fluid output curve F (t ) (orange dotted-line in Fig. A.1)

given by

F (t ) = inf
0≤s≤t

{
I (s)+β(t − s)

}
, (A.81)

so that the service curve property would be automatically satisfied if we would let the output

cumulative function be O(t ) = F (t ). However, we cannot take O(t ) = F (t) because F (t ) does

not satisfy the condition that packet transmission is at rate c. In order to obtain the output

function O(t), we first observe the start and end of transmission time of a packet li , i.e., Qi

and D ′
i as:

D ′
i = inf

{
s ≥ 0 : F (s) ≥ I+(Ai )

}= F ↓ (
I+(Ai )

)
,

Qi = inf
{

s ≥ 0 : F (s) ≥ I+(Ai )− li
}= F ↓ (

I+(Ai )− li
)

.

In the above definitions, we have D ′
i =Qi+1 as I+(Ai+1) = I+(Ai )+ li by definition of I . For the

output function O(t ), we keep the same time Qi for the start of transmission of packet i , but,

134



A.2 Proofs

we let the transmission finish at time Di =Qi + li
c . Observe that:

D ′
i −Di = F ↓ (

I+(Ai )
)−(

F ↓ (
I+(Ai )− li

)+ li

c

)
. (A.82)

By Lemma A.7, F (t ) is c-Lipschitz. Then using Lemma A.2,

D ′
i −Di ≥ li

c
− li

c
= 0. (A.83)

Then, more precisely ∀i = 1, . . . ,n1 +n2 and ∀t ∈ [Qi ,D ′
i ], O(t ) is:

O(t ) =
c(t −Qi )+F (Qi ) Qi ≤ t < Di ,

F (Qi )+ li Di ≤ t ≤ D ′
i .

(A.84)

O(t ) is shown with red line in Fig. A.1.

Step 2. We verify that all requirements in the theorem are satisfied. First we show that the

service curve property holds; to do this, since F satisfies the service curve property, it is

sufficient to show that O(t ) ≥ F (t ) : ∀t ∈ [Qi ,D ′
i ] for any i = 1, . . . ,n. Using Lipschitz continuity

of F for t ∈ [Qi ,Di ),

F (t ) ≤ F (Qi )+ c(t −Qi ) =O(t ). (A.85)

For t ∈ [Di ,D ′
i ], by construction:

F (t ) ≤ F (Qi )+ li =O(t ). (A.86)

The above equations imply O(t ) ≥ F (t ),∀t ≥ 0; therefore, the service curve property is satisfied

when the output is O(t ).

Moreover, by construction the system is FIFO, the input is packetized and packet transmission

occurs at rate c. We need to prove that the input conforms to the packet-level arrival-curve.

For any flow f , f 6= 1, consider two time instants s, t ≥ 0, s ≤ t .

If t = s = 0, then N f (t )−N f (s) =αpkt, f (t − s) = 0.

If 0 < t ≤ t ′, there exist a packet index m′ where t ∈ (A f
m′ , A f

m′+1]. Then by Lemma A.8 with

k = 0, we have m′ =αpkt, f (t ). Now if s = 0, we have

N f (t )−N f (s) = N f (A f
m′+1)−N f (0) = m′ =αpkt, f (t ); (A.87)

otherwise, there exists a packet index m (m ≤ m′), where s ∈ (A f
m , A f

m+1]. Then:

N f (t )−N f (s) = N f (A f
m′+1)−N f (A f

m+1) = m′−m. (A.88)
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By Lemma A.8 with k = 0, m′ =αpkt, f (t ) and m =αpkt, f (s). Therefore:

N f (t )−N f (s) =αpkt, f (t )−αpkt, f (s) ≤αpkt, f (t − s), (A.89)

where the last inequality is due to sub-additivity of αpkt, f .

If t > t ′, by construction, N f (t ) = n f =α+
pkt, f (t ′). Now, for s = 0, we have

N f (t )−N f (s) = n f =αpkt, f
+(t ′) ≤αpkt, f (t );∀t > t ′. (A.90)

For 0 < s ≤ t ′, there exists a packet index m (m ≤ m′), where s ∈ (A f
m , A f

m+1]. Then by

Lemma A.8 with k = 0, we have m =αpkt(s). Therefore,

N f (t )−N f (s) = n f −m =αpkt, f
+(t ′)−αpkt, f (s) ≤αpkt, f (t − s);∀t > t ′, (A.91)

where the last inequality is due to sub-additivity of αpkt, f .

For t ′ < s ≤ t , N f (s) = n f . Then,

N f (t )−N f (s) = n f −n f = 0 ≤αpkt, f (t − s), (A.92)

which shows flow f conforms to the packet-level arrival-curve.

For flow 1, similarly to the above computation and using Lemma A.8 with k = γ, we obtain

N1(t )−N1(s) ≤αpkt(t − s);∀s ≤ t ,∀t ≥ 0, (A.93)

which shows flow 1 conforms to packet-level arrival-curve.

Last, we show that packet n achieves the delay bound. We have for packet n, An = t ′; then:

Qn = F ↓(I+(t ′)− ln) = F ↓(w+(t ′)−Lmax
1 ). (A.94)

Furthermore, Dn =Qn + ln
c =Qn + Lmax

1
c , therefore,

Dn − An = F ↓(w+(t ′)−Lmax
1 )− t ′+ Lmax

1

c
. (A.95)

By definition of F in (A.81), we have F ≤β. Then by [124, Lemma 10.1], F ↓ ≥β↓. Hence:

Dn − An ≥β↓(w+(t ′)−Lmax
1 )− t ′+ Lmax

1

c
= h(w+−Lmax

1 ,β)+ Lmax
1

c
=∆pkt. (A.96)

By Theorem 4.1, we have Dn − An ≤ ∆pkt; then together with the above equation, we have

Dn − An =∆pkt.

Lemma A.6. Consider a wide-sense increasing function f :R+ →Z+, a positive real value t0, a

positive integer n = f +(t0), and a value x = f ↓(n); then we have x ≤ t0.
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Proof. We have:

x = f ↓(n) = f ↓( f +(t0)). (A.97)

By (A.1), f ↓ = ( f +)↓. Therefore, x = ( f +)↓( f +(t0)); then using Property (P1) of [124, Chapter

10.1] with F = f +, we have ( f +)↓( f +(t0)) ≤ t0 which concludes the proof.

Lemma A.7. Consider two functions f , g where f is L-Lipschitz and g ≥ 0. Then

z(t ) = inf
0≤s≤t

{g (s)+ f (t − s)}

is L-Lipschitz.

Proof. Let us define the set of functions ws(t ) with constant s ∈R+, as:

ws(t ) = g (s)+ f (t − s). (A.98)

Then, z(t) = inf0≤s≤t {ws(t)}. First we prove that ws is L-Lipschitz for any s ∈ R+. For any

t1, t2 ∈R+ and t2 ≥ t1:

|ws(t2)−ws(t1)| = |g (s)+ f (t2 − s)− g (s)− f (t1 − s)|
= | f (t2 − s)− f (t1 − s)| ≤ L|t2 − t1|. (A.99)

The last inequality is obtained as f is L-Lipschitz. Now we prove the lemma. By (A.99), we

have for any s ∈R+:

ws(t1)−L|t2 − t1| ≤ ws(t2) ≤ ws(t1)+L|t2 − t1|. (A.100)

Using the left inequality, we have:

∀s ∈R+ : inf
0≤u≤t1

{wu(t1)−L|t2 − t1|} ≤ ws(t2). (A.101)

that gives z(t1)−L|t2 − t1| ≤ ws(t2); therefore,

z(t1)−L|t2 − t1| ≤ inf
0≤s≤t2

{ws(t2)} = z(t2) (A.102)

Using the right inequality in (A.100), we have:

inf
0≤s≤t2

{ws(t2)} ≤ inf
0≤s≤t2

{ws(t2)+L|t2 − t1|} ≤ inf
0≤s≤t1

{ws(t2)}+L|t2 − t1|, (A.103)

that gives z(t2) ≤ z(t1)+L|t2 − t1|. Then, together with (A.102):

z(t1)−L|t2 − t1| ≤ z(t2) ≤ z(t1)+L|t2 − t1|. (A.104)

Hence, |z(t2)− z(t1)| ≤ L|t2 − t1|, which concludes the proof.
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Lemma A.8. Consider a left-continuous function α : R+ → N and a constant k ≥ 0. Let A =
(A1, A2, . . . ) be a sequence where Ai = k +α↓(i ). Assume a positive integer m and a time instant

t , such that t ∈ (Am , Am+1]; then we have m =α(t −k).

Proof. We prove α(t − k) ≥ m and α(t − k) ≤ m. We have t > Am = k +α↓(m); therefore,

t −k >α↓(m). Then, by [182, Proposition 6], we have α(t −k) ≥ m.

Also, since t ≤ Am+1, for any ε> 0 we have:

t −ε< Am+1 = k +α↓(m +1). (A.105)

Therefore,

t −k −ε<α↓(m +1). (A.106)

Then, by [182, Proposition 6], α(t −k −ε) < m +1. Hence:

lim
ε→0

α(t −k −ε) < m +1. (A.107)

As α is left-continuous, we have α(t −k −ε) =α(t −k) < m +1. Since α(t −k) ∈N, α(t −k) ≤
m.

A.2.6 Proof of Theorem 4.3

As discussed in Section 4.2.3, the flows can have sliding-interval and fixed-interval regulation

constraints; let F and S be respectively the sets of flows with fixed interval and sliding interval.

By (4.7), if a flow i has the sliding interval (τi ,Ki ) constraint, this is equivalent to have the

following packet-level arrival-curve:

αpkt,i (0) = 0, αpkt,i (t ) = Ki d t

τi
e, t > 0. (A.108)

By (4.10), if a flow i has the fixed interval (τi ,Ki ), the constraint implies the following packet-

level arrival-curve:

αpkt, j (0) = 0, αpkt, j (t ) = K j d t

τ j
e+K j , t > 0. (A.109)

Then the delay bound obtain by Theorem 4.1 for flow 1 is:

∆pkt =h(
N∑

u=1
Lmax

u Kud t

τu
e+

N∑
u=1

Lmax
u Ku1{u∈F } −Lmax

1 ,β)+ Lmax
1

c
. (A.110)

We want to construct a simulation trace where a packet of flow 1 experiences a delay arbitrarily

close to D . To this end, for flows in S, we use (A.108) to construct the input packet sequence as

it is equal to the sliding interval interpretation. For any other flow j with fixed interval (τ j ,K j ),
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we use the following packet-level arrival-curve:

αεpkt, j (0) = 0,

αεpkt, j (t ) = K j d [t −ε]+

τ j
e+K j : t > 0,∀ε ∈ (0,min

u∈F
{τu}). (A.111)

Lemma A.9 shows that a greedy packet-sequence of α j
ε, starting at t0 = maxu∈F {τu}−ε, con-

forms to Fixed interval (τ j ,K j ).

Now, let:

wε(t ) =
N∑

u=1
Lmax

u αu
pkt(t )1{u∈S} +

N∑
u=1

Lmax
u αεpkt,u(t )1{u∈F }

=
N∑

u=1
Lmax

u Kud t

τu
e1{u∈S} +

N∑
u=1

Lmax
u Kud [t −ε]+

τu
e1{u∈F } +

N∑
u=1

Ku1{u∈F }. (A.112)

The tightness scenario follows the same as Theorem 4.2 by generating a greedy packet-

sequence for every flow using the packet-level arrival-curves in (A.111) for fixed-interval

flows and (A.108) for sliding-interval flows. To create a feasible greedy packet-sequence, we

shift the start of the simulation by t0 (as mentioned earlier, this guarantees the existence of

greedy packet-sequence for the fixed-interval flows). Therefore, a packet of a flow of interest,

i.e., flow 1, experiences a delay of dε = h(wε−Lmax
1 ,β)+ Lmax

1
c as shown in (A.96). By definition

of wε in (A.112), dε is dependent on ε. We show next that dε ≥∆pkt −ε.

To this end, let us define the following auxiliary functions:

f (t ) =
N∑

u=1
Lmax

u Kud t

τu
e1{u∈F }, t > 0; f (t ) = 0, t ≤ 0,

g (t ) =
N∑

u=1
Lmax

u Kud t

τu
e1{u∈S} +

N∑
u=1

Ku1{u∈F } −Lmax
1 . (A.113)

Then we have

wε(t ) = f (t −ε)+ g (t )+Lmax
1

∆pkt = h( f + g ,β)+ Lmax
1

c
. (A.114)

By Lemma A.10, h(wε−Lmax
1 ,β) ≥ h( f + g ,β)−ε; therefore,

dε ≥ h( f + g ,β)+ Lmax
1

c
−ε=∆pkt −ε. (A.115)

Moreover, by Theorem 4.1, dε ≤∆pkt; hence,

∆pkt −ε≤ dε ≤∆pkt.
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Finally, when ε→ 0, dε gets arbitrary close to ∆pkt.

Lemma A.9. Consider the following packet-level arrival-curve:

αpkt(0) = 0,

αpkt(t ) = K d [t −ε]+

τ
e+K : t > 0,∀ε ∈ (0,τ). (A.116)

Then, a greedy packet-sequence of αpkt at any time t0 ≥ τ−ε, conforms to the fixed-interval

(τ,K ) in (4.9).

Proof. Consider the cumulative packet function N defined as:

N (0) = N (t0) = 0, N (t ) =αpkt(t − t0), t > t0. (A.117)

By definition, the above function is greedy at time t0. Now, in (4.9), let θ = t0 −τ+ ε. Since

t0 ≥ τ−ε, we have 0 ≤ θ < t0; therefore, N (θ) = 0. Next, we show that the greedy packet-

sequence conforms to the fixed-interval constraint for any time ≥ θ. For i = 0 in (4.9):

N (θ+τ)−N (θ) = N (t0 +ε)−0 =αpkt(ε) = K , (A.118)

and for i ≥ 1:

N (θ+ (i +1)τ)−N (θ+ iτ) = N (t0 +ε+ iτ)−N (t0 +ε+ (i −1)τ)

=αpkt(ε+ iτ)−αpkt(ε+ (i −1)τ) = (i K +K )− ((i −1)K +K ) = K .

Therefore, ∀i ∈N:

N (θ) = 0, N (θ+ (i +1)τ)−N (θ+ iτ) ≤ K , (A.119)

which shows there exists θ (= t0 −τ+ε) where the cumulative function N , as a greedy packet-

sequence of αpkt at t0, conforms to the fixed interval (τ,K ) constraint.

Lemma A.10. Consider the functions f , g ,β ∈Finc. Let

fε(t ) =
 f (t −ε) t ≥ ε,

0 t < ε.
(A.120)

Then h( fε+ g ,β) ≥ h( f + g ,β)−ε.

Proof. We have,

h( fε+ g ,β) = sup
t≥0

{β↓ (
fε(t )+ g (t )

)− t }

≥ sup
t≥ε

{β↓ (
fε(t )+ g (t )

)− t } = sup
t≥ε

{β↓ (
f (t −ε)+ g (t )

)− t }. (A.121)

140



A.2 Proofs

Since g (.) is wide-sense increasing, g (t ) ≥ g (t −ε), ∀t ≥ ε. Therefore:

h( fε+ g ,β) ≥ sup
t≥ε

{β↓ (
f (t −ε)+ g (t −ε)

)− t } = sup
s≥0

{β↓ (
f (s)+ g (s)

)− s −ε}

= sup
s≥0

{β↓ (
f (s)+ g (s)

)− s}−ε= h( f + g ,β)−ε, (A.122)

which concludes the proof.

A.2.7 Proof of Theorem 4.5

(i) Let us remind that lk and Ak are the length and the arrival time of the k th packet with

k = 1,2... (Section 4.2). Let n be the index of the packet of interest belonging to flow 1 with

length ln , ln = l . The sum of all packets can be split in two parts, one with packets belonging

to flow 1 and the one with packets belonging flow 2. Let F (k) be the flow id of k th packet, then:

n−1∑
k=m

lk =
n−1∑
k=m

1{F (k)=1}lk +
n−1∑
k=m

1{F (k)=2}lk . (A.123)

The flow of interest 1 has a bit-level arrival-curve; using (3.20), for any 0 ≤ m ≤ n, we can write:

n∑
k=m

1{F (k)=1}lk ≤α+(An − Am). (A.124)

By excluding the last packet from the left hand-side of (A.124) (note that ln = l ), we obtain:

n−1∑
k=m

1{F (k)=1}lk ≤α+(An − Am)− l . (A.125)

Similarly, flow 2 has bit-level arrival-curve; thus, using (3.20) for any 0 ≤ m ≤ n, we can write:

n−1∑
k=m

1{F (k)=2}lk ≤α′+(An − Am). (A.126)

Note that since packet n belongs to flow 1, the above equation conforms the min-plus repre-

sentation of bit-level arrival-curve in (3.20) for flow 2. Now, we sum up (A.125) and (A.126):

n−1∑
k=m

1{F (k)=1}lk +
n−1∑
k=m

1{F (k)=2}lk ≤α+(An − Am)+α′+(An − Am)− l . (A.127)

Using (A.127) in (A.123):
n−1∑
k=m

lk ≤ w(An − Am), (A.128)

where the function w =α++α+
2 − l . Then by Lemma 4.1 for packet n, we have:

Qn − An ≤ h(w,β), (A.129)
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where Qn is start of transmission of packet n. Since the transmission time for the packet of

interest, n, is Dn −Qn = l
c , the delay bound is:

Dn − An = Dn −Qn +Qn − An ≤ h(w,β)+ l

c
, (A.130)

which completes the proof.

(ii) We want to compute

sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l )

}= sup
l

[
sup

t

(
β↓(α++α′+− l )− t

)
+ l

c

]
= sup

t

[
sup

l

(
β↓(α++α′+− l )+ l

c

)
− t

]
. (A.131)

Since β is c-Lipschitz, by Lemma A.2, it satisfies:

β↓(α++α′+−Lmin
1 )−β↓(α++α′+− l ) ≥ 1

c
(l −Lmin

1 ). (A.132)

This gives,

β↓(α++α′+− l ) ≤β↓(α++α′+−Lmin
1 )− 1

c
(l −Lmin

1 ). (A.133)

By using the last relation in (A.131), we obtain,

sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l )

}= sup
t

[
β↓(α++α′+−Lmin

1 )− t + Lmin
1

c

]

= h
(
α++α′+−Lmin

1 ,β
)+ Lmin

1

c
. (A.134)

Since β is c-Lipschitz continuous and α,α′ are left continuous, by [2, Theorem 5.6], we have:

h
(
α++α′+−Lmin

1 ,β
)= h

(
α+α′−Lmin

1 ,β
)

, (A.135)

which together with (A.134) completes the proof.

A.2.8 Proof of Proposition 4.3

From Proposition 4.2, any flow u conform to a bit-level arrival-curve αu(t) = αpkt,u(t)Lmax
u .

Then by Theorem 4.5, the delay bound for a packet with size l of flow 1 is:

∆A(l ) = h

(
U∑

u=1
αpkt,uLmax

u − l ,β

)
+ l

c
. (A.136)
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By [2, Proposition 5.12], h, is monotonically increasing with respect to its first argument;

therefore, ∆pkt (l ) ≤∆A(l ). As a result, supl ∆
pkt (l ) ≤ supl

{
∆A(l )

}
, i.e., ∆pkt ≤∆A . Note that, if

Lmax
1 = Lmin

1 (all packets have the same length), then ∆pkt =∆A . For the general statement, we

show a case that when Lmin
1 < Lmax

1 , the per-flow bound in Theorem 4.1 strictly improves ∆A .

First, for the ease of presentation, let us define w(t ) =∑U
u=1αpkt,uLmax

u . Next, assume a rate-

latency service-curve β(t ) = R[t −T ]+, R < c. Then, as β↓(x) = T + x
R , Theorem 4.1 gives:

∆pkt = sup
t≥0

{
β↓ (

w(t )−Lmax
1

)− t
}
+ Lmax

1

c
= sup

t≥0

{
T + w(t )−Lmax

1

R
− t

}
+ Lmax

1

c

= T −Lmax
1

(
1

R
− 1

c

)
+ sup

t≥0

{
w(t )

R
− t

}
. (A.137)

Using the derived bit-level arrival-curves of flows 1 and 2, Theorem 4.5 gives:

∆A = sup
t≥0

{
β↓ (

w(t )−Lmin
1

)− t
}
+ Lmin

1

c
= sup

t≥0

{
T + w(t )−Lmin

1

R
− t

}
+ Lmin

1

c

= T −Lmin
1

(
1

R
− 1

c

)
+ sup

t≥0

{
w(t )

R
− t

}
. (A.138)

By (A.137) and (A.138):

∆pkt −∆A =−(Lmax
1 −Lmin

1 )

(
1

R
− 1

c

)
< 0, (A.139)

as Lmin
1 < Lmax

1 and R < c.

A.2.9 Proof of Proposition 4.4

(i) Theorem 4.5 gives:

∆A(l ) = h(α++α′+− l ,β)+ l

c
. (A.140)

From item 1 of Proposition 4.1, g1(x) = α↓(x +Lmin
1 ) and g2(x) =α′↓(x +Lmin

2 ). By (A.1), we

have:

g1(x) = (α+)↓(x +Lmin
1 ), g2(x) = (α′+)↓(x +Lmin

2 ). (A.141)

Since (α+)↓ and (α′+)↓ are left continuous, by (A.10):

g ↑
1(t ) = [((α+)↓)↑(t )−Lmin

1 ]+,

g ↑
2(t ) = [((α′+)↓)↑(t )−Lmin

2 ]+. (A.142)

As α+ and α′+ are right continuous and respectively larger than or equal to Lmax
1 and Lmax

2 , by
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(A.7) we have:

g ↑
1(t ) =α+(t )−Lmin

1 , g ↑
2(t ) =α′+(t )−Lmin

2 . (A.143)

Then, by applying Theorem 4.4, we obtain

∆G(l ) = h(α++α′+−Lmin
1 −Lmin

2 +Lmax
2 ,β)+ l

c
. (A.144)

Let us compare (A.140) and (A.144). Since l ≥ Lmin
1 and Lmax

2 ≥ Lmin
2 , we have:

α++α′+− l ≤α++α′+−Lmin
1 −Lmin

2 +Lmax
2 . (A.145)

By [2, Proposition 5.12], h, is monotonically increasing with respect to its first argument;

hence, ∆A(l ) ≤∆G (l ).

Since ∆A(l ) ≤∆G (l ) holds for all packet sizes l , it also holds that supl ∆
A(l ) ≤ supl ∆

G (l ), i.e.,

∆A ≤∆G . If Lmax
1 = Lmin

1 and Lmax
2 = Lmin

2 (the packets of each flow have the same length), then

∆A =∆G . For the general statement, we show a case that when Lmin
1 < Lmax

1 or Lmin
2 < Lmax

2 , we

have ∆A <∆G.

First, for the ease of presentation, let us define w(t ) =α(t )+α′(t ). Next, assume a rate-latency

service-curve β(t ) = R[t −T ]+, R < c. Then, as β↓(x) = T + x
R , Theorem 4.5 gives:

∆A = sup
t≥0

{
β↓ (

w(t )−Lmin
1

)− t
}
+ Lmin

1

c
= sup

t≥0

{
T + w(t )−Lmin

1

R
− t

}
+ Lmin

1

c

= T − Lmin
1

R
+ sup

t≥0

{
w(t )

R
− t

}
+ Lmin

1

c
. (A.146)

Using the derived g-regularity constraints of flows 1 and 2, Theorem 4.4 gives:

∆G = sup
t≥0

{
β↓ (

w(t )−Lmin
1 −Lmin

2 +Lmax
2

)− t
}
+ Lmax

1

c

= sup
t≥0

{
T + w(t )−Lmin

1 −Lmin
2 +Lmax

2

R
− t

}
+ Lmax

1

c

= T − Lmin
1

R
+ sup

t≥0

{
w(t )

R
− t

}
+ Lmax

2 −Lmin
2

R
+ Lmax

1

c
. (A.147)

By (A.146) and (A.147):

∆A −∆G =−Lmax
2 −Lmin

2

R
− Lmax

1 −Lmin
1

c
< 0, (A.148)

as Lmin
1 < Lmax

1 or Lmin
2 < Lmax

2 .
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(ii) Theorem 4.4 gives:

∆G(l ) = h(g ↑
1 + g ↑

2 +Lmax
2 ,β)+ l

c
. (A.149)

From item 2 of Proposition 4.1, we obtain α(t ) = g ↓
1(t )+Lmax

1 and α′(t ) = g ↓
2(t )+Lmax

2 . Using

Theorem 4.5, we have:

∆A(l ) = h((g ↓
1)++ (g ↓

2)++Lmax
2 +Lmax

1 − l ,β)+ l

c

= h(g ↑
1 + g ↑

2 +Lmax
2 +Lmax

1 − l ,β)+ l

c
. (A.150)

Note that by (A.2), (g ↓
1)+ = g ↑

1 and (g ↓
2)+ = g ↑

2 . Similarly to the proof of (i), due to monotony of

h with respect to its first argument, ∆G(l ) ≤∆A(l ).

Since ∆G (l ) ≤ ∆A(l ) holds for all packet sizes l , it also holds that supl ∆
G (l ) ≤ supl ∆

A(l ),

i.e., ∆G ≤ ∆A . If Lmax
1 = Lmin

1 (the packets of the flow if interest have the same length), then

∆A =∆G . For the general statement, similarly to the proof of item (i), we show a case that when

Lmin
1 < Lmax

1 , we have ∆A <∆G. Considering the same service curve β(t ) = R[t −T ]+, R < c as

proof of item (1), we obtain:

∆G −∆A =−(Lmax
1 −Lmin

1 )

(
1

R
− 1

c

)
< 0, (A.151)

as Lmin
1 < Lmax

1 and R < c.

A.3 Example of non c-Lipschitz service curve

Consider the following function (FIFO residual service curve [2]), where θ and R are fixed

positive numbers:

β(t ) =
0 if t ≤ θ,

Rt if t > θ.

It is not c-Lipschitz as it is not continuous at t = θ. Considering the assumptions of item (i) of

Theorem 4.5, the response time of a packet with size l of flow 1 is

∆A(l ) = sup
t≥0

{
β↓ (

α+(t )+α′+(t )− l
)− t

}
+ l

c
. (A.152)

and the delay bound for flow 1 is:

∆A = sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l )

}
(A.153)
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Given that α+(t ) ≥ Lmax
1 , α′+(t ) ≥ Lmax

2 and l ≤ Lmax
1 , we have

β↓ (
α+(t )+α′+(t )− l

)= max(θ,
α+(t )+α′+(t )− l

R
) (A.154)

Therefore,

∆A(l ) = sup
t≥0

{
max(θ,

α+(t )+α′+(t )− l

R
)− t

}
+ l

c

= sup
t≥0

{
max(θ− t ,

α+(t )+α′+(t )− l

R
− t )

}
+ l

c

= max

(
sup
t≥0

{θ− t } ,sup
t≥0

{
α+(t )+α′+(t )− l

R
− t }

)
+ l

c

= max

(
θ+ l

c
,ψ− l

R
+ l

c

)
, (A.155)

with

ψ= sup
t≥0

{
α+(t )+α′+(t )

R
− t

}
.

After examining all cases and some algebra, we find that

• if R(ψ−θ) ≤ (1− R
c )Lmin

1 + R
c Lmax

1 then

∆A = sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l )

}= θ+ Lmax
1

c

and the supremum is attained at l = Lmax
1 ;

• else

∆A =ψ− Lmin
1

R
+ Lmin

1

c
,

and the supremum is attained at l = Lmin
1 and not at l = Lmax

1 .

Therefore, the supremum over [Lmin
1 ,Lmax

1 ] to obtain ∆A can be achieved either at l = Lmax
1 or

l = Lmin
1 , depending on the parameter values.
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B.1 Proof of Theorem 5.1

Consider some fixed time t ≥ 0 and priority x; we show that Vx (t) ≤V max
x . If Vx (t) ≤ 0, since

V max
x ≥ 0, the result follows trivially. Therefore we consider only the case Vx (t) > 0. Define

time instant s = sup{u ∈ [0, t ] : Vx (u) = 0}. Based on the definition of s, Vx (u) 6= 0, ∀u ∈ (s, t ].

This implies no credit reset in (s, t ], i.e., Vx (·) is continuous during this interval. Therefore,

∀u ∈ (s, t ] : Vx (u) > 0. Also, CDT either finishes a transmission at s or is not transmitting at s.

Indeed, otherwise, since Vx (s) = 0, and the credit of x is frozen during the transmission of CDT,

it would be true that Vx (s+) = 0 and thus, s 6= sup{u ∈ [0, t ] : Vx (u) = 0}.

The class x cannot start a transmission at time s, otherwise, by rule R2 in Section 5.1.2, since

Vx (s) = 0, its credit would decrease to negative values, which contradicts our assumption that

∀u ∈ (s, t ] : Vx (u) > 0. Note that since the credit of class x is positive in (s, t ], its backlog is also

positive in (s, t ].

Since ∀u ∈ (s, t ] : Vx (u) > 0 and due to rule R1, a class with lower priority than x cannot

start a transmission in (s, t ]. However, in order to consider non-preemptive AVB and BE

classes, we must account for the case that a lower priority class has initiated a transmission

the latest at s and is still transmitting at s. To do so, we define the time instant t0, with s ≤ t0,

as the end of the transmission of the residual of a lower priority packet after time s. The

latter is denoted by l LO ≤ L̄x . If there is no transmission of a lower priority packet, then

l LO = 0. Let d L0 be the aggregated time period that the credit is frozen within [s, t0]. Then,

t0 = s +d L0 + l LO

c . If t0 > t , due to rule R3, the credit of class x increases with rate I x (except

during transmission of CDT), therefore Vx (t ) =Vx (s)+ I x (t − s −d LO). By definition, Vx (s) = 0,

thus, Vx (t) = I x (t − s −d LO) ≤ l x L̄x

c and it follows that Vx (t) ≤V max
x , which ends the proof in

this case. Therefore, in the rest of the proof we assume t0 ≤ t .

The interval [t0, t ] can be split into a sequence of sub-intervals during which class x alter-

nates between non-transmission and transmission. Let [t0, t1], [t1, t2], ..., [tn−1, tn] be such

a sequence, with t0 ≤ t1 < ... < tn = t . We allow t0 = t1 as this makes it possible to assume
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that class x does not transmit in the first interval [t0, t1] (i.e., if class x starts transmission at

time t0 we set t1 = t0). It follows that for even intervals [tk , tk+1], with k ∈ {0,2,4, ...,2bn
2 c}, we

have d
d t Vi (u) ≥ 0, ∀u ∈ (tk , tk+1). Indeed, during non-transmission, the credit either increases

or remains constant, by rules R3 and R4. Conversely, for the odd intervals [tk , tk+1], with

k ∈ {1,3,5, ...,2dn
2 e−1}, we have d

d t Vx (u) < 0, ∀u ∈ (tk , tk+1).

Let us define dk as the aggregated time period that the credit is frozen within the even interval

[tk , tk+1]. Next, we study the credit variation for all classes, starting with the interval [s, t0],

then following with even and odd intervals in (t0, t ]. In [s, t0]:

• Each class j < x gains credit if it has backlog or negative credit (rule R3), except if CDT

transmits, i.e.,

V j (t0)−V j (s) ≤ I j (t0 − s). (B.1)

By summing up for all j < x, we have

x−1∑
j=1

(
V j (t0)−V j (s)

)
≤

x−1∑
j=1

I j (t0 − s). (B.2)

• Class x gains credit because it has backlog, as explained above, except if CDT transmits,

i.e.,

Vx (t0)−Vx (s) = I x (t0 − s)− I x d LO , (B.3)

and since Vx (s) = 0 and t0 = s +d LO + l LO

c , we get

Vx (t0) = I x (t0 − s −d LO) ≤ I x l LO

c
≤ I x L̄x

c
. (B.4)

For the odd intervals, [t2k−1, t2k ], (1 ≤ k ≤ bn
2 c):

• Since the credit of class x reduces, the higher priority classes do not transmit within

[t2k−1, t2k ] and ∀ j < x : V j (t2k−1) ≤ 0. They gain credit if they have positive backlog or

negative credit, therefore

V j (t2k )−V j (t2k−1) ≤ I j (t2k − t2k−1). (B.5)

Summing them up for all j < i :

x−1∑
j=1

(
V j (t2k )−V j (t2k−1)

)
≤

x−1∑
j=1

I j (t2k − t2k−1). (B.6)
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• The credit of class x reduces due to transmission (R2):

Vi (t2k )−Vi (t2k−1) = Si (t2k − t2k−1). (B.7)

For the even intervals, [t2k , t2k+1], (0 ≤ k ≤ bn−1
2 c):

• There exists an AVB class j < x that transmits or all AVB and BE classes wait for CDT

(for an aggregated time d2k ). Define a j ,2k as the aggregated period of time that class j

transmits packets in [t2k , t2k+1]. Then, by using I j −S j = c, we obtain

V j (t2k+1)−V j (t2k ) ≤ I j (t2k+1 − t2k )− ca j ,2k − I j d2k . (B.8)

Summing up for all j < x, and considering that t2k+1 − t2k = d2k +
∑x−1

j=1 a j ,2k , we obtain

x−1∑
j=1

(
V j (t2k+1)−V j (t2k )

)
≤−

(
c −

x−1∑
j=1

I j
)
(t2k+1 − t2k )+ (c −

x−1∑
j=1

I j )d2k . (B.9)

• The credit of class x increases or is frozen for an aggregated time d2k , i.e.,

Vx (t2k+1)−Vi (t2k ) = I x (t2k+1 − t2k )− I x d2k . (B.10)

Next, we study the credit variation within [t0, tn]. First we assume that n is odd. By summing

up the credit variations for all intervals and all classes j < x, we have

x−1∑
j=1

[(
V j (t1)−V j (t0)

)
+

(
V j (t2)−V j (t1)

)
+ ...+

(
V j (tn−1)−V j (tn−2)

)
+

(
V j (tn)−V j (tn−1)

)]
≤

−
(
c −

x−1∑
j=1

I j
)
(t1 − t0)+ ...+

x−1∑
j=1

I j (tn−1 − tn−2)−
(
c −

x−1∑
j=1

I j
)
(tn − tn−1)+

(
c −

x−1∑
j=1

I j
)k=b n

2 c∑
k=0

d2k .

(B.11)

Therefore, by setting α= (t2 − t1)+ (t4 − t3)+ ...+ (tn−1 − tn−2) and ∆t = tn − t0 −∑k=b n
2 c

k=0 d2k , we

can write,

x−1∑
j=1

(
V j (tn)−V j (t0)

)
≤−(c −

x−1∑
j=1

I j )∆t + cα. (B.12)

Next, by summing up the credit variations for all intervals for class x and considering Sx =
I x − c,

Vx (tn)−Vx (t0) = I x (t1 − t0)+ (I x − c)(t2 − t1)+ ...+ I x (tn − tn−1)− I x
k=b n

2 c∑
k=0

d2k = I x∆t − cα.

(B.13)
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By [152, Theorem 7]; for x = 1...p:

x∑
j=1

V j (t ) ≤ L̄x

c

x∑
j=1

I j . (B.14)

Hence for t = t0, we obtain

x−1∑
j=1

V j (t0) ≤−Vx (t0)+ L̄x

c
I x + L̄x

c

x−1∑
j=1

I j . (B.15)

We lower bound the left-hand side of Eq. (B.12) using the lower bound of Eq. (5.3) and the

bound of Eq. (B.15); therefore,

Vx (t0)−K ≤ cα− (c −
x−1∑
j=1

I j )∆t , (B.16)

where K =−∑x−1
j=1 L j S j

c + L̄x

c I x + L̄x

c

∑x−1
j=1 I j ≥ 0. Eq. (B.16) gives an upper bound on ∆t , i.e.,

∆t ≤ cα+K −Vx (t0)

c −∑x−1
j=1 I j

. (B.17)

By using Eq. (B.17) in Eq. (B.13), we obtain

Vx (tn) ≤ I x

(
cα+K −Vx (t0)

c −∑x−1
j=1 I j

)
− cα+Vx (t0)

= I x

(
K

c −∑x−1
j=1 I j

)
+Vx (t0)

(
c −∑x−1

j=1 I j − I x

c −∑x−1
j=1 I j

)
− cα

(
c −∑x−1

j=1 I j − I x

c −∑x−1
j=1 I j

)
. (B.18)

Next, considering
∑i

j=1 I j < c, and since by Eq. (B.4) Vx (t0) ≤ L̄x

c I x , we obtain

Vx (tn) ≤ I x

c
(
c −∑x−1

j=1 I j
)(

cK + L̄x
(
c −

x−1∑
j=1

I j − I x
))

. (B.19)

By replacing the value of K , the credit of class x at time tn , where n is odd, is upper bounded

by V max
x given in the statement. If n is even, then

Vx (tn) =Vx (tn−1)+Sx (tn − tn−1). (B.20)

Since Sx (tn − tn−1) ≤ 0, then Vx (tn) ≤ Vx (tn−1). As n is even, n −1 is odd. We have already

found a bound, i.e. V max
x , for tk when k is odd. Since t = tn , and n is either odd or even, it

follows that Vx (t ) ≤V max
x .
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B.2 Proof of Theorem 5.2

Proof. In this proof, for the ease of presentation, the indices i and j are neglected from the

parameters. For a given class x ∈ {A,B}, V x (u) stands for the amount of CBS credit at time u,

which is less than maximum credit, namely V x,max. Also, let N x (u), Ox (u) be the cumulative

input, output traffic, respectively, for class x at time u and OH (u) the cumulative output CDT

traffic. Given a time t , we define the time s, as follows,

s = sup
{

u ≤ t | V x (u) = 0 and Ox (u) = N x (u)
}

. (B.21)

Since s is the last time that the backlog is zero, there is no credit reset in the interval [s, t ]. In

the rest of the proof, we use ∆t = t − s as the time interval over which the system is analyzed.

For a given class x, we also define the time intervals ∆t x−, ∆t x+, and ∆t x0, as the aggregated

time periods within ∆t , over which the credit is decreasing (due to packet transmission of this

class), the credit is increasing (due to transmission of BE traffic or AVB traffic except class x in

backlog period of this class or credit recovery), and the credit is frozen (due to transmission of

CDT flows), respectively. Then,

V x (t )−V x (s) =V x (t ) =∆t x+I x +∆t x−Sx . (B.22)

As for a class x ∈ {A,B}, ∆t =∆t x++∆t x−+∆t x0, then,

∆t x− = I x∆t −V x (t )− I x∆t x0

I x −Sx . (B.23)

The number of bits served during ∆t for class x ∈ {A,B} is c∆t x−. By utilizing Eq. (B.23),

Ox (t )−Ox (s) = c

I x −Sx (I x∆t −V x (t )− I x∆t x0). (B.24)

∆t x0 is the aggregated transmission time periods of CDT flows during ∆t ; therefore,

∆t x0 = OH (t )−OH (s)

c
. (B.25)

The service curve offered to an aggregate of CDT flows in CBFS at time t > s is βH (t) =
c[t − L̄/c]+, where L̄ = max(L A

i j ,LB
i j ,LE

i j ). As the CDT queue has an LB arrival curve (denoted

as αH = r t +b), the following equation holds for the output arrival curve of the CDT queue:

OH (t )−OH (s) ≤ (αH ®βH )(∆t ) = b + r (∆t + L̄

c
). (B.26)

Therefore, from Eqs. (B.25) and (B.26),

∆t x0 ≤ b + r (∆t + L̄
c )

c
. (B.27)
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From Eqs. (B.24) and (B.27), and knowing that Ox (s) = N x (s) (from the assumption for s):

Ox (t )−N x (s) ≥ I x (c − r )

I x −Sx

(
∆t − V x (t )c

I x (c − r )
− b + r L̄

c

c − r

)
. (B.28)

As V x (t ) ≤V x,max, and using Eq. (B.28), we define the following rate-latency service curve for

class x ∈ {A,B}:

βx (t ) = I x (c − r )

I x −Sx

[
t − V x,maxc

I x (c − r )
− b + r L̄

c

c − r

]+
. (B.29)

Finally, we replace in the last equation the credit upper bound given in Theorem 5.1 for each

class x ∈ {A,B}. To simplify, we S A = I A − c, hence:

V A,max = L̄ A I A

c
, (B.30)

V B ,max = I B

c

(
L A − cL̄B

S A

)
, (B.31)

and we obtain the equations in the statement of Theorem 5.2.

B.3 Proof of Theorem 5.3

Proof. H( f , i , j ,k, x) is an upper bound on En −D ′
n for all packets n of flow f . Now

En −D ′
n = (En − An)− (D ′

n − An), (B.32)

and

En − An ≤C (i , j ,k, x). (B.33)

Therefore, for a packet n of flow f :

En −D ′
n ≤C (i , j ,k, x)− inf

n∈N f

(D ′
n − An), (B.34)

now

D ′
n − An ≥ M f

ci j
+T out,min

i j +T proc, min
i j . (B.35)
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C.1 Re-sequencing Buffer Operation

A re-sequencing buffer stores the packets of a flow until the packets with smaller sequence

numbers arrive; then it delivers them in the increasing order of their sequence numbers. A

re-sequencing buffer has two parameters, a size in bytes, B , and a timeout value, T . It is

described in terms of:

• Shared variables, that are manipulated by the code routines. These are 1) a list (buffer),

buf , containing the packets that are waiting for the packets with smaller sequence

number; 2) an integer, N , expressing the next sequence number that the buffer is

expecting to receive

• Timers: The re-sequencing buffer sets a timer for each packet stored in the buffer.

The object TimerList is the list of the timers for the packets. It has two functions,

start(pi d ,deadl i ne) and stop(pi d). The former, starts a timer for the packet with

sequence number pi d with expiration time deadl i ne. The latter, stops the timer for

the packet with sequence number pi d .

• Events, which trigger the execution of code routines. The events are packet arrival

(Algorithm 1) and timeout (Algorithm 2). We assume that the execution of the code

routines is serialized, namely, a code routine can start only after the code routine

triggered by the previous event has completed (to avoid race conditions with shared

variables).

When a new packet p arrives, the packet arrival code routine in Algorithm 1 is executed. If the

packet sequence number p.i d is smaller than N , then the packet is considered invalid and is

discarded (line 13). This is an error-case: packet N is expected, which means that packet N −1

was delivered. This packet is either a duplicate of packet N −1 or a packet with a smaller

sequence number, and delivering it would violate in-order delivery.
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Algorithm 1 Packet arrival event code routine

Input: packet p
Shared variables: bu f and N

1: if p.i d ≥ N then . if TRUE, p is a valid packet
2: if p.i d > N then
3: if bu f .len()+p.len ≤ B then
4: TimerList.start(p.i d ,Time()+T )
5: bu f .enqueue(p)
6: else discard(p) . ERROR, OVERFLOW
7: end if
8: else
9: N ← p.i d +1

10: release(p)
11: CHECK_BUFFER()
12: end if
13: else discard(p) . ERROR, INVALID PACKET
14: end if
15: function CHECK_BUFFER(void)
16: if bu f .contains(N ) then
17: p ← bu f .dequeue(N )
18: N ← p.i d +1
19: TimerList.stop(p.i d)
20: release(p)
21: CHECK_BUFFER()
22: end if
23: end function

Algorithm 2 Timeout event code routine

Input: packet id pi d
Shared variables: bu f and N

1: while N ≤ pi d do
2: while !bu f .contains(N ) do
3: N ← N +1
4: end while
5: p ′ ← bu f .dequeue(N )
6: N ← p ′.i d +1
7: TimerList.stop(p ′.i d)
8: release(p ′)
9: end while

10: CHECK_BUFFER()
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If p.i d > N (line 2), the packet should wait in the buffer for the packets with smaller sequence

numbers to arrive. Then, it checks the current length of buffer, bu f .len(); if addition of

packet p with length of p.len does not exceed the size of the buffer, B , (line 3) a timer for this

packet starts, which expires at time Time()+T (line 4); the function Time() returns the current

time of the buffer. Then, it enqueues the packet in the buffer (line 5). Otherwise, if the buffer

does not have enough capacity, buffer overflow occurs and the packet is discarded (line 6).

If p.i d == N (line 8), the packet is the expected one. Then, N is incremented by 1 (line 9)

and the packet is released (line 10). When packet p departs, the buffer should be checked to

release the packets that were only waiting for packet p; this is done by a recursive function

CHECK_BUFFER() (line 15). Accordingly, if the buffer contains a packet with a sequence

number equal to the new value of N (line 16), the packet is dequeued from the buffer (line

17). Then, N is increased to the next sequence number of the flow; the corresponding timer is

stopped; and then the packet is released (lines 18 to 20). It recalls the functions recursively (line

21) and the value of N is increased every time the function executed; the recursion continues

until the buffer does not have a packet with sequence number equal to the last updated value

of N ; all the packets with sequence numbers less than the value of N are already released from

the buffer.

When the timer for a packet with sequence number pi d expires, the timeout code routine in

Algorithm 2 is executed. In this condition, the packet with sequence number pi d should be

released. To provide in-order delivery, the buffer first releases all the packets in the buffer with

sequence number less than or equal to pi d in increasing order. To do so, the loop at line 1 is

executed to iterate the buffer for the packets with sequence number less than pi d . The lines

2 to 4, increment N to the smallest sequence number for a packet stored in the buffer; the

function buf .contains(N ), returns TRUE if a packet with sequence number N is in the buffer,

otherwise, it returns FALSE. In line 5, the buffer contains a packet p ′ with sequence number

equal to N ; then, it is dequeued from the buffer; the value of N is incremented by 1; the timer

for this packet is stopped; and it is released from the buffer (lines 5 to 8). Whenever a packet is

released from the buffer, its corresponding timer is stopped. The loop in line 1 is executed at

least once, because when the timeout event occurs for a packet with sequence number pi d , it

is already in the buffer; this implies N ≤ p.i d . The loop in line 2 is executed at the latest when

N = pi d . In line 10, the buffer is checked to release the packets that were waiting for packets

with id pi d and smaller; this is done by the function CHECK_BUFFER().

Observe that a packet is released if any one of the following conditions hold: 1) all packets

with smaller sequence numbers are received, 2) its timer expires or 3) the timer of a received

packet with a larger sequence number expires.

By construction, the re-sequencing buffer delivers the packets that it does not discard in

increasing sequence numbers. Furthermore, a packet is discarded by the re-sequencing buffer

either when the buffer is full or when the sequence number of the arriving packet is less than

N . The latter occurs when the timeouts of packets are too early, compared to the lateness of
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misordered packets. Therefore, to avoid discarding packets, the re-sequencing buffer size and

the timeout value should be large enough.

C.2 Proofs

C.2.1 Proof of Lemma 6.1

Let A1 ≤ A2 ≤ ... ≤ An ... be the arrival times of packets at S ; here the packet indices are in

order of arrival (and are not necessarily equal to the sequence numbers). Let Dn be the

departure time of the packet with index n; the sequence Dn need not be monotonic. Let

R,R ′ be the cumulative arrival and departure functions[123], defined by R(t ) =∑+∞
n=1 ln1An<t

and R ′(t ) =∑+∞
n=1 ln1Dn<t . Here, ln is the length of packet n and we allow t ≤ 0 (in which case

R(t) = R ′(t) = 0). Let ϕ(t) be the function R→ R defined by ϕ(t) = 0 is t ≤ 0 and ϕ(t) = 1 if

t > 0, so that

R(t ) =
+∞∑
n=1

lnϕ(t − An), R ′(t ) =
+∞∑
n=1

lnϕ(t −Dn) (C.1)

Let 0 ≤ s ≤ t ; the arrival curve constraint at the input means that R(t)−R(s) ≤α(t − s). This

equation continues to hold if s or t is negative, with the convention that α(t) = 0 whenever

t ≤ 0. Therefore

∀s, t ∈R, R(t )−R(s) ≤α(t − s) (C.2)

Furthermore,

R ′(t )−R ′(s) =
+∞∑
n=1

ln
(
ϕ(t −Dn)−ϕ(s −Dn)

)
(C.3)

Let d min be the best-case delay of the flow, so that the worst-case delay is ≤ d min+V . For every

packet index n, we have

An +d min ≤ Dn ≤ An +d min +V (C.4)

thus

t −Dn ≤ t − An −d min (C.5)

s −Dn ≥ s − An −d min −V (C.6)

and, since ϕ is wide-sense increasing

ϕ(t −Dn)−ϕ(s −Dn) ≤ϕ(t − An −d min)−ϕ(s − An −d min −V ) (C.7)
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Combining with (C.3) and (C.2):

R ′(t )−R ′(s) ≤
+∞∑
n=1

ln

(
ϕ(t − An −d min)−ϕ(s − An −d min −V )

)
= R(t −d min)−R(s −d min −V ) ≤α(t − s +V ) (C.8)

C.2.2 Proof of Lemma 6.2

With the same notation as in the proof of Lemma 6.1, the backlog of this flow at time t is

B(t ) = R(t )−R ′(t ), so that

B(t ) =
+∞∑
n=1

ln
(
ϕ(t − An)−ϕ(t −Dn)

)
(C.9)

We have t −Dn ≥ t − An −U and, since ϕ is wide-sense increasing:

B(t ) ≤
+∞∑
n=1

ln
(
ϕ(t − An)−ϕ(t − An −U )

)= R(t )−R(t −U ) ≤α(U ) (C.10)

where the last inequality is by (C.2).

C.2.3 Proof of Theorem 6.1

(1) We prove (6.4) by induction on n.

Base case n = 1. According to the description of re-sequencing buffer in Section 6.2, the initial

value of next expected sequence number is N = 1; therefore, packet 1 is never stored in the

buffer.

• If packet 1 arrives at some time E1 6= +∞. Then, there are two cases for the timers at

time E1 of packets with index larger than 1:

– No timer has expired at E1. Then, N = 1 and packet 1 is released immediately after

arrival (D1 = E1). Since no timer was expired, for any packet p in the buffer, p > 1,

we have E1 ≤ Ep +T . Thus, based on (6.5), I1 = E1 and finally D1 = I1 as required.

– A timer has expired, say for packet index p, at E1. Then, N > 1 and packet 1 is

discarded (D1 =+∞). We have E1 > Ep +T , (6.5) gives I1 =+∞ and finally D1 = I1

as required.

• Else packet 1 is lost (E1 =+∞). Then it is not released from the buffer (D1 =+∞). By

(6.5), I1 = E1 =+∞ and finally D1 = I1 as required.

Induction step. Suppose that (6.4) holds for all i , i ≤ n −1.
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• If packet n arrives at some time En 6= +∞. Then, there are two cases for the value of N :

– N ≤ n. No timer for a packet j in the buffer, j > n, has been expired (otherwise,

the value of N would be increased to the index of the packet with expired timer,

i.e., N > n). Then, we have En ≤ E j +T , therefore, En ≤ T +min j≥n{E j }. Then,

based on (6.5), In = En . Now, the release time of packet n depends on the status of

packet n −1; there are two possible cases:

* N = n. This implies that packet n−1 is already released, Dn−1 ≤ En . Therefore,

packet n is released immediately on arrival (Dn = En). Then, based on (6.4)

and (6.5), we also have:

In = En , (C.11)

Gn = min

{
Dn−1,T +min

j≥n
{E j }

}
≤ Dn−1 ≤ En , (C.12)

and then max(Gn , In) = En , which shows that the right hand-side of (6.4) is

Dn as required.

* N < n. This implies that packet n−1 is not yet released, Dn−1 > En . Therefore,

packet n is stored in the buffer. Packet n is released when:

· The timer for a packet with sequence number larger than or equal to n

is expired before packet n −1 is released (Dn−1 ≥ min j≥n{E j }+T ). Let us

call p, where p ≥ n, as the packet of which the timer is expired before

the others (T +min j≥n{E j } = T +Ep ). Then, any packet j in the buffer

j ≤ p are released in-order (Algorithm 2, line 8); therefore, Dn = T +Ep =
T +min j≥n{E j }. Then, based on (6.4) and (6.5), we also have:

In = En , (C.13)

Gn = min

{
Dn−1,T +min

j≥n
{E j }

}
= T +min

j≥n
{E j }, (C.14)

and then we have:

max{Gn , In} = max{T +min
j≥n

{E j },En} = T +min
j≥n

{E j } = Dn , (C.15)

which shows (6.4).

· Or when packet n−1 is released before any timer of packets with sequence

number larger than or equal to n is expired (Dn−1 < T +min j≥n{E j }). Then

packet n is released immediately after packet n−1 is released (Dn = Dn−1).

Then, based on (6.4) and (6.5), we also have:

Gn = min

{
Dn−1,T +min

j≥n
{E j }

}
= Dn−1. (C.16)
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Then,

max{Gn , In} = max{Gn ,En} = Dn−1 = Dn , (C.17)

which shows (6.4).

– N > n. Then, packet n is discarded (Dn =+∞). Since N > n, a timer should has

been expired for a packet p in the buffer, p > n such that En > Ep +T ; then, based

on (6.4) and (6.5), we also have:

In =+∞,max{Gn , In} =+∞= Dn , (C.18)

which shows (6.4).

• Else, packet n is lost (En = +∞). Then it is not released from the buffer (Dn = +∞).

By (6.5), In =+∞ as well and thus max{Gn , In} =+∞, i.e. the right-handside of (6.4) is

equal to Dn as required.

(2) Consider Fig. 6.1 and a received packet n. Due to (6.2), for any packet j ≥ n, we have

En ≤ E j +λ; therefore, En ≤ min j≥n{E j }+λ. Since λ≤ T :

En ≤ min
j≥n

{E j }+T =⇒ In = En , (C.19)

which proves (6.7).

(3) The proof of item (3) is by induction on n ≥ 1.

Base case n = 1. Then, by (6.7), D1 = E1 and the statement is trivially proven.

Induction step. We assume that the statement holds for all packets i with i ≤ n −1. Due to

(6.2):

∀k < n,∀p ≥ n : Ek ≤ Ep +λ
thus ∀k < n : Ek ≤ T +min

j≥n
{E j },

thus max
k≤n−1

{Ek } ≤ T +min
j≥n

{E j }

thus Dn−1 ≤ T +min
j≥n

{E j }. (C.20)

By (6.6) and (6.7):

Gn = min

{
Dn−1,T +min

j≥n
{E j }

}
= Dn−1, (C.21)

Dn = max(Gn ,En) = max(Dn−1,En) = max

(
max

k≤n−1
{Ek } ,En

)
= max

k≤n
{Ek } . (C.22)
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C.2.4 Proof of Theorem 6.2

Consider Fig. 6.1.

First, we prove by induction on n ≥ 1 that

Dn ≥ max
i<n|Ei 6=+∞

{Di } (C.23)

Base case. By Theorem 6.1, n = 1, D1 = E1, and then (C.23) is obvious.

Induction step. We assume that (C.23) holds for all packet index i < n. According to Theo-

rem 6.1, for packet n ≥ 2, we have:

Dn = max(Gn ,En), (C.24)

Gn = min

(
Dn−1,T +min

j≥n
{E j }

)
. (C.25)

Consider the set En = {i < n|Ei 6= +∞}, i.e. the packet numbers less than n that are not lost

in the network. If En is empty, the set is empty, (C.23) trivially holds. Therefore, we now

assume that En is not empty. Let m be the maximum of En . By the induction hypothesis,

Dm = maxk<m|Ek 6=+∞{Dk }. Then (C.23) gives:

Dn ≥ max
k<n|Ek 6=+∞

{Dk } = max

(
max

k<m|Ek 6=+∞
{Dk }, max

m≤k<n|Ek 6=+∞
{Dk }

)
= max

(
Dm , max

m≤k<n|Ek 6=+∞
{Dk }

)
. (C.26)

Since m = max{En}, we have maxm≤k<n|Ek 6=+∞{Dk } = Dm . Therefore we need to show Dn ≥
Dm to prove the theorem. Due to RTO bound for packet m:

∀ j > m : Em ≤ E j +λ≤ E j +T,

thus Em ≤ T +min
j>m

{E j }. (C.27)

Since Em ≤ T +Em , then:

Em ≤ T +min
j≥m

{E j }. (C.28)

By part (2) of Theorem 6.1 for packet m, we have:

Gm = min

(
Dm−1,T +min

j≥m
{E j }

)
≤ T +min

j≥m
{E j }, (C.29)

Dm = max(Gm ,Em) ≤ max{T +min
j≥m

{E j },Em}
Eq. (C.28)=⇒ Dm ≤ T +min

j≥m
{E j }. (C.30)

We consider the two possible cases for m: 1) m = n −1, 2) m < n −1.
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• m = n −1. Since n −1 < n, min j≥n−1{E j } ≤ min j≥n{E j }. Therefore, by (C.29), Dn−1 ≤
T +min j≥n{E j }. Now, using (C.24):

Dn = max(Gn ,En) ≥Gn = min

(
Dn−1,T +min

j≥n
{E j }

)
= Dn−1. (C.31)

• m < n −1. Then En−1 =+∞ and in turn, Dn−1 = max{Gn−1,En−1} =+∞. By (C.24), we

have:

Dn = max(Gn ,En) ≥Gn = min

(
Dn−1,T +min

j≥n
{E j }

)
= T +min

j≥n
{E j }. (C.32)

Since m < n −1, min j≥m{E j } ≤ min j≥n{E j }. Therefore using (C.29) and (C.32), we have:

Dn ≥ T +min
j≥n

{E j } ≥ T +min
j≥m

{E j } ≥ Dm . (C.33)

This establishes (C.23).

Second, we show that if for any λ> 0, if T <λ, there exists a scenario with RTO λ where the

re-sequencing buffer discards a packet Consider a trace with two packets 1 and 2, received

at the re-sequencing buffer at a times E2 = t0 and E1 = t0 +λ for some t0 ≥ 0. The RTO of this

trace is λ. By Theorem 6.1, D1 = I1 and I1 =+∞ because E1 > min j≥n{E j }+T = E2 +T . Thus

packet 1 is discarded by the re-sequencing buffer.

C.2.5 Proof of Theorem 6.3

Item (1). Consider Fig. 6.1. Assume the size of the re-sequencing buffer is unlimited; the

actual buffer content at time t is

L(t ) = ∑
Ek<t ,Dk≥t

lk , (C.34)

First, we show that L(t) ≤ π at all times t that immediately follow a packet arrival; this will

imply that a buffer of size π is sufficient to avoid overflow.

Packet 1 is never stored in the buffer. Consider some fixed but arbitrary packet n > 1, with size

ln , and define the set of indices X by

X
def= {

i ∈Z+ | i < n,Di ≥ En
}

(C.35)

If X is empty then Dn−1 < En ; observe that Dn = max(E1, ...,En) = max(Dn−1,En) = En , i.e.

packet n is not stored in the buffer, and therefore buffer overflow does not occur when packet

n arrives. Hence, we assume that X is not empty and let m = min(X ). The actual content of
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the buffer just after the arrival of packet n is

L(En)+ ln = ∑
k,Ek<En≤Dk

lk + ln (C.36)

= ∑
k<m,Ek<En≤Dk

lk +
∑

k≥m,Ek<En≤Dk

lk + ln (C.37)

= ∑
k≥m,Ek<En≤Dk

lk + ln ≤ ∑
k≥m,Ek<En

lk + ln , (C.38)

where the last equality is because the first sum in (C.37) is 0 by definition of m. By Lemma

C.1, Em ≥ En ; since m 6= n and we exclude simultaneous packet arrivals at the re-sequencing

buffer, Em > En . Thus[
(k ≥ m and Ek < En) or (k = n)

]
=⇒ (k > m and Ek < Em), (C.39)

therefore ∑
k≥m,Ek<En

lk + ln = ∑
k,(k≥m,Ek<En )or(k=n)

≤ ∑
k>m,Ek<Em

lk =πm . (C.40)

Combined with (C.36)-(C.38), this shows that

L(En)+ ln ≤πm ≤π (C.41)

Lemma C.1. Em ≥ En .

Proof. By construction, m ∈X thus Dm ≥ En . Since Dm = maxk≤m Ek , it follows that

∃k ∈ {1...m} such that Ek ≥ En (C.42)

If m = 1 the conclusion follows. Else, m − 1 is not in X thus Dm−1 < En . Since Dm−1 =
maxk≤m−1 Ek , it follows that ∀k ∈ {1...m −1}, Ek < En . Combined with (C.42), this shows that

Em ≥ En .

Second, we show that for any possible λ> 0 and valid RBO value π there exists one execution

trace of a flow with packet sizes between Lmin and Lmax, with RTO λ and RBO π, that achieves

a buffer content equal to π. First observe that, by definition, π can be written as π=∑k
j=1` j

for some positive integer k and ` j ∈ [Lmin,Lmin]. The packet sequence is as follows. It has

k +1 packets in total. Packet 1 has some arbitrary size l1 ∈ [Lmin,Lmin] and is observed at time

E1 =λ. Packets 2 to k +1 have sizes l2 = `1, ...lk+1 = `k and are observed at times E j = ( j−1)λ
k+1 .

Packets 2 to k +1 arrive before packet 1, are stored in the buffer until packet 1 arrives, and the

buffer content when packet 1 arrives is
∑k

j=1 l j . The RTOs are λ1 = λ,λ2 = ... = λk+1 = 0 and

the RTO of the trace is λ. The RBOs are π1 =∑k
j=1` j = π, π2 = ... = πk+1 = 0 thus the RBO of

the sequence is π.
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Item (2). First we show that the buffer size is upper bounded by α(T +V ). Since delay jitter

from the source to the input of the re-sequencing buffer is V , by Lemma 6.1, the flow has

arrival curve α′(t ) =α(t +V ) at the input of re-sequencing buffer. Also, by Theorem 6.4 (the

proof of which is independent of this result) the delay at the re-sequencing buffer is upper

bounded by the time-out T ; by Lemma 6.2, the amount of backlog inside the buffer is thus

upper bounded by α′(T ) =α(V +T ).

Fix some ε > 0, smaller than V and T . By the second technical assumption at the end of

Section 6.2.4, there exists an integer n and a sequence of packet lengths `k ∈ [Lmin,Lmax] such

thatα(V +T −ε) =∑n
k=1`k . Since the arrival curve is achievable, there also exists a sequence of

emission times t1 = 0, ...tn =V +T −ε such that the packet sequence t1, ...tn ,`1, ...,`n satisfies

the arrival curve constraint α. We now derive another packet sequence of n +1 packets as

follows.

1. Packet 1 is emitted at time A1 = 0 and has size l1 = Lmax.

2. For k = 2...n +1, packet k is emitted at time Ak = t0 + tk−1 and has size lk = `k−1, where

t0 is a positive number, large enough so that α(t0) ≥ ∑n+1
k=1 lk . Such a number exists

because we assume limt→∞α(t ) =+∞. We have thus An+1 − A2 =V +T −ε.

The arrival times of the n +1 packets to the input of re-sequencing buffer are as follows.

1. Packet 1 is lost, i.e. E1 =+∞.

2. Packet k = 2 arrives at time E2 =V + A2 − ε
4 .

3. If n ≥ 2, for k = 3...n +1, packet k arrives at time Ek = max(Ek−1, Ak )+ ε
3(n−1) .

We now verify that our scenario satisfies all constraints. There is no simultaneous arrival at

the re-sequencing buffer as required by our modelling assumptions. Obviously Ek ≥ Ak (the

scenario is causal) and Ek > Ek−1 for k ≥ 3 therefore there is no reordering, and any RTO or

RBO constraint is satisfied.

We now verify that the jitter is ≤V . We first show by induction on k ≥ 2,k ≤ n +1 that

Ek − Ak ≤V − ε(k −2)

3(n −1)
(C.43)

For k = 2 it follows from the definition of E2. Consider now k ≥ 3 and assume it holds for k −1.
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Then, by the induction hypothesis:

Ek−1 ≤ Ak−1 +V − ε(k −3)

3(n −1)

≤ Ak +V − ε(k −3)

3(n −1)

thus Ek−1 +
ε

3(n −1)
≤ Ak +V − ε(k −2)

3(n −1)
. (C.44)

Also, as V > ε:

Ak +
ε

3(n −1)
≤ Ak +V − ε(k −2)

3(n −1)
. (C.45)

Then, (C.44) and (C.45) give:

Ek = max(Ek−1, Ak )+ ε

3(n −1)
≤ Ak +V − ε(k −2)

3(n −1)
, (C.46)

as required. It follows from (C.43) that the jitter of the trace is less than or equal to V .

Next, packet 2 arrives at time V + A2 − ε
4 and is out of order (due to the loss of packet 1), which

triggers a timeout at time T +V + A2 − ε
4 . We now verify that all packets k ≥ 3 arrive before

V +T + A2 − ε
4 . To this end, we show by induction on k ≥ 2 that

Ek ≤ T +V + A2 − ε(2n −k)

3(n −1)
. (C.47)

For k = 2, it follows from the definition of E2 and T > ε. Assume it holds for k −1. Then, by the

induction hypothesis

Ek−1 ≤ T +V + A2 − ε(2n −k +1)

3(n −1)

thus Ek−1 +
ε

3(n −1)
≤ T +V + A2 − ε(2n −k)

3(n −1)
. (C.48)

Also Ak ≤ An+1 = T +V + A2 −ε, therefore,

Ak +
ε

3(n −1)
≤ T +V + A2 − ε(3n −2)

3(n −1)
≤ T +V + A2 − ε(2n −k)

3(n −1)
, (C.49)

hence,

Ek ≤ T +V + A2 − ε(2n −k)

3(n −1)
, (C.50)

as required.

Now ε(2n−k)
3(n−1) > ε

4 for k = 3...n +1 thus every packet other than 2 arrives before packet 2 times

out. Thus the buffer content just after the arrival of packet n +1 is all packets 2 to n +1, i.e. its
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size is α(V +T −ε) =∑n
k=1`k .

It remains to verify that the trace satisfies the arrival curve constraint. Let R(t ) be the cumula-

tive arrival function of the trace, i.e. R(t) =∑+∞
n=1 ln1An<t . First, the sequence of packets 2 to

n +1 is obtained by time-shifting by t0 a sequence that satisfies the arrival curve constraint,

therefore it also does, namely, R(t )−R(s) ≤α(t −s) whenever s ≤ t , s ≥ t0 and t ≥ t0. It remains

to see the other cases:

• 0 < s ≤ t < t0: then R(t )−R(s) = 0 ≤α(t − s)

• 0 = s ≤ t < t0: then R(t )−R(s) = R(t )−R(0) = l1 ≤α(0+) ≤α(t − s)

• 0 < s < t0 ≤ t : then R(t )−R(s) = R(t )−R(t0) ≤α(t − t0) ≤α(t − s)

• 0 = s < t0 ≤ t : then R(t)−R(s) = R(t)−R(0) = R(t)−R(t0)+ l1 ≤ ∑n+1
k=1 lk ≤ α(t0) by

construction of t0. Thus R(t )−R(0) ≤α(t0) ≤α(t ).

This shows that the arrival curve constraint is satisfied.

At this stage, we have shown that, for every ε small enough, there is a scenario where the

backlog reachesα(V +T −ε). Thus the minimal bound is at least supε>0α(V +T −ε) =α(V +T )

because arrival curves are left continuous.

C.2.6 Proof of Theorem 6.4

Proof. We use the notations in Fig. 6.1. Suppose that the system has δmax and δmin as worst-

case and best-case delays, thus, for any packet i , δmin ≤ Ei − Ai ≤ δmax. Now, consider a

received packet n. Since Dn ≥ En , Dn − An ≥ En − An ≥ δmin; this shows that the best-case

delay is not decreased.

Part (1). The system is lossless, therefore by part (3) of Theorem 6.1, Dn = maxi≤n{Ei }. There-

fore:

Dn − An = max
i≤n

{Ei }− An = max
i |i≤n

{Ei − An}. (C.51)

Since ∀i ∈Z+, Ai ≤ Ai+1:

Dn − An ≤ max
i≤n

{Ei − Ai } ≤ δmax, (C.52)

which proves that the worst-case delay is not increased. Since the best case delay is not

decreased, the delay jitter is not increased.
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Part (2). The system is not lossless. By part (2) of Theorem 6.1, we have:

Gn = min

(
Dn−1,T +min

j≥n
E j

)
≤ T +min

j≥n
E j ≤ T +En ,

Dn = max(Gn ,En) ≤ max(T +En ,En) = T +En . (C.53)

Thus

Dn − An ≤ T +En − An ≤ T +δmax, (C.54)

that proves part (2).

C.2.7 Proof of Theorem 6.5

Proof. First, we obtain an upper bound for RTO of the flow separately for each part of the

theorem. Second we show that each bound is achievable.

Consider a packet n. Let us denote An as the arrival time of a packet n (with size ln) into

the system and En as its exit time. Now, consider another packet m such that m ≤ n −1 and

En < Em . Since V is a jitter bound for this system.

(Em − Am)− (En − An) ≤V. (C.55)

Then:

Em −En ≤V − (An − Am) . (C.56)

If the flow has arrival curve α, then by (3.21), An − Am ≥ α↓ (∑n
k=m lk

)
:

Em −En ≤V −α↓
(

n∑
k=m

lk

)
. (C.57)

Since α↓ is wide-sense increasing and m ≤ n −1:

Em −En ≤V −α↓ (ln−1 + ln) ≤V −α↓(2Lmin) ≤
[

V −α↓(2Lmin)
]+

, (C.58)

that proves item (1) in the statement of theorem.

If the flow has packet-level arrival curve αpkt, then by (4.5), An − Am ≥α↓
pkt (n −m +1). Then

from (C.56):

Em −En ≤V −α↓
pkt(n −m +1). (C.59)
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Since n is integer and n > m, then n −m ≥ 1:

Em −En ≤V −α↓
pkt(2) ≤

[
V −α↓

pkt(2)
]+

, (C.60)

which proves item (2) in the statement of theorem.

Second, we show that the bounds are achievable by constructing a scenario where the RTO for

a packet of the flow reaches the bound in item (1) of the theorem.

Consider two packets 1 and 2 with sizes l1 = l2 = Lmin and a non order-preserving system with

a jitter bound V . Packet 1 is issued at A1 = 0 and packet 2 arrives at A2 = A1 +α↓(l1 + l2), i.e,

(A2 = t2).

Packet 1 experiences a delay of d +V , E1 = A1 +d +V , and Packet 2 experiences a delay of d ,

E2 = A2 +d . Then we have:

E1 −E2 = A1 +d +V − (A2 +d) =V − (t2 − t1)

=V −α↓(l1 + l2) =V −α↓(2Lmin), (C.61)

which shows that the RTO for packet 1 is equal to the bound in part (1) of the theorem.

Now, we verify that jitter bound and arrival curve assumptions are not violated. The difference

between the delay of two packets is:

(E1 − A1)− (E2 − A2) = (d +V )− (d) =V , (C.62)

which is equal to the jitter bound. Also:

A2 − A1 = t2 − t1 =α↓(l1 + l2), (C.63)

which shows the arrival curve constraint holds.

The tightness scenario for item (2) of the theorem is similar to the one for part (1). We set

t2 = t1 +α↓
pkt(2), and the rest follows the description of item (1).

C.2.8 Proof of Theorem 6.6

Proof. First, we show the bounds in items (1) and (2).

Item (1). First observe that, from Theorem 6.5, if α(V ) < 2Lmin then there is no reordering and

the RBO is 0.

Next, assume that there is some reordering and consider a packet index m such that λm > 0.

Let Em = {i ∈Z+|i > m,Ei < Em}. Since λm > 0 and there is no simultaneous arrival of packets,

Em is not empty. Then let n = max{Em}. Due to the jitter bound of this system and since
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En < Em , we have:

(Em − Am)− (En − An) ≤V ,

thus An − Am ≤V + (En −Em) <V. (C.64)

Since the flow has arrival curve α, then by (3.21), An − Am ≥ α↓ (∑n
k=m lk

)
. Therefore,

α↓
(

n∑
k=m

lk

)
≤ An − Am <V. (C.65)

By [124, Property P7, Section 10.1], we obtain:

n∑
k=m

lk ≤α(V ). (C.66)

We exclude packet m from the left side of the above equation:

n∑
k=m+1

lk ≤α(V )− lm ≤α(V )−Lmin. (C.67)

The reordering byte offset πm for packet m, defined in (6.3), includes only the packets with

larger index and smaller exit time than packet m. Thus:

πm = ∑
k|k>m,Ek<Em

lk ≤
n∑

k=m+1
lk . (C.68)

Using (C.68) in (C.67), we have:

πm ≤α (V )−Lmin, (C.69)

which proves item (1) of the theorem.

Item (2). The flow has packet-level arrival curve αpkt. Observe that, from Theorem 6.5, if

αpkt(V ) < 2 then there is no reordering and the RBO is 0.

Next, since the flow has packet-level arrival curveαpkt, then by (4.5), An−Am ≥α↓
pkt (n −m +1).

From (C.64), we have:

α↓
pkt (n −m +1) ≤ An − Am <V , (C.70)

By [124, Property P7, Section 10.1], we obtain:

n −m +1 ≤αpkt(V ). (C.71)
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Since for any packet k, lk ≤ Lmax:

n∑
k=m+1

lk ≤ Lmax(n −m) ≤ Lmax (
αpkt(V )−1

)
. (C.72)

Since πm ≤∑n
k=m+1 lk , item (2) of the theorem is proven.

Second, we show the tightness.

Fix some ε> 0, smaller than λ. By the second technical assumption at the end of Section 6.2.4,

we show the tightness for the two cases, i) Lmax ≥ 2Lmin, ii) Lmin = Lmax.

Case i) Lmax ≥ 2Lmin. By assumption, we know that α(0+) ≥ Lmax; therefore, α(0+) ≥ 2Lmin.

By the second technical assumption at the end of Section 6.2.4, there exists an integer n and a

sequence of packet lengths lk ∈ [Lmin,Lmax] such that l1 = Lmin and
∑n

k=2 lk =α(V −ε)−Lmin.

Since ε<λ and by Theorem 6.5 λ≤V ,α(V −ε) ≥ 2Lmin; therefore, n ≥ 2. Now, since the arrival

curve is achievable, there also exists a sequence of emission times A1 = 0, ...An =V −ε such

that the packet sequence A1, ...An , l1, ..., ln satisfies the arrival curve constraint α.

Next, we construct the exit times of packets k from the system as follows:

E1 =V +ε,Ek =V + (k −2)ε

n
, k = 2, . . . ,n. (C.73)

Observe that E2 < E3 < ·· · < En < E1. Also note that A1 ≤ A2 ≤ ·· · ≤ An =V −ε< E2 =V .

Now, according to (6.3), the RBOs for packet 1 and packet k, k = 2, . . . ,n, are:

π1 =
∑

j | j>1,E j<E1

l j =
n∑

k=2
lk =α(V −ε)−Lmin,

πk = ∑
j | j>k,E j<Ek

l j = 0. (C.74)

Therefore, π= max1≤i≤n{πi } =α(V −ε)−Lmin.

Finally, we verify that the assumptions are not violated: 1) arrival curve, 2) jitter bound, 3) RTO

of the flow.

(1) The arrival curve constraint is satisfied by construction.

(2) For any packet k ≥ 1, we have:

Ek − Ak ≤ E1 − A1 =V +ε, (C.75)

Ek − Ak ≥ E2 − An =V − (V −ε) = ε. (C.76)
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Therefore, the jitter is:

max
k

{Ek − Ak }−min
k

{Ek − Ak } ≤V +ε−ε=V , (C.77)

which conforms the jitter constraint.

(3) For any packet k ≥ 2, the packets are in order

λk = Ek − min
j | j≥k,E j≤Ek

= Ek −Ek = 0. (C.78)

For packet 1, we have:

λ1 = E1 − min
j | j≥1,E1≤Ek

= E1 −E2 = (V +ε)−V = ε, (C.79)

therefore, λ= max1≤i≤n{λi } = ε, that satisfies the RTO constraint.

Thus, we have shown that, for every ε small enough, there is a scenario where the RBO reaches

α(V −ε)−Lmin. Thus the minimal bound is at least supε>0α(V −ε)−Lmin =α(V )−Lmin because

arrival curves are left continuous.

Case ii) Lmax = Lmin. Then all the packets have the same size l = Lmax. By assumption, we

know that α(0+) ≥ l .

By the second technical assumption at the end of Section 6.2.4, there exists an integer n and a

sequence of packets with length l such that
∑n

k=1 lk =α(V −ε)− l . Now, if α(V −ε) < 2l , then

n = 1 and therefore no reordering occurs and π= 0. Hence, we consider the case α(V −ε) ≥ 2l ;

then n ≥ 2. Now, since the arrival curve is achievable, there also exists a sequence of emission

times t1 = 0, ...tn = V − ε such that the packet sequence t1, ...tn , l1, ..., ln satisfies the arrival

curve constraint α. The rest of the proof follows exactly as case (i).

The tightness scenario for item (2) of the theorem is similar to the one for case (ii). We set

n =αpkt(V ) and for any k = 1, . . . ,n, lk = Lmax.

C.2.9 Proof of Theorem 6.7

Proof. First, we obtain an upper bound for RTO of the flow separately for each part of the

theorem. Second we show that each bound is achievable.

Consider Fig. C.1. We denote the arrival and exit times of a packet i at Sh by E h−1
i and E h

i .

Consider two packet indices m and n such that m < n and E K
n < E K

m . Since Ss is the first system

with nonzero RTO, for any system Sh , h < s, E h
m < E h

n . Therefore, E s−1
m ≤ E s−1

n , i.e., at the output

of system Ss−1 (input of system Ss), packet m and n are in-order. Therefore, by definition of

the RTO bound at Ss ,

E s
m − E s

n ≤ λs . (C.80)
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𝑆" 𝑆#$" 𝑆# 𝑆#%" 𝑆&

All order-preserving
elements (𝜆 = 0)

The first
non order-preserving

element (𝜆# > 0)

Non order-preserving 
or order-preserving

elements (𝜆 ≥ 0)

Figure C.1: Notation for the sequence of network elements used in Theorem 6.7.

Now, according to the jitter bound for the concatenation of systems Ss+1 to SK , we have:

(
E K

m −E s
m

)− (
E K

n −E s
n

)≤ K∑
h=s+1

Vh . (C.81)

Then, we have:

E K
m −E K

n ≤ (
E s

m −E s
n

)+ K∑
h=s+1

Vh . (C.82)

Combining with (C.80):

E K
m −E K

n ≤λs +
K∑

h=s+1
Vh

def= Λ(K ). (C.83)

Second, we show tightness. We are given a sequence of systems with RTOs λh and jitters Vh ,

and we construct a scenario that conforms with these parameters and where a packet reaches

the RTO bound in Theorem 6.7 at system K . We use the same notation as before. In particular,

Ss is the first system in the sequence for which λs > 0. Now, consider a trace with two packets

1 and 2 entering S1. Also, consider a set of positive values {ds ,ds+1, . . . ,dK }.

Packet 1 and 2 arrive at S1 at times E1 = 0 and E2 = ε, with λs > ε> 0. Each packet then has the

same transfer time through system S j at time t j , j ∈ {1,2, . . . , s −1}, thus preserving order and

E s−1
2 = E s−1

1 +ε.

The transfer times through Ss are ds+λs for packet 1 and ds for packet 2, i.e., E s
1 = E s−1

1 +ds+λs

and E s
2 = E s−1

2 +ds . Packet 1 and 2 experience the delays of dh +Vh and dh at system Sh ,

h ∈ {s +1, s +2, . . . ,K }:

E h
1 = E h−1

1 +dh +Vh ,

E h
2 = E h−1

2 +dh . (C.84)
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Then at the output of system SK , we have:

E K
1 = E s

1 +
K∑

h=s+1
(dh +Vh) = E s−1

1 +λs +
K∑

h=s
dh +

K∑
h=s+1

Vh ,

E K
2 = E s

2 +
K∑

h=s+1
dh = E s−1

1 +ε+
K∑

h=s
dh . (C.85)

We now verify that the assumptions in the statement of theorem are not violated.

(1) We check that RTOs for all the systems are not violated. For any system S j , j < s, packets 1

and 2 preserve order by construction, i.e. λ j = 0.

For system Ss , according to the departure times of packets 1 and 2 from Ss , we have:

E s
1 −E s

2 =λs −ε, (C.86)

which satisfies the constraint λs on RTO conforms to RTO assumption for system Ss being the

first system that RTO is equal to λs . At the output of system Ss we have E s
2 < E s

2, i.e., packet 2 is

prior to packet 1. For system Sh , h ∈ {s +1, s +1, . . . ,K }, we have

E h
2 −E h

1 =
(

E s−1
1 +ε+

h∑
j=s

d j

)
−

(
E s−1

1 +λs +
h∑

j=s
d j +

h∑
j=s+1

V j

)

= ε−λs −
h∑

j=s+1
V j < 0, (C.87)

that shows E h
2 < E h

1 , i.e., system Sh ,h ≥ s +1 preserves the order of its input. Therefore, RTO

for each system Sh is 0, which satisfies any RTO constraint.

(2) We check that the jitter bounds are not violated.

For systems S1 to Ss−1, since both packets experience the same delay, the jitter is 0.

For system Ss , we have: (
E s

1 −E s−1
1

)− (
E s

2 −E s−1
2

)=λs .

Now, by Theorem 6.5, λs ≤Vs , thus the jitter bound assumption for Ss are satisfied.

For any system Sh where h ∈ {s +1, . . . ,K }, we have:(
E h

1 −E h−1
1

)
−

(
E h

2 −E h−1
2

)
= (dh +Vh)− (dh) =Vh ,

which shows that the jitter bound assumptions for systems Ss+1,Ss+2, . . . ,SK are satisfied.
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Last,

E K
1 −E K

2 =λs −ε+
K∑

h=s+1
Vh , (C.88)

thus the RTO for packet 1 is equal to the bound in Theorem 6.7 minus ε. Since ε can be

arbitrarily small, this shows the result.

C.3 Details of Computations for Case Study 1 in Section 6.5.2

Table C.1: Arrival curve propagation from point 1 to point 9 under lossless network condition.
Arrival curve at point i is αi (t ) = min(6.4e3 t +bi ,125e6 t +Mi ), where bi and Mi are in bytes
and shown in the table. Since under lossless network condition, the re-sequencing buffers do
not increase delay and jitter bounds, the arrival curves are the same for the four placement
strategies.

Burst 1 2 3 4 5 6 7 8 9
bi 6400 6400 6400 6400 6400
Mi 64 251 1751 64 251 1751 64

In these scenarios, we require arrival curve information to compute RTO, RBO, and delay

upper bounds. Let us call αi as arrival curve of flow f at point i in units of bytes. Tables C.1

and C.2 show the propagated arrival curve at points 1 to 9 in Fig. 6.4. The arrival curve at point

i has the form of αi (t) = min(r t +bi ,c t +Mi ), where r = 6400 bytes per second, c = 125e5

bytes per second (i.e. 1Gbps), bi and Mi are shown in Tables C.1 and C.2. α0(t) = r t +b0,

where b0 = 6400 by tes. The arrival curves at point 1, 5, and 9 capture the line shaping and

packetizer effects:

α1(t ) = min(r t +b0,c t +512),

α5(t ) = min(r t +b4,c t +512),

α9(t ) = min(r t +b8,c t +512). (C.89)

The arrival curves at points 4 and 8 capture the effect of traversing the output FIFO systems

with service curve β(t ) = 125e6[t −Q]+ by tes, where Q = 12µs:

α4(t ) = min(r t +b3 + rQ,c t +M3 + cQ),

α8(t ) = min(r t +b7 + rQ,c t +M7 + cQ). (C.90)

The arrival curves at point 2 and 6 capture the effect of switching fabric with jitter bound Vsf:

α2(t ) = min(r t +b1 + r Vsf,c t +M1 + cVsf),

α6(t ) = min(r t +b5 + r Vsf,c t +M5 + cVsf). (C.91)
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Table C.2: Arrival curve propagation from point 1 to point 9 under lossy network condition.
Arrival curve at point i is αi (t ) = min(6.4e3 t +bi ,125e6 t +Mi ), where bi and Mi are in bytes
and shown in the table.

Re-sequencing Burst 1 2 3 4 5 6 7 8 9

Only at h2
bi 6400 6400 6400 6400 6400
Mi 64 251 1751 64 251 1751 64

Only at S2
bi 6400 6400 6400 6400 6400 6400
Mi 64 251 1751 64 251 2249 3749 64

At S1 and h2
bi 6400 6400 6400 6400 6400 6400
Mi 64 251 626 1875 64 2012 1751 64

At S1 and S2
bi 6400 6400 6400 6400 6400 6400 6400
Mi 64 251 626 1875 64 251 375 1875 64

The arrival curves at point 3 and 7 capture the effect of re-sequencing buffer (if any) at switches

S1 and S2 with time-out values respectively T1 and T2 under lossy network condition:

α3(t ) = min(r t +b2 + r T1,c t +M2 + cT1),

α7(t ) = min(r t +b6 + r T2,c t +M6 + cT2). (C.92)

Under lossless network condition, the re-sequencing buffers do not increase delay and jitter

bounds, hence, α3 =α2 and α7 =α6.

To compute delay bounds of output FIFO systems we use the results in [60, 25]. Accordingly,

the delay bound of FIFO system of h1 is δmax
FIFO,h1

= 63.2µs. Also, the minimum delay for

each FIFO system is the transmission of a packet with minimum length, δmin
FIFO,h1

= δmin
FIFO,S1

=
δmin

FIFO,S2
= Lmin

c = 512ns. Now, since we know delay upper and lower bounds for the FIFO

system of h1, its jitter is VFIFO,h1 = 62.69µs. Now we analyze the four strategies separately.

Re-sequencing only at h2

We first obtain delay and jitter bounds of flow f for the FIFO output ports of S1 and S2. Using

the arrival curves in Tables C.1 and C.2:

δmax
FIFO,S1

= δmax
FIFO,S2

= 14.01 µs. (C.93)

Since, we already compute the minimum delay for the FIFO systems of S1 and S2, the jitter

bounds are:

VFIFO,S1 =VFIFO,S2 = 13.5 µs. (C.94)

Having the knowledge on jitters of each element, we now compute the RTO bound of the flow

at h2. To obtain the RTO bound, we use Theorem 6.7. Since the switching fabric (SF) in S1 is

the first non order-preserving element, we need to compute its corresponding RTO. Using
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Theorem 6.5:

λSF,S1 =
[

VSF,S1 −α↓
1(2Lmin)

]+ = 1.5µs −0.512µs = 0.988 µs. (C.95)

Therefore the RTO at h2 is:

Λ(h2) =λSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2

= 0.988µ+13.5µ+1.5µ+13.5µ= 29.49 µs. (C.96)

Then Th2 =Λ(h2) = 29.49 µs.

Now, if the network is lossless, due to Theorem 6.4, re-sequencing is for free; therefore, the

bounds are:

δ0,max
e2e = δmax

FIFO,h1
+δmax

SF,S1
+δmax

FIFO,S1
+δmax

SF,S2
+δmax

FIFO,S2
= 63.2+2+14.01+2+14.01 = 95.22 µs,

V 0
e2e =VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 = 62.69+1.5+13.5+1.5+13.5 = 92.69 µs.

Using Corollary 6.2, the RBO bound at h2 is:

Π(h2) =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 )−Lmin =α(79.19µs)−64 = 6336 bytes. (C.97)

Then Bh2 =Π(h2) = 6336 bytes. Note that due to Theorem 6.6, we eliminate the FIFO system at

S2 as the switching fabric of S2 is the last FIFO system.

If the network is lossy, by Theorem 6.4, the jitter and delay worst-case are increased by Th2 =
29.49 µs; therefore:

δmax
e2e = 124.72µs,Ve2e = 122.19 µs. (C.98)

The size of re-sequencing buffer is:

Bh2 =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 +Th2 ) =α(122.19 µs) = 6400 bytes.

Re-sequencing only at S2

Similarly to the previous scenario, δmax
FIFO,S1

= 14.01 µs and VFIFO,S1 = 13.5 µs; and therefore, we

obtain RTO bound in switching fabric of S1 as λSF,S1 = 0.988 µs. Using Theorem 6.7, the RTO

bound after the switching fabric of S2 is:

Λ(S2) =λSF,S1 +VFIFO,S1 +VSF,S2 = 0.988µ+13.5µ+1.5µ= 15.99 µs. (C.99)

Then TS2 =Λ(S2) = 15.99 µs.

Now, if the network is lossless, δmax
FIFO,S2

= 14.01 µs. Then, due to Theorem 6.4, re-sequencing is

for free; therefore, similarly to the previous strategy δ0,max
e2e = 95.22 µs and V 0

e2e = 92.69 µs. Also
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for the RBO bound at S2, using Corollary 6.2, we have:

Π(S2) =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 )−Lmin =α(79.19µs)−64 = 6336 bytes. (C.100)

By Theorem 6.2, and the size is BS2 =Π(S2) = 6336 bytes.

If the network is lossy, by Theorem 6.4, the jitter and delay worst-case are increased by TS2 =
15.99µs; therefore this affects the arrival curve at point 7 and in turn delay bound of output

FIFO system at S2. Then, δmax
FIFO,S2

= 30 µs and VFIFO,S2 = 29.49 µs. Finally,

δmax
e2e = δmax

FIFO,h1
+δmax

SF,S1
+δmax

FIFO,S1
+δmax

SF,S2
+δmax

FIFO,S2
+TS2 = 127.22 µs,

Ve2e =VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 +TS2 = 124.69 µs.

The size of re-sequencing buffer is:

BS2 =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +TS2 ) =α(95.18 µs) = 6400 bytes. (C.101)

Re-sequencing at S1 and h2

Since we already computed arrival curve at point 1, we compute RTO bound switching fabric

at S1 using Theorems 6.5, λSF,S1 = 0.988 µs. Then TS1 =λSF,S1 = 0.988 µs. Similarly to switching

fabric of S1, we have λSF,S2 = 0.988 µs.

Now, if the network is lossless, using the arrival curves in Table C.1, δmax
FIFO,S1

= δmax
FIFO,S2

=
14.01 µs and VFIFO,S1 = VFIFO,S2 = 13.5 µs. Hence, due to Theorem 6.4, re-sequencing is for

free; therefore, similarly to the previous strategy δ0,max
e2e = 95.22 µs and V 0

e2e = 92.69 µs. To

compute RTO bound at h2, we need to find RTO bound switching fabric of S2 as the first non

order-preserving element after re-sequencing buffer of S1 (the output of which is in-order).

Using Theorem 6.7, the RTO bound at h2 is:

Λ(h2) =λSF,S2 +VFIFO,S2 = 0.988µ+13.5µ= 14.49 µs.

Then Th2 =Λ(h2) = 14.49 µs. Also for the RBO bound at S1 and h1, using Corollary 6.2, we

have:

Π(S1) =α(VFIFO,h1 +VSF,S1 )−Lmin =α(64.19 µs)−64 = 6336 bytes,

Π(h2) =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 )−Lmin =α(79.19 µs)−64 = 6336 bytes.

By Theorem 6.2, BS1 = Bh2 =Π(S2) = 6336 bytes.

If the network is lossy, the re-sequencing buffer at S1 increases the jitter by TS1 ; the impact

on arrival curves is shown in Table C.2. Hence, δmax
FIFO,S1

= 15 µs,δmax
FIFO,S2

= 14.01 µs. Using the

obtained lower and upper delay bounds, VFIFO,S1 = 14.49 µs,VFIFO,S2 = 13.5 µs. To compute

176



C.3 Details of Computations for Case Study 1 in Section 6.5.2

RTO bound at h2, similarly to the lossless case,

Λ(h2) =λSF,S2 +VFIFO,S2 = 0.988µ+13.5µ= 14.49 µs.

Then Th2 =Λ(h2) = 14.49 µs. Finally:

δmax
e2e = δmax

FIFO,h1
+δmax

SF,S1
+δmax

FIFO,S1
+δmax

SF,S2
+δmax

FIFO,S2
+TS1 +Th2 = 111.72 µs,

Ve2e =VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 +TS1 +Th2 = 109.19 µs.

The size of re-sequencing buffers are:

BS1 =α(VFIFO,h1 +VSF,S1 +TS1 ) =α(65.18 µs) = 6400 bytes,

Bh2 =α(VFIFO,h1 +VSF,S1 +TS1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 +Th2 ) =α(109.19 µs) = 6400 bytes.

Re-sequencing at S1 and S2

Similarly to the previous scenario, we have TS1 =λSF,S1 = 0.988 µs. Also λSF,S2 = 0.988 µs.

Now, if the network is lossless, using the arrival curves in Table C.1, δmax
FIFO,S1

= δmax
FIFO,S2

=
14.01 µs and VFIFO,S1 = VFIFO,S2 = 13.5 µs. Hence, due to Theorem 6.4, re-sequencing is for

free; therefore, similarly to the previous strategy δ0,max
e2e = 95.22 µs and V 0

e2e = 92.69 µs. To

compute RTO bound at h2, we need to find RTO bound switching fabric of S2 as the first non

order-preserving element after re-sequencing buffer of S1 (the output of which is in-order).

Using Theorem 6.7, the RTO bound at S2 is Λ(S2) =λS2 = 0.988 µs. Also for the RBO bound at

S1 and S2, using Corollary 6.2, we have:

Π(S1) =α(VFIFO,h1 +VSF,S1 )−Lmin =α(64.19 µs)−64 = 6336 bytes,

Π(S2) =α(VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 )−Lmin =α(79.19 µs)−64 = 6336 bytes.

By Theorem 6.2, BS1 = BS2 =Π(S2) = 6336 bytes.

If the network is lossy, the re-sequencing buffer at S1 increases the jitter by TS1 ; the impact

on arrival curves is shown in Table C.2. Hence, δmax
FIFO,S1

= 15 µs,δmax
FIFO,S2

= 14.01 µs. Using the

obtained lower and upper delay bounds, VFIFO,S1 = 14.49 µs,VFIFO,S2 = 13.5 µs. To compute

RTO bound at h2, similarly to the lossless case,Λ(S2) =λSF,S2 = 0.988 µs. Then TS2 =Λ(S2) =
0.988 µs. Finally:

δmax
e2e = δmax

FIFO,h1
+δmax

SF,S1
+δmax

FIFO,S1
+δmax

SF,S2
+δmax

FIFO,S2
+TS1 +TS2 = 99.22 µs,

Ve2e =VFIFO,h1 +VSF,S1 +VFIFO,S1 +VSF,S2 +VFIFO,S2 +TS1 +TS2 = 96.69 µs.
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The size of re-sequencing buffers are:

BS1 =α(VFIFO,h1 +VSF,S1 +TS1 ) =α(65.18 µs) = 6400 bytes,

BS2 =α(VFIFO,h1 +VSF,S1 +TS1 +VFIFO,S1 +VSF,S2 +Th2 ) =α(83.19 µs) = 6400 bytes.
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D.1 Lemmas for Section 7.3

Lemma D.1. Consider a non-decreasing sequence I = {I1, . . . , In} and a sequenceφ= {φ1, . . . ,φn}.

Assume the sequence O = {O1, . . . ,On} is defined by

O1 = I1 +φ1, On = max(In ,On−1)+φn .

Then a closed-form formula for O is:

On = max
m≤n

{
Im +

n∑
i=m

φi

}
.

Proof. We prove by induction. Base case n = 1.

O1 = I1 +φ1, (D.1)

as required by the lemma.

Induction step. We assume that the lemma holds for all i < n. Then for i = n − 1, by the

closed-form formula we have:

On−1 = max
m≤n−1

{
Im +

n−1∑
i=m

φi

}
. (D.2)

Then, using the recursive definition of On :

On = max(In ,On−1)+φn = max

(
In +φn , max

m≤n−1

{
Im +

n−1∑
i=m

φi

}
+φn

)

= max

(
In +φn , max

m≤n−1

{
Im +

n∑
i=m

φi

})
= max

m≤n

{
Im +

n∑
i=m

φi

}
. (D.3)
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Lemma D.2. Let a, xmin ≤ xmax and ymin ≤ ymax be five fixed real numbers. For any z ∈R, if

xmin +max(a, ymin) ≤ z ≤ xmax +max(a, ymax), (D.4)

then there exists some x, y ∈R such that

z = x +max(a, y), (D.5)

x ∈ [xmin; xmax], (D.6)

y ∈ [ymin; ymax]. (D.7)

Comversely, if there exists x, y ∈R such that (D.5)–(D.7) hold, then z satisfies (D.4).

Proof. 1) Let D = [xmin; xmax]× [ymin; ymax] and f the mapping D → R defined by f (x, y) =
x +max(a, y). f is continuous and D is compact and connected, therefore f (D) is compact

and connected. The compact and connected subsets of R are the closed, bounded intervals,

therefore f (D) = [m; M ] for some m, M ∈R. Necessarily, m is the minimum of f over D and M

is the maximum of f over D .

Now for every (x, y) ∈ D :

f (xmin, ymin) ≤ f (x, y) ≤ f (xmax, ymax). (D.8)

It follows that the minimum of f over D is f (xmin, ymin), i.e. m = f (xmin, ymin). Similarly,

M = f (xmax, ymax). Now let z ∈R that satisfies (D.4), i.e. z ∈ [m; M ] = f (D). Thus, there exists

some (x, y) ∈ D such that z = f (x, y), i.e. there exists x, y ∈R such that (D.5)–(D.7) hold.

2) Conversely, if there exists x, y ∈ R such that (D.5)–(D.7) hold, then z = f (x, y) and thus

m ≤ z ≤ M , i.e. (D.4) holds.

D.2 Proof of Theorem 7.1

Let us define di as the delay of JCS i (i = 1, . . . ,K ), π j as the delay of BDS j ( j = 1, . . . ,K ′) and t

as the delay of the damper. Assume that JCS i is operating with clock H i and the damper is

operating with clock Hdamper. Then, the delay of the block, in TAI, is:

dHTAI =
K∑

i=1
dHTAI

i +
K ′∑

j=1
π

HTAI
j + tHTAI =

K∑
i=1

dH i

i +
K ′∑

j=1
π

HTAI
j + tHdamper +γ, (D.9)
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where γ=∑K
i=1

(
dHTAI

i −dH i

i

)
+ (

tHTAI − tHdamper
)
. By (7.3) and (7.4), the delay of a packet with

damper header H inside the damper is

H −∆L ≤ tHdamper ≤ H +∆U. (D.10)

Moreover, the damper header is incremented when the packet is passing by a JCS. Therefore,

by (7.12) and accounting for the errors in the computation of damper header, we have:

H =
K∑

i=1
(δi −dH i

i +e) =
K∑

i=1
δi −

K∑
i=1

dH i

i +K e, (D.11)

where e is defined in Section 7.3.3. Using (D.11) and the upper bound in (D.10), (D.9) gives:

dHTAI ≤
K∑

i=1
dH i

i +
K ′∑

j=1
π

HTAI
j +

(
K∑

i=1
δi −

K∑
i=1

dH i

i +K e

)

+∆U +γ=
K∑

i=1
δi +

K ′∑
j=1

π
HTAI
j +∆U +K e +γ. (D.12)

By Lemma D.3, γ≤ψ; also |e| ≤ ε; furthermore, the delay of the packet inside the BDS j is less

than its worst-case delay, i.e., πHTAI
j ,worst. Therefore:

dHTAI ≤
K∑

i=1
δi +

K ′∑
j=1

π
HTAI
j ,worst +∆U +K ε+ψ.

Similarly, using the lower bound in (D.10) and the value of H in (D.11), we have:

dHTAI ≥
K∑

i=1
dH i

i +
K ′∑

j=1
π

HTAI
j +

(
K∑

i=1
δi −

K∑
i=1

dH i

i +K e

)

−∆L +γ=
K∑

i=1
δi +

K ′∑
j=1

π
HTAI
j −∆L +K e +γ. (D.13)

By Lemma D.3, γ≥−ψ; also, |e| ≤ ε; furthermore, the delay of the packet inside the BDS j is

less than its best-case delay, i.e., πHTAI

j ,best. Therefore:

dHTAI ≥
K∑

i=1
δi +

K ′∑
j=1

π
HTAI

j ,best −∆L −K ε−ψ
i
.

By subtracting the lower and upper bounds in (D.13) and (D.14), we obtain a jitter bound for
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the block:

V =
K ′∑

j=1

(
π

HTAI
j ,worst −πHTAI

j ,best

)
+∆U +∆L +2K ε+ψ

+ψ=
K ′∑

j=1
ν

HTAI
j +∆U +∆L +2K ε+ψ+ψ, (D.14)

which proves the jitter bound. Note that πHTAI
j ,worst −πHTAI

j ,best ≤ ν
HTAI
j .

Moreover, since πHTAI
j ,worst ≤πHTAI

j and πHTAI

j ,best ≥π
HTAI
j , we have:

dHTAI ≤
K∑

i=1
δi +

K ′∑
j=1

π
HTAI
j +∆U +K ε+ψ= D ,

dHTAI ≥
K∑

i=1
δi +

K ′∑
j=1

π
HTAI
j −∆L −K ε−ψ= D . (D.15)

Proof of tightness. Consider a packet that enters JCS 1. We show scenarios where the packet

reaches the delay bound in the statement of the theorem; since ψ can take different values

due to the min(.) function, we give two different scenarios.

First scenario. Assume that the clocks H i , i = 1, ...,K , and Hdamper are adversarial and faster

than TAI such that for any delay measurement d we have:

dHTAI = ρdH i +η, i = 1, ...,K

dHTAI = ρdHdamper +η. (D.16)

This scenario assumes that for any clock H i , ρdH i +η≤ dH i +2ω and ρdHdamper+η≤ dHdamper+
2ω.

Let us define Hi as the damper header that is computed in JCS i . Then, let the packet experi-

ence a delay dH i

i ≤ δi in JCS i in its local time; then the damper header written for this packet

is

H1 = δ1 −dH1
1 +ε,

Hi = Hi−1 +δi −dH i

i +ε, i = 2, ...,K

assuming adversarial condition in the damper header computation error. The packet experi-

ences a delay equal to πHTAI
j in BDS j . Finally, the damper computes the eligibility time and

releases it at the latest; i.e., the packet experiences a delay

tHdamper = HK +∆U =
K∑

u=1
δu −

K∑
u=1

dHu
u +K ε+∆U.
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Therefore, for the damper, the delay of the packet in TAI, using (D.16), is:

tHTAI = ρ
(

K∑
u=1

δu −
K∑

u=1
dHu

u +K ε+∆U

)
+η. (D.17)

Also, for JCS i , the delay of the packet in TAI is:

dHTAI
i = ρdH i

i +η. (D.18)

Now, to compute the per-hop delay of the packet, we sum up all the delays in TAI:

dHTAI

hop =
K∑

u=1
dHTAI

u +
K ′∑

j=1
π

HTAI
j + tHTAI =

K∑
u=1

(
ρdH i

u +η
)

+
K ′∑

j=1
π

HTAI
j +ρ

(
K∑

u=1
δu −

K∑
u=1

dHu
u +K ε+∆U

)
+η

= ρ(
K∑

u=1
δu +K ε+∆U)+

K ′∑
j=1

π
HTAI
j + (K +1)η=

K∑
u=1

δu +
K ′∑

j=1
π

HTAI
j +∆U +K ε+ψ, (D.19)

which is equal to the delay bound in the statement of the theorem.

Second scenario. Assume that the clocks H i , i = 1, ...,K , and Hdamper are adversarial and

faster than TAI such that for any delay measurement d we have:

dHTAI = dH i +2ω, i = 1, ...,K

dHTAI = dHdamper +2ω. (D.20)

This scenario assumes that for any clock H i , ρdH i +η≥ dH i +2ω and ρdHdamper+η≥ dHdamper+
2ω. Then following the same steps as the previous scenario, we have:

tHTAI =
K∑

u=1
δu −

K∑
u=1

dHu
u +K ε+∆U +2ω,

dHTAI
i = dH i

i +2ω, ∀i ∈ {1, . . . ,K }. (D.21)

This gives:

dHTAI

hop =
K∑

u=1
dHTAI

u +
K ′∑

j=1
π

HTAI
j + tHTAI =

K∑
u=1

(
dH i

u +2ω
)

+
K ′∑

j=1
π

HTAI
j +

K∑
u=1

δu −
K∑

u=1
dHu

u +K ε+∆U +2ω

=
K∑

u=1
δu +K ε+∆U +

K ′∑
j=1

π
HTAI
j +2(K +1)ω=

K∑
u=1

δu +
K ′∑

j=1
π

HTAI
j +∆U +K ε+ψ, (D.22)

which is equal to the delay bound in the statement of the theorem. The tightness for delay
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lower bound happens when the clocks H i , i = 1, ...,K , and Hdamper are adversarial and slower

than TAI. Similarly to the tightness proof of delay upper-bound, two tightness scenarios are

given for the two possible values of ψ. For the first scenario, for any delay measurement d , we

have:

dHTAI = 1

ρ

(
dH i −η

)
, i = 1, ...,K ,

dHTAI = 1

ρ

(
dHdamper −η

)
, (D.23)

and for the second scenario, we have:

dHTAI = dH i −2ω, i = 1, ...,K ,

dHTAI = dHdamper −2ω. (D.24)

Considering the damper releases the packets at the earliest, the rest of the proof follows the

same steps as the tightness proof of delay upper-bound.

Lemma D.3. −ψ≤ γ≤ψ, where ψ and ψ are defined in (7.14):

Proof. By definition of γ, we have:

γ=
K∑

j=1

(
dHTAI

j −d
H j

j

)
+

(
tHTAI − tHdamper

)
. (D.25)

First we prove the upper bound. By (7.1) the following holds for any JCS j :

dHTAI
j −d

H j

j ≤ (ρ−1)d
H j

j +η,

dHTAI
j −d

H j

j ≤ 2ω. (D.26)

Using the value of H in (D.11) and the upper bound in (D.10), we have tHdamper ≤∑K
j=1

(
δ j −d

H j

j +ε
)
+

∆U. Hence, similarly to the previous equation:

tHTAI − tHdamper ≤ (ρ−1)
(
∆U +

K∑
j=1

(
δ j −d

H j

j +ε
))

+η,

tHTAI − tHdamper ≤ 2ω. (D.27)

We first consider the case that the synchronization inequality is dominating for all systems

(i.e., the second line of (D.26) and (D.27)). Hence, we have:

γ≤
K∑

j=1
2ω+2ω= 2(K +1)ω. (D.28)

Second, we consider the case that the free-running mode is dominating for all systems (i.e., in

184



D.2 Proof of Theorem 7.1

the first line of (D.26) and (D.27)). Then, we have:

γ≤
K∑

j=1

(
(ρ−1)d

H j

j +η
)
+ (ρ−1)∆U

+ (ρ−1)

(
K∑

j=1

(
δ j −d

H j

j +ε
))

+η

= (ρ−1)

(
∆U +

K∑
j=1

(δ j +ε)

)
+ (K +1)η. (D.29)

Finally, by (D.28) and (D.29), γ≤ψ.

Next, we prove the lower bound. Similarly, by (7.1) the following holds for any JCS j :

dHTAI
j −d

H j

j ≥−
(
1− 1

ρ

)
d

H j

j − η

ρ
,

dHTAI
j −d

H j

j ≥−2ω. (D.30)

Using the value of H in (D.11) and the upper bound in (D.10), we have

tHdamper ≥
K∑

j=1

(
δ j −d

H j

j −ε
)
−∆L.

Hence:

tHTAI − tHdamper ≥−(1− 1

ρ
)(−∆L +

K∑
j=1

(δ j −d
H j

j −ε))− η

ρ
,

tHTAI − tHdamper ≥−2ω. (D.31)

We first consider the case that the synchronization inequality is dominating for all systems

(i.e., the second line of (D.26) and (D.27)). Hence, we have:

γ≥−
K∑

j=1
2ω−2ω=−2(K +1)ω. (D.32)

Second, we consider the case that the free-running mode is dominating for all systems (i.e., in

the first line of (D.26) and (D.27)). Then, we have:

γ≥−
(
1− 1

ρ

) K∑
j=1

d
H j

j − Kη

ρ
−

(
1− 1

ρ

)(
−∆L +

K∑
j=1

(
δ j −d

H j

j −ε
))

− η

ρ

=−
(
1− 1

ρ

)(
−∆L +

K∑
j=1

(
δ j −ε

))− (K +1)η

ρ
. (D.33)

Finally, by (D.32) and (D.33), γ≥−ψ.
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D.3 Proof of Theorem 7.2

Consider a packet that enters block 1 at time A. Let Ẽi and Ei denote respectively the theoreti-

cal and actual eligibility time of the packet from the damper of block i . Then, the delay from A

to the output of block N , i.e., EN , is:

dHTAI
e2e = EHTAI

N − AHTAI =
(
ẼHTAI

1 − AHTAI

)
+

N−1∑
i=2

(
ẼHTAI

i − ẼHTAI
i−1

)
+

(
EHTAI

N − ẼHTAI
N−1

)
. (D.34)

By Theorem 7.1 and setting the tolerances to zero, we can find delay and jitter bounds for(
ẼHTAI

1 − AHTAI

)
in TAI. For any term

(
ẼHTAI

i − ẼHTAI
i−1

)
in the summation, using Lemma D.4, we

can obtain delay and jitter bound by setting ∆L
i =∆U

i = 0 (since we are interested to find the

delay to the theoretical eligibility time at the damper i ). Finally, we can apply again Lemma

D.4 to get the bounds for
(
EHTAI

N − ẼHTAI
N−1

)
. By summing up the delay and jitter bounds of each

term in (D.34), we get the bounds in the statement of the theorem.

Lemma D.4. Consider a block i in Fig. 7.5 that has Ki JCSs. Assume that TE time-stamping is

used to compute damper headers. Let δblki denote the sum of the delay bounds of the JCSs in

the block, πHTAI

blki
,πHTAI

blki
and νHTAI

blki
respectively denote the sum of delay lower and upper bounds

and jitter bound of the BDSs. Then, the delay of a packet from theoretical eligibility time of

damper i −1, i = 2, . . . , N , to the actual eligibility time of damper i , in TAI, is upper-bounded by

D i , low-bounded by D i and has jitter bound Vi :

D i = δblki +πHTAI

blki
+∆U

i−1 +∆U
i +Ki ε+ψ′

i ,

D i = δblki +πHTAI

blki
+∆U

i−1 −∆L
i −Ki ε−ψ′

i
,

Vi = νHTAI

blki
+∆U

i +∆L
i +2Ki ε+ψi +ψ′

i
,

where,

ψ
′
i = min

(
(ρ−1)

(
δblki +∆U

i−1 +∆U
i +Ki ε

)+ (Ki +1)η,2(Ki +1)ω
)
,

ψ′
i
= min

((
1− 1

ρ

)(
δblki +∆U

i−1 −∆L
i −Ki ε

)+ (Ki +1)η

ρ
,2(Ki +1)ω

)
. (D.35)

Proof. The proof follows the same as Theorem 7.1 and using

H = (δ1 +∆U
i−1 −dH1

1 +e)+
K∑

j=2
(δ j −d

H j

j +e) =
K∑

j=1
δ j −

K∑
i=1

dH i

i +∆U
i−1 +K e, (D.36)

instead of (D.11) for damper header computation. Note that here d
H j

j is the delay of the

packet from start of time stamping at JCS j to its departure time.
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D.4 Proof of Theorem 7.3

JCS 1
Delay upper 

bound 𝛿!

BDS
1

Re-sequencing
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(Δ", Δ#)

JCS K
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BDS
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FIFO
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tolerances

(Δ", Δ#)

Re-sequencing
buffer

𝐴 𝑄 𝐸

𝑍𝐶

Figure D.1: The notations used in the proof of Theorem 7.3.

Consider Fig. D.1 where A is the sequence of packet arrival times at entrance of the block, Q is

the sequence of arrivals to the re-sequencing damper, and E is the sequence of actual eligibility

times at the re-sequencing damper. By definition, the re-sequencing damper behaves as a

damper with tolerances (∆L,∆U) followed by a re-sequencing buffer. Denote with C the

actual eligibility times from the damper with tolerance and with Z the output times of the

re-sequencing buffer; the equivalence means that E = Z .

By Theorem 7.1, the delay from A to C has lower bound D , upper bound D and the jitter bound

is V . Now, let P and P ′ be the sets of packets seen respectively at A and Q, i.e., P ′ ⊆P ; by

defining P ′, we only include the packets of P that arrive to Q; therefore, by [64, Theorem

4], the re-sequencing buffer does not increase the worst-case delay and jitter from A to C .

Hence, the delay and jitter bounds from A to Z are the same as from A to C , which proves the

theorem.

D.5 Proof of Theorem 7.4

JCS 1
Delay upper 

bound 𝛿!

BDS
1

HoL damper
with (Δ", Δ#)
(𝜙$%&, 𝜙$'()

JCS K
Delay upper 
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BDS
K’

FIFO Re-sequencing
damper (Δ", Δ#)

𝐴 𝑄 𝐸

𝑍
Single server
FIFO queue

(𝜙$%&, 𝜙$'()

𝑂

Figure D.2: The notations used in the proof of Theorem 7.4.

Consider Fig. D.2 where A is the sequence of packet arrival times at JCS 1 (entrance of the

block), Q is the sequence of arrivals to the head-of-line damper, Ẽ and E are the sequences

of theoretical and actual eligibility times at the head-of-line damper. By Lemma D.5, the

head-of-line damper is equivalent to a re-sequencing damper followed by a single-server

FIFO queue with service time in range [φmin,φmax]. Denote with Z the output times of the
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re-sequencing damper and O as the output of the single-server FIFO queue; the equivalence

means that E =O.

By Theorem 7.3, the delay from A to Z has lower bound D, upper bound D and the jitter

bound is V . Also, similarly to Corollary 7.1, arrival curve at Z is αreseq(t ) =α(t +V ).

By Lemma D.6, the delay upper-bound of the single-server FIFO queue is

max
k∈N

{
kφmax −α↓

reseq(k)
}

for nonzero processing time, i.e. φmax > 0; otherwise the delay upper-bound is zero. By [[183],

Proposition 7], we obtain α↓
reseq(k) ≥ α↓(k)−V . Therefore, the delay is upper-bounded by

θ = maxk∈N
{
kφmax −α↓(k)+V

}
for nonzero processing time, i.e., φmax > 0.

We can see that the delay lower bound is φmin as minimum processing time for a packet. This

gives the jitter VSSQ = θ−φmin. By summing the bounds from A to Z and the single-server

FIFO queue, we obtain the bounds in the statement of the theorem.

Lemma D.5. Consider a head-of-line damper shown in Fig. D.2. Then, this system can be

abstracted as a re-sequencing damper with tolerances (∆L,∆U) followed by a single-server FIFO

queue with service time in range [φmin,φmax].

Proof. We use the notation in Fig. D.2. Let E be the sequence of actual eligibility times at the

head-of-line damper and Ẽ the sequence of theoretical eligibility times. By the discussion that

follows (7.9) and by Lemma D.2, there exist sequences Ē and φ such that, for every n:

φn ∈ [φmin,φmax],

Ẽn −∆L ≤Ēn ≤ Ẽn +∆U,

En = max(Ēn ,En−1)+φn . (D.37)

Let us construct a re-sequencing damper with tolerances (∆L,∆U) and sequence of actual

eligibility times Z such that

Ẽn −∆L ≤ Ēn ≤ Ẽn +∆U,

Z1 = Ē1, Zn = max
{
Ēn , Zn−1

}
. (D.38)

Now consider a single-server FIFO queue with sequence of service times equal to φ and input

sequence Z . Then, the output sequence from the FIFO queue, O, is

O1 = Z1 +φ1,On = max(On−1, Zn)+φn ;n ≥ 2. (D.39)

We now show by induction that On = En for every n ≥ 1. This holds for n = 1. Assume that it

holds for n−1. Observe first that Zn−1 ≤On−1 (becauseφn ≥ 0) and therefore, by the induction
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hypothesis,

Zn−1 ≤ En−1. (D.40)

By (D.39) and again the induction hypothesis:

On = max(En−1, Zn)+φn . (D.41)

By (D.38):

On = max(En−1, Ēn , Zn−1)+φn = max(En−1, Ēn)+φn , (D.42)

because of (D.40). It follows from (D.37) that On = En .

Lemma D.6. Consider a flow with per-packet arrival curve α that enters a single-server FIFO

queue. Suppose that a head of line packet n has a processing time φn ∈ [
φmin,φmax

]
. Then a

delay bound of the flow θ is:

θ = max
i∈N

{
iφmax −α↓(i )

}
. (D.43)

Proof. Let us call In and On as arrival and departure times of packet n. By Lemma D.7, we

have:

On = max
m≤n

{
Im +

n∑
i=m

φi

}
. (D.44)

We subtract In from both sides:

On − In = max
m≤n

{
Im +

n∑
i=m

φi

}
− In = max

m≤n

{
n∑

i=m
φi − (In − Im)

}
. (D.45)

By (3.21), we have In − Im ≥α↓(n −m +1); therefore,

On − In ≤ max
m≤n

{
n∑

i=m
φi −α↓(n −m +1)

}
. (D.46)

Since φi ≤φmax:

On − In ≤ max
m≤n

{
(m −n +1)φmax −α↓(n −m +1)

}
≤ max

i∈N

{
iφmax −α↓(i )

}
= θ. (D.47)

Lemma D.7. Consider a single-server FIFO queue. A packet n arrives at time In and the service

time is φn when it is at the head of the queue. Then, the departure time of packet n is On and
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computed as:

On = max
m≤n

{
Im +

n∑
i=m

φi

}
. (D.48)

Proof. Since we have for a single-server FIFO queue:

O1 = I1 +φ1, On = max(In ,On−1)+φn , (D.49)

by Lemma D.1 the statement is proven.

D.6 Proof of Theorem 7.5
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Figure D.3: The notations used in the proof of Theorem 7.5.

Consider Fig. D.3 where A is used to denote the arrival times to JCS 1, W the departure times

from element e, Q the arrival times to the damper, Ẽ and E respectively the theoretical and

actual eligibility times at the damper. Now for packets m,n : m < n , since from output of

element e to the input of the damper is FIFO, we have Wm ≤Wn . Then, as the jitter from JCS 1

to element e is bounded by J , we have:

(Wn − An)− (Wm − Am) ≤ J

thus Am − An ≤ J +Wm −Wn ≤ J

thus An ≥ Am − J . (D.50)

Now by (7.5), we have:

Ẽn −∆L ≤ Ēn ≤ Ẽn +∆U,

E1 = Ē1, En = max
{
Ēn ,En−1

}
. (D.51)
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By definition, the re-sequencing damper behaves as a damper with tolerances (∆L,∆U) fol-

lowed by a re-sequencing buffer, where Ē is the output of the damper with tolerance and E is

the output of the re-sequencing buffer. Now, let n be fixed and define packet index u as

u = max

{
k ≤ n|Ēk = max

j≤n

{
Ē j

}}
. (D.52)

Then, we have En − An = Ēu − An . Combining with (D.50) for packets u and n, we obtain:

En − An ≤ Ēu − Au + J . (D.53)

Since Ē is the output of the damper with tolerance, by Theorem 7.1, Ēu − Au ≤ D; hence

En − An ≤ D + J , which proves the delay upper bound. By (D.51) and Theorem 7.1, we have:

En − An ≥ Ēn − An ≥ D , (D.54)

which proves the delay lower bound for this case. Since the delay lower-bound is not changed,

and the upper-bound is increased by J , hence the jitter bound is increased by J .

Proof of tightness. The tightness scenario for delay lower-bound is exactly the same as

tightness scenario in Theorem 7.1 where a single packet in isolation reaches the delay lower-

bound D .

For the delay upper-bound and jitter bound tightness, consider two packets 1 and 2 as shown

in Fig D.3 that arrive at times t and t + J in TAI. Assume every local clock (of JCS or damper)

H i is adversarial and faster than TAI such that for any delay measurement d , we have:

dHTAI = min
(
ρdH i +η,dH i +2ω

)
.

Let us call the worst-case delay, in TAI, from input of JCS 1 to the output of e, as δ. Suppose that

packets 1 and 2 experience delays of δ and δ− J , in TAI, to leave element e, i.e., W1 =W2 = t +δ,

and packet 2 arrives just before packet 1. Also, both experience the same delay from output of

element e to the input of the damper while packet 2 is still prior to packet 1 due to the FIFO

assumption. Since packet 1 arrives after packet 2, it is released after packet 2 becomes eligible

(even if its theoretical eligibility time has passed).

Now, assume packet 2 experiences a delay, in TAI, equal to D from A to E , i.e., E2 = A2 +D =
t + J +D (the packet that reaches the upper-bound in tightness scenario of Theorem 7.1).

Therefore, packet 1 is released after packet 2, i.e., E1 = E2 = t + J +D. Hence, the delay of

packet 1 from A to E is:

E1 − A1 = (t + J +D)− (t ) = J +D , (D.55)

that is equal to the delay upper-bound of the theorem statement.

Now, we verify the assumptions;
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1) The jitter from JCS 1 to the output of e is not larger that J : The delay of packet 1 and packet

2 are respectively δ and δ− J in TAI, and therefore the jitter is J .

2) The FIFO constraint of the damper is not violated: Packet 2 arrives before packet 1, Q2 ≤Q1,

and also leaves before is E2 ≤ E1.

Hence, we showed an execution trace that with packet 2 experiencing a delay of D , packet 1

experiences a delay of D + J . Since there execution traces where in one, a packet reaches the

lower-bound of Theorem 7.1 and in another one, a packet reaches the delay upper-bound of

Theorem 7.1 plus J , we have that the jitter Theorem 7.1 is increased by J .

D.7 Proof of Theorem 7.6

Consider Fig. D.3 where A is used to denote the sequence of arrival times to JCS 1, W the

departure times from element e, Q the arrival times to the damper, Ẽ and E respectively

the theoretical and actual eligibility times at the damper. By Lemma D.5, we abstract it as a

re-sequencing damper followed by a single-server FIFO queue. Let Z denote the sequence

of departure times from the re-sequencing damper; then, by Theorem 7.5, for a packet n, we

have:

D ≤ Zn − An ≤ D + J , (D.56)

and the jitter from A to Z is V + J . As a result, by Lemma 6.1, an arrival curve at the output

of the re-sequencing damper (input of the single-server FIFO queue) is αreseq =α(t +V + J).

Then by Lemma D.6 for nonzero processing time:

En −Zn ≤ max
k∈N

{
kφmax −α↓

reseq(k)
}
≤ max

k∈N

{
kφmax −α↓(k)+V + J

}
= θ+ J , (D.57)

where θ is defined in (7.28). Finally, by (D.56), we have,

En − An = (En −Zn)+ (Zn − An) ≤ D + J + (θ+ J )1{φmax>0}, (D.58)

which proves the delay upper bound. Note that by Theorem 7.4, an upper-bound on the delay

is D +θ1{φmax>0}.

Using minimum processing time and (D.56), we have:

En − An = (En −Zn)+ (Zn − An) ≥φmin +D , (D.59)

which proves the delay lower bound. Since the delay lower-bound is not changed, and the

upper-bound is increased by J + J1{φmax>0}, the jitter bound is increased by J + J1{φmax>0}.
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