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Abstract
Current post-earthquake damage assessment methodologies are not only time-consuming

but also subjective in nature and difficult to document. Recent advancements in artificial

intelligence and technological devices make it possible to accomplish this task automatically,

efficiently, and objectively. Our vision for an automated post-earthquake evaluation begins

with image data, such as that obtained by an Unmanned Aerial Vehicle, which is then processed

to detect damage and generate a Finite Element Method (FEM) model. The mechanical

properties of this FEM model are updated based on the observed damage, and a numerical

analysis is done to determine the structural response. To account for estimation errors, an

analysis of uncertainty would be conducted on the entire procedure for creating FEM models

from images. This thesis aims to realize this vision for free-standing stone masonry buildings.

The main objective of the current research is to propose robust and computationally efficient

methodologies to automatically generate 3D models for free-standing stone masonry buildings

and provide information on damage detected in RGB images. This allows for an effective and

more objective post-earthquake damage assessment with straightforward documentation,

allowing future correlation of damage information with the mechanical properties of the

model.

RGB images were used for two purposes, i.e., 3D model generation and damage detection.

Related to 3D models, an image-based pipeline was developed to automatically create level of

detail (LOD) models, specifically LOD3, using structure-from-motion and semantic segmenta-

tion, in order to produce a geometrical representation of a building. In contrast to the existing

works, the method does not rely on post-processing of extremely precise 3D models, does

not use predefined templates, does not require human manipulation, and provides semantic

understanding of the final model’s components. Cracks were detected using state-of-the-art

deep learning approaches, which were complemented with a TOPO-Loss function that does

not require pixel-precise labels and emphasizes the continuity of the crack topology. When

assessing the mechanical effect of a crack, not only the crack geometry but also the crack open-

ing in Mode I and II are important input parameters. While this information can be readily

obtained in laboratory settings using digital image correlation measurements, such techniques

cannot be applied in real settings when reference images before the damage occurred do not

exist. It was therefore developed the first approach for estimating these quantities based on

RGB images of the damaged structural component only. The crack opening is determined in

Mode I and Mode II from images by formulating the problem as a registration problem of the

two crack edges retrieved from a binary mask that represents the crack’s semantic segmenta-
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Abstract

tion. To address the difficulty in documenting visual inspections, damage augmented digital

twins were proposed, which are digital representations of real assets that include damage

information related to damage and its characterization in addition to geometrical information.

In order to contribute to numerical modeling, an image-based pipeline that enables the

automatic generation of the FEM geometry using two approaches was proposed: 3D solid

elements and macro elements. Finally, it is presented an unique framework for automatically

generating geometrical digital twins of stone masonry elements with detail down to the stone

level intended to be used in numerical simulations of stone masonry elements, specially those

that are built to be tested in laboratory.

We expect that the research presented in this doctoral thesis will enable, in the future, auto-

matic post-earthquake assessment of stone masonry buildings. Future work will consider

images from the inside of the building in order to complete the damage assessment and refine

the numerical models, as well as develop the pipeline for real-time applications.
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Zusammenfassung
Die derzeitigen Methoden zur Schadensbewertung nach Erdbeben sind nicht nur zeitauf-

wändig, sondern auch subjektiv und schwer zu dokumentieren. Die jüngsten Fortschritte im

Bereich der künstlichen Intelligenz und der technischen Geräte ermöglichen es, diese Aufgabe

automatisch, effizient und objektiv zu erfüllen. Unsere Vision für eine automatisierte Bewer-

tung nach einem Erdbeben beginnt mit Bilddaten, zum Beispiel aufgenommen von einem

unbemannten Luftfahrzeug. Diese werden dann verarbeitet, um Schäden zu erkennen und

ein FEM-Modell (Finite Elemente Methode) zu erstellen. Die mechanischen Eigenschaften

dieses FEM-Modells werden auf der Grundlage der beobachteten Schäden aktualisiert, und es

wird eine numerische Analyse durchgeführt, um die strukturelle Reaktion zu bestimmen. Um

Schätzungsfehler zu berücksichtigen, würde eine Unsicherheitsanalyse für das gesamte Ver-

fahren zur Erstellung von FEM-Modellen aus Bildern durchgeführt. Die vorliegende Arbeit zielt

darauf ab, diese Vision für freistehende Gebäude aus Steinmauerwerk zu verwirklichen. Das

Hauptziel der Forschungsarbeit besteht darin, robuste und rechnerisch effiziente Methoden

zur automatischen Erstellung von 3D-Modellen für freistehende Gebäude aus Steinmauerwerk

vorzuschlagen und Informationen über in RGB-Bildern erkannte Schäden bereitzustellen.

Dies ermöglicht eine effektive und objektivere Schadensbewertung nach einem Erdbeben mit

einer einfachen Dokumentation, die eine spätere Korrelation der Schadensinformationen mit

den mechanischen Eigenschaften des Modells ermöglicht.

RGB-Bilder wurden für zwei Zwecke verwendet, nämlich für die Erstellung von 3D-Modellen

und die Schadenserkennung. In Bezug auf 3D-Modelle wurde eine bildbasierte Pipeline ent-

wickelt, um automatisch Level-of-Detail-Modelle (LOD) zu erstellen, insbesondere LOD3,

unter Verwendung der structure-from-motion Methode und semantischer Segmentierung,

um eine geometrische Darstellung eines Gebäudes zu erzeugen. Im Gegensatz zu bestehenden

Arbeiten ist die Methode nicht auf die Nachbearbeitung extrem präziser 3D-Modelle angewie-

sen, verwendet keine vordefinierten Vorlagen, erfordert keine menschliche Manipulation und

bietet ein semantisches Verständnis der Komponenten des endgültigen Modells. Risse wurden

mithilfe modernster Deep-Learning-Ansätze erkannt, die durch eine TOPO-Loss-Funktion

ergänzt wurden, die keine pixelgenauen Beschriftungen erfordert und die Kontinuität der

Risstopologie hervorhebt. Bei der Bewertung der mechanischen Wirkung eines Risses sind

nicht nur die Rissgeometrie, sondern auch die Rissöffnung in Mode I und II wichtige Ein-

gangsparameter. Während diese Informationen unter Laborbedingungen anhand digitaler

Bildkorrelationsmessungen leicht gewonnen werden können, sind solche Techniken in einer

realen Umgebungen nicht anwendbar, wenn keine Referenzbilder vor dem Auftreten der Schä-
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Zusammenfassung

digung vorhanden sind. Daher wurde der erste Ansatz zur Schätzung dieser Größen entwickelt,

der nur auf RGB-Bildern des beschädigten Bauteils basiert. Die Rissöffnung wird in Modus I

und Modus II aus Bildern bestimmt, indem das Problem als ein Registrierungsproblem der

beiden Risskanten formuliert wird, die aus einer binären Maske gewonnen werden, die die se-

mantische Segmentierung des Risses darstellt. Um die Schwierigkeiten bei der Dokumentation

visueller Inspektionen zu beheben, wurden schadenserweiterte digitale Zwillinge vorgeschla-

gen. Dabei handelt es sich um digitale Darstellungen realer Objekte, die zusätzlich zu den

geometrischen Informationen auch Schadensinformationen und deren Charakterisierung

enthalten.

Um zur numerischen Modellierung beizutragen, wurde eine bildbasierte Pipeline vorgeschla-

gen, die die automatische Generierung der FEM-Geometrie mit zwei Ansätzen ermöglicht:

3D-Volumenelemente und Makroelemente. Schließlich wird ein einzigartiger Rahmen für

die automatische Erzeugung geometrischer digitaler Zwillinge von Steinmauerelementen

mit Details bis auf Steinebene vorgestellt, der für numerische Simulationen von Steinmau-

erelementen verwendet werden soll, insbesondere für solche, die für Tests im Labor gebaut

werden.

Wir gehen davon aus, dass die in dieser Dissertation vorgestellte Forschung in Zukunft eine

automatische Bewertung von Gebäuden aus Steinmauerwerk nach einem Erdbeben ermögli-

chen wird. Künftige Arbeiten werden Bilder aus dem Gebäudeinneren berücksichtigen, um

die Schadensbeurteilung zu vervollständigen und die numerischen Modelle zu verfeinern,

sowie die Pipeline für Echtzeitanwendungen zu entwickeln.
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1 Introduction

1.1 Problem statement

After a significant earthquake, the structural safety of thousands of buildings needs to be

assessed. This is typically done in two stages: First, a rapid assessment is performed to judge

whether the building can be continued to be used or not. Second, for those buildings that

require interventions, a detailed inspection followed by structural analyses and the design of

an intervention project are carried out. The rapid inspection is performed by civil engineers

or architects who inspect each building visually and document the damage to the structure in

a form that show typical cases of damage and their descriptions (1) (traditionally a paper form,

e.g. the Swiss form (2)).

The current visual inspection of buildings for rapid post-earthquake damage assessment has a

number of shortcomings:

• Lengthy process: Initial inspection process can take several months. The length of the

process stems from the limited number of experts, the time required for travelling to

and visiting each building (3; 4).

• Poor documentation: Due to its manual nature and absence of new technology, the

damage recording is inadequate. This is especially true when using the paper version

of the form, as only descriptions or, at best, sketches of damage patterns are included.

During the damage assessment of buildings in Croatia after Zagreb and Petrinja 2020

earthquakes, a mobile phone application was used that enabled the addition of pho-

tographs to the form (5). Despite the fact this was a considerable advance, the reports

still were unclear in relation to the location of the damage and its structural significance.

• Subjective conclusions and non-actionable information: The evaluation results are

highly dependent on the inspector. The damage documentation is insufficient for a

remote expert evaluation in case of doubts, for insurance claims, or for a detailed stage

two evaluation, all of which require further site visits.
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Introduction

The current state of the art in damage assessment combines image data with computer vision

techniques, such as deep learning and photogrammetry, to reduce inspection subjectivity and

operation time (6). This includes the application of convolutional neural networks (CNNs) for

damage detection, classification, and segmentation (7; 8; 9; 10; 11; 12), as well as computer

vision techniques for the automatic generation of 3D models (13; 14; 15; 16; 17; 18; 19; 20). The

majority of published research focuses on the partial automation of particular tasks necessary

for a building damage inspection. Instead of this, the vision of this research was to have an

end-to-end pipeline for automated and reliable rapid damage inspection that significantly

accelerates the inspection procedure and aids engineers in assessing the status of buildings

and making decisions more quickly.

The complete envisaged procedure to assess the building state after seismic activity is shown

in Fig. 1.1. It starts with the collection of images, which can be taken with hand-hold cameras

and/or Unmaned Aerial Vehicles (UAVs). This image data is processed with computer vision

techniques to generate a three-dimensional models and detect damaged areas. The mentioned

models can be transformed into a finite element (FE) geometry to which information of the

detected damage is added. In addition, based on the damage location and characterization,

constitutive models representing damaged and undamaged areas, which are the result of

experimental campaigns and its micro-modeling validation, are assigned to the structural

elements. This information altogether generates the FE model that is necessary as input in a

finite element software.

UAV Image 
Data Collection

3D Models

Damage detection
 and characterization

Experimental
Campaing

Undamaged and
Damaged Constitutive
Models of Structural 

Elements

Finite Element
Software

Mechanical
Analysis

Uncertainty
Analysis

Finite Element
Geometry

 
Damaged

Model

Undamaged
Model

Finite Element
Model

Micro-modeling

Figure 1.1: Towards and automated post-earthquake damage assessment pipeline. Full envis-
aged procedure for an automatic damage assessment. The blue components relate directly to
this research.

Although this procedure could be applied to various types of structures and materials, this

research focused on free-standing stone masonry buildings. These buildings are among the

most vulnerable buildings under earthquake events due to poor interlock between stones

and the low tensile strength in the mortar (21). The typical failure mechanisms of this type

of structures under seismic activity are produced by out-of-plane and in-plane failure of

spandrels and piers. Figure 1.2 shows these modes of failure. Out-of-plane failure, which can
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1.2 Objectives and scope

produce a partial or total collapse of the structure, is caused mainly by the self-weight and

low quality in the connection among elements (22). On the other hand, in-plane failure is

produced by inertial forces not only of the element’s weight but also of the other elements the

wall is bearing and is manifested as cracks in spandrels and piers. While damaged spandrels

mostly reduce global stiffness and strength, damaged piers can produce the collapse of the

structure (21).

(a) (b)

Figure 1.2: Failure mechanisms after earthquake events - a) In-plane failure due to flexural
and shear deformations - b) Out-of-plane failure of the facade gable.

In stone masonry buildings only the outer walls are typically load-bearing walls (23). For this

reason, this building typology lends itself very well for an image-based assessment where

images are collected only from the outside. As the seismic response of stone masonry buildings

is the focus of several ongoing research projects at the Earthquake Engineering and Structural

Dynamics (EESD) laboratory, it made perfect sense to conduct this study there. Current work

of the laboratory concentrates on investigating the mechanical performance of stone masonry

walls for a large range of static and kinematic boundary conditions and on developing tools

for the analysis of masonry buildings, in particular masonry buildings with poor floor-wall

and wall-wall connections where local out-of-plane failures are common.

1.2 Objectives and scope

The main objective of this doctoral research is to contribute to the current practice for post-

earthquake damage assessment by the development and implementation of different tools that

allow and end-to-end image-based inspection. This PhD thesis is focused on the highlighted

(blue) components of the pipeline proposed for an automatic post-earthquake assessment

visualized in Fig. 1.1. More specifically, the scope of this research undertakes three main

parts for which image data is the starting point: damage detection and its characterization,

generation of 3D models for documentation of damage and setting up the geometry of a

FE model at building and micro scales. The components developed during the research are
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presented in the scheme of the Figure 1.3

Figure 1.3: Developed components during doctoral research. Top sequence image-based
automated post-earthquake damage assessment components. Bottom sequence: image-
based micro-models for stone masonry elements. DADT:damage augmented digital twin.
FEM: finite element model. EFM: equivalent frame model. GDT: geometrical digital twin.

This pipeline for rapid damage inspection begins with the collection of image data of the

buildings. These images are used for two purposes: first, to develop 3D models with geometric

abstraction of the building using photogrammetry techniques; and second, to automatically

detect damage using deep learning methodologies (specifically cracks). Next, all damage

information is described by extracting essential characteristics, such as the width, length,

orientation and location of cracks. Later, the 3D geometry and damage information of the

asset can be merged to build a 3D model that provides an efficient system for documenting

and can serve as an inspection tool for making more objective decisions. For a more precise

evaluation, these models can be post-processed to yield geometries appropriate for finite

element method analysis (using solid-elements and/or macro-elements).

As depicted in the Figure 1.1, one of the next steps in this research line is the mechanical

modeling of the buildings considering damaged and undamaged settings whose mechanical

properties are obtained by applying the findings from experimental campaigns. These nu-

merical simulations would provide more accurate information about the building’s condition,

which would be crucial for making decisions. To contribute towards this information transfer

from experimental results to the numerical models, it was studied in parallel the generation

of micro-models of stone masonry elements at the stone level in terms of geometrical digital

twins (GDT) (bottom sequence in Figure 1.3). This allows comparing numerical simulations

to experimental results which enables the future development of constitutive models, which
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later can be used for the modeling of the full-scale building.

The main contributions of this doctoral research were:

• Advance the state of the art in crack identification using convolutional neural networks

(CNNs) by using a methodology that preserves the continuity of the detected cracks

while at the same time using noisy labels to training (24) (Chapter 2).

• Develop a new machine-learning-based method for characterizing cracks by predicting

their normal and tangential displacements while propagating allowing identify openings

in Mode I and Mode II (25) (Chapter 3).

• Use computer vision and machine learning approaches to create image-based methods

for the automatic development of simplified polygonal surface models of buildings as

level of detail - LOD3 (26) (Chapter 4).

• Provide an efficient methodology for documenting post-earthquake assessments com-

bining 3D geometrical and damage information of the buildings by automatically gener-

ating damage augmented digital twins (DADTs) (27) (Chapter 5).

• Develop image-based methodologies to generate finite element geometries at the build-

ing level using solid-elements and macro-elements (28) (Chapter 6)

• Develop an image-based methodology to generate micro-models for stone masonry ele-

ments in terms of geometrical digital twins for experimental specimens (29) (Chapter 7).

The main limitations of the presented work are as follows:

• The methodologies consider only images from the outside of the building envelope.

For free standing stone masonry buildings, most of the load bearing masonry elements

are part of the facades; information on the building envelope and the damage of this

building envelope yields therefore often a reasonable proxy of the effect of the damage

on the entire building. However, they remain approximate and dependent on additional

input (e.g. wall thickness, type of floors), which lead to further uncertainties in the

predicted response.

• Photogrammetry, specifically structure-from-motion (SfM), is at the core of the method-

ologies developed here for the generation of 3D models. Therefore, the limitations

of that technique are inherited, such as the requirement of a suitable texture for the

reconstructed objects and appropriate image data input. For the former, it was observed

that when structures have a low surface roughness, their reconstructions tend to fail

due to the inability to detect a sufficient number of keypoints (point features) required

by the SfM pipeline. SfM necessitates that the input image data contain sufficient over-

lapping information between photos and acceptable relative camera orientations when
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images are captured. It was highlighted that expertise in image collecting is essential to

ensure these two elements, which can be circumvented if this data collection is auto-

mated through the employment of robots, a complex topic that has been extensively

researched.

• Although it is expected that the approaches can be adapted to various types of struc-

tures, the focus of this study is on freestanding stone masonry buildings with simple

irregular polygonal surface shapes. If the methods are tested on other types of structures

with considerably different topologies, it is anticipated that they will fail. Nonetheless,

adjusting the methodologies for inferring the 3D geometry, such as retraining the deep

learning models using new image data, would aid in achieving this goal.

• Uncertainty quantification: Each step of the process is affected by uncertainties which

affect on the predicted response need to be quantified; this was, however, outside the

scope of this thesis. Note that also the effect of the damage on the mechanical properties

of the masonry material was outside the scope of this thesis.

The format of the thesis is paper-based. Chapters from 2 to 7 consist of previously published

or submitted-for-publication papers that cope the objectives of this research. Chapter 8

summarizes the main findings of the research study and open questions to be developed in

future works.

6



2 Crack detection of buildings in the
wild

This chapter represents the slightly modified post-print version of the article: B. G. Pantoja-

Rosero, D. Oner, M. Kozinski, R. Achanta, P. Fua, F. Perez-cruz, K. Beyer, “TOPO-Loss for

continuity-preserving crack detection using deep learning”, Construction and Building Mate-

rials, 344 (2022) p. 128264. The formatting and numbering of equations, tables and figures

have been adapted to this document.

Abstract

We present a method for segmenting cracks in images of masonry buildings damaged by

earthquakes. Existing methods of crack detection fail to preserve the continuity of cracks,

and their performance deteriorates with imprecise training labels. We address these prob-

lems by adapting an approach previously proposed for reconstructing roads in aerial im-

ages, in which a Convolutional Neural Network is trained with a loss function specifically

designed to encourage the continuity of thin structures and to accommodate imprecise an-

notations. We evaluate combinations of three loss functions (the Mean Squared Error, the

Dice loss and the new connectivity-oriented loss) on two datasets using TernausNet, a deep

network shown to attain state-of-the-art accuracy in crack detection. We herein show that

combining these three losses significantly improves the topology of the predictions quan-

titatively and qualitatively. We also propose a new continuity metric, named Cracks Per

Patch (CPP), and share a new dataset of images of earthquake-affected urban scenes accom-

panied by crack annotations. The dataset and implementations are publicly available for

future studies and benchmarking (https://github.com/eesd-epfl/topo_crack_detection and

https://doi.org/10.5281/zenodo.6769028).

2.1 Introduction

Masonry buildings are among the most vulnerable structures under seismic loads (21), so

it is important to evaluate their structural behavior after any such event. However, current
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Chapter 2. Crack detection of buildings in the wild

methodologies for their post-earthquake damage assessment rely on visual inspection by

engineers, which is time-consuming and arduous as well as subjective in nature (30). This

motivates the development of faster and objective approaches for damage assessment, which

is possible thanks to the recent breakthroughs in deep learning and artificial intelligence.

In a post-earthquake assessment, the first step is invariably damage detection, particularly

crack detection. Any damage features revealed by this assessment can be correlated with

mechanical properties using constitutive models developed from experimental campaigns

(31; 32; 33). Crack detection can be automated through deep learning, such as by convolutional

neural networks (CNNs) (34). Numerous studies are dedicated to the use of CNNs to semanti-

cally segment cracks in different materials (35; 36; 37; 38; 39; 40; 41; 42; 43; 12; 44; 45; 46; 47; 48).

However, all such approaches suffer from a major shortcoming—cracks are detected at the

pixel level, i.e., each pixel is individually labelled as belonging to a crack or otherwise, with

no regard for the continuity of the cracks. This problem arises due to the use of pixel-based

loss functions, like the Mean Squared Error (MSE) or Dice loss, which often detect fragments

of cracks without preserving their continuity. When used in numerical models, these auto-

matically detected crack fragments can contribute considerable errors in the estimated stress

distribution.

When damaged structures are numerically modeled, incorrectly detected cracks can affect

analysis results. If a continuous crack is modeled as discontinuous, the model disguises the

actual structural behavior, making it stiffer and redistributing the stress differently. Such

differences in mechanical analyses may overturn crucial decisions for managing damaged

structures. In extreme scenarios, overestimating the stiffness of the structure may lead decision

makers to underestimate damage and attempt to repair a building that is close to structural

collapse. Conversely, underestimating the stiffness could lead to overestimate the damage and

demolish a building that could be repaired, generating unnecessary costs.

A further situation where continuity-preserving crack detection is important occurs in ma-

sonry structures. In these structures, a diagonal crack often follows the mortar joints and is

thus not straight, resulting in changes in the opening mode along the crack (Mode I, Mode II

and mixed mode) (25). After unloading, Mode I crack segments tend to close, whereas Mode II

crack segments remain open. As a result, Mode I crack segments are frequently difficult to

detect and a long diagonal crack may appear as many short segments. The current state-of-

the-art cannot address such situations where it is critical to detect cracks while maintaining

the continuity of the crack topology.
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Another drawback of current crack segmentation techniques is that they require pixel-precise

labels to train CNNs as well as to assess their performance. However, the preparation of such

pixel-precise labels requires significant manual effort, making it difficult, if not impossible, to

do so for real-world images due to the wide range of variation in the image sizes and quality.

Moreover, it is often difficult to determine the exact trajectory of cracks in images of entire

facades taken from a considerable distance.

In this paper, we overcome both of these shortcomings. We first make use of the topological

loss (TOPO) (49), which specifically penalizes discontinuities. For the assessment of continu-

ity, we introduce a new metric that counts the number of cracks in an input image. We next

show that this loss can accommodate coarse labels, significantly reducing the labelling effort

needed to deploy our system.

We present experiments on two datasets, in which we compare the performance of Ternaus-

Net (50), a standard deep network architecture previously used for crack detection (51), that

has been trained with different loss functions. We specifically focus on the capacity of the

network to correctly represent the topology of cracks. To compare the topology of the pre-

dicted and annotated cracks, we introduce a new dedicated metric that we call Cracks Per

Patch (CPP). Both qualitative and quantitative results show that the use of TOPO significantly

improves crack continuity while reducing false positives. We make both our code and the new

dataset publicly available.

The contributions of this paper are as follows:

• A thorough evaluation of different loss functions in crack detection, emphasising the

correct representation of crack topology (preserving continuity of the detected cracks).

• A solution for continuity crack detection problems that does not require pixel-precise

labels, attained through the adaptation of an existing method for road network segmen-

tation.

• A new metric to assess continuity preservation in crack prediction.

• A new training dataset of real-world building images containing labelled cracks.

2.2 Related work

One way to automatically assess the state of a building affected by an earthquake is through

image analysis, beginning with the detection of damage and deterioration. Recent approaches

to this problem can be divided into three main categories (52; 53): heuristic feature extraction,

change detection and deep learning. The first approach applies a threshold or a machine
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learning classifier to the output of a hand-crafted filter (54; 55; 56). The second approach

establishes a baseline representation of the structure that is compared against data from

subsequent inspections (57; 58; 59). The third approach employs deep learning and may be

combined with heuristics (39; 36; 43).

One of the first examples of using deep learning to detect cracks in civil engineering structures

was presented by Zhang et al. (35). Inspired by similar works in computer vision and medical

imaging, the authors proposed a CNN-based method for crack detection in pavements. Build-

ing on this approach, several other approaches were introduced for specific scenarios using

variations in the network architecture to segment, detect or classify damage. For instance,

Zhang et al. (36) proposed a CNN architecture that does not have pooling layers to downsize

outputs of previous layers and used as input data feature maps generated by line filters. Cha et

al. (39) used CNNs to detect concrete cracks without calculating the defect features, along

with a sliding window technique to scan any image size. Chen et al. (60) integrated a CNN

and a Naïve Bayes data fusion scheme to analyze individual video frames for crack detection.

Hoskere et al. (41) proposed a framework for generating vision-based condition-aware models

to aid inspection decisions by projecting CNN results to photogrammetry based 3D mesh

models. Kim et al. (43) presented an automated detection technique using CNNs for crack

morphology on concrete surface under an on-site environment. An appreciable improvement

in crack predictions was presented by Liu et al. (12), where the widely used U-Net architec-

ture (61) was trained to detect cracks in concrete.

Specifically related to buildings, Ghosh et al. (62) detected damage through a region-based

CNN architecture that uses bounding boxes to locate four types of damage: cracks, spalling,

spalling with exposed rebars and buckled reinforcement. Bai et al. (38) used different CNN

models to instead perform pixel-wise semantic segmentation by training models to predict

cracks in images at different levels—the pixel level, object level and structural level. For ma-

sonry material in particular, a complete review can be found in (63). Chaiyasarn et al. (40)

proposed a crack segmentation system that combined deep CNN and Support Vector Ma-

chines (SVM). Ali et al. (37) used R-CNN to detect damaged bricks in buildings, and Rezaie et

al. (51) compared the performance of CNN and Digital Image Correlation (DIC) to detect

cracks in plastered stone masonry walls from an experimental campaign. More recently,

similar work was presented by Dai et al. (44), where the authors segmented cracks on masonry

buildings using FCNN with pre-trained encoders trained with cross-entropy loss.

These approaches are highly accurate for detecting pixels that represent structural damage.

However, as we will show, they still fail to reliably represent the continuity of cracks. This is

not a contradiction, since it takes only a few mis-classified pixels to break crack continuity,

though this incurs little penalty in terms of per-pixel accuracy. Addressing this shortcoming is

the main contribution of this paper.
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Li et al. (64) and Zhang et al. (65) present works in which continuity is helped to be preserved.

In these works, continuity is maintained indirectly as a result of their proposed methodology,

in which cracked patches are fused to provide a general context for the image. Unlike them,

our approach focuses on directly solving the problem of conserving crack continuity on

segmentation using CNN, as the loss function used is designed based on the crack pattern

topology.

2.3 Methodology

In this section, we present our approach to crack detection. We first specify the network

architecture, then define the loss functions, and finally detail the hyper-parameters used in

our experiments.

2.3.1 Network architecture

All our experiments are based on the TernausNet architecture (50), which is a CNN consisting

of an encoder and decoder, like the even more common U-Net (61). The major difference

between these architectures is that TernausNet uses the convolutional part of a pre-trained

VGG network (66) as its encoder. This speeds-up convergence and produces more accurate

results than a conventional U-Net, even when little training data is available. The architecture

diagram is presented in Fig. 2.1.

Depending on the loss function that is used, we either train TernausNet to regress the truncated

distance from each pixel to the nearest crack center or to classify pixels as cracks or background.

For the classification experiments, we terminate the network as a Softmax layer. In the

experiments aimed at distance regression, we use Rectified Linear Unite (ReLU) activation

function.

2.3.2 Loss functions - pixel classification

The standard approach for crack detection classifies each image pixel as crack or background.

To formalize this approach, we denote the set of image pixels by I and individual pixels by

p ∈ I . We denote the prediction by yb and the corresponding binary annotation by ŷb. yb[p]

and ŷb[p] are the values of the prediction and the annotation for pixel p, where ŷb[p] = 1 if p

represents a crack in a wall, and ŷb[p] = 0 otherwise. We evaluate the following two approaches

to pixel classification.
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Figure 2.1: The TernausNet CNN architecture (50). The arrows represent the operations
performed between the layers. The numbers on the layers’ sides correspond to the number of
kernels on the layer.

Mean Squared Error with binary ground truth (MSE-BIN)The simplest approach for pixel

classification is to enforce the per-pixel annotations on the network output by means of the

MSE, defined as

LMSE(yb, ŷb) = ∑
p∈I

(yb[p]− ŷb[p])2. (2.1)

This basic loss here is typically outperformed by the more sophisticated Dice-loss alternative

specified below.

Dice loss (DICE)The Dice loss (67), defined as

D(yb, ŷb) = 1− 2
∑

p∈I ŷb[p]yb[p]∑
pϵI ŷb[p]+∑

pϵI yb
, (2.2)

has been specifically designed to maximize the Dice score (second term in Eq. 4.1 – also known

as F1 score). In section 6.3, we will show that it indeed outperforms the MSE-BIN on this

metric.

2.3.3 Loss functions - distance regression

The alternative to pixel classification is to force the network to regress the distance from each

pixel to the nearest crack center. The advantage of this approach is that, by design, it is robust

12



2.3 Methodology

to annotations that are not ideally precise, i.e., where the annotated crack trajectories might

be slightly off.

For the experiments based on regression to the nearest crack center, we denote the distance

map produced by a deep net by yd and the corresponding ground truth distance map by

ŷd. ŷd[p] is the distance from the pixel p to the nearest crack center, truncated at dmax = 20

pixels (dmax is a hyper-parameter tuned during training through cross-correlation). Formally,

ŷd[p] = min{minq∈I , s.t. yb[q]=1 dpq ,dmax}, where dpq is the distance between the pixels p and

q . We use the following two loss functions to train TernausNet in regression.

Mean Squared Error (MSE)The basic approach here enforces the correct distance map on the

output of the network by means of the MSE, as

LMSE(yd, ŷd) = ∑
p∈I

(yd[p]− ŷd[p])2. (2.3)

While distance regression is more robust to annotation inaccuracy than pixel classification, it

is prone to the same type of topological errors as MSE-BIN and DICE, particularly in terms of

interruptions in crack continuity.

The topological loss (TOPO)To address the failure of the previously introduced losses to pre-

vent crack interruptions, we resort to the connectivity-oriented loss function TOPO, proposed

by Oner et al. (49), to encourage continuity in roads reconstructed from aerial images. The

TOPO loss function is composed of two terms:

LTOPO(yd, ŷd) = Lconn(yd, ŷd)+βLdisc(yd, ŷd). (2.4)

Lconn penalizes crack discontinuity, while Ldisc penalizes false crack detection. We define

these terms later in this section. The parameter β balances the influence of Lconn and Ldisc. As

we will demonstrate in section 6.3, increasing β decreases the number of false positives.

The definition of both Lconn and Ldisc, presented by Oner et al. (49), is based on the fact that a

crack subdivides a small image patch into two disconnected background regions. If a crack is

continuous in the annotation but interrupted in the prediction, the annotation contains two

disconnected background regions, but in the prediction these regions connect (Fig. 2.2). This

erroneous connection between the background regions and the misclassified pixels through

which the regions connect can be detected by means of the maximin connectivity approach.

This approach was first proposed by Turaga et al. (68) for modelling the connectivity of cells

observed under an electron microscope, and it was reused by Oner et al. (49) for modelling
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the connectivity of background regions in aerial images.

The central idea of the maximin approach is the notion of the maximin path between two

pixels p and p ′ in the distance map yd. We denote the set of all paths that connect p and p ′ in

the pixel lattice asΠ(p, p ′) and formalize the maximin path as

πpp ′(yd) = arg maxπ∈Π(p,p ′) min
q∈π yd[q]. (2.5)

We call the smallest pixel on the maximin path the critical pixel and denote it as q∗
pp ′(yd). A

maximin path between two pixels on opposite sides of a discontinuous crack is presented

in Fig. 2.2e. Note that the path passes through the disconnection, and that its smallest pixel,

marked red, is the pixel over which the background regions connect. This is not a coincidence

and is instead a property of maximin paths that follows from their definition. In a perfect

distance map, the value of the smallest pixel between a pair of pixels on opposite sides of

an uninterrupted crack on the maximin path is equal to zero simply because the path has to

cross the crack. If a gap in the crack is present, the maximin path passes through this gap, and

the value of its smallest pixel can be larger than zero. The formulation of Lconn leverages this

property by minimizing the smallest pixel on the maximin paths between pairs of pixels on

opposite sides of annotated cracks.

More formally, to compute Lconn, the predicted and ground truth distance maps are first

divided into small square windows that we denote w . The window size sw is a hyper-parameter

of the method. As shown in Fig. 2.2b, the crack annotation is dilated to accommodate a possible

lack of accuracy in crack annotations. The dilated crack region, denoted R, separates the

window into background regions. In Fig. 2.2b, there are two such regions, denoted A and B .

We denote the set of all background regions as B. The connectivity component of the loss is

then defined as

Lconn(yd, ŷd) = ∑
w∈W

∑
A,B∈B

A ̸=B

∑
p∈A
p ′∈B

(yd[q∗
pp ′(yd)])2, (2.6)

where W is the set of all windows. The loss tends to bring the smallest pixel between each

pair of pixels on the opposite sides of a crack on the maximin path to zero, enforcing crack

continuity.

The definition of Ldisc, aimed at preventing false crack prediction and false connections

between separate cracks, relies on preventing low values of the smallest pixels on maximin

paths between pairs of pixels that belong to the same background region. Formally,

Ldisc(yd, ŷd) = ∑
w∈W

∑
A∈B

∑
p,p ′∈A

(yd[q∗
pp ′(yd)] − ŷd[q∗

pp ′(yd)])2. (2.7)
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The loss simply encourages the smallest pixel on the maximin path to take its ground truth

value. This prevents this pixel from assuming values that are too low, which would falsely

suggest the presence of a crack.

Even though Eqs. (2.6) and (2.7) are sums over pixel pairs, in practice they can be computed

efficiently using a modified version of Kruskal’s maximum spanning tree algorithm. Fig. 2.2d

highlights the intuition between the relation of the maximum spanning tree and the smallest

pixel on the maximin path. The subtrees on the two sides of the crack are connected over this

pixel. We refer the reader to (68) for more details.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: (a) Ground truth distance map to crack center. (b) Background-connected com-
ponents separated by the crack. (c) Prediction of the network. (d) Maximum spanning tree
overlaid in red on top of the prediction. (e) Using the maximum spanning tree to find critical
edges that create disconnections in the crack. The path connecting two points in the max-
imum spanning tree is called the maximin path, illustrated in green. (f) The edge with the
minimum weight in the maximin path is the critical edge, illustrated in red, and the network is
enforced to fix this edge by LT OPO , hence fixing the disconnection (68).

TOPO has been shown to work best in combination with MSE, wherein the resulting loss
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Chapter 2. Crack detection of buildings in the wild

function is defined as

LTOPO+MSE(yd, ŷd) = αLTOPO(yd, ŷd) + LMSE(yd, ŷd), (2.8)

where α is a hyper-parameter. Increasing α encourages more connectivity in the predictions.

2.3.4 Parameters and hyper-parameters

For all the trained models, we used the Adam optimizer (69) with a batch size equal to sixteen.

Data augmentation consisted of horizontal and vertical flips and brightness and contrast

changes, each applied with the probability of 0.5. Since TernausNet relies on a pre-trained

encoder (50), we normalized the images to match the statistics of those used for pre-training,

consisting of a mean of [0.485,0.456,0.406] and standard deviation of [0.229,0.224,0.225].

For model selection, we performed cross-validation using training and validation data. Hyper-

parameters such as number of epochs, learning rate (lr), threshold applied to the prediction

(thr), truncation distance (dmax ) and Topoloss parameters (α, β and w s = 32 px) were deter-

mined through grid search. Tables 2.1 and 2.2 present these hyper-parameters for the selected

models.

Table 2.1: Hyper-parameters used on the EXPE dataset.

epoch lr α β thr

MSE-BIN 100 1.0e-4 n/a n/a 0.53
DICE 100 4.0e-5 n/a n/a 0.50
MSE 200 7.0e-5 n/a n/a 2.00
TOPO 100 1.8e-4 1.0 0.1 2.00
DICE+TOPO 100 1.8e-4 1.0 0.1 2.00
MSE+TOPO 200 1.8e-4 0.01 0.001 2.00

Table 2.2: Hyper-parameters used on the WILD dataset.

epoch lr α β thr

MSE-BIN 50 1.0e-5 n/a n/a 0.53
DICE 50 1.0e-5 n/a n/a 0.50
MSE 50 5.0e-6 n/a n/a 6
TOPO 50 3.0e-5 100 10 2
DICE+TOPO 50 3.0e-5 100 10 2
MSE+TOPO 50 3.0e-5 100 10 4
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2.4 Experiments

In this section, we present the compared loss functions, the sample datasets, the evaluation

metrics used for the comparison, and finally, the quantitative as well as qualitative results.

2.4.1 Methods tested

We trained TernausNet (50) with six different loss functions:

• MSE-BIN: The mean squared error, used with binary ground truth.

• DICE: The Dice loss function (67), used with binary ground truth.

• MSE: The mean squared error, used with a distance map for the ground truth.

• TOPO: The topological loss function (49), used with a distance map for the ground

truth.

• DICE+TOPO: A weighted sum of DICE and TOPO.

• MSE+TOPO: A weighted sum of MSE and TOPO.

2.4.2 Datasets

We performed on our experiments on two datasets:

• EXPE: Experimental stone masonry walls (51) – publicly available dataset used to bench-

mark our methodology. This dataset contains patches of images depicting stone ma-

sonry walls damaged due to shear-compression loading in an experimental setting by

the EESD laboratory at EPFL (70). Since the initial aim of collecting this dataset was

to apply DIC techniques, the walls were plastered and marked with speckles evenly

distributed over their surface. As shown in the Fig. 2.3, the images were hand-labelled

by carefully marking the pixels that represent cracks. In total, the published dataset is

composed of 301 training patches, 129 validation patches and 100 test patches, all sized

256 × 256 pixels and containing crack information.

• WILD: Damaged buildings in the wild. This dataset comprises images of stone ma-

sonry buildings and urban scenes damaged in real earthquakes. These images have

been collected over the years by the EESD laboratory from various locations around

the world. In total, there are 162 images of different sizes ([mi n,max,mean]si ze =
[3.25,36.15,13.31] M px), which were manually annotated with coarse labels (Fig. 2.4).
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Chapter 2. Crack detection of buildings in the wild

This dataset is one of our contributions and is publicly available. For real life data it is

very difficult to produce pixel-wise annotation because image sizes and quality vary

largely. For this reason we put forward a method for which we claim that coarse labels

(brushing over an area with a crack) are sufficient for training this deep learning model.

We demonstrate this through the application of the method to this dataset.

To prepare the images for training, the original images were divided into non-overlapping

patches of 256 × 256 pixels. Of these, only the patches depicting damaged parts (cracked

images) of building walls were retained. This resulted in 5360 training, 1287 valida-

tion and 533 test patches. The training, validation and test patches all come from

different full-resolution images. Along with these patches, we complete the dataset by

adding 12 full-resolution images, which are the source of the 533 test patches, as well as

their full-resolution manual annotations. Fig. 2.4 shows one of these images and the

corresponding annotations.

Since MSE and TOPO rely on ground truths in the form of truncated distance maps to the

crack center, we provide such annotations for both datasets along with binary masks. To

generate the distance maps, we first skeletonized the binary annotations. Then, for each pixel,

we computed its distance to the closest pixel of the skeleton and truncated the distance at the

value of 20 pixels. Without this truncation, it would be difficult for a deep network to estimate

the correct distance to the nearest crack at areas without any damage. Example distance maps

are shown in Figs. 2.3d and 2.4f.

(a) (b) (c) (d)

Figure 2.3: Example image of the EXPE dataset. (a) Original image, and (b) its manual binary
annotation, used with MSE-BIN and DICE. (c) The skeleton of the binary and (d) its truncated
distance map. We use such distance maps for training with MSE, TOPO and combinations
thereof.

To classify each pixel as crack or background with MSE-BIN and DICE, a deep network was

trained. This approach requires annotations in the form of binary masks, like the ones shown

in Fig. 2.3b and 2.4d. However, as our labels are not pixel-precise especially for the WILD

dataset, this could lead to noisy predictions when the network is trained with pixel-wise losses.
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Conversely, as we will demonstrate experimentally in this section, training the network to

predict distance to the crack center, as opposed to classifying pixels as crack or background,

makes the network more robust to this lack of precision in the annotations and that TOPO

further amplifies this robustness.

(a) (b)

(c) (d) (e) (f)

Figure 2.4: Example image of the WILD dataset. (a) Original image, (b) Its coarse binary
annotation. For training, we split the images into smaller non-overlapping patches. (c) A patch
of the input image used for training, and (d) its annotation. (e) The binary skeleton of the
annotation, and (f) the distance map computed from the skeleton.

2.4.3 Evaluation metrics

We used the following metrics to evaluate the results of our experiments:

• F1, also known as the Dice score, is the most common metric for evaluating the results of

binary segmentation algorithms. It is computed as the harmonic mean of the precision

and recall that the algorithm attains in pixel classification. The expression for this

metrics is:

F1 = 2
∑

p∈I ŷb[p]yb[p]∑
pϵI ŷb[p]+∑

pϵI yb
, (2.9)

where yb[p] and ŷb[p] are the values of the prediction and the annotation for pixel p ∈ I .
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Chapter 2. Crack detection of buildings in the wild

It should be noted that this metric is intended to evaluate methods that use pixel-based

loss functions for training and thus pixel precise-labels. We modify the metric to ac-

count for the fact that our approach is based on the crack skeleton. To accomplish this,

we define a margin on the sides of the skeleton such that the skeleton prediction is

considered correct if it falls within the margin. According to the truncated distance of

the label distance maps, the margin is defined as 20 pixels on either side of the skeleton.

Please note that the F1 metric does not provide a way of evaluating the continuity preser-

vation capability of our method because it is pixel-based. Therefore these values are

presented as a reference since we are presenting a detection method in images.

• Cracks Per Patch (CPP) is a metric we propose for comparing crack topology. As argued

in section 6.2, correctly recovering the crack topology is crucial for producing useful

crack segmentation results. The F1, which is focused on evaluating the performance

of the deep network in pixel classification, fails to capture the topological differences

between the predicted and annotated cracks. To fill this gap, we compared the number

of cracks in the annotation ca to the number of cracks in the prediction cp , as

CCP = ∣∣ca − cp
∣∣ . (2.10)

2.4.4 Results

We present the results of the experiments on the EXPE dataset on the left side of Table 2.3. In

terms of the F1 metric, the DICE outperformed other methods, followed in decreasing order

of performance by MSE-BIN and MSE+TOPO. In contrast, in terms of our CPP measurement,

MSE+TOPO attained the lowest error, outperforming other methods by a large margin. Upon

inspection of the qualitative results in Fig. 2.5, this inconsistency of F1 with CPP may be

attributed to the fact that MSE+TOPO produce confident and continuous crack predictions

that are often thicker than or misaligned with the ground truth (GT), which produces a high

penalty in terms of the pixel-level scores. This is expected, since TOPO focuses on preventing

crack disconnections rather than enforcing pixel-level accuracy.

The results attained for the WILD dataset are reported on the right side of Table 2.3. Here,

MSE+TOPO outperformed other methods in terms of both performance measures. Inspec-

tion of the qualitative results in Figs. 2.6-2.8 confirms that this method yielded confident and

uninterrupted cracks, albeit not perfectly overlapping the annotations. The difference in the

results with respect to the EXPE dataset can be explained by the fact that the MSE and DICE

are more sensitive to annotation inaccuracies. The relative lack of precision in the annotations

we performed for WILD exposes this sensitivity and incurs a performance penalty. In contrast,

the method based on distance regression, in particular MSE+TOPO, can accommodate such
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Figure 2.5: The qualitative results of the EXPE dataset. Images, ground truths, and predictions
with their thresholded values for the different trained models.

annotations without reducing the performance.

Superior scores of pixel-based metrics for the real world dataset (WILD dataset) can be ob-

tained if we use more refined labels. However, as mentioned before, producing such detailed

labeling in such images is a difficult task that is sensitive to their quality and size. As one of our

method assets is the capability to deal with this type of datasets to train deep learning models
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Chapter 2. Crack detection of buildings in the wild

Table 2.3: Quantitative performance evaluation.

EXPE WILD

F1-skeleton CPP F1-skeleton CPP

MSE-BIN 77.1 0.99 42.8 3.65
DICE 79.7 0.95 67.2 0.97
MSE 73.5 1.26 64.2 0.79
TOPO 72.0 0.91 64.4 1.82
DICE+TOPO 73.8 1.03 66.4 1.17
MSE+TOPO 76.5 0.24 68.5 0.62

and still produce good detections and preserve crack continuity, we do not focus in the refine-

ment of the labels to improve such type of metrics (F1). Finally, it is important to highlight that

there were no significant issues when the model was trained with the WILD dataset compared

to the EXPE dataset. This demonstrates the robustness of the CNN architecture as well as the

loss function proposed in this work for images captured on-site.

Crack segmentation in the wild:Our model was tested on full-building images of varying

dimensions much larger than the patch size 256 × 256 used for training the deep network.

Figs. 2.9 and 2.10 show the capacity of the deep network trained with MSE+TOPO to detect

cracks in images containing damaged buildings in the wild, that is, damaged buildings found

in urban images also containing other elements of urban landscape. Visual features similar

to cracks can cause false positive predictions, like the ones observed over the pavement in

Fig. 2.10. These errors can be removed in post-processing, such as by detecting buildings

in the images and constraining crack locations to lie within these detected areas. Another

option for avoiding false positives is to add more training data containing similar information,

from which the deep learning model can learn better how to make such distinctions. This

can be seen, for example, in the case of window edges or handrails, where the model was able

to distinguish cracks from them due to having enough image information during training.

Fig. 2.9 presents the original images and the distance map outputs produced by the neural

network. Figs. 2.10 presents the original image and its overlapped version with a thresholded

binary mask obtained from the distance map.

2.5 Conclusions and future work

We demonstrated that correctly representing crack topology is crucial for the assessment of the

mechanical properties of cracked structures. Unfortunately, the commonly used U-Net-like

architectures are accurate in segmenting cracks, but fail to preserve their topology. Here, we

show that the TOPO loss function can be used to improve the performance of U-Net in those
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Figure 2.6: Qualitative results for the WILD dataset. Patches from a single building A. Images,
ground truths, and predictions with their thresholded values for the different trained models.

aspects. We demonstrated this both in terms of qualitative and quantitative results, for which

we proposed a novel metric, the CPP. Furthermore, TOPO allows to circumvent the use of

precise labels reducing substantially the time for the annotation process which is known as

one of the limitations of supervised deep learning techniques. Additionally, we showed that a

deep network trained with a combination of TOPO and MSE yields convincing results when

applied to images showing cracked buildings in the context of entire urban scenes. To facilitate

future experimental comparisons, we released the WILD dataset and the code from our work.

The main drawback of using the topological loss function is a possible loss of precision in crack

localization. Though loss enforces crack continuity, it relaxes the requirement of a perfect

coincidence between the predicted and the annotated cracks. The estimated crack centers

may therefore be slightly offset from the annotated ones, resulting in a lower accuracy in pixel

classification, as highlighted in section 6.3. Moreover, TOPO is designed to segment thin

elongated structures, which may misrepresent the crack width. Additional post-processing
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Figure 2.7: Qualitative results for the WILD dataset. Patches from a single building B. Images,
ground truths, and predictions with their thresholded values for the different trained models.

may be applied if precise width estimates are desired.

We plan to continue this work along two main directions. First, we will combine crack segmen-

tation with semantic segmentation of urban scenes, which we expect to result in increased

performance in detecting cracks in urban scenes. Second, to bridge the gap between crack

detection in 2D images and the 3D assessment of the stability of damaged buildings, we plan to

represent cracks in the geometric context of the cracked structures. Our overarching aim with

the work presented herein and our future experiments is to bring the automatic assessment of

structural damage closer to real-life applications.

Acknowledgments

This project is partially funded by the Swiss Data Science Center under grant C18-04 ("Towards

24



2.5 Conclusions and future work

Im
a
g
e

G
T

P
re
d
ic
ti
o
n

T
h
re
sh
o
ld
e
d

Im
a
g
e

G
T

Im
a
g
e

G
T

P
re
d
ic
ti
o
n

T
h
re
sh
o
ld
e
d

P
re
d
ic
ti
o
n

T
h
re
sh
o
ld
e
d

MSE+TOPODICE+TOPOTOPOMSEDICEMSE-BIN

Figure 2.8: Qualitative results for the WILD dataset. Patches from a single building C. Images,
ground truths, and predictions with their thresholded values for the different trained models.

an automated post-earthquake damage assessment").

25



Chapter 2. Crack detection of buildings in the wild

Figure 2.9: Results of predictions on urban images. Original urban images and output distance
map.
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Figure 2.10: Results of predictions on urban images. Original urban images and overlapping
thresholded cracks as binary mask.
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3 Crack characterization: crack kine-
matics

This chapter represents the slightly modified post-print version of the article: B. G. Pantoja-

Rosero, K. R. Maximiano dos Santos, R. Achanta, A. Rezaie, K. Beyer, “Determining crack

kinematics from imaged crack patterns”, Construction and Building Materials 343 p.128054.

The formatting and numbering of equations, tables and figures have been adapted to this

document.

Abstract

Determining the relationship between the cause of damage and the subsequent structural

behavior of infrastructure systems requires an accurate characterization of the propagation

of cracks, which represents the evolution of the damage state. When no information about

the cause of damage is available, kinematic approaches can be used to describe the motion

of crack contours. Current image-based approaches to derive crack kinematics use digital

image correlation (DIC) on a set of sequential images as the crack propagates. However, DIC is

invasive in that the structure surfaces must be painted with random speckle patterns, limiting

its use primarily to controlled experiments. In this paper, we propose a novel image-based

methodology for computing crack opening in Mode I or Mode II. As an input, this method

takes a binary image from a semantic segmentation of an image of a crack pattern. This binary

image is used to detect the opposite edges along the crack, which are then registered using an

optimization algorithm based on the Euclidean transformation model and non-linear least

squares. As a final output, this method produces displacement maps in the tangential and

normal directions to the crack skeleton. To demonstrate its performance, we validate our

methodology first with synthetic crack patterns and then with real crack patterns. Because this

methodology for determining crack openings requires only simple data (just a binary crack

pattern image), it is straightforward, robust, and adaptable, thus contributing to the develop-

ment of structural image-based damage assessments. The computational codes and datasets

are available to the public for future research and benchmarking on https://github.com/eesd-

epfl/crack_kinematics and https://doi.org/10.5281/zenodo.6632071.
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3.1 Introduction

Structural inspections of existing buildings and infrastructure comprise localizing and clas-

sifying damage features in the structure. These engineering inspections are conducted on a

regular basis, as is common for infrastructure, as well as after extraordinary events, such as

earthquakes. Among the various manifestations of damage that engineers evaluate, cracks are

the most common feature in quasi-brittle structures, such as concrete and masonry (71).

The likely causes of damage and the mechanical properties of the damaged structural element

(e.g., stiffness, strength) can be estimated from the crack pattern and kinematics of a crack.

Crack kinematics describes how two crack surfaces move in relation to each other, and provide

important information about the stress state that caused the damage. A Mode I crack opens

normal to the crack surface and is typically associated with normal stresses. A Mode II crack

opens parallel to the crack surface and is associated with shear stresses in the plane of the

element (72). Shear stresses acting in the crack plane cause Mode III deformation as well, but

in this case the deformation is out-of-plane (72). Concrete and masonry elements that fail in

shear (Mode II) have a lower deformation capacity than elements that fail in flexure (Mode I).

Therefore, identifying cracks in structures and classifying their opening mode is important for

preventing potential failures through timely interventions designed to minimize economic

losses, future deterioration, and even loss of human life (33).

Existing image analysis methods for detecting and identifying cracks and their patterns can

be classified as heuristic feature extraction, change detection, and deep learning techniques

(52). Heuristic feature extraction employs a hand-crafted filter on the image, the output of

which is post-processed using value thresholds or a machine learning classifier (54; 55; 56).

Change detection compares an image of the considered structure (baseline) to later images

of the damage evolution (57; 58; 59). Finally, the current state-of-the-art here employs deep

learning techniques, in which a system is trained to automatically detect cracks in images

using known data (43; 39; 36).

A common output of image-based crack detection is a binary mask image, in which the

foreground pixels show the positions in the original image corresponding to cracks (51; 24).

Post-processing of these binary masks is necessary to learn the characteristics of the cracks

and their influence on the mechanical properties of structural elements. As one of the state-

of-the-art applications of this technique, Rezaie et al. (73) used digital image correlation (DIC)

data from damaged stone masonry walls to generate binary masks representing cracks, which

were then post-processed to extract features like crack width. Today, the crack kinematics can

be obtained using methodologies based on DIC data (73; 74; 75; 76; 77; 78), but to the best

of our knowledge, no existing method can evaluate the kinematics of a crack using only the

binary mask as input data.

In this paper, we present a novel methodology to determine crack kinematics from a binary

mask based on the registration of 2D point-clouds (or point-sets) along the length of a crack. To

30



3.2 Problem statement

this aim, a binary mask with crack information is post-processed to extract its opposite contour

as a 2D point cloud that can be registered via Euclidean transformation and optimization.

Therefore, the information about the crack kinematics is encoded by the transformation

obtained in the registration step. That transformation is then used to calculate the relative

crack movement between opposing crack contours in terms of normal (Model I) and tangential

(Model II) displacements.

In the following, we state the problem and provide a general description of our approach.

We then describe the methodology and its components, beginning with the nonlinear least

squares method, which forms the core of our method, and its adaptation to our specific

problem. Furthermore, we describe some aspects of crack patterns and how we considered

them in our algorithm, such as kinematic variability along the crack and multi-crack and

multi-branched patterns. To validate and demonstrate the efficacy and robustness of our

methodology, we present experiments taken from synthetic data and real data (including a

building damaged due to an earthquake). To demonstrate the stability of our method and to

provide guidance on the proper selection of the hyper-parameters involved in the algorithm,

we run Monte Carlo simulations. The robustness of our code is evaluated by adding noise to

the crack edges, which simulates material detachment from the crack edges. Experiments

are carried out using real-world data, including a damaged stone masonry wall tested under

shear compression loads and a building damaged by an earthquake. Finally, we present

the conclusions reached during the methodology development process as well as future

developments that can further improve the damage characterization research.

3.2 Problem statement

There are three different modes of crack propagation differentiated by analytical solid me-

chanics (79), as shown in Fig. 3.1. In Mode I, tensile stresses acting perpendicular to the

crack plane cause the crack to open. Modes II and III are caused by perpendicular shear

stresses acting parallel to the crack plane, causing in-plane deformation in the former case

and out-of-plane deformation in the latter. In this paper, we will develop an approach to

determine the kinematics of Mode I and Mode II cracks using only a binary image of the crack

as input.

Mode I Mode II Mode III

Figure 3.1: Fracture propagation modes (80).
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From previously developed approaches, an image of a crack pattern (Fig. 3.2a) can be seg-

mented to obtain the crack as a binary mask image (Fig. 3.2b). In this binary mask, all pixels

that belong to the crack are white and all other pixels are black. We herein develop a method

to determine the crack mode and its change along the crack axis using only this binary mask.

To accomplish this, we detect the two edges of the crack as 2D point-clouds (Fig. 3.2c). We

divide one crack edge into smaller sets of points and determine the Euclidean transforma-

tion (rotation and translation) required to register this set of points onto a set of points that

belongs to the second crack edge. The rotation and translation required to register the two

point-clouds (point-sets) are then used to decompose the crack opening into a normal and a

tangential component (Mode I and Mode II). The fracture mode is determined by the dom-

inant deformation of these two movements. Mode III is not considered herein because the

images only contain 2D information, and no out-of-plane shear deformation can be captured.

Future work could use stereo images to include the determination of the crack motions for

Mode III.

3.3 Methodology

This section describes the framework used to determine the crack kinematics from a binary

crack mask. In this mask, the foreground pixels (white) in this segmentation correspond to the

segmented crack, while the background pixels (black) are related to the material. Note that

while the examples in the text show crack patterns on speckled surfaces, our methodology

works for any situation for which a binary crack map can be obtained.

3.3.1 Nonlinear least squares

Nonlinear least squares is an optimization algorithm for fitting a nonlinear model to an

observed data set (81). This method aims to find the parameters α= [α1, . . . ,αn] of a model

f (x;α) that minimize a loss function L(x;α) (Eq. (7.1)) defined as the mean squared error

(MSE) of a residual function ri (α) = f (xi ;α)− yi at N discrete points xi in the domain, where

yi is the observed data corresponding to xi :

L(α) = 1

2

N∑
1

r 2
i (α). (3.1)

Therefore, the optimization problem can be written as

αopt = argmin
α

L(α), (3.2)

where αopt is the set of parameters minimizing L(α). To solve the minimization problem in

Eq. (7.2), the Gauss-Newton method is commonly used. In this method, the optimal set of

parameters αopt is found through variations of the elements of α in the direction determined

by the step ∆α, obtained iteratively as shown in Eq. (7.3) (for iteration n +1). More detailed
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information is presented in Betts et al. (82).

αn+1 =αn −γ∆α, (3.3)

where γ is the learning rate controlling the step size, and the step ∆α is given by

∆α= H[L(α)]−1∇L(α), (3.4)

where H[L(α)] is the Hessian of the loss function, and ∇L(α) is its gradient.

3.3.2 Solving for the crack kinematics

In this section, we solve the 2D point-set registration problem by transforming one set of

points that belongs to one crack edge to fit over another set of points that belongs to the other

crack edge. The contours are detected from the binary mask using the marching squares

method (83), and they are divided into two sets of points, each representing one edge of the

crack, as shown in Fig. 3.2c. The pixels selected here as crack contour belong to the image

background rather than the crack, meaning they are part of the set of black pixels in Fig. 3.2b.

The two edges of a crack segment are represented by the sets of points E0 = [e(0)
0 , . . . ,e(0)

N ] and

E1 = [e(1)
0 , . . . ,e(1)

n ], respectively. Further, each element ei is a coordinate point in R2.

The method developed herein assumes that a crack contour possesses three degrees-of-

freedom (DOF), which are associated with a vertical and a horizontal translation t = (tx , ty )T

and a rotation θ. Thus, our goal is to find the parameters T = [tx , ty ,θ] transforming the edge

E0 ⇒ E′
0, such that the Euclidean distance between the translated set of points E′

0 and a set of

points on the second crack edge E1 is minimized. E′
0 is given by

E′
0 = R(θ)E0 + t, (3.5)

where R(θ) is the rotation matrix defined as

R(θ) =
[

cos(θ) −si n(θ)

si n(θ) cos(θ)

]
, (3.6)

and t is the translation vector. Next, the residual function is defined as

r (T) = (R(θ)E0 + t)−E1. (3.7)

Herein, the nonlinear least square method is used to find the transformation T = [tx , ty ,θ] that

determines the crack kinematics. Figure 3.2d shows the results after applying the transforma-

tion defined by the optimal parameters T = [tx , ty ,θ] to E0. Additionally, Figs. 3.3a-c show the

numerical values of the transformation T = [tx , ty ,θ] = [22.25 px,−8.18 px,6.61×10−3 r ad ]
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Figure 3.2: Image of a single crack (256 × 256 px) considering the (a) crack pattern image, (b)
detected binary mask, (c) identified crack edges in red and blue, and (d) transformed edge
(blue) after applying Euclidean transformation (green).

as displacements maps along the crack skeleton, which is obtained by the skeletonization

methods developed previously (84; 85). Note that the image coordinates (global coordinates)

of the edges are different from the coordinates used in the transformation (local coordinates),

whose origin we place at the mean of the coordinates of the point set E0. To determine their

local coordinates, we subtract this mean coordinate from the global coordinates of E0 and E1.

Figure 3.2c shows the origin of the edges’ local coordinate system with respect to which the

transformation is performed.

Variability of kinematics along the crack

As the crack edges are not rigid, the translation and rotation that registers the crack edge

segment of one edge onto the other edge is not always constant along the crack axis. To

account for this effect, we decompose the crack edges into edge segments composed of a
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Figure 3.3: Displacements maps for crack transformations using full edges: (a) rotation θ, (b)
horizontal translation tx , and (c) vertical translation ty .

reduced set of points. To define these edge segments, we find the k-neighboring points in E0

and E1 for each point xsk of the set of crack skeleton points Xsk (Fig. 3.4a). Figure 3.4b depicts

a single pixel (yellow dot) of the skeleton in Fig. 3.4a and its k-neighbor points in E0 and E1

for k = 50. The same optimization methodology described in the preceding section is then

applied to the finite edge segments (Figs. 3.4b,c) to find the local crack edge translation and

rotation.
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Figure 3.4: Finite segment edge registration: (a) crack skeleton, (b) the finite edge elements
corresponding to E0 (blue) and E1 (red) determined from a single pixel (yellow dot) of the
crack skeleton, and (c) the finite edge segment of E0 after the optimal transformation over a
finite edge segment of E1.

After repeating this procedure for each skeleton pixel, the non-constant movement of the

crack is found, as shown in Figs. 3.5a-c. In this example, the mean values of all three DOFs are

θ = 53.03×10−2 r ad , tx = 20.17 px, and ty =−10.87 px, which differ from the values obtained

using full edges and demonstrate the localized behavior of the crack movement.

Next, we represent the local crack movement using only two DOFs, namely t ′x and t ′y . The

axes x′ and y ′ correspond to the local crack coordinate system and are parallel to the x and y

global axes. The displacements corresponding to t ′x and t ′y are estimated from the mean of the
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Figure 3.5: Displacement maps indicating the movement of finite segments of crack edges:
(a) crack rotation map θ, (b) crack horizontal translation map tx , and (c) crack horizontal
translation map ty .

difference in coordinates of the E0 k-neighbors before and after the transformation:

t′ =
(

t ′x
t ′y

)
= 1

k

k∑
i=1

[
e′(0)

i −e(0)
i

]
. (3.8)

Later in this paper, t ′x and t ′y will be used to find the displacements parallel and orthogonal to

the crack surface, which define the crack kinematics and determine the opening mode of the

crack (Mode I, Mode II, or mixed mode — Mode I and Mode II combined).

Edge registration over an extended region of E1

If the crack opening has a significant Mode II component, the k points on E0 that are the

k-nearest neighbors to a selected point xsk on the crack skeleton will not correspond to the

k-neighbor points on E1. In this case, we must register k points of E0 on a segment of E1 that

contains more than k points. In the following, we use a greedy approach to register the selected

k points from E0 on all the possible groups of k consecutive points in E1. The transformation

with the lowest error is then selected as the correct transformation. However, this procedure is

computationally expensive. To overcome this limitation, we propose two solutions. In the first,

we define two hyper-parameters, µ and λ, that describe the selection of groups of k points

in E1 registered with the k points in E0. First, µk is the size of E1 in which we search for the k

points of E0 (Fig. 3.6a). In this case, we select various groups of k points (M groups in total)

from the µk points of E1, where the first group composed of the first consecutive k points (the

initial point is one of the extremes of the µk points; Fig. 3.6b). The initial point of the second

group of k consecutive points is placed at the λth position (Fig. 3.6c). The third group starts

at the 2λth point, and so on, for the other groups until all the µk fractions of E1 have been

covered. Thus, M transformations are obtained from which we select the one with the lowest

value in the loss function. Figure 3.6d shows the optimal registration of k points of E0 with µk

points in E1. It can be seen here that the optimal registration did not occur with the k-nearest
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neighbor points in E1, but instead occurred after considering a group of k points located close

to the end of the chosen fraction µk of E1.
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Figure 3.6: Registration using a larger set of points of E1 with the hyper-parameters k = 50,
µ= 2.0, and λ= 5: (a) k-neighbors in E0 and µk-neighbors in E1 for a skeleton point (pixel),
(b) first k group (m = 1) of points from E1 (magenta), (c) second k group (m = 2) of points
from E1, and (d) k-neighbors points from E0 registered over a larger set of points of E1 (green)
after applying the optimal transformation.

The second solution we propose for registering the E0 edge segment on the extended E1 is the

use of heuristic algorithms to find the optimal transformation among the various possibilities.

We specifically employ the global optimization algorithm proposed in Shaqfa et al. (86), which

is based on Pareto-like sampling. This sampling algorithm selects a number of uniformly

distributed random samples from the variable domain λ (we select 5% of the discrete domain

as samples) in which the loss function is evaluated. The sample that produced the lowest loss
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Chapter 3. Crack characterization: crack kinematics

value generates a tentative smaller interval inside the variable domain where the optimal value

might be placed with a defined probability (90% for our problem). The remaining chances of

containing the optimal solution are assigned to the rest of the domain. The algorithm runs a

defined number of iterations (five in our case), selecting one of the two intervals following the

assigned probabilities, generating new random samples, evaluating the loss function in them,

and selecting the best variable value.

Multiple branches and cracks - hyper-parameter η

In this section, we propose a methodology to assess the crack kinematics for more complex

patterns. To ensure that the k-neighbors points come from two opposing crack edges, end-

points and junctions are used to segment edges of cracks with multiple branches and/or

multiple isolated cracks in the same image. Figures 3.7a,b,e,f show two different cracks with

the described typology and their corresponding contour detection. As the developed algo-

rithm considers each pixel in the skeleton to detect the two closest contours and take the

k-neighbors points, it is necessary to divide those contours into multiple edges. To that end,

we detect junctions and endpoints in the skeleton using the Mahotas hit and miss algorithm

(87) with kernels of the main typologies of junctions and endpoints as shown in Figs. 3.7c,g.

Then, the closest edges to each of these points are halved at the closest point, as shown in

Figs. 3.7d,h.

Because the size of the segmented edges varies, the k parameter should be chosen accordingly.

Instead of k, we propose using a related hyper-parameter η, which represents a fraction of

the full length of a segmented edge and is related to k as follows: k = Leng th(Ei )/η. Through

this parameter, we ensure that the number of neighbors k adapts to the edge size when the

pattern contains multiple branches and/or isolated cracks.

Crack kinematics—normal and tangential deformations for Modes I and II

To determine the opening in Mode I and Mode II, it is necessary to express the crack opening in

tangential and normal movements in relation to the local crack axis. However, the information

about crack kinematics contained in the horizontal displacement t ′x and vertical displacement

t ′y is not meaningful from a mechanical point of view because it is expressed in the horizontal

and vertical coordinate system of the image, as shown in Figs. 3.8a. To translate this to the local

crack axis, we begin by determining the normal and tangential directions along the length of

the skeleton (given by the angle β), defining a local coordinate system for each of its pixels

(parallel and perpendicular axes with respect to a skeleton pixel; Fig. 3.8b). We use principal

component analysis (PCA) in k-nearest neighbor points (ten neighbors for our experiments,

kβ = 10) to determine both tangential and normal directions for each skeleton pixel. Note

that when computing the normal angles for the skeleton, we force them to fall into either the

first or the second Cartesian quadrants (0 ≤ β≤ π; if angles fall in other quadrants, we add

or subtract π) and assign this as the positive direction of the normal axis n. Then, the axis t
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Patterns with multiple branches and isolated cracks: (a) binary mask of detected
crack (pattern 1), (b) contours detected using the marching squares method (pattern 1), (c)
endpoints and junctions found in the skeleton (pattern 1), (d) group of edges found using
detected contours together with endpoints and junctions (pattern 1), (e) binary mask of
detected crack (pattern 2), (f) contours detected using the marching squares method (pattern
2), (g) endpoints and junctions found in the skeleton (pattern 2), and (h) group of edges found
using detected contours together with endpoints and junctions (pattern 2).

is selected to be perpendicular to n following the right-hand rule and after determining the

direction of the local axis (β) for each pixel, as shown in Figs. 3.8c,d, the normal and tangential

movements (tn , tt ) of the crack can be calculated using t ′x and t ′y as follows:

tt =−t ′x sin(β)+ t ′y cos(β), tn = t ′x cos(β)+ t ′y sin(β). (3.9)

After computing the normal and tangential deformations of the crack along the axis of the

skeleton, we obtain the displacement maps presented in Fig. 3.9.

Interpreting displacement maps

We use displacement maps to display the relative tangential and normal movement of the

cracks, and for a better interpretation of the results, we propose a sign convention for their

values. Here, we define a positive normal displacement when the crack opens and a positive

tangential displacement when the relative movements of the crack edges rotate counter-

clockwise. This can be visualized in Fig. 3.9, where the displacements along the crack are

represented with oriented vectors. For positive values of normal displacements, the oriented

vectors align and point towards opposite directions (Fig. 3.9a). For positive values of tan-
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Figure 3.8: Crack skeleton and directions of interest: (a) image and local coordinate systems,
(b) local tangential t and normal n axes for a pixel/point of the skeleton with corresponding
direction β, (c) local horizontal displacement component t ′x decomposed into tangential and
normal components, and (d) local vertical displacement component t ′y decomposed into
tangential and normal components.
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Figure 3.9: Displacement maps for the tangential t and normal n directions: (a) normal
displacement map tn and (b) tangential displacement map tt .
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gential displacements, the oriented vectors placed at the opposite sides of the crack show

counterclockwise rotation; negative values show clockwise rotation. (Fig. 3.9b).

3.4 Experiments

In this section, we present several examples to demonstrate the effectiveness of the developed

technique. First, the algorithms are validated using two different types of synthetic examples

(line-based and crack-based), in which pre-defined translations and rotations are applied to

a given edge to simulate the binary mask of a crack. Following that, a Monte Carlo simula-

tion evaluates the sensitivity of the method to the involved hyper-parameters and provides

guidance on their selection. Later, by adding Gaussian noise to the edges, the robustness of

the algorithm is tested on cases where there is material detachment from the crack contours.

To further demonstrate the capabilities of the approach, the semantic segmentation of real

cracks, as presented by Rezaie et al. (51), is used as input data. Next, we make a qualitative

comparison between the DIC pipeline presented previously (75; 74) and our full pipeline,

which begins with semantic crack segmentation using the deep learning model published in

Rezaie et al. (51). Finally, we demonstrate the versatility of our method for various engineering

applications by applying it to a building damaged by seismic loads.

3.4.1 Synthetic crack patterns with linear contour

The synthetic crack patterns shown in Figs. 3.10a-c are based on linear segments created with

a pre-defined edge E0 and a Euclidean transformation (θ, tx , and ty ). In this regard, we defined

the vertices and created the line segments between them to create the synthetic edge E0. Next,

a pre-defined transformation was applied to E0 to obtain E1 (observe blue and red edges in

Figs. 3.10a-c). Columns 2 to 4 of Table 3.1 contain the parameters of the transformation used

to create E1 from E0.

Applying the technique developed herein for estimating the crack kinematics of the synthetic

data generated the results presented in columns 5 to 7 of Table 3.1. These columns show the

prediction values for rotation and displacements. In this example, the straight nature of the

cracks renders the use of finite segments of E0 and E1 irrelevant, as fitting E0 on E1 cannot

guarantee correct placement (e.g., a small linear segment of E0 will be identical to numerous

small linear segments of the E1). Thus, we used the full edges of opposite sides as E0 and E1

for the optimization of this set of synthetic data. The green edges in Figures 3.10a-c show the

transformation of E0 overlying E1 for the optimal parameters obtained from the optimization

process. These figures also demonstrate the proper functioning of the present technique

because the two edges match all along the crack length. This is confirmed by comparing the

obtained and target values through the small absolute difference values presented in columns

8 to 10 of Table 3.1.
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(a) (b) (c)

Figure 3.10: Synthetic binary masks for a line-based crack. Edge E0 (blue), edge E1 (red) and
registered edge E0 over edge E1 (green) for: (a) pattern 1, (b) pattern 2, and (c) pattern 3.

Table 3.1: Pre-defined and predicted Euclidean transformation parameters for synthetic crack
patterns with linear contour using full edges approach

.

Pre-define parameters Predicted parameters Absolute difference

θ [rad] tx [px] ty [px] θ [rad] tx [px] ty [px] ∆θ [rad] ∆tx [px] ∆ty [px]

Pattern 1 4.91e−2 10.00 5.00 4.91e−2 9.84 4.77 0.00 0.16 0.23
Pattern 2 0.00e−2 10.00 2.50 −0.05e−2 9.30 3.08 0.05e−2 0.70 0.58
Pattern 3 4.91e−2 5.00 -5.00 4.91e−2 5.35 -4.77 0.00 0.35 0.23

3.4.2 Synthetic real-contour crack patterns

In this example, the edge E0 is transformed with pre-defined parameters θ, tx and ty to create

the edge E1, and consequently the crack pattern. The difference in this case is that the edge E0

in each pattern is retrieved from the binary mask representing the semantic segmentation of a

real crack (Figs. 3.11a-c). Figures 3.11d-f show the binary patterns created after applying the

transformation with the parameters presented in the columns 2 to 4 from the Table 3.2 to the

edge E0, which is presented together with the edge E1.

Here, we initially ran our algorithms using the full edges, as for the line-based patterns, and

then we used the general approach described in the methodology section to calculate the

kinematics of each skeleton pixel using finite segments of E0 and E1. The qualitative and

quantitative results for full edges, presented in Fig. 3.11d-f and in the columns 5 to 7 from the

Table 3.2, validate the performance of our method. Figures 3.11d-f show the match between

E0 and E1 when the optimal transformation is applied with the parameters presented in the

columns 5 to 7 from the Table 3.2. Moreover, when that table of optimal transformation

parameters is compared to the pre-defined (columns 2 to 4 of Table 3.2), the differences in

parameter values are noticeably small, which confirms the qualitative observation.

Next, we performed the registration by considering finite edge segments in this synthetic data;
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Synthetic real-contour crack patterns. Crack pattern image: (a) pattern 1, (b)
pattern 2, and (c) pattern 3. Edge E0 (blue), edge E1 (red) and registered edge E0 over edge E1

(green) for synthetic real-contour crack: (d) pattern 1, (e) pattern 2, and (f) pattern 3.

the means of the absolute values of the three obtained DOFs are presented in the columns 8

to 10 from the Table 3.2. The results here slightly differ from those obtained using full edges,

which quantitatively shows that the presented method is performing properly. This can be

visualized properly in the Table 3.3 where the absolute difference for the predictions using full

and finite segment edges is presented.

Table 3.2: Pre-defined and predicted Euclidean transformation parameters for examples with
synthetic real-contour crack patterns using full and finite edge segment approach. Finite
segment edge approach uses η= 1.5, µ= 1.5, λ= 4.

Pre-defined parameters
Predicted parameters
full edges

Predicted parameters
finite segment edges

θ [rad] tx [px] ty [px] θ [rad] tx [px] ty [px] θ [rad] tx [px] ty [px]

Pattern 1 0.00 10.00 0.00 −7.54e−12 10.00 2.68e−7 5.17e−5 10.00 4.08e−3

Pattern 2 0.00 -5.00 5.00 5.07e−3 -3.26 5.01 5.35e−3 4.20 5.03
Pattern 3 4.91e−2 10.00 10.00 4.85e−2 8.18 11.28 5.13e−2 8.19 11.03
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Table 3.3: Absolute difference for predictions of Euclidean transformation parameters for
synthetic real-contour crack patterns using full and finite segment edges approach.

Full edges Finite segment edges

∆θ [rad] ∆tx [px] ∆ty [px] ∆θ [rad] ∆tx [px] ∆ty [px]

Pattern 1 −7.54e−12 0.00 2.68e−7 5.17e−5 0.00 4.08e−3

Pattern 2 5.07e−3 1.74 0.01 5.35e−3 0.80 0.03
Pattern 3 0.06e−2 1.82 1.28 0.22e−2 1.81 1.03

3.4.3 Robustness against noise

As the crack is exposed to weathering, cyclic loading or abrasion within Model II cracks,

some material loss may occur along the two crack edges. In our algorithm, this will result in

point sets of the segmented edges E0 and E1 that are not 100% similar. To simulate this and

demonstrate the robustness of our method in such situations, we took the three synthetic

crack patterns with real crack contours presented in Section 3.4.2 and added different levels

of random Gaussian noise (N (µnoi se , σ2
noi se )) to the coordinates of both edges: xnoi se =

x + ϵr(σ2
noi se ,µnoi se ) with r ∼ N (µnoi se = 0, σ2

noi se = 1) and ϵ the fraction of noise added.

Figure 3.12 shows some of the noisy edges overlaid over the original binary crack pattern and

the result after registration of edge E0 over edge E1 which qualitatively validates the robustness

against noise.

(a) (b) (c)

Figure 3.12: Simulating loss of contour material by adding Gaussian noise to crack edges E0

(blue) and E1 (red). The registered noisy edge E0 (green) for: (a) pattern 1 with 10% noise, (b)
pattern 2 with 50% noise, and (c) pattern 3 with 100% noise.

We ran these experiments by adding random Gaussian noise of 1%, 3%, 5%, 10%, 15%, 20%,

30%, 50%, and 100% to the three crack patterns. The results in terms of the two DOFs (t ′x
and t ′y ) using our method with full and finite segment edge approaches are presented in

the Fig. 3.13. Comparing those quantitative results against the ground truth values showed

that the noise addition did not substantially affect the outcome, especially when the finite

segment edge approach was applied. It should be noted that, while the absolute difference
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values appear to be increased, such values are acceptable from a practical standpoint. As

demonstrated in the following examples with real damaged conditions, those percentages are

equivalent to fractions of mm, which are irrelevant because standard physical measurements

with crack gauges can lead to similar errors. Furthermore, due to the simple required input

and the lack of the need for sophisticated set-ups to capture image information, the algorithm

accuracy is valuable in real-world applications, such as damage inspections.

3.4.4 Real crack patterns

In this section, the performance of the developed method is assessed using real crack patterns

as presented in Figs. 3.14a-c retrieved from Rezaie et al. (88). The binary masks representing

the crack segmentation are presented in Figs. 3.14d-f. As stated in Section 7.3, though the

patterns presented in this paper have speckled surfaces, we can obtain similar results in any

material by relying solely on the binary representation of the crack.

The results obtained for the following hyper-parameters η = 1.5, µ = 1.5, and λ = 4 are pre-

sented in Fig. 3.15. The detected crack contours were divided into edges, shown in Figs. 3.15a-c,

and these were used for selecting edges E0 and E1 to compute the optimal transformations.

The normal and tangential displacement maps are presented in Figs. 3.15d-f and Figs. 3.15g-

i, respectively. Here, the predicted opening and shear-sliding movements agree with the

pathology of the crack, even when considering multiple branches and isolated cracks.

Expectedly, some irregularities in the crack segments were observed near the image borders,

as some points of edge E0 can be missing in corresponding edge E1, and vice-versa. Moreover,

irregularities were also observed near crack junctions, which was also expected because

the algorithms occasionally confuse the selections of edges E0 and E1 among the available

options. Furthermore, the present technique divides contours into multiple edges based on

junctions and endpoints, which can influence the regularity of the results due to ambiguities

in the distances from the skeleton to the edges. Regardless, the mechanically more relevant

information is found between junctions where the algorithm performs well.

The means of the absolute value of normal and tangential movements ([tn , tt ]) for each of

the three crack patterns are: pattern 1: [22.57,7.74], pattern 2: [4.99,2.26] and pattern 3:

[9.29,16.04]. From the magnitude, it is clear that the crack represented by pattern 1 propagates

in Mode I (crack opening). Conversely, the other two cracks are governed by propagation in

combined Modes I and II.

To quantitatively validate the results, we manually select two opposite edge points (red line end-

points in Figs. 3.4a-c) and measure the kinematics of the crack by decomposing displacements

in the direction of the correspondent skeleton point. The measured values and results obtained

by our algorithm in pixels and mm are shown in Table 3.4. Note that the image resolution for

the used dataset is 0.43 mm/px, according to Rezaie et al. (88). The small absolute differences

in the table allow us to evaluate the proper performance, accuracy, and robustness of the
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Figure 3.13: Absolute difference in pixels between ground truth and predicted values for
transformation parameters using two DOFs (t ′x and t ′y ). Using full edge approach for: (a)
pattern 1, (c) pattern 2, and (e) pattern 3. Using finite segment edge approach for: (b) pattern
1, (d) pattern 2, and (f) pattern 3.

methodology presented herein under real-world conditions.

46



3.4 Experiments

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Real crack patterns. Crack pattern image: (a) pattern 1, (b) pattern 2, and (c)
pattern 3. Binary mask of real crack: (d) pattern 1, (e) pattern 2, and (f) pattern 3.

Table 3.4: Comparison of measured normal and tangential displacements (tn and tt ) with
results using finite segment edges approach.

Measured Algorithm Absolute difference

tn [px] ([mm]) tt [px] ([mm]) tn [px] ([mm]) tt [px] ([mm]) ∆tn [px] ([mm]) ∆tt [px] ([mm])

Pattern 1 20.30 (8.73) 15.05 (6.47) 19.59 (8.42) 15.34 (6.60) 0.71 (0.31) 0.29 (0.13)
Pattern 2 6.28 (2.70) 0.90 (0.39) 6.07 (2.61) 0.88 (0.38) 0.21 (0.09) 0.02 (0.01)
Pattern 3 9.79 (4.21) 8.44 (3.63) 9.59 (4.12) 8.32 (3.58) 0.20 (0.09) 0.12 (0.05)

3.4.5 Comparison with DIC pipeline

We present qualitative and quantitative comparisons of two pipelines for predicting crack

kinematics in damaged structures. The first is based on the principal strain maps obtained

using DIC, while the second is based on binary semantic segmentation of the crack, i.e., the

new method presented in this paper. Despite the fact that the required input data varies signif-

icantly between approaches, we extract comparable parts from crack patterns to benchmark

our methodology quantitatively. The structure that was analyzed is a plastered stone masonry

wall tested in an experimental campaign published in Rezaie et al. (73) and shown in Fig. 3.16.

The first pipeline, presented previously in two papers by Gehri et al. (75; 74), post-processes
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Figure 3.15: Results for real crack patterns using η= 1.5, µ= 1.5, and λ= 4. Group of edges
found using detected contours, endpoints, and junctions for: (a) pattern 1, (b) pattern 2, and
(c) pattern 3. Normal displacement maps (tn) for: (d) pattern 1, (e) pattern 2, and (f) pattern 3.
Tangential displacement map (tt ) for: (g) pattern 1, (h) pattern 2, and (i) pattern 3.

the principal strain maps between two time instants (t0 and t1) that were developed using DIC,

which detects cracks by establishing a strain threshold and then deduces their kinematics.

Figure 3.17 shows the results that we obtained using a two-sided threshold for the principal

strain 1mm/m ≤ T ϵ1 ≤ 4mm/m, a subset size ss = 29, and filter size f = 15 (refer to (75) and

(74) for a deeper understanding of the parameters).

The second pipeline uses the approach put forward in this paper, beginning with the use of a

deep learning model to semantically segment the cracks as a binary mask developed by Rezaie

et al. (51) (Figs. 3.16c and 3.18a). This binary mask is then used by our algorithm to generate a

crack kinematics map. In Fig. 3.18, we present the results obtained using this pipeline. Aside
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(a) (b) (c)

Figure 3.16: Damaged stone masonry wall used to predict crack kinematics: (a) wall without
damage (time instant t0), (b) wall with damage after applying the load (time instant t1) and (c)
segmented crack overlaid over damaged wall image using deep learning segmentation.

from analyzing the entire wall, patches can be extracted from the full prediction binary image

and then analyzed by the algorithms for more detailed and comparable results. Figures 3.18a

and 3.19, show the patches of sizes 256 x 256 px and 512 x 512 px that we selected and Figs. 3.20

and 3.21 present their crack kinematic results using both methodology pipelines in terms of

tt /tn and tn respectively.

When comparing the results obtained with the two approaches, the first aspect to notice is

the significant difference in the number of detected cracks (Figs. 3.17c and Figs. 3.18a). The

DIC approach relies on the strain map produced by the most recent load increment and the

thresholds applied to it; as a result, the number of detected cracks is strongly dependent

on the threshold values applied (73). Our approach, on the other hand, only requires the

use of a segmentation technique of the structure’s current damaged state for the required

input. Despite the clear differences in the detected cracks, the values of the relation tt /tn are

close between methodologies for most commonly detected cracks, as shown in Fig. 3.17d

and Fig. 3.18b for the full wall, or in the Figs. 3.20 and 3.21 for extracted image patches with

detected crack patterns that are similar. For a better quantitative assessment of our method, we

select a skeleton crack point for each extracted patch, as shown in the Figs. 3.19a-c, and their

kinematic displacements in mm are calculated and presented in the Table 3.5 (considering

image resolution of 0.43 mm/px (51)). Both methodologies produced similar numerical

results, according to the table. The distinctions are justified because the two methodologies

require different input information, which is then post-processed according to different

criteria during execution. For instance, to detect cracks using DIC, it is necessary to consider

the previous loads steps and accumulate the cracks detected for each step. As our purpose is
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Figure 3.17: Comparing pipelines for predicting the crack kinematics of a damaged stone
masonry wall. DIC pipeline reported in previously published works (75; 74): (a) principal
strain map ϵ1, (b) detected crack using thresholds of the strain map, (c) detected crack skeleton,
and (d) crack kinematics, relation tt /tn .

not to further develop that methodology (75; 74), we restricted our example to the use of only

two load steps.

Because improving the accuracy of the prediction using DIC-based algorithms might be

laborious in its requirement for more complete data, our approach has an advantage because

the algorithm only requires the use of a segmentation technique of the current damaged

status of the structure for the required input. In addition, the results differ because the two

methods compute the kinematics using different reference points from the two crack sides.

While our algorithm selects points that are exactly over the segmented crack edges, the DIC

method selects reference points that are measured outside of the crack contours and where

displacement values are available (75; 74). As a result, when the kinematic is computed using
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(a) (b)

Figure 3.18: Comparing pipelines for predicting the crack kinematics of a damaged stone
masonry wall. Binary–mask-based pipeline—crack kinematics using our approach with
η= 1.0, µ= 1.5, λ= 4: (a) Binary mask output from deep learning prediction and location of
extracted patches sized 256 x 256 px, and (b) crack kinematics—relation tt /tn .

(a) (b) (c)

Figure 3.19: Three extracted patches of 256 x 256 px and 512 x 512 px analyzed using both
methods. Binary mask patches with selected skeleton points (red) where kinematic was
exported to compare methodologies for: (a) 256 x 256 px pattern 1, (b) 512 x 512 px pattern 2,
and (c) 512 x 512 px pattern 3.

the DIC method, the crack width may be overestimated, as shown in Table 3.5 where the

width values are generally larger in comparison to our results. Furthermore, when comparing

DIC-based methodology to the technique hereby developed, it should be noted that DIC

requires significant preparations, such as applying speckle patterns to the specimen and

calibrating the cameras. The current technique, on the other hand, is designed to work in the

field with conventional cameras and in harsh environmental conditions. The work presented

in this paper demonstrates that the current technique is adaptable and that the level of error
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Figure 3.20: Comparing pipelines for predicting the crack kinematics of a damaged stone
masonry wall. Binary–mask-based and DIC pipelines—crack kinematic for three extracted
patches of 256 x 256 px and 512 x 512 px analyzed using both methods: (a-c) crack
kinematic—relation tt /tn using our binary–mask-based pipeline for patterns 1-3, and (d-
f) crack kinematic—relation tt /tn using DIC pipeline patterns 1-3. (75; 74)

is acceptable.

Table 3.5: Comparison of normal and tangential displacements (tn and tt ) computed by our
binary–mask-based and DIC-based approaches.

DIC-based (75; 74) Ours Absolute difference

tn [mm] tt [mm] tn [mm] tt [mm] ∆tn [mm] ∆tt [mm]

Pattern 1 1.07 1.02 1.08 1.88 0.01 0.82
Pattern 2 10.65 4.74 9.13 4.97 1.52 0.23
Pattern 3 11.40 0.87 9.96 0.82 1.44 0.05

3.4.6 Damaged beam

As another validation example, we use our methodology on a cracked beam with dimensions

135mm ×15mm ×8mm presented in the Fig. 3.22. The two visible cracks were caused by

vertical loads applied in two load steps at midspan, moving the location of the supports

between the two load steps. The results obtained using the pipeline proposed in this paper
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Figure 3.21: Comparing pipelines for predicting the crack kinematics of a damaged stone
masonry wall. Binary–mask-based and DIC pipelines—normal displacement for three ex-
tracted patches of 256 x 256 px and 512 x 512 px analyzed using both methods: (a-c) normal
displacement tn [mm] using our binary–mask-based pipeline for patterns 1-3, and (d-f) nor-
mal displacement tn [mm] using DIC pipeline for patterns 1-3. (75; 74)

are displayed in Fig. 3.23.

(a) (b) (c)

Figure 3.22: Crack kinematics for damaged beam—beam crack patterns: (a) beam set up,
beam crack pattern with position of extracted patches of 256 x 256 px to measure the crack for
(b) Pattern 1 and (c) Pattern 2.

To quantitatively assess our method with this example, we used a metric gauge to measure

the crack width (normal displacement) at various points in both crack patterns, as shown

in the Figs. 3.24a,c and compared these values to our results. We limited our validation to

the Mode I crack opening because manual measurement of tangential crack displacements
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Figure 3.23: Crack kinematics for damaged beam—Binary–mask-based pipeline segmenting
crack: (a) segmented crack overlaid over beam crack pattern 1, (b) crack kinematics—relation
tt /tn for crack pattern 1, (c) segmented crack overlaid over beam crack pattern 2 and (d) crack
kinematics—relation tt /tn for crack pattern 1.

is not feasible. Figures 3.24b,d show the patches of 256 x 256 px extracted from the original

image crack patterns centered on the selected measured points (red points) and from which

the normal displacement tn (crack width) is extracted from the results (Fig 3.22b,c depict the

location of patches in the crack patterns).

Table 3.6 shows the measured width values as well as the extracted results from our method

for the same locations. To compute the results in mm of our methodology, we previously

determined the image resolution for the image crack patterns to be 0.0419 mm/px for pat-

tern 1 and 0.0425 mm/px for pattern 2. When the reference measurement of the gauge for

the different crack points is compared to the results of our method, we can observe appro-

priate performance, accuracy, and robustness. Among the error factors to consider are the

subjectivity of measuring crack properties with a gauge and crack edge segmentation, the

latter of which can be improved if better methodologies are used. Despite this, the results are

satisfactory and validate our methodology.
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(a) (b) (c) (d)

Figure 3.24: Crack kinematics for damaged beam—comparison with measured crack widths:
(a) measured crack widths for Pattern 1, (b) extracted patches of 256 x 256 px around measured
crack points for Pattern 1, (c) measured crack widths for Pattern 2 and (d) extracted patches of
256 x 256 px around measured crack points for Pattern 2.

3.4.7 Post-earthquake damage assessment

To conclude the experimental work, we used another example of a building that was damaged

during the 2020 Petrinjia earthquake (3; 4). To identify the cracks, we used a deep learning

model published by Pantoja-Rosero et al. (24), as shown in Fig. 3.25. This model builds on

the work by Rezaie et al. (51) by enforcing continuity in the crack pattern, which is therefore

better suited when the crack width in the image is small. We ran our code on the binary mask

that represents the cracks over the building (Fig. 3.26a). The kinematics results for the crack
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Table 3.6: Beam experiment: Comparison of normal displacements (tn - crack width) com-
puted by our binary—mask-based approach to physically measured displacements with
metric gauge for the points shown in Figs. 3.24b,d.

Pattern 1 Pattern 2

Gauge tn [mm] Ours tn [mm] ∆tn [mm] Gauge tn [mm] Ours tn [mm] ∆tn [mm]

Point 1 0.40 0.41 0.01 1.80 1.78 0.02
Point 2 1.40 1.23 0.17 4.00 3.67 0.33
Point 3 1.60 1.48 0.12 0.60 1.21 0.61
Point 4 2.00 1.50 0.50 1.80 2.28 0.48
Point 5 2.00 1.43 0.57 4.00 3.91 0.09

pattern are presented in Figs. 3.26b-d.

(a) (b)

Figure 3.25: Crack kinematics for post-earthquake damage assessment—Binary–mask-based
pipeline segmenting crack with deep learning model from Pantoja-Rosero et al. (24): (a)
damaged building image due seismic activity and (b) segmented crack overlaid over damaged
building image with 512 x 512 px patch location.

We extracted and analyzed a 512 x 512 px patch that corresponds to the pier shown in

Figs. 3.25b and 3.26a. In Fig. 3.27, we can see a region with a predominant crack propa-

gating in Mode II with shear displacements from the crack kinematic results. This makes

mechanical sense because shear loads generated during earthquake acceleration are expected

to cause the diagonal cracks observed in that building pier.

The results obtained from the use of complex patterns and real-world structure cases (DIC wall

and damaged building) demonstrate the applicability and adaptability of our methodology to

real-world situations. As a result, we believe that the simplicity and robustness of our approach

make it an useful contribution for damage assessment when crack characterizing is required.
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Figure 3.26: Crack kinematics for post-earthquake damage assessment—crack kinematics
using our approach with η= 1.0, µ= 1.5, λ= 4: (a) binary mask output from deep learning
prediction with 512 x 512 px patch location, (b) crack kinematics—relation tt /tn , (c) normal
displacement map (tn), and (d) tangential displacement map (tt ).

3.5 Conclusions

In this paper, we proposed a novel methodology for determining the propagation of cracks in

structural elements caused by unknown forces (crack kinematics). This procedure takes as

inputs binary images obtained by semantically segmenting a crack from an image of a crack

pattern. To the best of our knowledge, this is the first method to solve the crack kinematics

determination problem based on single images, significantly advancing the state-of-the-art in

the field.

The first step of our developed technique consists of detecting the contours of a crack pattern

as a 2D set of points that are divided into opposite edges along the crack length. Next, the

edges are registered using Euclidean transformations encoding both normal and tangential

displacements, which are used to determine whether the cracks propagated in Mode I or

Mode II. Additional normal features are included in our loss function to improve the results of

the registration problem. We validated our method with synthetic data based on lines and
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Figure 3.27: Crack kinematics for post-earthquake damage assessment—crack kinematic for
extracted patch 512 x 512 px: (a) binary mask, (b) crack kinematics—relation tt /tn , (c) normal
displacement map (tn), and (d) tangential displacement map (tt ).

real crack contours, where pre-defined rotation and translation were used to generate crack

patterns, obtaining an absolute error of less than a pixel. Monte Carlo simulations were used to

demonstrate the stability of our method as well as to guide the selection of hyper-parameters.

Then, we put our methodology to the test with challenging crack patterns that contained

multiple cracks and branches, including two real structural applications (damaged wall during

laboratory testing, damaged beam and damaged building due to an earthquake event). Extra

validation of the performance, accuracy and robustness of our methodology is made com-

paring results with a DIC-based method and manual measurements with metric gauge. The

results of both validation and test experiments showed that the developed approach has the

potential to deduce the crack kinematics simply from spatial features (2D edges coordinates)

extracted from a binary input image.

Although we demonstrated the effectiveness of our approach, there are some aspects that

require further investigation. First, we identified the need to investigate alternative approaches

to automating the calibration of the hyper-parameters, namely k (or η), mu, and l ambd a,

in the selection of the transformed edges. This calibration should assign different values
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based on the features of the branches (e.g., size, curvature) that make up the crack pattern.

Additionally, further improvements to the algorithm can be made using features other than

2D coordinates, such us features generated from gradient-based descriptors. Furthermore,

we believe that combining the binary image with the original crack pattern image will be

beneficial in future developments. Finally, including information about depth of the surface,

either using depth instrumentation (e.g., RGBD cameras, lidar) or stereo configuration (two

cameras), would allow the inclusion of Mode III crack propagation to our methodology.

We believe that our work will have a significant impact in the field of image-based damage

assessment because of its simplicity, robustness, and adaptability and that it can extract

valuable information, such as crack kinematics, from simple data. Moreover, it will allow for

more research in a variety of applications, such as the prediction of mechanical properties of

damaged structural elements or studies to understand why damage occurred.
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Appendix

Pseudo-code of the technique

The pseudo-code is summarized in Algorithm 1. The input parameters are k, µ, and λ, and the

output contains the crack kinematics in terms of rotation and displacement maps. Note that

the parameter k can be replaced by η, and the parameter λ can be replaced by the Pareto-like

optimization algorithm (86).

Algorithm 1 Binary Image Crack Kinematics (BICK) algorithm

Input: k,µ,λ
Output: Crack Kinematic

Crack Kinematics ← {}
Crack Mask ← read(crack image path)
Crack Contours ← find_contour(Crack Mask)
Skeleton ← skeletonize(Crack Mask)
Skeleton End Points ← get_end_points(Skeleton)
Skeleton Junction Points ← get_junction_points(Skeleton)
Crack Edges ← find_crack_edges(Crack Contours, Skeleton End Points, Skeleton Junction
Points)
for x, y in Skeleton do

E0 ← get_edge_0(k, Crack Edges)
E1(1), . . . ,E1(M) ← get_M_edges_1(k,µ,λ, Crack Edges)
for i in {1, . . . , M } do

θi , txi , tyi , lossi ← get_euclidean_transformation(E0, E1(i ))
end for
θ, tx , ty ← get_best_transformation(θi , txi , tyi ,lossi )
t ′x , t ′y ← get_2DOF_movement(θ, tx , ty )
tn , tt ← get_2DOF_normal_and_tangential(θ, t ′x , t ′y )
Crack Kinematics ← update_status(θ, tx , ty ,θ, t ′x , t ′y , tn , tt )

end for

Validation and selection of hyper-parameters—Monte Carlo simulation

To assess the robustness of our herein-developed technique, synthetic crack-like datasets

were created as in Section 3.4.2 that generated the transformed edge by considering random

translations and rotations. The experiments presented in this section consider both full and

segmented edges and are composed of 50 binary masks of a crack pattern. Furthermore, the

error measure considered in this analysis refers to the absolute error of the mean value of the

translations t′ (Eq. 3.8), which is given by

ϵ=
∣∣∣0.5(δt ′x +δt ′y )

∣∣∣ ,

(
δt ′x
δt ′y

)
= 1

k

k∑
i=1

[
t′g t − t′

]
. (3.10)
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The first analysis performed here used full edges, for which we obtained an average absolute

error of 0.83 px and standard deviation of 0.68 px for 50 images. For the mean absolute error,

the probability density function calculated using the Silverman bandwidth method is shown

in Fig. 3.28. The low error and variance obtained for these quantitative results indicate the

potential of our methodology to solve the crack kinematic problem.
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Figure 3.28: Probability density function for mean absolute error calculated using a kernel
density estimation (KDE) and full edges for the 50 synthetic contour-based crack patterns.

To verify the stability of our method, to perform a sensitivity analysis of the hyper-parameters

used in our methodology, and to provide a guide on how to choose them, we ran Monte Carlo

simulations for the finite edge segment approach considering four scenarios. In the first sce-

nario (Scenar i o 1), we used the hyper-parameters k, µ, and λ. For the second (Scenar i o 2),

we used the hyper-parameters η, µ, and λ. The third and fourth scenarios (Scenar i o 3 and

Scenar i o 4) used the same hyper-parameters as the first two scenarios except for λ (not an

input hyper-parameter in this scenario), which was selected via the heuristic Pareto-like opti-

mization algorithm. We randomly selected the hyper-parameter values for the four scenarios

in the following intervals: k = [30,250], µ= [1.0,3.0], λ= [1,10], and η= [1,5]. To assess the

influence of the hyper-parameters on the analysis results for the four scenarios, we performed

a Monte Carlo simulation with a total of 5000 samples for each scenario, which represent

different combinations of hyper-parameters and crack segments. To select the crack segment,

we randomly sampled one point on the skeleton of one of the 50 synthetic contour-based

crack patterns and registered the k-nearest neighbors of the edge E0 over the edge E1. We then

determined the error for this sample according to Eq. 3.10.

For each of the four scenarios presented in Fig. 3.29, the probability density functions for the

mean absolute error and registration time were calculated using the Silverman method for

the bandwidth. The mean and standard deviation for the absolute error and registration time

obtained in terms of pixels and seconds respectively are presented in Table 3.7. These values

together with the distribution shape shown in Fig. 3.29 of the probability density functions

affirms that our methodology is stable and that the variation of the parameters in general

does not significantly alter the final result. As expected, Scenar i o 3 and Scenar i o 4 had the
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largest error and variance, as the use of heuristics does not always result in the best solution.

Nonetheless, the use of heuristics reduces computational costs as compared to the use of λ= 1

such that the application of our algorithm requires consideration of the trade-off between

computational cost and accuracy. Note that the probability density functions show that some

samples had a large error in comparison to the mean value. This occurs where the skeleton

points are sampled from regions close to the image borders and one of the two opposite edges

lays outside the patch. In this case, the finite segment edge will be registered incorrectly,

producing the large errors observed in Fig. 3.29.

Table 3.7: Monte Carlo simulations of probability density functions. Mean and standard
deviation (std) for the absolute error and registration time for four different scenarios.

Mean absolute error Registration time

mean [px] std [px] mean [s] std [s]

Scenar i o 1 1.30 1.55 0.42 0.85
Scenar i o 2 1.32 1.40 0.40 0.69
Scenar i o 3 1.87 3.83 0.59 0.81
Scenar i o 4 2.27 5.29 0.57 0.77

Next, we clarified the sensitivity of our algorithm to the hyper-parameters, which guided the

selection of appropriate values. This was done using the variation of the mean of the absolute

error and registration time as a function of the hyper-parameters for each scenario, presented

in Figs. 3.30 and 3.31, respectively. Reasonably, the algorithms tend to produce smaller

registration errors with a larger finite segment E0 (the larger k or smaller η; Figs. 3.30a,b), as

the larger the segment, the more features it will contain and therefore the better the registration.

Despite this, larger finite segments increase the computational time, as shown in Figs. 3.31a,b.

In relation to the size of the segment E1 to which E0 is registered, the figures show that selecting

a 50% bigger segment generally improved the results (µ ≈ 1.5; Fig. 3.30c). For Scenar i o 1

and Scenar i o 2, selecting values of µ≥ 1.5 results in approximately constant error values, as

would be expected if the optimization result was the same every time. Predictably, this was not

the case when a Pareto-like optimization algorithm was used (Scenar i o 3 and Scenar i o 4),

because the algorithm can easily find a local minimum rather than a global minimum when

the edge E1 is larger. In terms of computational cost, larger edge segments E1 (larger µ)

proportionally increase registration time (Fig. 3.31). Finally, for the two first scenarios that

use λ, Figs. 3.30d and 3.31d predictably show the best error values when this hyper-parameter

tends to unity, though this is at the expense of longer computation times. When λ= 1, the

algorithm looks for all the possibilities of registering E0 over E1 and takes the best. Therefore,

the use of heuristics is important for finding an appropriate solution that runs faster without

sacrificing significant accuracy.

To test the efficiency of the Pareto-like algorithm, we ran four new Monte Carlo experiments

with 500 samples under nearly identical conditions as in the previous four scenarios. The
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Figure 3.29: Probability density functions calculated using KDE for 5000 random samples in
multidimensional spaces of hyper-parameters and using finite segment edges applied to the
50 synthetic contour-based crack patterns: (a) mean absolute error and (b) mean registration
time.

only difference between Scenar i o 1 and Scenar i o 2 was that the hyper-parameter λ was

always equal to unity, which makes for a fair comparison of the improvement that the heuristic

algorithm achieves in contrast to the greedy optimization approach, in which all registration

possibilities between the edges E0 and E1 are examined (λ= 1). Fig. 3.32 shows the probability

63



Chapter 3. Crack characterization: crack kinematics

50 100 150 200 250
k

1

2

3

4

5

6

7

8

m
ea

n 
|e

rr
or

| [
px

]

Scenario 1
Scenario 3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

2

4

6

8

10

12

14

m
ea

n 
|e

rr
or

| [
px

]

Scenario 2
Scenario 4

(a) (b)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
1.0

1.5

2.0

2.5

3.0

m
ea

n 
|e

rr
or

| [
px

]

Scenario 1
Scenario 2
Scenario 3
Scenario 4

2 4 6 8 10

1.1

1.2

1.3

1.4

1.5

1.6

m
ea

n 
|e

rr
or

| [
px

]

Scenario 1
Scenario 2

(c) (d)

Figure 3.30: Mean of the absolute error during the Monte Carlo simulation for hyper-
parameters used in the finite segment edge approach under the defined four scenarios: (a) k,
(b) η, (c) µ, and (d) λ.

density functions for the mean absolute error and registration time. The mean and standard

deviation for the absolute error and registration time in terms of pixels and seconds, respec-

tively, are presented in Table 3.8. This result demonstrates an improvement in computational

cost with the heuristic algorithm, though at the cost of increasing the error in the results. This

again indicates the trade-off between processing time and precision that must be considered

when deciding on an approach.

As shown in (73), displacement prediction using DIC information may achieve errors of less

than a pixel. When such numbers are compared to those in Tables 3.7 and 3.8, the accuracy

of the approach provided here may be questioned. Nonetheless, our methodology’s error

acceptance is justified since it is intended to be employed in real-world applications where

the environment is nearly impossible to control, as is the case with DIC approaches. As is

well known, in order to employ DIC, certain circumstances, such as proper camera setup,

controlled lighting, and speckle surfaces, are necessary. Furthermore, DIC achieves sub-pixel
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Figure 3.31: Mean of the registration time during the Monte Carlo simulation for hyper-
parameters used in the finite segment edge approach under the defined four scenarios: (a) k,
(b) η, (c) µ, and (d) λ.

Table 3.8: Monte Carlo simulations of probability density functions to measure the efficiency of
the Pareto-like algorithm. Mean and standard deviation for the absolute error and registration
time for four different scenarios.

Mean absolute error Registration time

mean [px] std [px] mean [s] std [s]

Scenar i o 1 1.11 0.99 1.23 2.16
Scenar i o 2 1.15 1.61 1.24 1.80
Scenar i o 3 2.29 5.94 0.52 0.71
Scenar i o 4 2.27 6.47 0.57 0.83

resolution through polynomial optimization and interpolation on a domain defined by pixels

in integer positions. To achieve sub-pixel resolution, our technique would need to improve its

optimization processes, which will be the subject of future research.
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Figure 3.32: Comparison between Pareto-like optimization algorithm and greedy approach
with λ = 1. Probability density functions calculated using KDE on 500 random samples in
multidimensional spaces of hyper-parameters and with the finite segment edge approach
applied to the 50 synthetic contour-based crack patterns: (a) mean absolute error and (b)
mean registration time.
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4 Generation of 3D building models:
LOD3

This chapter represents the slightly modified post-print version of the article: B. Pantoja-

Rosero, R. Achanta, M. Kozinski, P. Fua, F. Perez-Cruz, K. Beyer, “Generating LOD3 building

models from structure-from-motion and semantic segmentation”, Automation in construction

141 (2022) p.104430. The formatting and numbering of equations, tables and figures have

been adapted to this document.

Abstract

This paper describes a pipeline for automatically generating level of detail (LOD) models

(digital twins), specifically LOD2 and LOD3, from free-standing buildings. Our approach

combines structure from motion (SfM) with deep-learning-based segmentation techniques.

Given multiple-view images of a building, we compute a three-dimensional (3D) planar

abstraction (LOD2 model) of its point cloud using SfM techniques. To obtain LOD3 models, we

use deep learning to perform semantic segmentation of the openings in the two-dimensional

(2D) images. Unlike existing approaches, we do not rely on complex input, pre-defined 3D

shapes or manual intervention. To demonstrate the robustness of our method, we show

that it can generate 3D building shapes from a collection of building images with no further

input. For evaluating reconstructions, we also propose two novel metrics. The first is a

Euclidean–distance-based correlation of the 3D building model with the point cloud. The

second involves re-projecting 3D model facades onto source photos to determine dice scores

with respect to the ground-truth masks. Finally, we make the code, the image datasets, SfM

outputs, and digital twins reported in this work publicly available in https://github.com/eesd-

epfl/LOD3_buildings and https://doi.org/10.5281/zenodo.6651663. With this work we aim

to contribute research in applications such as construction management, city planning, and

mechanical analysis, among others.
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Chapter 4. Generation of 3D building models: LOD3

4.1 Introduction

A computational building model is critical for a variety of applications, ranging from city plan-

ning to the generation of mechanical models for structural analysis. Important information,

such as geometry, location, materials, or structural systems, can be stored in such models

which can be represented through entities in conjunction with computer vision methods

(89; 90). While models with a high level of detail, such as models obtained from computer

vision methods like structure from motion (SfM) and multiple-view stereopsis (MVS), are

necessary for some applications, others may require simpler representations, such as level of

detail (LOD) models.

LOD models are simplified versions of more complex models that use simple geometric primi-

tives, such as planes, while retaining essential details (91). Although LOD models are common

in geometric modeling, they have only recently been applied to urban scenes (14). To define

LOD models for buildings, the CityGML standard for the storage and exchange of virtual 3D

city models is used (92). The CityGML classifies building models into five categories, ranging

from LOD0 (the simplest) to LOD4 (the most detailed), as shown in Figure 5.1.

LOD0 LOD1 LOD2 LOD3 LOD4
Figure 4.1: The five LODs defined by CityGML 2.0. The geometric detail and the semantic
complexity increase, ending with LOD4, which contains indoor features (93).

Traditionally in civil engineering, 3D reconstructions performed using multiple-view tech-

niques are cumbersome, time consuming, and inaccurate (94; 95). To improve the speed and

accuracy, 3D reconstructions of building scenes can be automated using the current state of the

art in computer vision and machine learning. In fact, computer vision and machine learning

are used in numerous literature studies aiming to reconstruct LOD models for buildings with a

certain level of automation. However, the majority of the proposed methodologies reconstruct

LOD2 models, which do not include data about the building’s openings and therefore do not

provide enough information for some applications, such as, for example, modelling of the

structural response or modelling of the building energy response (15; 16; 96; 17; 97; 98; 99).

Additionally, works that do perform LOD3 model reconstruction are not currently robust,

since they rely on post-processing of very precise 3D models (14; 100; 19). Other methods

use predefined templates (101; 20), require human manipulation (102), or lack a semantic
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understanding of the components in the final model shape (103). Finally, the existing literature

is starkly missing a mechanism for evaluating the performance of the proposed pipelines or

the reconstructed models.

We herein address the major concerns with the existing literature by proposing a semantic

segmentation pipeline based on SfM and deep learning. The former is used to generate point

clouds and camera poses, and the latter is used to produce a LOD3 representation. Here, LOD2

models are built using the Polyfit (16) methodology, in which planar primitives are extracted

from point clouds. The intersections of these planar primitives are processed through an

optimization procedure to create watertight, polygonal-surface LOD2 models. To upgrade

these models to LOD3, we segment openings from building images using deep learning, tri-

angulate these openings to 3D space, and superimpose them onto LOD2 models. With this

work, we also introduce two metrics for objectively evaluating 3D reconstructions: the first is

based on Euclidean distances between the final model and the point cloud, and the second is

based on a comparison of the re-projection of facades and openings onto the original images

with manually annotated ground truths. We hope to contribute research in the field such as

construction management, city planning, and mechanical analysis with this work. To advance

research in this domains and for benchmarking purposes, we publicly release our code as

well as data sets containing point clouds, camera poses, and annotated images. In short, our

contributions are as follows:

• A novel pipeline for reconstructing LOD3 models of free-standing buildings;

• New metrics for evaluating the performance of a reconstruction;

• A benchmark dataset for evaluating the reconstruction of SfM as well as LOD3 models;

• The code and trained deep learning models for facade segmentation of free-standing

masonry buildings.

4.2 Related work

Here, we describe the literature related to the two main parts of our approach: LOD model

creation followed by building segmentation.

4.2.1 Level of detail (LOD) models

Literature methodologies for generating LOD models require building information as input,

which is typically represented as point clouds or meshes. As an example of the inputs used,

Verdie et al. (14) rebuilt 3D urban scenes from raw surface meshes using mathematical simpli-

fications of the elements. Others (15; 16) fitted an optimal selection of boxes and primitive
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planes to point clouds by minimizing energy terms. Yet others (96; 17; 100) retrieved geometri-

cal attributes from point clouds, such as planes or borders, then used building simplifications

to create 3D models. When there is not enough 3D data to infer a LOD model, Biljecki et al. (97)

proposed using 2D aerial images with building footprints and a machine learning technique

(random forest) to predict building height and then extrude it vertically, creating LOD models.

Some works aim to improve the properties of the final model. Hensel et al. (19) used a deep

neural network to generate LOD3 models from lidar-based LOD2 by adding window and

door objects detected in rectified images using bounding boxes.The images are extracted

from the LOD2 model’s textured walls, which are mapped from 3D to 2D using information

on the wall vertices. The authors use linear programming to configure the opening layout,

which is then projected back to 3D by fitting the 2D facade configuration to the corresponding

facade plane in the LOD2 model. Peethambaran et al. (101) described a method for improving

building details by leveraging the geometry and symmetry deduced from LiDAR scans and 2D

templates. Liu et al. (98) combined planar primitives with feature lines extracted from point

clouds and images, where the supplemental images help recover missing planes to generate

the model using the approach of Nan et al. (16). Schwarzler et al. (102) used a semi-automatic

model with a user-interactive procedure to define surfaces, edges, and faces over point clouds

and images. User-labeled features were then projected onto the surface model using computer

vision techniques.

The most recent work done concurrently with the current research is from Huang et al. (20).

The authors proposed a process similar to the one suggested here in which an LOD3 model is

generated using statistical fitting of a library containing generative primitives (pre-defined

facade and roof shapes) in a dense 3D point cloud (from MVS). The openings are then added

to the pre-defined shapes by segmentation using rectified facade images and deep learning.

While these works provide acceptable methodologies for creating LOD3 models for buildings,

we observe the following shortcomings in general. These methods tend to a) require com-

plex and complete input data, resulting in poor computational efficiency; b) use pre-defined

shapes, which limits the range of outputs; c) require some manual manipulation; d) lack of

semantic knowledge of the type of building components. Our method aims to overcome

current shortcomings in the state-of-the-art by inputting a sparse point cloud with no shape

constraints and building component-aware LOD2 and LOD3 models in a fully automated

manner.

The use of LOD3 models has a wide range of applications where only outdoor information

is required, from general ones such as city planning to more specific ones such as building

envelope analysis or structural analysis of stone masonry buildings (where typically only the
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outer walls are load-bearing walls). Our objective is to contribute to these types of appli-

cations as our pipeline generates LOD3 models as final output. The reconstruction of LOD

environments for indoor building scenes is of course of interest for other applications such

as architectural design and is also a well-studied research topic. For instance, Coudron et

al.(104) present a method for reconstructing simplified polygonal models for building indoor

environments from cluttered point clouds. Adan et al.(105) present a methodology for creat-

ing detailed semantic models of building interiors. The authors present an integrated system

in their work that results in a model with details ranging from walls, ceilings, and openings to

sockets, switches, and lights. Even though increasing the detail of our LOD3 models to LOD4

containing indoors is beyond the scope of the work hereby presented, we intend to expand

our pipeline in this direction in future studies.

4.2.2 Building segmentation

It is important to collect as much information from images as possible when modeling struc-

tures with virtual 3D representation. Many applications require a comprehensive semantic

understanding of a scene (106). For this, it is essential to segment the common building

components (chimneys, doors, windows, balconies, etc.). Both traditional and cutting-edge

computer vision techniques have been used for this purpose, and both contribute to the goals

of this study.

One method for segmenting or parsing buildings uses superpixels, which are a cluster of

pixels formed when image pixels are combined with their neighbors that have similar features.

Superpixels can be integrated with 3D information to segment planar primitives on buildings

as was done by Bodis-Szomoru et al. (107).

Deep learning models can also be used for segmentation, such as the one by Schmitz et

al. (108) that segments building facades into different classes, demonstrating that transfer

learning (using pre-trained parameters) can provide good results even with small datasets.

Combining different neural networks can improve deep learning results, as demonstrated by

Femiani et al. (109), who used three different deep models that are each specialized in one

task. Improvements can also be obtained by including prior building information in the loss

function (110). A good methodology should also be capable of dealing with occlusions and

ambiguities, as was done for instance by Ma et al. (111), who used a special kernel within the

architecture of the deep learning model.

As another strategy for segmenting buildings, grammar graphs are recursive structures that

decompose a complex scene into simpler objects that can be reassembled using “grammar”

restrictive rules, as shown by Socher et al. (112). Tebould et al. (113) employ this concept on
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facade segmentation in conjunction with semantic segmentation and machine learning tech-

niques (random forest). Such segmentation can also be performed directly on 3D buildings as

presented by Boulch et al. (114). For 3D models, Armeni et al. (115) presents a framework for

generating a 3D scene graph formulated as a four-layered graph given 3D mesh models, RGB

panoramas, and the corresponding camera parameters.

In this work, we propose using state-of-the-art segmentation techniques to address the chal-

lenge of automatic LOD3 modeling. To segment facades and openings in this work, we adapt

and implement a cutting-edge deep neural network, TernausNet (50), which was used in the

original work for building segmentation in aerial images. In recent works from our lab, we

have validated the performance of this deep learning model in other tasks, such as crack

segmentation (51; 24). Here, we extract information that is used to improve the reconstruction

of the LOD model.

4.3 The proposed approach

Figure 4.2 schematically demonstrates the creation of LOD3 models using our approach. We

start by segmenting the building openings using our trained deep learning model. Next, we

generate a point cloud and determining camera poses using multiple-view images in the SfM

framework (116; 117). This information is used to generate an LOD2 model via Polyfit (16).

Finally, multiple-view techniques determine the segmented building openings in 3D, which

are projected onto the LOD2 model, resulting in an LOD3 model.

Our pipeline is therefore composed of two main components. The first performs deep–

learning-based image segmentation that assigns semantic labels to image pixels based on

whether they belong to openings, opening corners, or facades. The second component

generates LOD2 models from point clouds, which are then upgraded to LOD3 using the

information about openings from the first component. In this section, we describe these two

components in the sections 4.3.1 and 4.3.2, respectively. We also introduce two novel metrics

for the quantitative evaluation of LOD reconstruction in section 5.3.7.

4.3.1 Opening segmentation and detection

It is necessary to segment the elements of the facade to understand its composition and project

this information into 3D space. For this purpose, three different versions of TernausNet (50),

a deep learning model, were trained separately to segment openings, corners, and facades

as binary masks. This model operates by receiving an inputted RGB image of a building and

producing outputted binary masks containing the segmented objects. The dataset used here

consists of 270 images of free-standing masonry buildings that were randomly divided into

training (80% of images) and validation (20% of images) sets. TernausNet operates using dice
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Figure 4.2: LOD3 model generation pipeline. (a) Multiple-view images from a building. (b)
Segmentation of facade and openings using deep learning models. (c) Point cloud recovered
using structure from motion (SfM). (d) LOD2 polygonal surface model generated from SfM
point cloud. (e) LOD3 polygonal surface model as result of merging LOD2 model and the
triangulated openings from segmentation.

loss (67) (D, Eq. 4.1) and the Adam optimizer (69) with a training batch size of eight.

D = 1− 2
∑N

i pi gi∑N
i p2

i +
∑N

i g 2
i

, (4.1)

where, for a pixel i , gi is the ground truth probability, pi the predicted probability, and N

the number of pixels in the image. For training, 250 epochs were used with a learning rate of

1e−5, which was automatically reduced to half after 20 consecutive epochs of no improvement.

The data was augmented using image transformations with a 50% probability. Furthermore,

because TernausNet employs a pre-trained VGG encoder (66), all image data was normalized

to have a mean of [0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224, 0.225] for the

three RGB channels. Finally, cross validation was performed on the data set using five different

permutations, selecting the model with the lowest loss value. Some test results are shown in

Figure 4.3.

It is important to note that our data set was limited to masonry buildings because that is the

current research focus of the EESD laboratory. Nonetheless, the same approach can be used
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Figure 4.3: Examples of prediction and ground truths of semantic segmentation of facade,
openings, and opening corners.

to retrain these models with images corresponding to other typologies, and the results should

be similar to those presented in this study.

4.3.2 3D generation of polygonal surface models

This section first introduces the key aspects of the 2D and 3D geometry used for creating

our LOD3 models. We discuss the framework for creating surface models from point clouds

(i.e. Polyfit), including the triangulation of 2D information to 3D space, 2D homography

transformations, and Kanade-Lucas-Tomasi (KLT) feature tracking (118) before presenting the

components of our pipeline as shown in Figure 4.2.

Triangulation of 2D image points to 3D space: Triangulating 2D point correspondences

(x,x′) in images to 3D is based on epipolar geometry. The objective is to find the common

3D coordinate X of a point that is observed from two views. The camera projection matrices

(P,P′) are derived from SfM camera poses by solving the following Eq. 4.2 through the use

of singular value decomposition (SVD). A derivation of the methodology can be found in

standard computer vision literature (116; 117).

[
P −x 0

P′ 0 −x′

] X

λ

λ′

= 0, (4.2)

where λ and λ′ are constants representing the position of the point X along the rays projected

from this point to the respective centers of the view cameras.

74



4.3 The proposed approach

Homography matrix: Homography solves the problem of finding a transformation matrix H

that takes points xi placed in a plane to their corresponding set of points x′i placed in another

plane (116). In practice, the points xi and x′i can be located on planes in the same or different

images. This technique is especially useful for mapping points from one view image to another

when they lie on the same plane. The homography matrix H relates correspondences (x,x′) as:

x′i = Hxi . (4.3)

KLT tracker (118): First published in Tomasi et al. (118) and based on the image registration

techniques shown in (119), the KLT feature tracker is a method in which feature windows

are tracked from one image frame to the next. The method computes a measure of similar-

ity between fixed-size feature windows in two images as the sum of squared pixel intensity

differences across the windows. The displacement is defined with respect to the window

that reduces the specified sum to the smallest possible value. Given the images and point

correspondences in the first view x, it is possible to determine the value of x′ points in a second

image.

The proposed framework

The methodology for the 3D reconstruction of free-standing stone masonry buildings is now

presented, beginning with the generation of LOD2 models. The model is then upgraded to

LOD3 through the projection of windows and doors using the methodology described below.

To assist with the explanation, we use our first reconstructed model.

Structure from motion: In our approach, SfM is central to the 3D reconstruction process. The

structure (i.e. point clouds) and motion (i.e. camera poses, projection matrices) of a scene are

recovered using this framework, which is done here using the software MESHROOM (120). The

structure and motion recovered from multiple-view images collected using a drone and hand

digital camera are shown in Figure 4.4.

LOD2 generation: To generate a polygonal surface model, the Polyfit approach proposed by

Nan et al.(16) was used. Polyfit relies on intersecting primitives (only planes) identified from

a point cloud and combines them to produce an abstracted polygonal surface model. The

results of applying Polyfit to the point cloud from Figure 4.4 are shown in Figure 4.5. This

figure shows the initial point cloud, segmentation based on planar primitives, generation of

the candidate faces, and the final LOD2 model after optimization.
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(a) (b)

Figure 4.4: SfM model. (a) An image from a reconstructed building. (b) Recovered structure
(point clouds) and motion (camera poses).

(a) (b) (c) (d)

Figure 4.5: Polyfit framework to produce LOD2 models. (a) Initial point cloud. (b) Planar
primitives clustered using RANSAC. (c) Candidate faces determined from plane intersections.
(d) LOD2 model after optimization process.

LOD3 generation: To generate faithful building representations for various applications, it is

important to know the distribution of openings over the facades. However, because openings

are not represented in the LOD2 model, it must be enhanced to LOD3 by projecting openings

onto the LOD2 model. To address the shortcomings of the existing approaches for performing

this upgrade as mentioned in Section 4.2, we propose a novel strategy to improve LOD2 models

based on deep learning and computer-vision techniques.

Our procedure begins with the use of camera projection matrices recovered from SfM. Images

containing information about the openings are processed by our trained deep learning model

(TernausNet) to semantically detect opening corners, openings, and facades. As described in

the Section 4.3.1, the output of the deep learning model is a binary image in which the pixels

that belong to a specific object are assigned the value one and the others zero. Figures 4.6a,b,d

show the predicted binary masks that represent the segmentation of opening corners, open-
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ings and facades overlayed onto the input image.

(a) (b)

(c) (d)

Figure 4.6: Semantic segmentation using our trained deep learning models. (a) Segmented
opening corners. (b) Segmented openings. (c) Bounding boxes for segmented openings. (d)
Segmented facade.

Predictions of the openings are post-processed to generate bounding boxes as shown in the

Figure 4.6c. The coordinates of the bounding box corners are calculated by combining the

minimum and maximum values of the vertical and horizontal coordinates of the pixels in

each opening region. We then combined these boxes with semantic corner segmentation

(Fig. 4.6a) to select the detected corners that are closest to the bounding box corners. To do so,

the algorithm computes the distances between each of the four bounding box corners and

the points identified by the deep-learning model as opening corners and selects the one with

the shortest distance. These points are then taken as the corner points of the opening. Note

that the result of the semantic corner segmentation is a binary mask containing the pixels

associated with corners. The location of the corner is predicted as the centroid of the group

of pixels representing one corner. If the deep learning model does not detect a corner of an

opening, the corresponding corner of the bounding box takes its place. Linear regression is
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used to align opening corners that are the same height and horizontal position on the real

building to provide filtered corner detection, as shown in Figure 4.9a.

Triangulating points to 3D requires point correspondences in two views, meaning correspon-

dences of the detected corners from one view v1 will have to be found and mapped to those

in another view v2. To map these points on the facade from v1 to v2, we take advantage of

the projected openings belonging to a single facade (i.e. single plane) to find the homography

matrix H. As depicted in the Section 4.3.2, it is necessary to find points xi in v1 and their

corresponding points x′i placed in v2 to compute H. To find these point correspondences (xi ,

x′
i ), key points are initially detected and described using scale invariant feature transform

(SIFT) (121) for the two views (Fig. 4.7a,c). SIFT was chosen because it is the gold standard

point feature algorithm and has demonstrated robustness in a variety of computer vision

tasks (117). Since those key points are located both on the facade plane as well as outside of it,

we use our deep learning model to filter the key points of v1 as shown in Figure 4.7b using the

information provided by the facade segmentation (Fig. 4.6d). The filtering procedure consists

in determining whether the keypoints detected in v1 are within the region that represents the

segmented facade in the binary image output by the deep-learning model. This ensures that

the keypoints match between the views v1 and v2 are on the same plane in 3D (the building

facade). Then, as shown in Figure 4.8, the filtered key points from v1 and key points from v2

are matched using their descriptors. Finally, the homography matrix that maps points from

the facade in v1 to the facade in v2 is found solving the Eq. 4.3 for H using the direct linear

transformation (DLT) algorithm as described by Hartley et al. (116).

(a) (b) (c)

Figure 4.7: SIFT key points used to find the homography matrix to map facade points between
views. (a) Key points of view v1. (b) Filtered key points of v1 using facade segmentation
information. (c) Key points of view v2.

The filtered opening corners x (Fig. 4.9a) are mapped to the x′ in view v2 using the homography

matrix and Eq. 4.3, as shown in Figure 4.9b. Next, the opening corner correspondences x and

x′ are triangulated to X in 3D space by solving Eq. 4.2 (116). After triangulating the corners,

we align the edges of adjacent openings and ensure that openings in the 3D model that have

a similar area are transformed into openings that have the same dimensions and therefore
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Figure 4.8: Matching filtered key points from view v1 to those of view v2.

area applying the following steps: 1) Project the corners to the closest LOD2 facade plane; 2)

Find the local 2D coordinate system for the corresponding facade plane in which we perform

the alignments; 3) Use sequential RANSAC with linear regression model in the local system

to find multiple vertical and horizontal lines that fit corners that are within a determined

threshold distance. 4) Align opening edges by projecting the inlier corners to each regressed

line; 5) Align the opening centroids; 6) Modify vertical and/or horizontal edges of openings

with similar areas to set the same area without modifying their centroid position and edge

alignment. The results of the triangulated openings are observed in Figure 4.9c. Finally, the

3D opening information and the corresponding LOD2 model are merged (Fig. 4.9d) to obtain

the LOD3 model.

4.3.3 Evaluation metrics

As no metrics currently exist for evaluating the automated modelling of buildings based on

images, we herein propose two metrics for assessing building reconstruction performance

using LOD models. Our metrics are based on the correlation of a generated model with the 3D

point cloud and a comparison of a model re-projected to the image planes using ground truths.

Inliers of model fidelity (IMF)

Our first metric measures how well the geometry of a model matches the point cloud. To that

end, we inspect the distance from a point to the nearest plane, considering only the inliers as

defined below. More formally, given the set of points P obtained from the SfM, for each point

p ∈ P , we compute its distance to the nearest plane π in the set of planes Π comprising our

reconstruction,

dp = min
π∈Π

|πTp|22. (4.4)
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(a) (b)

(c) (d)

Figure 4.9: Upgrading the LOD2 model to LOD3. (a) Filtered corners in view v1. (b) Mapping
of detected corners in view v1 to view v2 using homography matrix. (c) Openings triangulated
to 3D space. (d) LOD3 model.

We consider inliers to be the points for which the distance is smaller than a predefined

threshold θ:

I = {p ∈ P |dp < θ}, (4.5)

where I is the set of inliers. We then define our metric as the average distance from the inliers

to their closest plane,

M = 1

|I |
∑
p∈I

dp . (4.6)

In our experiments, we set θ =µ+σ, where µ and σ are the mean and standard deviation of

the P distances dp . To interpret this score, consider that in an ideal scenario, the IMF score

is equal to zero if the model fits perfectly in the point cloud. Then, for future benchmarking

purposes, compare the value, remembering that the lower the value, the better.
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Facade re-projection dice score (FRDS)

This metric uses the dice score to compare the re-projection of the modelled facades and

ground truth masks. From the camera projection matrices gathered from the SfM step, the

modelled facades (Fig. 4.10a) are re-projected to image planes (Fig. 4.10b). The resulting

re-projection is a binary mask, as shown in Figure 4.10c, which is then compared to the ground

truth (Fig. 4.10d). This metric assesses both the precision of the surface reconstruction as

well as the layout of the openings in each facade. A perfect reconstruction is one in which the

re-projected facade overlaps perfectly with the ground truth, resulting in a FRDS score of 1.0.

Thus, the FRDS score is defined as:

F RDS = 2
∑N

i r pi g ti∑N
i r p2

i +
∑N

i g t 2
i

, (4.7)

where r pi and g ti are the re-projection and ground truth pixel values, respectively.

4.4 Experiments

Here we present the outcomes of our approach applied to various buildings. We provide

preliminary qualitative and quantitative results for six buildings for which we created sparse

point clouds. We then give three examples involving special conditions: the reconstruction of

extrusions, a variation for opening mapping between two views, and irregular shapes. As a

note, the images for the photogrammetry pipeline were captured using hand-held and drone

cameras.

4.4.1 LOD3 pipeline results

We applied our general approach to automated LOD3 generation to the six buildings pre-

sented in Figure 4.11. They are free-standing masonry structures with varying opening layouts,

geometrical characteristics, and irregularities.

Structure from motion

The structure (sparse point cloud) and motion (camera poses) reconstructions generated for

the models using the software MESHROOM are displayed in Figure 4.12. Despite the sparseness

of the point clouds, MESHROOM recovered sufficient information from the main facade planes

to reconstruct an LOD2 model using the Polyfit pipeline.
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(a) (b)

(c) (d)

Figure 4.10: FRDS score representation. (a) Reconstructed LOD3 model. (b) Original image
plane containing facade information. (c) Re-projected facade from LOD3 model to image
plane. (d) Ground truth facade in image plane.

LOD2 models

Polyfit begins with the SfM point cloud, which is abstracted by fitting planes. The Poly-

fit pipeline was applied to the six buildings under consideration (Fig. 4.13). Because the initial

point cloud contains information about all of the building faces, this framework generates a

very accurate LOD2 surface model. It should be noted that some pre-processing of the data

(filtering/removing points from non-desired objects in the point-cloud) was required to avoid

the generation of unwanted planar primitives, which could lead to incorrect reconstructions.

With sufficient information provided, this approach is extremely robust for recovering wa-

tertight polygonal surface models. If point cloud information is missing (for example due to,

facades with poor texture, occlusions, or small extrusions, Fig. 4.12c,e,f), it is impossible to

consider this information in the LOD2 models. For some applications (e.g. structural engi-

neering evaluations), building components not reconstructed due to this missing information

(e.g. balconies) might not be relevant such that the information can be ignored without signifi-
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cantly impacting the results.

The use of simple RGB cameras to collect input data is one of our methodology’s advantages.

As previously stated, it is possible that some missing point cloud information generated

by SfM will result in the failure to reconstruct some of the building components. In this

regard, the use of additional sensors to generate 3D point clouds, such as LiDAR, can be

beneficial. Furthermore, the use of point cloud algorithms for segmenting point clouds

(e.g.region growing, k-means (122)) can aid in the opening segmentation, improving the

results of the LOD3 models. The use of additional sensors and algorithms to segment point

clouds will be the subject of future research.

Opening triangulation

After producing the LOD2 model, the next step in our pipeline is to triangulate the information

about the openings that was detected automatically using our trained deep learning model

and the recovered camera poses from SfM. Some results of LOD3 models generated using the

methodology proposed here are shown in Figure 4.14.

Our results show that the proposed pipeline produces LOD3 reconstructions that closely

match the layout of the openings of the buildings. Where the reconstruction is not completely

satisfactory, there is usually a lack of point cloud information on extruded structures, as shown

in Figures 4.14c,e,f. An ambiguous reconstruction might also produce an unsatisfactory recon-

struction, such as in Figure 4.14f, where there are two ground planes at different heights. As

visualized in the LOD2 and LOD3 models for this case, the building is cut at the highest ground

plane, and the information of the lowest story is lost because the Polyfit looks for watertight

models with more point cloud support. This demonstrates how a specific application might

require some pre-processing of the point cloud, such as deleting the points here associated

with the upper ground plane to create a model that follows the street plane. Furthermore, the

LOD3 reconstruction can be hampered when some openings are not detected, as shown in

Figure 4.14f. This failure of the deep learning model is due to a lack of training data with char-

acteristics similar to that opening. Extending the training set with such images will improve

the results in similar cases.

Metrics

The values of the proposed metrics for the LOD2 and LOD3 models are presented in Tables 4.1

and 4.2.
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Table 4.1: Quantitative performance evaluation for LOD2 models.

FRDS - LOD2 IMF - LOD2

Face1 Face2 Face3 Face4 Score µ σ

00_School 0.95 0.94 0.97 NA1 0.0435 0.0670 0.0675
01_Unil 0.98 0.85 0.98 0.99 0.0182 0.0322 0.0470
02_Ozcan 0.88 0.93 0.90 0.95 0.0254 0.0472 0.0612
03_Bianco 0.89 0.94 0.92 0.75 0.0235 0.0365 0.0469
04_Paiano 0.96 0.98 0.98/0.992 0.84 0.0383 0.0765 0.1176
05_Wyss 0.81 0.84 0.75 0.88 0.0156 0.0348 0.0594

Table 4.2: Quantitative performance evaluation for LOD3 models.

FRDS - LOD3 IMF - LOD3

Face1 Face2 Face3 Face4 Score µ σ

00_School 0.94 0.93 0.96 NA 0.0196 0.0360 0.0585
01_Unil 0.97 0.81 0.97 0.93 0.0179 0.0321 0.0473
02_Ozcan 0.80 0.90 0.89 0.91 0.0248 0.0467 0.0612
03_Bianco 0.87 0.93 0.86 0.70 0.0233 0.0360 0.0468
04_Paiano 0.89 0.97 0.96/0.93 0.80 0.0385 0.0766 0.1175
05_Wyss 0.44 0.82 0.66 0.86 0.0158 0.0348 0.0592

The quantitative findings are consistent with the presented qualitative ones, with lower scoring

models here matching those whose extrusions were not considered in the LOD2 due to a lack

of information in the point cloud (Figs. 4.14c,e,f) or to those with ambiguities in reconstruction

or missing openings (Fig. 4.14f). To improve the results, a larger data set for training our deep

learning models is required to improve opening detection. Additionally, a sparse point cloud

obtained through SfM that prevents a good abstraction of extrusions or other structures can

be augmented using techniques like multi-view stereopsis (MVS). The following example

illustrates this detour, which improves results.

4.4.2 LOD3 pipeline using dense point clouds

When an LOD3 model reconstructed with a sparse point cloud from SfM is insufficient for

a specific application, our pipeline can still be used if the SfM motion information and a

dense point cloud are provided. For instance, the dense point cloud can be created with

MESHROOM (120) using MVS on the SfM reconstruction adding depth features to the image

information. We fed this dense point cloud into our pipeline to generate LOD3 models of a

1The NA value indicates that information is missing because the image device did not reach the correspondent
face.

2Different values for the same face are due to openings that were projected using different view images.
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building from one of our previous examples (Fig. 4.15).

Here, the qualitative results significantly improve on the model, particularly in the region

where the extrusion is recovered. This is supported by the quantitative results presented

in Table 4.3, showing the improved FRDS metric associated with the facade containing the

now-reconstructed extrusion (Face 1). The IMF scores also rose, as was expected due to the

increase in the number of points in the dense cloud. Regardless, its overall low value compared

to the mean distance between point cloud and models demonstrates how well the model fits

the data provided.

Table 4.3: Quantitative performance evaluation for LOD models from dense input. Note that
the use of a dense point cloud enhances the reconstruction quality as indicated quantitatively
by the metric values.

FRDS IMF

Face1 Face2 Face3 Face4 Score µ σ

LOD2 0.91 0.82 0.74 0.89 0.0224 0.0437 0.0627
LOD3 0.57 0.79 0.65 0.87 0.0171 0.0373 0.0616

4.4.3 Mapping opening information with KLT tracker

To triangulate openings to 3D space, we need the openings to be detected in two views,

as described in the methodology. For this process, opening corners are detected via our

deep-learning models in one view and mapped to the second view using the homography

transformation matrix H. This is possible if the openings are located in a single plane seg-

mented by our deep learning models. Although this is true most of the time, the segmented

facade may contain more than one plane, which may influence the value of H and thus mislead

the mapping of the corners between views. This can be seen in the Figure 4.16a, where the

horizontal plane over the door has more texture than the desired facade plane containing

the openings. This will result in an incorrect mapping of the corners from view v1 to view v2

(Fig. 4.16b), which will result in incorrect triangulation as shown by the openings highlighted

with red lines in the Fig. 4.16c.

Simple solutions for adjusting this incorrect mapping could include taking images that only

contain the desired plane information or cutting the image prior to the SfM step. However,

these measures are not advisable because it is not always possible to access new images for

the former scenario and it increases pre-processing effort in the latter. Instead, as a solution

to this potential flaw in the homography matrix, we use the KLT tracker (118) to map opening

information between consecutive image frames, as shown in Figure 4.17a. The rest of the
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pipeline remains unchanged, resulting here in the desired results shown in Fig. 4.17b where

the highlighted openings with red lines now overlay in the correct plane.

In this example, one of our algorithm’s limitations can be seen. If the Fig. 4.17a is observed, the

building image does not show the entire door, resulting in a rectangular shape that represents

only a portion of the door when triangulated to 3D. This is shown in the Fig. 4.17b where the

door was not properly recovered. Nonetheless, the other two openings have been satisfactorily

reconstructed, as evidenced by their complete visibility in the images.

4.5 Challenging scene using just hand-held camera

The final example is an irregular three-story aggregate stone masonry building made up of

two units. This example tests the capabilities of our approach by using only a small number of

images, all of which were taken solely with a hand-held camera. It also demonstrates how well

our framework handles complex non-convex 3D shapes. A dense point cloud obtained using

SfM and MVS provided by MESHROOM was used to reconstruct the model. The qualitative and

quantitative results that demonstrate the capability of our work are shown in Figure 4.18 and

Table 4.4.

The LOD3 reconstruction is highly accurate, with a low FRDS score in only one facade due to

an ambiguity in reconstruction. That facade is hidden due to the slope of the ground level,

which was taken into account in the ground truth for computing FRDS score. In contrast to

the dense reconstruction example (4.4.2), here the real building configuration was reproduced

while taking the hidden portion of the building into account.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Buildings to be modeled. (a) Model 00_School. (b) Model 01_Unil. (c) Model
02_Ozcan. (d) Model 03_Bianco. (e) Model 04_Paiano. (f) Model 05_Wyss.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Structure from motion (SfM) outputs. Sparse points clouds and camera poses. (a)
Model 00_School. (b) Model 01_Unil. (c) Model 02_Ozcan. (d) Model 03_Bianco. (e) Model
04_Paiano. (f) Model 05_Wyss.
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Figure 4.13: LOD2 models using Polyfit framework. (a) Initial point cloud. (b) Planar primitives.
(c) Candidate faces based on plane intersections. (d) LOD2 model after optimization.
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Figure 4.14: LOD3 models using our reconstruction approach demonstrating the fit in the
SfM point cloud. (a) Model 00_School. (b) Model 01_Unil. (c) Model 02_Ozcan. (d) Model
03_Bianco. (e) Model 04_Paiano. (f) Model 05_Wyss.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.15: LOD3 reconstruction pipeline using the dense point cloud obtained from multi-
view stereopsis (MVS). (a) An image of the target building. (b) MVS textured model from
MESHROOM. (c) Dense point cloud. (d) Planar primitives. (e) Candidate faces. (f) LOD2 model
from Polyfit. (g) LOD3 model fit in dense point cloud. (g) LOD3 model.
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(a)

(b)

(c)

Figure 4.16: Misleading opening triangulation as a result of using the incorrect homography
matrix. (a) SIFT key points matched in a different plane than that of the facade. (b) Incorrect
mapping of detected opening corners to a second view. (c) Incorrect opening triangulation
(openings highlighted with red lines) due to incorrect mapping of corners.
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(a)

(b)

Figure 4.17: LOD3 model mapped using the KLT tracker instead of the homography matrix
during reconstruction. (a) Mapping the detected opening corners to a second view using KLT.
(b) Correct opening triangulation (openings highlighted with red lines).

92



4.5 Challenging scene using just hand-held camera

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.18: Reconstruction of a LOD3 model from a challenging scene. (a) Building images
from manual camera. (b) Structure and motion from SfM. (c) Mesh from MVS. (d) Textured
mesh from MVS. (e) Dense point cloud from MVS. (f) Planar primitives for Polyfit. (g) Candi-
date faces in Polyfit. (h) LOD2 from Polyfit. (i) LOD3 model fit in dense point cloud. (j) LOD3
from our full pipeline.
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Table 4.4: Quantitative performance evaluation for LOD models from challenging scene. As
can be noted despite the irregularity on the building, high scores show the capability of our
work.

FRDS IMF

Face1 Face2 Face3 Face4 Score µ σ

LOD2 0.94 0.90 0.85 0.66 0.0473 0.1325 0.3288
LOD3 0.90 0.85 0.81 0.65 0.0400 0.1259 0.3303

4.6 Conclusions

We herein present a framework for the automated reconstruction of masonry buildings as

LOD3 models. Our framework was designed to overcome the main shortcomings of the state-

of-the-art, such as the requirement for complex data as input, a need for pre-defined shapes,

and a lack of semantics in the composition of the final 3D model. To achieve this, we use

only a sparse point cloud and camera poses from a SfM pipeline, which are combined with

deep–learning-based semantic segmentation of the facade and openings to generate a LOD3

model. If enough information is encoded in the point cloud, this model distinguishes between

facade and openings and recovers any building irregularities without the need for templates.

Although our deep learning models are trained to predict openings and facades of masonry

buildings, our proposed pipeline can be easily adapted to any building type by retraining the

models with additional data. If a more faithful representation is required, such as extrusions

that cannot be encoded by a sparse SfM point cloud, it was demonstrated that the method

can also be used with dense point clouds.

It is evident that the precision of the reconstructed LOD3 model is dependent on two key

factors: a) the quality of the input point cloud and b) the precision in the opening and facade

segmentation. For the former, the point cloud must be complete and free of unwanted in-

formation from external objects that could influence the outcome; this may require some

pre-processing of the point cloud. For the latter, it is simple to improve our deep learning

models using additional training data. Noting that our results were obtained with a dataset of

only 270 images demonstrates the power of our approach.

We intend to expand this work by focusing on two main themes. For a more comprehensive

3D representation, our first aim is to further improve the LOD3 models with both internal and

external image data by adding new elements to our current pipeline, such as balconies, chim-

neys or internal walls. This might involve the use of additional sensors for data acquisition,

such as LiDAR, as well as algorithms to post-process the data. Our second aim is to practically

apply our models, such as for determining the input geometry in a finite element analysis of
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existing buildings. Overall, we envisage that our presented approach will also spur further

research in areas such as construction management, city planning, and structural analysis,

among others.
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5 Damage augmented digital twins of
buildings

This chapter represents the slightly modified pre-print version of the article: B. Pantoja-Rosero,

R. Achanta, K. Beyer, “Damage-augmented digital twins towards the automated inspection of

buildings”, Submitted to Automation in construction (2023) . The formatting and numbering

of equations, tables and figures have been adapted to this document.

Current procedures for the rapid inspection of buildings and infrastructure are subjective,

time-consuming, and cumbersome to document, necessitating new technologies to automate

the process and eliminate these shortcomings. Fortunately, recent developments in imaging

devices and artificial intelligence, such as computer vision, provide the necessary tools for

this, though they are not yet integrated into infrastructure applications. In this paper, we

propose an end-to-end pipeline that generates damage-augmented digital twins for buildings

at LOD3, including geometrical information as well as data pertaining to damage condition

and its characterization. Our framework incorporates multiple-view images to 1) create a level

of detail model, 2) segment damage information, and 3) characterize damage. The core of

the method is the structure from motion, which is used to reconstruct the building scene,

and machine-learning models that segment and characterize damage. In contrast to current

practices, our method does not require manual intervention, generates lightweight models,

and can be applied to a wide range of assets. The results generated with our pipeline represent

a significant step towards an automated infrastructure damage assessment. We intend to

expand our work in the future to include real-time applications and applications to other

types of infrastructure.

5.1 Introduction

Infrastructure and buildings are visually inspected by civil engineers in accordance with struc-

tural regulation codes on a regular basis or immediately after a natural disaster. A proper

assessment prevents potential failures of damaged structures and minimizes subsequent

consequences, such as any danger to human life and economic losses. During an inspection,

engineers attempt to visually identify and locate damages to structural components and then
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determine whether the asset is fit to provide its service, requires additional analysis, requires

retrofitting, or must be demolished. The main limitations of this traditional procedure are its

lack of objectivity, lengthy execution time, considerable costs, and the difficulty in document-

ing the damages. These drawbacks highlight the need for new assessment methodologies to

aid in its automation, such as the recent advances in imaging devices and artificial intelligence.

The current state of the art in damage assessment uses image data in conjunction with com-

puter vision techniques, including deep learning and photogrammetry methods, to reduce

subjectivity and operation time during traditional inspections. For instance, significant inves-

tigations have been made into the use of convolutional neural networks (CNNs) for damage

detection, classification, and segmentation. Nag et al. (7) and Nia et al. (8) used CNNs to

define the severity of observed building damages, either by categorizing it or assigning a

numerical value. While Duarte et al. (9) and Huyan et al.(10) used a CNN to detect damage

(localizing damaged area), Dung et al. (11) and Liu et al. (12) segmented the crack patterns

observed in images (select damaged pixels). In another interesting work on inspecting dam-

aged bridges, Liang et al. (123) used three different CNNs in sequence to classify, localize, and

segment damage.

Cracks are the most commonly observed form of damage during inspection, particularly in

brittle structures including concrete or masonry, making it crucial to segment cracks from

images. To segment cracks in various types of infrastructure and materials, a number of

projects have used CNNs (35; 36; 37; 38; 39; 40; 42; 43; 44; 45; 46; 47; 48). For buildings, Bai et

al. (38) and Dais et al. (44) present acceptable results by implementing CNNs using pixel-

based loss functions that failed to preserve continuity. Because cracks are thin structures, their

topology must be considered during the optimization process, as seen in Pantoja-Rosero et

al. (24). Because crack characterization can inform on the causes of its manifestation and

provide hints to the necessary interventions, image-based methods have used digital image

correlation methodologies to compute crack widths and shear displacements (73; 75; 74; 76;

77; 78). Although their results are typically accurate, they are restricted by the need for a

particular configuration of image devices and sometimes the structure itself. To overcome this,

Pantoja-Rosero et al. (25) proposed a novel method for describing crack kinematics based on

2D point registration, which employed as input binary masks that represent crack patterns

obtained through techniques such as deep learning. Due to its simplicity and efficacy, this

methodology is valuable for automating damage assessments of real structures.

Computer vision techniques for damage assessment have also been used to automatically

generate 3D models. For example, structure from motion (SfM) and multiple-view stereopsis

(MVS) can generate detailed models as textured meshes to reconstruct 3D scenes after earth-

quake events (13). Despite the accuracy that the models can achieve, the size of the resulting

files is significant and can hinder the modelling of a large number of assets. As a result, it is

more convenient to use models such as level of detail (LOD) models, which contain simplified

geometrical information about the asset. The CityGML standard 2.0 (124), which is used for

storing and exchanging virtual 3D city models, is utilized in this work to establish LOD models
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for buildings. According to CityGML 2.0, building models are classified into five levels of detail,

ranging from LOD0 (the least detailed) to LOD4 (the most detailed) as depicted in Figure 5.1.

LOD0 LOD1 LOD2 LOD3 LOD4
Figure 5.1: The five LODs defined by CityGML 2.0. The geometric detail and the semantic
complexity increase, ending with LOD4, which contains indoor features, figure taken from
Pantoja-Rosero et al. (26).

Usually, LOD models are generated by post-processing 3D raw information output from laser

scanner and/or photogrammetry pipelines (125) and may require some manual intervention

(126). Some LOD modeling methodologies use mathematical simplifications of the elements

on raw meshes (14); fit geometric primitives (or building templates) to point clouds or select

an optimal combination of them while minimizing an objective function (15; 16; 101); segment

geometrical attributes from raw models, such as planes and edges, to later simplify meshes

(96; 127; 100; 18); and combine prior information segmented from images to add to the model

(26; 19; 20).

Instead of individually approaching the tasks required for a building damage inspection with

the goal of partial automation, we envision an end-to-end pipeline that automatically gen-

erates a rich 3D model containing damage information in the form of a digital twin (DT)

at LOD3. A DT is a precise digital representation of a physical object that can contain vary-

ing information depending on the application (128) and is linked to the physical entity via

data and/or services (129). We are interested in geometric digital twins (GDT), which are 3D

models that contain detailed information about the geometry of a physical asset. To form a

damage-augmented digital twin (DADT), these GDTs will be combined with damage infor-

mation detected using image data, specifically relating to cracks and their characterization

via kinematic algorithms to determine their propagation mode (mode I and mode II; (80; 72)).

The detailed information in this representation will be useful for planning future interventions

and decisions, and it will be linked to the physical entity via updated image data following

new inspections and interventions.

Several studies in recent years have had promising results using DTs to monitor the structural

health of buildings. For instance, Barazzetti et al. (130) described a procedure to generate

GDTs in the form of heritage building information models (HBIM) to be used on augmented

and virtual reality apps. Hoskere et al. (41) presented condition-aware models of structures

that incorporated a textured 3D building model with defects detected by deep learning models
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and mapped using UV mapping. Even though the method is an useful starting point for

damage assessment documentation, it was only tested in a single building, the output was

not lightweight, and the damage was not characterized. Jouan et al. (131; 132) used HBIMs as

DTs to support the preventive conservation of heritage places. Angjeliu et al. (133) used DTs

to study the integrity of the structural system of historic masonry buildings and specifically

analyze the system response, including preventive maintenance and possible strengthening in-

terventions. To generate finite element models (FEM) of historic masonry buildings, Funari et

al. (134) presented a parametric modeling framework displayed in a visual programming

environment. Shabani et al. (135) assessed different challenges and strategies for using DT to

assess the building response under different load scenarios. For damage assessments after

natural disasters and structural maintenance, a key application of DTs, Stepinac et al. (136)

presented “regular” post-earthquake assessment procedures and pioneered new technologies

such as photogrammetry and laser scanning after the Zagreb and Petrinja earthquakes in 2022.

Their work indicated the importance of implementing frameworks for the data collected from

new technologies to improve damage assessment in terms of objectivity, time, and documen-

tation. To monitor and define structural maintenance, Rainieri et al. (137) presented the use

of DT in the form of building information models (BIM). Levine et al. (138) proposed a DT

framework for post-earthquake building evaluation with unmanned aerial vehicle imagery,

component identification, and damage evaluation. Finally, Narazaki et al. (139) presents the

autonomous infrastructure damage inspection using vision-based unmanned aerial vehicle

flight planning. Despite the fact that the authors presented a topic that we believe is the next

step in post-earthquake damage inspection and will be the subject of our future work, the use

of synthetic data in their single case study and results illustrated the complexity of the topic

and the early stages of this research subject.

Although these previous studies similarly strive for automated workflows and achieve this

objective to varying degrees and from varying perspectives, they generate large documentation

outputs that are difficult to store, often focus on a single asset, and rarely serve for rapid

damage assessments. To address these shortcomings, we combine computer vision and

machine learning to propose an end-to-end automated pipeline for generating DADT for

free-standing buildings using as input multiple-view RGB images of the building asset. Our

methodology generates a lightweight DADT model that is ideal for rapid inspections, permits

the addition of semantic information extracted from image data, does not focus on a single

asset, is adaptable to other types of infrastructure, and is useful for both routine inspections

and natural disasters.

We state the problem, describe our methodology and highlight our research contribution in

section 5.2. In section 6.2, we detail the components of the methodology, including LOD3

generation, crack detection, crack characterization, and the projection of 2D semantic infor-

mation to 3D. In addition, we describe extra tools implemented in the pipeline, such as the

projection of extra semantic information. Next, section 6.3 includes several study cases in

which we used our automatic pipeline to generate DADTs of free-standing masonry buildings
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containing cracks and their kinematics. Among the examples, one uses small-sized and low-

quality data to demonstrate the method’s robustness. Furthermore, we present cases in which

extra semantic information, specifically other types of damage, is segmented and projected

to 3D, demonstrating the ability to expand the information stored in the DADT. Finally, we

present the conclusions and anticipated future developments.

5.2 Problem Statement

Visual inspections for assessing building damage are cumbersome, time-consuming, sub-

jective, and difficult to document. The objective of this work is to move towards automated

damage assessments for monitoring an asset throughout its service life by developing a

method for generating DADTs of free-standing buildings using as input multiple-view images

taken during inspections. We anticipate this methodology will more efficiently document the

information gathered during an inspection, increasing objectivity and reducing operation

time. Furthermore, the DADTs generated by our pipeline should be useful for more in-depth

damage assessment activities, such as mechanical analysis using numerical methods. With

this, we are not only contributing to structural health monitoring research, but also providing

ready-to-use tools for digitalizing existing infrastructure.

The output of our DADT methodology includes a 3D reconstructed geometry of a building asset

with cracks and their characterization. Advances in image acquisition devices and artificial

intelligence, including deep learning and computer vision, make it possible to automate this

pipeline using only RGB image data. Though current damage assessment methods employ

techniques from these fields, they are limited to specific tasks such as detecting damage or

creating a DT for a specific asset, which might also require some manual intervention. Instead,

we propose a full end-to-end framework for automatically creating a DADT, which, to the best

of our knowledge, is the first time such a pipeline has been presented. For this, we combined

and supplemented multiple cutting-edge methodologies to generate 3D building models and

semantically segment and characterize cracks from images (24; 26; 25). The hereby proposed

methodology requires as input multiple-view images of the building asset suitable for SfM.

SfM processes the images, producing camera poses and a point cloud that are used to generate

a LOD3 model. A CNN trained to detect cracks processes the images used to generate the 3D

model. The cracks are then characterized by computing their kinematics with a least–squares-

based 2D registration algorithm (crack displacements in mode I and model II). Finally, using

the SfM information, the damage information is mapped to the LOD3 model to generate the

desired DADT output.

5.3 Methodology

We present an end-to-end framework for automatically generating DADTs for free-standing

buildings. Here, we use computer vision and machine learning techniques such as SfM, CNN,
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and least-squares to encode geometrical information about buildings as well as segment and

characterize cracks based on their kinematics. From this, a simplified 3D LOD3 model of the

building is integrated with damage information and its characterization.

The pipeline proposed in the current study is depicted in Fig. 5.2. The pipeline begins with

the collection of multiple-view RGB images, which are then processed by the SfM framework

to reconstruct the structure (point clouds) and motion (camera poses) of the building scene.

From this information, an LOD2 model of the building is created by clustering plane primitives

in the structure, and an LOD3 model is created by projecting openings segmented by deep

learning models using camera poses and epipolar geometry. Damage is segmented using a

trained CNN to generate binary crack patterns that are characterized by a crack kinematics

algorithm before mapping to the LOD3 model using the camera poses provided by the SfM

algorithm, yielding the building’s DADT. The subsequent sections describe the pipeline’s

primary components as well as additional implementation-related considerations.

5.3.1 Geometrical model generation (LOD3)

The geometry of the DADT is represented by a polygonal surface model, specifically the LOD3

model, that encapsulates the planar primitives of the building in a simplified manner. To this

end, we incorporate the published work of Pantoja-Rosero et al. (26), in which the authors

combined SfM and semantic segmentation to generate the model. Presented in Figure 5.3,

their pipeline begins by applying SfM (MESHROOM software (120)) to multiple-view images of

the building asset to generate point clouds and camera projection matrices for each view. The

point cloud is processed by the Polyfit algorithm (16), which clusters the points into planar

primitives to generate candidate faces that are then selected using linear optimization to

generate an LOD2 model. To upgrade the LOD2 model to an LOD3 containing information

about the building openings, the authors used images registered in the SfM pipeline and their

corresponding camera projection matrix P to segment the openings and then triangulate them

to 3D space using epipolar geometry. In their pipeline, the openings in 3D are represented by

their corners X, whose triangulation is possible by determining their corresponding 2D image

coordinates in two views (x,x′) and the camera projection matrix of these two views (P,P′)
and by using singular value decomposition to solve Eq. 5.1 derived from epipolar geometry

(116; 140), [
P −x 0

P′ 0 −x′

] X

λ

λ′

= 0, (5.1)

where λ and λ′ are constants denoting the location of the point X over the rays connecting it

to the respective camera centers.

To extract information about the openings that is triangulated to 3D, facade segmentation

is carried out using trained deep learning models in the image correspondent to the first

view (detection of openings’ corners x). Later, the detected opening corners x in the first
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Figure 5.2: Pipeline for generating damage-augmented digital twins (DADTs) of freestanding
buildings. From top to bottom: acquire images and generate SfM and LOD2 models; upgrade
the LOD2 model to LOD3 by segmenting and triangulating openings to 3D; map cracks
segmented on images to LOD3 models; characterize cracks by computing kinematics and
assign to the 3D model; and produce a DADT of the structure.
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Figure 5.3: Pipeline for generating LOD3 models of freestanding buildings (26). Top: LOD
models are generated using the Polyfit framework (16). Bottom: LOD2 models are upgraded
to LOD3 by segmenting and triangulating the 3D openings.

view are mapped to the second view (to determine the corresponding openings’ corners x′)
via a homography transformation that takes advantage of the fact that the openings are in a

plane. The deep learning model uses the TernausNet architecture (50) and a dice loss function

(67). TernausNet, proposed by Iglovikov et al. (50), is a fully convolutional neural network

(FCNN) (similar to the U-Net architecture (61)) that employs a pre-trained VGG network (66)

for its encoder to improve the convergence speed and prediction accuracy. After inference,

the trained models generate three outputs as binary masks: opening corners, openings, and

facade. These are combined to define the (x,x′) opening corner points to compute their 3D

correspondences (X) by solving Eq. 5.1.

5.3.2 Crack segmentation

The intended DADT output combines geometrical information provided by the LOD3 model

with mapped and characterized damage. Our pipeline projects automatically detected cracks

in images into 3D space. For this purpose, we employ the trained model published by Pantoja-

Rosero et al. (24), which consists of the FCNN TernausNet architecture (50) and a loss function

that considers the topological information of the cracks. The loss function, named TOPO-

Loss, was proposed by Oner et al. (49) and uses the maximin connectivity approach (68) to

penalize the loss value for pixels that produce discontinuous cracks in the predictions when

the ground truth crack is continuous. Pantoja-Rosero et al. demonstrated that using deep

learning to optimize this loss function for crack detection stimulates the continuity of cracks

in the prediction, thereby resolving a well-known issue with pixel-based loss functions. In

addition to its state-of-the-art results in crack continuity, we used this method because the

data-set introduced and used for training in that work consists of images of masonry buildings

with the same typology as the examples hereby presented. The example depicted in Fig. 5.4
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demonstrates how cracks are segmented using the deep-learning methodology employed in

our pipeline.

(a) (b)

(c) (d)

Figure 5.4: Crack segmentation using the deep-learning methodology developed by Pantoja-
Rosero et al. (24). (a) Input image of a damaged building. (b) Binary mask output from the
deep-learning model. (c) Segmented cracks overlaid on the input image. (d) Cracks filtered
using segmented facade and openings overlaid on the input image.

As seen in the figure, there are portions of the input image with features similar to cracks

that are erroneously identified as such. To improve the results and obtain only the cracks of

interest, i.e. those over the building walls, we post-process the output of the deep-learning

model to detect cracks with the binary prediction of the facade and openings obtained from

the CNN used to generate the LOD3 model (Fig. 5.3). As shown in Figure 5.4d, we combine

the predictions and generate a new mask containing the predicted cracks that lie within the

facade but outside the openings.

5.3.3 Crack characterization - kinematics

We anticipate that our DADT will be linked to the physical entity through updated image

data in which cracks can be seen. To determine how structural damage progresses over time,

it is essential to properly characterize the damage. In our methodology, cracks are charac-
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terized using kinematics, which identifies the mode of crack propagation. This is essential

for determining whether the stresses that caused the crack were primarily shear or normal

stresses, and thus the type of intervention required. In our framework, the crack kinematics

are computed using a least–squares-based algorithm proposed by Pantoja-Rosero et al. (25),

in which the problem is formulated and solved as a 2D point-set registration problem. In their

research, crack propagation was characterized by normal and tangential displacements of

the edges of the crack pattern along its length. To compute this, opposite edges along the

crack were detected in a binary mask representing the segmentation of the crack pattern

and then registered using non-linear least-squares to find an optimal transformation matrix

that encodes the crack displacements during its propagation. Here, we use the binary mask

generated by the trained CNN (24) as input. Figure 5.5 shows the results in terms of normal

displacement tn , tangential displacement tt , and their relation tt /tn .

(a) (b)

(c) (d)

Figure 5.5: Crack kinematics using the methodology developed by Pantoja-Rosero et al. (25).
(a) Binary mask output from the deep-learning prediction. (b) Normal displacements tn in px.
(c) Tangential displacements tt in px. (d) Relation of crack kinematics tt /tn .
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5.3.4 Damage augmentation - generating the DADT

From images registered in the SfM model, we can detect and characterize cracks using the

previously presented deep-learning model and kinematic algorithms, respectively. To map

these cracks, the pipeline provides raycasting functionality that traces a ray beginning at the

camera center of an image view with camera projection P, passes by a point x in the image that

belongs to the crack, and intersects X in its 3D correspondence with one of the planes of the

LOD3 modelΠ= AX +BY +C Z +D = 0 (with unitary plane normal pn = [A,B ,C ]). The points

x in the 2D image view that are projected into 3D correspond to the 2D image coordinates

of the predicted binary crack pattern skeleton depicted in Figure 5.6a. The camera pose is

defined by the projection matrix of the camera, which encodes the intrinsic matrix K, rotation

matrix R, and the translation vector t as P = K[R|t].

To find the X coordinates corresponding to the 3D crack skeleton points, we first normalize its

2D image coordinates as xn = K−1x to project them onto the image plane Z = 1 of a camera

matrix with principal point p0 = [0,0,1], camera center c0 = [0,0,0], and rotation matrix R0 = I

(note that c =−R⊤t), as shown in Figure 5.6b. Next, we transform xn and c0 to place them at

the camera pose of the image view (Fig. 5.6c) as x̂n = Txn and ĉ = Tc0 using the transformation

matrix:

T =
[

R⊤ −R⊤t

0⊤ 1

]
. (5.2)

For each normalized skeleton point x̂ni , a ray is defined by the parametric equation r(t) =
r0+tu, where r0 = ĉ = [cx ,cy ,cz ], u = (x̂ni − ĉ)/

∥∥x̂ni − ĉ
∥∥

2 = [ux ,uy ,uz ] and t > 0. If the ray does

not intersect the plane, then pn ·u = 0. If the ray intersects, the parametric ray equation can be

combined with the plane equation as A(cx+ux t )+B(cy +uy t )+(cz+uz t )+D = 0. The solution

of this equation for t is t =−(Acx +Bcy +C cz +D)/(Aux +Buy +Cuz ), which is the scalar that

allows us to find the intersection of the ray with the plane as Xi = [cx +ux t ,cy +uy t ,cz +uz t ] if

replaced in the parametric ray equation. Note that if t < 0, the ray intersects the scene behind

the camera and is therefore not of interest. This process can be applied to each crack skeleton

point x to obtain their 3D correspondences X, which are then merged with the LOD3 model to

generate the DADT final output, as shown in Fig. 5.7.

5.3.5 Damage augmented textured models

Our final deliverable is a simplified geometry of the structure containing damage information.

Nevertheless, if more accurate models based on photogrammetry methods such as MVS

are created to represent the asset’s geometry, the same procedure can be used to map the

identified damage; Figure 5.8 depicts the merging of identified cracks with a textured mesh

obtained using the MVS pipeline. Though these models can be more aesthetically appealing,

they require a considerable amount of storage space. Instead, our selected LOD3 models are
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(c)

Figure 5.6: Mapping cracks to 3D by tracing rays from the center of the camera to their inter-
section with the LOD3 model. (a) Image plane with skeleton points of a binary crack pattern
to be mapped to a 3D model. (b) Camera set-up after normalizing the image coordinates with
the image plane placed at Z = 0. (c) Ray r(t ) projected from the camera center passing image
point xi to find its 3D coordinate Xi at the intersection with a LOD3 plane.

compact and easy to store, making them ideal for use in situations in which numerous assets

must be inspected, such as in post-earthquake damage assessments.

5.3.6 Augmenting model with additional semantic information

In our proposed pipeline, the DADT is generated by augmenting a geometric model with cracks

and kinematics. Similar to what we did for cracks, our implementation can map any extracted

semantic information from SfM-registered images, including linear shapes and polygons that

can be defined by points (x). Figure 5.9 depicts an example in which painted graffiti on a facade

surface are manually segmented from images by selecting polygonal vertices x and are then

mapped to 3D to find X as the intersection of rays with geometric model planes. This feature

becomes important in our target applications where other types of damage, such as out-of-
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(a) (b)

(c) (d)

Figure 5.7: DADT - damage mapped to 3D and merged with an LOD3 model to generate the
DADT. (a) DADT composed of LOD3 and cracks. (b) DADT composed of LOD3, cracks and
tt /tn . (c) DADT composed of of LOD3, cracks and tn . (d) DADT composed of LOD3, cracks
and tt .

plane deformations, spalling, leaching, rebar exposure, etc., are segmented automatically

(using trained deep-learning models, for instance) and need to be mapped to a 3D space to

obtain a more complete DADT representation for future interventions. In one of the study

cases presented in the following section, we illustrate this feature.

5.3.7 Metrics

To evaluate the automated generation of LOD2 and LOD3 models we use the inliers of model fi-

delity (IMF) and facade re-projection dice score (FRDS) metrics proposed by Pantoja-Rosero et

al. (26). The first metric is determined by the degree of correlation between a created model

and the 3D point cloud. Using manually annotated ground truths, the second metric compares

model re-projected to the image planes of the different camera poses. For the accuracy of

crack segmentation, we employ the F1-score, which is the most frequent metric for evaluating

the results of binary segmentation methods.
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(a) (b)

(c) (d)

Figure 5.8: DADT - damage mapped to 3D and merged with MSV textured model. (a) MVS
textured model and cracks. (b) MVS textured model, cracks and tt /tn . (c) MVS textured model,
cracks and tn . (d) MVS textured model, cracks and tt .

(a) (b) (c)

Figure 5.9: Augmenting models with extra semantic information. (a) Semantic information
segmented from images. (b) MVS textured model, cracks and extra semantic information. (c)
DADT composed of LOD3, cracks and extra semantic information.

Inliers of model fidelity (IMF)

Given the set of points P obtained from the SfM, for each point p ∈ P , it is computed its

distance to the nearest plane π in the set of planesΠ comprising the reconstruction,

dp = min
π∈Π

|πTp|22. (5.3)
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Inliers are defined as the points whose distance is smaller than a predefined threshold θ:

J = {p ∈ P |dp < θ}, (5.4)

where J is the set of inliers. The metric is defined as the average distance from the inliers to

their closest plane,

I MF = 1

|J |
∑
p∈J

dp . (5.5)

For this metric θ =µ+σ, whereµ andσ are the mean and standard deviation of the P distances

dp . IMF score would be zero if the model fits perfectly in the point cloud.

Facade re-projection dice score (FRDS)

This metric compares the re-projection of modelled facades with ground truth masks using

the dice score (F1-score). The metric evaluates the accuracy of the surface reconstruction and

the arrangement of openings on each facade. A perfect reconstruction leads to a re-projected

facade that overlaps the ground truth perfectly (FRDS=1.0). The FRDS is defined as:

F RDS = 2
∑N

i r pi g ti∑N
i r p2

i +
∑N

i g t 2
i

, (5.6)

where r pi and g ti are the re-projection and ground truth pixel values, respectively.

F1 score

This metric is computed as the harmonic mean of the algorithm’s precision and recall in pixel

classification in the image I . The F1 expression is:

F1 =
2
∑

p∈I ŷb[p]yb[p]∑
pϵI ŷb[p]+∑

pϵI yb
, (5.7)

where yb[p] and ŷb[p] are the values of the prediction and the annotation for pixel p ∈ I .

5.4 Experiments

Here, we present case studies that apply our proposed pipeline. The input data correspond

to multiple-view images of free-standing masonry buildings in Croatia that were damaged

by the 2020 Zagreb and Petrinja earthquakes (4; 3). Note that all the examples pertain to this

specific type of building because the deep-learning models were trained with a similar data

set, though our methodology can be adapted for other types of buildings and infrastructures
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by appropriately replacing certain pipeline components, such as the methods for generating

geometrical models or image segmentation. In addition, we demonstrate the robustness of

our pipeline in terms of low-quality data by presenting a scenario in which a quick video was

captured around a building using a mobile phone, and some of the extracted frames were

used to run our pipeline. We generate DADTs for structures with additional types of damage,

for which we use the supplemental framework functionality to segment image semantic

information and map it to the final model. At the end of the section, the scores of metrics that

evaluate the reconstruction of the LOD models and the segmentation of cracks are shown in

order to assess the performance of the created models. In addition, a comparison is made

between the file sizes of simplified and textured models.

5.4.1 DADTs for free-standing masonry buildings

In Figures 5.10 and 5.11, we present two perspectives of results achieved after applying our

pipeline to convex and non-convex buildings that display cracks as the most frequently ob-

served damage type. The figures depict one of the input images, textured meshes output by the

MVS pipeline combined with the spatial information of the cracks, and the DADT composed

of the simplified LOD3 model merged with the 3D information about the cracks—rendering

the kinematics as the relationship between the tangential and normal crack displacements

tt /tn . The outputs of the CNN trained by Pantoja-Rosero et al. (24) correspond to the cracks

mapped onto the 3D models. Figure 5.12 depicts a selection of the images with predicted

cracks that were used for this purpose.
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Figure 5.10: DADT for free-standing masonry buildings whose damage is mainly cracks—View
1 (buildings A to E from top-down). (a) Image view of damaged building. (b) 3D textured
models of the buildings merged with spatial information of the cracks. (c) DADT of LOD3 +
cracks characterized via kinematics tt /tn .
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Figure 5.11: DADT for free-standing masonry buildings whose damage is mainly cracks—View
2 (buildings A to E from top-down). (a) Image view of damaged building. (b) 3D textured
models of the buildings merged with spatial information of the cracks. (c) DADT of LOD3 +
cracks characterized via kinematics tt /tn .
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Figure 5.12: DADT for free-standing masonry buildings whose damage is predominantly
cracks (buildings A to E from top-down)—CNN outputs for crack segmentation using the
model by Pantoja-Rosero et al. (24) trained for masonry buildings.
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The significance of these models is twofold: first, they provide more objective documentation

of building inspections than traditional practices in which engineers manually annotate

damages on drawings and can miss or improperly annotate some; and second, they provide

a visual tool for inferring potential causes of damage and future interventions. For instance,

in brittle structures such as masonry or concrete, the deformation capacity of structural

elements that fail due to shear stresses is lower than those that fail by flexure due to normal

stresses, making it essential to determine which damages have cracks whose shear/tangential

displacements dominate their kinematics. This is visible in Figures 5.10c and 5.11c, where the

DADT depicts the kinematic displacement relationship tt /tn . When this relationship in these

models is greater than one, shear displacements predominate. Similarly, when this relation is

close to null, normal displacements dominate. Such data, together with the crack orientation,

yields information on the predominant deformation mode of the structural element. The

latter is an input when assessing the limit state of the structural element. This demonstrates

the impact this DADT can have on accelerating inspections, such as those required after

earthquakes. The work presented in this paper focuses on unreinforced masonry buildings

where the load-bearing walls are primarily external walls and therefore a DADT at LOD3

provides the basis for an inspection of the structural system. A complete inspection, in

particular also for structural systems with internal load-bearing walls, requires, however, also

information from the inside of the building. This is a research direction we plan to pursue in

the future (see also section 6.4).

5.4.2 DADT from fast data collection

For the live generation of digital twins (DT generation immediately upon data acquisition),

it is essential to optimize the various pipeline components, including those associated with

the size and quality of the input images. On the one hand, large images require more time

to process and increase the computational cost. On the other hand, even though fast data

collection is desirable for performing more analyses in a short time, rapid movements can

blur images and decrease the quality of the data. To prevent this from decreasing the accuracy

of the models, it is necessary to demonstrate that our pipeline is robust enough to produce

accurate results with small, low-quality data sets. As future work, we intend to conduct a

comprehensive quantitative study comparing the outcomes of models created with various

configurations of number and quality of image data. As a preface to that work, in this example,

we generate a DADT using low-resolution frames (2 Mpx, 0.2 MB) extracted from a cellphone

video as input data. The results shown in Figure 5.13 illustrate the potential of our pipeline

to perform with sub-optimal data in these conditions, suggesting its possible adaptation to

real-time applications. Figure 5.14 shows the images used to segment cracks and then project

them to the DADT.
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Figure 5.13: DADT for masonry building from small-sized and low quality image data —Views
1 and 2 (building F). (a) Small size (2 Mpx, 0.2 MB) and low-quality image used as input in the
pipeline. (b) 3D textured models of the buildings merged with spatial information of cracks.
(c) DADT of LOD3 + characterized cracks with kinematics tt /tn .

Figure 5.14: DADT for masonry building from small-sized and low quality image data (building
F)—CNN outputs for crack segmentation using the model by Pantoja-Rosero et al. (24) trained
for masonry buildings.

5.4.3 DADT with extra semantic information

An important feature of the proposed framework is the ability to manually segment additional

information from the input images and add it to the DADT. This manual segmentation data

can be replaced by automatic approaches, for example, trained deep-learning models. In this

work, we present example damaged freestanding masonry buildings with out-of-plane and

roof failures, as shown in Figures 5.15a and 5.16a. The regions of interest in the images are

manually segmented as a polygon whose vertices are mapped to the 3D model (described

in Sec. 6.2), resulting in the DADTs presented in Figures 5.15 and 5.16. Figure 5.17 depicts

some of the images used to detect cracks with the trained CNN model and then projected

to the DADT. For future work, we intend to collect image data pertaining to other types of

damage, such as out-of-plane deformations, roof failure, spalling, re-bar exposure, and rust.

This will be used to train deep-learning models that will detect and characterize these features
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in images, thereby enabling further automation of our DADT. The results presented in this first

example demonstrate the viability of this approach, which will allow for a more comprehensive

representation of building damage that can be monitored over time.

(a) (b) (c)

Figure 5.15: DADT for masonry building example 1 with out-of-plane and roof failures (build-
ing G). (a) Building image with segmented out-of-plane failure. (b) 3D textured models of the
buildings merged with spatial information of cracks and out-of-plane failure. (c) DADT of
LOD3 + cracks + out-of-plane and roof failures.

(a) (b) (c)

Figure 5.16: DADT for masonry building example 2 with out-of-plane and roof failures (build-
ing H). (a) Building image with segmented out-of-plane failure. (b) 3D textured models of the
buildings merged with spatial information of cracks and out-of-plane failure. (c) DADT of
LOD3 + cracks + out-of-plane and roof failures.
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Figure 5.17: DADT for masonry building with out-of-plane and roof failures (top: building G,
bottom: building H)—CNN outputs for crack detection of examples 1 and 2 using the model
developed by Pantoja-Rosero et al. (24) trained for masonry buildings.

5.4.4 Discussion of results and metrics

The values of the metrics presented in Section 5.3.7 for the LOD2 and LOD3 models and

damage detection are presented in Table 6.1. Two more columns in the same table contain

information regarding the file size of the DADT and textured models used for documenting

damage inspection.

Table 5.1: Quantitative performance evaluation for DADT models.

LOD2 LOD3 Crack detection File size DADT [MB]

FRDS IMF FRDS IMF F1 Textured LOD

Building A 0.97 0.0252 0.94 0.0125 0.71 383.0 0.0424
Building B 0.94 0.0194 0.90 0.0146 0.69 405.9 0.1092
Building C 0.96 0.0659 0.94 0.0391 0.69 279.2 0.0546
Building D 0.91 0.0839 0.87 0.0782 0.69 222.2 0.0257
Building E 0.95 0.0477 0.94 0.0365 0.60 268.3 0.0326
Building F - fast 0.96 0.0471 0.94 0.0264 0.72 65.8 0.0190
Building G - extra 0.92 0.0280 0.90 0.0184 0.68 163.8 0.0173
Building H - extra 0.86 0.0520 0.84 0.0441 0.67 32.0 0.0222

The quantitative results highlight the very good performance of the various components of

our methodology. The high FRDS and low IMF scores indicate high accuracy of the simplified

models in terms of the surface reconstruction and the opening layout. Improvement in the

LOD reconstruction can be reached if a larger data set for training our deep learning models

for opening detection is used or by increasing quality and quantity of the image data set of

the building to be analysed to improve the SfM outputs (point cloud and camera poses) as we
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state in Pantoja-Rosero et al. (26).

In relation with crack detection, the values of the F1 score are acceptable indicated that the

majority of the cracks were detected. According to this metric, in average approximately

68 % of the cracks are detected. Although, this value seems to be low if compared with other

works for crack segmentation, this is expected as we are using the trained model presented

by Pantoja-Rosero et al. (24) in which similar performance is shown. Our objective in this

work is not to improve the accuracy in crack detection, but provide a tool for documenting

damage that improves the current practice of rapid damage assessment. Nevertheless, as our

methodology is agnostic to the method used for crack segmentation, it can be easily adapted

if the user possesses better trained models.

One of the important contributions of our methodology, is the generation of lightweight

models that are suitable for post-earthquake damage assessment. If we compared the file sizes

of the DADT produced by our pipeline to the file size of textured models used for documenting

damage inspection of buildings, the difference is significant as the mean file size of our DADT

models is only experiments is in mean the 0.02 % of the file size of the textured models. In

other words, in average DADT models of 5000 buildings correspond to the size of a textured

model of a single building. This is an important remark as in the case of an earthquake event

thousands of buildings would require to be assessed.

The success of our methodology is dependent on the image data quality. We believe that

a comprehensive evaluation of the pipeline given here requires the addition of uncertainty

analysis for each pipeline component, which will be treated as future work. The effects of

many variables, such as image size, resolution, blurriness and noise, can be included. This is

out of the scope of the current work. Additionally, as we rely on techniques such as structure

from motion and deep learning algorithms for segmentation, the results of our pipeline

depend on their performance. For instance, structure from motion tends to fail when the

building textures do not show enough features (low roughness) or the used images do not

have enough redundancy (overlapping between images should be at least 60 % (141)). In

other hand, deep learning results are not perfect and depend on the quantity and type of

data used including the quality of the annotations for training the models. Therefore, the

results are not going to be 100 % accurate and in our case it might produce in some cases not

very precise opening and crack segmentation (the performance will be the same as presented

by Pantoja-Rosero et al. (24; 26) as we are using their trained models). Improvements in

the results can be reached by using deep learning models that have a better performance or

by using some post-processing as we do in this paper to remove some of the false-positives

detected as cracks outside the facade. Damage characterization is one important component

that is not assessed in this work because the dataset available did not have information about

crack measurements. Nonetheless, similarly to the generation of the LOD models of the crack

segmentation, the performance is expected to be similar as the work that published the crack

kinematics methodology (25). We expect in the future work that will include the uncertainty

analysis of the methodology, to assess this component.
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As previously stated, we intend to improve current practice of rapid post-earthquake damage

assessment. After this rapid assessment, a deeper analysis of the damage features might be

required (for instance estimating the cracks’ depths). In that case, other techniques and tools

can be used, for instance, ground penetrating radar or sonic pulse velocity tomography (142;

143). Nevertheless, masonry buildings, that are the type of structure related with this work,

only the outer walls are typically load-bearing walls (23). For this reason, this building typology

lends itself very well for an image-based assessment where images are collected only from the

outside. Despite of this fact, future research will include inside information of the building

for a more complete inspection. Although we investigated in this work freestanding masonry

buildings, the application of our pipeline for different types of buildings and structures is

viable and is the topic of ongoing research in our group.

5.5 Conclusions

The purpose of this study is to enhance the current practice of visual building inspection,

which is time-consuming, subjective, costly, and difficult to document. For this purpose,

we proposed an end-to-end pipeline for automatically generating DADTs of freestanding

buildings comprised of 3D simplified models and cracks. In our framework, multiple-view

images of a building are processed via SfM, the output of which is used to generate a simplified

polygonal surface model of the building. Cracks detected by a deep learning model are

mapped to the geometrical model using SfM information to generate the DADT. This combines

three cutting-edge methods to generate LOD3 models of buildings, semantically segment

cracks, and characterize cracks with their kinematics. Unlike current methods that use DTs

of buildings for structural health monitoring, our pipeline does not require manual user

intervention, outputs a lightweight model that is ideal for storage and rapid assessments,

facilitates the addition of information from image data, can be applied to multiple assets, and

is adaptable to other types of infrastructure.

Our included examples demonstrate the efficacy and robustness of our method as well as

its further applicability and have shown where future work could still be done to improve

the current state. First, we can exploit the ability of the pipeline to add additional damage

information to the DADT by training new deep learning models to automatically segment

damages such as out-of-plane deformations, spalling, rebar exposure, and rusting. Future

work will include also images from the inside of the building in order to move from an LOD3

to an LOD4 model. In addition, we are adapting this framework for use on other types

of infrastructure, including tunnels, roads, and bridges by modifying the methods used to

generate the geometry, segment damage, and characterize damage based on the infrastructure

type. We believe that the greatest benefit of this methodology is in real-time applications,

and will work towards its implementation as such. In particular, web-based or mobile-phone

applications that can be utilized to accelerate the inspection process. Finally, flight planning

for autonomous inspection is expected to be included to this methodology for automatic
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image data acquisition. We envision that automated DT methods such as ours proposed here

will become the standard practice for infrastructure inspection activities to reduce time, effort,

and cost while enhancing safety.

Appendix

Processing times

This section presents a break-up of the processing time taken for the different components

involved in the pipeline for the generation of damage augmented digital twins. The ex-

periments were performed using a work station with 64 GB of ram, processor Intel Core

i7-9700K CPU @ 3.60GHz × 8 and graphics card NVIDIA GeForce RTX 2080 Ti. Table 5.2

presents the partial computation time for the SfM, LOD2, LOD3 and final DADT components

as well as the total for each of the buildings presented in the experiments section.

Table 5.2: Processing time in [s] for each pipeline step for generating GDT

SfM LOD2 LOD3 DADT Total

Building A 400 119 50 96 634
Building B 900 578 116 136 1730
Building C 412 94 63 94 641
Building D 320 98 31 51 500
Building E 695 102 47 36 880
Building F - fast 396 22 17 16 451
Building G - extra 330 48 45 48 471
Building H - extra 320 15 16 9 360
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6 Finite element models for masonry
buildings

This chapter represents the slightly modified pre-print version of the article: B. Pantoja-

Rosero, R. Achanta, K. Beyer, “Automated image-based generation of finite element models for

masonry buildings”, Submitted to Bulletin of Earthquake Engineering (2023). The formatting

and numbering of equations, tables and figures have been adapted to this document.

Abstract

To predict the response of masonry buildings to various types of loads, engineers use finite

element models, specifically solid-element and macro-element models. For predicting ma-

sonry responses to seismic events in particular, equivalent frame models—a subcategory

of macro-element models—are a common choice because of their low computational cost.

However, an existing bottleneck in modeling pipelines is generating the geometry of the model,

which is currently a slow and laborious process that is done manually using computer-aided

design tools. In this paper, we address this by automating the modelling process using re-

cent advancements in computer vision and machine learning. We present an image-based

end-to-end pipeline that automatically generates finite element meshes for solid-element

and equivalent-frame models of the outer walls of free-standing historical masonry buildings.

As the input, our framework requires RGB images of the buildings that are processed using

structure-from-motion algorithms, which create 3D geometries, and convolutional neural

networks, which segment the openings and their corners. These layers are then combined to

generate LOD3 models. We tested our pipeline on structures with irregular surface geome-

tries and opening layouts. While generating the solid element mesh from the LOD3 model is

straightforward, generating equivalent frame models required algorithms for segmenting the

façade and the meshing. Experts in the field analyzed the generated equivalent frame models

and determined them to be useful for numerical modeling. These finite element geometries

will be invaluable for future predictions of the seismic response of damaged and undamaged

buildings. The dataset and results are publicly available for future studies and benchmarking

(https://doi.org/10.5281/zenodo.7266587).
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6.1 Introduction

Masonry buildings together with reinforced concrete structures account for the largest number

of earthquake-related fatalities (144) because they are among the most vulnerable structures

for various types of loads, including the dynamic loads of earthquakes as well as quasi-static

loads such as differential settlements. This highlights the importance of understanding the

mechanical response of these type of structures. To study the response of masonry elements

at various scales, numerous experimental campaigns have been conducted over the years

(e.g., (145; 146; 147; 148; 70; 149; 150; 151)), but experimental studies are limited due to

economic restraints and the availability of appropriate testing infrastructure. As a cheaper

and more accessible alternative, numerical modeling is thus used to up-scale experimental

findings on individual components to entire buildings and to generalize conclusions (e.g.,

(152; 153; 154; 155; 156; 157; 36; 158)). However, much work is still needed to improve the

accuracy of models of masonry structures due to their complex behavior, which is caused by

the heterogeneous and anisotropic nature of its material as well as and various sources of

uncertainties (159).

For modeling the mechanical behavior of masonry material, different approaches, scales,

and strategies have been proposed, which can be grouped into four categories: block-based,

continuum, geometry-based, and macro-element models (160). In this study, we focus on

solid element models and on macro element models (to which equivalent frame models

(EFM) belong). In EFMs, walls are represented by frames, which are composed of deformable

elements connected through rigid nodes. The deformable vertical elements are called piers

and the deformable horizontal elements are called spandrels (161). The simplification of the

walls as a frame model is based on post-earthquake observations, which showed that damage

tends to concentrate in piers and spandrels (160). EFMs are mainly used for analyzing the

global building response, which is associated with the in-plane capacity of walls (e.g., (162)),

though EFM approaches have recently been proposed that can directly or indirectly consider

the out-of-plane response (163; 164). When compared to solid-element models, the number

of degrees of freedom of an EFM of a masonry building is typically three orders of magnitudes

lower, which reduces the computational costs and makes EFMs appealing for engineering

practice. Of course, however, the equivalent-frame simplification comes at a cost. For example,

in addition the lack of an out-of-plane response, which has since been overcome, D’Altri et

al. (160) also lists the toothing between orthogonal walls as an example of a structural detail

that cannot be explicitly considered in EFMs.

Modeling masonry buildings with EFMs requires the discretization of walls into piers, span-

drels, and nodes, which can be particularly challenging for walls with an irregular layout of

openings. Developed based on damage observations in buildings, Quagliarini et al. (165)

present a collection of rules for discretizing walls (166; 167; 168; 161), and the most recent

work on this topic was presented by Morandini et al. (169). As a general rule, openings occur

above and below spandrels and to the left and right of piers. The length of a spandrel element
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is typically taken as the mean width of the openings above and below the spandrel. If the

openings are not aligned, non-overlapping areas between them are considerate to be rigid. To

determine the length of the pier element, there are numerous proposals that differ in their

consideration of openings to the left and right of the pier, the direction of the seismic load, and

numerical observations. These varying sets of rules produce similar discretizations for regular

opening layouts, but the results differ significantly for irregular opening layouts. Figure 6.1

presents example discretizations of walls with regular and irregular opening distributions, as

presented by Quagliarini et al. (165).

Figure 6.1: Example approaches for discretizing facades as piers, spandrels, and rigid nodes
(from (165))

Multiple works have used EFMs to study the seismic performance of specific buildings (e.g.,

(170; 171; 172; 173; 174; 164)). In these studies, the finite element geometry was typically drawn

manually using computer-aided design (CAD) tools, which can be cumbersome, particularly

when the opening layout is irregular. Because several sets of rules exist, the irregular layouts are

typically discretized either by the expert selection of the most appropriate method from several

or by modifying a discretization after evaluating the numerical results. As such, automating

the discretization will accelerate the modeling process. Automation would also make EFM

simulations more feasible in post-earthquake assessments when a large number of buildings

need to be modeled in a short amount of time. This automation has been done using tools

from computer vision and machine learning. For example, 3D point clouds from LiDAR or

laser scan devices have been used previously for the generation of finite element models of

masonry buildings (175; 176; 177; 134; 135). Additionally, RGB images and photogrammetry

techniques have also been explored previously for generating models for finite or discrete

element methods (135; 29; 178; 89).

Our work aims to contribute to the automatic generation of finite element models of the

facade walls of historical masonry buildings. We assume for this purpose that the outer walls

are the main load-bearing elements, and we do not model slabs or ring beams, limiting this

work to historical masonry elements. We present in this study the first image-based framework

that automatically generates finite-element geometries for solid-element models and EFMs

for masonry buildings. Because of the subjectivity of the discretization process, our intention

is not to produce EFM models that give the most accurate simulation results, but instead

provide a generic EFM that meets the criteria of experienced design engineers, which can then

be refined to suit specific needs. Available refinements include modifying the discretization

or including elements such as roofs, floors, and gables for more accurate results. Overall, we

believe that our presented framework can be useful for modeling numerous buildings in a
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short period of time, such as in post-earthquake assessments.

In this paper, we outline our methodology and apply it to various historical masonry buildings.

Section 6.2 describes the framework and its components, including the construction of a

simplified 3D model that captures the information required to generate EFMs, the generation

of the EFMs from the geometrical model, and the metrics used to assess the performance

of our method. Section 6.3 presents the results for several example buildings with various

degrees of irregularity in the floor plan and layout of the openings. The models are tested

using modal analyses. In the final Section 6.4, we present the conclusions of this study and

outline future developments.

6.2 Methodology

Our end-to-end pipeline for automatically generating solid FE models and EFMs is depicted

in Figure 6.2. Our work builds on state-of-the-art computer vision and machine learning

technologies. As input, our framework uses multiple-view RGB images, which are processed

using structure-from-motion (SfM) to encode the building scene as 3D point clouds (structure)

and the camera poses where the images were taken (motion). To extract the geometrical

features for the finite element models, we post-process the 3D point cloud to produce a

polygonal surface model that represents a simplified geometry of the building, as detailed

in Pantoja-Rosero et al. (26). This produces a level of detail (LOD) model, specifically LOD3,

which consists of a polygonal surface model that details extrusions and openings (14). Such

models use simple primitives (e.g., planes) to approximate the actual geometry (91), and we

generate them by post-processing the 3D point clouds, segmenting the semantic information

in the 2D images (e.g., openings) and projecting it to 3D. Here, we adapted this previous work

by performing extra regularization and scaling it to the real dimensions. We used our generated

LOD3 model for the FE models of the outer walls of the masonry buildings, specifically solid

finite element models and EFMs. For the solid finite element models, we used the GMSH (179)

open source finite element mesh generator. For the EFM, we proposed a simple rule-based

algorithm based on suggestions from the literature (165). As output, we provide ready-to-

use geometry files in the format required for the finite element software AMARU (180) (solid

FEmodels), TREMURI (161) (EFMs), and OPENSEES (181) (EFM with the macro-element by

Vanin et al. (163)).

6.2.1 Structure from motion (SfM)

The core of our methodology is photogrammetry, specifically the SfM framework. SfM uses

multiple-view images of a scene (i.e., building) to compute a 3D point cloud that shows

both point features (structure) and the camera poses where the images where taken (motion)

(182; 116). For an example building scene, Figure 6.3 shows the images used to generate the

SfM model and structure and motion outputs, which were generated using the same open
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Figure 6.2: Pipeline for generating finite element models of freestanding masonry buildings.
From top-left to bottom-right: acquire images to generate structure-from-motion (SfM) and
regularized LOD2 models; segment and triangulate the openings to 3D; post-process geomet-
ric information to generate finite element models with solid- and macro-element approaches.
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source library MESHROOM (120) that is also used later to generate the solid finite element

models.

(a) (b)

Figure 6.3: SfM modeling. (a) Some images used for SfM processing. (b) Reconstructed 3D
point clouds and camera poses.

6.2.2 LOD2: Regularized polygonal surface model

The SfM point cloud is first translated to a polygonal surface model without openings (LOD2

model), wherein the exterior geometry of the building is simplified as a set of planes com-

prising its facades, its roof planes, and the ground level. To generate this model, we use the

Polyfit framework proposed by Nan et al. (16) presented in Figure 6.4. The input for this

methodology is point clouds clustered as plane primitives whose intersections generate can-

didate faces that might be part of the final model. The faces that will compose the resultant

LOD2 model are selected by solving a binary linear optimization problem that accounts for the

coverage and fitting of the point cloud over the faces as well as the complexity of the geometry.

This problem is formulated using hard constraints to generate a manifold and watertight

model.

Modeling the exterior structural walls of a building with an EFM requires that the walls

be vertical. This is not guaranteed when applying the Polyfit approach, so we regularize

the models with the assumption that the buildings were constructed as per the Manhattan

world scenes (183), which assumes most civil infrastructure is built following three main

perpendicular directions. Note that this does not always apply to historical masonry buildings,

so we plan to improve this aspect for future work. The building regularization first defines the

three main directions by randomly sampling the LOD2 model as a point cloud and performing

a principal component analysis (PCA) (184). PCA yields the three main directions, which are

approximately aligned with the vertical direction and the normal directions of the walls. The

three main directions of the building are then computed as the two mean vectors of normal

vectors of the planes identified as facades in the perpendicular directions and their cross

128



6.2 Methodology

(a) (b) (c) (d)

Figure 6.4: Polygonal surface models generated using Polyfit. (a) Input point cloud. (b)
Clustered planar primitives. (c) Candidate faces from plane intersections. (d) Polygonal
surface model after optimization process.

product. Once the three main building directions are defined, the building is regularized by:

1) modifying the facade planes such that their normal vector is aligned with one of the two

horizontal components of the main directions; 2) replacing the ground plane with a plane

that passes through the lowest LOD2 vertex and has a vertical normal vector (note that facade

vertices in contact with the ground plane are displaced accordingly). This regularization

procedure is depicted in Figure 6.5.

6.2.3 LOD3: Mapping opening information to 3D

Analyzing the building via a solid finite element model or EFM requires information on the

geometry of the openings. Based on our work presented in Pantoja-Rosero et al. (26), we first

segment openings in the facades in the 2D images input to the SfM analysis and then map

these openings to the LOD2 using the camera poses. Different from previous work (26), we

first regularize the polygonal surface model and then map the openings using ray-casting

instead of two-view triangulation. For the later, we segment the openings and their corners in

the 2D images using convolutional neural networks (CNNs). Each opening is represented on

the image as a set of four points indicating their vertices x that are then mapped over the LOD2

model (finding their 3D corresponding X) using ray-casting. This ray-casting was already used

in Pantoja-Rosero et al. (27) to project damage features (e.g., cracks) onto an LOD3 model.

In general, the ray-casting algorithm finds the 3D correspondence X of a 2D image point x

by locating the intersection of a projected ray that passes by the camera center C of the view

(output of SfM) and x with the 3D model (LOD2). This information about the 3D opening can

be merged with the LOD2 model to obtain an LOD3 model, which is the basis for the finite

element models. This procedure is illustrated in Figure 6.6.

6.2.4 Model initialization

The SfM pipeline produces similarity reconstructions (typically called Euclidean reconstruc-

tions) (116), meaning that relative distances and angles are preserved but do not represent the
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(a) (b)

(c)

Figure 6.5: LOD2 regularization. (a) Irregular LOD2 and global coordinate system. (b) Sampled
point cloud and main PCA directions. (c) Regularized LOD2 (filled) overlaying the irregular
LOD2 (wireframe)—a regular LOD2 guarantees perpendicularity for the ground and facade
planes.

absolute dimensions. Furthermore, the orientation and position of the coordinate system is

aleatory. Therefore, before generating FE models, the LOD3 model is initialized by applying a

similarity transformation that rotates, translates, and scales the model to place it at the origin

in alignment with the main directions of the building and scaled to the real dimensions. In

homogeneous coordinates, this transformation can be represented as:

Vi ni t = T(R,t, s)V, (6.1)
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(a) (c)

c

x

X

(b) (d)

Figure 6.6: LOD3 model—mapping information about openings to 3D. (a) Segmentation of
openings and their corners using CNNs. (b) Ray-casting the points of the 2D image x that
correspond to opening corners to obtain 3D correspondences X. (c) Openings in 3D formed
by their points X. (d) LOD3 model with surface and opening information.

where V and Vi ni t are the coordinates of the vertices of the model before and after initialization,

and T(R,t, s) is the 4x4 similarity transformation matrix defined as

T(R,t, s) =
[

sR t

0⊺ 1

]
, (6.2)

with R, t, and s respectively representing a 3x3 rotation matrix, a 3x1 translation vector, and a

scaling factor. In our algorithm, we first use the main LOD2 directions located using PCA to

find the transformation matrix that represents rotation and translation and its lowest ground

point (section 6.2.2). This transformation matrix, which places the LOD model at the origin

and aligns it with the main directions of the building, is computed solving the equation:

T(R,t) = Pi ni t P−1, (6.3)

where P and Pi ni t are 4x4 matrices wherein each column represents a point (in homogeneous

coordinates) of the LOD model and the origin of the coordinate system. Specifically, P columns

are formed by: P[:,1] representing the lowest LOD2 vertex of the ground plane; P[:,2] repre-

senting a point placed at unit distance from P[:,1] in the same direction as the main vertical

LOD2 direction; and P[:,3] and P[:,4] points that are placed at a unit distance from P[:,1] in the
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same direction as the other two main LOD2 directions. At the same time, the Pi ni t columns

represent the four points where the P points should be placed after the transformation. These

points are: Pi ni t [:,1] = [0,0,0,1]⊺ representing the origin; Pi ni t [:,2] = [0,0,1,1]⊺ representing

the point at a unit distance from the origin in the z direction; Pi ni t [:,3] = [1,0,0,1]⊺ repre-

senting a point at a unit distance from the origin in the x direction; and Pi ni t [:,4] = [0,1,0,1]⊺

representing a point at a unit distance from the origin in the x direction. To compute the

scaling factor, the user needs to provide two image points x and the distance d between

them. The ray-casting algorithm finds the corresponding X over the LOD2 model and then

computes their distance D. With this information, the scaling factor is obtained as s = d/D.

The initialization of the model is presented in Figure 6.7.

Initial
LOD3

(a) (b)

Figure 6.7: Model initialization. LOD models and opening coordinates are initialized by
placing them at the origin, aligning them with the main building directions, and scaling them
to the real dimension. (a) LOD3 models before and after rotation and translation (P and Pi ni t

points shown in magenta and orange, respectively). (b) Initial (small wireframe) and final
LOD3 (filled) models after full initialization (rotation, translation, and scaling).

6.2.5 Generating a finite element model with solid elements

One of the outputs produced by our framework is a finite element model that uses solid

elements. This is produced by applying the GMSH finite element mesh generator (179) to the

geometrical information encapsuled in the initialized LOD models and 3D openings. As a

first step in this process, all the planes labeled as facades (section 6.2.2) are built as surface

entities of dimension 2 by joining their vertices (entities of dimension 0) with lines (entities
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of dimension 1). To next generate volume entities of dimension 3, an extrusion operation

is applied to these facade surfaces to simulate the wall thickness th (user input). This same

technique is also used to generate volume entities for all the building openings. Finally, the

opening volumes are subtracted from the facade volumes using a Boolean difference operation

to generate a physical group that the mesh generator discretizes into solid elements. The type

of element, its order, and its size are defined by the user. Figure 6.8 presents the procedure for

generating a finite element model for a building using first-order tetrahedral elements.

(a) (b)

(c) (d)

Figure 6.8: Finite element model with solid elements generated using GMSHAPI (179). (a)
Facades and openings as surface entities. (b) Facades and openings as volume entities after
extruding the wall width. (c) Physical group used to generate the solid-element mesh after
performing binary operations. (d) Finite element model generated using tetrahedral solid
elements.
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6.2.6 Generating an EFM

As outlined in the introduction, EFM requires the discretization of each building facade into

deformable parts (piers or spandrels) connected by rigid nodes. To achieve this aim, we coded

for regular openings using the rule by Dolce et al. (168). To adapt the code for irregular opening

layouts, we designed a general first step for defining the layout of the cells, which we then

label as openings, piers, spandrels, or nodes (Fig. 6.9). The first part of the algorithm generates

the geometry of the polygonal cells in each facade (in 2D local coordinates) as follows:

• Step 0: Find the lines that represent the facade contour (contour lines) and openings

(opening lines).

• Step 1: Compute all of the intersections of the facade lines.

• Step 2: Filter the intersections: 1) leave those that lay inside the facade or on the contour;

2) remove intersections produced by a contour line and an opening line that lay inside

the facade; 3) remove intersections produced by two contour lines that are not part of

the facade contour vertices.

• Step 3: Create line segments by connecting the consecutive points that lay in each of the

facade lines.

• Step 4: Produce a graph in which the nodes are formed by the filtered intersections and

the edges are formed by the line segments.

• Step 5: Find the polygonal cells formed by the graph using the graph–cycles-based

algorithm proposed by Ferreira et al. (185).

The second part of the algorithm is a rule-based procedure that labels the polygonal cells as

openings (o), piers (p), spandrels (s), and nodes (n). Here, we offer the user two options, which

yield the same results for a regular layout of openings but different results for irregular layouts.

Approach A leads to longer piers while Approach B leads to deeper spandrels. The process

applied to one building facade is presented in Figure 6.10, and the results for all facades of the

example building are presented in Figure 6.11. The labeling algorithm is as follows:

• Step 0: For each cell, determine the eight neighboring cells: top (t ), bottom (b), left (l ),

right (r ), top-left (t l ), top-right (tr ), bottom-left (bl ), bottom-right (br ).

• Step 1: Label as openings all the cells whose mean coordinate lays inside the LOD

openings.

• Step 2: Label as piers the cells to the left (l ) and right (r ) of the labeled openings. Label

as spandrels the cells above (t ) and below (b) the labeled openings.
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Figure 6.9: Generation of polygonal cells in the building facades that will be labeled as open-
ings, piers, spandrels, and nodes. (a) Lines representing the facade contour and openings. (b)
Intersections of facade lines, where red points correspond to filtered intersections. (c) Graph
formed by filtered intersections and line segments. (d) Polygonal cells to be labeled.

• Step 3: Label as nodes the neighboring cells of the labeled openings in the t l , tr , bl , and

br positions.

• Step 4: Grow horizontally the cells labeled as piers and grow vertically the cells labeled

as spandrels. This item has two approaches. Approach A: longer piers; approach B:

deeper spandrels.

Approach A: Loop through all the polygonal cells. If a cell is labeled as a pier, also

sequentially label as a pier all the unlabeled cells to its left and right until an already-
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labeled cell is found. Loop again through all the polygonal cells. If a cell is labeled as a

spandrel, also sequentially label as a spandrel all the unlabeled cells above and below

until an already-labeled cell is found.

Approach B: Loop through all the polygonal cells. If a cell is labeled as a pier, also

sequentially label as a pier all the unlabeled cells to its left and right until the t or b

neighbor of the unlabeled cell is a spandrel (without labeling this cell). Loop again

through all the polygonal cells. If a cell is labeled as a spandrel, also sequentially label

as a spandrel all the unlabeled cells above and below until the l and r neighbors of the

unlabeled cell are piers (labeling this cell as pier).

• Step 5: Loop through all the polygonal cells. If a cell is labeled as a node, also sequentially

label as a node all the unlabeled cells to its left and right until reaching an already-

labeled cell. Loop again through all the polygonal cells. If a cell is labeled as a node, also

sequentially label as a node all the unlabeled cells above and below until reaching an

already-labeled cell.

(a) (b) (c) (d)

(e) (f)

Figure 6.10: Facade discretization process. (a) Facade with unlabeled polygonal cells. (b)
Facade polygonal cells after labeling step 1. (c) Facade polygonal cells after labeling step 2.
(d) Facade polygonal cells after labeling step 3. (e) Approach A: Facade polygonal cells after
labeling steps 4 and 5. (f) Approach B: Facade polygonal cells after labeling steps 4 and 5.

Note that our framework was designed to model only piers and spandrels as macro-elements.

The use of gable elements, such as the one used by Vanin et al. (174), should improve the

discretization and will be considered in future work. Similarly, we will consider implementing
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Figure 6.11: 3D results of the facade discretization as seen from two views.

variable pier lengths depending on the loading direction, as has been suggested by several

research groups (e.g., Quagliarini et al. (165)).

6.2.7 Meshing the EFM

The last part of our end-to-end pipeline is an algorithm that transforms the discretized facade

into a mesh for an EFM. The EFM consists of a wire frame composed of special frame elements

(macro-elements) defined by their end points (structural nodes), center point, and geometric

dimensions. We assume that the cross sections of all piers and spandrels are rectangular. The

finite element mesh we generate here matches the rules set by TREMURI (161), which can be

used either with the original nonlinear beam formulation or the macro-element by Penna et

al. (162). The same mesh is also adopted when using the macro-element by Vanin et al. (163)

in OPENSEES (181). In our mesh, structural nodes are defined based on the polygonal cells

labeled as nodes and on the connectivity between each pair of walls. The macro-elements

(piers and spandrels) are then defined based on their connection with neighboring nodes. The

process followed by the algorithm is shown in Figure 6.12, and the results for all the facades

are shown in Figure 6.13. The algorithm follows these steps:

• Step 0: Cluster the macro-element cells. Neighboring polygonal cells that have the same

label are assigned to a single element (pier, spandrel, or node). If the cells that compose

the element produce a non-rectangular shape, the neighboring cells that have different

labels are re-labeled to guarantee rectangular elements.

• Step 1: Label facade elements (nodes, spandrels, and piers) as contour or non −
contour . Assign an extra label to those placed at the contour as top (t ), bottom (b), left

(l ), right (r ), top-left (t l ), top-right (tr ), bottom-left (bl ), bottom right (br ).
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• Step 2: Define whether nodes are 2D or 3D and find their structural node coordinates.

Because TREMURI (161) captures only the in-plane and not out-of-plane behavior of

the piers and spandrels, the elements representing the piers and spandrels only have

degrees of freedom in the plane of the façade. As a result, TREMURI distinguishes

between 3D nodes, which are those that are on the vertical edges of the contour and

therefore in contact with other facades, and all other nodes, which are considered 2D

nodes. The structural nodes are placed on the bounding box (bbx) that surrounds each

node element and its type. non − contour node elements: middle point of bbx. t :

middle-top point of bbx. b: middle-bottom point of bbx. l : middle-left point of bbx.

r : middle-right point of bbx. t l : top-left point of bbx. tr : top-right point of bbx. bl :

bottom-left point of bbx. br : bottom-right point of bbx.

• Step 3: Determine the center point of the pier and spandrel elements.

• Step 4: Place extra structural nodes (without mass) at the ground level of the model

beneath each pier element. The new nodes are placed below contour bl , b, and br

piers. b: middle-bottom point of bbx. bl : bottom-left point of bbx. br : bottom-right

point of bbx.

• Step 5a: Define pier and spandrel end points ni and n j for facades with openings. For

each pier, ni and n j are the neighboring nodes to the bottom and top, respectively. If

there are multiple neighboring nodes at the top and/or bottom, the pier is split into

several piers according to the number of nodes. For each spandrel, ni and n j are the

neighboring nodes to the left and right, respectively. If there are multiple neighboring

nodes to the left and/or right, the spandrel is split into several spandrels according to

the number of nodes.

• Step 5b: Define piers for facades without openings. When there are no openings in

a facade, the pier element is split horizontally into two. To do this, two additional

structural nodes (without mass) are created at the top-left and top-right of the bbx

surrounding the pier element. Then, ni and n j represent the bottom-left and top-left

nodes for the first pier, and bottom-right and top-right for the second. If the facade is

connected to another facade containing more than one row of openings in its layout, the

pier corresponding to this connection is split according to the number of extra nodes in

the neighboring facade. Every time a pier is split, rigid nodes are generated to link the

new piers to guarantee a proper connectivity within the wall.

• Step 6: Merge corresponding 3D nodes between facade pairs. Two facades are connected

through their 3D nodes by merging the closest 3D nodes to the two facades into one new

coordinate equal to the mean of their individual coordinates. If the new coordinate lays

outside one of the node element regions, the new coordinate is changed to the largest

or lowest point of that node element. If the number of opening rows from one facade

and the next do not match, there will be more 3D nodes in the facade with the highest

number of row openings. In this case, the extra nodes are shared between the facades,
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and a rigid link is created to connect each extra node to its closest node. When one of

the facades does not have openings, as described in the previous step, the piers of that

facade are split at the position of the 3D nodes of a neighboring facade that has more

than one row of openings in its layout.

• Step 7: Create finite element geometry files for TREMURI (161) and OPENSEES (181)

considering rectangular geometry for the elements, structural node placements, and

frame element connections. As boundary conditions, all the nodes placed at the ground

level are constrained to have no degrees of freedom (Fig. 6.14).

6.2.8 Metrics and performance assessment

A general rule that works well for regular openings states that wall regions with openings above

and below correspond to spandrels and wall regions with openings left and right correspond

to piers. For facades with irregular opening layouts, this procedure is subjective, and the dis-

cretization relies on the stated criteria as well as the experience of the engineer. Often, a group

of engineers discuss the definition of a model that could best represent the expected behavior

of the building. We attempted to reproduce the discretization of experienced engineers with

the algorithm that we introduced in this section, but the proposed solution remains only one

of many. To quantitatively assess the performance of our framework for modeling masonry

buildings using macro-elements in light of this subjectivity, we propose two metrics for its

evaluation by experienced engineers (evaluator ). The two metrics are as follows:

• Metr i c A (M A): For this metric, the evaluator was given images of building facades

containing unlabeled polygonal cells (Fig. 6.15a). The evaluator assigned each unla-

beled cell as what she/he considered to be the most reasonable label. The cell labels

given by the evaluator were compared with the labels automatically assigned by our

algorithm. Metr i c A is the percentage of cells that were labeled in the same manner.

• Metr i c B (MB): For this metric, the evaluator was asked to give a grade between 1.0

to 4.0 to the mesh of the EFM produced by our framework (Fig. 6.15b). The grades were

assigned as follows:

1 - Poor: the model makes no sense. Totally misaligned with the evaluator ′s
criteria.

2 - Sufficient: the model might produce acceptable results and can be used for

numerical analyses. Partially misaligned with the evaluator ′s criteria.

3 - Good: the model might produce accurate results and can be used for numerical

analyses. Almost completely aligned with the evaluator ′s criteria.

4 - Excellent: the model should produce accurate results and can be used for

numerical analyses. Completely aligned with the evaluator ′s criteria.
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Figure 6.12: Generating the geometric components of an equivalent frame model (EFM).
(a) Step 0: Neighboring polygonal cells with same label (piers, spandrels, and nodes) are
clustered into a single facade element. (b) Step 1: Facade elements labeled as contour or
non −contour elements at t ,b, l ,r, t l , tr,bl ,br positions. (c) Steps 2-4: 3D and 2D nodes and
the position of the structural node point. (d) Steps 5,6: Representation of the finite macro-
element as wire elements that connect to the final position of the structural nodes.

6.3 Experiments

In this section, we present the results of applying our framework to 12 example free-standing

historical masonry buildings in Switzerland or Croatia, as published by Pantoja-Rosero et

al. (26; 186; 27; 187). The buildings in Croatia were damaged in the 2020 Zagreb or Petrinja
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(a) (b)

(c) (d)

Figure 6.13: Geometric components of EFM for the four facades that comprise the building.
(a) Facade 1. (b) Facade 2. (c) Facade 3. (d) Facade 4.

earthquakes (4; 3), which fits well with a proposed application of this method for the numerical

modeling of earthquake-damaged buildings. For each building, the input data set consisted of

multiple-view images. We first present various models generated within the pipeline, starting

with the SfM up to the finite element model with solid elements and the EFM. For the EFMs,

we also show the scores assigned by four engineers with experience in modeling masonry

buildings. To perform modal analyses of the solid element models and the EFMs, we used the

AMARU (180) and OpenSees (181) finite element libraries, respectively. Some of the deformed

shapes of this modal analysis are presented in the last section.
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Figure 6.14: 3D results for the EFM seen from two views.

(a) (b)

Figure 6.15: Images given to the evaluator for assessing our methodology. (a) Unlabeled
polygonal cells of a facade. (b) Building facades with the areas defined as elements (piers,
spandrels, and nodes) with wire-frames that represent the geometrical components of the
EFM.

6.3.1 Finite element geometry

Figures 6.16 and 6.17 present some of the models obtained from our framework, focusing on

non-damaged and damaged buildings, respectively. Across both images, column A shows the
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photogrammetry output from the MESHROOM software, which is a textured mesh. Column

B shows the SfM model, which consists of a sparse point cloud and registered camera poses.

Next, the polygonal surface model is displayed as an LOD3 model in column C. The finite

element geometries using solid elements and EFMs are split by discretization approach, with

Approach A presented Figure 6.16 and Approach B presented in Figure 6.17. In addition to

the visual results, the four scores computed for each building and discretization approach

are presented in Table 6.1 (M A − A: Metric A; discretization approach A. M A −B : Metric A;

discretization approach B. MB − A: Metric B; discretization approach A. MB −B : Metric B;

discretization approach B). The metrics were computed based on the assessments of four

engineers, who are experienced in modeling masonry buildings using EFMs as described in

Section 6.2.8.

Table 6.1: Metric values for assessing the generation of EFMs using our framework (MA-A: Metric A%;
discretization approach A. MA-B%: Metric A; discretization approach B. MB-A: Metric B; discretization
approach A. MB-B; Metric B, discretization approach B).

Non-damaged buildings (NB) Damaged buildings (DB)

N B1 N B2 N B3 N B4 N B5 N B6 DB1 DB2 DB3 DB4 DB5 DB6

Evaluator 1 MA-A 98.9 89.7 96.3 93.0 89.6 91.7 96.7 - 92.5 93.8 92.7 90.6
MA-B 92.4 79.4 90.8 91.7 88.2 91.7 95.8 99.9 87.5 90.6 92.7 87.1
MB-A 3.8 3.0 2.5 2.5 2.3 4.0 3.4 - 3.4 3.2 2.8 2.3
MB-B 3.3 2.5 2.5 2.8 2.4 4.0 3.5 3.8 3.4 3.0 3.3 2.3

Evaluator 2 MA-A 98.9 84.6 98.2 91.7 92.4 100.0 97.1 - 92.2 92.2 91.9 89.4
MA-B 92.4 82.4 89.9 90.4 87.5 100.0 96.3 99.4 88.4 90.6 91.9 85.9
MB-A 4.0 3.0 3.0 2.8 3.2 4.0 3.8 - 3.3 2.7 2.6 3.0
MB-B 3.8 2.8 3.0 2.8 3.2 4.0 3.8 3.5 3.3 2.7 2.8 2.9

Evaluator 3 MA-A 95.7 86.0 88.1 93.6 86.8 100.0 96.3 - 97.8 95.3 87.9 87.1
MA-B 93.5 89.0 89.0 93.6 86.1 100.0 93.8 100.0 97.5 95.3 87.9 84.7
MB-A 3.0 2.0 3.0 3.0 4.0 4.0 3.0 - 4.0 3.0 3.0 3.5
MB-B 3.0 2.0 3.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 3.0 3.5

Evaluator 4 MA-A 94.6 88.2 88.1 89.2 91.0 95.8 97.1 - 95.3 84.4 87.9 98.8
MA-B 88.0 77.9 77.1 89.2 91.0 95.8 90.4 96.0 90.0 82.8 87.9 88.2
MB-A 4.0 3.0 4.0 3.5 2.0 4.0 4.0 - 3.5 3.0 3.0 2.5
MB-B 3.0 2.0 3.0 3.0 2.0 4.0 3.0 3.5 2.5 2.5 3.0 1.0

Table 6.1 shows that the MA scores average over 90% (metric mean values - M A− A : 92.7%;

M A −B : 90.6%) and MB scores, with one exception, are equal to or larger than 2.0 (metric

mean values - MB − A : 3.2; MB −B : 3.1). In general, the experts were satisfied with the

performance of the methodology for all example buildings studied, with the framework pro-

ducing appropriate discretizations and definition in the EFMs for numerical simulations of

the building. The only disagreement with the experts stemmed from personal criteria in the

discretization process, which they considered to be expected and normal. Their most relevant

comments for improvement were: 1) the systematic methodology sometimes produces overly

large and rigid nodes—their size should be reduced and adjacent piers or spandrels should be

increased; 2) small openings should be disregarded to avoid creating too many rigid nodes. Im-

provements along these directions will be considered in the future (see Conclusions). Overall,
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(a) (b) (c) (d) (e)

Figure 6.16: Models generated by our framework for non-damaged buildings. (a) Photogram-
metry textured mesh. (b) SfM model as point cloud and camera poses. (c) LOD3 models
containing simplified surface and opening information. (d) Finite element model using
solid-elements (tetrahedral elements of the first order). (e) Finite element model using macro-
elements with discretization Approach A.

these results show the clear potential for the use of image-based approaches in automatically

generating finite element geometries of the facades of historical masonry buildings.
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(a) (b) (c) (d) (e)

Figure 6.17: Models generated by our framework for damaged buildings. (a) Photogrammetry
textured mesh. (b) SfM model as point cloud and camera poses. (c) LOD3 models containing
simplified surface and opening information. (d) Finite element model using solid-elements
(tetrahedral elements of the first order). (e) Finite element model using macro-elements with
discretization Approach B.

6.3.2 Modal analysis

To evaluate the performance of the models in the elastic domain, we performed modal analyses

using two different open source software, AMARU (180) and OPENSEES (181), for the solid-

element model and the EFM, respectively. For the material properties, we chose values
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representative of stone masonry. As our intention with this analysis is only to present the

functionality of the models, details of the analysis, such as material properties and input

and output information, are not discussed in detail, and we refer the reader to the dataset

published together with this work. The results consisting of some of the deformed shapes

obtained after performing such simulations are presented in Figures 6.18 and 6.19.

6.4 Conclusions

The objective of this study was to contribute to the numerical modeling of historical masonry

buildings by providing an end-to-end framework that automatically generates finite element

meshes of facade walls for solid-element models and EFMs. This automated approach is an

alternative to the manual operation, in which engineers draw the geometry of the building

using CAD software. The only input required by our methodology is multiple-view images

of the building, which are processed using SfM to encode the geometrical information of

the building as a point cloud with camera poses. Convolutional neural networks extract

information about openings and their corners, which together with the point clouds can

produce the LOD3 model.

Though the solid element model of the facades can be obtained simply by extruding the

facades along the wall thickness, generating EFMs is more challenging. The discretization of

a facade into an EFM is still a subjective process that requires the expertise of experienced

engineers on numerical modeling of masonry buildings. Our algorithms were design to aid this

process by capturing the overall concepts applied by engineers as an initial generic model that

the user can modify. Even so, the results obtained during our experiments were satisfactory

to four expert engineers, which motivates further development of our work. To this end, we

plan to perform additional investigations in various directions, including the addition of gable

elements and other building elements such as roof and floor levels and varying the length of

the pier element when the openings to the left and right have different heights or if the pier

is at the edge of a facade. Additionally, we will increase the capabilities of the discretization

process by allowing the consideration of different literature criteria with available pier and

spandrel dimensions. We will also include information from interior point clouds, from which

we can retrieve wall thicknesses, interior wall geometries, and spanning directions of timber

slabs. Finally, to develop inputs for rapid post-earthquake damage assessments, we plan

to develop techniques for assessing the response of damaged buildings after earthquakes

for several aftershock scenarios, including uncertainty analyses. Finally, due to the practical

potential of our work, we expect that our methodology can be implemented in the software

used by civil engineering practitioners.
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(a) (b)

Figure 6.18: Deformed shapes output by modal analyses using the FE models generated by
our framework as the input geometry—non-damaged buildings. (a) Two deformed shapes ob-
tained using solid-elements in AMARU (180). (b) Two deformed shapes using macro-elements
in OPENSEES (181).
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(a) (b)

Figure 6.19: Deformed shapes output by modal analyses using the FE models generated by our
framework as the input geometry—damaged buildings. (a) Two deformed shapes obtained
using solid-elements in AMARU (180). (b) Two deformed shapes using macro-elements in
OPENSEES (181).

Appendix

Processing times

This section presents a break-up of the processing time taken for the different components

involved in the pipeline for the generation of finite element geometries for masonry buildings.
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The experiments were performed using a work station with 64 GB of ram, processor Intel

Core i7-9700K CPU @ 3.60GHz × 8 and graphics card NVIDIA GeForce RTX 2080 Ti. Table 6.2

presents the partial computation time for the SfM, LOD2, LOD3 and final FEM components as

well as the total for each of the buildings presented in the experiments section.

Table 6.2: Processing time in [s] for each pipeline step for generating FEM geometries

SfM LOD2 Initialized LOD3 FEM - solids FEM - EFM Total

NB1 600 11 38 7 32 688
NB2 318 8 43 6 33 408
NB3 300 9 43 5 32 389
NB4 440 13 49 6 32 540
NB5 144 102 70 8 36 360
NB6 258 36 23 5 29 351
DB1 400 119 61 11 43 634
DB2 900 578 98 13 47 1636
DB3 412 94 79 12 41 638
DB4 320 98 50 7 32 507
DB5 396 22 23 6 32 479
DB6 330 48 45 65 31 519
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7 Geometrical digital twins for stone
masonry elements

This chapter represents the slightly modified pre-print version of the article: B. Pantoja-Rosero,

S. Saloustros, R. Achanta, K. Beyer,“Image-based geometric digital twinning for stone masonry

elements” , Automation in construction 145, (2023), p. 104632 . The formatting and numbering

of equations, tables and figures have been adapted to this document.

We present an image-based pipeline for generating geometrical digital twins (GDTs) of stone

masonry elements with detail down to the stone level. For this purpose, we acquire RGB im-

ages of the individual stones and of the wall during the construction phase. In our framework,

we use structure from motion (SfM) to first generate 3D source and destination models, which

are then registered to form the GDT through non-linear least squares and 2D point feature cor-

respondences detected on the SfM images. This method contrasts with traditional techniques

that register point clouds using 3D point descriptors. Because of the robustness of image

feature descriptors, we found that using 2D instead of 3D point features facilitates the automa-

tion of the GDT generation. To benchmark our algorithm, we compared the results through

an Euclidean–distance-based proposed metric with a known 3D textured model from which

images were synthetically generated. We show the robustness and feasibility of our method for

full size elements, wherein GDTs were generated for dry-stone and stone-mortar systems. This

study allows researchers to produce accurate representations of the 3D geometry of walls built

for experimental research, reducing therefore uncertainties related to the stone size, shape

and arrangement to a minimum when comparing 3D numerical simulations of these walls to

experimental results. Codes and data sets are publicly available (https://github.com/eesd-

epfl/stone_masonry_GDT and https://doi.org/10.5281/zenodo.7266587).

7.1 Introduction

Many existing buildings, including those of significant cultural value, are made of stone

masonry. This type of building is among the most vulnerable for various static and dynamic

load cases, such as differential settlements, traffic loads, and earthquake loads (188; 189; 190;

191). To improve the ability of these buildings to withstand these loads, a good understanding
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of their response to the various load cases is necessary. The behaviour of stone masonry

walls depends not only on the static and kinematic boundary conditions and on the material

properties of the mortar and the stones but also on the size and shapes of the stones and on

the arrangement of the stones in the wall (192; 193; 194; 195; 196; 197); in the following we

refer to this stone layout as the microstructure of the wall.

For engineering practice applications, key engineering quantities of stone masonry walls

(i.e. stiffness, strength, and deformation capacity) are estimated either from new tests (in-

situ or laboratory) or using empirical data from large-scale tests available in the literature

(198; 199; 200; 201; 70; 21). On the other hand, some national codes (e.g. in Italy (202) and

Switzerland (203)) adopt a classification for stone masonry according to their microstructures

and propose ranges of values for strength and stiffness (Figure 7.1). The new generation

of Eurocodes will adopt the same approach. While this approach is suitable for today’s

engineering practice, in research, a more fundamental approach to treating the effect of

microstructures is sometimes warranted. This applies, for example, to research that aims

at developing detailed or simplified micro-models of stone masonry (204). In these models

the stones are represented by their actual shape and mortar joints are modelled explicitly,

for example through solid elements, contact elements and/or sets of spring elements. With

the advancement of numerical simulation tools and the increase in computational power,

numerical simulations of stone masonry walls that represent stones and mortar explicitly

become more and more feasible and several such simulation approaches exists or are currently

developed (see for a 2D example Figure 7.2).

Figure 7.1: Classification of stone masonry walls into six discrete classes according to (202)
(figure from (21)).

When validating such numerical models against laboratory tests, it would be useful to have as

input the exact geometry of the microstructure of the wall as it was tested (Figure 7.3) rather

than only the assignment to one of the classes (Figure 7.1). Such a representation of the as-

built 3D microstructure down to the level of the individual stone would reduce uncertainties

resulting from the microstructure to a minimum. The goal of this paper is to present such a

method for creating the geometric digital twins (DTs) of the as-built microstructure of stone

masonry walls.
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Figure 7.2: 2D numerical simulation of a stone masonry panel subjected to diagonal compres-
sion loading where stone and mortar are represented explicitly (195) using the open-source
software Akantu (205; 206).

(a) (b)

Figure 7.3: Stone masonry walls: (a) Multi-leaf stone masonry wall built for laboratory testing
and (b) corresponding test setup (70).

While our work focuses on constructing DTs for specimens built for laboratory testing pur-

poses, i.e., for specimens for which we can also record the construction process, works that

treat the reconstruction of microstructure from sensing techniques that can be applied after

the construction of the wall was completed, already exist. If the microstructure of the masonry

is regular, manually controlled computer-aided design can be used to define dimensions and

shapes of the stones and assemble these to a microstructure. For irregular microstructures,

however, new approaches are required. For 2D models, the microstructure can be derived

from the outer faces of the walls. Work in recent years has aimed to enhance the accuracy

of model geometry through the investigation of numerous non-contact sensing techniques.

Kassotakis et al. (89) present an extensive literature review on state-of-the-art techniques

for surveying masonry structures using laser scanning (LiDAR) and image collection tech-

niques for obtaining accurate representations of the geometry of existent structures. This

geometrical information can be used as an input for various modeling strategies of masonry

structures, such as continuum (207; 208; 188; 209; 210; 211; 212; 213; 214; 215) and block-based
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approaches (216; 217; 218; 219). While computer vision approaches have been developed

in recent years to provide detailed geometry at the stone unit level of the external faces of

masonry walls (220; 221; 222), it is still not possible to acquire the internal (not visible from the

exterior) geometry of these structural elements. Instead, this internal morphology can only be

estimated using non-destructive techniques, such as ground penetrating radar and sonic to-

mography (223; 224; 225; 212; 226; 213; 227; 194). However, these non-destructive techniques

yield at present not sufficient information for reconstructing the internal microstructure in

terms of a 3D geometrical model. 3D microstructures for single leaf masonry can be based on

2D geometries in combination with extrusion algorithms to generate 3D models (197). For

creating multiple-leaf masonry microstructures, our 3D microstructure generator can be used

to generate artificial microstructures (228) resembling those of the stone masonry classes

defined in Figure 7.1. Such microstructures are suitable for numerical sensitivity studies

on the effect of the microstructure on the mechanical response of the stone masonry wall.

However, this 3D microstructure generator always generates artificial microstructures and not

microstructures of as-built walls.

To complement existing and ongoing work on the geometric digital twinning of stone masonry

walls, in this paper we make a contribution towards geometric digital twinning the microstruc-

ture of a stone masonry wall during its construction process. Such pipeline is useful for the

geometric digital twinning of new stone masonry walls and we see immediate applications in

research when comparing numerical simulations to experimental results. In a first study, the

geometric digital twinning was based on laser scanning and a manual procedure for the recon-

struction. This proved, however, as very time-consuming, relied on expensive laser-scanning

equipment and the result was also dependent on the person performing the registration tasks.

In this paper, we overcome these limitations by presenting a method for creating geometric

digital twins (GDTs) of stone masonry walls down to the level of the individual stone of real

stone masonry walls. We generate this GDTs from RGB images that are taken of the individual

stones before the construction of the wall and from images taken during the construction of

the wall.

Our research focuses on developing GDTs for laboratory-built stone masonry specimens so

that highly accurate 3D geometries can be employed for numerical simulations via finite

or discrete element analysis (FEA or DEA). The results of these mechanical simulations can

be compared with those of the real model tested in the laboratory, resulting in a greater

understanding of the behavior of existing structures and the creation of new lineaments for

the construction of new structures. As stated previously, the current approach for numerical

simulations is inaccurate due to the subjectivity present in the typology selection of the

elements and the paucity of experimental data. This is the motivation for this study.

In this paper, we describe this method for geometrical digital twinning of stone masonry walls

from RGB images and apply it to case studies. In section 7.2, we state the problem, provide a

general description of our methodology, and emphasize our research contribution. In section

7.3, we describe the components of the methodology, including SfM, image feature detection,
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description and matching, and the nonlinear least squares method with its formulation to our

registration problem. Additionally, we explain some extra considerations and capabilities of

our codes, such as the use of the RANSAC algorithm to reduce the influence of outlier data

and the use of extra views and features for registration. Following this, in section 7.4, we

validate our methodology on synthetic image data generated by a computer graphics software

using a known 3D textured-mesh model. To show the effectiveness of our methodology for

generating GDTs, we perform further experiments on real and typical dry stone and stone-

mortar masonry elements. Finally, we present the conclusions of our work and the outlook to

future developments.

7.2 Problem statement

The objective of this work is to develop a method for generating GDTs of new stone masonry

elements from images taken during construction. A method for doing this can impact the

design of new structures in two ways. First, due to the lack of methods for generating GDTs of

newly constructed irregular stone masonry walls, it is currently impossible to directly compare

between experimental and numerical results of stone masonry structures. Thus for walls built

and tested in the laboratory, our method could validate the numerical models used to simulate

the response of stone masonry structures. Second, this method can be the basis for the future

automated construction of walls using either natural stones or demolition waste, making the

development of a procedure for automated GDT generation for stone masonry elements an

important step towards the digital age. Furthermore, the methodology proposed here both

advances current research in the field of stone masonry structures as well as provides ready-

to-use tools for the digitalization of the construction industry. The primary objective of the

research presented here is the first aspect, i.e., the generation of highly detailed geometries that

serve as input for numerical analyses applicable to laboratory-built stone masonry specimens.

This will allow for a greater understanding of the behavior of these types of structures by

comparing and validating the numerical modeling and experimental test results.

A digital twin (DT) is an accurate digital representation of a physical object that contains variety

of information depending on the type and application (128). Here, we focus on generating

geometric digital twins (GDTs) (229; 230) that contain detailed information of the geometry

of real stone masonry structural elements. Recent breakthroughs in artificial intelligence,

including computer vision and machine learning, make it possible to automate the generation

of a GDT of a physical element. For example, a desired real object can be reconstructed

from multiple view images together with well-established techniques such as structure-from-

motion (SfM) and multiple-view stereopsis (231; 232; 233). In general, these photogrammetry

methods extract repeated features from images of the object, which are later used to recover

the camera poses (rotation and camera center position) to project those features to the 3D

space as point clouds (140; 116). Further post-processing of the images and point clouds, such

as the generation of depth maps, can densify the point clouds, which can later be used to
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generate textured meshes.

In this context, we would like to automate the process of generating GDTs of stone masonry

elements using images taken during their construction, with particular emphasis on models

for laboratory-built components. In this work, we propose an image-based algorithm that

uses SfM information (e.g., images, camera poses, structure) to register 3D models. In this

algorithm, we generate 3D models for each individual stone, which we register to a 3D model

of the stone masonry element through a non-linear least squares algorithm that uses 2D

feature detection-description on images employed in the SfM pipeline. This leads to a GDT of

an element that has, for the first time, a level of detail down to the single stones. This level of

detail makes the models generated from our pipeline suitable for use in mechanical analysis

methodologies, such as finite element analysis (FEA) and discrete element analysis (DEA).

7.3 Methodology

Our objective is to develop a method for the automated generation of a GDT for stone masonry

components that contains detail down to the level of a single stone. For this, we combine

computer vision and machine learning techniques, specifically SfM, 2D feature detection, and

non-linear least squares, to generate 3D models of stones and walls that can be registered to

generate the desired detailed GDT for stone masonry elements.

Figure 7.4 represents the pipeline of our methodology. This pipeline starts by generating 3D

SfM models as point clouds for each stone Si , for each wall layer during construction L j , and

for the final built wall W (with integer values for i ∈ [0, N ] and j ∈ [0, M ], where N and M

are the number of stones and layers in the wall model, respectively). Later, we use the 2D

image features employed to generate each of those SfM models to match reference images

used to generate a source model (sr c, this could be a single stone or a wall layer model) with

those used to generate a destination model (d st , this could be a wall layer or the final wall

model). This helps locate correspondences between the sr c and d st models in 3D (Xsr c , Xd st ),

which are used to find a transformation matrix (Tsr c−d st ) that allows their registration. We find

transformation matrices to register each stone model Si to its correspondent wall layer model

L j (TSL) and each wall layer model L j to the final wall model W (TLW ). With these matrices,

we can finally transform each stone model Si to register it in the correct position on the final

wall model W to generate the desired GDT as TLW TSLSi . In the next subsections, we detail the

important components of this pipeline.

7.3.1 Structure from Motion

The core of our methodology is the SfM technique, as it can both generate 3D models as well as

produce information about 2D image features, which facilitates the production of the detailed

DTs for stone masonry components. SfM is a 3D reconstruction technique that employs

multiple-view geometry, which was defined by Hartley et al. (116) as the branch of computer

156



7.3 Methodology

Figure 7.4: Pipeline for generating geometrical digital twins (GDTs) of stone masonry elements.
From left to right: acquiring images; generating SfM models of the stone, layers of stones, and
the wall; registering sr c models to d st models; registering each stone at the final position in
the wall.

vision that uses various image views of a scene to answer three questions: 1) How is the same

point visualized and constrained across different views (hereafter referred as correspondence

geometry)? 2) What is the 3D camera pose (i.e., location and rotation) associated with each

view (hereafter referred as motion)? 3) What is the 3D position of a point observed in different

views (hereafter referred as structure)?

In multiple-view geometry, each of the views is associated with a projection matrix P that

contains extrinsic (i.e., camera pose) and intrinsic (e.g., focal length) parameters of the camera.

This matrix can project a 3D point X to the corresponding image as x = PX. The same point

can be projected to another image view using the camera matrix P′ as x′ = P′X′. In these

two views, x and x′ are termed correspondences, as they are points in two view images that

correspond to the same 3D point X. This is used in a classical pipeline for 3D reconstruc-

tion from multiple-view geometry, whereby the point correspondences are identified from

images and used to generate both motion (i.e., camera poses) and structure (i.e., 3D point

clouds) (140). To generate 3D SfM models, various software have been developed over the last

years, including MESHROOM(120), an open source photogrammetry library that we use in our

pipeline. Figure 7.4 presents examples of point clouds generated using MESHROOM.

7.3.2 2D Feature detection, description, and 3D point matching

As mentioned previously, multiple-view geometry solves for three interrelated aspects: cor-

respondence geometry, motion, and structure (116). The structure is formed in 3D space by
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triangulating the information related to the correspondences between views. This triangu-

lation is performed with the motion. With this in mind, the starting point of multiple-view

geometry is the identification of correspondences between images from two views. These cor-

respondences are two points x and x′ in the two image views that correspond to the same 3D

point X. To find the correspondences in two views, it is necessary to detect features (keypoints)

that would possibly form a correspondence. One common solution here is to use points in the

images where the intensity gradient of the pixels is high (127), which can be done using various

methodologies developed for this purpose based on differentiation, learning, or a gradient

(e.g., (234; 235; 121). To form correspondences, each keypoint is described using descriptor

vectors, and descriptor vectors of keypoints are compared between two image views. When

descriptor vectors meet certain criteria of similarity, it signals a correspondence between a

pair of keypoints (e.g., (235; 236; 237; 238; 239)).

Each model of the stone Si , of the layer L j , and of the wall W generated with SfM contains

information about 2D image feature points x (Figs. 7.5a and 7.6a) and their associated 3D

point X (Figs. 7.5b and 7.6b). Our methodology uses those 2D features and their descriptions

between the source sr c and the destination d st model to find 3D correspondences (Xsr c ,Xd st ).

Figures 7.5 and 7.6 illustrate how 3D correspondences can be found by directly employing

the information provided by the SfM framework. In these two examples, the sr c (stone model

Si for Fig. 7.5 and layer model L j for 7.6) and d st models (layer model L j for Fig. 7.5 and

wall model W for 7.6) are presented together with one of the image views used to generate

the 3D point clouds. The red points xvi ew (Figs. 7.5a and 7.6a) correspond to the fraction

of the 3D point cloud Xvi ew (Figs. 7.5b and 7.6b) that was contributed by the image view

during the reconstruction of the 3D model X. Then, for the sr c and d st models, we have

2D-3D correspondences (xsr c ,Xsr c ) and (xd st ,Xd st ), respectively. As the image related to the

sr c model contains an object that also is present in the image related to the d st model, some

of the sr c features (xsr c ) should correspond to d st features (xd st ). To find the (xsr c ,xd st )

correspondences, we followed the matching process of 2D features described by Lowe (121),

which computes Euclidean distances between feature descriptors for xsr c and xd st . Then,

matched features (correspondences) are defined as those with the smallest value for this

distance. According to Lowe (121), one feature point of the source model k (xk sr c ) corresponds

with a feature point of the destination model m (xm d st ) when the distance between their

descriptors is equal to the minimum distance and is less than 75% of the second smallest

distance between the descriptors of point k and all point descriptors in the destination model.

The colored points in Figs. 7.5c and 7.6c link the correspondences (xsr c ,xd st ) between the

reference images of the sr c and d st models. As a result of this and our knowledge of the

2D-3D correspondences (xsr c ,Xsr c ) and (xd st ,Xd st ), matching the 2D features allows us to find

3D correspondences (Xsr c ,Xd st ) between models. These correspondences will facilitate the

registration between the src and dst models through a matrix that transforms Xsr c into Xd st

using the non-linear least squares algorithm. It is noted that outliers in the correspondences

(matched points that do not actually represent the same point in the 3D model) can affect the

results. To avoid this, we used the RANSAC algorithm, explained in the next sections, together
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with the non-linear least squares algorithm.

(a) (b) (c)

Figure 7.5: Feature matching between the reference images for the stone and layer models.
Top row: source (sr c) model. Bottom row: destination (d st) model. a) Keypoint features
detected on the reference image that are part of the point cloud structure. b) Parts of the point
cloud structure that were detected on the reference images. c) Matched keypoints between
the sr c and d st models.

(a) (b) (c)

Figure 7.6: Feature matching between the reference images for the stone and layer models.
Top row: sr c model. Bottom row: d st model. a) Keypoint features detected on the reference
image that are part of the point cloud structure. b) Parts of the point cloud structure that were
detected on the reference images. c) Matched keypoints between the sr c and d st models.

7.3.3 Non-linear least squares algorithm

The non-linear least squares algorithm fits data to a nonlinear model by optimizing a loss

function (81). To do this, m parameters β= [β1, . . . ,βm] of a model f (x;β) are found with the

goal of minimizing the mean squared error (MSE) that represents the loss function L(x;β) as:

L(β) = 1

2

N∑
1

r 2
i (β), (7.1)
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where ri (β) = f (xi ;β)− yi is defined as the residual function at N discrete points xi in the

domain, where yi is the observed data that corresponds to xi . Formally, the optimization is

defined as:

βopt = argmin
β

L(β), (7.2)

in which the objective is to find the set of optimal parameters βopt that minimize L(β). We

solve Eq. (7.2) through the Gauss-Newton method in which the optimal set of parameters βopt

is found through changes in the β variables following the direction determined by the step

∆β, which is obtained iteratively as:

βn+1 =βn −γ∆β, (7.3)

for the iteration n +1 with γ as the learning rate controlling the step size, and the step ∆β is

given by:

∆β= H[L(β)]−1∇L(β), (7.4)

with H[L(β)] and ∇L(β) representing the Hessian and the gradient of the loss function, respec-

tively. For a detailed description, refer to Betts et al. (82).

7.3.4 Solving for point cloud registration

Here we solve the 3D point-set registration problem by transforming one set of points (Xsr c )

from a source 3D model (sr c) to fit over another set of points (Xd st ) from a destination 3D

model (d st ). The sets of points Xsr c and Xd st are correspondences matched using 2D image

features, as described previously. The sr c and d st models are represented, respectively, by the

sets of points Xsr c = [X (sr c)
0 , . . . , X (sr c)

N ] and Xd st = [X (d st )
0 , . . . , X (d st )

n ] in R3 space.

Because the 3D reconstruction provided by SfM is up to scale (i.e., the dimensions of the

models are proportional to the real dimensions unless metric information is given in post

processing), the transformation necessary to register the sr c to the d st model consists of a

similarity transformation. In this, the 3D model is assumed to have seven degrees-of-freedom

(DOF), three associated translations in perpendicular directions t = (tx , ty , tz )T , three rotations

associated with Euler angles θ = (θx ,θy ,θz )T , and one related to scaling s. As the rotation can

be represented by a 3x3 matrix that is a function of the rotation angles R(θ), the objective is to

find the parameters β= [t,θ, s] to transform the sr c point cloud Xsr c into X′
sr c , such that the

Euclidean distance is minimized between the transformed point cloud X′
sr c and a d st point

cloud Xd st . X′
sr c in homogeneous coordinates is given by:

X′
sr c = T(R,t, s)Xsr c , (7.5)

where T(R,t, s) is the 4x4 similarity transformation matrix defined as
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T(R,t, s) =
[

sR t

0 1

]
. (7.6)

It follows that the residual to be optimized is:

r (β) =
[

sR t

0 1

]
Xsr c −Xd st . (7.7)

The transformation matrix T that determines the registration of the sr c to the d st model is

found using the nonlinear least squares method. Figure 7.7a shows the results after applying

the transformation defined by the optimal parameters of the transformation matrix T to Xsr c .

Here, the sr c and d st models correspond to 3D point clouds of a single stone Si and a wall

layer L j , respectively. The results of Fig. 7.7b can be obtained by applying the same algorithms

while considering the sr c model as the wall layer L j and the d st model as the final wall W .

Then, combining the transformation matrices of the stone-layer (TSi L j ) and layer-stone (TL j W ),

a transformation matrix can be found to register the stone at its corresponding position in the

wall as: TSi W = TL j W TSi L j . Figure 7.7c shows the results of the registration of a stone model

into the final wall layer.

TSLSi TLWLj TLWTSLSi

(a) (b) (c)

Figure 7.7: Registration of sr c to d st 3D point cloud models. a) sr c: Stone Si , d st : Layer L j .
b) sr c: Layer L j , d st : Wall W . c) Registration of stone Si on the wall W by combining the
transformation matrices resulting from a) and b).

7.3.5 RANSAC to avoid outlier influence

The 3D point correspondences (Xsr c ,Xd st ) can contain a number of outliers (mismatch be-

tween sr c and d st model features; check Figs. 7.5c and 7.6c) because the detection, descrip-

tion, and matching of 2D features are not deterministic procedures. To make the algorithm

robust against possible outliers, we use random sample consensus (RANSAC) presented by

Fischler et al. (240), which is a simple yet robust methodology that fits models to experimental

data while avoiding the consideration of outliers. In essence, the method starts by finding an

initial model with the minimum quantity of necessary data n (e.g., if the model is a 2D line,

find a model for two points). This data is randomly selected. By establishing a threshold t

for a defined error from this model, inliers and outliers can be detected (e.g., the distances
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from the rest of data to the proposed line). Performed over a previously defined number of

iterations k, the generated model is scored based on the quantity of inliers d , and then another

minimum data set is selected, a new model is proposed, and a new score is given. The largest

score dictates which model is selected (here we score based on the mean error of the inliers).

Overall, this procedure renders the methodology suitable for the analysis and interpretation

of error-prone data, which is common in computer vision problems. For more details please

refer to the original paper wherein Fischler et al. also show a numerical analysis evidencing

the robustness of the method (240).

Here, RANSAC is used to find the transformation matrix T that allows the registration of a sr c

into a d st model. The RANSAC hyper-parameters we used to obtain a satisfactory performance

in our experiments were n = 4, k = 300, t = 0.1l (l : mean of distances among points in Xd st )

and d = 0.2w (w : number of 3D correspondences).

7.3.6 Automatic selection of reference images

Our methodology can automatically select the reference images for the sr c and d st models

used to find the 2D features required for the registration process. To accomplish this, we

detect, describe, and match point features between the batch of available images of the sr c

and d st models. We consider the reference images to be the pair (one from sr c and one from

d st ) with the greatest number of matches. Although this automation works without difficulty,

we have enabled an option wherein the user inputs these reference images for faster results,

and we plan to speed up the automatic selection of the reference images in the future by

implementing parallel programming.

7.3.7 Adding extra views

Our registration algorithm uses two reference images: one from the sr c model and one from

the d st model. The features in those images, which were detected and used to generate the

SfM model, were then re-used to find 3D point correspondences (Xsr c ,Xd st ). In case it is

required (e.g., there are not enough keypoint correspondences between the initial reference

images), we have enabled the use of extra images for the sr c model. As extra images, we

selected the m (defined by user) extra images that contain the most matched features when

compared to the reference image. For this, we again used information gathered from the SfM

framework, this time referencing the image matching performed using 2D features. Similarly

to the initial reference image, the features from those extra images that were used to generate

the 3D point cloud were also used to find extra 3D point correspondences following the

procedure explained in previous paragraphs.
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7.3.8 Adding extra features

The input for our algorithm comes from the SfM pipeline. During the SfM computation it

is possible to select from various types of point features to be detected and used during the

reconstruction process. To increase the number of correspondences (Xsr c ,Xd st ), our method

allows the use of extra keypoint features and descriptors in addition to those of the original

SfM framework, specifically SIFT (121), AKAZE(238), ORB (241), FAST (242), and BRIEF (243).

The use of these additional features functions as the rest of the algorithm, wherein we detect,

describe, and match new keypoints in the sr c and d st reference images to find 2D image

correspondences (xsr cnew ,xd stnew ). Then, these new point correspondences are associated

with the 2D features used to generate the 3D point cloud model by SfM to produce extra 3D

correspondences (Xsr c ,Xd st ) as follows:

1. Find the pixel distances between new feature correspondences and the features used to

generate the 3D point cloud in SfM (||xsr c −xsr cnew || and ||xd st −xd stnew ||);

2. If the distance from the previous step is lower than one pixel, the 3D points associated

with xsr c and xd st form a correspondence [i.e., (Xsr cnew ,Xd stnew )];

3. From (Xsr cnew ,Xd stnew ), select as extra correspondences (Xsr cextr a ,Xd stext a ) those that have

not been accounted for in the correspondences (Xsr c ,Xd st ).

These extra 3D correspondences can be concatenated to the initial (Xsr c ,Xd st ) and then used

during the optimization process to find the transformation matrix T that allows the registration

of sr c to d st point cloud models. The higher the number of 3D correspondences, the better

the accuracy and robustness of our algorithm.

7.3.9 Digital twins

The objective of our methodology is to create faithful 3D representations of stone masonry

elements that reach a level of detail of single stones. To reach the registration results presented

in Fig. 7.8b, the algorithm described in the previous steps is applied to each stone of the

masonry elements. Taking this even further, obtaining results such as those presented in the

Figs. 7.8c, d requires that the SfM motion models be augmented to generate dense meshes,

which can be done through multiple-view stereopsis. The transformations applied to the

point cloud models for each stone component can be applied to meshes and textured meshes

to reach this final image. The DTs represented in Figs. 7.8c,d constitute our final result, and

they are capable of generating the geometry for numerical analysis, such as finite element

analysis (FEA) or discrete element analysis (DEA).
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(a) (b)

(c)
(d)

Figure 7.8: Digital twinning methodology example: (a) Image view of wall model W . (b) Point
clouds of stone models Si registered on the wall model W . (c) Digital twin represented as
mesh. (d) Digital twin represented as textured mesh.

7.3.10 Image acquisition device

As it can be laborious to collect the necessary images to generate 3D stone models through

SfM and as the input images affect the quality of reconstructions, we propose an imaging

device to simplify and standardize image acquisition (Fig. 7.9). This device consists of a curved

robotic arm that rotates around the target object to be reconstructed and takes photos from

its five synchronized cameras hung at strategical locations. The camera positions and arm

rotation during the image acquisition are selected to guarantee 60–80% overlap between

consecutive images, as recommended by Snavely et al. (141)), which can increase the quality

of reconstructions. With this device facilitating image collection for the single stone models as

a first step, we plan to continue aiming for total automation in data acquisition by developing

further tools, including for full stone masonry elements during construction.

7.3.11 Metrics

No metrics currently exist for evaluating automated DT generation using photogrammetry.

Therefore, we propose a metric to evaluate reconstruction performance by correlating a

generated model with the 3D point cloud or mesh ground truths.
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Figure 7.9: Image acquisition device to collect data from objects to be registered.

Distance of model fidelity (DMF)

Our metric is inspired by the inliers of model fidelity (IMF) metric proposed by Pantoja-

Rosero et al. (26), which evaluates the reconstruction of level-of-detail (LOD) models using

point clouds by measuring how well the polygonal surface model fits the point cloud. IMF

measures the distance from a point (of the ground truth) to the nearest plane (of the assessed

model), considering only those inliers that are closer than a defined threshold. The IMF metric

score is considered to be the mean distance of a number of inliers.

Our modified version, hereafter called the distance of model fidelity (DMF), differentiates

from IMF in two main ways. First, the model to be assessed is the representation of the DT

as a point cloud, and the ground truth can be represented as either mesh or point clouds.

Second, instead of considering the quantity of inliers for the score, we compute the mean of

the distances of the full model 3D points to the ground truth planes or points.

Thus, the DMF metric can be calculated from the set of points P that represent the DT, where

for each point p ∈ P , we compute its distance to the nearest plane π in the set of planes Π

comprising the mesh ground truth,

dp = min
π∈Π

(|πTp|2)2. (7.8)

We then define our DMF metric as the average distance from the points to their closest plane,

DMF = 1

|P |
∑

p∈P
dp . (7.9)

Note that if the ground truth is given as a point cloud, dp in Eq. 7.8 is the distance between the

point p ∈ P to the closest point of the ground truth model pg t ∈ Pg t as follows:

dp = min
pg t∈Pg t

∥pg t −p∥2. (7.10)
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In an ideal scenario, where the ground truth and digital twin model perfectly overlap, the DMF

score would be zero. When using the score to benchmark methodologies, keep in mind that

lower DMF values indicate better performance.

7.4 Experiments

In this section, we present three examples of the generation of a GDT using our methodology.

The first example validates our algorithm using synthetic image data from a known 3D textured-

mesh dry stone wall model. The second and third examples use image data from life-sized

dry-stone and stone-mortar stacks, which comprise typical stone masonry elements. With

these two examples, we demonstrate the viability of the proposed pipeline for generating

GDTs of stone masonry walls at infrastructure-level scales.

7.4.1 Validation: Synthetic dry-stone element

In this example, we validated our method for generating a GDT of a 3D textured model.

This model is of a dry-stone stack composed of 27 stones in three layers. The synthetic

image data was generated according to the indications of our methodology for simulating

the construction process in models for stone Si , layer L j , and wall W . For this, we used the

open-source computer graphics software tool-set . Images for the different models rendered

in this software and used in our methodology are shown in the Fig.7.10a. Using the optimal

transformation matrix found by our method, Fig.7.10b shows the registered point clouds

generated for how a stone is registered to its respective layer, the registration of the first and

second layer to the wall model, and finally the registration of all the stones to the final wall.

The results for the DT model are presented in Fig.7.10c. Fig.7.10c0 shows the d st textured

mesh that contains just external information, and Figs.7.10c1–c3 show the registered stone

models as textured mesh at their corresponding position in the final model for the three layers

of the masonry element.

Using our DMF metric, this model scored DMF = 1.05mm. This metric represents the mean

offset between all of the GDT components and the ground truth. To evaluate the accuracy

of this metric, consider that the approximate dimensions of the studied wall are 600mm ×
400mm ×250mm and its bounding box diagonal dimension is dw = 763mm. Similarly, the

average of the largest dimension of the bounding box of the stones used in the model is

ds = 20.5mm. With these values in mind, our presented DMF score corresponds to 0.13%

and 5.12% of the largest dimension of the wall and stones, respectively, indicating that our

methodology is surprisingly accurate.

It is important to note that we first need to scale both the ground truth and DT models to

real measurements and then align them through a traditional RANSAC global registration

and an iterative closest point (ICP) algorithm that is based on 3D point clouds (244). This of

course includes errors in the DMF score that are not related to our method, indicating that
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the method itself is likely even more accurate than reported through the metric.

(a0) (a1) (a2) (a3)

(b0) (b1) (b2) (b3)

(c0) (c1) (c2) (c3)

Figure 7.10: Generation of a GDT using synthetic image data of a dry-stone element. (a)
Examples of the generated synthetic images used as input in the SfM algorithm. (b) sr c SfM
models registered on d st SfM models; (b0) Stone model registered on respective layer model;
(b1 - b2) Layer models registered on wall model; (b3) All the stone models registered on the wall
model. (c) DT results; (c0) d st textured wall model containing only external information; (c1 -
c3) DT containing both external and internal information of each stone component placed at
their final position.

7.4.2 Dry Stone and mortar-stone stacks

Representing parts of typical stone masonry elements, we next constructed dry-stone and

stone-mortar stacks layer by layer using 27 and 25 irregular stones, respectively. Figs. 7.11a

and 7.12a present images taken from an individual stone and the wall construction process for

the two stacks. Figs. 7.11b and 7.12b present the registered sr c on the d st point cloud models.

Finally, Figs. 7.11c and 7.12c present the DTs for the two cases. As the configuration of the

elements produced herein constitute the common practices when building stone masonry

structures, these results demonstrate the robustness of our methodology and the possibility of

scaling this method to complete structures. Similar models were generated using a pipeline

based on laser scanning and registration of point clouds with manual intervention. The

results reported by the authors in their work indicated that the average time for a stone to be

registered on a wall was five minutes. Our algorithm takes an average of 20s to register each

stone to the final GDT, quantitatively demonstrating the increased efficiency of our method

167



Chapter 7. Geometrical digital twins for stone masonry elements

compared to the state of the art.

(a0) (a1) (a2) (a3)

(b0) (b1) (b2) (b3)

(c0) (c1) (c2) (c3)

Figure 7.11: GDT for a dry-stone element. (a) Images used as input in the SfM algorithm. (b)
sr c SfM models registered on d st SfM models; (c0) Stone model registered on respective layer
model; (c1 - c2) Layer models registered on wall model; (c3) All the stone models registered
on the wall model. (c) DT results; (c0) d st textured wall model containing only outside
information; (c1 - c3) DT displaying internal information of each stone component placed at
its final position.

7.5 Conclusions

We present an image-based methodology to generate GDTs for stone masonry elements. Our

research focuses on the generation of GDTs of laboratory-built stone masonry specimens.

Using an exact geometric representation of the as-built microstructure of the wall permits

a proper validation and comparison of numerical and experimental results, which can lead

to an increased understanding of the behavior of existing stone masonry structures. For our

approach, we assume that the construction process of these walls can be recorded by RGB

images that are taken of the individual stones before the construction of the wall and from

images taken during the construction of the wall.

To generate these 3D models, we rely on the information required for and produced by

photogrammetry pipelines. Our method uses 2D features from reference images automatically

selected from the SfM dataset to register 3D DT models detailed to the level of single stones.

The efficient manner in which this is performed substantially decreases the time required for
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(a0) (a1) (a2) (a3)

(b0) (b1) (b2) (b3)

(c0) (c1) (c2) (c3)

Figure 7.12: GDT for a stone-mortar element. (a) Images used as input in the SfM algorithm. (b)
sr c SfM models registered on d st SfM models; (c0) Stone model registered on respective layer
model; (c1 - c2) Layer models registered on wall model; (c3) All the stone models registered
on the wall model. (c) DT results; (c0) d st textured wall model containing only outside
information; (c1 - c3) DT displaying internal information of each stone component placed at
its final position.

manual user interaction in comparison to current techniques that register 3D models from

points generated from laser scanning. In this way, we avoid the use of more complex and

expensive devices such as LiDAR, enabling the use of simple imaging devices to generate a

faithful GDT.

Although our methodology is presented for stone-masonry elements that undergo testing in

experimental campaigns, properly acquired images during the construction process could be

used to generate GDTs for entire new-built masonry structures, such as buildings or bridges.

This might be computationally expensive using current technology and personal computers,

but the continuous development of computational tools and processors will also remove this

obstacle in the near future. Along the same lines, the use of the proposed pipeline in real

engineering applications will first need to address the issue of efficient data compression and

storage.

Even though our examples presented here consisted only of stone masonry materials, our

algorithm can easily be adapted and used for structures composed of other materials, such as

precast concrete and timber elements. Furthermore, we believe that the presented pipeline
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can be a valuable tool within a circular construction industry to improve the reuse of residual

materials coming from demolition of structures. In particular, our algorithm can generate

the geometry of elements built with demolition materials, enabling structural analysis and

optimization of the microstructure of the new masonry.

The accuracy of DT generation depends on the quality of the acquired images and the texture

of the elements. The first point can be easily controlled following SfM lineaments (i.e., camera

positioning and overlap/redundancy among images), using high quality imaging devices, and

controlling light and background. For the second point, the number of detected features on

the images drops if the elements are texture-less (intensity of pixels almost constant along

the object) and might be not sufficient to generate 3D models and register the source to

destination models. Contrary to stones, which have the appropriate texture to work well with

our method, steel elements with uniform painting are an example of texture-less elements

that might not produce satisfactory results with our method. Nevertheless, it would be still

possibly to produce DTs with the presented method by adding aleatory texture effects through

painting before the image acquisition.

For future studies, we plan to enhance the presented pipeline across four main fronts. First,

the image acquisition process should be automated to reduce the collection time. For this, we

are designing protocols/manuals for users to follow during data collection and are designing

imaging devices, such as the one presented in section 7.3. The second front relates directly to

the algorithm, which should be adapted to the protocols/manuals and devices proposed in the

first front. In addition, further development in terms of automation needs to be considered,

including parallel computing for the optimal selection of reference images (to perform the 3D

correspondences matching based on 2D features) and the optimal selection and detection of

models to be registered (i.e., automatically select which stone should be registered in which

layer from batches of stone and wall-layer models). Accuracy is also an obvious aspect to

improve, which we plan to do by implementing and testing various optimization algorithms in

our methodology with the aim of improving the registration. The third front to be considered

is the use of the generated models for mechanical analysis. Specifically, we would like to

evaluate our algorithm to generate DTs for laboratory specimens and then perform numerical

analyses using our produced geometry to assess and validate experimental results. Finally,

we consider that further research is needed for the use of our algorithm in real engineering

applications, especially on efficient compression of the data used for the generation and the

resultant data after employing our methodology as well as the use and storage of the GDT.
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8.1 Conclusions

Current practice for post-earthquake damage assessment is time-consuming, subjective and

difficult to document. At the same time, stone masonry buildings are amongst the most

vulnerable structures to earthquake activities. Therefore, the use of new technologies such

as those offered by computer vision and machine learning are necessary to automatize the

damage assessment of this type of structures rendering in quick inspections, objective and

efficient means for documentation.

This work presented the development of a number of components intended to contribute

towards the automated post-earthquake damage assessment of stone masonry buildings.

Together, these components create an end-to-end pipeline that enables the automatic gener-

ation of 3D models that includes simplified polygonal surface models, damage augmented

digital twins and finite element models at the building and micro scales. Combining computer

vision, machine learning, and physics-based models, this study demonstrates the viability of

developing novel inspection methods for buildings and infrastructure using computer vision,

machine learning, and physical models. We believe this work will have a substantial impact

on the research and practice of civil engineering, particularly in the field of structural health

monitoring.

Following is a list that summarizes the specific conclusions reached following the completion

of each component of this research:

8.1.1 Crack segmentation

• Crack topology must be accurately represented in order to assess the mechanical prop-

erties of cracked structures. The widely used U-Net-like architectures in the literature

are accurate at segmenting cracks, but they do not preserve their topology.

• We proposed the use of TOPO-loss for the semantic segmentation of cracks. The TOPO-
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loss function can be used to enhance the performance of U-Net in order to maintain the

continuity of cracks during segmentation tasks. This was confirmed by qualitative and

quantitative results.

• TOPO-loss enables the omission of accurate labels, greatly reducing the time necessary

for the annotation process, a known limitation of supervised deep learning techniques.

• Deep neural networks trained with a combination of TOPO and MSE generate convinc-

ing results when applied to photos of damaged structures within the context of urban

scenes.

8.1.2 Crack kinematics

• A novel method was proposed for determining the propagation of cracks in structural

elements due to unknown forces (crack kinematics) using binary images obtained by

semantically segmenting a crack from an image of a crack pattern as inputs.

• The method was validated using synthetic data based on lines and real crack contours,

where pre-defined rotation and translation were used to generate crack patterns, ob-

taining a mean absolute error of less than a pixel.

• Monte Carlo simulations were used to demonstrate the stability of the method as well

as to guide the selection of hyper-parameters.

• Validation and test experiments demonstrated that the developed method has the

potential to infer the crack kinematics from spatial features (2D edge coordinates)

extracted from an input binary image.

8.1.3 LOD3 models

• A framework for the automated reconstruction of masonry buildings as LOD3 models

was presented that overcomes the main shortcomings of the state-of-the-art, such as

the requirement for complex data as input, a need for pre-defined shapes, and a lack of

semantics in the composition of the final 3D model.

• Accurate results were obtained with sparse point cloud and deep learning models trained

with a dataset of only 270 images demonstrating the power of our approach.

• The method encourages additional study in fields such as construction management,

urban planning, and structural analysis, among others.

8.1.4 Damage augmented digital twins (DADTs) of buildings

• An end-to-end pipeline for automatically generating DADTs of freestanding buildings

was proposed. It comprised 3D simplified models and cracks with the purpose of
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enhancing the current practice of visual building inspection, which is time-consuming,

subjective, costly, and difficult to document.

• Unlike current methods that utilize DTs of buildings for structural health monitoring,

the pipeline does not require manual user intervention, produces a lightweight model

that is ideal for storage and rapid assessments, facilitates the addition of information

from image data, is applicable to multiple assets, and is adaptable to other types of

infrastructure.

• Experiments highlighted the efficacy and robustness of our technology, as well as its

wider applicability, and highlighted areas where additional work is necessary to improve

the existing status.

• It is anticipated that automated DT approaches will become the norm for infrastructure

inspection activities in order to decrease time, effort, and expense while increasing

safety.

8.1.5 Finite element models for buildings

• An end-to-end framework was set up that only requires multiple-view images as input

and automatically generates finite element meshes of facade walls for solid-element

models and EFMs aiming to contribute to the numerical modeling of historical masonry

buildings.

• Discretization of a facade into an EFM is still a subjective procedure requiring the skill

of experienced engineers in numerical modeling of masonry structures.

• The algorithms were created to facilitate this procedure by encapsulating the general

engineering concepts into an initial generic model that the user can modify.

• The results of our experiments were evaluated by four professional engineers using two

specified metrics whose results were deemed satisfactory, encouraging us to continue

developing our work.

8.1.6 Geometric digital twins (GDTs) of stone masonry elements

• An image-based methodology to generate GDTs for stone masonry elements was pro-

posed focusing on the generation of models for laboratory-built stone masonry speci-

mens.

• Using an exact geometric description of the as-built microstructure of the wall allows for

the proper validation and comparison of numerical and experimental data, which can

lead to a greater understanding of the behavior of existing stone masonry structures.
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• The method was validated through the use of synthetic models, which yielded a mean

reconstruction error accuracy of 1.05mm.

8.2 Future work

This work is a portion of the full vision that aims to develop an end-to-end pipeline for

automated post-earthquake damage assessment that incorporates findings of experimental

and numerical research conducted over the past few years at various scales regarding stone

masonry structures. In general the components that still need to be developed to fulfil that

vision are:

• Micro-modeling simulation to validate experimental campaigns allowing a better under-

standing of the behaviour of stone masonry elements. This includes the development of

constitutive models that represent properly the mechanical behaviour under different

types of loads.

• Correlation between the damage (detected and characterized using images) and the

mechanical properties of elements in the numerical models.

• Numerical simulations under various load conditions considering damage and undam-

aged status of the buildings.

• Uncertainty analysis for the various stages of the envisaged pipeline including genera-

tion of the 3D models, damage segmentation, and numerical modeling.

Although this study is focused on free-standing stone masonry buildings, the quality of the re-

sult obtained show the feasibility of adapting these methodologies to other types of structures

including bridges, damns or tunnels. This research includes all the components required for

an automatic pipeline for building rapid damage inspection, however, the real application

for post-earthquake damage assessment requires real-time of near real-time performance.

With this, an inspector acquires image data and almost instantaneously generates models

for proper documentation (DADTs) and for numerical analysis (FEM) that can be stored in a

cloud system. These models can be used by experts for remote building evaluation, damage

comparison with possible aftershocks, computational simulations, and insurance claims

owing to damage.

We provide a list of possible research topics that we believe can be conducted to expand upon

the research presented here:

8.2.1 Damage detection and characterization

• Implement deep learning methodologies to segment other types of damages including

spalling, out-of-plane deformations, rebar exposure, and rusting.
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8.2 Future work

• Combine damage segmentation with semantic segmentation of urban scenes to increase

performance when detecting damages on the wild.

• Implement extra methodologies to characterize damage features that can be corre-

lated to mechanical properties of material such as crack length, spalling area, angle of

inclination of out-of-plane deformations.

• Use of stereo images to determine motion in 3D space to identify crack displacements

in Mode III.

• Improvements in crack kinematics algorithm including automatic calibration of hyper-

parameters, addition of extra features to describe cracks and therefore improve registra-

tion, and incorporation of original RGB images as input data.

8.2.2 Digital twins of buildings

• Increase the level of detail LOD and DADT models to contain indoors information

(e.g., interior walls, roof configuration, non-structural elements), exterior information

(e.g., balconies, chimneys) and extra damage information (e.g., spalling, out-of-plane

deformations, rebar exposure, and rusting).

• Use input data from other devices such as Li-DAR or laser scanners and implement

necessary algorithms to incorporate to the current framework.

• Improve the performance of the methodology by augmenting the data set used to

train the deep learning models to segment the building components and implement

pre-processing algorithms that automatically clean noisy point clouds.

• Develop the framework to perform in real-time or near-real-time applications.

8.2.3 Finite element models for buildings

• Adapt the algorithms to be used with building that do not follow Manhattan world

configurations.

• Include further considerations during the generation of the macro-element geometries

such as inclusion of gable elements, roof and floors configurations and variable pier

lengths.

• Develop the algorithms to include indoors information from which we can retrieve wall

thicknesses, interior wall geometries, and spanning directions of timber slabs.

• Perform numerical simulations with the generated finite element models for assess-

ing the response of undamaged and damaged buildings after earthquakes for several

aftershock scenarios, including uncertainty analyses.
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Chapter 8. Conclusions and future work

8.2.4 Digital twins of stone masonry elements

• Improve the performance of the algorithm by implementing paralleling computing in

different stages of the pipeline including simultaneous registration of various individual

stones to the wall layers.

• Address issues related to efficient data compression and storage of the current frame-

work status and test it by generating GDTs for entire new-built masonry structures, such

as buildings or bridges using images during the construction process.

• Use of the generated models for mechanical analysis. Specifically, test the algorithm to

generate GDTs of laboratory specimens to assess and validate experimental results.

• Adapt the methodology to generate GDTs for structures made of other materials includ-

ing precast concrete and timber elements.

• Design image acquisition system to reduce time during the collection of image data.

• Use the GDT pipeline in the context of circular construction industry to improve the

reuse of residual materials coming from demolition of structures. In particular, our algo-

rithm can generate the geometry of elements built with demolition materials, enabling

structural analysis and optimization of the micro-structure of the new masonry.

This research might mark the beginning of a revolution in the use of artificial intelligence

technology to aid engineers in assessing structural damage. We anticipate the development of

new technologies that will significantly contribute to structural health monitoring as a result

of our work in this field.
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