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Abstract: We study the performance of Markov chains for the q-state ferromagnetic
Potts model on random regular graphs. While the cases of the grid and the complete
graph are by now well-understood, the case of random regular graphs has resisted a
detailed analysis and, in fact, even analysing the properties of the Potts distribution has
remained elusive. It is conjectured that the performance of Markov chains is dictated by
metastability phenomena, i.e., the presence of “phases” (clusters) in the sample space
where Markov chains with local update rules, such as the Glauber dynamics, are bound
to take exponential time to escape, and therefore cause slow mixing. The phases that are
believed to drive these metastability phenomena in the case of the Potts model emerge
as local, rather than global, maxima of the so-called Bethe functional, and previous ap-
proaches of analysing these phases based on optimisation arguments fall short of the task.
Our first contribution is to detail the emergence of the two relevant phases for the q-state
Potts model on the d-regular random graph for all integers q, d ≥ 3, and establish that
for an interval of temperatures, delineated by the uniqueness and a broadcasting thresh-
old on the d-regular tree, the two phases coexist (as possible metastable states). The
proofs are based on a conceptual connection between spatial properties and the structure
of the Potts distribution on the random regular graph, rather than complicated moment
calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins
who had established phase coexistence for a small interval around the so-called ordered-
disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based
on our new structural understanding of the model, our second contribution is to obtain
metastability results for two classical Markov chains for the Potts model. We first com-
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plement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below
the uniqueness threshold, by showing an exponential lower bound on the mixing time
above the uniqueness threshold. Then, we obtain tight results even for the non-local and
more elaborate Swendsen–Wang chain, where we establish slow mixing/metastability
for the whole interval of temperatures where the chain is conjectured to mix slowly on
the random regular graph. The key is to bound the conductance of the chains using a
random graph “planting” argument combined with delicate bounds on random-graph
percolation.

1. Introduction

1.1. Motivation. Spin systems on random graphs have turned out to be a source of ex-
tremely challenging problems at the junction ofmathematical physics and combinatorics
[42,43]. Beyond the initial motivation of modelling disordered systems, applications
have sprung up in areas as diverse as computational complexity, coding theory, ma-
chine learning and even screening for infectious diseases; e.g. [1,16,27,41,46,48,49].
Progress has been inspired largely by techniques from statistical physics, which to a
significant extent still await a rigorous justification. The physicists’ sophisticated but
largely heuristic tool is the Belief Propagation message passing scheme in combination
with a functional called the Bethe free energy [40]. Roughly speaking, the fixed points
of Belief Propagation are conjectured to correspond to the ‘pure states’ of the underlying
distribution, with the Bethe functional gauging the relative weight of the different pure
states. Yet at closer inspection matters are actually rather complicated. For instance, the
system typically possesses spurious Belief Propagation fixed points without any actual
combinatorial meaning, while other fixed points need not correspond tometastable states
that attract dynamics such as the Glauber Markov chain [13,17]. Generally, the math-
ematical understanding of the connection between Belief Propagation and dynamics
leaves much to be desired.

In this paper we investigate the ferromagnetic Potts model on the random regular
graph.Recall, for an integerq ≥ 3and realβ > 0, thePottsmodel on agraphG = (V, E)

corresponds to a probability distribution μG,β over all possible configurations [q]V ,
commonly referred to as the Boltzmann/Gibbs distribution; the weight of a configuration
σ in the distribution is defined as μG,β(σ ) = eβHG (σ )/Zβ(G) where HG(σ ) is the
number of edges that are monochromatic under σ , and Zβ(G) = ∑

τ∈[q]V eβHG (τ ) is
the normalising factor of the distribution. In physics jargon, β corresponds to the so-
called inverse-temperature of themodel,HG( · ) is known as theHamiltonian, and Zβ( · )
is the partition function. Note, since β > 0, the Boltzmann distribution assigns greater
weight to configurations σ where many edges join vertices of the same colour; thus, the
pairwise interactions between vertices are ferromagnetic.

The Potts model on the d-regular random graph has two distinctive features. First,
the local geometry of the random regular graph is essentially deterministic. For any
fixed radius �, the depth-� neighbourhood of all but a tiny number of vertices is just a d-
regular tree. Second, the ferromagnetic nature of the model precludes replica symmetry
breaking, a complex type of long-range correlations [40]. Given these, it is conjectured
that the model on the random regular graph has a similar behaviour to that on the clique
(the so-called mean field case), and there has already been some preliminary evidence of
this correspondence [6,22,23,27,33]. On the clique, the phase transitions are driven by
a battle between two subsets of configurations (phases): (i) the paramagnetic/disordered
phase, consisting of configurations where every colour appears roughly equal number
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of times, and (ii) the ferromagnetic/ordered phase, where one of the colours appears
more frequently than the others. It is widely believed that these two phases also mark
(qualitatively) the same type of phase transitions for the Potts model on the random
regular graph, yet this has remained largely elusive.

The main reason that this behaviour is harder to establish on the random regular
graph is that it has a non-trivial global geometry which makes both the analysis of the
distribution and Markov chains significantly more involved (to say the least). In partic-
ular, the emergence of the metastable states in the distribution, which can be established
by way of calculus in the mean-field case, is out of reach with single-handed analyt-
ical approaches in the random regular graph and it is therefore not surprising that it
has resisted a detailed analysis so far. Likewise, the analysis of Markov chains is a far
more complicated task since their evolution needs to be considered in terms of the graph
geometry and therefore much harder to keep track of.

Our main contribution is to detail the emergence of the metastable states, viewed
as fixed points of Belief Propagation on this model, and their connection with the dy-
namic evolution of the two most popular Markov chains, the Glauber dynamics and
the Swensen-Wang chain. We prove that these natural fixed points, whose emergence is
directly connected with the phase transitions of the model, have the combinatorial mean-
ing in terms of both the pure state decomposition of the distribution and the Glauber
dynamics that physics intuition predicts they should. The proofs avoid the complicated
moment calculations and the associated complex optimistion arguments that have be-
come a hallmark of the study of spin systems on random graphs [3]. Instead, building
upon and extending ideas from [5,18], we exploit a connection between spatial mixing
properties on the d-regular tree and the Boltzmann distribution. Our metastability re-
sults for the Potts model significantly refine those appearing in the literature, especially
those in [27,33] which are more relevant to this work, see Sect. 1.6 for a more detailed
discussion.

We expect that this approach might carry over to other examples, particularly other
ferromagnetic models. Let us begin by recapitulating Belief Propagation.

1.2. Belief propagation. Suppose that n, d ≥ 3 are integers such that dn is even and let
G = G(n, d) be the random d-regular graph on the vertex set [n] = {1, . . . , n}. For an
inverse temperature parameter β > 0 and an integer q ≥ 3 we set out to investigate the
Boltzmann distribution μG,β ; let us write σG,β for a configuration drawn from μG,β .

A vital step toward understanding the Boltzmann distribution is to get a good handle
on the partition function Zβ(G). Indeed, according to the physicsts’ cavitymethod,Belief
Propagation actually solves both problems in one fell swoop [40]. To elaborate, with each
edge e = uv of G, Belief Propagation associates two messages μG,β,u→v, μG,β,v→u ,
which are probability distributions on the set [q] of colours. The message μG,β,u→v(c)
is defined as the marginal probability of v receiving colour c in a configuration drawn
from the Potts model on the graph G − u obtained by removing u. The semantics of
μG,β,v→u is analogous.

Under the assumption that the colours of far apart vertices of G are asymptotically
independent, one can heuristically derive a set of equations that links the various mes-
sages together. For a vertex v, let ∂v be the set of neighbours of v, and for an integer
� ≥ 1 let ∂�v be the set of vertices at distance precisely � from v. The Belief Propagation
equations read
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μG,β,v→u(c) =
∏

w∈∂v\{u} 1 + (eβ − 1)μG,β,w→v(c)
∑

χ∈[q]
∏

w∈∂v\{u} 1 + (eβ − 1)μG,β,w→v(χ)
(uv ∈ E(G), c ∈ [q]).

(1.1)

The insight behind (1.1) is that once we remove v from the graph, its neighbours w �= u
are typically far apart from one another because G contains only a negligible number
of short cycles. Hence, we expect that in G − v the spins assigned to w ∈ ∂v\ {u}
are asymptotically independent. From this assumption it is straightforward to derive the
sum-product-formula (1.1).

A few obvious issues spring to mind. First, for large β it is not actually true that
far apart vertices decorrelate. This is because at low temperature there occur q different
ferromagnetic pure states, one for each choice of the dominant colour. To break the
symmetry between them one could introduce a weak external field that slighly boosts a
specific colour or, more bluntly, confine oneself to a conditional distribution on subspace
where a specific colour dominates. In the definitionof themessages and in (1.1)we should
thus replace the Boltzmann distribution by the conditional distribution μG,β( · | S) for
a suitable S ⊆ [q]n . Second, even for the conditional measure we do not actually expect
(1.1) to hold precisely. This is because for any finite n minute correlations between far
apart vertices are bound to remain.

Nonetheless, precise solutions (μv→u)uv∈E(G) to (1.1) are still meaningful. They cor-
respond to stationary points of a functional called the Bethe free energy, which connects
Belief Propagation with the problem of approximating the partition function [52]. Given
a collection (μu→v)uv∈E(G) of probability distributions on [q], the Bethe functional
reads

BG,β

(
(μu→v)uv∈E(G)

) = 1

n

∑

v∈V (G)

log

[ ∑

c∈[q]

∏

w∈∂v

1 + (eβ − 1)μw→v(c)

]

− 1

n

∑

vw∈E(G)

log

[

1 + (eβ − 1)
∑

c∈[q]
μv→w(c)μw→v(c)

]

.

(1.2)
According to the cavity method the maximum of BG,β

(
(μu→v)uv∈E(G)

)
over all solu-

tions (μu→v)uv∈E(G) to (1.1) should be asymptotically equal to log Zβ(G) with high
probability.

In summary, physics lore holds that the solutions (μu→v)uv∈E(G) to (1.1) are mean-
ingful because they correspond to a decomposition of the phase space [q]n into pieces
where long-range correlations are absent. Indeed, these “pure states” are expected to
exhibit metastability, i.e., they trap dynamics such as the Glauber Markov chain for
an exponential amount of time. Moreover, the relative probabilities of the pure states
are expected to be governed by their respective Bethe free energy. In the following we
undertake to investigate these claims rigorously.

Before proceeding, let us mention that ferromagnetic spin systems on random graphs
have been among the first models for which predictions based on the cavity method
could be verified rigorously. Following seminal work by Dembo and Montanari on the
Ising model [21] vindicating the “replica symmetric ansatz”, Dembo et al. [23] studied,
among other things, the Gibbs unique phase of the Potts ferromagnet on the random
regular graph, andDembo,Montanari, Sly and Sun [23] established the free energy of the
model for all β (and d even). More generally, Ruozzi [47] pointed out how graph covers
[51] can be used to investigate the partition function of supermodular models, of which
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the Ising ferromagnet is an example. In addition, Barbier, Chan and Macris [6] proved
that ferromagnetic spin systems on random graphs are generally replica symmetric in
the sense that themulti-overlaps of samples from the Boltzmann distribution concentrate
on deterministic values.

1.3. The ferromagnetic and the paramagnetic states. Anobvious attempt at constructing
solutions to the Belief Propagation equations is to choose identical messages μu→v for
all edges uv ∈ E(G). Clearly, any solution (μ(c))c∈[q] to the system

μ(c) = (1 + (eβ − 1)μ(c))d−1
∑

χ∈[q](1 + (eβ − 1)μ(χ))d−1 (c ∈ [q]) (1.3)

supplies such a ‘constant’ solution to (1.1). LetFd,β be the set of all solutions (μ(c))c∈[q]
to (1.3). The Bethe functional (1.2) then simplifies to

Bd,β

(
(μ(c))c∈[q]

) = log

[ ∑

c∈[q]

(
1 + (eβ − 1)μ(c)

)d
]

− d

2
log

[

1 + (eβ − 1)
∑

c∈[q]
μ(c)2

]

.

(1.4)

One obvious solution to (1.3) is the uniform distribution on [q]; we refer to that
solution as paramagnetic/disordered and denote it by μp. Apart fromμp, other solutions
to (1.3) emerge as β increases for any d ≥ 3. Specifically, let βu > 0 be the supremum
value of β > 0 where μp is the unique solution to (1.3).1 Then, for β = βu , one more

solution μf emerges such that μf(1) > μf(i) = 1−μf (1)
q−1 for i = 2, . . . , q, portending

the emergence of a metastable state and, ultimately, a phase transition. In particular, for
any β > βu , a bit of calculus reveals there exist either one or two distinct solutions μ

with μ(1) > μ(i) = 1−μ(1)
q−1 for i = 2, . . . , q; we denote by μf the solution of (1.3)

which maximises the value μ(1) and refer to it as ferromagnetic/ordered. The value βu
is the so-called uniqueness threshold for the Potts model on the d-regular tree, see, e.g.,
[27] for a more detailed discussion and related pointers.

At the critical value

βp = max
{
β ≥ βu : Bd,β(μp) ≥ Bd,β(μf)

} = log
q − 2

(q − 1)1−2/d − 1
.

the ferromagnetic solutionμf takes over from the paramagnetic solutionμp as the global
maximiser of the Bethe functional. For that reason, the threshold βp is also known in
the literature as the ordered-disordered threshold. Yet, up to the threshold

βh = log(1 + q/(d − 2))

the paramagnetic solution remains a local maximiser of the Bethe free energy; later, in
Sect. 2.3 we will see that βh has a natural interpretation as a tree-broadcasting threshold
(and is also a conjectured threshold for uniqueness in the random-cluster representation
for the Potts model, see [32] for details).

The relevance of these critical values has been demonstrated in [27] (see also [22]
for d even, and [33] for q large), where it was shown that 1

n log Zβ(G) is asymptotically

1 The value does not have a closed-form expression, but there is an equivalent formulation of it given by

the equality eβu = 1 + inf y>1
(y−1)(yd−1+q−1)

yd−1−y
.
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equal tomaxμ Bd,β(μ), themaximum ranging overμ satisfying (1.3). In particular, at the
maximum it holds that μ = μp when β < βp, μ = μf when β > βp and μ ∈ {μp, μf }
when β = βp.

1.4. Slow mixing and metastability. To investigate the two BP solutions further and
obtain connections to the dynamical evolution of themodel, we need to lookmore closely
how these two solutions μp, μf manifest themselves in the random regular graph. To
this end, we define for a given distribution μ on [q] another distribution

νμ(c) = (1 + (eβ − 1)μ(c))d
∑

χ∈[q](1 + (eβ − 1)μ(χ))d
(c ∈ [q]). (1.5)

Let νf = νμf and νp = νμp for brevity; of course νp = μp is just the uniform distribution.
The distributions νf and νp represent the expected Boltzmann marginals within the pure
states corresponding toμf andμp. Indeed, the r.h.s. of (1.5) resembles that of (1.3) except
that the exponents read d rather than d − 1. This means that we pass from messages,
where we omit one specific endpoint of an edge from the graph, to actual marginals,
where all d neighbours of a vertex are present. For small ε > 0, it will therefore be
relevant to consider the sets of configurations

Sf(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣
∣
∣
∣
∣σ−1(c)

∣
∣− nνf(c)

∣
∣
∣ < εn

}

,

Sp(ε) =
{

σ ∈ [q]n :
∑

c∈[q]

∣
∣
∣
∣
∣σ−1(c)

∣
∣− nνp(c)

∣
∣
∣ < εn

}

,

whose colour statistics are about nνf and nνp, respectively; i.e., in Sp, all colours appear
with roughly equal frequency, whereas in Sf colour 1 is favoured over the other q − 1
colours (which appear with roughly equal frequency).

We are now in position to state our main result for Glauber dynamics. Recall that,
for a graph G = (V, E), Glauber is initialised at a configuration σ0 ∈ [q]V ; at each
time step t ≥ 1, Glauber draws a vertex uniformly at random and obtains a new con-
figuration σt by updating the colour of the chosen vertex according to the conditional
Boltzmann distribution given the colours of its neighbours. It is a well-known fact that
Glauber converges in distribution to μG,β ; the mixing time of the chain is defined as the
maximum number of steps t needed to get within total variation distance ≤ 1/4 from
μG,β , where the maximum is over the choice of the initial configuration σ0, i.e., the
quantity maxσ0 min{t : dTV(σt , μG,β) ≤ 1/4}.

For metastability, we will consider Glauber launched from a random configuration
from a subset S ⊆ [q]V of the state space. More precisely, let us denote by μG,β,S =
μG,β(· | S) the conditional Boltzmann distribution on S. We call S a metastable state
for Glauber dynamics on G if there exists δ > 0 such that

P

[
min{t : σt �∈ S} ≤ eδ|V | | σ0 ∼ μG,β,S

]
≤ e−δ|V |.

Hence, it will most likely take Glauber an exponential amount of time to escape from a
metastable state.

Theorem 1.1. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).
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(i) If β < βh, then Sp(ε) is a metastable state for Glauber dynamics on G.
(ii) If β > βu, then Sf(ε) is a metastable state for Glauber dynamics on G.

Further, for β > βu, the mixing time of Glauber is e�(n).

Thus, we can summarise the evolution of the Potts model as follows. For β < βu
there is no ferromagnetic state. As β passes βu , the ferromagnetic state Sf emerges first
as a metastable state. Hence, if we launch Glauber from Sf , the dynamics will most
likely remain trapped in the ferromagnetic state for an exponential amount of time, even
though the Boltzmann weight of the paramagnetic state is exponentially larger (as we
shall see in the next section). At the point βp the ferromagnetic state then takes over as
the one dominating the Boltzmann distribution, but the paramagnetic state remains as
a metastable state up to βh . Note in particular that the two states coexist as metastable
states throughout the interval (βu, βh).

Themetastability for the Pottsmodelmanifests also in the evolution of the Swendsen–
Wang (SW) chain, which is another popular and substantially more elaborate chain that
makes non-local moves, based on the random-cluster representation of the model. For a
graph G = (V, E) and a configuration σ ∈ [q]V , a single iteration of SW starting from
σ consists of two steps.

• Percolation step: Let M = M(σ ) be the random edge-set obtained by adding
(indepentently) each monochromatic edge under σ with probability p = 1 − e−β .

• Recolouring step: Obtain the new σ ′ ∈ [q]V by assigning each component2 of the
graph (V, M) a uniformly random colour from [q]; for v ∈ V , we set σ ′

v to be the
colour assigned to v’s component.

We define metastable states for SW dynamics analogously to above. The following
theorem establishes the analogue of Theorem 1.1 for the non-local SW dynamics. Note
here that SW might change the most-frequent colour due to recolouring step, so the
metastability statement for the ferromagnetic phase needs to consider the set Sf(ε) with
its q − 1 permutations.

Theorem 1.2. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for SW dynamics on G.
(ii) If β > βu, then Sf(ε) together with its q − 1 permutations is a metastable state for

SW dynamics on G.

Further, for β ∈ (βu, βh), the mixing time of SW is e�(n).

1.5. The relative weight of the metastable states. At the heart of obtaining the metasta-
bility results of the previous section is a refined understanding of the relative weight of
the ferromagnetic and paramagnetic states. The following notion of non-reconstruction
will be the key in our arguments; it captures the absence of long-range correlationswithin
a set S ⊆ [q]n , saying that, for any vertex v, a typical boundary configuration on σ ∂�v

chosen according to the conditional distribution on S does not impose a discernible bias
on the colour of v (for large �, n; recall, ∂�v is the set of all vertices at distance precisely

2 Note, isolated vertices count as connected components.
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� from v). More precisely, letμ = μG,β and σ ∼ μ; the Boltzmann distribution exhibits
non-reconstruction given a subset S ⊆ [q]n if for any vertex v it holds that

lim
�→∞ lim sup

n→∞

∑

c∈[q]

∑

τ∈S
E
[
μ(τ | S) × ∣∣μ(σ v = c | σ ∂�v = τ∂�v) − μ(σ v = c | S)

∣
∣
] = 0,

where the expectation is over the choice of the graph G.

Theorem 1.3. Let d, q ≥ 3 be integers and β > 0 be real. The following hold for all
sufficiently small ε > 0 as n → ∞.

(i) For all β < βp, E
[
μG,β(Sp)

] → 1 and, if β > βu, then E
[ 1
n logμG,β(Sf)

] →
Bd,β(μf) − Bd,β(μp).

(ii) For all β > βp, E
[
μG,β(Sf)

] → 1/q and, if β < βh, then E
[ 1
n logμG,β(Sp)

] →
Bd,β(μp) − Bd,β(μf).

Furthermore, the Boltzmann distribution given Sp exhibits non-reconstruction if β < βh
and the Boltzmann distribution given Sf exhibits non-reconstruction if β > βu.

Theorem 1.3 shows that for β < βp the Boltzmann distribution is dominated by the
paramagnetic state Sp for β < βp. Nonetheless, at βu the ferromagnetic state Sf and its
q − 1 mirror images start to emerge. Their probability mass is determined by the Bethe
free energy evaluated at μf . Further, as β passes βp the ferromagnetic state takes over
as the dominant state, with the paramagnetic state lingering on as a sub-dominant state
up to βh . Finally, both states Sp and Sf are free from long-range correlations both for
the regime of β where they dominate and for those β where they are sub-dominant.

1.6. Discussion. Our slow mixing result for Glauber dynamics when β > βu (Theo-
rem1.1) significantly improves uponprevious results ofBordewich et al. [11] that applied
to β > βu + �q(1). Similarly, our slow mixing result for Swendsen–Wang dynamics
when β ∈ (βu, βh) (Theorem 1.2) strengthens earlier results of Galanis et al. [27] which
applied to β = βp, and by Helmuth et al. [33] which applied for a small interval around
βp; both results applied only for q sufficiently large. To obtain our result for all integers
q, d ≥ 3, we need to carefully track how SW evolves on the random regular graph for
configurations starting from the ferromagnetic and paramagnetic phases, by accounting
for the percolation step via delicate arguments, whereas the approaches of [27,33] side-
stepped this analysis by considering the change in the number of monochromatic edges
instead.

Our slow mixing results complement the recent fast mixing result of Blanca and
Gheissari [8] for edge dynamics on the random d-regular graph that applies to allβ < βu .
Roughly, edge dynamics is the analogue of Glauber dynamics for the random cluster
representation of the Potts model (the random-cluster representation has nicer mono-
tonicity properties). The result of [8] already implies a polynomial bound on the mixing
time of SW when β < βu (due to comparison results by Ullrich that apply to general
graphs [50]), and conversely our exponential lower bound on the mixing time of SW
for β /∈ (βu, βh) implies an exponential lower bound on the mixing time of edge dy-
namics for β /∈ (βu, βh). The main open questions remaining are therefore showing
whether Glauber dynamics for the Potts model mixes fast when β ≤ βu and whether
SW/edge-dynamics mixes fast when β ≥ βh . Extrapolating from the mean-field case
(see discussion below), it is natural to conjecture that our slow mixing results are best-
possible, i.e., for β ≤ βu , Glauber mixes rapidly and similarly, for β /∈ (βu, βh), SW
mixes rapidly on the random regular graph.
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Theorem1.3, aside frombeing critical in establishing the aforementioned slowmixing
and metastability results, is the first to establish for all q, d ≥ 3 the coexistence of the
ferromagnetic and paramagnetic phases for all β in the interval (βu, βh) and detail
the logarithmic order of their relative weight in the same interval. Previous work in
[27] showed coexistence for β = βp (for all q, d ≥ 3) and [33] for β in a small
interval around βp (for large q and d ≥ 5).3 Together with Theorems 1.1 and 1.2,
Theorem 1.3 delineates more firmly4 the correspondence with the (simpler) mean-field
case, the Potts model on the clique. In the mean-field case, there are qualitatively similar
thresholds βu, βp, βh and the mixing time for Glauber and SW have been detailed for
all β, even at criticality, see [9,10,20,26,29,31,37]. As mentioned earlier, the most
tantalising question remaining open is to establish whether the fast mixing of SW for
β = βu and β ≥ βh in the mean-field case translates to the random regular graph as
well. Another interesting direction is to extend our arguments to the random-cluster
representation of the Potts model for all non-integer q ≥ 1; note that the arguments
of [7,33] do apply to non-integer q (q ≥ 1 and q large, respectively). The proof of
Theorem 1.3 relies on a truncated second moment computation, an argument that was
applied to different models in [15,18].

We further remark here that, from a worst-case perspective, it is known that sam-
pling from the Potts model on d-regular graphs is #BIS-hard for β > βp [27], and we
conjecture that the problem admits a poly-time approximation algorithm when β < βp.
However, even showing that Glauber mixes fast on any d-regular graph in the uniqueness
regime β < βu is a major open problem, and Theorems 1.1 and 1.2 further demonstrate
that getting an algorithm all the way to βp will require using different techniques. To
this end, progress has been made in [12,19] where an efficient algorithm is obtained
asymptotically up to βp for large q and d using cluster-expansion methods. More pre-
cise results have been shown on the random regular graph: [33] obtained an algorithm
for d ≥ 5 and q large that applies to all β by sampling from each phase separately
based also on cluster-expansion methods; also, for β < βp, Efthymiou [24] gives an
algorithm with weaker approximation guarantees but which applies to all q, d ≥ 3 (see
also [7]). In principle, and extrapolating again from the mean-field case, one could use
Glauber/SW to sample from each phase on the random regular graph for all q, d ≥ 3
and all β. Analysing such chains appears to be relatively far from the reach of current
techniques even in the case of the random regular graph, let alone worst-case graphs. In
the case of the Ising model however, the case q = 2, the analogue of this fast mixing
question has recently been established for sufficiently large β in [30] on the random
regular graph and the grid, exploiting certain monotonicity properties.

3 We remark here that the approaches in [27,33] establish more refined estimates on the deviations from the
limiting value of the log-partition function of the phases (in the corresponding regimes they apply), with [33]
characterising in addition the limiting distribution using cluster-expansion methods. One can obtain analogous
distributional characterisations for all q, d ≥ 3 from our methods, once combined with the small subgraph
conditioning method of [27]. It should be noted though the approach of [33] which goes through cluster
expansion is more direct in that respect. We don’t pursue such distributional results here since Theorem 1.3 is
sufficient for our slow mixing results.

4 Note that the interval-behaviour on the random regular graph (and hence the correspondence with the
mean-field case) is already implied to some extent by the interval-result of [33] (for q large and d ≥ 5).
Note however that the interval therein is contained strictly inside (βu , βh) and, in particular, its endpoints do
not have the probabilistic interpretation of βu , βh . Nevertheless, [33] obtains various probabilistic properties
of the metastable phases, including a stronger form of correlation decay than that of reconstruction that we
consider here.
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Finally, let us note that the case of the grid has qualitatively different behaviour than
the mean-field and the random-regular case. There, the three critical points coincide and
the behaviour at criticality depends on the value of q; the mixing time of Glauber and
SW has largely been detailed, see [9,28,39].

2. Overview

In this section we give an overview of the proofs of Theorems 1.1–1.3. Fortunately,
we do not need to start from first principles. Instead, we build upon the formula for
the partition function Zβ(G) and its proof via the second moment method from [27].
Additionally, we are going to seize upon facts about the non-reconstruction properties
of the Potts model on the random (d − 1)-ary tree, also from [27]. We will combine
these tools with an auxiliary random graph model known as the planted model, which
also plays a key role in the context of inference problems on random graphs [17].

2.1. Preliminaries. Throughout most of the paper, instead of the simple random regular
graph G, we are going to work with the random d-regular multi-graph G = G(n, d)

drawn from the pairing model. Recall that G is obtained by creating d clones of each
of the vertices from [n], choosing a random perfect matching of the complete graph on
[n]×[d] and subsequently contracting the vertices {i}×[d] into a single vertex i , for all
i ∈ [n]. It is well-known that G is contiguous with respect to G [35], i.e., any property
that holds w.h.p. for G also holds w.h.p. for G.

For a configuration σ ∈ [q]V (G) define a probability distribution νσ on [q] by letting

νσ (s) = |σ−1(s)|/n (s ∈ [q]).

In words, νσ is the empirical distribution of the colours under σ . Similarly, let ρG,σ ∈
P([q] × [q]) be the edge statistics of a given graph/colouring pair, i.e.,

ρG,σ (s, t) = 1

2|E(G)|
∑

u,v∈V (G)

1{uv ∈ E(G), σu = s, σv = t}.

We are going to need the following elementary estimate of the number of d-regular
multigraphs G that attain a specific ρG,σ .

Lemma 2.1 ([14, Lemma 2.7]). Suppose that σ ∈ [q]n. Moreover, suppose that ρ =
(ρ(s, t))s,t∈[q] is a symmetricmatrixwith positive entries such that dnρ(s, t) is an integer
for all s, t ∈ [q], dnρ(s, s) is even for all s ∈ [q] and ∑q

t=1 ρ(s, t) = νσ (s) for all
s ∈ [q]. Let G(σ, ρ) be the event that ρG,σ = ρ.

Then

P [G(σ, ρ)] = exp

⎡

⎣dn

2

q∑

s,t=1

ρ(s, t) log
νσ (s)νσ (t)

ρ(s, t)
+ O(log n/n)

⎤

⎦ .
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2.2. Moments andmessages. The routinemethod for investigating the partition function
and theBoltzmanndistribution of randomgraphs is themethod ofmoments [3]. The basic
strategy is to calculate, one way or another, the first twomomentsE[Zβ(G)],E[Zβ(G)2]
of the partition function. Then we cross our fingers that the second moment is not much
larger than the square of the first. It sometimes works. But potential pitfalls include a
pronounced tendency of running into extremely challenging optimisation problems in
the course of the second moment calculation and, worse, lottery effects that may foil
the strategy altogether. While regular graphs in general and the Potts ferromagnet in
particular are relatively tame specimens, these difficulties actually do arise once we set
out to investigate metastable states. Drawing upon [5,18] to sidestep these challenges,
we develop a less computation-heavy proof strategy.

The starting point is the observation that the fixed points of (1.3) are intimately related
to the moment calculation. This will not come as a surprise to experts, and indeed it was
already noticed in [27]. To elaborate, let ν = (ν(s))s∈[q] be a probability distribution on
the q colours.Moreover, letR(ν) be the set of all symmetricmatricesρ = (ρ(s, t))s,t∈[q]
with non-negative entries such that

∑

t∈[q]
ρ(s, t) = ν(s) for all s ∈ [q]. (2.1)

Simple manipulations (e.g., [14, Lemma 2.7]) show that the first moment satisfies

lim
n→∞

1

n
logE[Zβ(G)] = max

ν∈P([q]),ρ∈R(ν)
Fd,β(ν, ρ), where

Fd,β(ν, ρ) = (d − 1)
∑

s∈[q]
ν(s) log ν(s) − d

∑

1≤s≤t≤q

ρ(s, t) log ρ(s, t)

+
dβ

2

∑

s∈[q]
ρ(s, s). (2.2)

Thus, the first moment is governed by the maximum or maxima, as the case may be, of
Fd,β .

We need to know that the maxima of Fd,b are in one-to-one correspondence with
the stable fixed points of (1.3). To be precise, a fixed point μ of (1.3) is stable if the
Jacobian of (1.3) at μ has spectral radius strictly less than one. Let F+

d,β be the set of

all stable fixed points μ ∈ Fd,β . Moreover, let F1
d,β be the set of all μ ∈ F+

d,β such that
μ(1) = maxs∈[q] μ(s). In addition, let us call a local maximum (ν, ρ) of Fd,β stable if
there exist δ, c > 0 such that

Fd,β(ν′, ρ′) ≤ Fd,β(ν, ρ) − c
(
‖ν − ν′‖2 + ‖ρ − ρ′‖2

)
(2.3)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ‖ν − ν′‖ + ‖ρ − ρ′‖ < δ. Roughly, (2.3)
provides that the Hessian of Fd,β is negative definite on the subspace of all possible ν, ρ.

Lemma 2.2 ([27, Theorem 8]). Suppose that d ≥ 3, β > 0. The map μ ∈ P([q]) �→
(νμ, ρμ) defined by

νμ(s) = (1 + (eβ − 1)μ(s))d
∑

t∈[q](1 + (eβ − 1)μ(t))d
, ρμ(s, t) = eβ1{s=t}μ(s)μ(t)

1 + (eβ − 1)
∑

s∈[q] μ(s)2
(2.4)

is a bijection fromF+
d,β to the set of stable local maxima of Fd,β . Moreover, for any fixed

point μ we have Bd,β(μ) = Fd,β(νμ, ρμ).
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For brevity, let (νp, ρp) = (νμp , ρμp) and (νf , ρf) = (νμf , ρμf ). The following result
characterises the stable fixed points F1

d,β .

Proposition 2.3 ([27, Theorem 4]). Suppose that d ≥ 3, β > 0.

(i) If β < βu, then (1.3) has a unique fixed point, namely the paramagnetic distribu-
tion νp on [q]. This fixed point is stable and thus Fd,β attains its global maximum
at (νp, ρp).

(ii) If βu < β < βh, then F1
d,β contains two elements, namely the paramagnetic

distribution νp and the ferromagnetic distribution νf ; (νp, ρp) is a globalmaximum
of Fd,β iff β ≤ βp, and (νf , ρf) iff β ≥ βp.

(iii) If β > βh, then F1
d,β contains precisely one element, namely the ferromagnetic

distribution νf , and (νf , ρf) is a global maximum of Fd,β .

Like the first moment, the second moment boils down to an optimisation problem as
well, albeit one of much higher dimension (q2 − 1 rather than q − 1). Indeed, it is not
difficult to derive the following approximation (once again, e.g., via [14, Lemma 2.7]).
For a probability distribution ν ∈ P([q]) and a symmetric matrix ρ ∈ R(ν) let R⊗(ρ)

be the set of all tensors r = (r(s, s′, t, t ′))s,s′,t,t ′∈[q] such that

r(s, s′, t, t ′) = r(t, t ′, s, s′) and
∑

s′,t ′∈[q]
r(s, s′, t, t ′) =

∑

s′,t ′∈[q]
r(s′, s, t ′, t)

= ρ(s, t) for all s, t ∈ [q]. (2.5)

Then, with H(·) denoting the entropy function, we have

lim
n→∞

1

n
logE[(Zβ(G))2] = max

ν,ρ∈R(ν),r∈R⊗(ρ)
F⊗
d,β(ρ, r), where

F⊗
d,β(ρ, r) = (d − 1)H(ρ) +

d

2
H(r)

+
dβ

2

∑

s,s′,t,t ′∈[q]

(
1{s = t} + 1{s′ = t ′}) r(s, s′, t, t ′). (2.6)

A frontal assault on this optimisation problem is in general a daunting task due to the
doubly-stochastic constraints in (2.5), i.e., the constraint r ∈ R⊗(ρ). But fortunately, to
analyse the global maximum (over ν and ρ), these constraints can be relaxed, permitting
an elegant translation of the problem to operator theory. In effect, the second moment
computation can be reduced to a study of matrix norms. The result can be summarised
as follows.

Proposition 2.4 ([27, Theorem 7]). For all d, q ≥ 3 and β > 0 we have
maxν,ρ∈R(ν),r∈R⊗(ρ) F

⊗
d,β(ρ, r) = 2maxν,ρ Fd,β(ν, ρ) and thus E[Zβ(G)2] = O

(E[Zβ(G)]2).
Combining Lemma 2.2, Proposition 2.3 and Proposition 2.4, we obtain the following
reformulation of [27, Theorem 7], which verifies that we obtain good approximations to
the partition function by maximising the Bethe free energy on Fd,β .

Theorem 2.5. For all integers d, q ≥ 3 and real β > 0, we have lim
n→∞ n−1 log Zβ(G) =

max
μ∈Fd,β

Bd,β(μ) in probability.
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2.3. Non-reconstruction. While the global maximisation of the function F⊗
d,β and thus

the proof of Theorem 2.5 boils down to matrix norm analysis, in order to prove Theo-
rems 1.1 and 1.3 via the method of moments we would in addition need to get a good
handle on all the local maxima. Unfortunately, we do not see a way to reduce this more
refined question to operator norms. Hence, it would seem that we should have to perform
a fine-grained analysis of F⊗

d,β after all. But luckily another path is open to us. Instead
of proceeding analytically, we resort to probabilistic ideas. Specifically, we harness the
notion of non-reconstruction on the Potts model on the d-regular tree.

To elaborate, let Td be the infinite d-regular tree with root o. Given a probability
distributionμ ∈ {μp, μf }we define a broadcasting process σ = σ d,β,μ onTd as follows.
Initially we draw the colour σ o of the root o from the distribution νμ. Subsequently,
working our way down the levels of the tree, the colour of a vertex v whose parent u has
been coloured already is drawn from the distribution

P [σ v = c | σ u] = μ(c)eβ1{c=σ u}
∑

c′∈[q] μ(c′)eβ1{c′=σ u} .

Naturally, the colours of different vertices on the same level are mutually independent
conditioned on the parent’s colour. Let ∂�o be the set of all vertices at distance precisely �

from o. We say that the broadcasting process has the strong non-reconstruction property
if

∑

c∈[q]
E

[∣
∣P
[
σ o = c | σ ∂�o

]− P [σ o = c]
∣
∣
]

= exp(−�(�)),

where the expectation is over the random configuration σ ∂�o (distributed according to
the broadcasting process). In words, this says that the information of the spin of the root
decays in the broadcasting process; the term “strong” refers that the decay is exponential
with respect to the depth �.

Proposition 2.6 ([27, Theorem 50]). Let d, q ≥ 3 be integers and β > 0 be real.

(i) For β < βh, the broadcasting process σ d,β,μp has the strong non-reconstruction
property.

(ii) For β > βu, the broadcasting process σ d,β,μf has the strong non-reconstruction
property.

In order to prove Theorems 1.1–1.3 we will combine Proposition 2.6 with reweighted
random graph models known as planted models. To be precise, we will consider two
versions of planted models, a paramagnetic and a ferromagnetic one. Then we will
deduce from Proposition 2.6 that the Boltzmann distribution of these planted models has
the non-reconstruction property in a suitably defined sense. In combination with some
general facts about Boltzmann distributions this will enable us to prove Theorems 1.1–
1.3 without the need for complicated moment computations.

2.4. Planting. We proceed to introduce the paramagnetic and the ferromagnetic version
of the planted model. Roughly speaking, these are weighted versions of the common
random regular graphGwhere the probability mass of a specific graph is proportional to
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the paramagnetic or ferromagnetic bit of the partition function. To be precise, for ε > 0,
recall the subsets Sp = Sp(ε), Sf = Sf(ε) of the configuration space [q]n . Letting

Zf(G) =
∑

σ∈Sf
eβHG (σ ) and Zp(G) =

∑

σ∈Sp
eβHG(σ ), (2.7)

we define random graph models Ĝf , Ĝp by

P

[
Ĝf = G

]
= Zf(G)P [G = G]

E[Zf(G)] , P

[
Ĝp = G

]
= Zp(G)P [G = G]

E[Zp(G)] . (2.8)

Thus, Ĝf and Ĝp are d-regular random graphs on n vertices such that the probability
that a specific graph G comes up is proportional to Zf(G) and Zp(G), respectively.

We need to extend the notion of non-reconstruction to Ĝp, Ĝf . Specifically, we need
to define non-reconstruction for the conditional Boltzmann distributions μG,β( · | Sp),
μG,β( · | Sf). We thus say that for a graph/configuration pair (G, σ ), an event S ⊆ [q]n ,
a positive real ξ > 0, a real number γ ∈ [0, 1], an integer � ≥ 1 and a probability
distribution μ on [q] the conditional (γ, ξ, �, μ)-non-reconstruction property holds if

1

n

∑

v∈[n]

∑

c∈[q]

∣
∣νμ(c) − μG,β(σG,β,v = c | S, σG,β,∂�v = σ∂�v)

∣
∣ < ξ (2.9)

holds with probability 1− γ . In words, (2.9) provides that on the average over all v the
conditional marginal probability μG,β(σG,β,v = c | S, σG,β,∂�v = σ∂�v) that v receives
colour c given the boundary condition induced by σ on the vertices at distance � from v

and given the event S is close to νμ(ω).
Further, while (2.9) deals with a specific graph/configuration pair (G, σ ), we need

to extend the definition to the random graph models Ĝf and Ĝp. For a graph G let
σG,f denote a sample from the conditional distribution μG,β( · | Sf). Also define σG,p

similarly for Sp.We say that for the randomgraph Ĝf has the (η, ξ, �)-non-reconstruction
property if

E

[
μĜf ,β

({
(Ĝf , σ Ĝf ,f

) fails to have the (ξ, �, μf )-non-reconstruction property conditional on Sf
})]

< η.

(2.10)

Thus, we ask that (2.9) holds for a typical graph/configuration pair obtained by first
drawing a graph Ĝf from the planted model and then sampling σ Ĝf ,f

from μĜf
( · | Sf).

We introduce a similar definition for Ĝp.
The following proposition shows that the non-reconstruction statements from Propo-

sition 2.6 carry over to the planted random graphs. This is the key technical statement
toward the proofs of Theorems 1.1–1.3.

Proposition 2.7. Let d ≥ 3.

(i) Assume that βu < β. Then Ĝf has the (o(1), 1/ log log n, �log log n�)-non-
reconstruction property. Moreover, for any δ > 0 there exist � = �(d, β, δ) > 0
and χ = χ(d, β, δ) > 0 such that (Ĝf , σ Ĝf ,f

) has the (exp(−χn), δ, �, μf )-non-
reconstruction property.
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(ii) Assume thatβ < βh. Then Ĝp has the (o(1), 1/ log log n, �log log n�)-non-reconstruction
property. Moreover, for any δ > 0 there exist � = �(d, β, δ) > 0 and χ =
χ(d, β, δ) > 0 such that (Ĝp, σ Ĝp,p

)has the (exp(−χn), δ, �, μp)-non-reconstruction
property.

Together with a few routine arguments for the study of Boltzmann distributions that
build upon [5], we can derive from Proposition 2.7 that for β > βu two typical samples
from the ferromagnetic Boltzmann distribution have overlap about νf ⊗ νf . This insight
enables a truncated second moment computation that sidesteps a detailed study of the
function F⊗

d,β from (2.6). Indeed, the only observation about F⊗
d,β that we need tomake is

that F⊗
d,β(νf⊗νf , ρf⊗ρf) = 2Fd,β(νf , ρf). Similar arguments apply to the paramagnetic

case. We can thus determine the asymptotic Boltzmann weights of Sp, Sf on the random
regular graph as follows.

Corollary 2.8. Let d, q ≥ 3 be arbitrary integers.

(i) Forβ > βu, for all sufficiently small ε > 0, we havew.h.p. 1n log Zf(G) = Bd,β(μf)+
o(1).

(ii) Forβ < βh, for all sufficiently small ε > 0, we havew.h.p. 1n log Zp(G) = Bd,β(μp)+
o(1).

Finally, combining Corollary 2.8 with the definition (2.8) of the planted models
and the non-reconstruction statements from Proposition 2.7, we obtain the following
conditional non-reconstruction statements for the plain random regular graph.

Corollary 2.9. Let d, q ≥ 3 be arbitrary integers.

(i) Forβ > βu, theBoltzmanndistributionμG,β given Sf exhibits the non-reconstruction
property.

(ii) Forβ < βh, theBoltzmanndistributionμG,β given Sp exhibits the non-reconstruction
property.

Theorem 1.3 is an immediate consequence of Corollaries 2.8 and 2.9.

3. Quiet Planting

In this section we prove Proposition 2.7 along with Corollaries 2.8 and 2.9. We begin
with an important general observation about the planted model called the Nishimori
identity, which will provide an explicit constructive description of the planted models.

3.1. The Nishimori identity. We complement the definition (2.8) of the planted random
graphs Ĝf , Ĝp by also introducing a reweighted distribution on graphs for a specific
configuration σ ∈ [q]n . Specifically, we define a random graph Ĝ(σ ) by letting

P

[
Ĝ(σ ) = G

]
= P [G = G] eβHG(σ )

E[eβHG(σ )] . (3.1)

Furthermore, for ε > 0, recalling the truncated partition functions Zf , Zp from (2.7), we
introduce reweighted random configurations σ̂ f = σ̂ f(ε) ∈ [q]n and σ̂ p = σ̂ p(ε) ∈ [q]n
with distributions

P
[
σ̂ f = σ

] = 1 {σ ∈ Sf}E[eβHG(σ )]
E[Zf(G)] , P

[
σ̂ p = σ

] = 1
{
σ ∈ Sp

}
E[eβHG(σ )]

E[Zp(G)] .

(3.2)
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We have the following paramagnetic and ferromagnetic Nishimori identities.

Proposition 3.1. For any integers d, q ≥ 3 and real β, ε > 0, we have

(Ĝp, σ Ĝp,p
)

d= (Ĝ(σ̂ p), σ̂ p), (Ĝf , σ Ĝf ,f
)

d= (Ĝ(σ̂ f), σ̂ f). (3.3)

Proof. Let G be a d-regular graph on n vertices and σ ∈ [q]n . We have

P

[
(Ĝp, σ Ĝp,p

) = (G, σ )
]

= P

[
σ Ĝp,p

= σ

∣
∣
∣Ĝp = G

]
P

[
Ĝp = G

]

= μG,β

(
σ

∣
∣
∣Sp
) Zp(G)P [G = G]

E[Zp(G)] . (3.4)

Moreover, by the definition of the Boltzmann distribution μG,β ,

μG,β

(
σ |Sp

) = eβHG(σ )1
{
σ ∈ Sp

}

Z(G) μG,β

(
Sp
) , μG

(
Sp
) = Zp(G)

Z(G)
. (3.5)

Combining (3.4) and (3.5), we obtain

P

[
(Ĝp, σ Ĝp,p

) = (G, σ )
]

= eβHG(σ )
P [G = G]

E
[
eβHG(σ )

] · E
[
eβHG(σ )

]
1
{
σ ∈ Sp

}

E[Zp(G)]
= P

[
Ĝ
(
σ̂ p
) = G

∣
∣
∣σ̂ p = σ

]
P
[
σ̂ p = σ

]

= P

[
(Ĝ(σ̂ p) = G, σ̂ p = σ)

]
,

as claimed. The very same steps apply to Ĝf .

Nishimori identities were derived in [17] for a broad family of planted models which,
however, does not include the planted ferromagnetic models Ĝp, Ĝf . Nonetheless, the
(simple) proof of Proposition 3.1 is practically identical to the argument from [17].

While the original definition (2.8) of the plantedmodelsmay appear unwieldy, Propo-
sition 3.1 paves the way for a more hands-on description. But as a preliminary step we
need to get a handle on the empirical distribution of the colours under the random con-

figurations σ̂ f , σ̂ p. Additionally, we also need to determine the edge statistics ρ Ĝp,σ̂ p

and ρ Ĝf ,σ̂ f . The following two lemmas solve these problems for us.

Lemma 3.2. Suppose that 0 ≤ β < βh. Then E[Zp(G)] = exp(nFd,β(νp, ρp) +
O(log n)).

Proof. To obtain a lower bound on E[Zp(G)] let σ0 ∈ [q]n be a configuration such that
|σ−1

0 (s)| = n
q + O(1) for all s ∈ [q]. Let ν(s) = |σ−1

0 (s)|/n. Then

ρν(s, t) = eβ1{s=t}

q(q − 1 + eβ)
+ O(1/n) = ρp(s, t) + O(1/n) (s, t ∈ [q]).

Therefore, Lemma 2.1 yields

E[Zp(G)] ≥
∑

σ∈[q]n
1
{
∀s ∈ [q] : |σ−1(s)| = nν(s)

}
P
[G(σ, ρν)

]
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exp

(
βeβdn

2(q − 1 + eβ)
+ O(1)

)

≥ qn exp

(
βeβdn

2(q − 1 + eβ)
+ O(log n)

)

= exp
(
nFd,β(νp, ρp) + O(log n)

)
.

(3.6)

Conversely, since there are only nO(1) choices of ν, ρ, Lemma 2.2 and Proposition 2.3
imply that

E[Zp(G)] ≤ exp
(
nFd,β(νp, ρp) + O(log n)

)
. (3.7)

The assertion follows from (3.6) and (3.7).

Lemma 3.3. Suppose that β > βu. Then E[Zf(G)] = exp(nFd,β(νf , ρf) + O(log n)).

Proof. As in the proof of Lemma 3.2 let σ0 ∈ [q]n be a configuration such that
|σ−1

0 (s)| = nνf(s) + O(1) for all s ∈ [q]. Letting ν(s) = |σ−1
0 (s)|/n we see that

ρν(s, t) = ρf(s, t) + O(1/n) for all s, t ∈ [q]. Therefore, Lemma 2.1 yields

E[Zf (G)] ≥
(
n

νn

)

exp

(

−dn

2
DKL

(
ρν‖ν ⊗ ν

)
+

βeβdn
∑

s∈[q] μf (s)2

2
(
1 + (eβ − 1)

∑
s∈[q] μf (s)2

) + O(log n)

)

= exp
(
nFd,β (νf , ρf ) + O(log n)

)
. (3.8)

As for the upper bound, once again because there are only nO(1) choices of ν, ρ,
Lemma 2.2 and Proposition 2.3 yield

E[Zf(G)] ≤ exp
(
nFd,β(νf , ρf) + O(log n)

)
. (3.9)

Combining the lower and upper bounds from (3.8) and (3.9) completes the proof.

Lemma 3.4. For any integers d, q ≥ 3 and real β ∈ (0, βh), there exist c, t0 > 0 such
that

P

[
dTV

(
νσ̂ p , νp

)
+ dTV

(
ρ Ĝ(σ̂ p),σ̂ p, ρp

)
> t
]

≤ exp(−ct2n + O(log n)) for all 0 ≤ t < t0.

Proof. Suppose that ν is a probability distribution on [q] such that nν(s) is an integer
for all s ∈ [q]. Moreover, suppose that ρ = (ρ(s, t))s,t∈[q] is a symmetric matrix such
that dnρ(s, t) is an integer for all s, t ∈ [q], dnρ(s, s) is even for all s ∈ [q] and∑q

t=1 ρ(s, t) = ν(s) for all s ∈ [q]. Retracing the steps of the proof of Lemma 3.3, we
see that

∑

σ∈[q]n
1
{
νσ = ν

}
P [G(σ, ρ)] exp

(
βdn

2

q∑

s=1

ρ(s, s)

)

= exp
(
nFd,β(ν, ρ) + O(log n)

)
.

(3.10)

Therefore, the assertion follows from Proposition 2.3 and the definition (2.3) of stable
local maxima.
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Lemma 3.5. For any integers d, q ≥ 3 and real β > βu, there exist c, t0 > 0 such that

P

[
dTV

(
νσ̂ f , νf

)
+ dTV

(
ρ Ĝ(σ̂ f ),σ̂ f , ρf

)
> t
]

≤ exp(−ct2n + O(log n)) for all 0 ≤ t < t0.

Proof. The argument from the proof of Lemma 3.4 applies mutatis mutandis.

At this point we have handy, constructive descriptions of the models Ĝp, Ĝf . Indeed,
Lemmas 3.4 and 3.5 provide that the planted configurations σ̂ p and σ̂ f have colour
statistics approximately equal to νp and νf w.h.p., respectively. Moreover, because the
random graph models are invariant under permutations of the vertices, σ̂ p and σ̂ f are
uniformly random given their colour statistics. In addition, the edge statistics of the
random graphs Ĝ(σ̂ p) and Ĝ(σ̂ f) concentrate about ρf and ρp. Once more because of
permutation invariance, the random graphs Ĝ(σ̂ p) and Ĝ(σ̂ f) themselves are uniformly
random given the planted assignment σ̂ p or σ̂ f and given the edge statistics.

Thus, let Sf and Sp be the σ -algebras generated by σ̂ f , ρ
Ĝf ,σ̂ f and σ̂ p, ρ

Ĝp,σ̂ p ,
respectively. Then we can use standard techniques from the theory of random graphs to
derive typical properties of Ĝ(σ̂ p) givenSp and of Ĝ(σ̂ f) givenSf , which are distributed
precisely as Ĝp and Ĝf by Proposition 3.1. Using these characterisations, we are now
going to prove Proposition 2.7.

3.2. Proof of Proposition 2.7. Lemma 3.4 gives sufficiently accurate information as to

the distribution of σ̂ p, ρ
Ĝp,σ̂ p for us to couple the distribution of the colouring produced

by the broadcasting process and the colouring that σ̂ p induces on the neighbourhood of
some particular vertex of Ĝp, say v.

Lemma 3.6. Let d, q ≥ 3 be integers and β ∈ (0, βh) be real. Then, for any vertex v

and any non-negative integer � = o(log n), given Sp w.h.p. we have

dTV(σ̂ p,∂�v, τ∂�o) = O
(
d�
(
dTV(νσ̂ p , νp) + dTV(ρ Ĝ(σ̂ p),σ̂ p , ρp) + O(n−0.99)

))
.

Proof. Proceeding by induction on �, we construct a coupling of σ̂ p,∂�v and τ∂�o. Let

ζ = dTV(νσ̂ p , νp) + dTV(ρ Ĝ(σ̂ p),σ̂ p , ρp). (3.11)

In the case � = 0 the set ∂�v consists of v only, while ∂�o comprises only the root vertex
o itself. Hence, the colours σ̂ p(v) and τ(o) can be coupled to coincide with probability
at least 1− ζ . As for � ≥ 1, assume by induction that ∂�−1v is acyclic and that σ̂ p,∂�−1v

and τ∂�−1o coincide. Given ∂�−1v and σ̂ p,∂�−1v every vertex u at distance precisely �− 1

from v in Ĝp then requires another d − 1 neighbours outside of ∂�−1v. Because Ĝp is
uniformly random givenSp, for each u these d −1 neighbours are simply the endpoints
of edges eu,1, . . . , eu,d−1 drawn randomly from the set of all remaining edges with one
endpoint of colour σ̂ p(u). Since � = o(log n), the subgraph ∂�v consumes no more
than no(1) edges. As a consequence, for each neighbour w �∈ ∂�−1v the colour σ̂ p(w)

has distribution ρν(σ̂ p(u), · ), up to an error of no(1)−1 in total variation. Finally, the
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probability that two vertices at distance precisely � from v are neighbours is bounded
by no(1)−1 as well.

By comparison, in the broadcasting process onTd the colours of the children of y are
always drawn independently from the distribution ρp(σ d,β,νp(y), · ). Hence, the colours
of the vertices at distance � in the two processes can be coupled to completely coincide
with probability 1 − O(d�(ζ + no(1)−1)), as claimed.

In addition, since we work with the conditional Boltzmann distributions where we
“cut off” a part of the phase space,we need to verify that the configuration is very unlikely
to hit the boundary of Sp. To see this, recall from Proposition 2.3 that, for β ∈ (0, βh),
(νp, ρp) is a stable local maxima of Fd,β i.e. there exist δ, c > 0 such that

Fd,β(ν′, ρ′) ≤ Fd,β(νp, ρp) − c
(
‖νp − ν′‖2 + ‖ρp − ρ′‖2

)
(3.12)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ‖νp−ν′‖+‖ρp−ρ′‖ < δ. Now, choose ε in

the definition of Sp(ε) such that ε > δ and define Tp(δ) =
{
σ ∈ [q]n : 1

n

∑
c∈[q]

∣
∣σ−1(c)

∣
∣

= νp + δ�
}
for some � > 0. Moreover, define a probability distribution ν′

p on the q

colours by ν′
p(c) = 1

q + δ�

q for all c ∈ [q] and let ρ′
p ∈ R(ν′

p) the corresponding
maximizer for Fd,β(ν′

p, ·) (as in 2.4). Furthermore, choose � sufficiently small so that
‖νp − ν′

p‖ + ‖ρp − ρ′
p‖ < δ. Thus, by (3.12) and Lemma 3.2 we have

P
[
σ̂ p ∈ Tp(δ)

] =
∑

σ∈Tp(δ)

1
{
σ ∈ Sp

}
E[eβHG(σ )]

E[Zp(G)] ≤
exp
(
nFd,β(ν′

p, ρ
′
p)
)

exp
(
nFd,β(νp, ρp) + O(log n)

)

≤ exp
((

−c
(
δ2� + ‖ρp − ρ′‖2

)
+ o(1)

)
n
)

≤ exp ((−K + o(1)) n)

for some sufficiently large constant K , as desired.

The colouring of the neighbourhood of v1 in Ĝf admits a similar coupling with the
ferromagnetic version of the broadcasting process.

Lemma 3.7. Let d, q ≥ 3 be integers and β > βu be real. Then, for any vertex v and
any non-negative integer � = o(log n), given Sf w.h.p. we have

dTV(σ̂ f,∂�v, τ∂�o) = O
(
d�
(
dTV(νσ̂ f , νf) + dTV(ρ Ĝ(σ̂ f ),σ̂ f , ρf) + n−0.99

))
.

Proof. The argument from the proof of Lemma 3.6 carries over directly.

Proof of Proposition 2.7. We prove the first statement concerning Ĝf ; the proof of the
second statement for Ĝp is analogous. Due to Proposition 3.1 we may work with the
random graph Ĝ(σ̂ f) with planted configuration σ̂ f . Fix an arbitrary vertex v and � =
�log log n�. For the first assertion, by the Nishimori identity, it suffices to prove that

∑

c∈[q]
E

∣
∣
∣νf(c) − μĜ(σ̂ f ),β

(σ v = c | σ ∂�v = σ̂ f ,∂�v)

∣
∣
∣ < �−3, (3.13)

where the expectation is over the choice of the pair (Ĝ(σ̂ f), σ̂ f). Indeed, the desired
(o(1), �−1, �)-non-reconstruction property follows from (3.13) andMarkov’s inequality.
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To obtain (3.13) we first apply Lemma 3.5, which implies that with probability
1 − o(1/n),

dTV
(
νσ̂ f , νf

)
+ dTV

(
ρ Ĝ(σ̂ f ),σ̂ f , ρf

)
≤ n−1/4. (3.14)

Further, assuming (3.14), we obtain from Lemma 3.7 that

dTV(σ f,∂�v, τ∂�o) = o(n−1/5). (3.15)

Hence, the colourings ∂�v and τ∂�o can be coupled such that both are identical with
probability 1 − o(n−1/5). Consequently, (3.13) follows from Proposition 2.6.

Thus, we are left to prove the second assertion concerning (exp(−χn), δ, �, μf )-non-
reconstruction. Hence, given δ > 0 pick a large enough � = �(d, β, δ) > 0, a small
enough ζ = ζ(δ, �) > 0 and even smaller ξ = ξ(δ, �, ζ ) > 0, χ = χ(d, β, ξ) > 0.
Then in light of Lemma 3.5 we may assume that

dTV
(
νσ̂ f , νf

)
+ dTV

(
ρ Ĝ(σ̂ f ),σ̂ f , ρf

)
< ξ. (3.16)

Further, let X be the number of vertices u such that

∑

c∈[q]

∣
∣
∣νf(c) − μĜ(σ̂ f ),β

(σ u = c | σ ∂�u = σ̂ f ,∂�u)

∣
∣
∣ > ζ.

Then Proposition 2.6, (3.16) and Lemma 3.7 imply that E[X] < ζn. Moreover, X is
tightly concentrated about its mean. Indeed, adding or removing a single edge of the
random d-regular graph Ĝ(σ̂ f) can alter the �-th neighbourhoods of no more than d�

vertices. Therefore, the Azuma–Hoeffding inequality shows that

P [X > E[X | Sf ] + ζn | Sf ] < exp(−χn), (3.17)

as desired.

3.3. Proof of Corollary 2.8. We derive the corollary from Proposition 2.7, the Nishimori
identity from Proposition 3.1 and the formula (2.6) for the second moment. As a first
step we derive an estimate of the typical overlap of two configurations drawn from the
Boltzmann distribution. To be precise, for a graph G = (V, E), the overlap of two
configurations σ, σ ′ ∈ [q]V is defined as the probability distribution ν(σ, σ ′) ∈ P([q]2)
with

νc,c′(σ, σ ′) = 1

n

∑

v∈V (G)

1
{
σv = c, σ ′

v = c′} (c, c′ ∈ [q]).

Thus, ν(σ, σ ′) gauges the frequency of the colour combinations among vertices.

Lemma 3.8. Let d, q ≥ 3 be integers and β < βh be real. Let σ Ĝp,p
, σ ′

Ĝp,p
be indepen-

dent samples from μĜp,β
( · | Sp). Then E

[

dTV
(
ν(σ Ĝp,p

, σ ′
Ĝp,p

), νp ⊗ νp
)
]

= o(1).
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Proof. Due to the Nishimori identity (3.3) it suffices to prove that w.h.p. for a sample
σ Ĝ(σ̂ p)

from μĜ(σ̂ p),β
( · | Sp) it holds that

dTV
(
ν(σ̂ p, σ Ĝ(σ̂ p),p

), νp ⊗ νp
) = o(1) (3.18)

To see (3.18), for colours s, t ∈ [q], we consider the first and second moment of the
number of vertices u with σ̂ p(u) = s and σ Ĝ(σ̂ p),p

(u) = t . To facilitate the analysis

of the second moment, it will be convenient to consider the following configuration
σ ′
Ĝ(σ̂ p),p

. Let v,w be two random vertices such that σ̂ p(v) = σ̂ p(w) = s. Also let

� = �(n) = �log log n�. Now, draw σ ′′
Ĝ(σ̂ p),p

from μĜ(σ̂ p),β
( · | Sp) and subsequently

generate σ ′
Ĝp,p

by re-sampling the colours of the vertices at distance less than � from

v,w given the colours of the vertices at distance precisely � from v,w and the event
Sp. Then σ ′

Ĝ(σ̂ p),p
has distribution μĜ(σ̂ p),β

( · | Sp). Moreover, since for two random

vertices v,w their �-neighbourhoods are going to be disjoint, Proposition 2.7 implies
that w.h.p.

P

[

σ ′
Ĝp,p

(v) = χ, σ ′
Ĝp,p

(w) = χ ′ | σ̂ p, Ĝ(σ̂ p), v,w

]

= νp(χ)νp(χ
′) + o(1) for all χ, χ ′ ∈ [q]. (3.19)

Hence, for a colour t ∈ [q] let X(s, t) be the number of vertices u with σ̂ p(u) = s and
σ ′
Ĝp,p

(u) = t . Then (3.19) shows that w.h.p.

E

[
X(s, t) | σ̂ p, Ĝ(σ̂ p)

]
∼ n

q2
, E

[
X(s, t)2 | σ̂ p, Ĝ(σ̂ p)

]
∼ n2

q4
.

Thus, (3.18) follows from Chebyshev’s inequality.

Lemma 3.9. Let d, q ≥ 3 be integers and β > βu be real. Let σ Ĝf ,f
, σ ′

Ĝf ,f
be indepen-

dent samples from μĜf ,β
( · | Sf). Then E

[
dTV
(
ν(σ Ĝf ,f

, σ ′
Ĝf ,f

), νf ⊗ νf
)] = o(1).

Proof. The same argument as in the proof of Lemma 3.8 applies.

We proceed to apply the second moment method to truncated versions of the para-
magnetic and ferromagnetic partition functions Zp, Zf where we expressly drop graphs
that violate the overlap bounds from Lemmas 3.8 and 3.9. Thus, we introduce

Yp(G) = Zp(G) · 1
{
E
[
dTV(ν(σG,p, σ

′
G,p), νp ⊗ νp)

] = o(1)
}

, (3.20)

Yf(G) = Zf(G) · 1
{
E
[
dTV(ν(σG,f , σ

′
G,f), νf ⊗ νf)

] = o(1)
}
. (3.21)

Estimating the second moments of these two random variables is a cinch because by
construction we can avoid an explicit optimisation of the function F⊗

d,β from (2.6).
Indeed, because we drop graphs G whose overlaps stray far from the product measures
νp ⊗ νp and νf ⊗ νf , respectively, we basically just need to evaluate the function F⊗

d,β at
νp ⊗ νp and νf ⊗ νf .

Corollary 3.10. Let d ≥ 3.
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(i) If β < βh, then E[Yp(G)] ∼ E[Zp(G)] and E[Yp(G)2] ≤ exp(o(n))E[Zp(G)]2.
(ii) If β > βu, then E[Yf(G)] ∼ E[Zf(G)] and E[Yf(G)2] ≤ exp(o(n))E[Zf(G)]2.
Proof. Assume that β < βh . Let Ep = {G : E[dTV(ν(σG,p, σ

′
G,p), νp ⊗ νp)

] = o(1)}.
Combining Lemma 3.8 with the Nishimori identity (3.3), we obtain

E[Yp(G)]
E[Zp(G)] = P

[
Ĝp ∈ Ep

]
∼ 1 (3.22)

and thus E[Yp(G)] ∼ E[Zp(G)].
Regarding the second moment, consider the set Pp(n) of all probability distributions

ν on [q] × [q] such that nν(χ, χ ′) is an integer for all χ, χ ′ ∈ [q] and such that
dTV(ν, u) = o(1). Let Rp(ν, n) be the set of all distributions ρ on [q]4 such that

ρ(χ, χ ′, χ ′′, χ ′′′) = ρ(χ ′′, χ ′′′, χ, χ ′) for all χ, χ ′, χ ′′, χ ′′′ ∈ [q] and (3.23)
∑

χ ′′,χ ′′′∈[q]
ρ(χ, χ ′, χ ′′, χ ′′′) = ν(χ, χ ′) for all χ, χ ′ ∈ [q] (3.24)

and such that nρ(χ, χ ′, χ ′′, χ ′′′) is an integer for all χ, χ ′, χ ′′, χ ′′′ ∈ [q]. Using the
definition (3.20) of Yp, Lemma 2.1 and the linearity of expectation, we bound

E

[
Yp(G)2

]
≤ (1 + o(1))

∑

σ,σ ′∈[q]n
1
{
dTV(ν(σ, σ ′), νp ⊗ νp) = o(1)

}
E

[
eβ(HG(σ )+HG(σ ′))

]

≤
∑

ν∈Pp(n)

(
n

νn

) ∑

ρ∈Rp(ν,n)

exp
[dn

2

q∑

χ,χ ′,χ ′′,χ ′′′=1

ρ(χ, χ ′, χ ′′, χ ′′′) log ν(χ, χ ′)ν(χ ′′, χ ′′′)
ρ(χ, χ ′, χ ′′, χ ′′′)

+ β
(
1
{
χ = χ ′′} + 1

{
χ ′ = χ ′′′}) + O(log n)

]
. (3.25)

For any given ν the term inside the square brackets is a strictly concave function of
ρ. Therefore, for any ν there exists a unique maximiser ρ∗

ν . Moreover, the set Rp(ν, n)

has size |Rp(ν, n)| = nO(1). Hence, using Stirling’s formula we can simplify (3.25) to

E

[
Yp(G)2

]
≤

∑

ν∈Pp(n)

exp
[

− n
q∑

χ,χ ′=1

ν(χ, χ ′) log ν(χ, χ ′)

+
dn

2

q∑

χ,χ ′,χ ′′,χ ′′′=1

ρ∗
ν (χ, χ ′, χ ′′, χ ′′′) log ν(χ, χ ′)ν(χ ′′, χ ′′′)

ρ∗
ν (χ, χ ′, χ ′′, χ ′′′)

+ β
(
1
{
χ = χ ′′} + 1

{
χ ′ = χ ′′′}) + O(log n)

]
. (3.26)

To further simplify the expression notice that the maximiser ρ∗
ν is the unique solution

to a concave optimisation problem subject to the linear constraints (3.23)–(3.24). Since
the constraints (3.24) themselves are linear in ν, by the inverse function theorem the
maximiser ρ∗

ν is a continuous function of ν. In effect, since |Pp(n)| = nO(1), we can
bound (3.26) by the contribution of the uniform distribution νp⊗νp only. We thus obtain
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E

[
Yp(G)2

]
≤ qn exp

[dn

2

q∑

χ,χ ′,χ ′′,χ ′′′=1

ρ∗
νp⊗νp

(χ, χ ′, χ ′′, χ ′′′) log νp(χ, χ ′)νp(χ ′′, χ ′′′)
ρ∗
νp⊗νp

(χ, χ ′, χ ′′, χ ′′′)

+ β
(
1
{
χ = χ ′′} + 1

{
χ ′ = χ ′′′}) + o(n)

]
. (3.27)

Finally, the maximiser ρ∗
νp⊗νp

in (3.27) works out to be ρ∗
νp⊗νp

= ρp⊗ρp. To see this,
recall from Lemma 3.8 that νp is the uniform distribution on [q]. It therefore remains to
show that subject to (3.23)–(3.24), the function

g(ρ) =
q∑

χ,χ ′,χ ′′,χ ′′′=1

ρ(χ, χ ′, χ ′′, χ ′′′) log
νp(χ)νp(χ

′)νp(χ ′′)νp(χ ′′′)
ρ(χ, χ ′, χ ′′, χ ′′′)

+ β
(
1
{
χ = χ ′′} + 1

{
χ ′ = χ ′′′})

= −4 log q −
q∑

χ,χ ′,χ ′′,χ ′′′=1

ρ(χ, χ ′, χ ′′, χ ′′′) log
(
ρ(χ, χ ′, χ ′′, χ ′′′)

)

− β
(
1
{
χ = χ ′′} + 1

{
χ ′ = χ ′′′})

attains its maximum at the distribution ρ = ρp ⊗ ρp. Since g is strictly concave, the
unique maximum occurs at the unique stationary point of the Lagrangian

Lp = g(ρ) +
∑

χ,χ ′,χ ′′,χ ′′′
λχ,χ ′,χ ′′,χ ′′′

(
ρ
(
χ, χ ′, χ ′′, χ ′′′)− ρ

(
χ ′′, χ ′′′, χ, χ ′))

+
∑

χ,χ ′
λχ,χ ′

⎛

⎝
∑

χ ′′,χ ′′′∈[q]
ρ(χ, χ ′, χ ′′, χ ′′′) − ν(χ, χ ′)

⎞

⎠ .

Since the derivatives work out to be

∂Lp

∂ρ(χ, χ ′, χ ′′, χ ′′′)
= −1 − log ρ(χ, χ ′, χ ′′, χ ′′′) + λχ,χ ′,χ ′′,χ ′′′ − λχ ′′,χ ′′′,χ ′,χ ′

+ λχ,χ ′ + β1{χ = χ ′′} + β1{χ ′ = χ ′′′},
for the choiceρ = ρp⊗ρp there exist Lagrangemultipliers such that all partial derivatives
vanish.

The proof of (ii) proceeds analogously.

Proof of Corollary 2.8. Thecorollary is nowan immediate consequenceofCorollary 3.10,
the Paley-Zygmund and Azuma inequalities.

3.4. Proof of Corollary 2.9. To prove Corollary 2.9 we derive the following general
transfer principle from the estimate of the Boltzmann weights of Sf and Sp from Corol-
lary 2.8.

Lemma 3.11. Let d ≥ 3.

(i) Ifβ < βh, then for any eventE withP
[
Ĝp ∈ E

]
≤ exp(−�(n))wehaveP [G ∈ E] =

o(1).
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(ii) Ifβ > βu, then for any eventE withP
[
Ĝf ∈ E

]
≤ exp(−�(n))wehaveP [G ∈ E] =

o(1).

Proof. This follows from a “quiet planting” argument akin to the one from [2]. Specifi-
cally, Theorem 2.5 and Proposition 2.3 show that for β < βh the event Zp = {Zp(G) =
E[Zp(G)] exp(o(n))}occursw.h.p. Therefore, recalling the definition (2.8) of the planted
model, we obtain

P [G ∈ E] ≤ P
[
G ∈ E ∩ Zp

]
+ P
[
G �∈ Zp

] ≤ E[1{G ∈ E}Zp(G)] exp(o(n))

E[Zp(G)] + o(1)

≤ exp(o(n))P
[
Ĝp ∈ E

]
+ o(1) = o(1). (3.28)

Since the simple random regular graph G is contiguous with respect to G, assertion (i)
follows from (3.28). The proof of (ii) is identical.

Proof of Corollary 2.9. The assertion follows from Lemma 3.11 and Proposition
2.7.

4. Metastability and Slow Mixing

In this section, we prove Theorems 1.1 and 1.2. Recall from Sect. 1.3 the paramagnetic
and ferromagnetic states Sp(ε) and Sf(ε) for ε > 0. For the purposes of this section
we will need to be more systematic of keeping track the dependence of these phases on
ε. In particular, we will use the more explicit notation Z ε

p(G) and Z ε
f (G) to denote the

quantities Zp(G) and Zf(G), respectively, from (2.7).
The following lemma reflects the fact that νp and νf are local maxima of the first

moment.

Lemma 4.1. Let q, d ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
constants ε′ > ε > 0 and any constant θ > 0, there exists constant ζ > 0 such that
w.h.p. over G ∼ G, it holds that

(1) If β < βh, then Z ε
p(G) = eo(n)

E[Z ε
p(G)] and Z ε′

p (G) ≤ (1 + e−ζn)Z ε
p(G).

(2) If β > βu, then Z ε
f (G) = eo(n)

E[Z ε
f (G)] and Z ε′

f (G) ≤ (1 + e−ζn)Z ε
f (G).

Proof. We first prove Item (1), let β < βh . Recall from (2.2) the function F(ν, ρ) :=
Fd,β(ν, ρ) for ν ∈ P([q]) and ρ ∈ R(ν). By Corollary 2.8, for all sufficiently small
constant ε > 0, we have that

E[ 1n log Z ε
p(G)] = Bd,β(μp) + o(1) = F(νp, ρp) + o(1),

where the last equality holds by Lemma 2.2. Applying Azuma’s inequality to the ran-
dom variable log Z ε

p(G) by revealing the edges of G one-by-one, we therefore obtain

that w.h.p. it holds that Z ε
p(G) = enF(νp,ρp)+o(n). Also, from Lemma 3.2 we have that

E[Z ε
p(G)] = enF(νp,ρp)+o(n), so we obtain that Z ε

p(G) = eo(n)
E[Z ε

p(G)] proving the
first inequality of Item (1). For the second inequality, recall from Proposition 2.3 that
(νp, ρp) is a local maximum of F for β < βh , cf. (2.3). Therefore, for all sufficiently
small constants ε′ > ε > 0, there exists constant ζ > 0 such that

F(ν, ρ) ≤ F(νp, ρp) − 4ζ (4.1)
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for all ν ∈ P([q]) and ρ ∈ R(ν) with

ε ≤ ∥∥ν − νp
∥
∥ +
∥
∥ρ − ρp

∥
∥ ≤ ε′. (4.2)

Using (3.10), we see that

E
[
Z ε′
p (G) − Z ε

p(G)
] ≤

∑

ν,ρ

exp(nF(ν, ρ) + O(log n))

where the sum ranges over ν ∈ P([q]) and ρ ∈ R(ν) satisfying (4.2) such that
nν(s), dnρ(s, t) are integers for all s, t ∈ [q], and dnρ(s, s) is even. Since there are at
most nO(1) choices for such colour statistics ν, ρ, we obtain that E

[
Z ε′
p (G)− Z ε

p(G)
] ≤

en(F(νp,ρp)−3ζ ) for all sufficiently large n. By Markov’s inequality, we therefore have
that w.h.p. Z ε′

p (G) − Z ε
p(G) ≤ enF(νp,ρp)−2ζn . As we showed above, w.h.p. Z ε

p(G) =
enF(νp,ρp)+o(n), so combining theseweobtain thatw.h.p. Z ε

p(G) ≥ eζn
(
Z ε′
p (G)−Z ε

p(G)
)
,

completing the proof of Item (1) of the lemma.
For the second item of the lemma, the proof is completely analogous, using the fact

from Proposition 2.3 that (νf , ρf) is a local maximum of F(ν, ρ) for β > βu .

Theorem 1.1 will follow by way of a conductance argument. Let G = (V, E) be a
graph, and P be the transition matrix for the Glauber dynamics defined in Sect. 1.4. For
a set S ⊆ [q]V define the bottleneck ratio of S to be

�(S) =
∑

σ∈S, τ �∈S μG,β(σ )P(σ, τ )

μG,β(S)
(4.3)

The following lemma provides a routine conductance bound (e.g., [38, Theorem 7.3]).
For the sake of completeness the proof is included in Appendix A.

Lemma 4.2. Let G = (V, E) be a graph. For any S ⊆ [q]V such that μG(S) > 0 and
any integer t ≥ 0 we have

∥
∥μG,S Pt − μG,S

∥
∥
T V ≤ t�(S).

Proof of Theorem 1.1. We prove the statement for the pairing model G, the result for
G follows immediately by contiguity. Let ε′ > ε > 0 and ζ > 0 be small constants
such that Lemma 4.1 applies, and let G ∼ G be a graph satisfying the lemma. Set for
convenience μ = μG,β ; we consider first the metastability of Sf(ε) for β > βu .

Since Glauber updates one vertex at a time it is impossible in one step to move from
σ ∈ Sf(ε) to τ ∈ [q]n\Sf(ε′), i.e., P(σ, τ ) = 0, and therefore

�
(
Sf(ε)

) =
∑

σ∈Sf (ε)
∑

τ /∈Sf (ε) μ(σ )P(σ, τ )

μ
(
Sf(ε)

) =
∑

σ∈Sf (ε)
∑

τ∈Sf (ε′)\Sf (ε) μ(σ )P(σ, τ )

μ
(
Sf(ε)

)

By reversibility of Glauber, for any σ, τ ∈ [q]n we have μ(σ)P(σ, τ ) = μ(τ)P(τ, σ ),
and therefore

∑

σ∈Sf (ε)

∑

τ∈Sf (ε′)\Sf (ε)
μ(σ )P(σ, τ )

=
∑

τ∈Sf (ε′)\Sf (ε)
μ(τ)

∑

σ∈Sf (ε)
P(τ, σ ) ≤

∑

τ∈Sf (ε′)\Sf (ε)
μ(τ) = μ

(
Sf(ε

′)\Sf(ε)
)
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Hence, �
(
Sf(ε)

) ≤ μ
(
Sf (ε′)\Sf (ε)

)

μ
(
Sf (ε)

) = Zε′
f (G)−Zε

f (G)

Zε
f (G)

≤ e−ζn , where the last inequality

follows from the fact that G satisfies Lemma 4.1. Lemma 4.2 therefore ensures that for
all nonnegative integers T ≤ eζn/3

∥
∥
∥μ
( · | Sf(ε)

)
PT − μ

( · | Sf(ε)
)∥∥
∥
T V

≤ T · �(Sf) ≤ e−2ζn/3. (4.4)

Now, consider the Glauber dynamics (σt )t≥0 launched from σ0 drawn from μG,β,Sf (ε),
and denote by Tf = min {t > 0 : σt /∈ Sf(ε)} its escape time from Sf(ε). Observe that
σt has the same distribution as μ( · | Sf(ε))Pt , so (4.4) implies that for all nonnegative
integers T ≤ eζn/3

∣
∣P [σT ∈ Sf(ε)] − 1

∣
∣ < e−2ζn/3, or equivalently P [σT /∈ Sf(ε)] ≤ e−2ζn/3.

By a union bound over the values of T , we therefore obtain that P[Tf ≤ eζn/3] ≤ e−ζn/3,
thus proving that Sf(ε) is a metastable state for β > βu . Analogous arguments show that
Sp(ε) is a metastable state for β < βh .

The slow mixing of Glauber for β > βu follows from the metastability of Sf(ε). In
particular, from Theorem 1.3 we have that

∥
∥μ
( · | Sf(ε)

)− μ
∥
∥ ≥ 3/5 and therefore,

from (4.4),
∥
∥μ
( · | Sf(ε)

)
PT − μ

∥
∥ ≥ 1/2, yielding that the mixing time is e�(n).

The final ingredients to establish Theorem 1.2 are the following results, bounding the
probability that Swendsen–Wang escapes Sp(ε) and Sf(ε). More precisely, for a graph
G, a configuration σ ∈ [q]n , and S ⊆ [q]n , let PG

SW (σ → S) denote the probability that
after one step of SW on G starting from σ , we end up in a configuration in S.

The following proposition shows that for almost all pairs (G, σ ) from the para-
magnetic planted distribution

(
Ĝ
(
σ̂ p(ε)

)
, σ̂ p(ε)

)
, the probability that SW leads to a

configuration in the paramagnetic phase, slightly enlarged, is 1 − e−�(n).

Proposition 4.3. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all
sufficiently small constants ε′ > ε > 0, there exists constant η > 0 such that with
probability 1−e−ηn over the planted distribution (G, σ ) ∼ (Ĝ(σ̂ p(ε)

)
, σ̂ p(ε)

)
, it holds

that PG
SW

(
σ → Sp(ε′)

) ≥ 1 − e−ηn.

The following establishes the analogue of the previous proposition for the ferro-
magnetic planted distribution

(
Ĝ
(
σ̂ f(ε)

)
, σ̂ f(ε)

)
. Note here that SW might change the

dominant colour due to recolouring step, so, for ε > 0, we now need to consider the
set of configurations S̃f(ε) that consists of the ferromagnetic phase Sf(ε) together with
its q − 1 permutations, and the probability that SW escapes from it, starting from a
ferromagnetic state.

Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all
sufficiently small constants ε′ > ε > 0, there exists constant η > 0 such that with
probability 1− e−ηn over the planted distribution (G, σ ) ∼ (Ĝ(σ̂ f(ε)

)
, σ̂ f(ε)

)
, it holds

that PG
SW

(
σ → S̃f(ε′)

) ≥ 1 − e−ηn.

Proof of Theorem 1.2. We prove the statement for the pairing model G, the result forG
follows immediately by contiguity. We consider first the metastability for the ferromag-
netic phase when β > βu . Let ε′ > ε > 0 and η, ζ > 0 be small constants such that
Lemma 4.1 and Propositions 4.3, 4.4 all apply. Let θ = 1

10 min{η, ζ }.
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Let Q be the set of d-regular (multi)graphs that satisfy

Z ε
f (G) ≥ e−θn

E[Z ε
f (G)] and Z ε′

f (G) ≤ (1 + e−ζn)Z ε
f (G),

and note that by Item (2) of Lemma 4.1 it holds that P[G ∈ Q] = 1 − o(1). Moreover,
let Q′ be the set of d-regular (multi)graphs G such that the set of configurations where
SW has conceivable probability of escaping S̃f(ε′) has small weight, i.e., the set

SBad(G) = {σ ∈ S̃f(ε)
∣
∣ PG

SW

(
σ → S̃f(ε

′)
)

< 1 − e−ηn}

has aggregate weight ZBad(G) = ∑
σ∈SBad(G) e

βH(G) less than e−θn Z ε
f (G). We claim

that for a d-regular graph G such that G ∈ Q∩Q′, it holds that �SW
(
S̃f(ε)

) ≤ 10e−ηn ,
where �SW (·) denotes the bottleneck ratio for the SW-chain. Indeed, we have

�SW
(
S̃f(ε)

) =
∑

σ∈S̃f (ε) μ(σ )PG
SW (σ → [q]n\S̃f(ε))

μ
(
S̃f(ε)

)

≤ μ
(
SBad(G)

)
+
∑

σ∈S̃f (ε)\SBad(G)
μ(σ )PG

SW (σ → [q]n\S̃f(ε))
μ
(
S̃f(ε)

)

We can decompose the sum in the numerator of the last expression as

∑

σ∈S̃f (ε)\SBad(G)

μ(σ )PG
SW
(
σ → [q]n\S̃f (ε′)

)
+

∑

σ∈S̃f (ε)\SBad(G)

μ(σ )PG
SW
(
σ → S̃f (ε

′)\S̃f (ε)
)
.

For σ ∈ S̃f(ε)\SBad(G), we have PG
SW

(
σ → [q]n\S̃f(ε′)

) ≤ e−ηn and therefore the first
sum is upper bounded by e−ηnμ

(
S̃f(ε)

)
. The second sum, using the reversibility of the

SW chain, is upper bounded by μ
(
S̃f(ε′)\S̃f(ε)

)
. Using these, we therefore have that

�SW
(
S̃f(ε)

) ≤ μ
(
SBad(G)

)
+ e−ηnμ

(
S̃f(ε)

)
+ μ
(
S̃f(ε′)\S̃f(ε)

)

μ
(
S̃f(ε)

) ≤ 10e−θn,

since
μ
(
SBad(G)

)

μ
(
S̃f (ε)

) = ZBad(G)
qZε

f (G)
≤ e−θn from the assumption G ∈ Q′ and μ

(
S̃f (ε′)\S̃f (ε)

)

μ
(
S̃f (ε)

) =
q(Zε′

f (G)−Zε
f (G))

qZε
f (G)

≤ e−θn from Lemma 4.1. By arguments analogous to those in the proof

of Theorem 1.1, we have that S̃f(ε) is a metastable state for graphs G ∈ Q ∩ Q′.
Therefore, to finish the metastability proof for the random graph, it suffices to show that
P[G ∈ Q ∩ Q′] = 1 − o(1).

To do this, let G(n, d) be the set of all multigraphs that can be obtained in the
pairing model and �d,β(n) = {

(G, σ )
∣
∣G ∈ G(n, d), σ ∈ S̃f(ε)

}
. Let E be the pairs

(G, σ ) ∈ �d,β(n) where one step of SW starting from G, σ stays within S̃f(ε′) with
probability 1 − e−�(n), more precisely

E =
{
(G, σ ) ∈ �d,β(n)

∣
∣ PG

SW

(
σ → S̃f(ε

′)
) ≥ 1 − e−ηn

}
.
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The aggregate weight corresponding to pairs (G, σ ) that do not belong to E can be
lower-bounded by

∑

(G,σ )∈�d,β\E
eβHG (σ ) ≥

∑

(G,σ )∈�d,β\E;
G∈Q\Q′

eβHG (σ )

=
∑

G∈Q\Q′

∑

σ∈�Bad(G)

eβHG (σ ) ≥ e−θn
∑

G∈Q\Q′
Z ε
f (G).

For graphs G ∈ Q we have Z ε
f (G) ≥ e−θn

E[Z ε
f (G)], and therefore

∑

(G,σ )∈�d,β\E
eβHG (σ ) ≥ e−2θn

∣
∣Q\Q′∣∣E

[
Z ε
f (G)

] = e−2θn
∣
∣Q\Q′∣∣

∑
(G,σ )∈�d,β

eβHG (σ )

∣
∣G(n, d)

∣
∣

(4.5)
From the definition of

(
Ĝ
(
σ̂ f(ε)

)
, σ̂ f(ε)

)
, cf. (3.1),(3.2), observe that

∑
(G,σ )∈�d,β\E eβHG (σ )

∑
(G,σ )∈�d,β

eβHG (σ )
= P

[(
Ĝ(σ̂ f(ε)), σ̂ f(ε)

) ∈ �d,β\E] ≤ e−ηn ≤ e−10θn,

where the penultimate inequality follows from Proposition 4.4 and the last from the
choice of θ . Combining this with (4.5), we obtain P[G ∈ Q\Q′] = o(1). Since P[G ∈
Q] = 1 − o(1) from Lemma 4.1, it follows that

P[G ∈ Q ∩ Q′] ≥ P[G ∈ Q] − P[G ∈ Q\Q′] ≥ 1 − o(1).

This concludes the proof for the metastability of the ferromagnetic phase S̃f(ε) when
β > βu .

A similar bottleneck-ratio argument shows that Sp(ε) is a metastable state for β <

βh . The slow mixing of SW for β ∈ (βu, βh) follows from the metastability of S̃f(ε)
when β ∈ (βu, βp] and the metastability of Sp(ε) when β ∈ [βp, βh). In particular, let
S ∈ {S̃f(ε), Sp(ε)} be such that

∥
∥μ
( · | S)− μ

∥
∥ ≥ 1/2, then Lemma 4.2 gives that for

T = e�(n), it holds that
∥
∥μ
( · | S)PT

SW − μ
∥
∥ ≥ 1/2 − 1/10, yielding that the mixing

time is e�(n).

5. Remaining Proofs for Swendsen–Wang

To analyse the Swendsen–Wang dynamics on the d-regular random graph G, we will
need to consider the component structure after performing edge percolation with prob-
ability p ∈ (0, 1). Key quantities we will be interested in are the size of the largest
compoment, which will allow us to track whether we land in the paramagnetic or ferro-
magnetic phases, as well as the sum of squares of component sizes; the first will signify
whether we land in the paramagnetic or ferromagnetic phases, and the second will allow
us to track the random fluctuations caused by the colouring step of SW. Both of these
ingredients have been worked out in detail for the mean-field case; here the random
regular graph makes all the arguments more involved technically, even for a single iter-
ation (recall that the reason it suffices to analyse a single iteration is because of the quiet
planting idea of Sects. 3 and 4).
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5.1. Percolation on random regular graphs. For a graphG and p ∈ (0, 1), we denote by
Gp the random graph obtained by keeping every edge of G with probability p. Working
in the configuration model, we will denote by G p := G p(n, d) the multigraph obtained
by first choosing a randommatching of the points in [n]×[d], then keeping each edge of
the matching with probability p, and finally projecting the edges onto vertices in [n]. It
will also be relevant to consider themultigraph G̃ p := G̃ p(n, d)where in the second step
we instead keep a random subset of exactly m = [pdn/2] edges. To help differentiate
between the twomodels, we will refer to G p as the binomial-edge model, whereas to G̃ p
as the exact-edge model. Note that for an n-vertex multigraph G of maximum degree d
with m edges, the two models are related by

P
[
G p = G | E(G p) = m

] = P[G̃ p̃ = G], where p̃ = 2m/nd.

see for example [25, Lemma 3.1]. Based on this, it is standard to relate the two models
for events that are monotone under edge inclusion.5

Lemma 5.1. Let d ≥ 3 be an integer and p∗ ∈ (0, 1) be a constant. There exists a
constant c > 0 such that, for any constant δ ∈ (0, 1), for any increasing property E and
any decreasing property F on multigraphs of maximum degree d, it holds that

1
2P[G̃ p∗−δ ∈ E] ≤ P[G p∗ ∈ E] ≤ P[G̃ p∗+δ ∈ E] + e−cδ2n,

1
2P[G̃ p∗+δ ∈ F] ≤ P[G p∗ ∈ F] ≤ P[G̃ p∗−δ ∈ F] + e−cδ2n .

Proof. Let A be the event that E(G p∗) has (p∗ ± δ)dn/2 edges. By standard Chernoff

bounds we obtain that there exists a constant c > 0 such that P(A) ≥ 1 − e−cδ2n .
Further, conditioned on |E(G p∗)| = pdn/2 for some p, the graph G p∗ has the same
distribution as G̃ p, and therefore, using the fact that E is an increasing property, we
have that P[G̃ p∗+δ ∈ E] ≥ P[G̃ p∗ ∈ E | A] ≥ P[G̃ p∗−δ ∈ E], and the inequalities are
reversed for F , yielding the lemma.

It is a classical result [4] that for percolation on random d-regular graphs there is a
phase transition at p = 1/(d−1)with regards to the emergence of a giant component, see
also [34,36,44,45]. To prove Propositions 4.3 and 4.4, we will need to control the sizes
of the components in the strictly subcritical and supercritical regimes with probability
bounds that are exponentially close to 1, which makes most of these results not directly
applicable.

For a graph G and an integer i ≥ 1, we denote by Ci (G) the i-th largest component
of G (in terms of vertices); |Ci (G)| and |E(Ci (G))| denote the number of vertices and
edges in Ci (G). The following proposition gives the desired bound on the component
sizes in the subcritical regime.

Proposition 5.2. Let d ≥ 3 be an integer and p0 < 1/(d − 1) be a positive constant.
There exists constants c, M > 0 such that the following holds for all integers n. For any
positive p < p0, with probability at least 1− e−cn over the choice of either G ∼ G p or
G ∼ G̃ p, it holds that

∑
i≥1 |Ci (G)|2 ≤ Mn.

5 A set of multigraphs E is an increasing (resp. decreasing) property if for any G = (V, E) ∈ E , we have
that G′ = (V, E ′) ∈ E for all G′ with E ′ ⊆ E (resp. E ⊆ E ′).
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Proof. The proof is fairly standard and actually holds for percolation on an arbitrary
graph of maximum degree d. We argue initially for the binomial-edge case G ∼ G p.
Consider the process where we consider the vertices of G in an arbitrary order, and
we explore by breadth-first-search the components of those vertices that have not been
discovered so far. Suppose that we have already explored the components C1, . . . , Ck
and we are exploring the component Ck+1 starting from vertex v. Since the graph has
maximum degree d, the size of Ck+1 is stochastically dominated above by a branching
process where the root has offspring distribution Bin(d, p0) and every other vertex has
Bin(d − 1, p0). Since p0 < 1/(d − 1), the latter process is subcritical and therefore
there exist constants c′, K > 0 (depending only on d and p0) such that for all t > K , it
holds that

P
[|Ck+1| > t | C1, . . . , Ck

] ≤ e−c′t . (5.1)

Wehave that
∑

i≥1 |Ci (G)|2 =∑k≥1 |Ck |2 ≤ K 2n+
∑

k≥1 |Ck |21{Ck ≥ K }. From (5.1),
we have that the sum in the last expression is stochastically dominated by the sum of
n i.i.d. random variables with exponential tails, and therefore there exists constants
c, M ′ > 0, depending only on p0, such that with probability 1 − e−cn the sum is
bounded by M ′n, yielding the result with M = M ′ + K 2. The exact-edge case G ∼ G̃ p

follows by applying Lemma 5.1, noting that the graph property
∑

i≥1 |Ci (G)|2 ≤ Mn
is decreasing under edge-inclusion.

The supercritical regime is more involved since we need to account for the giant
component using large deviation bounds. While there is not an off-the-self result we can
use, we can adapt a technique by Krivelevich et al. [36] that was developed in a closely
related setting (for high-girth expanders, refining previous results of Alon, Benjamini
and Stacey [4]).

For d ≥ 3 and p ∈ ( 1
d−1 , 1), let φ = φ(p) ∈ (0, 1) be the probability that a

branching process with offspring distribution Bin(d − 1, p) dies out, i.e., φ(p) ∈ (0, 1)
is the (unique) solution of

φ = (pφ + 1 − p)d−1, and define χ = χ(p), ψ = ψ(p) from χ = 1 − (pφ + 1 − p)d ,

ψ = 1
2dp(1 − φ2). (5.2)

In Appendix B, we show the following adapting the argument from [36].

Lemma 5.3. Let d ≥ 3 be an integer, p ∈ ( 1
d−1 , 1) be a real, and χ = χ(p), ψ = ψ(p)

be as in (5.2). Then, for any δ > 0, with probability 1− e−�(n) over the choice of either
G ∼ G p or G ∼ G̃ p, it holds that

|C1(G)| = (χ ± δ)n, |E(C1(G))| = (ψ ± δ)n.

With this and a bit of algebra, we can derive the analogue of Proposition 5.2 in the
supercritical regime.

Proposition 5.4. Let d ≥ 3 be an integer. Consider arbitrary p0 ∈ ( 1
d−1 , 1) and let

χ0 = χ(p0) be as in (5.2). Then, for all δ > 0, there exist ε, c, M > 0, such that
the following holds. For all sufficiently large integers n and any p = p0 ± ε, with
probability at least 1− e−cn over the choice of either G ∼ G p or G ∼ G̃ p, it holds that
|C1(G)| = (χ0 ± δ)n and

∑
i≥2 |Ci (G)|2 ≤ Mn.
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To prove Proposition 5.4, the following inequality between χ and ψ will be useful;
it will allow us to conclude that once we remove the giant component, the remaining
components are in the subcritical regime.

Lemma 5.5. Let d ≥ 3 be an integer and p ∈ ( 1
d−1 , 1). Then,

2( 12 dp−ψ)

d(1−χ)
< 1

d−1 .

Proof. Using (5.2), we have

d(1−χ)
d−1 − 2( 12dp − ψ) = d

d−1 (pφ + 1 − p)d − dpφ(pφ + 1 − p)d−1

= d
d−1 (pφ + 1 − p)d−1(1 − p − (d − 2)pφ),

so it suffices to show that 1 − p − (d − 2)pφ > 0. Let g(y) = y − (py + 1 − p)d−1

and note that g(φ) = 0. Then, we have that g(0) < 0 and g(1) = 0. Moreover,
g′(y) = 1 − (d − 1)p(py + 1 − p)d−2 and hence g′(1) < 0. It follows that g(y) > 0
for y ↑ 1, and therefore there is y ∈ (0, 1) such that g(y) = 0. Note that g is strictly
concave and therefore cannot have three zeros in the interval (0, 1], so y = φ, and
therefore g′(φ) > 0. It remains to observe that g′(φ) = 1−p−(d−2)pφ

pφ+1−p , from where the
desired inequality follows.

Proof of Proposition 5.4. Let ψ0 = ψ(p0) and consider an arbitrarily small δ > 0.
Since χ(p) andψ(p) are continuous functions of p in the interval ( 1

d−1 , 1), we can pick
ε > 0 so that, for all p = p0±ε it holds that d|p− p0|, |χ(p)−χ0|, |ψ(p)−ψ0| ≤ δ/10

and, by Lemma 5.5,
2( 12 dp−ψ)+4δ
d(1−χ)−δ

< 1
d−1 − δ. Consider now an arbitrary p = p0 ± ε

and consider random G sampled from either of the distributions G p or G̃ p. Using
the monotonicity of the events {|C1(G)| ≥ t}, {|E(C1(G))| ≥ t}, we obtain from
Lemmas 5.1 and 5.3 (as well as a standard Chernoff bound for the number of edges in
G) that there exists a constant c′ > 0, depending only on d, p0, ε (but not on p), such that
with probability at least 1−e−c′n over the choice ofG it holds that |E(G)| = 1

2dpn±δn,
|C1(G)| = (χ0 ± δ)n, and |E(C1(G))| = (ψ0 ± δ)n. Let E denote this event.

Note that conditioned on |C1(G)|, |E(C1(G))| and |E(G)|, the remaining compo-
nents of G are distributed according to those in the exact-edge model G̃ p̃(ñ, d) with
ñ = n − |C1(G)| and p̃ = 2

dñ (|E(G)| − |E(C1(G))|), conditioned on the event F
that all components have size less than |C1(G)|. Hence, conditioned on E , we have that
p̃ ≤ 2( 12 dpn−ψn)+4δn

2(n−χn)−δn < 1
d−1 − δ where the last inequality follows from the choice of ε,

i.e., G̃ p̃(ñ, d) is in the subcritical regime. Therefore, the probability of F is 1− e−�(n)

and hence the conditioning on F when considering G̃ p̃(ñ, d) can safely be ignored.
From Proposition 5.2, we have that there exist constants M, c′′ > 0, depending only on
d and p0, so that with probability at least 1 − e−c′′n over the choice of G ′ ∼ G̃ p̃(ñ, d),
it holds that

∑
i≥1 |Ci (G ′)|2 ≤ Mñ. Therefore, we have

∑
i≥2 |Ci (G)|2 ≤ Mn.

5.2. Percolation in the planted model. Recall the edge-empirical distributions ρG,σ , ρp,
ρf , cf. (2.4). The following lemma will allow us to deduce the regime (subcritical or su-
percritical) that dictates the percolation step of SWwhen we start from the paramagnetic
and ferromagnetic phases.
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Lemma 5.6. For β < βh, any colour s ∈ [q] in the paramagnetic phase satisfies

(1 − e−β)
ρp(s,s)
νp(s)

< 1
d−1 . For β > βu, any colour s ∈ [q] in the ferromagnetic phase

satisfies (1 − e−β)
ρf (s,s)
νf (s)

= (eβ−1)μf (s)
1+(eβ−1)μf (s)

; this is larger than 1
d−1 for the colour s = 1,

and less than 1
d−1 for all the other q − 1 colours.

Proof. For the paramagnetic phase and any colour s ∈ [q], it follows from (2.4) that

νp(s) = 1
q , ρp(s, s) = eβ

qeβ+(q2−q)
,

so (1 − e−β)
ρp(s,s)
νp(s)

< 1
d−1 is equivalent to (1 − e−β) eβ

eβ+q−1
< 1

d−1 which is true iff

β < βh , since βh = log(1 + q
d−2 ).

For the ferromagnetic phase, recall from Sect. 1.3 that x = μf(1) is the largest
number in the interval (1/q, 1) that satisfies

x = (1 + (eβ − 1)x)d−1

(1 + (eβ − 1)x)d−1 + (q − 1)
(
1 + (eβ − 1) 1−x

q−1

)d−1 . (5.3)

Let t = 1+(eβ−1)x

1+(eβ−1) 1−x
q−1

and note that t > 1 since x > 1/q and β > 0. Moreover, (5.3) can

be written as x = td−1

td−1+(q−1)
, and hence td−1 = (q−1)x

1−x . Then, it follows from (2.4) that
for colour s = 1 we have

νf(1) = td

td + (q − 1)
= t x

t x + 1 − x
, ρf(1, 1) = eβx2

1 + (eβ − 1)
(
x2 + (1−x)2

q−1

)

= eβ t x2

(t x + 1 − x)
(
1 + (eβ − 1)x

) , (5.4)

whereas for colours s �= 1 we have

νf(s) = 1

td + (q − 1)
=

1−x
q−1

t x + 1 − x
, ρf(s, s) = eβ

( 1−x
q−1

)2

1 + (eβ − 1)(x2 + (1−x)2

q−1 )

= eβ t
( 1−x
q−1

)2

(t x + 1 − x)
(
1 + (eβ − 1)x

) .

Using these expressions, it is amatter of fewmanipulations to verify that (1−e−β)
ρf (s,s)
νf (s)

=
(eβ−1)μf (s)

1+(eβ−1)μf (s)
for all colours s ∈ [q].

Using this, for s = 1, we have that the inequality (1−e−β)
ρf (1,1)
νf (1)

> 1
d−1 is equivalent

to (eβ − 1)x > 1
d−2 . Plugging x = td−1

td−1+(q−1)
into t = 1+(eβ−1)x

1+(eβ−1) 1−x
q−1

and solving for

(eβ −1) yields that eβ −1 = (t−1)(td−1+q−1)
td−1−t

. Therefore the desired inequality becomes

(t − 1)td−1

td−1 − t
> 1

d−2 , or equivalently (d − 2)td−1 − (d − 1)td−2 + 1 > 0,
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which is true for any t > 1. For a colour s �= 1, the inequality (1−e−β)
ρf (s,s)
νf (s)

< 1
d−1 can

be proved analogously. We have in particular the equivalent inequality (eβ − 1) 1−x
q−1 <

1
d−2 , which further reduces to

t−1
td−1−t

< 1
d−2 ; the latter again holds for any t > 1.

5.3. Tracking one step of SW—Proof of Propositions 4.3 and 4.4.

Proposition 4.3. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all
sufficiently small constants ε′ > ε > 0, there exists constant η > 0 such that with
probability 1−e−ηn over the planted distribution (G, σ ) ∼ (Ĝ(σ̂ p(ε)

)
, σ̂ p(ε)

)
, it holds

that PG
SW

(
σ → Sp(ε′)

) ≥ 1 − e−ηn.

Proof. Let ε > 0 be a sufficiently small constant so that by Lemma 3.4, for any constant
δ > 0, with probability 1− e−�(n) over the choice of (G, σ ) ∼ (Ĝ(σ̂ p(ε)), σ̂ p(ε)

)
, we

have ∥
∥νσ − νp

∥
∥ ≤ δ and

∥
∥
∥ρG,σ − ρp

∥
∥
∥ ≤ δ. (5.5)

Let ε′ be an arbitrary constant such that ε′ > ε. We will show that there exists a constant
η > 0 such that for arbitrary ν andρ ∈ R(ν) satisfying

∥
∥ν − νp

∥
∥ ≤ δ and

∥
∥ρ − ρp

∥
∥ ≤ δ,

for (G, σ ) ∼ (Ĝ(σ̂ p(ε)), σ̂ p(ε)
)
, it holds that

P

[
PG
SW

(
σ → Sp(ε

′)
) ≥ 1 − e−ηn

∣
∣ νσ = ν, ρG,σ = ρ

]
≥ 1 − e−ηn (5.6)

and therefore the conclusion follows by aggregating over ν and ρ, using the law of total
probability and the probability bound for (5.5).

Choose (G, σ ) ∼ (Ĝ(σ̂ p(ε)), σ̂ p(ε)
)
conditioned on νσ = ν and ρG,σ = ρ. Observe

that Ĝ(σ ) is a uniformly randomgraph conditioned on the sizes of the vertex/edge classes
prescribed by ν, ρ. For i ≥ 1, let Ci (Gσ,SW ) be the components of G (in decreasing
order of size) starting from the configuration σ after the percolation step of the SW
dynamics with parameter p = 1− e−β , when starting from the configuration σ . We will
show that there exists a constant M > 0 such that

P

[∑

i≥1

|Ci (Gσ,SW )|2 ≤ Mn
∣
∣
∣ νσ = ν, ρG,σ = ρ

]

≥ 1 − e−�(n). (5.7)

Assuming this for the moment, for a colour s ∈ [q], let Ns be the number of vertices
with colour s ∈ [q] after the recoloring step of SW. Note that the expectation of Ns is
n/q, and whenever the event in (5.7) holds, by Azuma’s inequality we obtain that 1

n Ns

is within an additive ε′ from its expectation with probability 1 − e−�(n). By a union
bound over the q colours, we obtain (5.6).

For a colour s ∈ [q], let G(σ−1(s)) be the induced graph on σ−1(s), and note
that since G is uniformly random conditioned on ν and ρ, G(σ−1(s)) has the same
distribution as the exact-edge model H(s) ∼ G̃r̃(s)(ñ(s), d) where ñ(s) = nν(s) and

r̃(s) = ρ(s,s)
ν(s) . Percolation on this graph with parameter p is therefore closely related to

the binomial-edge model Gr(s)(ñ(s), d) with r(s) = pr̃(s). More precisely, note that
for all sufficiently small δ > 0, Lemma 5.6 guarantees that the percolation parameter
r(s) is bounded by a constant strictly less than 1/(d−1), so by Theorem 5.2 there exists
a constant M > 0 such that
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P

[∑

i≥1

|Ci (Gr(s))|2 ≤ Mñ(s)
]

≥ 1 − e−�(r̃n(s)) ≥ 1 − e−�(n). (5.8)

Note that, for any p ∈ (0, 1), the property
{
G : P

[∑
i≥1 |Ci (Gp)|2 ≤ Mn

] ≥ 1 −
e−�(n)

}
is a decreasing graph property, i.e., if G is a subgraph of G ′, we can couple the

random graphs Gp and G ′
p so that

∑
i≥1 |Ci (Gp)|2 ≤ ∑

i≥1 |Ci (G ′
p)|2. Viewing the

event in (5.8) as a property of the binomial-edge model Gr̃(s)(ñ(s), d), it follows from
Lemma 5.1 that with probability 1 − e−�(n) over the choice of the exact-edge model
H(s) ∼ G̃r̃(s)(ñ(s), d) it holds that

P

[∑

i≥1

|Ci (Hp(s))|2] ≤ Mñ(s)
]

≥ 1 − e−�(n).

Applying this for colours s = 1, . . . , q and H(s) = G(σ−1(s)), we obtain by the union
bound that with probability 1− e−�(n) over the choice of (G, σ ) ∼ (Ĝ(σ̂ p(ε)), σ̂ p(ε)

)

conditioned on νσ = ν and ρG,σ = ρ, the components of G after the percolation step
of SW satisfy (5.7), as claimed, therefore finishing the proof.

Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh) be real. Then, for all
sufficiently small constants ε′ > ε > 0, there exists constant η > 0 such that with
probability 1−e−ηn over the planted distribution (G, σ ) ∼ (Ĝ(σ̂ p(ε)

)
, σ̂ p(ε)

)
, it holds

that PG
SW

(
σ → Sp(ε′)

) ≥ 1 − e−ηn.

Proof of Proposition 4.4. The first part of the proof is analogous to that of Theorem 4.3.
Let ε > 0 be a sufficiently small constant, so that by Lemma 3.5, for any constant δ > 0,
with probability 1 − e−�(n) over the choice of (G, σ ) ∼ (Ĝ(σ̂ f(ε)), σ̂ f(ε)

)
, we have

∥
∥νσ − νf

∥
∥ ≤ δ and

∥
∥
∥ρG,σ − ρf

∥
∥
∥ ≤ δ. (5.9)

We will show that there exists a constant η > 0 such for arbitrary ν and ρ ∈ R(ν)

satisfying ‖ν − νf‖ ≤ δ and ‖ρ − ρf‖ ≤ δ, for (G, σ ) ∼ (
Ĝ(σ̂ f(ε)), σ̂ f(ε)

)
it holds

that

P

[
PG
SW

(
σ → S̃f(ε

′)
) ≥ 1 − e−ηn

∣
∣ νσ = ν, ρG,σ = ρ

]
≥ 1 − e−ηn (5.10)

and therefore the conclusion follows by aggregating over ν and ρ.
Choose (G, σ ) ∼ (

Ĝ(σ̂ f(ε)), σ̂ f(ε)
)
conditioned on νσ = ν and ρG,σ = ρ, and

observe once again that Ĝ(σ ) is uniformly random conditioned on ν, ρ. For i ≥ 1,
let Ci (Gσ,SW ) be the components of G (in decreasing order of size) starting from the
configuration σ after the percolation step of the SW dynamics with parameter p =
1 − e−β , when starting from the configuration σ . We will show that there exists a
constant M > 0 such that

P

[
C1(Gσ,SW ) = n

(
1 − q(1−νf (1))

q−1

)± ε′n,
∑

i≥2

|Ci (Gσ,SW )|2

≤ Mn
∣
∣
∣ νσ = ν, ρG,σ = ρ

]
≥ 1 − e−�(n). (5.11)

We first complete the proof of the theorem assuming this for the moment, and return
to the proof of (5.11) later. In particular, assume w.l.o.g. that C1(Gσ,SW ) gets colour
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1. For a colour s ∈ [q], let Ns be the number of vertices outside C1(Gσ,SW ) that get
colour s ∈ [q] after the recoloring step of SW.Note that in the final configuration after the
recolouring step, the number of verticeswith colour s ∈ [q] is Ns+1{s = 1}|C1(Gσ,SW )|.
Now, the expectation of Ns is

n−|C1(Gσ,SW )|
q , and whenever the event in (5.7) holds, by

Azuma’s inequality we obtain that 1
n Ns is within an additive ε′ from its expectation

with probability 1 − e−�(n). Therefore, by a union bound over the q colours, the Potts
configuration obtained after one step of SWbelongs to S̃f (ε′)with probability 1−e−�(n),
which establishes the claim in (5.10).

It remains to prove (5.11). As in the proof of Proposition 4.3, for a colour s ∈ [q],
let G(σ−1(s)) be the induced graph on σ−1(s), and note that G(σ−1(s)) has the same
distribution as the exact-edge model H(s) ∼ G̃r̃(s)(ñ(s), d) where ñ(s) = nν(s) and

r̃(s) = ρ(s,s)
ν(s) . By considering again the binomial-edgemodel Gr(s)(ñ(s), d)with r(s) =

pr̃(s), and using the inequalities in Lemma 5.6 for the ferromagnetic phase, we obtain
that for all colours s �= 1 the parameter r(s) is bounded by a constant strictly less
than 1

d−1 and hence the model is in the subcritical regime. In fact, by the same line of
arguments as in Theorem 4.3, we therefore have that there exists a constant M0 > 0
(depending only on d, β but not on ν orρ) such that, for all colours s �= 1with probability
1 − e−�(n) over the choice of H(s) ∼ G̃r̃(s)(ñ(s), d), it holds that

P

[∑

i≥1

|Ci (Hp(s))|2 ≤ M0ñ(s)
]

≥ 1 − e−�(n) (5.12)

By contrast, for s = 1, the binomial-edge model Gr(s)(ñ(s), d) is in the supercritical

regime since r(s) = rf ± ε where rf = (1 − e−β)
ρf (1,1)
νf (1)

= (eβ−1)μf (1)
1+(eβ−1)μf (1)

is a constant

larger than 1
d−1 (by Lemma 5.6). Let χf = χ(rf) be as in (5.2), so by Proposition 5.4

there exists a constant M1 > 0 such that

P

[∣
∣C1(Gr(s))

∣
∣ = ñ(s)(χf ± ε′

2 )
]
, P

[∑

i≥2

|Ci (Gr(s))|2 ≤ M1ñ(1)

]

≥ 1 − e−�(n).

(5.13)
We will shortly show that

1 − q(1 − νf(1))

q − 1
= χfνf(1) or equivalently χf = qνf(1) − 1

(q − 1)νf(1)
. (5.14)

Assuming this for now, note that since |C1(G)| and P
[∑

i≥2 |Ci (Gp)|2
]
are monotone

under edge-inclusion, we can again use Lemma 5.1 to go back to the percolation model
for the colour s = 1. So, we conclude that with probability 1 − e−�(n) over the choice
of H(s) ∼ G̃r̃(s)(ñ(s), d), it holds that

P

[
∣
∣C1(Hp(s))

∣
∣ = ñ(s)(χf ± ε′),

∑

i≥1

|Ci (Hp(s))|2 ≤ M1ñ(s)

]

≥ 1 − e−�(n).

Combining (5.12) and (5.13) with a union bound over the q colours, we obtain (5.11)
with M = maxM0, M1.
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It only remains to prove (5.14). Recall from (5.4) that νf(1) = td

td+(q−1)
where

t = 1+(eβ−1)x

1+(eβ−1) 1−x
q−1

and x = μf(1). So, χf = qνf (1)−1
(q−1)νf (1)

is equivalent to showing that

χf = 1 − (1/t)d . (5.15)

Now, recall from (5.2) that χf = 1 − (1 − rf + rfφf
)d , where φf = φ(rf). So (5.15)

reduces to showing that

1/t = 1 − rf + rfφf ,which using t = 1+(eβ−1)x

1+(eβ−1) 1−x
q−1

and rf = (eβ−1)x
1+(eβ−1)x

is equivalent to φf = 1−x
(q−1)x . (5.16)

From (5.2), y = φf is the unique solution in (0, 1) of the equation

y = (1 − rf + rf y
)d−1

, (5.17)

and note that 1−x
(q−1)x ∈ (0, 1) since x > 1/q. So, to prove the equality φf = 1−x

(q−1)x in

(5.16), it suffices to show that setting y = 1−x
(q−1)x satisfies (5.17). This follows from the

fact that x = μf(1) satisfies the Belief propagation equations; in particular, from (5.3)
we have

x = (1 + (eβ − 1)x)d−1

(1 + (eβ − 1)x)d−1 + (q − 1)
(
1 + (eβ − 1) 1−x

q−1

)d−1 ,

from which it follows that y = 1−x
(q−1)x =

(
1+(eβ−1)x)

1+(eβ−1) 1−x
q−1

)d−1 = (1 − rf + rf y
)d−1. This

finishes the proof of (5.14) and therefore the proof of Proposition 4.4.

Funding A. Coja-Oghlan supported by DFG CO 646/3 and 646/4. J.B. Ravelomanana supported by DFG
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A. Proof of Lemma 4.2

Lemma 4.2. Let G = (V, E) be a graph. For any S ⊆ [q]V such that μG(S) > 0 and
any integer t ≥ 0 we have

∥
∥μG,S Pt − μG,S

∥
∥
T V ≤ t�(S).

Proof. We adapt the argument from [38, proof of Theorem 7.3]. For σ, τ ∈ [q]V and
A, B ⊆ [q]V let

Q(σ, τ ) = μG(σ )P(σ, τ ) and Q(A, B) =
∑

σ∈A,τ∈B
Q(σ, τ ).

Moreover, for a set S ⊆ [q]V , let μG,β,S = μG,β (·|S). We have

μG(S)
∥
∥μG,β,S P − μG,β,S

∥
∥
T V = μG(S)

∑

σ∈[q]Vn
μG,β,S P(σ )≥μG,β,S(σ )

(
μG,β,S P(σ ) − μG,β,S(σ )

)
.

(A.1)
Now, by definition, μG,β,S(τ ) = μG ({τ } ∩ S)/μG (S) so μG,β,S(τ ) = 0 if τ /∈ S and
μG,β,S(τ ) = μG(τ )/μG (S) otherwise. Hence,

μG(S)μG,β,S P(σ ) =
∑

τ∈[q]V
μG(S)μG,β,S(τ )P(τ, σ )

=
∑

τ∈S
μG(τ )P(τ, σ ) ≤

∑

τ∈[q]V
μG(τ )P(τ, σ ) = μG(σ ) (A.2)

where the last equality in (A.2) holds because μG is the stationary distribution. Next,
dividing (A.2) through by μG(S) and using the fact that μG,β,S(τ ) = μG(τ )/μG (S)

for τ ∈ S, we have
μG,β,S P(τ ) ≤ μG,β,S(τ ) for τ ∈ S. (A.3)

Furthermore, since μG,β,S(τ ) = 0 for τ ∈ Sc,

μG,β,S P(τ ) ≥ μG,β,S(τ ) = 0 for τ ∈ Sc. (A.4)

Combining (A.3), (A.4) and again the fact that μG,β,S(σ ) = 0 for σ ∈ Sc we see that
Equation (A.1) becomes

μG(S)
∥
∥μG,β,S P − μG,β,S

∥
∥
T V =

∑

σ∈Sc
μG(S)μG,β,S P(σ ). (A.5)

Once more, since μG,β,S(τ ) = 0 if τ ∈ Sc and μG,β,S(τ ) = μG(τ )/μG(S) if τ ∈ S we
have

∑

σ∈Sc
μG(S)μG,β,S P(σ ) = ∑

σ∈Sc
∑

τ∈S
μG(S)μG,β,S(τ )P(τ, σ )

= ∑

σ∈Sc
∑

τ∈S
μG(τ )P(τ, σ ) = Q(S, Sc) (A.6)

Combining (A.5) and (A.6), we obtain

μG(S)
∥
∥μG,β,S P − μG,β,S

∥
∥
T V = Q(S, Sc), and hence

∥
∥μG,β,S P − μG,β,S

∥
∥
T V = �(S, Sc).
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In addition, for any u ≥ 0, it is easy to see that we have
∥
∥
∥μG,β,S P

u+1 − μG,β,S P
u
∥
∥
∥
T V

≤ ∥∥μG,β,S P − μG,β,S
∥
∥
T V = �(S, Sc).

Therefore, the result follows using the triangle inequality on the telescoping sum

μG,β,S P
t − μG,β,S =

t−1∑

u=0

μG,β,S P
u+1 − μG,β,S P

u .

B. Proof of Lemma 5.3

The proof follows closely the approach in [36] that was carried out for high-girth ex-
panders. While the random regular graph is an expander itself, it contains a few small
cycles and we only need to adapt the argument in order to account for their presence.

Lemma 5.3. Let d ≥ 3 be an integer, p ∈ ( 1
d−1 , 1) be a real, and χ = χ(p), ψ = ψ(p)

be as in (5.2). Then, for any δ > 0, with probability 1− e−�(n) over the choice of either
G ∼ G p or G ∼ G̃ p, it holds that

|C1(G)| = (χ ± δ)n, |E(C1(G))| = (ψ ± δ)n.

Proof. Let δ > 0 be an arbitrarily small constant, and set η = δ/(100dp). It suffices
to prove the result for the binomial-edge model G p, the result for the exact-edge model
G̃ p follows from Lemma 5.1 since |C1(G)| and |E(C1(G))| are monotone under edge-
inclusion.

Let ε ∈ (0, p) be an arbitrarily small constant to be chosen later, and let p̂ := p−ε
1−ε

;

note that ε = p− p̂
1− p̂ . We can think of the construction of G p into the following steps: (i)

sample a random d-regular graph G = (V, E) ∼ G from the pairing model, (ii) keep
each of the edges in E independently with probability p̂, to obtain the edge set Ê , (iii)
keep each of the edges in E independently with probability ε > 0, to obtain the edge
set Eε, (iv) the final graph has vertex set V and edge set Ê ∪ Eε.

For a large integer R > 0 to be chosen later, letφR be the probability that a branching
process with offspring distribution Bin(d − 1, p̂) has died out after R generations, and
let χR = 1− (1− p̂+ p̂φR)d ,ψR = 1

2d p̂
(
1−φ2

R

)
. Then, by choosing ε > 0 sufficiently

small, for all sufficiently large R we have that |χR − χ | ≤ η, |ψR − ψ | ≤ η.
It is a well-known fact that the random regular graph G = (V, E) ∼ G, i.e.,

the graph after step (i), is an expander and the local neighbourhoods of all but a small
fraction of the vertices are trees. More precisely, there is a constant ζ > 0 such that for
any integer R > 0 the following hold with probability 1 − e−�(n):

(1) the (2R)-neighbourhoods of all but ηn vertices will be isomorphic to the (2R)-
neighbourhood of the root of a d-regular tree. Let Z = Z(R) denote the set of these
vertices, and ZE = ZE (R) be the set of edges whose both endpoints are in Z ; we
have |Z | = (1 ± η)n and |ZE | = (1 ± 2η) d2 n (since we lose at most d edges for
every vertex in V \Z ).

(2) every set S ⊆ V with ηn ≤ |S| ≤ n/2 has at least ζ |S| edges with exactly one
endpoint in S.
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Item (1) follows by the Azuma-Hoeffding inequality (since for any R > 0, E[n − Z ] =
O(1) and adding or removing a single edge of G can change the (2R)-neighbourhoods
of atmost dR vertices), whereas Item (2) follows from a standard union-bound argument.
For the rest of the proof, fix G to be any d-regular graph satisfying Items (1) and (2).

Consider the graph after the percolation step (ii), i.e., the graph (V, Ê). For v ∈ Z ,
let 1v be the indicator that there is a neighbour u ∈ ∂v such that vu ∈ Ê and u has
a simple path of length R that starts from it and does not include v; if 1v = 1, we
will say that v belongs to a large component. Since v ∈ Z , it has d-neighbours whose
R-neighbourhoods look like trees, so E[1v] = 1 − (1 − p̂ + p̂φR)d = χR . For an
edge e ∈ ZE , let 1e be the indicator that e ∈ Ê and that there is a simple path of
length R starting from either of the endpoints of e which does not include e. Since
e ∈ ZE , we have E[1e] = p̂(1 − φ2

R). If 1e = 1, we will say that e belongs to a
large component. By Azuma’s inequality, the random variables X = ∑

v∈Z 1v and
Y = ∑

e∈ZE
1e are within ηn from their expectation with probability 1 − e−�(n). We

have E[X ] = (1 ± η)nχR = (χ ± 2η)n and E[Y ] = (1 ± 2η)nψR = (ψ ± 3η)n.
Therefore, after percolation step (ii), with probability 1 − e−�(n), we have a set VL of
vertices from Z and a set EL of edges from ZE which belong to large components, with
|VL | = X = (χ ± 4η)n and |EL | = Y = (ψ ± 4η)n. We also conclude that there
are at most n/R components with size ≥ R, which we denote by C1, . . . , Ck for some
k ≤ n/R.

Now consider the graph after the percolation step (iii), i.e., the graph (V, Eε).
We claim that with probability 1 − e−�(n), every partition of C1, . . . , Ck into two parts
A, B with |A|, |B| ≥ ηn has a path joining them. Indeed, by Menger’s theorem and the
expansion property in Item (2), for any disjoint vertex sets A, B with |A|, |B| ≥ ηn,
there are at least ζηn edge-disjoint paths from A to B. Of these paths, at least half of
them have at most d

ζη
edges (otherwise |Eε| > 1

2dn), so the probability that none of

them is present after the percolation step is at most (1 − εd/(ζη))ζηn/2. Since k ≤ n/R,
there are at most 22n/R ways to partition C1, . . . , Ck into A, B, so by a union bound the
probability that a partition exists is upper bounded by 22n/R(1− εd/(ζη))ζηn/2 ≤ e−�(n)

by choosing R large with respect to ε, η, ζ .
It follows from the above that the final graph (V, Ê ∪ Eε) contains a connected

component C with at least (χ − 6η)n vertices from Z ; otherwise, for the first i such that
|C1 ∪ · · · Ci | ≥ ηn, we must have |C1 ∪ · · · Ci | ≤ (χ − 5η)n, and from |C1 ∪ · · · Ck | ≥
(χ − 4η)n, we obtain two disconnected parts A, B with |A|, |B| ≥ ηn. This component
C must contain at least Y − 10dηn ≥ (ψ − 14dη)n edges since we lose at most d edges
per vertex of VL\C.

Note that the vertices in V (C) ∩ Z belong to VL and therefore |V (C) ∩ Z | ≤
|VL | ≤ (χ + 4η)n. There can be at most ηn vertices in V (C)\Z (by Item (1)). Therefore
|C| = (χ ± 6η)n. Similarly, the edges in E(C) ∩ ZE belong to EL and analogously to
above we obtain that |E(C)| = (ψ ± 14dη)n.

It only remains to show that C is the largest component with probability 1− e�(n).
For large K , an Azuma-Hoeffding bound shows that the number of vertices that belong
to components of size ≤ K in the graph (V, Ê ∪ Eε) is at least (1 − χ − 4η)n with
probability 1 − e−�(n). Therefore, via a union bound, we obtain that every component
in (V, Ê ∪ Eε) other than C has at most 20ηn vertices with probability 1 − e�(n), and
therefore is smaller than C.

This finishes the proof of Lemma 5.3.
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