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1 Introduction

Semiclassical methods represent one of the main tools to investigate non-perturbative phe-
nomena in Quantum Field Theory (QFT). Vacuum decay [1, 2], instantons [3], topological
defects and multiparticle production [4, 5] are just a partial list of the different declinations
of this methodology, but there recently came up an interesting addition [6]. That is in the
context of conformal field theory (CFT), where it was shown that operators carrying a large
conserved quantum number Q admit a universal description in terms of a finite density
superfluid state, with 1/Q controlling the semiclassical expansion. In practice the superfluid
state is described by an effective field theory (EFT) for the hydrodynamic excitations. In
particular that implies that there exists a non trivial correspondence between large charge
operators and the hydrodynamic excitations in a superfluid. While the original application
focussed on the operator spectrum, in [7] it was later shown how the methodology straight-
forwardly extends to the computation of correlators. That motivated exploring large charge
operators using instead the conformal bootstrap [8]. Perfect agreement was found, thus
remarkably showing that the superfluid phase dynamics is somewhat encapsulated in the
bootstrap constraints at large Q.

The above results define robust and universal features of generic CFTs with conserved
global symmetries. For specific CFTs that admit a definition within perturbation theory,
through the large N - or ε-expansions, the semiclassical approach is even more powerful [9–
12]. In [11, 12] focussing on the U(1) symmetric Wilson-Fisher fixed point in 4 − ε and
3− ε, this was elucidated by considering the properties of the simplest charge n operator φn.
In particular, given the coupling λ, it was found it is the combination λn that controls the
convergence of the standard Fenynman diagram approach: only for λn� 1 is perturbation
theory applicable. On the other hand, the large charge semiclassical approach, applies as long
as n� 1, for any λn. Remarkably there then exists a non-trivial overlap for the application of
the two methods, which was exploited in [11] both to validate the semiclassical computation
and to boost the available finite order Feynman loop computations.1 These results have
been exploited to investigate the analytic structure of the large charge expansion [16]
and are consistent with convexity conditions proposed as a formulation the Weak Gravity
Conjecture [17].

1Part of these results, restricted to the λn� 1 regime, also appeared in [13–15].
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Amusingly the parameter λn shares some features with the ’t Hooft coupling in
AdS/CFT [18]. In particular, λn � 1 corresponds to the regime where all the modes
beside the hydrodynamic ones are gapped and can be integrated out, very much like in
AdS/CFT the large ’t Hooft coupling allows to integrate out the string modes to obtain
the supergravity limit. Another interesting aspect of Wilson-Fisher models is that, at least
for λn � 1, the operator spectrum can be explicitly constructed both in terms of fields
and derivatives and in terms of hydrodynamic modes around the semiclassical saddle. This
clearly invites to see how the hydrodynamic Fock space structure emerges in the ordinary
construction based on the elementary fields and their derivatives. Otherwise stated, the
semiclassical approach delivers the operators spectrum, but it does so somewhat formally,
without telling concretely what these operators look like. It is the main goal of this paper
to investigate this issue, as we now explain in more detail.

1.1 ε-expansion at large charge

In this paper we will mostly consider weakly coupled CFTs, focusing on either U(1) invariant
φ4 theory in d = 4− ε

L4 = ∂φ̄∂φ+ λ

4 (φ̄φ)2 (1.1)

at the Wilson-Fisher fixed point [19]

λ∗
(4π)2 = ε

5 + 3
25ε

2 +O(ε3), (1.2)

or its φ6 cousin in d = 3− ε dimensions

L6 = ∂φ̄∂φ+ λ2

36(φ̄φ)3 (1.3)

at the Wilson-Fisher fixed point [20]

λ2
∗

(4π)2 = 3
7ε+O(ε2). (1.4)

As made evident by equations (1.1)–(1.4) both theories are in the perturbative regime
provided ε � 1. As long as the coupling λ is the only relevant parameter, observables
can be reliably computed — putting aside the usual asymptotic nature of perturbative
series — through Feynman diagrams. Things are however different when other parameters
enter the game. In particular, the correlators of operators with sufficiently large charge n,
more precisely satisfying λn & 1, are not computable via standard perturbation theory. We
believe the same is true for operators with large spin.

This situation is rather generic when large quantum numbers are present. In practice,
standard perturbation theory breaks down because large combinatoric factors render the
effective expansion parameter large (see [4, 21, 22] for a review in the context of multi-
particle scattering). Nevertheless, it is generally believed that, as long as the coupling is
small, observables involving large quantum numbers can still be computed by an alternative
perturbative expansion, performed around a non-trivial saddle.
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Identifying this saddle presents a difficult problem in general. However, for the case at
hand, CFT correlators (or any observable for that matter) involving large charge operators,
can be computed in a double scaling limit

n� 1, λ� 1, λn = fixed, (1.5)

by finding the saddle explicitly and expanding around it. Computations are simplified due
to the enhanced symmetry of the problem. In particular, the operator-state correspondence
allows to map the theory on the cylinder, where the saddle point corresponds to a homo-
geneous superfluid state with spontaneously broken U(1) group whose properties can be
systematically computed. For instance, the scaling dimension of φn, which is the lightest
operator in the sector of charge n, is given by the superfluid ground state energy. In the
saddle point approximation it is written as a power series in λ with coefficients that are
themselves functions of λn

∆φn = 1
λ

∆−1(λn) + ∆0(λn) + λ∆1(λn) + . . . (1.6)

A more detailed discussion of this result can be found in [11, 12], where the first two
coefficients in (1.6) are also explicitly computed. Notice that, taking λn as a fixed parameter,
the expansion in λ is equivalent to an expansion in 1/n.2

Similarly, one finds that (see section 3.1 for a recap) the excitations of the superfluid
are given by phonons of spin ` and energies

ω2
A,B(`) = J` + Ω2 ∓

√
4J`µ2 + Ω4, (1.7)

where
J` = `(`+ d− 2), (1.8)

is the SO(d) Casimir, and moreover

Ω2 =
{

3µ2
4 −m2, for (φ̄φ)2,

2µ2
6 −m2, for (φ̄φ)3,

(1.9)

with m = d
2 − 1 and

for (φ̄φ)2 : µ4(λn, d) = (d− 2)
2

31/3 +
[

9λnΓ(d/2)
2πd/2(d−2)3 −

√(
9λnΓ(d/2)

2πd/2(d−2)3

)2
− 3

]2/3


32/3

[
9λnΓ(d/2)

2πd/2(d−2)3 −
√(

9λnΓ(d/2)
2πd/2(d−2)3

)2
− 3

]1/3 ,

(1.10)

for (φ̄φ)3 : µ6(λn, d) = (d− 2)
2

√
1 +

√
1 + λ2n2Γ(d/2)2

3πd(d−2)4

√
2

. (1.11)

2Notice that here and in what follows, when we write λ we indeed mean λ∗, as away from the fixed point
the notion of scaling dimension is ill-defined beyond the lowest order.
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The Fock space of phonon excitations corresponds to the space of operators with charge n,
whose spectrum of scaling dimensions at next to leading order (NLO) is then given by3

∆
(
{kA}, {kB}

)
= ∆φn +

∞∑
`=1

kA` ωA(`) +
∞∑
`′=0

kB`′ωB(`′), (1.12)

with kA` and kB` non-negative integers. The above result applies for states with a finite
number of phonons and finite spin as n→∞. For large enough total spin, one expects a
non-homogeneous configuration to dominate the path integral (see for instance [23]).

We call A- and B-type the phonons with energy ωA and ωB respectively. Notice that
primary operators correspond to states with kA1 = 0, and that descendants are obtained by
adding spin-1 A-type phonons. Compatibly with that, and with the accuracy of (1.12), one
indeed has

ωA(1) = 1 +O(ε) . (1.13)

1.2 Motivation and goals

The approach outlined above provides the spectrum of the operators but it does not say
anything about their explicit form in terms of elementary fields and derivatives. Establishing
such form is one of the goals of this paper. Notice though that the explicit form of composite
operators depends on the renormalization procedure and that, moreover, for large enough
λn we do not possess such a procedure. We will thus content ourselves with the construction
of the operators in the free field theory limit λ → 0 and with their correspondance to
superfluid excitations.

As we shall see, the tree level result is already structurally informative. Indeed, the
properties of the operator spectrum vary continuously with λ (in truth with ε): by varying
λ we obtain operator families O(n,`,α)

λ (x), with α a discrete label characterizing the phonon
composition (the kA and kB mentioned in the previous section). As qualitatively depicted in
figure 1, the dimensions ∆, and OPE coefficients, of the O(n,`,α)

λ (x) are continuous functions
of λ. Our tree level construction will thus correspond to the starting point at λ = 0 of
these trajectories.

Such endpoints characterize the families, even if indirectly. Notice that in the free
theory limit (λn = 0) there exists an additional degeneracy in dimension among families
with the same ` and n. This degeneracy is lifted at small but finite coupling. Moreover, as
one can check using (1.12), when λn becomes O(1) level crossing starts to occur and the
families get blurred. That is however outside the focus of this paper.

This paper is organized as follows. In section 2, we discuss the classification of operators
with charge n in 3D free field theory quantized around φ = 0. We explain how to identify
primary operators, and provide a systematic construction for a sub-class of them. Section 3
starts with a recap of the semiclassical expansion around the superfluid field configuration,
followed by the construction of the mapping between superfluid Fock states and operators.

3As ∆φn is O(n) and the ωA,B(`) are O(1), the tree level frequencies are sufficient to compute the
dimension ∆

(
{kA}, {kB}

)
at NLO. On the other hand, in order to compute the splittings at NLO, one

would need to perform a full 1-loop computation.
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Figure 1. Scaling dimension of families of operators as a function of λ. Each family can be labeled
with the corresponding “seed” operator in free theory (at λ = 0).

We also discuss the identification of primary operators in this picture. In section 4, we
discuss the breakdown of the homogeneous superfluid description as the spin gets large.

In this paper, besides analyzing the operator spectrum, we apply the saddle point
expansion to the computation of correlators between large charge operators and neutral
operators of the form O = (φ̄φ)k, with k finite. In particular, in section 5, we compute
the 3-point functions 〈φ̄nOφn〉 at next-to-leading (NLO) order in the 1/n expansion. In
section 6 we compute at NLO the 4-point functions 〈φ̄nOOφn〉 and study at the same order
the O × φn operator product expansion (OPE).

2 Operators corresponding to vacuum fluctuations in free theory

Our first goal is to classify the families of large charge operators by focussing on their
representatives in the free limit, as sketched in figure 1. As explained in section 1.2, the
first step is the classification of the operators of free field theory in terms of conformal
multiplets. This amounts to identifying the conformal primaries.

In CFT every local operator corresponds to a state and vice versa (operator-state
correspondence). In particular primary states, i.e. those annihilated by the special conformal
generators, correspond to primary operators. The goal of this section is to set up the
methodology for identifying these states. To make things explicit we will fully construct a
subclass of the operators.

Working in radial quantization we will now, in turn, construct the Fock space of
vacuum fluctuations, derive the state-operator correspondence and write the conformal
group generators. We will then write down in closed form a subset of primary states, also
showing by a combinatoric argument that it forms a complete basis of the subspace of
primary operators with a number of derivatives smaller than the charge.

2.1 Fock space of vacuum fluctuations

Let us consider a free complex scalar field in d = 3 Euclidean dimensions

L = ∂φ̄∂φ. (2.1)

– 5 –
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As usual in CFT, it is beneficial to put the theory (2.1) on the cylinder R× S2 by redefining
the coordinates

xµ = rnµ, r = eτ , ~n = (sin θ cosϕ, sin θ sinϕ, cos θ) (2.2)

and the field
φ̂(τ, θ, ϕ) = eτ/2φ(x). (2.3)

As a result we have the following action on the cylinder

S =
∫
dτdΩ2

[
gµν∂µ

ˆ̄φ∂ν φ̂+ 1
4

ˆ̄φφ̂
]
, gµν = diag(1, 1, sin2 θ). (2.4)

Time translations on the cylinder are generated by the corresponding Hamiltonian H in
the following way

φ̂(τ, θ, φ) = eHτ φ̂(0, θ, φ)e−Hτ , (2.5)

and are related to dilatations on the plane, which are generated by D

eDλφ(x)e−Dλ = eλ/2φ(eλx). (2.6)

This implies
H = D, (2.7)

so that operator dimensions are in one to one correspondence with energy levels on
the cylinder.

Hermitian conjugation in radial quantization of the parent Euclidean field theory implies
ˆ̄φ(0, θ, ϕ) = φ̂(0, θ, ϕ)†, which at arbitary τ on the cylinder and arbitrary x on the plane
implies respectively

ˆ̄φ(τ, θ, ϕ) = φ̂(−τ, θ, ϕ)† and φ̄(x) = |x|−1φ(x−1)† . (2.8)

Quantization proceeds by expanding the fields in spherical harmonics Y`m

φ̂(τ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

1√
2ω`

[
a†`me

ω`τY ∗`m(θ, ϕ) + b`me
−ω`τY`m(θ, ϕ)

]
, (2.9)

and4

ˆ̄φ(τ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

1√
2ω`

[
b†`me

ω`τY ∗`m(θ, ϕ) + a`me
−ω`τY`m(θ, ϕ)

]
, (2.10)

with energies
ω` = `+ 1

2 . (2.11)

The corresponding canonically conjugated momenta are given by5

pφ̂(τ, θ, ϕ) = i∂τ
ˆ̄φ = i

∞∑
`=0

∑̀
m=−`

√
ω`
2
[
b†`me

ω`τY ∗`m(θ, ϕ)− a`me−ω`τY`m(θ, ϕ)
]
, (2.12)

4Notice ˆ̄φ(τ, θ, ϕ) = φ̂(−τ, θ, ϕ)† in accordance with (2.8).
5There appears an “i” in front of the time derivatives because we work in Euclidean time.
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and

p ˆ̄φ(τ, θ, ϕ) = i∂τ φ̂ = i
∞∑
`=0

∑̀
m=−`

√
ω`
2
[
a†`me

ω`τY ∗`m(θ, ϕ)− b`me−ω`τY`m(θ, ϕ)
]
. (2.13)

Creation and annihilation operators, satisfying the usual commutation relations

[a`m, a†`′m′ ] = [b`m, b†`′m′ ] = δ``′δmm′ , (2.14)

allow us to build the Hilbert space. Defining the vacuum state |0〉 as

a`m|0〉 = b`m|0〉 = 0, ∀ `,m (2.15)

states featuring a string of creation operators acting on the vacuum
na∏
i=1

a†`imi

nb∏
j=1

b†`′jm
′
j
|0〉 (2.16)

provide a basis of the Hilbert space, and give it the standard Fock space structure. The
U(1) charge of these states is determined by the charge operator

Q =
∞∑
`=0

∑̀
m=−`

(
a†`ma`m − b

†
`mb`m

)
. (2.17)

2.2 Operator-state correspondence

Combining (2.9) with (2.13) and using the orthonormality of the Y`m (3.35) we get

a†`m = e−ω`τ√
2ω`

∫
dΩ2 Y`m

(
∂τ φ̂(τ) + ω`φ̂(τ)

)
, (2.18)

which is valid at any finite τ . Remembering the change of coordinates (2.2) and the relation
between fields on the plane and on the cylinder (2.3), this expression can be rewritten as

a†`m = r−`√
2ω`

∫
dΩ2 Y`m

(
xµ∂µφ(x) + (`+ 1)φ(x)

)
, (2.19)

where the integral is over the unit sphere and xµ = rnµ.
Acting on the vacuum and Taylor expanding around the origin6 we get

φ(x)|0〉 =
∞∑
`′=0

1
`′!x

{µ1 · · ·xµ`′}∂µ1 · · · ∂µ`′φ(0)|0〉 , (2.20)

where by {. . . } we indicate the traceless symmetric combination, which arises because of
the equation of motion ∂2φ(x) = 0. Noting that∫

dΩ2 Y`mx
{µ1 · · ·xµ`′} = 0, `′ 6= `, (2.21)

6As can be seen in (2.9), the field is singular at the origin, r → 0 or τ → −∞ due to negative-frequency
b`m modes. However, in φ(x)|0〉 the singular terms drop and Taylor expansion is legitimate.
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the expansion results in

a†`m|0〉 =
√

2`+ 1
`!

∫
dΩ2 Y`mn

µ1 · · ·nµ`∂µ1 · · · ∂µ`φ(0)|0〉. (2.22)

The integral can be easily done, yielding

a†`m|0〉 = Yµ1...µ`
`m ∂µ1 · · · ∂µ`φ(0)|0〉, (2.23)

with (see appendix A)

Yµ1...µ`
`m =

√
2`+ 1
`!

∫
dΩ2 Y`mn

µ1 · · ·nµ` . (2.24)

Repeating the same steps starting with (2.10) and (2.12), we get similarly

b†`m|0〉 = Yµ1...µ`
`m ∂µ1 · · · ∂µ` φ̄(0)|0〉. (2.25)

In particular, we obtain

Yµ1...µ`
`` = (−1)`2 `

2 +1√π√
(2`)!

δµ1
− · · · δ

µ`
− , (2.26)

a†``|0〉 = (−1)`2 `
2 +1√π√

(2`)!
(
∂−
)`
φ(0)|0〉, (2.27)

where the following change of variables was performed

x± = x1 ± ix2√
2

, x0 = x3. (2.28)

This generalizes to multi-particle Fock states (2.16). For example,7

a†`1m1
b†`2m2

|0〉 = Yµ1...µ`1
`1m1

Yν1...ν`2
`2m2

: ∂µ1 · · · ∂µ`1φ(0) ∂ν1 · · · ∂ν`2φ̄(0) : |0〉. (2.29)

Hermitian conjugation of (2.22), together with (2.8), implies

〈0|a`m =
√

2`+ 1
`!

∫
dΩ2 Y

∗
`mn

µ1 · · ·nµ` lim
x→∞
〈0|∂(1/x)

µ1 · · · ∂(1/x)
µ`

(
|x|φ̄(x)

)
, (2.30)

where we defined
∂(1/x)
µ =

(
x2δµν − 2xµxν

)
∂(x)
ν . (2.31)

Notice, this time the field is evaluated at infinity, because hermitian conjugation in radial
quantization involves a space inversion.

7In field products acting on the vacum the singular terms at the origin are eliminated by normal-ordering.
In the rest of the paper, normal ordering will always be intended and we will drop the “:” symbol.
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2.3 Conformal generators

In order to proceed with the classification and construction of the operators we first need
the explicit expression of the conformal group generators in terms of the ladder operators.
We provide them in this section.

In d = 3, defining
Ji = 1

2εijkJjk, J± = J1 ± iJ2 (2.32)

and

P± = 1√
2

(P1 ± iP2) , K± = 1√
2

(K1 ± iK2) , P0 ≡ P3, K0 = K3, (2.33)

such that
P †± = K∓, P †0 = K0, (2.34)

the commutation relations take the form (with X• = P•,K•)

[J3,J±] =±J±, [J+,J−] = 2J3,

[J3,X±] =±X±, [J3,X0] = 0,

[J+,X+] = 0, [J+,X0] =−
√

2X+, [J+,X−] =
√

2X0, (2.35)

[J−,X+] =−
√

2X0, [J−,X0] =
√

2X−, [J−,X−] = 0

[D,Ki] =−Ki, [D,Pi] =Pi,

[K−,P+] = 2(D+J3) , [K+,P−] = 2(D−J3) , [K0,P0] = 2D

[K0,P+] =−
√

2J+, [K+,P0] =
√

2J+, [K−,P0] =−
√

2J−, [K0,P−] =
√

2J−.

The generators, as computed from the Noether currents of the theory, read

D =
∞∑
`=0

∑̀
m=−`

ω`
(
a†`ma`m + b†`mb`m

)
, (2.36)

J3 =
∞∑
`=0

∑̀
m=−`

m
(
a†`ma`m + b†`mb`m

)
, (2.37)

P0 =
∞∑
`=0

∑̀
m=−`

√
(`+ 1)2 −m2

(
a†`+1,ma`m + b†`+1,mb`m

)
, (2.38)

K0 =
∞∑
`=0

∑̀
m=−`

√
(`+ 1)2 −m2

(
a†`ma`+1,m + b†`mb`+1,m

)
, (2.39)

J+ =
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m+ 1)

(
a†`,m+1a`m + b†`,m+1b`m

)
, (2.40)

=
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m− 1)

(
a†`ma`,m−1 + b†`mb`,m−1

)
,

J− =
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m+ 1)

(
a†`ma`,m+1 + b†`mb`,m+1

)
(2.41)

=
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m− 1)

(
a†`,m−1a`m + b†`,m−1b`m

)
,
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P+ = −
∞∑
`=0

∑̀
m=−`

√
(`+m+ 1)(`+m+ 2)

2
(
a†`+1,m+1a`m + b†`+1,m+1b`m

)
, (2.42)

K− = −
∞∑
`=0

∑̀
m=−`

√
(`+m+ 1)(`+m+ 2)

2
(
a†`ma`+1,m+1 + b†`mb`+1,m+1

)
, (2.43)

P− =
∞∑
`=0

∑̀
m=−`

√
(`−m+ 1)(`−m+ 2)

2
(
a†`+1,m−1a`m + b†`+1,m−1b`m

)
, (2.44)

K+ =
∞∑
`=0

∑̀
m=−`

√
(`−m+ 1)(`−m+ 2)

2
(
a†`ma`+1,m−1 + b†`mb`+1,m−1

)
. (2.45)

2.4 Primary states and operators

Besides the quantum numbers associated with the conformal group, states can be charac-
terized by their charge and by their parity. Charge is quickly dealt with. Any state of the
form (2.16) is an eigenstate of the charge operator Q.

Consider now parity. At fixed charge n and spin `, states divide into two polarity
classes: polar states with parity (−1)` and axial states with parity (−1)`+1. The two classes
can schematically be written as

polar P = (−1)` ⇒ ∂`+2kφna φ̄nbδk k ≥ 0 (2.46)
axial P = (−1)`+1 ⇒ ∂`+2k+1φna φ̄nbεδk k ≥ 0 (2.47)

where ∂, δ and ε represent respectively a spacetime derivative ∂i, the Kronecker delta δij and
the Levi-Civita tensor εijk. The δ’s and the ε are all contracted with a pair of derivatives,
while the remaining ` indices are symmetrized and trace-subtracted.

As the U(1) charge Q commutes with the conformal group, the conformal multiplets
have definite charge. On the other hand, by considering that ∂ → −∂ under parity and the
standard rule for adding angular momenta, one is easily convinced that the descendants of
an operator with given polarity (polar or axial) can have either polarity. One can nonetheless
label a conformal multiplet by the polarity of its primary state.

In this paper, we will provide a systematic construction of all primaries whose number
of derivatives is bounded by the charge n (see [24–26] for a different but less explicit
procedure to construct primaries of given spin and charge). In a first time we describe
this construction, before proving via a combinatorics argument that our procedure indeed
generates all such primaries. This will enable us to concretely illustrate the emergence of
the superfluid Fock space structure within the operator spectrum at large charge.

2.4.1 Construction of primaries

States of the form
a†`1,m1

. . . a†`na ,mna b
†
j1,m1

. . . b†jnb ,mnb
|0〉, (2.48)

can be decomposed into irreducible representations of SO(3)

`1 ⊗ · · · ⊗ `na ⊗ j1 · · · ⊗ jnb = (`1 + · · ·+ `na + j1 · · ·+ jnb)⊕ . . . (2.49)
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Let us first consider the states with the highest total spin ` = `1 + · · ·+ jnb in the tensor
product (2.49), indicating them by

|n; `,m〉 (2.50)

where n = na − nb and m are respectively the Q and J3 eigenvalues. The highest weight
state from which all the multiplet is constructed by repeatedly acting with J− is

|n; `, `〉 = a†`1,`1 . . . a
†
`na ,`na

b†j1,j1 . . . b
†
jnb ,jnb

|0〉. (2.51)

By eqs. (2.23), (2.25) and by the discussion at the beginning of this section, the corresponding
operators are polar and have the schematic form φna φ̄nb∂`. In the basis (2.28), the operator
corresponding to (2.51) involves only ∂− derivatives, as is made clear by (2.27). We can
now search for combinations of states of the form (2.51) that correspond to primaries.

Let us first consider states involving creation operators of only one sort, say a†. A first
obvious example is the state of charge n with lowest dimension, which is given by

|n〉 = 1√
n!

(a†00)n|0〉 = (4π)n/2√
n!

φn(0)|0〉 (2.52)

This state has spin 0 and is a primary as it is annihilated by the Ki’s.
To find a spin-` primary we start with the ansatz

|n; `, `〉(0)
A = (a†00)n−1a†``|0〉. (2.53)

Acting on it with K− we get8

K−|n; `, `〉(0)
A = −

√
2`(2`− 1)

2 (a†00)n−1a†`−1,`−1|0〉, ` 6= 1. (2.54)

In order to cancel this contribution we modify the vector

|n; `, `〉(1)
A = (a†00)n−1a†``|0〉 −

√
2`(2`− 1)

2 (a†00)n−2a†`−1,`−1a
†
1,1|0〉. (2.55)

Acting with K− on the new state we find

K−|n; `, `〉(1)
A =

√
2`(2`− 1)

2

√
(2`− 2)(2`− 3)

2 (a†00)n−2a†`−2,`−2a
†
1,1|0〉 . (2.56)

Again, to cancel this contribution we add an extra term to (2.55) and we continue further
until we finally arrive at an exact primary

|n; `, `〉A = α0
∑̀
k=0

γk,`(a†00)n−k−1(a†1,1)ka†`−k,`−k|0〉, (2.57)

8As can be derived from (2.39), (2.45), [K0, a
†
``] = [K+, a

†
``] = 0 for all `, so the state is annihilated by

both K0 and K+. Moreover (2.43) yields

[K−, a†``] = −

√
(2`)(2`− 1)

2 a†`−1,`−1.
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with

γk,` = (−1)k
k!

√
(2`)!

2k(2`− 2k)! , (2.58)

with the overall coefficient α0 fixed by the normalization condition ‖ |n; `, `〉A ‖2= 1

α2
0

[
`−2∑
k=0

γ2
k,`(n− k − 1)!k! + (γ`−1,` + γ`,`)2 (n− `)!`!

]
= 1. (2.59)

As can be verified, this construction works if 1 < ` ≤ n. Explicit constructions of these
states and of the corresponding operators for ` = 0, 1, 2, 3 can be found in appendix B. By
using (2.36) one can also check that the energy of this state, or equivalently the dimension
of the corresponding operator, is given by

∆A(n, `) = n

2 + `, (2.60)

as expected in free theory.
Similarly we can consider states that involve one creation operator b†. Repeating the

construction it is straightforward to construct, for ` ≤ n+ 1, a primary

|n; `, `〉B = β0
∑̀
k=0

γk,`(a†00)n−k+1(a†1,1)kb†`−k,`−k|0〉, (2.61)

with

β2
0
∑̀
k=0

γ2
k,`(n− k − 1)!k! = 1. (2.62)

These special cases can be combined to generate more primaries. Indeed, one can define
spin ` multiplets of operators

{
A†`,m

}
,
{
B†`,m

}
with m = −`, . . . , ` whose highest weight

elements are

A†`,` =
∑̀
k=0

γk,`(a†00)`−k−1(a†1,1)ka†`−k,`−k, ` ≥ 2 (2.63)

B†`,` =
∑̀
k=0

γk,`(a†00)`−k+1(a†1,1)kb†`−k,`−k, ` ≥ 0. (2.64)

A†`,m and B†`,m are polar primaries, because they commute with all Ki, and they have charge
`. Notice, that A0,0 is not defined and A1,m = 0, while B†0,0 = a†00b

†
00. The primary states

we constructed are then given by

|n; `, `〉A = α0(a†00)n−`A†`,`|0〉, (2.65)

|n; `, `〉B = β0(a†00)n−`B†`,`|0〉. (2.66)

Since the A†`,m’s, B
†
`,m’s, as well as a

†
00, are all primaries, any product of them is a primary

as well. This lets us generate primaries of various spins and charges by acting on the vacuum
with these operators (

a†00

)n−∑
α
`α−
∑

β
˜̀
β∏
α

A†`α,mα
∏
β

B†˜̀
β ,m̃β
|0〉, (2.67)
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where the number of derivatives of the corresponding operator is P ≡ ∑
α `α + ∑

β
˜̀
β.

Notice this state is an eigenstate of J2 only for maximal spin states (mα = `α, m̃β = ˜̀
β or

mα = −`α, m̃β = −˜̀
β). Otherwise, one must take linear combinations of these terms to

build spin multiplets. By inspecting their definition, one can be convinced that A†`,` and
B†`,` (and hence the corresponding spin multiplets) can not be written as products of A†’s
and B†’s with lower-spin — they are in a sense “irreducible”. Thus the above representation
of a primary is unique.

Indeed, as it turns out, the above representation generates all the primaries with number
of derivatives bounded by n. In the next section we will offer a combinatoric proof of
that. Before moving to that, and to ease the counting, it is convenient to note that the
dimensionality of the space generated by (2.67) is the same as that of space generated
by (2.16) barring the spin 1 ladder operators a†1,m. This can be seen by picking only the
k = 0 terms in the series (2.63) for the A’s and B’s. This remark will be used in the next
section to prove that (2.67) provide a complete basis for primaries.

2.4.2 Combinatorics: counting primaries

As a warmup, we will first consider different subclasses of operators for which we can provide
explicit expressions for the number of primaries. After having done that, we will prove that
the set (2.67) is indeed a complete basis for the primaries.

No φ̄, spin ` ≤ n, number of derivatives equal to `. Consider the polar operators
with k = 0 and no φ̄ fields in eq. (2.46). They correspond to symmetric traceless tensors
with schematic form ∂`φn. Using coordinates (2.28), the highest weight elements of the
corresponding SO(3) multiplets have the schematic form ∂`−φ

n. The counting is now
straightforward: there are as many operators as there are inequivalent ways of distributing `
derivatives ∂− among n fields φ. That is given by the number of partitions of ` into at most
n integers, which we denote by p(`, n). In the case ` ≤ n, the partition cannot contain more
than n elements, and so p(`, n) reduces to the number p(`) of unconstrained partitions of `.

For example, for ` = 5 we get the following partitions.

5 : (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). (2.68)

Thus, there are
p(5, n) = 7 (2.69)

operators with spin ` = 5 and charge n ≥ 5, while for charge n = 3 there are only

p(5, 3) = 5 (2.70)

operators in total, counted by the first five partitions in (2.68).
We can now count primary operators. Obviously, at spin `, primaries will be in one to

one correspondence with operators that cannot be obtained by acting with derivatives on
all operators with spin `− 1. Therefore the number of primaries is given by

Prim(`, n) ≡ p(`, n)− p(`− 1, n). (2.71)
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For ` ≤ n this number has a simple interpretation. Namely, it corresponds to the
number of partitions of `, except those that can be obtained from partitions of ` − 1 by
adding 1, in other words partitions of ` containing 1 should be eliminated.9 As an example,
for ` = 5 and ` = 4 we have respectively

5 : (5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)
4 : (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1). (2.72)

Clearly, the ` = 5 primaries are counted by the partitions without 1, so that for n ≥ 5

Prim(5, n) = 2 . (2.73)

In the previous subsection we found that any string (a†00)n−`ΠαA†`α`α forms a primary with
total spin ` = ∑

α `α ≤ n. Since there is no A1,1, it is clear that these primary states
correspond to partitions of ` without 1’s. Our counting argument then shows these are all
the primaries of our class (polar with k = 0 and no φ̄’s).

No φ̄, arbitrary spin `, number of derivatives equal to `. For arbitrary `, the
number of primaries (2.71) is given by the number of partitions of ` with each part bigger
than 1 and not larger than n, i.e. by the number of solutions of the equation∑

i

`i = `, 1 < `i ≤ n. (2.74)

That can be proven as follows. Every partition t can be associated with a Young tableau.
For instance, the partition t = (4, 3, 2) of 9 corresponds to

t = (2.75)

A conjugated Young tableau t∗ is defined by interchanging columns and rows, meaning that
for the example above t∗ = (3, 3, 2, 1)

t∗ = (2.76)

This map obviously establishes an equality between the number p(`, n) of partitions of `
into at most n parts — i.e. the number of Young tableaux with at most n rows — and the
number of partitions p∗(`, n) with parts bounded by n — i.e. the number of Young tableaux
with at most n columns. Therefore, the number of primaries can also be written as

Prim(`, n) = p(`, n)− p(`− 1, n) = p∗(`, n)− p∗(`− 1, n). (2.77)
9That is because when acting with a derivative on an operator involving less than n derivatives, among

many terms, there will always arise one involving a single derivative on φ.
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As before, we observe that every tableau counted by p∗(` − 1, n) can be promoted to a
tableau counted by p∗(`, n) by adding a row with just one box,

→ (2.78)

therefore, as claimed the number of primaries is given by the number p∗(`, n, 2) of Young
tableaux with each row bounded by 2 ≤ `i ≤ n (see appendix C for examples). Clearly,
this is equal to the number of products of operators A†`α,`α defined in (2.63) such that
2 ≤ `α ≤ n and ∑α `α = `. Notice that, while the counting is still valid, the construction
does not work for ` > n, since the A†`,` operators have charge equal to spin, and thus cannot
be used to generate operators with spin higher than the charge.

φ and φ̄, arbitrary spin `, number of derivatives equal to `. Consider now polar
operators with k = 0 but involving φ̄ fields. In this case the highest weight elements have the
schematic form ∂`−φ

na φ̄nb . To count the number of such operators, one can first distribute
the derivatives as ∂`−`′− φna × ∂`′−φ̄nb , and compute the total number of operators as

∑̀
`′=0

p(`− `′, na)p(`′, nb). (2.79)

This implies the number of primaries is given by

Prim(`, na, nb) =
∑̀
`′=0

p(`− `′, na)p(`′, nb)−
`−1∑
`′=0

p(`− 1− `′, na)p(`′, nb)

=
`−1∑
`′=0

p∗(`− `′, na, 2)p∗(`′, nb), (2.80)

where we have used the equalities deduced above from Young tableaux. This number is
easy to interpret as the number of products of the form

(a†00)n−`
∏
α

A†`α,`α
∏
β

B†˜̀
β ,˜̀β

(2.81)

with 2 ≤ `α ≤ n, 0 ≤ ˜̀
β ≤ n and ∑α `α +∑β

˜̀
β = `. Thus, these products of operators are

all the highest-weight polar primaries with k = 0 and ` ≤ n. Again, the counting (2.80) is
valid for ` > n, but the explicit construction does not apply in this regime.

All operators with number of derivatives bounded by n. We finally consider
operators made of both φ and φ̄ fields and a number of derivatives P ≤ n, with eventually
contracted indices. We will not provide an explicit formula for the number of primaries
in the general case, but will show that primaries are in one-to-one correspondence with
operators of the form (2.67). The following argument is valid in any dimension.
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A basis of the linear space of charge-n operators is obtained by considering the set
of monomials of the schematic form ∂µ1 . . . ∂µP φ

na φ̄nb with na − nb = n and with the P
derivatives distributed on the fields in all possible ways (removing the operators which
are made redundant by the equations of motion ∂2φ = ∂2φ̄ = 0). We focus on a finite-
dimensional subspace Hna,nb,P of fixed na, nb and P . The counting argument that we will
provide works for each of those subspaces individually, and thus extends to the full space of
operators. For each subspace, we construct a different basis, in which part of the elements
are manifestly descendant states. The remaining elements of the basis span a subspace of
same dimensionality as the subspace of explicitly known primary operators. This means
that we have successfully identified complete basis of primaries and descendants.

The construction is the following. Monomials in the basis can be organized by factoring
out all powers of φ carrying either 0 or 1 derivative

Bna,nb,P =
{
φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O(P−p)

na−p−q,nb , p ≤ P
}
, (2.82)

with O
(p)
n,m any monomial involving n φ’s, m φ̄’s and p derivatives, such that each φ is

derived at least twice. Notice that all ∂µi factors commute with each other, hence without
loss of generality we can assume they are ordered µ1 ≤ µ2 ≤ · · · ≤ µp. For any p ≤ P we
will also consider the sub-basis of operators where p φ’s have a single derivative

Bpna,nb,P =
{
φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O(P−p)

na−p−q,nb

}
. (2.83)

Now, for p ≥ 1, we can rewrite the elements of Bpna,nb,P as (for simplicity we write O instead
of O(P−p)

na−p−q,nb)

φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O

= 1
q + 1

(
∂µ1

(
φq+1(∂µ2φ) · · · (∂µpφ)O

)

−
p∑

k=2
φq+1(∂µ2φ) · · · (∂µk−1φ)(∂µk+1φ) · · · (∂µpφ)∂µ1∂µkφO

− φq+1(∂µ2φ) · · · (∂µpφ)∂µ1O

)
.

(2.84)

The term in the first line of the right-hand side is obviously a descendant operator, while
the two other lines contain monomials belonging to Bp−2

na,nb,P
and Bp−1

na,nb,P
. This process

can be repeated, rewriting the operators of the two last lines in the same way, as linear
combinations of descendants and members of the lower sub-bases. The process can be
iterated until the right hand side is written as a linear combination of descendants and
monomials in B0

na,nb,P
. The latter involve no single-derivative φ fields and cannot be further

rewritten. Our result implies that the subspace generated by Bpna,nb,P has the same primary
content as the subspace generated by B0

na,nb,P
. Indeed, as this holds for any p, the very

space generated by Bna,nb,P has the same primary content as the subspace generated by
B0
na,nb,P

. We therefore conclude that the subspace of primaries within Hna,nb,P is ≤ than
the number of elements in B0

na,nb,P
.
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Our proof can now be completed by comparing the elements in B0
na,nb,P

to the linearly
independent primary states provided in (2.67). The latter, as we already remarked, are
in a one-to-one correspondence with the set (2.16), barring states involving a†`=1,m. By
the operator-state correspondence the traceless symmetric derivatives ∂µ1 . . . ∂µrφ and
∂µ1 . . . ∂µs φ̄ match respectively a†r,mr and b†s,ms . It is then manifest that the elements in
B0
na,nb,P

and in (2.16) are in a one-to-one correspondence. In particular the exclusion of
∂iφ factors in B0

na,nb,P
crucially matches the exclusion of a†1,m in (2.16), which is mandated

in turn to match the building blocks (2.67). As the cardinality of the basis B0
na,nb,P

sets
an upper bound to then dimension of the sub-space of primaries, it must be that the
states (2.67) with the same na, nb and P are a complete basis for the corresponding space
of primaries.

3 Fock space of superfluid fluctuations

We now turn to the semiclassical description, which applies, as we will see, for sufficiently
large charge, regardless of the coupling. The goal of this section is to associate primary
operators to fluctuations around the non-trivial saddle.

3.1 Fluctuations around a non-trivial saddle

A detailed presentation of the large charge semiclassical method can be found in [11, 12].
Here we will outline the main ideas, providing formulae for further reference. We present
the method in the context of an interacting Wilson-Fisher fixed point, but it applies also in
free theory: all formulae can be safely taken for λ = 0 and λn = 0.

3.1.1 Saddle point

The method outlined in this section is suitable for computing correlators of the form

〈φ̄n(xf )ON (xN ) . . .O1(x1)φn(xi)〉. (3.1)

First, it proves useful to map the theory to the cylinder Rd → R× Sd−1 (generalizing (2.2)
to d dimensions). For a generic primary operator, (2.3) generalizes to

Ô(τ, ~n) = e∆OτO(x), (3.2)

with ∆O the scaling dimension of O. The theory on the cylinder is equivalent to that on
the plane only at the Wilson-Fisher fixed point, where the theory is conformal. However, to
compute corrections we have to work off-criticality, and set the coupling at its critical value
only at the end of computations. The advantage of this mapping is that time-translation,
which is a symmetry on the cylinder even off-criticality, corresponds to dilation on the plane,
which is not a symmetry off-criticality. The additional symmetry of the non-critical theory
on the cylinder makes it easier to find a saddle point. Explicit solutions for the saddle on
the plane are known only in d = 3 and d = 4 for (1.3) and (1.1) respectively [27].

In terms of the variables on the cylinder the correlator (3.1) has the form

〈 ˆ̄φn(τf )ÔN (τN ) . . . Ô1(τ1)φ̂n(τi)〉e−∆φnτf e−∆N τN . . . e−∆1τ1e−∆φnτi , (3.3)
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where for simplicity we did not indicate the dependence of the operators on the angular
coordinates. The operator-state correspondence (see section 2.2) yields

|n〉 = (4π)n/2√
n!

lim
τ→−∞

e−∆φnτi φ̂n(τi)|0〉 , (3.4)

and its conjugate

〈n| = (4π)n/2√
n!

lim
τf→∞

〈0|e∆φnτf ˆ̄φn(τf ) . (3.5)

Eq. (3.1) is thus related to cylinder correlators according to

lim
xf→∞

(4π)n
n! x

2∆φn

f 〈φ̄n(xf )ON (xN ) . . .O1(x1)φn(0)〉 = 〈n|ÔN (τN ) . . . Ô1(τ1)|n〉
N∏
j=1

e−∆jτj .

(3.6)
Since |n〉, corresponding to operator φn, is the lowest dimension state of charge n, for

any charge n state |ψn〉 with non-zero overlap with |n〉, we have

lim
τi→−∞

eHτi |ψn〉 = lim
τi→−∞

e∆φnτi |n〉〈n|ψn〉 (3.7)

lim
τf→∞

〈ψn|e−Hτf = lim
τf→∞

e−∆φnτf 〈ψn|n〉〈n|, (3.8)

where H is the Hamiltonian on the cylinder.
Therefore we can also write

〈n|ÔN (τN ) . . . Ô1(τ1)|n〉 = lim
τf→∞
τi→−∞

〈ψn|e−Hτf ÔN (τN ) . . . Ô1(τ1)eHτi |ψn〉
〈ψn|e−H(τf−τi)|ψn〉

. (3.9)

The right hand side can be represented by a path integral. For that purpose, it is useful to
introduce polar coordinates for the fields

φ̂ = ρ√
2
eiχ, ˆ̄φ = ρ√

2
e−iχ , (3.10)

and single out their zero modes on the sphere

χ = χ0 + χ⊥,

∫
χ(~n)dΩd−1 = χ0Ωd−1,

∫
χ⊥(~n)dΩd−1 = 0 , (3.11)

ρ = ρ0 + ρ⊥,

∫
ρ(~n)dΩd−1 = ρ0Ωd−1,

∫
ρ⊥(~n)dΩd−1 = 0 , (3.12)

with Ωd−1 = 2πd/2
Γ(d/2) the volume of Sd−1. A convenient choice for the state |ψn〉 is then

〈ρ, χ|ψn〉 = δ(ρ0 − f)δ(ρ⊥)δ(χ⊥)einχ0 , (3.13)

with f a constant whose value will be suitably decided below. As a result eq. (3.9) can be
recast as

〈n|ÔN . . . Ô1|n〉 =
τf→∞
τi→−∞

Z−1
∫
dχidχfe

−
in(χf−χi)

Ωd−1

∫ ρ(τf )=f
χ(τf )=χf
ρ(τi)=f
χ(τi)=χi

DρDχ ÔN . . . Ô1 e
−S[ρ,χ],

(3.14)
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with

Z =
∫
dχidχfe

−
in(χf−χi)

Ωd−1

∫ ρ(τf )=f
χ(τf )=χf
ρ(τi)=f
χ(τi)=χi

DρDχ e−S[ρ,χ] , (3.15)

and where the action is given by

S[ρ, χ] =
∫
dτdΩd−1

[1
2(∂ρ)2 + 1

2ρ
2(∂χ)2 + 1

2m
2ρ2 + Vint(ρ)

]
(3.16)

with m = d
2 − 1 and

Vint(ρ) =


λ
16ρ

4 for (φ̄φ)2,
λ2

288ρ
6 for (φ̄φ)3.

(3.17)

The saddle point is fixed by two conditions, corresponding to the variation of the action
with respect to φ in the bulk and on the boundary. The latter, in view of eq. (3.13), reduces
to variation with respect to the zero modes of χ, χi and χf . From the bulk we have

∂µ
(√

ggµνρ2∂νχ
)

= 0, (3.18)

−∂2ρ+ ρ
[
(∂χ)2 +m2

]
+ ∂ρVint(ρ) = 0 (3.19)

with gµν the metric on the cylinder. The first equation, corresponding to variation with
respect to χ, coincides with U(1) current conservation. The variation at the boundaries
gives instead

(ρ2χ̇)(τi) = (ρ2χ̇)(τf ) = − in

Ωd−1
, (3.20)

which fixes the charge to be n and spatially homogeneous at the boundaries. Equa-
tions (3.18), (3.19), (3.20) along with the constraint (3.13) have the simple solution

ρS(τ) = f, χS(τ) = −iµ(τ − τi) + χi, (3.21)

with µ and f satisfying

µ2 −m2 = 1
f

∂Vint(f)
∂f

, (3.22)

f2µ = n

Ωd−1
. (3.23)

A few comments are in order. The last two equations determine the “suitable” value of f ,
we alluded to below its definition in (3.13). It is only for this specific choice of f in (3.13)
that the saddle point equations have a solution with a simple linear time dependence. Other
choices would give solutions with a more complicated behaviour near the boundaries, but
for τf − τi → ∞ the result for (3.14) would be the same. Notice that as the solution is
invariant under the combination H−µQ of time translations and charge rotations, µ should
be interpreted as the chemical potential. Finally notice that, while χf − χi = −iµ(τf − τi)
is fixed by (3.21), the zero mode χi is not: integrating over it guarantees that correlators
respect charge conservation.
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Eqs. (3.22) and (3.23), for the two choices in (3.17) imply

for (φ̄φ)2 : µ4(λn, d) = (d− 2)
2

31/3 +
[

9λnΓ(d/2)
2πd/2(d−2)3 −

√(
9λnΓ(d/2)

2πd/2(d−2)3

)2
− 3

]2/3


32/3

[
9λnΓ(d/2)

2πd/2(d−2)3 −
√(

9λnΓ(d/2)
2πd/2(d−2)3

)2
− 3

]1/3 ,

(3.24)

for (φ̄φ)3 : µ6(λn, d) = (d− 2)
2

√
1 +

√
1 + λ2n2Γ(d/2)2

3πd(d−2)4

√
2

. (3.25)

Expanding around the saddle we can systematically compute any observable as a power
series in λ with coefficients that are themselves functions of λn. For instance, given

lim
τf→∞
τi→−∞

〈ψn|e−H(τf−τi)|ψn〉 = e−∆φn (τf−τi)|〈n|ψn〉|2, (3.26)

and its path integral representation (3.15), the evaluation of the action on the saddle point
immediately gives the scaling dimension of φn at leading order shown in (1.6).

3.1.2 Fluctuations

Expanding the fields (3.14) around the saddle

ρ = ρS + r, χ = χS + π

f
, (3.27)

we can now write

〈n|ÔN . . . Ô1|n〉 =

∫
dχi

∫
DrDπ ÔN . . . Ô1e

−Ŝ[r,π]

2π
∫
DrDπ e−Ŝ[r,π]

, (3.28)

where the action for the fluctuations is given by

Ŝ[r, π] =
∫
dτdΩd−1 (L2 + Lint) , (3.29)

with
L2 = 1

2(∂r)2 + 1
2(∂π)2 − 2iµrπ̇ + 1

2
[
V
′′

int(f)− (µ2 −m2)
]
r2, (3.30)

and

Lint = 1
f

[
r(∂π)2 − iµr2π̇

]
+ r2(∂π)2

2f2 +
[
Vint(f + r)−

(
Vint(f) + V

′
int(f)r + 1

2V
′′

int(f)r2
)]

.

(3.31)
Notice that the Ôi are local functions of ρ and χ. At the leading order the correlator is
then simply given by the product of the Ôi computed on the saddle.
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The canonically conjugated momenta10 forming pairs (r, P ) and (π,Π) are

P = iṙ, Π = iπ̇

(
1 + r

f

)2
+ 2µr

(
1 + r

2f

)
. (3.32)

These variables can be expanded in harmonic modes as(
r(τ, ~n)
π(τ, ~n)

)
=
∞∑
`=0

∑
~m

(
r`~m(τ)
π`~m(τ)

)
Y`~m(~n) ,

(
P (τ, ~n)
Π(τ, ~n)

)
=
∞∑
`=0

∑
~m

(
P`~m(τ)
Π`~m(τ)

)
Y ∗`~m(~n) ,

(3.33)
where Y`~m(~n) are the spherical harmonics in d− 1 dimensions11 satisfying

∆Sd−1Y`~m(~n) = −J`Y`~m(~n), (3.34)

where ∆Sd−1 is the Laplacian on the sphere Sd−1 and where the eigenvalue J` was given
in (1.8). The Y`~m(~n) also satisfy the normalization and completeness conditions∫

Y`~m(~n)Y ∗`′ ~m′(~n)dΩd−1 = δ``′δ~m~m′ , (3.35)

and ∞∑
`=0

∑
~m

Y`~m(~n)Y ∗`~m(~n′) = δ(Sd−1)(~n− ~n′). (3.36)

Notice in particular that Y0~0 = 1/
√

Ωd−1. The harmonic modes are canonical variables
satisfying equal-time commutation relations

[r(τ, ~n), P (τ, ~n′)] = iδ(~n− ~n′)⇔ [r`~m(τ), P`′ ~m′(τ)] = iδ``′δ~m~m′ ,

[π(τ, ~n),Π(τ, ~n′)] = iδ(~n− ~n′)⇔ [π`~m(τ),Π`′ ~m′(τ)] = iδ``′δ~m~m′ ,
(3.37)

with the other commutators vanishing.

3.1.3 Linearized fluctuations

In section 3.2 we will need the modes evolving according to the full lagrangian. To set the
basis of perturbation theory and to compute the energy spectrum at lowest order we must
however consider the modes of the quadratic Lagrangian (3.30)

L2 = 1
2(∂r)2 + 1

2(∂π)2 − 2iµrπ̇ + 1
2M

2r2, (3.38)

with
M2 = V

′′
int(f)− f−1V ′int(f) = V

′′
int(f)− (µ2 −m2) . (3.39)

At this order the canonical momenta are

P̃ = iṙ, Π̃ = iπ̇ + 2µr. (3.40)
10As in (2.12), the presence of “i” in front of time derivatives is because we work in Euclidean time.
11 ~m is a multi-index taking

N`,d = (2`+ d− 2) (`+ d− 3)!
(d− 2)!`!

different values.
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The quantized fields (and the spectrum) are obtained by considering the linearized equations
of motion (

∂2
τ + ∆Sd−1 −M2 2iµ∂τ
−2iµ∂τ ∂2

τ + ∆Sd−1

)(
r

π

)
= 0, (3.41)

and by finding the complete set of harmonic mode solutions of the form(
r`~m(τ)
π`~m(τ)

)
Y`~m(~n) =

(
C1
C2

)
e−ωτY`~m(~n) . (3.42)

For each ` we find two solutions

ω2
A(`) = J` + V

′′
int(f) + 3µ2 +m2

2 −

√√√√(V ′′int(f) + 3µ2 +m2

2

)2

+ 4µ2J` ,

ω2
B(`) = J` + V

′′
int(f) + 3µ2 +m2

2 +

√√√√(V ′′int(f) + 3µ2 +m2

2

)2

+ 4µ2J` ,

(3.43)

with the corresponding coefficients CA,B1,2 (`), whose expression we do not need to display.
The ω2

A,B(`) determine the energy spectrum shown in (1.7). Expanding the fields (π, r)
in the complete set of solutions and imposing canonical commutation relation with the
conjugated momenta (3.40), we find

(
r

π

)
=


2µ

ω2
B(0) pπ

π̂ − ipπτ
(

1− 4µ2

ω2
B(0)

)
Y0~0 (3.44)

+
∞∑
`=1

∑
~m

√
ωA(`)

2
[
ω2
B(`)− ω2

A(`)
]


√

J`
ω2
A(`) − 1

i

√
ω2

+(`)
J`

− 1

A`~mY`~me−ωA(`)τ + h.c.



+
∞∑
`=0

∑
~m

√
ωB(`)

2
[
ω2
B(`)− ω2

A(`)
]



√
1− J`

ω2
B(`)

−i

√
1− ω2

A(`)
J`

B`~mY`~me−ωB(`)τ + h.c.

 ,

where operators (A`~m, A†`~m), (B`~m, B†`~m) and (π̂, pπ) are canonically conjugated pairs:

[A`~m, A†`′ ~m′ ] = δ``′δ~m~m′ , [B`~m, B†`′ ~m′ ] = δ``′δ~m~m′ , [π̂, pπ] = i, (3.45)

with all other commutators vanishing. In the last sum’s ` = 0 term, one has to use the limit

lim
`→0

ω2
A(`)
J`

= 1− 4µ2

ω2
B(0) . (3.46)

Notice that the A`~m are defined for ` ≥ 1 and have frequency ωA(`), while the B`~m are
defined for ` ≥ 0 and have frequency ωB(`). The role of the ` = 0 mode in the A sector is
played by π̂.
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Several features of (3.43) are worth remarking. The first is

ωA(0) = 0 . (3.47)

This is the manifestation of a Goldstone boson associated with U(1) symmetry breaking
around the saddle. The U(1) acts as a constant shift of π, while ρ is invariant. Therefore
A`~m and B`~m are all neutral while π̂ transforms by a constant shift. Notice that the
conjugated momentum pπ precisely generates these transformations. Indeed, applying
Noether’s theorem to the quadratic Lagrangian (3.29) and comparing the result to the
generator Q of χ shifts in (3.16), we find

pπ = (Q− n)
Y0~0
f
. (3.48)

Up to a factor, the zero mode π̂ is the phase χi that exactly parametrizes the family of
solutions at the full non-linear level. It therefore makes sense to treat this mode fully
non-linearly, singling it out when expressing φ in terms of the harmonic modes

π(τ, ~n) = π̂Y0~0 + π̃(τ, ~n), (3.49)

and factoring it out from φ,12

φ̂(τ, ~n) = f + r√
2
eµτe

i
π̂Y00
f e

i π̃
f ' f + r√

2
eµτe

i
π̂Y0~0
f

(
1 + i

π̃

f

)
. (3.50)

As dictated by the commutation relations and by the definition of the modes, the factor ei
π̂Y00
f

has charge 1 while the fields r, π̃ are neutral, which is consistent with the transformation
property of φ̂. Thus π̂ is a cyclic coordinate with periodicity 2πf/Y0~0 and the canonical
pair (π̂, pπ) does not correspond to a harmonic oscillator with an associated Fock space.
The Hamiltonian for this pair is

Hπ̂ = p2
π

2

1−
(

4µ2

ω2
B(0)

)2
 . (3.51)

The second important feature is that the B-mode is gapped

ω2
B(`) ≥ ω2

B(0) = V
′′

int(f) + 3µ2 +m2 > 0 . (3.52)

For large µ, or equivalently large λn (see (3.24) and (3.25)), we can then integrate this
mode out and derive an effective field theory description for the Goldstone mode [6, 7],
which consists of the A`~m and π̂.

The third property is that, for the classically scale invariant cases, (φ̄φ)2 in d = 4 and
(φ̄φ)3 in d = 3, we have

ωA(1) = 1. (3.53)

This equation is associated with the fact that A1~m and A†1~m are respectively the K~m and
P~m generators (see for instance (3.74)). As such they have scaling dimension −1 and 1.

12Here we have also absorbed the iµτi in (3.21) into π̂/f or equivalently set τi = 0.
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Acting with A†1~m on a state therefore produces a descendant. Finally, we have that in the
free limit, λ = 0, the two modes become

ωA(`) = `, ωB(`) = `+ d− 2, (3.54)

and at finite coupling their asymptotic behavior is given by

ωA(`) =
`→∞

ωB(`) =
`→∞

`. (3.55)

Excitations around the charge n ground state |n〉 are obtained by acting with the neutral
modes A†`~m and B†`~m

(A†`1m1
)nA1 . . . (B†j1k1

)nB1 . . . |n〉. (3.56)

Taking now into account that states involving at least one A†1~m are descendants leads
to the spectrum of primary operators at leading order which was mentioned at the end
of section 1.1. As we said the π̂, pπ pair does not produce a Fock space. Instead e

i
π̂Y00
f

and e−i
π̂Y00
f respectively raise and decrease the charge by one unit, thus mapping to the

corresponding fixed charge Fock spaces.

3.2 Relation between different Fock spaces in free theory

Free field theory can be successfully studied around both the trivial φ = 0 and the
non-trivial (3.21) saddles. That allows to find explicitly the mapping between the two
corresponding Fock spaces. We will do that focussing on the d = 3 case.

The map between the two spaces corresponds to a canonical transformation resulting
from equations (2.12), (3.10), (3.27) and (3.32)

(φ̂, pφ̂) , ( ˆ̄φ, p ˆ̄φ) ⇒ (r, P ) , (π,Π). (3.57)

We use the decomposition of the fields in harmonic components (3.33). In three
dimensions m ∈ {−`,−`+ 1, . . . , `} is a simple index. The fields clearly satisfy

r`m(τ) = (−1)m
(
r`,−m(−τ)

)†
, π`m(τ) = (−1)m

(
π`,−m(−τ)

)†
,

P`m(τ) = (−1)m
(
P`,−m(−τ)

)†
, Π`m(τ) = (−1)m

(
Π`,−m(−τ)

)†
.

(3.58)

These components are written in terms of the zero mode and creation and annihilation
operators yielding

r00(τ) = pπ + 1√
2

(
B00(τ) +B†00(−τ)

)
,

π00(τ) = π̂ + i√
2

(
B†00(−τ)−B00(τ)

)
,

P00(τ) = i√
2

(
B†00(−τ)−B00(τ)

)
,

Π00(τ) = pπ,

(3.59)
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and (for ` > 0)

r`m(τ) = 1
2√ω`

[
A`m(τ)+(−1)mA†`,−m(−τ)+B`m(τ)+(−1)mB†`,−m(−τ)

]
,

π`m(τ) = i

2√ω`

[
A`m(τ)−(−1)mA†`,−m(−τ)−B`m(τ)+(−1)mB†`,−m(−τ)

]
,

P`m(τ) = i

2√ω`

[
−(−1)m`A`,−m(τ)+`A†`,m(−τ)−(−1)m(`+1)B`,−m(τ)+(`+1)B†`,m(−τ)

]
,

Π`m(τ) = 1
2√ω`

[
(−1)m(`+1)A`,−m(τ)+(`+1)A†`,m(−τ)−(−1)m`B`,−m(τ)−`B†`,m(−τ)

]
.

(3.60)
Here we do not consider only the quadratic Hamiltonian for fluctuations around the saddle
but take into account the exact solutions of the equations of motion. Thus operators
A`m(τ), B`m(τ) have complicated time dependence, not just a simple phase rotation. How-
ever, they satisfy the commutation relations (3.37), (3.45) and hermiticity (3.58) at all τ .
At τ = 0 they coincide with the τ -independent creation-annihilation operators introduced
in section 3.1.2 for quadratic fluctuations.

Our goal is to express these operators in terms of the ladder operators of vacuum
fluctuations. The form of (3.10) makes the mapping non-linear, which makes it difficult to
find a closed form solution. However at large n the solution can be reliably expressed as a
systematic expansion in inverse powers of n.

We will be studying fluctuations around the lowest energy state with charge n, for
which 〈a†00a00〉 ∼ n. The large charge expansion can then be organized by assigning to
operators a scaling with n

a00 ∼ O(
√
n), a`6=0,m ∼ b`m ∼ O(1). (3.61)

For instance, by singling out a†00a00 in the expression for Q (2.17) we can write

a†00a00 = n

1 + 1
n

Q− n+ b†00b00 −
∞∑
`=1

∑̀
m=−`

(
a†`ma`m − b

†
`mb`m

) , (3.62)

where the term in square brackets represents an O(n0) perturbation. In what follows
we treat the fields as classical variables, disregarding issues of ordering. Expressions for
quantum operators can be restored, in principle, by finding an appropriate ordering such
that the commutation relations are satisfied.

Our goal can be achieved through the following steps:

1. Remembering that for free theory in d = 3 we have

µ3(0, 3) = 1
2 , f =

√
n

2π , ω` = `+ 1
2 , (3.63)

and combining equations (2.9), (3.10), (3.21) and (3.27) we can write

f + r√
2
e
iπ
f =

∞∑
`=0

∑̀
m=−`

1√
2ω`

(
a†`me

`τY ∗`m(~n) + b`me
−(`+1)τY`m(~n)

)
≡ h(τ, ~n) .

(3.64)
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It is also convenient to write

r(τ, ~n) =
√

2h(τ, ~n)h(−τ, ~n)† − f, (3.65)

e
iπ(τ,~n)
f = h(τ, ~n)√

h(τ, ~n)h(−τ, ~n)†
. (3.66)

Notice that, here and later, we formally treat a0,0 and a†0,0 as invertible as we are
working in a subspace with large charge. For example, we can write

1√
h(τ, ~n)h(−τ, ~n)†

= 1√
n
2π + s(τ, ~n)

≈
√

2π
n
−

√
2π3

n3 s(τ, ~n) + 3

√
π5

2n5 (s(τ, ~n))2 + . . .

(3.67)
where we used a†00a00 = n+ . . . and parametrized all subleading effects by s(τ, ~n).

2. Using the orthonormality of spherical harmonics (3.35), we extract the harmonic
components r`m, π`m, P`m,Π`m from (3.33).

3. We finally solve (3.59) and (3.60), for A`m, B`m, π̂ and pπ.

Leading order. At leading order in the n−1 expansion, we get

pπ = 0, exp
[
i
π̂√
2n

]
= a†00√

n
, B`m(τ) = a00b`m√

n
e−(`+1)τ , A`m(τ) = a†00a`m√

n
e−`τ .

(3.68)
As explained, the zero-mode π̂ is kept in the exponential. This also ensures that the
expressions are polynomial (monomial at this order) in the vacuum ladder operators. One
further justification of the exponential notation will appear when computing the propagator
in appendix G.

The commutation relations have the form

[
A`m, A

†
`′m′

]
= 1
n

(
a†00a00 δ``′δmm′ − a`ma†`′m′

)
= δ``′δmm′ +O

(
n−1

)
, (3.69)[

B`m, B
†
`′m′

]
= 1
n

(
a00a

†
00 δ``′δmm′ + b`mb

†
`′m′

)
= δ``′δmm′ +O

(
n−1

)
, (3.70)

which are canonical at the required accuracy (see (3.45)).

Next to leading order. We find that exp
[
i π̂√

2n

]
is still given by (3.68) while pπ is given

by its exact result (3.48). The expressions for the other ladder operators are long. Therefore,
here we provide only that for A`m, since we will need it in the next section (that for B`m
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can be found in appendix D)

A`m = a†00a`m√
n

+ 1
4(1 + 2`)n3/2

(
(1 + 4`)

(
nb00 − b†00(a†00)2)a`m − 2nb†00b`m

+ (−1)m
(
(−1 + 2`)nb†00 + (1 + 2`)b00a

2
00
)
a†`,−m

− (−1)m
(
2(1 + `)nb00 + 2`b†00(a†00)2)b†`,−m)

+
∑

`1,`2>0
all m1,m2

(−1)m
√
πC`,`1,`2−m,m1,m2

8√2ω`ω`1ω`2n3/2

(
− (2 + 3`+ `1 + `2)(a†00)2a`1,m1a`2,m2

+ 2(1 + `− `1 + 3`2)nb`1,m1a`2,m2

+ (`− `1 − `2)a2
00b`1,m1b`2,m2

+ 2(−1)m2(2 + `+ 3`1 + `2)na`1,m1a
†
`2,−m2

− 2(−1)m1(1 + 3`− `1 + `2)(a†00)2b†`1,−m1
a`2,m2

+ 2(−1)m2(1 + `− `1 + `2)a2
00b`1,m1a

†
`2,−m2

− 2(−1)m2(2− `+ `1 + 3`2)nb`1,m1b
†
`2,−m2

+ (−1)m1+m2(2 + `+ `1 + `2)a2
00a
†
`1,−m1

a†`2,−m2

− 2(−1)m1+m2(1− `+ 3`1 − `2)nb†`1,−m1
a†`2,−m2

− (−1)m1+m2(3`− `1 − `2)(a†00)2b†`1,−m1
b†`2,−m2

)
.

(3.71)

Here we introduced the Gaunt coefficients

C`1 `2 `3
m1m2m3 =

∫
Y`1m1Y`2m2Y`3m3dΩ2

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
,

(3.72)

given in terms of Wigner 3j symbols. These coefficients vanish unless the spins satisfy the
triangle inequality

|`1 − `2| ≤ `3 ≤ `1 + `2, (3.73)

meaning each spin has to be in the tensor product of the other two. Moreover Gaunt
coefficients vanish unless m1 +m2 +m3 = 0 and `1 + `2 + `3 is even.

Some remarks on (3.71) are in order. First, notice that the NLO corrections have
relative size n−1/2. Higher orders behave similarly, resulting in an expansion in powers
of n−1/2. However, when computing observables, the NLO terms do not interfere with
the leading order terms, resulting in an expansion in powers of 1/n, as expected in the
semiclassical framework. This is exemplified in section F.

When considering even higher orders, A`m will contain sums over 4, 6, . . . spins with
coefficients that, like (3.72), are integrals of products of respectively 5, 7, . . . spherical
harmonics. As these coefficients go like powers of ` one would expect the parameter
controlling the convergence of the expansion to go like `κ

n for some κ. We will discuss this
in detail in section 4.
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Finally, notice that some of the NLO terms don’t annihilate the state |n〉, so that
A`m|n〉 6= 0. The reason is that |n〉 is the lowest energy state of charge n for the full
hamiltonian (the one associated with (3.29)), while A`m and B`m are the ladder operators
for the quadratic hamiltonian (associated with (3.30)). The vacuum |Ω〉, which is annihilated
by A`m and B`m, coincides with |n〉 only at leading order, hence our result.

3.3 Mapping superfluid excitations to operators

With the tools presented in the previous sections, we are now ready to identify operators and
map them to superfluid excitations. The latter, as defined in (3.56), can be expressed as a
power series in n−1/2 of polynomials of a`m, a†`m, b`m, b

†
`m acting on the free Fock vacuum |0〉.

These, by the operator state correspondence, can in turn be written in terms of operators
involving φ̄, φ and their derivatives.

To identify primary states, we must express the special conformal generators in terms
of A`m, B`m and A†`m, B

†
`m. This is done by inverting (3.71) and the other formulae relating

ladder operators in the two frames, plugging the result in (2.39), (2.43), and (2.45). For
instance, at leading order, using (3.68), we get

K0 =
√
nA1,0, K− = −

√
nA1,−1, K+ =

√
nA1,1. (3.74)

Thus, as was already discussed, at leading order only strings of creation operators not
containing A†1,m are primaries. There is a clear parallel with the conclusion of section 2.4.1.
This is due to the fact that, at leading order, states generated by creation operators A†`m, B

†
`m

correspond to the states generated by A†`,m,B
†
`,m.

As a result, due to the following identities

A†`m|n〉 = a00a
†
`m√
n

(a†00)n√
n!
|0〉 = a†`m(a†00)n−1√

(n− 1)!
|0〉 = (4π)n−1

2√
(n− 1)!

Yµ1...µ`
`m φn−1∂µ1 · · · ∂µ`φ|0〉,

(3.75)
the state A†`m|n〉 corresponds at leading order to an operator with ` derivatives all acting
on the same field

φn−1∂µ1...µ`φ. (3.76)

4 How large is “large spin”?

Quantization around the saddle offers a systematic computation of observables for states
with charge n as a power series in n−1. Clearly, as n→∞ the procedure works for states
with finite spin `, for the ground state |n〉 in particular. In this section we will study the
convergence of the expansion when both ` and n become large.

4.1 Matrix elements for excited states

On general grounds we expect the expansion to be controlled by the ratio `κ/n for some
κ. One way to find out what κ is, would be to perform NLO computations around the
non-trivial saddle. However, we’ll make use of the fact that we know a class of primary
states in free theory in exact form and not just as an expansion in inverse powers of the
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charge. That will give us full control of the computation, allowing to successfully trace any
transition between different regimes (see section 4.2).

Intuitively we expect the radial component of φ to be a good parameter to control the va-
lidity of the semiclassical approximation. The smallness of the size of its quantum fluctuation
relative to its expectation value is a necessary condition for the semi-classicality of a state.13

Fluctuations comparable to the expectation value, and thus consistent with the vanishing
of φ (at least somewhere), signal the breakdown of the semiclassical approximantion.

We will thus study the large n behavior of the following matrix elements

Φ(θ; `, n, p) = A〈n; `, `| : ∂pτ
ˆ̄φ(τ, ~n)∂pτ φ̂(τ, ~n) : |n; `, `〉A, (4.1)

for arbitrary integer p, where |n, `, `〉A is the primary state found in (2.57).
Rewriting the fields in terms of ladder operators (2.9) and (2.10) yields

Φ(τ ; `, n, p) = α2
0
∑̀
k,k′=0

〈ψk|
∑
`′,m′

`′′,m′′

(−1)pωp`′ω
p
`′′a
†
`′,m′a`′′,m′′Y

∗
`′,m′Y`′′,m′′

e(ω`′−ω`′′ )τ
√

4ω`′ω`′′
|ψk′〉,

(4.2)
where we introduced the following notation

|ψk〉 = γk,`(a†00)n−k−1(a†1,1)ka†`−k,`−k|0〉. (4.3)

Using that for k, k′ 6= `− 1, ` we have

〈0|an−k−1
00 ak11a`−k,`−ka

†
`′,m′a`′′,m′′(a

†
00)n−k′−1(a†11)k′a†`−k′,`−k′ |0〉

= (n− k − 1)!k!
[
(n− k − 1)δ`′0 + kδ`′1 + δ`′,`−k

]
δ`′`′′δ`′m′δ`′m′′δkk′ , (4.4)

and neglecting the terms with k, k′ = `− 1, `, which are subleading, we get

Φ(τ ;`,n,p)

= (−1)pα2
0

`−2∑
k=0

(2`)!(n−k−1)!
2k+1k!(2`−2k)!

[
(n−k−1)|Y00|2ω2p−1

0 +k|Y11|2ω2p−1
1 +|Y`−k,`−k|2ω2p−1

`−k

]
.

(4.5)

We then use

|Y``(ϕ, θ)| =
1

2``!

√
(2`+ 1)!

4π sin` θ , (4.6)

which means |Y`−k,`−k|2 is maximal at θ = π/2. Approximating factorials by Stirling’s
formula, we finally find

Φ(π/2; `, n, p) = n

4p+1π

[
Q0(`, p) + Q1(`, p)

n
+ Q2(`, p)

n2 + . . .

+ `ξ

n

(
P0(`, p) + P1(`, p)

n
+ P2(`, p)

n2 + . . .

)]
, (4.7)

13For an illustrative example based on the spinning top see [7].
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where Pk(`) and Qk(`) are n-independent functions which at large ` scale as `k,
and ξ = 2p− 1

2 .
It can be concluded that for the case at hand κ = 1. In other words, the semiclassical

expansion can be trusted as long as `� n. We expect that for a wide class of observables,
even for theories with interaction, computations around the non-trivial saddle can be
organized in a systematic series in powers of `/n. Another instance is examined in appendix F.
However, not all quantities have this type of expansion as we now discuss.

4.2 Primary states

Let us consider 1/n corrections to the operator whose leading term is given by (3.76) and
whose associated state is given in exact form by (2.57).14 By the notation (4.3) we can
write the state succinctly as

|n; `, `〉A = α0
∑̀
k=0
|ψk〉 . (4.8)

The vectors |ψk〉 are mutually orthogonal, but they are not normalized. Comparing their
relative norms we find

〈ψk|ψk〉
〈ψk−1|ψk−1〉

= (`− k + 1)(2`− 2k + 1)
(n− k)k ∼ `2

nk
, (4.9)

where in the last equation we used k ≤ `� n. This equation implies the norms 〈ψk|ψk〉 ∝
(`2/n)k/k! approximate the coefficients in the expansion of the exponential exp(`2/n). We
then have two regimes depending on whether `2/n� 1 or `2/n & 1. In the first case the
succession 〈ψk|ψk〉 is peaked at k = 0. Instead, for `2/n & 1 the succession is peaked at

kmax = 2`2
n
, (4.10)

and has a width of order
√
kmax = `/

√
n (see figure 2). Thus, the primary state (2.57) is

dominated by the sum of |ψk〉 roughly in the range kmax −
√
kmax . k . kmax −

√
kmax.

This result seems to suggest that, for primary states, the 1/n expansion (2.57), or
equivalently (4.8), breaks down at ` ∼

√
n. However, the expressions for (primary) operators

are coordinate dependent. What we have shown here is that, when expressed in terms of
creation-annihilation operators a`,m, a†`,m, primary operators are written as power series
in `/

√
n. There may exist other coordinates that partially resum the series leading to

a manifest expansion in powers of `/n. The mere fact that the expectation value (4.1),
which is coordinate-independent, is presented as a power series in `/n, speaks in favor of
that possibility.

Unfortunately, those coordinates are certainly not the creation-annihilation operators
corresponding to phonons A`,m, A†`,m. Indeed, rewriting the first two terms in (2.57) using
the leading order relation (3.68), gives

|n, `, `〉A =
`�1

α0

√
(n− 1)!

(
A†`` −

√
2`√
n
A†`−1,`−1A

†
1,1

)
|n〉. (4.11)

14The spin ` is bounded by 2 ≤ ` < n.
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Figure 2. Normalized 〈ψk|ψk〉 as function of k for n = 103 and ` = 500.

One may hope that the second term in parenthesis is cancelled by NLO corrections (3.71),
however, it is straightforward to show that it is not the case. We can show using (E.6) that
the only potentially relevant term in (3.71)

(−1)`−1√πC`,`1,`2−`,m1,m2

8√2ω`ω`1ω`2n
(2 + 3`+ `1 + `2)A†`1,m1

A†`2,m2
, (4.12)

scales as O(`0)/
√
n, for `1 = m1 = `− 1, `2 = m2 = 1, so it cannot cancel the term scaling

as `/
√
n.

Our conclusion of this section is that the semiclassical expansion can be trusted for spins
as large as the U(1) charge, ` ∼ n, as long as we are dealing with coordinate-independent
quantities. On the other hand, if we want to identify primary states, using creation-
annihilation operators corresponding to phonons, perturbative expansion breaks down much
earlier, for ` ∼

√
n. We expect that for spins in the window

√
n < ` � n there should

exist different semiclassical backgrounds, expanding around which would allow to describe
primary states perturbatively.15

5 3-pt function

In the next two sections we will further explore the semiclassical methodology described in
section 3.1. Focussing on the Wilson-Fisher fixed point in 4− ε dimensions, corresponding
to the theory in eq. (1.1), we will derive new results by studying 3- and 4-point functions
involving two operators with large charge n at next to leading order in ε (or equivalently

15Expanding the summand in (2.59) for large ` and n and computing the sum via saddle-point approxima-
tion leads to

∞∑
k=0

1
k!

(
2`2

n

)k
exp
(
−k

2

`

)
= exp

{
2`2

n

[
1− 2`

n
+O

(
`2

n2

)]}
,

which suggests that this result can be obtained perturbatively in a double scaling limit n � 1, ` � 1,
`/n = fixed.
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Figure 3. One-loop renormalization of φ̄φ.

in n−1). More precisely, we will compute correlators of the class presented in eq. (3.1)
involving one or two additional operators Oi, i.e. N equals 1 or 2. For simplicity we will
focus on insertions of just one specific type of neutral operators16

O(x) = (φ̄φ)k(x). (5.1)

We start from the 3-point function of φ̄φ, which, up to the normalization, is fully determined
by the scaling dimensions and a single fusion coefficient. The scaling dimension of φn
is given by (1.6), while that of φ̄φ can be easily computed using standard perturbation
theory through Feynman diagrams as we will see shortly. As a result the only parameter
to compute is the fusion coefficient λφ̄φ, which appears in the 3-pt function of canonically
(re-)normalized operators [Oi] as17

〈
[φ̄n](xf )[φ̄φ](x)[φn](xi)

〉
=

λφ̄φ

(xf − xi)2∆φn−∆O(x− xi)∆O(xf − x)∆O
. (5.2)

On the cylinder, using (3.2), one can more simply write

λφ̄φ = lim
τf→∞
τi→−∞

〈0|[̂̄φn](τf , ~nf )[ ̂̄φφ](τ, ~n)[φ̂n](τi, ~ni)|0〉
〈0|[̂̄φn](τf , ~nf )[φ̂n](τi, ~ni)|0〉

≡ 〈n|[ ̂̄φφ](τ, ~n)|n〉. (5.3)

For the theory and the operators at hand, renormalization is multiplicative, so that
canonically normalized and bare operators are related by [Oi] = Oi/Zi, with Zi generally
UV divergent. For instance, the 2-point function of φ̄φ is given by

〈(φ̄φ)(x)(φ̄φ)(y)〉 =
Z2
φ̄φ

(x− y)2∆φ̄φ
, (5.4)

where at one loop order, i.e. just the diagram in figure 3,

Zφ̄φ = Ω−1
d−1(d− 2)−1

[
1− λ

8π2
1

4− d

] [
1− λ

16π2 (1 + γ + log π)
]
, (5.5)

which implies the scaling dimension is

∆φ̄φ ≡ (d− 2) + γφ̄φ = (d− 2) + λ

8π2 . (5.6)

16The insertion of conserved currents between spinning phonon states has been studied, in EFT, in [28].
17Canonical normalization corresponds to 〈0|[O](x)[O](y)|0〉 = (x− y)−2∆O .
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+ +

Figure 4. Topology of diagrams entering 〈n|(φ̄φ)|n〉 at NLO.

For large n, (5.3) can be computed semiclassically by expanding around the saddle
point (3.21). Equation (3.28) yields in this case

λφ̄φ = Z−1
φ̄φ

∫
DrDπ ( ̂̄φφ)(τ, ~n)e−Ŝ[r,π]∫

DrDπ e−Ŝ[r,π]
, (5.7)

where the path integrals have the boundary conditions specified by (3.14).

Leading order: the computation boils down to evaluating the integrands on the saddle,
leading to

λφ̄φ = f2Ω3 = n

µ∗
, (5.8)

where we used (3.23) and the leading order result Z−1
φ̄φ

= 2Ω3. For small λn we have µ∗ = 1,
see (3.24), and the result, λφ̄φ = n, coincides with the tree level computation using Feynman
diagrams. In this section the symbol µ refers to µ4(λn, d) while µ∗ refers to µ4(λ∗n, 4).
Notice this is the chemical potential of the 4D theory evaluated at the critical coupling of
the theory in d = 4− ε, given in (1.2).

Next to leading order. The result is independent of the choice of (τ, ~n) in (5.7), therefore,
we make the convenient choice (τ, ~n) = (0, n̂d), with

n̂d = (0, 0, . . . , 0, 1︸ ︷︷ ︸
d

). (5.9)

By expanding around the saddle, the expectation value of the bare operator is then〈
n|
(
φ̄φ
)

(0, n̂d)|n
〉

= 1
2
〈
n|f2 + 2fr(0, n̂d) + r2(0, n̂d)|n

〉
, (5.10)

which at NLO, i.e. 1-loop, gives〈
n|
(
φ̄φ
)

(0, n̂d)|n
〉

= f2

2 −
〈
r(0, n̂d)

∫
dτdΩd−1

[
r(∂π)2−iµr2π̇+λf2r3

4

]〉
+ 1

2
〈
r2(0, n̂d)

〉
,

(5.11)
where within the 〈. . . 〉 the fields r, π are free fields (3.44) propagating according to the
quadratic action expanded around the background. The resulting Feynman diagrams are
depicted in figure 4. The first step is to find the propagator of (r, π). In matrix form this
can be written as

D(τ − τ ′, ~n · ~n′) =
∑
`

F (`)(τ − τ ′)C(d/2−1)
` (~n · ~n′), (5.12)
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where C(d/2−1)
` (cos θ) are Gegenbauer polynomials and F (`)(τ) is a 2 × 2 matrix whose

exact expression is given in appendix G. The details of the computation can be found in
appendix H. The result is

λφ̄φ = n

µ∗
+ 2(3µ2

∗ + 1)
[2(3µ2

∗ − 1)]3/2
− 3− 2µ2

∗ + 3µ4
∗

2(3µ2
∗ − 1) +

∞∑
`=1

[
S`(µ∗)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
,

(5.13)
with

S`(µ) ≡ S`(µ, 1, 4), (5.14)

where

S`(µ,m, d) = 2`+ d− 2
ω2
B(0)

ωB(`)ωA(`)(3µ2 +m2)− J`(µ2 −m2)
ωB(`)ωA(`) [ωB(`) + ωA(`)] C

(d/2−1)
` (1), (5.15)

while the coefficients c−1,0,1(µ) are defined by the asymptotic behavior of the summand

S`(µ) ≡
`→∞

c−1(µ)`+ c0(µ) + c1(µ)
`

+ . . . , (5.16)

so as to render the sum in (5.13) finite. Their exact values are

c−1(µ) = c0(µ) = µ2 + 1
3µ2 − 1 , c1(µ) = −µ

4 + 2µ2 − 3
2(3µ2 − 1) . (5.17)

As discussed in the appendix, the transcendental terms proportional to the Euler
constant γ, and to ln π, which normally appear in 1-loop expressions, cancel out once we
fix λ = λ∗.

For small λ∗n, expanding µ∗ in a power series in λ∗n

µ∗ = 1 + λ∗n

16π2 −
3
2

(
λ∗n

16π2

)2
+O(λ3

∗n
3), (5.18)

we get

λφ̄φ =
λ∗n→0

n

[
1− λ∗n

16π2 + 5
2

(
λ∗n

16π2

)2
+O(λ∗n)3

]
+
[
6ζ2(3)− 13

2

](
λ∗n

16π2

)2
+O(λ∗n)3+O(n−1).

(5.19)
While for large λ∗n, and therefore µ∗ � 1, the sum in (5.13) approximately satisfies

∞∑
`=1

[
S`(µ∗, 1, 4)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
=

µ→∞
1
6µ

2
∗ logµ∗. (5.20)

Combining that with the leading contribution n/µ∗ and using the relation µ3
∗ = λ∗n/4Ω3,

which applies in the large λ∗n regime, we get

λφ̄φ =
λn→∞

8π2

λ∗

(
λ∗n

8π2

)2/3 (
1 + λ∗

144π2 log λ∗n8π2

)

' 8π2

λ∗

(
λ∗n

8π2

) 2
3 + λ∗

144π2
= 5

2ε

(2εn
5

) 2
3 + ε

45
∼ n

∆
φ̄φ

d−1 , (5.21)

where ∆φ̄φ is given by eq. (5.6) with λ→ λ∗. The scaling with n is precisely as predicted
by the large charge EFT description [7].
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6 4-pt function

Focussing again on the Wilson-Fisher fixed point in d = 4− ε we will now study, by the
same methodology, the four point function with two insertions of (φ̄φ).

Let us recall that a general 4-point correlator in a CFT can be written using s- and
t-channel representations

〈O4(x4)O3(x3)O2(x2)O1(x1)〉 = g12,34(z, z̄)
x∆1+∆2

12 x∆3+∆4
34

(
x24
x14

)∆1−∆2 (x14
x13

)∆3−∆4

(6.1)

= g32,14(1− z, 1− z̄)
x∆3+∆2

32 x∆1+∆4
14

(
x24
x34

)∆3−∆2 (x34
x13

)∆1−∆4

(6.2)

where z and z̄ are defined by the conformal ratios according to

u = z̄z = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
. (6.3)

Modulo kinematic factors, the relevant information is encapsulated in the gij,kl(z, z̄).
For Euclidean signature, the two variables z ≡ eτ+iθ and z̄ ≡ eτ−iθ are related by

complex conjugation. Using conformal transformations to map x1 → 0, x4 →∞ and

x3 = n̂ ≡ (0, 0, . . . , 0, 1) x2 = n̂(θ)eτ ≡ (0, 0, . . . , sin θ, cos θ)eτ , (6.4)

we can rewrite

gs(z, z̄) ≡ g12,34(z, z̄) = |z|∆1〈O4|Ô3(0, n̂)Ô2(τ, n̂(θ))|O1〉, (6.5)

gt(z, z̄) ≡ g32,14(1− z, 1− z̄) = |1− z|
∆2+∆3

|z|∆2
〈O4|Ô3(0, n̂)Ô2(τ, n̂(θ))|O1〉. (6.6)

The gij,kl(z, z̄) can be decomposed as a sum over the primary operators that appear in the
operator product expansion (OPE) of ij and kl

gij,kl(z, z̄) =
∑
α

λijαλ̄klαg
∆ji,∆kl

∆α,`α
(z, z̄), ∆ij = ∆i −∆j , (6.7)

where α labels the primaries while ∆α, `α and λijα respectively represent their dimensions,
spins and fusion coefficients. The conformal blocks g∆ji,∆kl

∆,` (z, z̄) are completely fixed
functions: their functional form is fixed by the conformal group and their normalization
by (6.7). Their explicit expressions in d = 2, 4 can be found in [29]. What matters for our
discussion is that in any dimension they admit a power series expansion in |z| [29, 30]

g∆21,∆34
∆,` (z, z̄) = |z|∆

∞∑
k=0
|z|k

`+k∑
j=j0(`,k)

A∆21,∆34
k,j (∆, `)C(d/2−1)

j (cos θ), z = |z|eiθ (6.8)

with j0(`, k) = max (`− k, k − ` mod 2), where the term proportional to |z|kCj(cos θ)
corresponds to the level k descendant with spin j. The dimension and spin of the intermediate
primaries is directly read from this expansion. The A∆21,∆34

k,j (∆, `) are calculable coefficients,
in particular A∆21,∆34

0,0 (∆, 0) = 1.
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We will here study the specific correlator〈
[φ̄n](x4)[φ̄φ](x3)[φ̄φ](x2)[φn](x1)

〉
, (6.9)

so that equations (6.5) and (6.6) reduce to

gs(z, z̄) ≡ gφn,φ̄φ;φ̄φ,φ̄n(z, z̄) = Z−2
φ̄φ
|z|∆φn

〈n|( ̂̄φφ)(0, n̂)( ̂̄φφ)(τ, n̂(θ))|n〉
〈n|n〉

, (6.10)

gt(z, z̄) ≡ gφ̄φ,φ̄φ;φn,φ̄n(1− z, 1− z̄) = Z−2
φ̄φ

|1− z|2∆φ̄φ

|z|∆φ̄φ

〈n|( ̂̄φφ)(0, n̂)( ̂̄φφ)(τ, n̂(θ))|n〉
〈n|n〉

.

(6.11)

In the regime ∆φn � ∆φ̄φ, the s-channel is controlled by the “Heavy-Light” OPE, while
the t-channel is controlled by the “Heavy-Heavy” and the “Light-Light” OPEs.

6.1 Leading order

As before, the leading order contribution corresponds to evaluating the path integral on the
saddle and gives

〈n|( ˆ̄φφ̂)(0, n̂d)( ˆ̄φφ̂)(τ, ~n)|n〉
〈n|n〉

= f4

4 . (6.12)

The implications of this result, when considering the s- and t-channels are as follows.

s-channel. From (6.10) and (5.5) we obtain

gs(z, z̄) =
(
f2Ω3

)2
|z|∆φn . (6.13)

Therefore, the only operator appearing in the φn × φ̄φ OPE is φn(x) itself with the fusion
coefficient (5.8). Moreover, we see that at this order the descendants of φn do not contribute.
This is to be expected, because the contribution of descendants is suppressed by powers
of the ratio ∆φ̄φ

∆φn
, and thus by an inverse power of n, just as a consequence of conformal

symmetry (see also [8]). For instance, the first descendant term in the conformal block
has coefficient

A∆21,∆34
1,1 (∆, 0) = (∆21 + ∆)(∆34 + ∆)

4∆ , (6.14)

which, for the case at hand, equals
∆2
φ̄φ

4∆φn
, (6.15)

and is suppressed in the limit n� 1.

t-channel. From eqs. (6.11), (6.12) we obtain

gt(y, ȳ) =
(
n

µ

)2 |y|2∆φ̄φ

|1− y|∆φ̄φ
. (6.16)
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+ +

+ + +

Figure 5. Topology of diagrams entering 〈n|(φ̄φ)(φ̄φ)|n〉.

Expanding in powers of y

gt(y, ȳ) =
(
n

µ

)2
|y|4

[
1 + |y|C(1)

1 (cos θ) + |y|2C(1)
2 (cos θ) + |y|3C(1)

3 (cos θ) + . . .
]
,

(6.17)
and comparing with the expansion in conformal blocks, (6.7), we deduce that in this channel
there appears a tower of primary operators labelled by their spin ` and by an integer k,
with dimension

∆(k,`) = 4 + 2k + 2`, `, k = 0, 1, 2, . . . , (6.18)

and with fusion coefficients satisfying

λn,n(k,`)λ̄
φ̄φ,φ̄φ
(k,`) = f4

4 (−1)k (k!)2(k + 2`)!(k + 2`+ 1)!
(2k)!(2k + 4`+ 1)! . (6.19)

At weak coupling these operators correspond to

O(k,`)(x) =
(
φ̄φ ∂2k∂{µ1 . . . ∂µ2`}φ̄φ

)
(x), (6.20)

where {} indicates the traceless symmetric component.

6.2 NLO

At next to leading order we must consider, in full analogy with (5.10),

〈n|(φ̄φ)(0, n̂)(φ̄φ)(τ, n̂(θ))|n〉

= 〈n|
[
f2

2 + fr(0, n̂) + r2(0, n̂)
2

] [
f2

2 + fr(τ, n̂(θ)) + r2(τ, n̂(θ))
2

]
|n〉 , (6.21)

from which both connected and disconnected diagrams arise at NLO, see figure 5.
Disconnected diagrams just correspond to factorized 3-point functions, which we

computed before. Therefore, what is left to compute is the one-phonon exchange connected
diagram, which leads to

Z−2
φ̄φ

〈n|( ˆ̄φφ̂)(0, n̂d)( ˆ̄φφ̂)(τ, ~n)|n〉
〈n|n〉

= λ2
φ̄φ

[
1 + 4µΩ3

n
Drr(z, z̄)

]
, (6.22)
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with λφ̄φ the fusion coefficient in (5.13) and with the propagator for the radial mode given
by (see appendix G)

Drr(z, z̄) =
∞∑
`=0

`+ 1
Ω3

(
|z|ωA(`) J` − ω2

A(`)
2ωA(`) + |z|ωB(`) ω

2
B(`)− J`
2ωB(`)

)
C

(1)
` (cos θ)

ω2
B(`)− ω2

A(`) .

(6.23)
Having secured the four-point function at NLO, we can now turn our attention to the
spectrum of operators appearing in the different channels.

s-channel. The analysis is straightforward. Indeed using (6.10) and (6.23) we see that
the four-point function

gs(z, z̄) =λ2
φ̄φ
|z|∆φn

[
1+ 4µ

n

∞∑
`=0

(
|z|ωA(`) J`−ω2

A(`)
2ωA(`) +|z|ωB(`) ω

2
B(`)−J`
2ωB(`)

)
(`+1)C(1)

` (cosθ)
ω2
B(`)−ω2

A(`)

]
(6.24)

is already in the form (6.8). Therefore, we can identify the primary operators by simply
looking at the powers of |z| in the expansion. These are in one-to one correspondence with
the A- and B-type single phonon states found in section 3.1.2 and result in two separated
towers of primaries with dimension

∆A = ∆φn + ωA(`), ` ≥ 2 ∆B = ∆φn + ωB(`), ` ≥ 0 . (6.25)

Notice that the tower of A-type primaries starts at ` = 2. Indeed, the ` = 1 A-phonon does
appear in (6.24) but it corresponds to the descendant ∂µφn. Instead ` = 0 corresponds to
the “Goldstone mode”, which controls the global fluctuations of the phase of φ and, as such,
is not excited by neutral operators like φ̄φ. The corresponding fusion coefficients can be
read off from the coefficients in front of |z|∆

λ`
φ̄φ,A

= λφ̄φ

√
4µ
n

(`+ 1)J` − ω
2
A(`)

2ωA(`) , ` ≥ 1, (6.26)

λ`
φ̄φ,B

= λφ̄φ

√
4µ
n

(`+ 1)ω
2
B(`)− J`
2ωB(`) , ` ≥ 0. (6.27)

We see that these are n suppressed by ∼
√
µ/n with respect to λφ̄φ. It should also be

noted that these operators enter the OPE without their descendants, similarly to φn at
leading order.

t-channel. The analysis is somewhat more complicated. The reason is that the corre-
sponding expression of the four-point function

gt(1−z,1−z̄) =λ2
φ̄φ

|1−z|2∆φ̄φ

|z|∆φ̄φ
(6.28)[

1+ 4µ
n

∞∑
`=0

(
|z|ωA(`) J`−ω2

A(`)
2ωA(`) +|z|ωB(`) ω

2
B(`)−J`
2ωB(`)

)
(`+1)C(1)

` (cosθ)
ω2
B(`)−ω2

A(`)

]
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is written as a power series in |z|, and not in |1 − z|. In order to get the latter, we have
to analytically continue the four-point function to the region z = 1. That would allow to
analyze the spectrum of operators appearing in the t-channel at next to leading order.

Unfortunately, we do not know how to perform the analytic continuation in closed
form,18 and instead, we will illustrate the principle with an example. For that, let us
consider a simplified situation, z = z̄ ∈ R, in other words θ = 0. Introducing the following
notation for the summand in (6.28)

G(z; `) = 2
(
zωA(`) J` − ω2

A(`)
2ωA(`) + zωB(`) ω

2
B(`)− J`
2ωB(`)

)
(`+ 1)C(1)

` (1)
ω2
B(`)− ω2

A(`) , (6.29)

and using its asymptotic behavior (see also (3.55))

G(z; `) =
`→∞
z→1

z`
(
`+ 1− 3

2
µ2 − 1
`
− (1− z)`+ . . .

)
(6.30)

we can find leading asymptotic of the four point function for z → 1

gt(1−z,1−z) =
z→1

λ2
φ̄φ

(1−z)2∆φ̄φ

{
1+ 2µ

n

[
1

(1−z)2 +
∆φ̄φ−1

1−z + 3
2(µ2−1) log(1−z)

]
+R(z)

}
(6.31)

with the remainder

R(z) = 2µ
n
G(z; 0) + 2µ

n

∞∑
`=1

[
G(z; `)− z`

(
`+ 1− 3

2
µ2 − 1
`

)]
=
z→1

O((1− z) log(1− z))

(6.32)
a less singular function.

Singular terms in (6.31) correspond to different operators. The term proportional to
(1−z)−2 corresponds to an operator with scaling dimension ∆ = 2, which is nothing else but
φ̄φ (its anomalous dimension is invisible at this order).19 The second term corresponds to
its descendant, whose coefficient is fixed by the conformal symmetry (compare with (6.14)).
Lastly, the term with log(1− z) can be exponentiated, leading to a modified prefactor

gt(1− z, 1− z) ⊃
z→1

λ2
φ̄φ

(1− z)2∆φ̄φ (1− z)
3µ
n

(µ2−1). (6.33)

The resulting exponent should correspond to the scaling dimension of ∆(φ̄φ)2 (see (6.18)
and (6.20)) at NLO. Indeed, using (3.23), (3.22) and (5.6) we can write

∆(φ̄φ)2 = 2∆φ̄φ + 3µ
n

(µ2 − 1) = 4 +O(ε2), (6.34)

which coincides with the computation using Feynman diagrams, see appendix I. The last
result can also be directly derived using the general relation (see e.g. [31]) ∆(φ̄φ)2 = d+β′(λ∗),

18In other words, we do not possess the propagator in closed form for z ∼ z̄ ∼ 1.
19In general we expect not only φ̄φ but its spin-` analogues of the form

φ̄∂µ1 . . . ∂µ`φ,

to appear in the φ̄φ× φ̄φ OPE.
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between the dimension of the interaction term (φ̄φ)2 and β′ ≡ ∂λβ. Using (1.2) and
β(λ) = −ελ+ 5λ2

16π2 − 15λ3

(16π2)2 +O(λ4) immediately gives ∆(φ̄φ)2 = 4 +O(ε2).
We conclude this section with two comments. First, it is straightforward to extend the

computation presented above to the case when the two ‘light’ operators are (φ̄φ)k. (6.31) is
just minimally modified to20

gt(1−z,1−z) =
z→1

(6.35)

λ2
(φ̄φ)k(1−z)2∆(φ̄φ)k

{
1+ 2µk2

n

[
1

(1−z)2 +
∆(φ̄φ)k−1

1−z + 3
2(µ2−1) log(1−z)

]
+. . .

}
,

which implies that the two leading contributions are associated to (φ̄φ)2k and (φ̄φ)2k−1.
Moreover, by exponentiating the term with log(1 − z) we obtain, at 1-loop accuracy, a
relation between scaling dimensions

∆(φ̄φ)2k − 2∆(φ̄φ)k = k2
(
∆(φ̄φ)2 − 2∆(φ̄φ)

)
, (6.36)

which can be checked perturbatively using the results of appendix I. This provides an
additional cross-check.

The second comment concerns the computation of similar correlators in a general CFT
using the universal EFT superfluid description, as done in [6, 7]. Even though the EFT
description can be trusted only for sufficiently large separations between the two ‘light’
operators, we can try and use the results of [7] for the 4-point function to formally analyze
what operators appear in t-channel. Repeating almost verbatim (albeit unjustifiably) the
computation leading to (6.18) we conclude that the spectrum of operators in this case is
given by

∆ = δ1 + δ2 + 2k + `, (6.37)

which for large `� 1 coincides with the predictions of the analytic bootstrap [32, 33]. This
fact indicates there should be away to frame the statement, which is purely within the reach
of EFT. But we do not know how.

7 Summary

Perhaps the most synthetic way to state the result of [6] is by saying that in an euclidean
CFT the insertion of a large charge operator produces ‘around’ the insertion point a state
that is equivalent to a conformal superfluid. The equivalence is made fully evident by
exploiting the mapping of the theory to the cylinder. A consequence of this result is that,
while the lowest dimension operator of given charge corresponds to the superfluid ground
state at fixed charge density, the operators of higher dimension must be in one-to-one
correspondence with the superfluid excitations. The latter range from states with finite
spin involving a finite number of phonons to states involving vortices whose spin scales with
the charge [23]. This result is remarkable but, as stated in its generality, it is a bit abstract,
not very tangible.

20The fusion coefficient λ(φ̄φ)k can be computed by repeating the steps of section 5.
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In this paper, considering weakly coupled theories, where the operator spectrum can also
be constructed using standard perturbation theory, we made that operator correspondence
more tangible. In practice we considered Wilson-Fisher U(1) invariant fixed points and
focussed on charge-n operators, like φn, with n� 1. By constructing the operators we have
shown how their spectrum automatically exhibits the structure of the Fock space of phonon
excitations in the superfluid. As our question mainly concerned counting and structure, we
obtained the above result by focussing on the simplest case of free field theory. In that case
the spectrum can be fully and exactly worked out in terms of elementary fields and their
derivatives, and yet, for large n, one can still describe it in terms of superfluid excitations
in a systematic 1/n expansion.

By conformal invariance, operator multiplets are fully classified by their primary
operator. We have identified polynomials in fields and derivatives that play the role of
building blocks in the systematic construction of the primaries. These building blocks are
themselves primaries and are labelled by spin ` and by a discrete label taking two values, A
and B. At a given spin `, a building block is fully determined by its highest weight element,
carrying J3 = `. For instance the highest weight A-blocks are given by products involving
only φ (no φ̄) and ∂− derivatives of the form21

A`,` ≡
`−1∑
k=0

αkφ
`−k−1(∂−φ)k(∂`−k− φ) (7.1)

with the αk some given coefficients. The lower J3 elements of the block A`,m (m =
−`,−`+ 1, . . . , `) are trivially obtained by acting with the lowering spin operator J−. The
A blocks are only defined for ` ≥ 2. Indeed the A00-block would be trivially proportional
to the identity operator, while the ` = 1 block would be proportional to ∂−φ, and as such
it would be a descendant not commuting with the special conformal generators. B-blocks
have instead the form

B`,` ≡
∑̀
k=0

βkφ
`−k+1(∂−φ)k(∂`−k− φ̄) (7.2)

with suitable βk. Unlike the A blocks, the B-blocks are defined for all ` ≥ 0. In particular
B0,0 = φφ̄. Notice that the blocks have charge `, thus their charge equals their spin. By
a combinatoric argument, we have then proven that all primaries of spin bounded by the
charge are obtained by taking products of A and B blocks, corresponding to expressions of
the form

φn−nA−nB

(∏
α

A`α,mα

)∏
β

B˜̀
β ,m̃β

 , nA =
∑
α

`α, nB =
∑
β

˜̀
β . (7.3)

These expressions are well defined as long as n− nA − nB ≥ 0. In particular, they are well
defined in the limit n→∞ while keeping the total number of derivatives and powers of φ̄
finite. This result for the operator spectrum is precisely in one-to-one correspondence with
the Fock space of hydrodynamic modes around the superfluid solution. The latter consists of

21This expression is equivalent to (2.63) with an abuse of notation, since here we do not distinguish
between the full field φ or its creation part.
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A and B-type modes of all possible spins. However A-modes of spin ` = 0 and ` = 1 should
not be considered when constructing operators of fixed charge. The former excitations do
not correspond to Fock states, and simply give rise to operators that interpolate between
subspaces of given charge. The latter are seen to correspond to descendants.

Our building blocks allow to explicitly construct all the primary operators whose number
of derivatives is bounded by their charge. The spin of these states then satisfy ` ≤ n, and
we naturally expect a new regime to arise for ` > n. On the other hand, as illustrated in
section 4.2, the structure of the building blocks displays also a subtle change of regime at
the smaller value ` ∼

√
n. In the superfluid description the change of regime consists in the

fact that for `�
√
n, the primary states are approximated by states with a fixed number of

phonons, while for ` .
√
n the primary building blocks involve a significant mixture of states

with different numbers of phonons. This indicates that at ` &
√
n the interactions among

phonons become important and that states cannot be described as small fluctuations around
a homogeneous superfluid solution. In other words it appears the superfluid description
breaks down for ` &

√
n. However, and remarkably, leaving aside the explicit expression

of the primaries, it happens that for
√
n < ` < n the superfluid description can still be

used for computing coordinate (basis) independent quantities, like the expectation value
of φ̄φ. This fact strongly suggests that in the window

√
n < ` < n there exists another

hydrodynamic saddle point allowing a more convenient description of the primaries. We
have not investigated that, but this is clearly an issue worth further study.

As we already said, in this paper we haven’t addressed at all what happens for even
higher spins, ` > n. However, our combinatoric argument shows that, even in this case,
the counting of primary operators (with maximal spin given the number of derivatives)
coincides with the counting of superfluid phonon excitations, with the constraint that each
phonon’s spin be less than the charge. At the moment we cannot say anything in favor of the
existence of yet another hydrodynamic saddle point, rendering computations perturbative
in this case, but these puzzling facts clearly warrant further investigation. Indeed, in the
interacting case the regime of large spin and large charge is expected to be universally
described by vortex dynamics as discussed in [23]. The search for different saddles with
respect to which expand at large spin in the free and interacting case seems, unavoidably,
the next thing to study.
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A Coefficient Yµ1...µ`
`m

We provide here a few explicit formulas regarding the coefficient defined in (2.24). First, we
write the spherical harmonics in the basis (2.28)

Y`m = [−sign(m)]m
√

(2`+ 1)(`+m)!(`−m)!
2|m| 4π

∑
α++α−+α0=`
α+−α−−=m

n
α+
+ nα0

0 n
α−
−

(−2)min(α+,α−)α+!α0!α−!

(A.1)

= [−sign(m)]m
√

(2`+ 1)(`+m)!(`−m)!
2|m| 4π

`−|m|∑
k step 2

n
`+m−k

2
+ nk0n

`−m−k
2

−

(−2)
`−|m|−k

2
(
`+m−k

2

)
!k!
(
`−m−k

2

)
!
,

where the sum over k is taken in steps of 2, starting form `− |m| mod 2.
After the integration we get the coefficients

Y

α+︷ ︸︸ ︷
+ . . .+

α0︷ ︸︸ ︷
0 . . .0

α−︷ ︸︸ ︷
− . . .−

`m = δα++α0+α−,`δα−−α+,m
[−sign(m)]m

√
π (2`+1)

√
(`+m)!(`−m)!

`!

×
`−|m|∑
k step 2

(−1)
`−k−|m|

2

2 3
2 `−k−

α0
2

Γ
(
k+α0+1

2

)
Γ
(
`+ 3

2

)
(
`− k+α0

2

)
!(

`+m−k
2

)
!k!
(
`−m−k

2

)
!
. (A.2)

B Explicit expressions for spin 2 and 3 primaries

In this appendix we give explicit expression for spin-` primary operators associated to the
primary states (2.57) using operator-state correspondence (2.22). As discussed in section 2.2,
it is assumed products of (derivatives of) φ are normal-ordered and evaluated at the origin.

The counting of primaries given in (2.71) indicates there is one primary of spin ` = 0, 2, 3
but none of spin 1.

Spin 0: is trivial, for we have only one state given by (2.52).

Spin 1. Explicitly, we have three states(
a†00

)n−1
a†1,m|0〉, (B.1)

which correspond to (
a†00

)n−1
a†1,1|0〉 = −(4π)n/2φn−1∂−φ|0〉, (B.2)(

a†00

)n−1
a†1,0|0〉 = (4π)n/2φn−1∂0φ|0〉, (B.3)(

a†00

)n−1
a†1,−1|0〉 = (4π)n/2φn−1∂+φ|0〉. (B.4)

It is straightforward to show using (2.39), (2.43) and (2.45) that those states, hence operators,
are descendants, as we would expect since these operators can be written as derivatives of φn.
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Spin 2. We can write two spin-2 operators by combining n fields φ and two derivatives in
a traceless and symmetric way

O(2,1)
µν = φn−1

(
∂µ∂νφ−

δµν
3 ∂2φ

)
, O(2,2)

µν = φn−2
(
∂µφ∂νφ−

δµν
3 (∂φ)2

)
. (B.5)

One linear combination of these is the spin-two primary.
To give examples of primary states with non-maximal J3 eigenvalue, let us repeat the

method of section 2.4.1 in this simple case. We consider a state

|n; 2, 0〉A = α1
(
a†00

)n−1
a†2,0|0〉+ α2

(
a†00

)n−2 (
a†1,0

)2
|0〉+ β2

(
a†00

)n−2
a†1,−1a

†
1,1|0〉. (B.6)

Acting with K± and K0 we see that this state is primary provided α2 = β2 = −α1. It
follows from (2.22) that

|n; 2, 0〉A = (4π)n/2α1

[1
3φ

n−1
(
∂2

0φ− ∂+∂−φ
)
− φn−2 (∂0φ∂0φ− ∂+φ∂−φ)

]
|0〉 (B.7)

= (4π)n/2α1
2

[1
3φ

n−1
(
3∂2

0φ− ∂2φ
)
− φn−2

(
3∂0φ∂0φ− (∂φ)2

)]
|0〉 (B.8)

= (4π)n/2 3α1
2

[1
3φ

n−1
(
∂2

0φ−
1
3∂

2φ

)
− φn−2

(
∂0φ∂0φ−

1
3(∂φ)2

)]
|0〉 (B.9)

= (4π)n/2 3α1
2

(1
3O

(2,1)
00 −O(2,2)

00

)
|0〉. (B.10)

Hence, we conclude the operator O(2,1)
µν − 3O(2,2)

µν is primary.

Spin 3. In this case we have an anzatz

|n; 3, 0〉A = α1
(
a†00

)n−1
a†3,0|0〉 (B.11)

+ α2
(
a†00

)n−2
a†2,0a

†
1,0|0〉+ β2

(
a†00

)n−2
a†2,1a

†
1,−1|0〉+ γ2

(
a†00

)n−2
a†2,−1a

†
1,1|0〉

+ α3
(
a†00

)n−3 (
a†1,0

)3
|0〉+ β3

(
a†00

)n−3
a†1,−1a

†
1,1a

†
1,0|0〉.

As before, acting with K and imposing that the state be primary we get

|n; 3, 0〉A = (4π)n/2α1

[(
a†00

)n−1
a†3,0 (B.12)

− 3
(
a†00

)n−2
a†2,0a

†
1,0 −

√
2
(
a†00

)n−2
a†2,1a

†
1,−1 −

√
2
(
a†00

)n−2
a†2,−1a

†
1,1

+ 2
(
a†00

)n−3 (
a†1,0

)3
+ 6

(
a†00

)n−3
a†1,−1a

†
1,1a

†
1,0

]
|0〉,

which corresponds to

|n; 3, 0〉A = (4π)n/2α1

(1
6O

(3,1)
000 −

5
6O

(3,2)
000 + 5O(3,3)

000

)
|0〉

= (4π)n/2α1
6
(
O

(3,1)
000 − 5O(3,2)

000 + 30O(3,3)
000

)
|0〉, (B.13)
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with

O
(3,1)
µνλ =φn−1∂µ∂ν∂λφ−

1
5 (δµν∂λ+δµλ∂ν+δλν∂µ)∂2φ, (B.14)

O
(3,2)
µνλ =φn−2∂µ∂νφ∂λφ+φn−2∂µφ∂ν∂λφ+φn−2∂νφ∂µ∂λφ (B.15)

− δµν5
(
∂λφ∂

2φ+∂λ(∂φ)2
)
− δµλ5

(
∂νφ∂

2φ+∂ν(∂φ)2
)
− δλν5

(
∂µφ∂

2φ+∂µ(∂φ)2
)
,

O
(3,3)
µνλ =φn−3∂µφ∂νφ∂λφ−

1
5 (δµν∂λφ+δµλ∂νφ+δλν∂µφ)(∂φ)2, (B.16)

the three spin-3 operators. We conclude operator O(3,1)
µνλ − 5O(3,2)

µνλ + 30O(3,3)
µνλ is primary.

C Counting primaries with ` > n

Here we give several examples of the formula (2.71) presented in main text.
First, let us consider the case of charge 2. We detail the partitions mentioned in the

argument of the main text. We do this for the examples of spin 4 and 5:

• Prim(4, 2) = 1
p(4, 2) p(3, 2) p∗(4, 2) p∗(3, 2) Prim(4, 2)
(4) (3) (1, 1, 1, 1) (1, 1, 1) ×
(3, 1) (2, 1) (2, 1, 1) (2, 1) ×
(2, 2) (2,2) X

(C.1)

• Prim(5, 2) = 0

p(5, 2) p(4, 2) p∗(5, 2) p∗(4, 2) Prim(5, 2)
(5) (4) (1, 1, 1, 1, 1) (1, 1, 1, 1) ×
(4, 1) (3, 1) (2, 1, 1, 1) (2, 1, 1) ×
(3, 2) (2, 2) (2, 2, 1) (2, 2) ×

(C.2)

In general, we find there is one primary operator for even spins and none for odd spins.
Let us now give a more involved example with charge 3 and spin 8, resulting in

Prim(8, 3) = 2.

p(8, 3) p(7, 3) p∗(8, 3) p∗(7, 3) Prim(8, 3)
(8) (7) (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1) ×
(7, 1) (6, 1) (2, 1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1) ×
(6, 2) (5, 2) (2, 2, 1, 1, 1, 1) (2, 2, 1, 1, 1) ×
(6, 1, 1) (5, 1, 1) (3, 1, 1, 1, 1, 1) (3, 1, 1, 1, 1) ×
(5, 3) (4, 3) (2, 2, 2, 1, 1) (2, 2, 2, 1) ×
(5, 2, 1) (4, 2, 1) (3, 2, 1, 1, 1) (3, 2, 1, 1) ×
(4, 4) (2,2,2,2) X
(4, 3, 1) (3, 3, 1) (3, 2, 2, 1) (3, 2, 2) ×
(4, 2, 2) (3, 2, 2) (3, 3, 1, 1) (3, 3, 1) ×
(3, 3, 2) (3,3,2) X

(C.3)
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For arbitrary spin and charge n = 3 an explicit expression is given by

Prim(`, 3) =


⌊
`
6

⌋
, if ` = 6p+ 1 for some p ∈ N,⌊

`
6

⌋
+ 1, if ` 6= 6p+ 1 for all p ∈ N.

(C.4)

In general, the number of primaries can be found from
∞∑
`=0

Prim(`, n)x` =
n∏
k=2

1
(1− xk) . (C.5)

D NLO Fock states on non-trivial background

Here we give the next to leading order result for the annihilation operators B`m over
non-trivial background computed in section 3.2. The result uses the Gaunt coefficients
defined in (3.72).

For ` = 0:

B00 = a00b00√
n

+ 6nb00b
†
00 − 3a2

00b
2
00 + (a†00)2(b†00)2

8n3/2

+
∑
`>0

all m

1
8(1 + 2`)n3/2

(
(−1)m4n(1 + `)a`mb`,−m − (−1)m(3 + 2`)a2

00b`mb`,−m

− (−1)m(1 + 2`)(a†00)2a`ma`,−m − (1 + 4`)2na`ma†`,m
− 4a2

00b`ma
†
`m + (−1)m(−1 + 2`)a2

00a
†
`ma

†
`,−m

− (−1)m4n`a†`mb
†
`,−m + 2n(3 + 4`)b`mb†`m

+ (−1)m(1 + 2`)(a†00)2b†`mb
†
`,−m

)
.

(D.1)

For ` > 0:

B`m = a00b`m√
n

+ 1
4(1 + 2`)n3/2

(
(3 + 4`)

(
nb†00 − b00a

2
00
)
b`m + 2nb00a`m

+ (−1)m
(
(3 + 2`)nb00 + (1 + 2`)b†00(a†00)2)b†`,−m

− (−1)m
(
2`nb†00 + 2(1 + `)b00a

2
00
)
a†`,−m

)
+

∑
`1,`2>0

all m1,m2

(−1)m
√
πC`,`1,`2−m,m1,m2

8√2ω`ω`1ω`2n3/2

(
− (3 + 3`+ `1 + `2)a2

00b`1,m1b`2,m2

+ 2(2 + `+ 3`1 − `2)nb`1,m1a`2,m2

+ 2(−1)m2(3 + `+ 3`1 + `2)nb`1,m1b
†
`2,−m2

− (1− `+ `1 + `2)(a†00)2a`1,m1a`2,m2

+ 2(−1)m1(`+ `1 − `2)(a†00)2b†`1,−m1
a`2,m2

+ (−1)m1+m2(1 + `+ `1 + `2)(a†00)2b†`1,−m1
b†`2,−m2

− 2(−1)m2(2 + 3`+ `1 − `2)a2
00b`1,m1a

†
`2,−m2

− 2(−1)m2(1− `+ `1 + 3`2)na`1,m1a
†
`2,−m2

+ 2(−1)m1+m2(`+ `1 − 3`2)nb†`1,−m1
a†`2,−m2

− (−1)m1+m2(1 + 3`− `1 − `2)a2
00a
†
`1,−m1

a†`2,−m2

)
.

(D.2)
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E Some asymptotics of Gaunt coefficients

In the main text we are interested in the expansion at large ` of A†``. Thus we provide here
some formulas for the asymptotics of relevant Gaunt coefficients. We use special cases of
3j symbols [34]

(
` `1 `2
0 0 0

)
=


0 L odd,

(−1)L2
√

(L−2`)!(L−2`1)!(L−2`2)!
(L+1)!

(L2 )!

(L−2`
2 )!

(
L−2`1

2

)
!
(
L−2`2

2

)
!

L even,

(E.1)(
` `1 `2
` −`−m2 m2

)
= (−1)`−`1−m2

√
(2`)!(L−2`)!(`+`1+m2)!(`2−m2)!

(L+1)!(L−2`1)!(L−2`2)!(−`+`1−m2)!(`2+m2)! ,

(E.2)
where L = `+ `1 + `2. We can use Stirling formula to estimate these at large spin. If we
consider ` to be large, due to triangle inequality (3.73), at least one of `1, `2 has to be of
order `.

If we assume `1 ∼ `2 ∼ `, we have

C`,`1,`2`,−`−m2,m2√
ω`ω`1ω`2

`1∼`2∼`
`→∞−→ g1

(
`1
`
,
`2
`
,
m2
`

)`/2
h1

(
`1
`
,
`2
`
,
m2
`

)(
`−7/4 +O(`−11/4)

)
, (E.3)

where

g1(x,y,z) = 4(−1)1−x+y−2z(x+y−1)x+y−1(x+z+1)x+z+1(y−z)y−z
(x−y+1)x−y+1(y−x+1)y−x+1(x+y+1)x+y+1(x−z−1)x−z−1(y+z)y+z ,

(E.4)
whose absolute value is bounded by 1 and for each pair x, y there is one unique z such that
|g1(x, y, z)| = 1, namely z = x2−y2−1

2 , and

h1(x, y, z) = 2
π5/4

(y − z)1/4(1 + x+ z)1/4

(x− y + 1)1/2(y − x+ 1)1/2(x+ y + 1)(x− z − 1)1/4(y + z)1/4 . (E.5)

Hence, for each `1, `2 there is only one m1,m2 for which the coefficient is not exponentially
suppressed, and for that choice (E.3) is of order `−7/4.

On the other hand if we assume (`1 − `) ∼ `2 ∼ 1 (the case `2 ∼ `, `1 ∼ 1 will of course
give similar result)

C`,`1,`2`,−`−m2,m2√
ω`ω`1ω`2

`1∼`
`→∞−→ (−1)`h2(`1 − `, `2,m2) `

`−`1+m2
2

(
`−1 +O(`−2)

)
, (E.6)

with

h2(x, y, z) = (−1)
x+y−2z

2 2
x−2y+z−1

2 (y − x)!
√

(y − z)!
√
π
(
x+y

2

)
!
(
y−x

2

)
!
√

(y + z)!(−x− z)!
. (E.7)

Hence (E.6) is least suppressed in case m2 = `1 − ` which is its maximum allowed value
since |m1| = | − `−m2| ≤ `1, and in that case (E.6) is of order `−1.
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F Norm of an excited state

To furnish one more example of the perturbative expansion of quantities involving spinning
charged states discussed in 4.1, we now consider the computation of 〈n|A``A†``|n〉. This is
equivalent to the norm of the state A†``|n〉. Writing the state as a power series in n−1/2

A†``|n〉 = |Ψ0〉+ 1√
n
|Ψ1〉+ 1

n
|Ψ2〉+ . . . (F.1)

we have from (3.71)

|Ψ0〉=
a00a

†
``√
n
|n〉

|Ψ1〉=
(

(1+4`)b†00a
†
``

4(1+2`) +
∑

`1,`2>0
all m1,m2

(−1)m
√
πC`,`1,`2`,m1,m2

8√2ω`ω`1ω`2n
(
−(2+3`+`1+`2)a2

00a
†
`1,−m1

a†`2,−m2

+2(1+`−`1+3`2)nb†`1,−m1
a†`2,−m2

+(`−`1−`2)(a†00)2b†`1,−m1
b†`2,−m2

))
|n〉

(F.2)

since many terms vanish when applied to |n〉. We have not computed |Ψ2〉 as this would
require the NNLO expression for A†``. It is easy to see that 〈Ψ0|Ψ0〉 = 1 and 〈Ψ0|Ψ1〉 = 0.
Thus order n−1 correction to the norm is given by

||A†``|n〉||
2 = 1 + 1

n

(
〈Ψ1|Ψ1〉+ 〈Ψ0|Ψ2〉+ 〈Ψ2|Ψ0〉

)
. (F.3)

We cannot directly evaluate the last two terms, but we can analyze the term 〈Ψ1|Ψ1〉. This
will be given by an infinite sum over spins such as `1, `2, which we have no reason to expect
will converge. Hence 〈Ψ0|Ψ2〉 has to be an infinite sum as well, such that its divergent part
cancels with that of 〈Ψ1|Ψ1〉. The order of magnitude of the spins for which the cancellation
starts taking effect can only be the only characteristic spin of the problem: `. We can thus
estimate that the tails of both sums will cancel when summed spins are greater than `. In
other words, the behavior of both sums can be approximated, barring some unexpected
cancellations, by estimating the behavior of the sum in 〈Ψ1|Ψ1〉 with a cutoff of order `.
We observe all terms of |Ψ1〉 in (F.2) are orthogonal to each other, so we must estimate the
norm of these individual terms in the limit of large summed spins `1, `2.

First, we consider `1 ∼ `2 ∼ `. We estimate the contribution of such terms to the
norm as

∑
`1∼`2∼`
m1,m2

∣∣∣C`,`1,`2`,m1,m2

∣∣∣2
ω`ω`1ω`2

(`2) ∼
∑

`1∼`2∼`

(
`−7/4

)2
(`2) ∼ `2 × `−3/2 ∼ `1/2. (F.4)

Let us briefly explain this estimation. We start with a single sum because of the orthogonality
of terms in (F.2), and the summand is the square of the coefficient in that equation. Then,
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as observed in the appendix E, in this regime there is only one choice of m1,m2 which
give a non-suppressed term (E.3). Finally, the double sum over `1, `2 yields an additional
`2 factor.

Secondly, we consider the case `1−` ∼ `2 ∼ 1. Again, there is only one choice of m1,m2
that yields the dominant term (E.6). Neglecting other terms, we estimate the contribution
to the norm as

∑
`1∼`,`2∼1
m1,m2

∣∣∣C`,`1,`2`,m1,m2

∣∣∣2
``1`2

(`2) ∼
∑

`1∼`,`2∼1

(
`−1

)2
(`2) ∼ `× 1 ∼ `, (F.5)

where in the second estimation the sum yields a single ` factor since only `1 is summed
up to order `. We notice this contribution is dominating that of (F.4). Evidently the case
`2 − ` ∼ `1 ∼ 1 gives an equal contribution.

Therefore, the series expansion of the norm is estimated schematically as

||A†``|n〉||
2 ∼ 1 + `+ . . .

n
+O(n−2), (F.6)

where the dots represent terms which are subdominant at large `.
We see the result is again expressed as a series in `

n .

G Propagator on the cylinder

In this section we show how to construct propagators corresponding to fluctuations of fields
r, π in (3.44). From time translation and rotation symmetry we know the propagator can
be written as

〈x(τ1, ~n1)y(τ2, ~n2)〉 = Dxy(τ1 − τ2, ~n1 · ~n2), (G.1)

where x, y ∈ {r, π} are fields and 〈. . . 〉 is the τ -ordered Wick contraction. The quadratic
Lagrangian yields a matrix equation similar to (3.41) for the propagator (note that it is not
diagonal due to mixing between π̇ and r)

−
(
∂2
τ + ∆Sd−1 −M2 2iµ∂τ
−2iµ∂τ ∂2

τ + ∆Sd−1

)(
Drr Drπ

Dπr Dππ

)
= δ(τ1 − τ2)δ(Sd−1)(~n1 · ~n2). (G.2)

Expanding in spherical harmonics (in this case only with ~m = ~0, which corresponds to
Gegenbauer polynomials)

D(τ, ~n1 · ~n2) =
∑
`

F (`)(τ)C(d/2−1)
` (cos(~n1 · ~n2)), (G.3)

we obtain

−N`Ωd−2

(
∂2
τ − J` −M2 2iµ∂τ
−2iµ∂τ ∂2

τ − J`

)(
F

(`)
rr F

(`)
rπ

F
(`)
πr F

(`)
ππ

)
= C

(d/2−1)
` (1)δ(τ), (G.4)

where the normalization factor of Gegenbauer polynomials is given by

N`

∫ 1

−1
C

(d/2−1)
` (x)C(d/2−1)

` (x)(1− x2)
d−3

2 dx = 24−d π Γ(`+ d− 2)
(2`+ d− 2) `! Γ2

(
d
2 − 1

) . (G.5)
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We can look for solutions of this equations for τ < 0 and τ > 0, which will be given by
expressions similar to (3.44), and then find the propagator by matching this solutions at τ = 0
with a specific discontinuity of derivatives. Alternatively, we can Fourier transform (G.4)
and use (see [35], table 18.6.1)

C
(d/2−1)
` (1) = Γ(`+ d− 2)

`! Γ(d− 2) , (G.6)

to obtain
F (`)(τ) = 2`+ d− 2

(d− 2)Ωd−1

∫
dω

2π e
−iωτ M (`)(ω)

(ω2 + ω2
B(`))(ω2 + ω2

A(`)) , (G.7)

with
M (`)(ω) =

(
ω2 + J` 2µω
−2µω ω2 + J` +M2

)
. (G.8)

For ` 6= 0 integration in (G.7) can be easily done using Cauchy’s theorem, resulting in

F (`)(τ) = 2`+d−2
(d−2)Ωd−1

(
M (`)(−iωA(`))e−ωA(`)τ

2ωA(`) −M
(`)(−iωB(`))e−ωB(`)τ

2ωB(`)

)
1

ω2
B(`)−ω2

A(`)
(G.9)

for τ > 0, and

F (`)(τ) = 2`+ d− 2
(d− 2)Ωd−1

(
M (`)(iωA(`))eωA(`)τ

2ωA(`) − M (`)(iωB(`))eωB(`)τ

2ωB(`)

)
1

ω2
B(`)− ω2

A(`)
(G.10)

for τ < 0. The same result can obviously be obtained directly from (3.44). Indeed, say for
τ1 < τ2 computing non-zero spin contribution to time ordered correlator we get

〈n|r(τ2)r(τ1)|n〉`

=
(
J` − ωA(`)2

2ωA(`) e−ωA(`)|τ2−τ1| + ωB(`)2 − J`
2ωB(`) e−ωB(`)|τ2−τ1|

)
1

ω2
B(`)− ω2

A(`)
∑
~m

Y`~mY
∗
`~m,

(G.11)

which upon using (G.6) and (see [36])
∑
~m

Y`~m(~n1)Y ∗`~m(~n2) = 2`+ d− 2
(d− 2)Ωd−1

C
(d/2−1)
` (~n1 · ~n2) (G.12)

reproduces (G.9). Similarly, we can compute rπ and ππ components of the propagator.
Dealing with ` = 0 modes is somewhat more subtle. The difficulty is that apart from

the gapped mode corresponding to (B0~0, B
†
0~0) there is also the gapless mode π̂, pπ, for which

pπ|n〉 = 0, (G.13)

and which does not have the Fock space structure. It does not present a problem for 〈rr〉,
indeed using (3.44) we get

〈n|r(τ2)r(τ1)|n〉0 = 1
2ωB(0)Ωd−1

e−ωB(0)|τ2−τ1|, (G.14)
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which is consistent with (G.9) and (G.10). On the other hand considering correlators linear
in π is problematic. However, that is not an issue, for in all instances the field π appears
only in the exponent,22 hence, we need only to worry about correlators involving eiπ(τ)/f .
For instance, using Baker-Campbell-Hausdorff formula we obtain (for τ < 0)

〈e−iπ(0)/feiπ(τ)/f 〉0 = exp

−1− 4µ2

ω2
B(0)

2Ωd−1f2 τ

 exp
[

1
f2

4µ2

ω2
B(0)

eωB(0)τ − 1
2ωB(0)Ωd−1

]
. (G.15)

Comparing with the naive expectation

〈e−iπ(0)/feiπ(τ)/f 〉0 = 1 + D
(0)
ππ (|τ |)−D(0)

ππ (0)
f2 +O(f−4), (G.16)

it is consistent to define (compare with (G.9) and (G.10))

F (0)
ππ (τ) = −

1− 4µ2

ω2
B(0)

2Ωd−1
|τ |+ 4µ2

ω2
B(0)

e−ωB(0)|τ |

2ωB(0)Ωd−1
+ const. (G.17)

Similarly, computing 〈e−iπ(0)/fr(0)eiπ(τ)〉0 allows to define

F (0)
rπ (τ) = sign(τ) iµ

ω2
B(0)

e−ωB(0)|τ |

Ωd−1
+ const. (G.18)

H 3-pt function computation

We start from 〈
n|
(
φ̄φ
)

(0, n̂d)|n
〉

= 1
2
〈
n|f2 + 2fr(0, n̂d) + r2(0, n̂d)|n

〉
, (H.1)

and then expanding around the saddle, we get for the expectation value of bare fields

〈
n|
(
φ̄φ
)

(0, n̂d)|n
〉

= f2

2 −
〈
r(0, n̂d)

∫
dτdΩd−1

[
r(∂π)2−iµr2π̇+λf2r3

4

]〉
+ 1

2〈r
2(0, n̂d)〉.

(H.2)
Here as in section 5, the symbol µ refers to µ4(λn, d). One must keep in mind that m, f ,
J`, ωA,B(`) are functions of d, µ and n. The symbol µ∗ will refer to µ4(λ∗n, 4). Using the

22Bear in mind that π̂ is defined on a compact space (circle), since charge is quantized. As such, the
corresponding canonical momentum pπ is defined only on the space of periodic functions. Otherwise pπ is
not Hermitian. Indeed, the following relation holds∫ 2π

0
dπ̂ψ∗2(π̂) [−i∂π̂ψ1(π̂)] =

∫ 2π

0
dπ̂(π̂) [−i∂π̂ψ2]∗ ψ1(π̂),

only if ψ2(π̂)ψ1(π̂)
∣∣∣2π
0

= 0, i.e. for periodic functions ψi(π̂).
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propagator (G.3) we compute contractions for terms without spatial derivatives∫
〈r1r

3
2〉 → 3Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F (`)
rr (0)C(d/2−1)

` (1)
]
, (H.3)

∫
〈r1π̇2r

2
2〉 → 2Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
Ḟ (`)
πr (0)C(d/2−1)

` (1)
]

+ Ωd−1

[∫
dτḞ (0)

πr (τ)
] [ ∞∑

`=0
F (`)
rr (0)C(d/2−1)

` (1)
]
, (H.4)

∫
〈r1π̇

2
2r2〉 → 2Ωd−1

[∫
dτḞ (0)

πr (τ)
] [ ∞∑

`=0
Ḟ (`)
πr (0)C(d/2−1)

` (1)
]

− Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F̈ (`)
ππ (0)C(d/2−1)

` (1)
]
, (H.5)

∫
〈r2〉 →

[ ∞∑
`=0

F (`)
rr (0)C(d/2−1)

` (1)
]
, (H.6)

where indices indicate evaluation point, for example r1 = r(τ1, ~n1). For the last term∫
gij2 〈r1∂iπ2∂jπ2r2〉 (H.7)

in order to find contraction of two fields at the same point it is necessary to introduce a
splitting, compute derivative(s) and then consider the limit. For example

〈r2∂iπ2〉 = lim
~n′2→~n2

∂′iDπr(0, ~n′2 · ~n2) = 0, (H.8)

which vanishes since ~n′2 · ~n2 is maximal for ~n′2 = ~n2. Similarly, using the chain rule and the
same argument we show

〈∂iπ2∂jπ2〉 = lim
~n′2→~n2

∂′i∂jDππ(0, ~n′2 · ~n2) = d

dx
Dππ(0, x)

∣∣∣∣
x=1

(∂i~n2) · (∂j~n2) (H.9)

and one can show, for example by choosing specific coordinates on the sphere, that

gij2 (∂i~n2) · (∂j~n2) = d− 1. (H.10)

Using (see [35], eq. (18.9.19))

d

dx
C(λ)
n (x) = 2λC(λ+1)

n−1 (x), (H.11)

and (see (G.6))
C

(d/2)
`−1 (1) = C

(d/2−1)
` (1) J`

(d− 1)(d− 2) , (H.12)

we obtain∫
gij2 〈r1∂iπ2∂jπ2r2〉 → Ωd−1J`

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F (`)
ππ (0)C(d/2−1)

` (1)
]
. (H.13)
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For what follows we will need explicit expressions

F (0)
rr (τ) = e−ωB(0)|τ |

2Ωd−1 ωB(0) , (H.14)

Ḟ (0)
πr (τ) = iµ e−ωB(0)|τ |

Ωd−1 ωB(0) , (H.15)

F (0)
rr (0) = 1

2Ωd−1 ωB(0) , (H.16)

F (`)
rr (0) = 2`+ d− 2

Ωd−1(d− 2)
ωB(`)ωA(`) + J`

2ωB(`)ωA(`) [ωB(`) + ωA(`)] , ` 6= 0, (H.17)

F (`)
ππ (0) = 2`+ d− 2

Ωd−1(d− 2)
ωB(`)ωA(`) + J` + 2(µ2 −m2)
2ωB(`)ωA(`) [ωB(`) + ωA(`)] , ` 6= 0, (H.18)

Ḟ (0)
πr (0) = iµ

Ωd−1 ωB(0) , (H.19)

Ḟ (`)
πr (0) = 2`+ d− 2

Ωd−1(d− 2)
iµ

ωB(`) + ωA(`) , ` 6= 0, (H.20)

F̈ (0)
ππ (0) = 2µ2

Ωd−1 ωB(0) , (H.21)

F̈ (`)
ππ (0) = 2`+ d− 2

Ωd−1(d− 2)
ω2

+(`) + ω2
A(`) + ωB(`)ωA(`)− J` − 2(µ2 −m2)

2 [ωB(`) + ωA(`)] , ` 6= 0, (H.22)

and integrals ∫
dτF (0)

rr (τ) = 1
Ωd−1 ω

2
B(0) , (H.23)∫

dτḞ (0)
πr (τ) = 2iµ

Ωd−1 ω
2
B(0) . (H.24)

We obtain〈
n|φ̄φ(0, n̂d)|n

〉
= n

2µΩd−1
− 2(µ2−m2)

ω2
B(0)

∞∑
`=0

F (`)
rr (0)C(d/2−1)

` (1)− 2iµ
ω2
B(0)

∞∑
`=0

Ḟ (`)
πr (0)C(d/2−1)

` (1)

+ 1
ω2
B(0)

∞∑
`=0

[
F̈ (`)
ππ (0)−J`F (`)

ππ (0)
]
C

(d/2−1)
` (1). (H.25)

Which can be further simplified with

ω2
B(`)ω2

A(`) = J2
` + 2J`(µ2 −m2), ω2

B(`) + ω2
A(`) = 2(J` + 3µ2 −m2) (H.26)

leading to〈
n|(φ̄φ)(0, n̂d)|n

〉
= n

2µΩd−1
+
∞∑
`=0

1
ω2
B(0)

2`+ d− 2
Ωd−1(d− 2)C

(d/2−1)
` (1)ωB(`)ωA(`)(3µ2 +m2)− J`(µ2 −m2)

ωB(`)ωA(`) [ωB(`) + ωA(`)] .

(H.27)
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Denoting the summand in (H.27) by

S`(µ,m, d)
(d− 2)Ωd−1

(H.28)

and considering its asymptotics at `→∞

S`(µ,m, d) ≡
`→∞

c−1(µ,m, d)`d−3 + c0(µ,m, d)`d−4 + c1(µ,m, d)`d−5 + . . . , (H.29)

we get〈
n|(φ̄φ)(0, n̂d)|n

〉
= n

2Ωd−1µ4((λ∗ + δλ)n, d) (H.30)

+ 1
(d− 2)Ωd−1

{
S0(µ,m, d) +

∞∑
`=1

[
S`(µ,m, d)− c−1(µ,m, d)`d−3

− c0(µ,m, d)`d−4 − c1(µ,m, d)`d−5
]

+ c−1(µ,m, d)ζ(3− d) + c0(µ,m, d)ζ(4− d) + c1(µ,m, d)ζ(5− d)
}
λ∗

where we put explicit dependence of µ4 on the 1-loop coupling counterterm, with

δλ = 5(λ∗)2

16π2
1

4− d, (H.31)

and 1-loop terms don’t need any counterterm corrections at this order. The renormalized
coupling is denoted by λ∗ which at this stage is considered as independent of the dimension.
Expanding the first term in λ and other terms in 4− d, keeping only O(1) terms (these are
the only ones that are needed at this order), leads to

〈
n|(φ̄φ)(0, n̂d)|n

〉
=
{

n

2Ωd−1µ
− 5λ2

16π2
1

4− d
n

2Ωd−1µ2
∂µ

∂λ
(H.32)

+ 1
(d− 2)Ωd−1

(
R(µ∗) + c1P (µ,m)

4− d + c1F (µ∗, 1)
)}

λ∗

where we introduced

R(µ) = S0(µ, 1, 4) +
∞∑
`=1

[
S`(µ, 1, 4)− c−1(µ, 1, 4)`− c0(µ, 1, 4)− c1(µ, 1, 4)

`

]
+ c−1(µ, 1, 4)ζ(−1) + c0(µ, 1, 4)ζ(0), (H.33)

and
c1(µ,m, d)ζ(5− d) =

d→4

c1P (µ,m)
4− d + c1F (µ,m), (H.34)

with

c1P (µ,m) = m2 + 2m4 + µ2 − 3m2µ2 − µ4

2(3µ2 −m2) , (H.35)

c1F (µ,m) = 12m4 − 5µ2 − 6µ4 −m2(18µ2 + 5)
12(3µ2 −m2) . (H.36)
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In the theory at hand, equation (3.24) takes the form

µ2 −m2 = nλ

4µΩd−1
. (H.37)

This implies
∂µ

∂λ
= n

4Ωd−1(3µ2 −m2) , (H.38)

which yields

〈
n|(φ̄φ)(0, n̂d)|n

〉
=
{

n

2µΩd−1
− 5

16π2
1

4− d
λ2n2

8Ω2
d−1µ

2(3µ2 −m2) (H.39)

+ 1
(d− 2)Ωd−1

(
R(µ∗) + c1P (µ,m)

4− d + c1F (µ∗, 1)
)}

λ∗

.

Taking into account normalization (5.5) and expanding in λ we get

λφ̄φ = Z−1
φ̄φ

〈
n|(φ̄φ)(0, n̂d)|n

〉
(H.40)

=
{
n(d− 2)

2µ + λn(d− 2)
16π2µ(4− d) + λn(d− 2)

32π2µ
(1 + γ + log π)

− 5
16π2

1
4− d

λ2n2

8Ω2
d−1µ

2(3µ2 −m2) +R(µ∗) + c1P (µ,m)
4− d + c1F (µ∗, 1)

}
λ∗

.

Using (H.37) to substitute λn, we can gather the three order 1
4−d terms, then expand µ, m

and Ωd−1 in 4− d to show cancellation of divergences and get a finite part

1
4− d

(
(d− 2)Ωd−1(µ2 −m2)

4π2 − 5Ωd−1(d− 2)(µ2 −m2)2

8π2(3µ2 −m2) + c1P (µ,m)
)

d→4−→ 2(µ2
∗ + 1)− (γ + log π)(µ4

∗ + 2µ2
∗ − 3)

4(3µ2
∗ − 1) . (H.41)

Some γ + log π appeared from

1
Ω3

∂Ωd−1
∂d

∣∣∣∣
d=4

= 1
2 (γ + log π − 1) . (H.42)

We can as well substitute λn in the term

λn(d− 2)
32π2µ

(1 + γ + log π) d→4−→ µ2
∗ − 1
2 (1 + γ + log π). (H.43)

We see there is not yet full cancellation of γ + log π terms. The reason is the very first term,
which is enhanced by n, contains µ(λ∗n, d) which we still have to expand in 4− d, bringing
n(4− d) contributions at NLO. To this end, we can express the derivative of µ with respect
to d from (3.24)

∂µ

∂d

∣∣∣∣
d=4

= µ

3µ2 − 1

[
1− 1

Ω3
(µ2 − 1)∂Ωd−1

∂d

]∣∣∣∣
d=4

(H.44)
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and use (H.42). This yields

n(d− 2)
2µ = n

µ∗
− (4− d)n

(
µ2
∗ − 1

)
(2 + γ + log π)

2µ∗ (3µ2
∗ − 1) . (H.45)

Now that 1
4−d poles have cancelled and everything has been expanded to relevant order in

4− d, we can take the theory at the fixed point (1.2). This yields for the previous equation

n(d− 2)
2µ = n

µ∗
− 5

(
µ2
∗ − 1

)2 (2 + γ + log π)
4(3µ2

∗ − 1) . (H.46)

Putting everything together, we notice all γ + log π terms cancel, and we get the final result

λφ̄φ = n

µ∗
− 2µ4

∗ − 7µ2
∗ + 3

2(3µ2
∗ − 1) +R(µ∗) + c1F (µ∗, 1). (H.47)

Plugging explicit expressions from (H.33) and (H.36) results in

λφ̄φ = n

µ∗
+ 2(3µ2

∗ + 1)
[2(3µ2

∗ − 1)]3/2
− 3µ4

∗ − 2µ2
∗ + 3

2(3µ2
∗ − 1) +

∞∑
`=1

[
S`(µ∗)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
,

(H.48)
where we noted

S`(µ) = S`(µ, 1, 4), ci(µ) = ci(µ, 1, 4). (H.49)

I Feynman diagram computation of ∆(̄φφ)k

We compute diagrammatically the one-loop anomalous dimension of (φ̄φ)k in the-
ory (1.1). We consider the MS renormalization of operators in the following momentum-
space correlator:23

〈(φ̄φ)kφ̄(p) · · ·φ(p) · · · 〉 = Z(φ̄φ)kZ
2k
φ 〈
[
(φ̄φ)k

]
[φ̄](p) · · · [φ](p) · · · 〉 , (I.1)

where there are k insertions of field φ(p) and φ̄(p). The field renormalization factor Zφ
has no one-loop contribution so we consider it equal to 1. The bare (φ̄φ)k operator
is normalized:

= 1 . (I.2)

We do not draw exterior lines in the diagrams.
There are three diagrams at one-loop level, of which we compute the divergent part:

= = k(k − 1)
4 (−λ) 1

8π2ε
+O(ε0) = k2(−λ) 1

8π2ε
+O(ε0) .

(I.3)
23To be more precise, the operator (φ̄φ)k mixes with other operators [37]. However, since this operator is

a primary of the critical theory, the mixing cancels in that case. This means we can neglect the mixing
when diagramatically computing the anomalous dimension off-criticality.
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Summing all diagrams yields

〈(φ̄φ)kφ̄(p) · · ·φ(p) · · · 〉 = 1− k(3k − 1)λ
16π2ε

+O(λε0, λ2) , (I.4)

from which we get
Z(φ̄φ)k = 1− k(3k − 1)λ

16π2ε
+O(λ2) . (I.5)

The one-loop anomalous dimension is then given by

γ(φ̄φ)k = −λε
∂ logZ(φ̄φ)2

∂λ
= k(3k − 1)λ

16π2 +O(λ2) . (I.6)

At the Wilson-Fisher fixed point (1.2) the dimension is

∆(φ̄φ)k = 2k
(
d

2 − 1
)

+ γ(φ̄φ)k = 2k + 3k(k − 2)
5 ε+O(ε2) . (I.7)
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