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Abstract— This paper investigates the use of relaxed recen-
tered logarithmic barrier functions in the context of nonlinear
model predictive control. These functions are a variation of
the regular log-barrier functions that are introduced in the
objective function of an optimization problem as a penalty
for the deviation from the constraint set. The resulting MPC
scheme has been studied in the case of linear dynamics, and
several interesting results on the global nominal asymptotic
stability of the corresponding closed-loop system and constraint
satisfaction guarantees have been obtained. Extending them
to the case of nonlinear dynamics is non-trivial, and we
show in this paper that these properties can still hold locally.
The theoretical results are demonstrated by the numerical
implementation of a nonlinear benchmark system with four
states and two inputs.

I. INTRODUCTION

Model predictive control (MPC) is an advanced control
method that has been extensively studied for its capability
of handling complex constrained dynamical systems [1]. As
an optimization-based control technique, the basic idea of
MPC is to solve a finite-horizon open-loop optimal control
in a receding horizon fashion and apply the first element
of the optimal control input to the process [2], [3]. These
online optimal control problems are formulated based on
the predicted dynamics of the system to be controlled, both
a user-defined cost objective and potential constraints on
the system states and input. There exist various theoretical
results concerning the closed-loop stability properties of the
resulting feedback law for both linear and nonlinear systems
[4], [5].

In practice, there always exists a gap between the actual
implementation of MPC and its theoretical concepts, which
poses significant challenges for real-world applications [1].
For example, solving the online optimization problem to
optimality at frequencies in the kHz range on embedded
platforms can be difficult, or even impossible [6]–[8]. More-
over, the resulting online optimal control problem is refor-
mulated at every sampling time based on the current state
measurement. Due to the presence of disturbances, sensor
outliers, or observer errors, these problems might become
infeasible, leading to a complete crash of the respective
control algorithm [9].

To deal with this issue, considerable research effort has
been spent on simplifying the optimization problems in-
volved in MPC by leveraging ideas coming from classi-
cal mathematical optimization. One of those is replacing
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constraints by logarithmic barrier functions, as is done in
interior point methods (see [10]). Such modifications lead to
equality-only constrained, or even unconstrained, optimiza-
tion problems that may be in some sense “easier to solve”,
but that still present some flaws, like the non-definition
of these barrier functions outside the constraint set, which
can lead to infeasible problems. This is usually solved by
introducing soft constraints (see [11]–[13]), although no
theoretical guarantees can be given on the convergence of
the resulting optimization problem.

An alternate is to relax the barrier function by extending
it outside the constraint set in a twice continuously dif-
ferentiable fashion. These relaxed (recentered) logarithmic
barrier functions (that we will call RRLB functions) have
been heavily studied in the context of stabilization with MPC
for linear dynamical systems in [9], [14]. In this simple
case, it was proven that globally asymptotically stabilizing
schemes can be designed with the help of these functions,
in particular by leveraging appropriate terminal costs and/or
sets. What’s more, constraint satisfaction guarantees can be
derived locally around the reference state.

The goal of this paper is to extend the RRLB based MPC
to the more general case of nonlinear dynamics. In Section II
we recap the nominal MPC scheme and the definition of
RRLB functions and then, Section III presents the general
RRLB based MPC scheme and recalls the results obtained
in the linear case. The main contribution of this paper in
Section IV shows that we can ensure asymptotic stability but
only in a neighborhood of the reference state in Theorem 3.
Moreover, Theorem 4 implies that constraint satisfaction
guarantees can still hold in a smaller neighborhood. Finally,
Section V illustrates the effectiveness of the proposed RRLB
based NMPC scheme by implementing it to a benchmark
continuous stirred tank reactor and comparing it with the
regular MPC scheme.

Notation we use the notation diag(a1, . . . , an) to denote
a diagonal matrix with diagonal elements a1, . . . , an; ∥ · ∥
denotes the euclidian norm; Sn++(Sn+) denote the set of
symmetric positive (semi-) definite the matrices in Rn×n ; a
minimizer of an equality constrained optimization problem
is called a regular KKT point, if the Linear Independence
Constraint Qualifications (LICQ) and Second Order Suffi-
cient Conditions (SOSC) are satisfied [15].

II. PRELIMINARIES

A. Model Predictive Control

This paper considers discrete-time nonlinear dynamical
systems with states and controls xt ∈ Rnx , ut ∈ Rnu and
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evolution equation given by

∀ t ∈ Z≥0, xt+1 = f(xt, ut) (1)

with f a general nonlinear function. We focus here on the
task of stabilizing such systems to a steady state that is
constant in time. To accomplish this task, we are going to use
Model Predictive Control (MPC), which in essence solves the
nonlinear program given by

VN (xt) = min
x,u

J(x,u) :=

N−1∑
k=0

l(xk, uk) + F (xN ),

subject to x0 = xt, (2)
xk+1 = f(xk, uk), k = 0, . . . , N − 1,

xk ∈ X , k = 0, . . . , N − 1,

uk ∈ U , k = 0, . . . , N − 1

in a receding horizon fashion, and then apply to the system
the control input given by the optimal solution at stage 0,
i.e., u∗

0. In this paper, we are going to focus on quadratic
stage and terminal costs:

l(x, u) = x⊤Qx+ u⊤Ru, F (x) = x⊤Px

with Q,P ∈ Snx
++, R ∈ Snu

++. Moreover, the state and control
constraints are polytopes given by

X = {x ∈ Rnx | Cxx ≤ dx}, (3a)
U = {u ∈ Rnu | Cuu ≤ du} (3b)

with matrices Cx ∈ Rmx×nx , Cu ∈ Rmu×nu and vectors
dx ∈ Rmx , du ∈ Rmu . Finally, xt denotes the initial
condition at the current time instant and VN (xt) denotes
the cost-to-go function with prediction horizon of length
N ∈ Z>0. Notice that here we use superscripts to denote the
time instant of the closed-loop trajectories, and subscripts to
denote open-loop predictions.

Throughout this paper, we make the following assump-
tions:

A1 The dynamics f are twice Lipschitz-continuously dif-
ferentiable in a neighborhood of the origin,

A2 the origin is a steady state, i.e., f(0, 0) = 0, 0 ∈ int(X ),
0 ∈ int(U), where int(S) denotes the interior of a set
S.

Moreover, we define the matrices

A =
∂f(0, 0)

∂x
, B =

∂f(0, 0)

∂u
,

and assume that

A3 the pair (A,B) is (asymptotically) stabilizable.

This assumption implies that there exists a stabilizing cost
K such that matrix AK := A+BK only has eigenvalues in
the open unit disk.

B. Relaxed Recentered Log-Barrier Function
Based on the polytopic state and control constraint sets (3),

we define the relaxed recentered logarithmic barrier functions
as presented in [14] by

Bx(x) =

qx∑
i=1

(1 + wx,i)Bx,i(x), (4a)

Bu(u) =

qx∑
i=1

(1 + wx,i)Bu,i(u) (4b)

with

Bx,i(x) =


log(dx,i)− log(dx,i − rowi(Cx)x)

if dx,i − rowi(Cx)x > δ ,

log(dx,i) + β(dx,i − rowi(Cx)x; δ)

otherwise,

and

Bu,i(u) =


log(du,i)− log(du,i − rowi(Cu)u)

if du,i − rowi(Cu)u > δ ,

log(du,i) + β(du,i − rowi(Cu)u; δ)

otherwise.

Here, δ is called the relaxation parameter and β is the
function that ensures Bx and Bu be twice continuously
differentiable. The simplest example for such a function β
is:

β(z; δ) =
1

2

[(
z − 2δ

δ

)2

− 1

]
− log(δ) . (5)

The weights wx,i and wu,i are chosen such that

Bx(0) = 0, Bu(0) = 0,∇Bx(0) = 0 and ∇Bu(0) = 0 .

These equations only have solutions if

0 < δ ≤ min {dx,1, . . . , dx,qx , du,1, . . . , du,qu} ,
which is always possible if 0 ∈ X and 0 ∈ U .
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Fig. 1: (Left): Principle of relaxed log barrier function based
on quadratic relaxation. (Right): Regular weight recentered
log barrier function (solid line) and RRLB function for δ ∈
{0.01, 0.1, 0.5, 1} for the constraint z ∈ R, −1 ≤ z ≤ 2

An illustration of this relaxation procedure can be found in
Figure 1. More details on these RRLB functions can be found
in [14]. Note that Bx, Bu are positive definite functions that
can be upper bounded by coercive quadratic functions. In the
following, we use the notation

Mx = ∇2Bx(0) and Mu = ∇2Bu(0)

to denote the Hessians of Bx and Bu at the origin.
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III. RRLB-BASED MODEL PREDICTIVE CONTROL

In this section, we define the RRLB-based nonlinear MPC
problem as follows:

ṼN (xt) = min
x,u

J̃(x,u) =

N−1∑
k=0

l̃(xk, uk) + F̃ (xN )

subject to x0 = xt, (6)
xk+1 = f(xk, uk), k = 0, . . . , N − 1 .

with modified stage and terminal cost given by

l̃(x, u) = l(x, u) + ϵBx(x) + ϵBu(u), F̃ (x) = x⊤P̃ x . (7)

Here, ϵ is the barrier parameter and P̃ is assumed to be given
by the solution to the following modified Discrete Algebraic
Riccati Equation (DARE):

P̃ = Q+ ϵMx +A⊤P̃A

−A⊤P̃B(R+ ϵMu +B⊤P̃B)−1B⊤P̃A .
(8)

Compared to the classical NMPC formulation (2), (6)
rewrites the state and control input constraints into the
objective by using the relaxed recentered log-barrier (RRLB)
functions (4a). Moreover, we only consider here terminal
costs and no terminal constraints because this RRLB for-
mulation (presented in [9]) is the one that makes the least
assumptions on the system dynamics.

In the case of linear time-invariant dynamics, i.e.

∀ t ∈ Z≥0, xt+1 = Axt +But,

the RRLB-based MPC formulation (6) becomes

ṼN (xt) = min
x,u

N−1∑
k=0

l̃(xk, uk) + F̃ (xN )

subject to x0 = xt, (9)
xk+1 = Axk +Buk, k = 0, . . . , N − 1.

Accordingly, the following results hold:

Theorem 1 (Theorem 5 in [9]) Let assumptions A1–A3
hold and if the matrix P̃ ∈ Snx

++ in the terminal cost F̃ is
given by the solution of (8), the controlled dynamical system
yielded by (9) is globally asymptotically stable.

Theorem 2 (Lemma 5 in [9]) Let the assumptions in The-
orem 1 hold, then there exits a neighborhood XN of the
origin such that for any initial state x0 ∈ XN , all the
constraints are satisfied along the closed-loop trajectories.
Furthermore, the set XN can be given analytically by:

XN =
{
x ∈ X | ṼN (x)− x⊤Px ≤ ϵmin{βx, βu}

}
,

where P is the solution to the DARE (8) with ϵ = 0, and

βx = min
i,x

{Bx(x) | rowi(Cxx) = dx,i} ,

βu = min
i,u

{Bu(u) | rowi(Cuu) = du,i} .

Theorem 1 establishes the closed-loop stability of RRLB-
based linear MPC while Theorem 2 presents local constraint

satisfaction guarantees. In the following sections, we will
investigate nonlinear MPC design by using RRLB functions
and analyze the corresponding closed-loop performance.

IV. CLOSED-LOOP ANALYSIS OF RRLB-BASED
NONLINEAR MPC

Throughout the rest of this paper, we write

x̃(x) = {xt, x̃1(x), . . . , x̃N−1(x), x̃N (x)}
and ũ(x) = {ũ0(x), ũ1(x), . . . , ũN−1(x)}

for the optimal sequences of states and controls given by
solving (6) for a current state x ∈ Rnx . We further drop the
“(x)” when no confusion is possible.

A. Nominal Closed-Loop Stability

To prove the asymptotic stability of the controlled system
yielded by (6), we first need the following lemma on the
regularity of the solution of (6).

Lemma 1 If A1 holds and for a given initial state x̄, the so-
lution of (6) is a regular KKT point, then in a neighborhood
of x̄ we have:

∥ũk(x̄)∥ = O(∥x̄∥), ∥x̃k+1(x̄)∥ = O(∥x̄∥)
for all k = 0, 1, ..., N − 1.

We can use the proof of the Theorem 4.2 in [16] to show this
Lemma. A sketch of the proof can be found in Appendix A.

Now, we can establish the closed-loop stability of an MPC
controller based on (6).

Theorem 3 Let assumptions A1–A3 hold. Moreover, let the
matrix P̃ defining the terminal costs be the unique positive
definite solution to the following Lyapunov equation:

P̃ = A⊤
K P̃AK + µQ̃K with µ > 1

and Q̃K = Q+ ϵMx︸ ︷︷ ︸
=:Q̃

+K⊤(R+ ϵMu︸ ︷︷ ︸
=:R̃

)K ,

where K is the stabilizing control based on assumption A3.
Then, for all initial states in a neighborhood of the origin, the
controlled system yielded by the RRLB nonlinear MPC (6)
is locally asymptotically stable.

In practice, we can compute the matrix K by solving the
DARE (8) with µ ≈ 1. The factor µ is very important in
theory but in practice could be taken very close, or even
equal to one.

Proof. To prove local asymptotic stability we will show
that ṼN is a Lyapunov function in a neighborhood of the
origin. First, since the RRLB functions are recentered, we
can write the Taylor expansion of the stage costs l̃ as:

l̃(x, u) = x⊤Q̃x+ u⊤R̃u+O(∥x∥3 + ∥u∥3)
⇒ l̃(x,Kx) = x⊤Q̃Kx+O(∥x∥3) .

By the assumptions, we also have ∀x ∈ Rnx ,

F̃ (AKx) + µx⊤QKx− F̃ (x) = 0 (10)
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hold, and analogously as discussed in [17, Chapter 2.5.5],
there exists a neighborhood of the origin in which:

F̃ (f(x,Kx)) + x⊤QKx− F̃ (x) ≤ 0 (11)

⇒ F̃ (f(x,Kx))− F̃ (x) + l̃(x,Kx) = O(∥x∥3) . (12)

According to Lemma 1, the predicted states are all Lips-
chitz with respect to the initial state, so we can choose an
even smaller neighborhood such that x̃N (xt) is also in it.

Now using the optimal sequence of states and controls of
the RRLB MPC starting at xt, we can construct new feasible
sequences for the problem starting at xt+1 = x̃1(x

t) as

x′ = (x̃1, . . . , x̃N , f(x̃N ,Kx̃N ))

and u′ = (ũ1, . . . , ũN−1,Kx̃N ).

Then we obtain:

ṼN (xt+1) ≤ J̃(x′,u′) = J̃(x̃, ũ)− l̃(xt, ũ0)

+ F̃ (f(x̃N ,Kx̃N ))− F̃ (x̃N ) + l̃(x̃N ,Kx̃N )

= ṼN (xt)−O(∥xt∥)2 +O(∥xt∥3)
= ṼN (xt) +O(∥xt∥)2,

which establishes the descent property for ṼN . Finally, it is
easy to show that ṼN is lower and upper bounded by coer-
cive quadratic functions (since Q,R are symmetric, positive
definite and Bx, Bu are positive definite and locally twice-
Lipschitz continuously differentiable, i.e., both are upper
bounded by quadratics), so that ṼN is a Lyapunov function
in a small neighborhood at the origin. □

One can see that the proof of Theorem 3 is the same
as the closed-loop stability proof of the nominal MPC
scheme without state and control constraints [17], [18], i.e.,
X = Rnx and U = Rnu in (2). In this case, the MPC
formulation (6) is recursively feasible such that one can use
the optimal solution at the current time instant to construct a
feasible solution for the shifted problem. Under the regularity
assumption, the closed-loop stability is thus shown based on
the fact that ṼN is a locally Lyapunov function.

Remark 1 In practice, one needs an efficient online solver
to deal with (6). A commonly used approach is the
Newton-type method, which has been implemented in many
state-of-the-art open-source toolkits such as ACADO [19],
acados [20], PolyMPC [21]. In their implementations, a
single iteration of a Newton-type approach could be applied
to deal with (6) suboptimally, which is a so-called real-time
iteration (RTI), while the closed-loop performance can be
still guaranteed. Based on our results, one can establish the
closed-loop stability of RRLB NMPC based RTI scheme by
following the analysis in [22].

B. Constraint Satisfaction Guarantees

Now we aim at proving a nonlinear counterpart of Theo-
rem 2. We follow the same construction as discussed in [9]
but now the error terms that appeared in the previous section
will become problematic.

Lemma 2 Consider the RRLB nonlinear MPC (6) and
suppose that assumptions A1–A3 hold. Let further x0 be
an initial state in the neighborhood given by Theorem 3.
Let’s denote by

{
x0, x1, . . .

}
and

{
u0, u1, . . .

}
the closed-

loop state and control trajectories obtained by applying the
controls ut = ũ0(x

t) . There exists a function α : Rnx → R
such that ∀t ∈ Z≥0:

Bx(x
t), Bu(u

t) ≤ 1

ϵ
α(x0).

Proof. In the proof of Theorem 3 we showed that ∀t ∈
Z≥0,

ṼN (xt+1)− ṼN (xt)

≤ − l̃(xt, ũ0(x
t)) + l̃(x̃N (xt),Kx̃N (xt))

− F̃ (x̃N (xt)) + F̃ (f(x̃N (xt),Kx̃N (xt))) .

Let us define the error term

η(x) := − l̃(x̃N (x),Kx̃N (x)) + F̃ (x̃N (x))

− F̃ (f(x̃N (x),Kx̃N (x))).

Then, if we sum the terms in the previous inequality, we
obtain a telescopic sum that we can compute using the fact
that the system is asymptotically stable, i.e.,

lim
t→∞

Ṽ (xt) = 0 ⇒ ṼN (xt) ≥
∞∑
t=0

l̃(xt, ut) + η(xt).

Based on the modified stage cost l̃(xt, ut) and noticing that
∞∑
t=0

l(xt, ut) ≥ V∞(xt)

= xt⊤Pxt +O(∥xt∥3)
by the same arguments as in [8], we can define α by

α(x) := ṼN (x)− x⊤Px+O(∥x∥3) +
∞∑
t=0

η(xt) (13)

to obtain

α(x0) ≥ ϵ
∑
t=0

Bx(x
t) + ϵ

∑
t=0

Bu(u
t).

Then, since the RRLB functions are all positive definite, we
can easily have

Bx(x
t), Bu(u

t) ≤ 1

ϵ
α(x0),

which concludes the proof. □

Unlike the analog expression of α in the linear case
(α(x) = ṼN (x) − x⊤Px) there are some error terms that
are not actually calculable. This comes from the generality
of the considered dynamics.

Lemma 3 (Lemma 1 in [9]) Let us define the bounds

βx = min
i,x

{Bx(x) | rowi(Cx)x = dx,i},

βu = min
i,u

{Bu(u) | rowi(Cu)u = du,i} .
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Then for all relaxation parameters δ > 0, we have

{x ∈ Rnx | Bx(x) ≤ βx} ⊆ X ,

and {u ∈ Rnu | Bu(u) ≤ βu} ⊆ U .

Theorem 4 Let the assumptions in Lemma 2 hold, for any
initial state xt ∈ XN with

XN := {x ∈ Rnx | α(x)) ≤ ϵmin {βx, βu}} ,
there is no state or control constraint violation along the
closed loop trajectories.

Proof. Lemma 2 implies that for any x0 ∈ XN and ∀t ∈
Z≥0,

ϵBx(x
t) ≤ α(x0) ≤ ϵβx =⇒ Bx(x

t) ≤ βx,

ϵBu(u
t) ≤ α(x0) ≤ ϵβu =⇒ Bu(u

t) ≤ βu,

and thus, by Lemma 3, xt ∈ X , ut ∈ U . □

V. NUMERICAL EXPERIMENTS

This section demonstrates the theoretical results numer-
ically by applying RRLB MPC to a nonlinear benchmark
system: the Continuously Stirred Tank Reactor (CSTR)1.

A. Experimental Setup

The CSTR system dynamics given by [23, Chapter 1.2]

ċA = u1(cA0 − cA)− k1(ϑ)cA − k3(ϑ)c
2
A (14a)

ċB = −u1cB + k1(ϑ)cA − k2(ϑ)cB (14b)

ϑ̇ = u1(ϑ0 − ϑ) +
kwAR

ρCpVR
(ϑK − ϑ)

− 1

ρCp

[
k1(ϑ)cAH1 + k2(ϑ)cBH2

+ k3(ϑ)c
2
AH3

]
(14c)

ϑ̇K =
1

mKCPK
[u2 + kwAR(ϑ− ϑK)] , (14d)

with ki(ϑ) = ki,0 exp
(

Ei

ϑ+273.15

)
for i = 1, 2, 3, involves

four states x = (cA, cB , ϑ, ϑK) and two control inputs u =
(u1, u2). To implement both the regular and RRLB MPC
schemes we discretized these dynamics with a 10-step RK4
integrator. All the coefficients appearing in these equations
are given below:

Symbol Value Symbol Value

k10 1.287e12 h−1 ρ 0.9342 kg
L

k20 1.287e12 h−1 Cp 3.01 kJ
kg·K

k30 9.043e9h−1 kw 4032 kJ
h·m2·K

E1 −9758.3 AR 0.215m2

E2 −9758.3 VR 10L

E3 −8560 mK 5 kg

H1 4.2 kJ
mol

CPK 2.0 kJ
kg·mol

H2 −11.0 kJ
mol

cA0 5.1 mol
L

H3 −41.85 kJ
mol

ϑ0 104.9 ◦C

1The code of our implementation is available at https://github.
com/tudoroancea/paper_rrlb_mpc

The goal is to stabilize the system around the steady-state

x∗ =(2.140
mol

L
, 1.090

mol

L
, 114.191 ◦C, 112.907 ◦C)

and u∗ =(14.19 h−1,−1113.50
kJ

h
).

To this end we formulate an NMPC problem with a predic-
tion horizon of 200 seconds divided into 10 control intervals,
quadratic costs defined by

Q = diag(0.2, 1.0, 0.5, 0.2), R = diag(0.5, 5.0e − 7)

and with the following state and control constraints:

x ∈


0
mol

L
, 10

mol

L

0
mol

L
, 10

mol

L
98 ◦C, 150 ◦C

92 ◦C, 150 ◦C

 , u ∈

3.0h−1, 25.0 h−1

−9000
kJ

h
, 0.0

kJ

h



We implemented this MPC problem using the regular MPC
scheme (2) and the RRLB MPC scheme (6). Both implemen-
tations are based on the RTI method offered by the acados
library (see [20]) with the HPIPM solver (see [24]). For the
RRLB MPC scheme, we set the relaxation parameter as

δ =
1

2
min {dx,1, . . . , dx,qx , du,1, . . . , du,qu} .

B. Illustration of Local Asymptotic Stability

To demonstrate Theorem 3, we implemented our RRLB
NMPC scheme with randomly choosing six different initial
states inside the state constraint set and Figure 2 illustrates
the convergence of the closed-loop trajectory.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
iteration

10−3

10−1

101

di
st

an
ce

to
x∗

Fig. 2: Evolution of the distance to the reference state.

This figure reports the evolution of the distance between
the state and the reference state throughout the iterations.
We actually did the experiment on a larger number of initial
states and only reported six of them to maintain visual clarity.
Convergence (in terms of distance to the reference point
within a tolerance of 10−4) was measured for all of them. In
our experiments we actually found no initial states that do
not lead to convergence to the reference state, the closed-loop
trajectories always converge.
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C. Comparison of RRLB and Regular MPC

For this experiment we chose a single initial state and ran
a closed-loop simulation with both regular MPC and RRLB
MPC (with ϵ = 30.0).

0.0 2.5 5.0 7.5 10.0 12.5 15.0
iteration

10−3

10−1

101

di
st

an
ce

to
x∗

RRLB NMPC
Regular NMPC

Fig. 3: Evolution of the distance to the reference state for
regular and RRLB MPC

Figure 3 shows that the convergence of RRLB NMPC is
slower but smoother because the control inputs are not ac-
tually saturated. This comes from the high barrier parameter
ϵ necessary to ensure constraint satisfaction during the first
iteration.

D. Illustration of the Constraint Satisfaction Guarantee

To illustrate the constraint satisfaction property of RRLB
NMPC controllers, we ran the controller in closed-loop for
a grid of different initial states and for different barrier
parameters ϵ. Since the initial states are 4-dimensional and
hard to visualize in their entirety, we have fixed

ϑ = 130.28, ϑK = 94.0,

and only created a 2D grid of 30× 30 values for (cA, cB).

Fig. 4: Accumulated constraint violation along the closed-
loop trajectory

Figure 4 displays how the constraint violation decreases
and goes to 0 when ϵ increases. This is because the constraint
violation are more heavily penalized when ϵ is bigger. This
figure thus, shows (a small part of) the neighborhood given
by Theorem 4 and could hint its potential monotonicity with
respect to ϵ, i.e., if we call this neighborhood XN (ϵ) (to
indicate the dependence on ϵ) then ϵ < ϵ′ ⇒ XN (ϵ) ⊆
XN (ϵ′). A rigorous proof of this observation will be a future
research direction on this subject.

VI. SUMMARY AND OUTLOOK

In this paper, we show that in the case of nonlinear
dynamics, the novel RRLB MPC schemes can still yield
locally asymptotically stable systems even without strictly
enforcing state and control constraints. We also proved the
existence of a neighborhood around the reference state where
the constraints are never violated. These two proofs provide
an advancement on the subject of RRLB MPC and could be
the groundwork for new MPC implementations.

Future advancements could include theoretical lines of
research, through the investigation of the monotonicity prop-
erties of the neighborhood involved in our proofs with respect
to the horizon size or the barrier parameter, as well as
numerical endeavors such as the development of tailored
optimization methods to solve the RRLB problem being
more efficient in embedded system.

APPENDIX

A. Proof of Lemma 1

We illustrate the main idea of the proof by first defining
the k-step model by

xk = ξk(x0,u) = f(. . . f(f(x0, u0), u1) . . . , uk−1)

such that (6) can be equivalently rewritten as

ṼN (xt) = min
u

J̄(x0,u) :=

N−1∑
k=0

l̃(ξk(x0,u), uk)

+ F̃ (ξN (x0,u))

subject to x0 = xt, (15)

which is the so-called single-shooting formulation in the
context of numerical optimal control [17, Chapter 8]. Based
on the assumptions, we can have ∇uJ̄(x̄, ũ) = 0 and
∇2

uuJ̄(x̄, ũ) ∈ Sn++, such that each ũk and x̃k are continu-
ously differentiable in a closed neighborhood of the origin.
Therefore, by continuity, their gradient is bounded on this
neighborhood and they are therefore Lipschitz-continuous.
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