
Causal Discovery in Probabilistic Networks with an
Identifiable Causal Effect

Sina Akbari
Department of Computer and

Communication Sciences
EPFL, Lausanne, Switzerland
sina.akbari@epfl.ch

Fateme Jamshidi
College of Management of Technology

EPFL, Lausanne, Switzerland
fateme.jamshidi@epfl.ch

Ehsan Mokhtarian
Department of Computer and

Communication Sciences
EPFL, Lausanne, Switzerland
ehsan.mokhtarian@epfl.ch

Matthew J. Vowels
CVSSP

University of Surrey, Guildford, U.K.
m.j.vowels@surrey.ac.uk

Jalal Etesami
Department of Computer and

Communication Sciences
EPFL, Lausanne, Switzerland
jalal.etesami@epfl.ch

Negar Kiyavash
Department of Computer and

Communication Sciences
EPFL, Lausanne, Switzerland
negar.kiyavash@epfl.ch

Abstract

Causal identification is at the core of the causal inference literature, where complete
algorithms have been proposed to identify causal queries of interest. The validity
of these algorithms hinges on the restrictive assumption of having access to a
correctly specified causal structure. In this work, we study the setting where a
probabilistic model of the causal structure is available. Specifically, the edges in a
causal graph are assigned probabilities which may, for example, represent degree
of belief from domain experts. Alternatively, the uncertainly about an edge may
reflect the confidence of a particular statistical test. The question that naturally
arises in this setting is: Given such a probabilistic graph and a specific causal
effect of interest, what is the subgraph which has the highest plausibility and for
which the causal effect is identifiable? We show that answering this question
reduces to solving an NP-hard combinatorial optimization problem which we call
the edge ID problem. We propose efficient algorithms to approximate this problem,
and evaluate our proposed algorithms against real-world networks and randomly
generated graphs.

1 Introduction

A large proportion of questions of interest in various fields including but not limited to psychology,
social sciences, behavioural sciences, medical research, epidemiology, economy, etc. are causal in
nature [24, 15, 3]. In order to estimate causal effects, the gold standard is performing controlled
interventions and experiments. Unfortunately, such experiments can be prohibitively expensive,
unethical, or impractical (consider, for example, an experiment in which participants are required
to smoke in order to understand the links to cancer) [5, 7]. In contrast, non-experimental data are
comparatively abundant, and no expensive interventions are required to generate such data. This

Preprint. Under review.

ar
X

iv
:2

20
8.

04
62

7v
2

 [
cs

.L
G

]
 1

3
A

ug
 2

02
2

has motivated the development of numerous techniques for understanding whether a causal query
can be answered using observational data. Specifically, if a particular causal query is identifiable, it
means it can be expressed as a function of the observational distribution, and thus estimated from
observational data (at least in principle).

A significant body of the causal inference literature is dedicated to the identification problem [21, 15,
18, 9, 14]. In particular, Huang and Valtora presented a complete algorithmic approach to decide the
identifiability of a specific query, and proved that Pearl’s do calculus is complete, in the sense that if a
causal query is identifiable, a sequence of do calculus rules can be applied to derive an identification
expression for that query [8]. Furthermore, Shpitser and Pearl provided a graphical criteria to decide
the identifiability, based on the hedge criterion [18]. However, all of these results hinge on full
specification of the causal structure, i.e., access to a correctly specified Acyclic Directed Mixed Graph
(ADMG) that models the causal dynamics of the system. This requirement is restrictive in a number
of ways. Firstly, the causal identification problem is concerned with inference from the observational
data, but the ADMG cannot be inferred from the observational distribution alone. Secondly, structure
learning methods rely heavily on statistical tests Spirtes et al. [19], Colombo et al. [4], Akbari et al.
[1], which are prone to errors arising from lack of sufficient data and method-specific limitations [17]
which can result in misspecification of the causal structure.

As opposed to full specification of the causal structure, we propose the setting in which we only have
access to a probabilistic model of the causal structure. For instance, an ADMG G is given along with
probabilities assigned to each edge of G. An example is shown in Figure 1a. These probabilities
could represent uncertainties arising from statistical tests, or the strength of belief of domain experts
concerning the plausibility of the existence of an edge. Under this setting, each ADMG on the set
of vertices of G is assigned its own plausibility score. Since the causal structure is not deterministic
anymore, answering questions such as “is the causal effect P (Y |do(X)) identifiable?” also becomes
probabilistic in nature. One can compare the overall plausibility of different subgraphs in which
the causal effect is identifiable, and then select the graph which maximises the plausibility. Indeed,
identification is often assumed on the basis of ignorability (i.e., no unobserved confounders exist)
[10, 16], thus the use of probabilistic models enables us to quantify the strength of such an assumption.

In this work, for a specific causal query P (Y |do(X)), we first answer the question “which graph
has the highest plausibility among those compliant with the probabilistic ADMG model that renders
P (Y |do(X)) identifiable?” The answer to this question then shows us with what confidence we can
carry out the causal identification task using the combination of the data at hand and the corresponding
probabilistic model.

Noting that the causal identification task is carried out through an identification formula which is
based on the causal structure, our second focus is on deriving an identification formula for a given
causal query that holds with the highest probability. This problem is different from the former in
the sense that a single identification formula can be valid with respect to a set of different graphs.
Therefore, the probability that a given identification formula is valid for a causal query would be the
aggregate probability of all graphs on which this formula is valid. We shall illustrate this point in
more detail through Example 1 in Section 2. To identify the most probable identification formula,
we first show that if an identification formula is valid w.r.t. a causal graph, it is also valid w.r.t. all
its edge-induced subgraphs. Afterwards, we propose a surrogate problem (see Problem 2 in Section
2.1) that recovers a causal graph with highest aggregated probability of its subgraphs. Both problems
discussed in this work are aimed at evaluating the plausibility of performing causal identification for
a specific query given a dataset and a non-deterministic model describing the causal structure.

To sum up, our main contributions are as follows.

1. We study the problem of causal identifiability in probabilistic causal models, where there are
uncertainties about the existence of edges and whether a given causal effect is identifiable. More
precisely, we consider two problems: 1) finding the most probable graph that renders a desired
causal query identifiable, and 2) finding the graph with the highest aggregate probability over its
edge-induced subgraphs that renders a desired causal query identifiable.

2. We show that both aforementioned problems reduce to a special combinatorial optimization
problem which we call the edge ID problem. We prove that the edge ID problem is NP-hard, and
thus, so are both of the problems we discussed.

3. We propose several exact and heuristic algorithms for the aforementioned problems.

2

x

z t

y

1.01.0

1.0

0.7

0.9

0.7

1.0

(a) ADMG G.

x

z t

y

1.01.0

1.0

0.7 0.7

1.0

(b) G1 ⊆ G.

x

z t

y

1.01.0

1.00.9

1.0

(c) G2 ⊆ G.

Figure 1: (a) An example of a probabilistic ADMG G with corresponding edge probabilities. (b) and
(c) are two different subgraphs of G in which Q[y] is identifiable.

In Section 2, we introduce the terminology and formally define the two problems we are considering
in this work. In Section 3, we show that both of these problems are equivalent to the edge ID problem.
Furthermore, we show that the edge ID problem is NP-hard. We discuss algorithmic approaches (both
exact and heuristic) in Section 4. Empirical evaluations of our algorithms are presented in Section
5. Proofs and accompanying code are provided in the appendices and in supplementary material,
respectively.

2 Preliminaries

We utilize small letters for variables, and capital letters for sets of variables. Calligraphic letters are
used to denote graphs. An acyclic directed mixed graph (ADMG) G = (V G , EGd , E

G
b) is defined as an

acyclic graph on the vertices V G , where EGd ⊆ V G × V G and EGb ⊆
(
V G

2

)
are the set of directed and

bidirected edges among the vertices, respectively. With slight abuse of notation, if e ∈ EGd ∪ EGb , we
write e ∈ G. We use G′ ⊆ G when G′ is an edge-induced subgraph of G, i.e., G′ = (V G

′
, EG

′

d , EG
′

b),
where V G

′
= V G and EG

′

i ⊆ EGi for i ∈ {b, d}. We denote by G[X] the vertex-induced subgraph
of G over the subset of vertices X ⊆ V G . For a set of vertices X , we denote by AncG(X) the set of
vertices in G that have a directed path to X . Note that X ⊆ AncG(X). Let PX(Y) be a shorthand for
P (Y |do(X)), and PM (·) denote the distribution of variables described by the causal model M .

Definition 1 (Identifiability [15]). Given a causal ADMG G = (V G , EGd , E
G
b), and two disjoint

subsets of variables X,Y ⊆ V G , the causal effect of X on Y , denoted by PX(Y), is identifiable in G if
PM1

X (Y) = PM2

X (Y) for any two models M1 and M2 that induce G and PM1(V G) = PM2(V G) >0.

Definition 2 (Valid identification formula). For a causal ADMG G over variables V G and a causal
query PX(Y), we say a functional F defined on the probability space over V G is a valid identification
formula for PX(Y) in G if PM1

X (Y) = PM2

X (Y) = F(PM1(V G)) = F(PM2(V G)) for any two
models M1 and M2 that induce G and PM1(V G) = PM2(V G) > 0.

For any query PX(Y), let [G]Id(PX(Y)) denote the set of subgraphs of G in which PX(Y) is iden-
tifiable (note that if G is complete graph, [G]Id(PX(Y)) is the set of all graphs in which PX(Y) is
identifiable.) We denote by Q[Y] the causal effect of V \Y on Y , i.e., Q[Y]=P (Y |do(V \Y)).

Definition 3 (District [6]). For ADMG G = (V G , EGd , E
G
b), let G↔ denote the edge-induced subgraph

of G over its bidirected edges. X ⊆ V G is a district (aka c-component) in G if G↔[X] is connected.

Definition 4 (Hedge [18]). Let G be an ADMG, and Y (X be two subsets of its vertices, where Y is
a district in G[Y]. Vertices X form a hedge for Q[Y] if X is a district in G[X] and AncG[X](Y) = X1.

Definition 5 (Maximal hedge [2]). For ADMG G and a set of its vertices Y , let X be the union of all
hedges formed for Q[Y]. Graph G[X], denoted by MH(G, Y), is called the maximal hedge for Q[Y].

As an example, both sets {t, x} and {z, x} form a hedge for Q[x] in G in Figure 1a, and G[{x, z, t}]
is the maximal hedge for Q[x].

1Akbari et al. [2] showed that this intuitive definition is equivalent to the standard definition of hedge in [18].

3

z
t

y

z
t

y

z
t

y

Figure 2: Three different graphs that share the same set AncG({y}) = {z, t}.

2.1 Problem setup

Let G = (V G , EGd , E
G
b) be an ADMG, where V G is the set of vertices each representing an observed

variable of the system, EGd is the set of directed edges, and EGb is the set of bidirected edges among
V G . We know a priori that the true ADMG describing the system is an edge-induced subgraph of
G,2 and we are given a probability map that indicates for each subgraph of G such as Gs, with what
probability Gs is the true causal ADMG of the system. We denote this probability as P (Gs). For
instance, if edge probabilities pe are assumed to be mutually independent, P (Gs) takes the form:

P (Gs) =
∏
e∈Gs

pe
∏
e/∈Gs

(1− pe). (1)

In what follows, we will refer to P (Gs) simply as the probability of the ADMG Gs. The first problem
of our interest is formally defined as follows.
Problem 1. We consider the problem of finding the most probable edge-induced subgraph of G, in
which the causal effect Q[Y] is identifiable. That is, the goal is to find the ADMG G∗ defined by

G∗ := argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs). (2)

We will prove in Proposition 1 that if Q[Y] is identifiable in G, then it is also identifiable in every
edge-induced subgraph of G. In other words, if G is a feasible solution to the above optimization
problem, so are all its edge-induced subgraphs. Furthermore, the same identification functional that
is valid w.r.t. G, is also valid w.r.t. every subgraph of G. Let us illustrate this first on an example.
Example 1. Consider the ADMG in Figure 1a. With the given edge probabilities and assuming
independence among the edge probabilities, the subgraph of G illustrated in Figure 1b has probability
0.7× 0.7× 0.1 = 0.049, whereas the subgraph of Figure 1c has probability 0.3× 0.3× 0.9 = 0.081
(see Eq. (1)). If we were to solve Problem 1, we would choose G2 over G1, as it has a higher
probability. Now consider identification formulas in G1 and G2, respectively:

F1 : Q[Y] = P (Y |X), F2 : Q[Y] =
∑
Z,T

P (Y |X,Z, T)P (Z, T).

F1 is a valid identification formula for any edge-induced subgraph of G1 (see Proposition 1).
Analogously, F2 is valid for all edge-induced subgraphs of G2. If we consider the aggregate
probability of the subgraphs of G1 and G2, i.e.,∑

Ĝ⊆G1

P (Ĝ) = 1− 0.9 = 0.1, versus
∑
Ĝ⊆G2

P (Ĝ) = (1− 0.7)× (1− 0.7) = 0.09,

then we should prefer choosing G1 over G2, as its identification formula F1 is more likely to be valid
than F2 considering the fact that for all its subgraphs, the identification functional F1 is still valid.

Plausibility of a certain identification functional F is the sum of the probabilities of all graphs in
which F is valid given the query of interest. Finding the most plausible identification formula for
a given query requires computing the plausibility of all formulae. Since the space of all formulae
is intractable, an alternative approach to solve this problem is enumerating all valid formulae for a
given graph. This changes the search space of the problem to the space of all graphs. However, this is
yet another challenging and to the best of our knowledge open problem. Therefore, we propose the
following problem as a surrogate that maximizes a lower bound of the most plausible identification
formula. To do so, we use the result of Proposition 1 that shows when an identification functional is
valid in a causal graph, it is also valid in all its edge-induced subgraphs.

2Note that G can be a complete graph over both its directed and bidirected edges.

4

Problem 2. Consider the problem of finding the edge-induced subgraph H∗ of G with maximum
aggregate probability of its subgraphs, in which Q[Y] is identifiable. Formally,

H∗ := argmax
Gs⊆G, Gs∈[G]Id(Q[Y])

∑
Ĝ⊆Gs

P (Ĝ). (3)

In other words, we are looking for a graph H∗ with the maximum aggregate probability of its
subgraphs, among the graphs in [G]Id(Q[Y]), i.e., the graphs in which Q[Y] is identifiable. Running
an identification algorithm (such as the ID function of [18]) onH∗ yields an identification formula
for Q[Y] which is valid at least with the aggregate probability of the subgraphs of H∗. Therefore,
Problem 2 is a surrogate to recovering the identification formula with the highest plausibility.

In the sequel, for simplicity, we study Problems 1 and 2 under the following assumption. However,
as proved in Appendix C, our results are valid in a more general setting where we allow only for
perfect negative or positive correlations among the edges. An example of perfect negative correlation
between two edges is that both of them cannot exist simultaneously. Appendix C.1 discusses the
significance of this generalization.
Assumption 1. The edges of G are mutually independent. That is, the probability of a subgraph Gs
of G is of the form in (1).
Remark 1. It is noteworthy that our results are not limited to causal queries of the form
Q[Y] = P (Y |do(V G \ Y)). They can be applied to general causal queries of the form PX(Y)
if the set AncG\X(Y) is known. This is because the causal query PX(Y) can be expressed as∑

AncG\X(Y)\Y Q[AncG\X(Y)], where AncG\X(Y) is the set of ancestors of Y in G after removing
the vertices of X . Furthermore, PX(Y) is identifiable in G if and only if Q[AncG\X(Y)] is identi-
fiable in G [22, 18, 11]. Note that the assumption that AncG\X(Y) is known is not equivalent to
precluding uncertainty on the directed edges (as in the case of fixing the edge probabilities to 0 or 1),
but it rather imposes a perfect correlation type of constraint. Consider for instance the three graphs
of Figure 2, where all of them share the same set AncG\X(Y) = {z, t}. In fact, knowing this set
forces a constraint of the type that if the edge z → y does not exist, the path z → t→ y must.

3 Reduction to Edge ID problem and establishing complexity

We begin this section with the following proposition, to which we referred before. Thereafter, we
discuss the hardness of the two problems considered in this work.
Proposition 1. For any causal query PX(Y) and ADMG G, if F is a valid identification formula for
PX(Y) in G (Def. 2), then F is a valid identification formula for PX(Y) in any G′ ⊆ G.

All proofs are presented in Appendix A. In what follows, we first formally define the edge ID problem,
and then show the equivalence of Problems 1 and 2 to the edge ID problem under Assumption 1.
Definition 6 (Edge ID problem). For ADMG G = (V G , EGd , E

G
b), a set of non-negative edge weights

WG = {we ≥ 0|e ∈ G}, and a causal query Q[Y] for a subset of variables Y ⊆ V G , the objective
of the edge ID problem is to find the set of edges E∗ ⊆ EGd ∪EGb with minimum aggregated weight
(cost), such that Q[Y] is identifiable in the graph resulting from removing E∗ from G. Formally,

E∗ := argmin
E⊆EGd ∪E

G
b

∑
e∈E

we,

s.t. G′ = (V G , EGd \ E,EGb \ E) ∈ [G]Id(Q[Y]).

(4)

We implicitly assume that the cost of removing a set of edges from G is the sum of the weights of each
individual edge.

The following result unifies the two problems considered in this work by establishing their equivalence
to the edge ID problem. This is done by transforming Problems 1 and 2 with multiplicative objectives
into the edge ID problem that has an additive objective.
Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge
weights chosen to be the log propensity ratios, i.e., we = max{0, log(pe

1−pe
)}, ∀e ∈ G. Moreover,

Problem 2 is equivalent to the edge ID problem with the choice of weights we = − log(1 − pe),
∀e ∈ G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID
problem in polynomial time, and vice versa.

5

As we mentioned earlier, the equivalence of these three problems can be established in more general
settings than what is described under Assumption 1. We refer the interested reader to Appendix C for
a discussion on one such setting. The following result shows that no polynomial-time algorithm for
solving any of these three problems exists unless P = NP.
Theorem 1. The edge ID problem is NP-hard.

Theorem 1 is established through a reduction from the minimum vertex cover problem, which is
known to be NP-hard [13]. Theorem 1 is a key result which shows the hardness of recovering the
most plausible graph in which a specified causal effect of interest is identifiable.
Corollary 1. Problems 1 and 2 are NP-hard under Assumption 1.

It is noteworthy that the size of the problem depends on the number of vertices of G, i.e., |V G |, and
the number of edges of G with finite weight, i.e., |EG | = |EGd | + |E

G
b |. Since the ID algorithm

(function ID of [18]) runs in time O(|V G |2), the brute-force algorithm that tests the identifiability of
Q[Y] in every edge-induced subgraph of G and chooses the one with the minimum weight of deleted
edges runs in time O(2|EG ||V G |2). In the next Section, we present various algorithmic approaches
for solving or approximating the solutions to these problems.

4 Algorithmic approaches

We first present a recursive approach for solving the edge ID problem in Section 4.1, described
in Algorithm 1. Since the problem itself is NP-hard, Algorithm 1 runs in exponential time in the
worst case. In Section 4.2, we present heuristic approximations of the edge ID problem which run
in cubic time in the worst case. These heuristics can also be used as a pre-process to reduce the
runtime of Alg. 1 by providing an upper bound which can be fed into Alg. 1 to prune the search space.
Finally, in Section 4.3, we present a reduction of edge ID to yet another NP-hard problem, namely
minimum-cost intervention problem [2], which allows us to use the algorithms designed for that
problem to solve edge ID. Our simulations in Section 5 evaluate these approaches against each other.

4.1 Recursive exact algorithm

This approach is described in Algorithm 1. The inputs to the algorithm are an ADMG G along with
edge weights WG , a set of vertices Y corresponding to the causal query Q[Y], an upper bound ωub

on the aggregate weight (cost) of the optimal solution, and a threshold ωth, an upper bound on the
acceptable cost of a solution. The closer ωub is to the optimal cost, the quicker Algorithm 1 will find
the solution. If no upper bound is known, the algorithm can be initiated with ωub =∞. However,
we shall discuss a few approaches to find a good upper bound ωub in the following Section. Note
that when ωth = 0, Algorithm 1 will output the optimal solution. Otherwise, as soon as a feasible
solution with weight less than ωth is found, the algorithm terminates (line 12).

The algorithm begins with calling subroutine MH in line 2, which constructs the maximal hedge for
Q[Y], denoted byH. We discuss this subroutine in detail in Appendix B. Throughout the rest of the
algorithm, we only consider the edges inH, as the other edges do not alter the identifiability. If there
is no hedge formed for Q[Y], i.e.,H = G[Y], there is no need to remove any edges from G and the
effect is already identified. Otherwise, we remove the edge with the lowest weight (e) fromH and
recursively call the algorithm to find the solution after removing the edge e, unless the weight of e is
already higher than the upper bound ωub, which means no feasible solutions exist for the provided
upper bound (line 7). Whenever a feasible solution is found, the upper bound ωub is updated to the
lowest weight among all the solutions weights discovered so far (line 11). This in turn helps the
algorithm prune the exponential search space during the next iterations to reduce the runtime. As
soon as a solution with a weight less than the acceptable threshold, i.e., ωth, is found, the algorithm
returns the solution. Otherwise, we is updated to infinity so that it never gets removed (line 13). This
is due to the fact that we have already explored all the solutions involving e.

4.2 Heuristic algorithms

In this Section, we present two heuristic algorithms for approximating the solution to the edge ID
problem. These algorithms can also be used to find the upper bound ωub efficiently, which could be
fed as an input to Algorithm 1.

6

Algorithm 1 Recursive Algorithm for edge ID.

1: function EDGEID(G, Y,WG , ωub, ωth)
2: H ←MH(G, Y)
3: ifH = G[Y] then return (True, ∅)
4: ID← False, Emin ← ∅
5: while True do
6: e← The edge ofH with minimum weight
7: if we =∞ or we > ωub then return (ID, Emin)
8: (id, E)← EDGEID(H \ e, Y,WG \ {we}, ωub − we, ω

th − we)
9: if id = True then

10: ID← True, ωE ← we +
∑

ej∈E wej

11: ωub ← ωE , Emin ← E ∪ {e}
12: if ωub ≤ ωth then return (ID, Emin)

13: Update we ←∞ in WG

Algorithm 2 Heuristic algorithm for Edge ID.

1: function HEID(G, Y,WG)
2: G′ ←MH(G, Y) , Z ← {z ∈ V G

′ |∃y ∈ Y : {z, y} ∈ EG
′

b } \ Y
3: H ← The induced subgraph of G′ on its directed edges.
4: WH ← {we ∈WG |e ∈ H}, V H ← V H ∪ {y∗, z∗}
5: for z ∈ Z do EH ← EH ∪ (z∗, z), WH ←WH ∪ {w(z∗,z) =

∑
y w{z,y}}

6: for y ∈ Y do EH ← EH ∪ (y, y∗), WH ←WH ∪ {w(y,y∗) =∞}
7: E ←MinCut(H,WH, z∗, y∗)
8: return (E,

∑
e∈E we)

Let Z = {z ∈ V G |∃y ∈ Y : {z, y} ∈ EGb } \ Y denote the set of vertices that have at least one
common bidirected edge with a vertex in Y . Any hedge formed for Q[Y] contains at least one vertex
of Z. As a result, in order to eliminate all the hedges formed for Q[Y], it suffices to make sure that
none of the vertices in Z appear in such a hedge. To this end, for any z ∈ Z, it suffices to either
remove all the bidirected edges between z and Y , or eliminate all the directed paths from z to Y .
The problem of eliminating all directed paths from Z to Y can be cast as a minimum cut problem
between Z and Y in the edge-induced subgraph of G over its directed edges. To add the possibility of
removing the bidirected edges between Z and Y , we add an auxiliary vertex z∗ to the graph, and
draw a directed edge from z∗ to every z ∈ Z with weight w =

∑
y∈Y w{z,y}, i.e., the sum of the

weights of all bidirected edges between z and Y . Note that z can have bidirected edges to multiple
vertices in Y . We then solve the minimum cut problem for z∗ and Y . If an edge between z∗ and
z ∈ Z is included in the solution to this minimum cut problem, it is mapped to removing all the
bidirected edges between z and Y in the main problem. Note that we can run the algorithm on the
maximal hedge formed for Q[Y] in G rather than G itself. This heuristic is presented as Algorithm 2.

An analogous approach which goes through solving an undirected minimum cut on the edge induced
subgraph of G over its bidirected edges is presented in Algorithm 4 in Appendix D. As mentioned
earlier, these algorithms can be used either as standalone algorithms to approximate the solution to
the edge ID problem, or as a pre-processing step to find an upper bound ωub for Algorithm 1. As we
shall see in our simulations, both algorithms achieve near-optimal results on random graphs.

4.3 Alternative approach: reduction to MCIP

As an alternative approach to the algorithms discussed so far, we present a reduction of the edge ID
problem to another NP-hard problem, i.e., the minimum-cost intervention problem (MCIP) introduced
in [2]. This reduction allows us to exploit algorithms designed for MCIP to solve our problems. The
formal definition of MCIP is as follows.

Definition 7 (MCIP). Suppose G = (V G , EGd , E
G
b) is an ADMG, C : V G → R≥0 is a cost function

mapping each vertex of G to a non-negative cost, and Y ⊆ V G . The objective of the minimum-cost

7

x1

x2

y1

y2

wd
x2x1

wd
x1y1

wb
x1x2

wb
x2y2

wb
y1y2

(a) ADMG G, Y = {y1, y2}.

x1

x2

y1

y2

xd
21wd

x2x1

y121∞

y122 ∞

xb
12

wb
x1x2

zb22 wb
x2y2

yb12wb
y1y2

y1212
∞

zd11wd
x1y1

(b) ADMGH, Y mcip={y1, y2 , y12
2 }.

Figure 3: Reduction from edge ID to MCIP.

intervention problem for identifying the causal effect Q[Y] is to find the subset A ⊆ V G with the
minimum aggregate cost such that Q[Y] is identifiable after intervening on the set A.

The reduction from edge ID to MCIP is based on a transformation from ADMG G to another ADMG
H, where each edge in G is represented by a vertex inH. This transformation is based on the causal
query Q[Y], and it maps the identifiability of Q[Y] in G to identifiability of Q[Y mcip] inH, where
Y mcip is a set of vertices inH. This transformation satisfies the following property; removing a set
of edges E∗ in G makes Q[Y] identifiable if and only if intervening on the corresponding vertices of
E∗ in H makes Q[Y mcip] identifiable. More precisely, after this transformation, solving the edge
ID problem for Q[Y] in G is equivalent to solving MCIP for Q[Y mcip] inH. The complete details
of this transformation can be found in Appendix A.2. An example of this reduction is shown in
Figure 3, where Q[{y1, y2}] in G (Figure 3a) is mapped to Q[{y1, y2, y122 }] inH (Figure 3b), where
{y1, y2, y122 } is a district, and the set of all vertices of H forms a hedge for it. The vertices of H
corresponding to each edge in G are indicated with the same color and have the same weight (cost). To
avoid intervening on the remaining vertices inH, we assign infinity cost to them. It is straightforward
to see that the solution to the edge ID problem in G with the query Q[Y = {y1, y2}] would be to
remove the edge with the lowest weight. This is because after removing any edge in G, no hedge
remains for Q[Y]. Similarly, inH, the solution to MCIP with the query Q[Y mcip = {y1, y2, y122 }] is
to intervene on the vertex with the lowest cost among Z = {zd11, xd

21, x
b
12, y

b
12, z

b
22}. This is because

after intervening on any vertex in Z, no hedge remains for Q[Y mcip]. The following result formally
establishes the link between the edge ID problem in G and MCIP inH.
Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.

5 Experiments

We evaluate the proposed heuristic algorithms 2 (HEID-1) and 4 (HEID-2), as well as the exact
algorithm 1 (EDGEID), where the upper-bound ωub for EDGEID is set to be the minimum cost found
by HEID-1 or -2. Furthermore, given the reduction of the edge ID problem to the MCIP problem
described in Section 4.3, we also evaluate the two approximation and one exact algorithms from [2]
(MCIP-H1, MCIP-H2, and MCIP-exact, respectively). Experimental results are provided for Problem
1, and analogous results for Problem 2 are provided in Appendix E.3. All experiments were carried
out on an Intel i9-9900K CPU running at 3.6GHz.

Simulations: The algorithms are evaluated for graphs with between 5 and 250 vertices. For a given
number of vertices, we uniformly sample 50 ADMG structures from a library of graphs which are
non-isomorphic to each other. Edges for each of these 100 graphs are sampled with probability of
log(n)/n, where n is the number of (observable) vertices, to impose sparsity (thus pragmatically
reducing the search space). For each graph we sample directed and bidirected edge probabilities pe
uniformly between 0.51 and 1.03. The problem is then converted into edge ID according to Lemma 1.
The vertices in the graphs are topologically sorted and the outcome Y is selected to be the last vertex

3Note that we do not consider edge probabilities less than 0.5 as from Lemma 1, such edges would be mapped
to edges with 0 weight in the equivalent edge ID problem, which can always be removed at the beginning.

8

(a) Runtimes. (b) Solution costs.

(c) Fraction runtime exceeded 3 min.

Figure 4: Experimental results for runtime, solution costs, fraction of graphs for which no solution
was found, and fraction of graphs for which runtime limit of 3 minutes was exceeded. Error bars for
runtime and cost graphs indicate 5th and 95th percentiles. Best viewed in color.

in the topological ordering. We then check whether a solution exists in principle by removing all
finite cost edges and checking for identifiability. If not, a new graph is sampled to avoid evaluating
the algorithms on graphs with no solution. For each of these 50 probabilistic ADMGs, we run the
algorithms and record the resulting runtime and the associated cost of the solution. If the runtime
exceeds 3 minutes, we abort and log that the algorithm has failed to find a solution.

Results are presented in Figure 4. Runtimes and costs are shown for the subset of graphs for which
all algorithms found a solution (to facilitate comparison). Runtimes for each algorithm are shown
in Fig. 4a, where it can be seen that our proposed HEID-1 and HEID-2 heuristic algorithms have
negligible runtime, followed by the MCIP variants. Interestingly, the exact algorithm EDGEID
outperformed the MCIP algorithms on larger graphs, for which the transformation time from the
edge ID problem to the MCIP increases with the size of the graph. In contrast, EDGEID had large
runtime variance which depended heavily on the specifics of the graph under evaluation, particularly
for graphs with fewer vertices. The costs for each graph are shown in Fig. 4b, and here we see,
as expected, the lowest cost is achieved by the two exact algorithms, EDGEID and MCIP-exact,
followed closely by the heuristic algorithms. Figure 4c shows the fraction of evaluations for which the
runtime exceeded 3 minutes (applicable to the exact algorithms). In general, and owing to the sparsity
penalty in our graph generation mechanism, the cost of identified solutions falls with the number
of vertices. However, among the exact algorithms, EDGEID, exceeds the 3 minute runtime more
often than the MCIP-Exact, regardless of the number of vertices and despite the fact that EDGEID is
quicker at finding a solution when it does so. Overall, HEID-1 was both the most consistent in terms
of finding a solution, having a short runtime, and achieving a close to optimal cost.

Real-World Graphs: We also apply the algorithms to four real-world datasets. The first ‘Psych’
(22 nodes & 70 directed edges) concerns the putative structure from a causal discovery algorithm
Structural Agnostic Model [12] using data collected as part of the Health and Relationships Project
[23]. The other three ‘Barley’ (48 nodes & 84 directed edges), ‘Water’ (32 nodes & 66 directed
edges), and ‘Alarm’ (37 nodes & 46 directed edges) come from the bnlearn python package [20]. For
all four graphs, and as with the simulations described above, we introduce bidirected edges with a
sparsity constraint of log(n)/n, and simulate expert domain knowledge by random assigning directed
and bidirected edge probabilities between 0.51 and 1. The outcome Y is selected to be the last vertex
in the topological ordering. For these results, we provide the runtime (limited to 500 seconds) and
cost, as well as the ratio of graph plausibility before and after selecting a subgraph in which the effect

9

is identifiable P (Ĝ∗)/P (G). This ratio is 1.0 if the effect is identifiable in the original graph, and
decreases according to the plausibility of an identified subgraph.

Results are shown in Table 1. In cases where MCIP-exact and/or EDGEID did not exceed the
runtime limit, it can be seen that HEID-2 and MCIP-H2 achieved equivalent to optimal cost and
ratio. Runtimes for MCIP variants exceeded the HEID variants owing to the required transformation.
EDGEID timed out on all but the Alarm structure, whereas MCIP-exact only timed out on the Psych
structure, indicating that the MCIP-exact is more consistent (this also corroborates Figure 4c).

Table 1: Time (seconds), cost, and ratio P (Ĝ∗)/P (G) for seven algorithms over four real-world
datasets. A dash - indicates maximum runtime (500 seconds) exceeded.

Algorithm Psych Barley Alarm Water
Time Cost Ratio Time Cost Ratio Time Cost Ratio Time Cost Ratio

HEID-1 0.0019 2.648 0.07 0.0026 0.081 0.92 0.0004 0.0 1.0 0.0019 1.02 0.36
HEID-2 0.0019 1.806 0.16 0.0026 0.081 0.92 0.0003 0.0 1.0 0.0017 0.42 0.66
MCIP-H1 0.0136 2.648 0.07 0.0140 0.081 0.92 0.0027 0.0 1.0 0.0124 1.02 0.36
MCIP-H2 0.0133 1.806 0.16 0.0131 0.081 0.92 0.0029 0.0 1.0 0.0113 0.42 0.66
MCIP-exact - - - 0.0099 0.081 0.92 0.0028 0.0 1.0 0.0221 0.42 0.66
EDGEID - - - - - - 0.0005 0.0 1.0 - - -

6 Conclusion

Researchers in causal inference are often faced with graphs for which the effect of interest is not
identifiable. It is common to identify a target effect by assuming ignorability. A less drastic and more
reasonable approach would be to relax this assumption by identifying the most plausible subgraph,
given uncertainty about the structure as we suggested in this work. We presented a number of
algorithms for finding the most probable/plausible probabilistic ADMG in which the target causal
effect is identifiable. We provided an analysis of the complexity of the problem, and an experimental
comparison of runtimes, solution costs, and failure rates. We noted that our heuristic algorithms,
Alg. 2 and Alg. 4 performed remarkably well across all metrics. In terms of limitations, we made the
assumption that the edges in G are mutually independent (Assumption 1). Future work should explore
the case where this assumption does not hold. Finally, it is worth noting that the external validity
of the derived subgraph (i.e., whether or not the subgraph is correctly specified with respect to the
corresponding real-world process) is not guaranteed. As such, practitioners that use such approaches
are encouraged to do so with caution, in particular for research involving human participants.

References
[1] S. Akbari, E. Mokhtarian, AE. Ghassami, and N. Kiyavash. Recursive causal structure learning

in the presence of latent variables and selection bias. Advances in Neural Information Processing
Systems, 34:10119–10130, 2021.

[2] S. Akbari, J. Etesami, and N. Kiyavash. Minimum cost intervention design for causal effect
identification. arXiv preprint, arXiv:2205.02232, 2022.

[3] E. Bareinboim, J.D. Correa, D. Ibeling, and T. Icard. On Pearl’s hierarchy and the foundations
of causal inference. ACM Special Reports, 2020.

[4] D. Colombo, M.H. Maathuis, M. Kalisch, and T.S. Richardson. Learning high-dimensional
directed acyclic graphs with latent and selection variables. The Annals of Statistics, pages
294–321, 2012.

[5] A. Deaton and N. Cartwright. Understanding and misundertstanding randomized controlled
trials. Social Science and Medicine, 210:2–21, 2018. doi: 10.1016/j.socscimed.2017.12.005.

[6] R.J. Evans and T.S. Richardson. Markovian acyclic directed mixed graphs for discrete data.
The Annals of Statistics, 42(4):1452–1482, 2014.

[7] C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in Genetics, 10, 2019.

10

[8] Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. Proceedings of
the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI), 2006. doi:
10.5555/3020419.3020446.

[9] G.W. Imbens and J.D. Angrist. Identification and estimation of local average treatment effects.
Econometrica, 62(2):467–475, 1994. doi: 10.2307/2951620.

[10] G.W. Imbens and D.B. Rubin. Causal inference for statistics, social, and biomedical sciences.
An Introduction. Cambridge University Press, New York, 2015.

[11] A. Jaber, J. Zhang, and E. Bareinboim. Causal identification under Markov equivalence:
Completeness results. In International Conference on Machine Learning, pages 2981–2989.
PMLR, 2019.

[12] D. Kalainathan, O. Goudet, I. Guyon, D. Lopez-Paz, and M. Sebag. Structural agnostic
modeling: Adversarial learning of causal graphs. arXiv:1803.04929v3, 2020.

[13] R.M. Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions, pages 85–103. Springer, 1972.

[14] J. Pearl. Aspects of graphical models connceted with causality. Proceedings of the 49th Session
of the International Statistical Institute, pages 399–401, 1993.

[15] J. Pearl. Causality. Cambridge University Press, Cambridge, 2009.

[16] D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions.
Journal of the American Statistical Association, 100(469):322–331, 2005. doi: 10.1198/
016214504000001880.

[17] R. D. Shah and J. Peters. The hardness of conditional independence testing and the generalised
covariance measure. The Annals of Statistics, 48(3), 2020.

[18] I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-
Markovian causal models. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 1219. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

[19] P. Spirtes, C.N. Glymour, R. Scheines, and D. Heckerman. Causation, prediction, and search.
MIT press, 2000.

[20] E. Taskesen. bnlearn - Library for Bayesian network learning and inference. Python Library,
2020. URL https://erdogant.github.io/bnlearn.

[21] J. Tian and J. Pearl. A general identification condition for causal effects. AAAI, 2002.

[22] J. Tian and J. Pearl. On the testable implications of causal models with hidden variables.
In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages
519–527, 2002.

[23] D. Umberson. Health and relationships project. Inter-university consortium for political and
social research, 2014-2015. doi: 10.3886/ICPSR37404.v2.

[24] M. J. van der Laan and S. Rose. Targeted Learning - Causal Inference for Observational and
Experimental Data. Springer International, New York, 2011.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]

11

https://erdogant.github.io/bnlearn

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] ...
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

Appendix
The appendices are organized as follows. Formal proofs of the results stated in the main text are
presented in Section A. In Section B, we describe the algorithm to recover the maximal hedge
formed for a certain query (Def. 5), which is used as a subroutine of Algorithm 1. A generalization
of Assumption 1 is discussed in Section C. Section D provides further details of the heuristic
algorithms discussed in the main text. Further evaluations and experimental conditions for our
proposed algorithms are presented in Section E.

Table 2: Table of notations
Symbol Description
V G Vertices of G
EGb The set of bidirected edges of G
EGd The set of directed edges of G

AncG(X) Ancestors of X in G
M(G) The set of the all compatible models with G
pe Probability of edge e
we Weight of edge e

PX(Y) Causal effect of X on Y

A Formal Proofs

We begin with presenting the proofs of Proposition 1 and Lemma 1. Proofs of Theorem 1 and
Proposition 2 appear at the end of Sections A.1 and A.2, respectively.
Proposition 1. For any causal query PX(Y) and ADMG G, if F is a valid identification formula for
PX(Y) in G (Def. 2), then F is a valid identification formula for PX(Y) in any G′ ⊆ G.

Proof. LetH ⊆ G be an arbitrary edge-induced subgraph of G. Let F be an identification formula
for PX(Y) in G, i.e., for any model M that induces G,

PM
X (Y) = F(PM (V G)). (5)

By definition, PX(Y) is identifiable in G. As a result, there exists and identification formula such as
F ′ that can be derived for PX(Y) in G, using a sequence of do calculus rules and basic probability
manipulations. Note that this means for any model M that induces G,

PM
X (Y) = F ′(PM (V G)). (6)

Note that an immediate corollary of Equations 5 and 6 is that for any model M that induces G,

F(PM (V G)) = F ′(PM (V G)). (7)

Now, we first show that this sequence of actions (combination of do calculus rules and probability
manipulations) is valid inH. Note that the basic probability manipulations are graph-independent.
It only suffices to show that any applied do calculus rule w.r.t. G can also be applied w.r.t. H. The
validity conditions of all three do calculus rules are based on certain d-separations. As a result, it
suffices to show that if a d-separation relation is valid in G, it is also valid inH. To do so, it suffices
to show that if all paths between Z1 and Z2 are blocked in G given W , they are blocked inH too, for
arbitrary disjoint sets of vertices Z1, Z2,W ⊆ V G . Take an arbitrary path, p, between Z1 and Z2 in
H. Since H ⊆ G, this path exists in G. Since Z1 and Z2 are d-separated given W in G, the path p
is blocked by W . As a result, any path between Z1 and Z2 in H is blocked by W . Therefore, any
do-calculus rule applied in G, can also be applied inH. Hence, F ′ is a valid identification formula
for PX(Y). That is, for any model M that inducesH,

PM
X (Y) = F ′(PM (V H)). (8)

Now note that any model M that induces H, i.e., is compatible with H, is also compatible with G.
Also, V G = V H. As a result, from Equations 7 and 8, we know that for any model M that induces
H,

PM
X (Y) = F(PM (V H)).

By definition, F is a valid identification formula for PX(Y) inH.

13

Lemma 1. Under Assumption 1, Problem 1 is equivalent to the edge ID problem with the edge
weights chosen to be the log propensity ratios, i.e., we = max{0, log(pe

1−pe
)}, ∀e ∈ G. Moreover,

Problem 2 is equivalent to the edge ID problem with the choice of weights we = − log(1 − pe),
∀e ∈ G. That is, an instance of Problems 1 and 2 can be reduced to an instance of the edge ID
problem in polynomial time, and vice versa.

Proof. Problem 1. First consider an arbitrary graph G1 ∈ [G]Id(Q[Y]) such that G1 has an edge e with
pe < 1/2. Let G2 denote the graph G1 after removing e. Proposition 1 implies that G2 ∈ [G]Id(Q[Y]).
According to Equation 1, we have P (G2) = 1−pe

pe
P (G1) > P (G1) (since pe < 1/2). As a result,

the solution G∗ to Problem 1 (Eq. 2) has no edges with probability less than 1/2. We can therefore
rewrite Problem 1 as:

G∗ := argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs) = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs) s.t. ∀e ∈ Gs : pe ≥
1

2
.

Or equivalently, we can always assume that we start with a graph G that has no edges with probability
less than 1/2, as otherwise we can remove all of those edges and the problem does not change. This
indeed is equivalent to choosing weight (cost) 0 for those edges in the equivalent edge ID problem.
Now assuming that the edges have probability at least 1/2,

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

P (Gs)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(P (Gs))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(
∏
e∈Gs

pe
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe) +
∑
e/∈Gs

log(1− pe)) +
∑
e∈Gs

log(1− pe))−
∑
e∈Gs

log(1− pe))

Since
∑

e/∈Gs log(1− pe)) +
∑

e∈Gs log(1− pe)) is a constant value that does not depend on Gs, it
can be ignored in the maximization and we have:

G∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(pe)−
∑
e∈Gs

log(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e∈Gs

log(
pe

1− pe)
)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

log(
pe

1− pe)
).

From the formulation above, it is clear that if we assign the weight we = log(pe

1−pe
) to each edge

e ∈ EG , we will have an instance of the edge ID problem. Note that for edges with probability higher
than 1/2, log(pe

1−pe
) ≥ 0, and this assignment of edge weights satisfies the positivity requirement.

For the opposite direction, note that the procedure explained above is reversible by the choice of
probabilities pe =

exp (we)
1+exp (we)

, which is a value between 1/2 and 1.

Problem 2. First note that under Assumption 1, for any graph Gs,∑
Ĝ⊆Gs

P (Ĝ) =
∏
e/∈Gs

(1− pe)[
∑

Ê⊆EGs

∏
e∈Ê

pe
∏
e/∈Ê

(1− pe)] =
∏
e/∈Gs

(1− pe).

14

This is because the inner summation goes over all the possible subsets of EGs , and the summation
adds up to 1. Therefore, we can rewrite Problem 2 (Eq. 3)as

H∗ = argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
Ĝ⊆Gs

P (Ĝ)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∏
e/∈Gs

(1− pe)

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

log(
∏
e/∈Gs

(1− pe))

= argmax
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

log(1− pe)

= argmin
Gs⊆G,

Gs∈[G]Id(Q[Y])

∑
e/∈Gs

− log(1− pe).

With the same reasoning as before, assigning the weights we = − log(1− pe) to each edge e ∈ EG ,
we end up with an instance of the edge ID problem. Note that again 0 ≤ − log(1 − pe) ≤ ∞.
It is noteworthy that this procedure is also reversible with the choice of edge probabilities pe =
1 − exp (−we), which reduces the edge ID problem to an instance of Problem 2. Again note that
0 ≤ 1− exp (−we) ≤ 1 for any non-negative we.

A.1 Reduction from MCIP to edge ID

Theorem 1. The edge ID problem is NP-hard.

To prove Theorem 1, we first present a polynomial-time reduction from MCIP to the edge ID problem.
It has been shown that the minimum vertex cover problem can be reduced to MCIP in polynomial
time [2]. Combining the two reductions, we show that there exists a polynomial-time redcution from
the minimum vertex cover problem to the edge ID problem. Since the minimum vertex cover problem
is known to be NP-hard [13], it follows that the edge ID problem is also NP-hard.

We propose the following reduction from MCIP to the edge ID problem. Assume we want to solve
MCIP given ADMG G = (V G , EGd , E

G
b), query Q[Y], and the intervention costs C(v) for v ∈ V G .

We construct a graph, denoted byH = T1(G, Y), through the following steps.

a. For every vertex x ∈ V G \ Y , add two vertices x1, x2 to V H.

b. For any bidirected edge {x, z} ∈ EGb where x ∈ V G \ Y and z ∈ V G , add the bidirected edge
{x2, z2} to EHb .

c. For any directed edge (x, z) ∈ EGd where x ∈ V G \Y and z ∈ V G , add the directed edge (x1, z1)
to EHd .

d. For any bidirected edge {y1, y2} ∈ EGb where y1, y2 ∈ Y , add the bidirected edge {y1, y2} to
EHb .

e. For every x1, x2 ∈ V G \Y , draw the two edges {x1, x2} ∈ EHb and (x2, x1) ∈ EHd . Furthermore,
the weight of {x1, x2} is C(x).

f. The costs of the all other edges inH are assigned to be infinite.

With abuse of notation, for any vertex x ∈ V G \ Y , we define T1(x) = {x2, x1} ∈ EHb , where
{x2, x1} is the bidirected edge inH that corresponds to x in G, and inherits the same weight (cost).

Example 2. Consider graph G in Figure 5a. Vertices x and z are mapped to x1, x2, and z1, z2,
respectively. Both a directed and a bidirected edge are drawn between these pairs. The bidirected
edge {x1, x2} is assigned the weight C(x) = cx, and the bidirected edge {z1, z2} is assigned the
weight C(z) = cz . Infinite weights are assigned to the rest of the edges inH (Figure 5b).

15

x
cx

z cz

y1 y2

(a) The model G with costs
on each vertex

x1

z1

y1 y2

x2

z2

∞
∞

∞

cx

cz
∞

∞∞

∞

(b) The model G with costs
on each edge

Figure 5: Reduction of MCIP to edge ID

Proposition 3. Suppose G′ is an ADMG, Y ⊆ V G
′

is a set of its vertices such that Y is a district
in G′[Y], andH′ = T1(G′, Y). Consider X ⊆ V G

′ \ Y as an arbitrary subset of vertices of G′, and
define G = G′[V G′ \X]. Let E′′b = {e ∈ EH

′

b |∃v ∈ X, e = T1(v)} and define EHb = EH
′

b \E′′b . Let
H be the edge-induced subgraph ofH′ defined asH = (V H

′
, EHd , EHb). Q[Y] is identifiable in G if

and only if Q[Y] is identifiable inH.

Proof. We prove the contrapositive, i.e., Q[Y] is not identifiable in G iff Q[Y] is not identifiable in
H. Note that by construction, Y is a district in both G[Y] andH[Y]. That is, it suffices to show that
there exists a hedge formed for Q[Y] in G iff there exists a hedge formed for Q[Y] inH.

To this end, we first prove the following claim. Let W ∈ V H form a hedge for Q[Y]. If x1 ∈W for
some x ∈ V G

′
, then x2 ∈W and vice versa. That is, the two vertices x1 and x2 corresponding to the

same vertex x in V G
′

appear only simultaneously in any hedge. To see this, note that by construction,
x1 is the only child of x2. By definition of hedge, if x2 ∈W , then it has a directed path to Y within
H[W], and this path can only go through x1. For the other direction, note that x1 has only one
bidirected edge, which is with x2. Again, by definition of hedge, if x1 ∈W , then it has a bidirected
path to Y withinH[W], and this path can only go through x2. Hence, in the sequel, when there is a
hedge W formed for Q[Y] inH, we will without loss of generality assume that there exists a set of
variables Z ⊆ V G′ such that W = Z1 ∪ Z2 ∪ Y , where Z1 = {z1|z ∈ Z} and Z2 = {z2|z ∈ Z}.
If part. Let W = Z1 ∪ Z2 ∪ Y form a hedge for Q[Y] in H. First note that since none of the
bidirected edges between Z1 and Z2 are removed inH, by construction, all vertices Z are present
in G, i.e., Z ⊆ V G . Now we show that Z ∪ Y forms a hedge for Q[Y] in G. To this end, we prove
G[Z ∪ Y] is a district and Z ∪ Y = AncG[Z∪Y](Y). First note that any vertex in Z1 has only one
bidirected edge to a vertex in Z2. That is, if we consider the edge-induced subgraph ofH[W] over
its bidirected edges, vertices of Z1 are leaf nodes. As a result, Z2 ∪ Y must be connected in this
graph. That is, Z2 ∪ Y is a district inH[Z2 ∪ Y]. This implies by construction ofH that G[Z ∪ Y]
is a single district. With a similar reasoning, note that vertices in Z2 have no parents. As result,
Z1 ∪ Y = AncH[Z1∪Y](Y) (since the directed paths cannot go through Z2). Again, by construction,
the edge-induced subgraph of G[Z ∪ Y] over its directed edges is a copy ofH[Z1 ∪ Y]. As a result,
Z ∪ Y = AncG[Z∪Y](Y).

Only if part. Let Z ∪ Y form a hedge for Q[Y] in G, where Z ⊆ V G \ Y . Define Z1 = {z1|z ∈ Z}
and Z2 = {z2|z ∈ Z}. We show that Z1 ∪Z2 ∪ Y forms a hedge for Q[Y] inH. First, by definition
of hedge, AncG[Z∪Y](Y) = Z ∪ Y . Since the edge-induced subgraph of H[Z1 ∪ Y] is a copy of
G[Z ∪ Y] by construction, we know AncG[Z1∪Y](Y) = Z1 ∪ Y . Further, each vertex z2 ∈ Z2 is a
parent of z1 ∈ Z1. As a result, AncG[Z1∪Z2∪Y](Y) = Z1 ∪ Z2 ∪ Y . Now it suffices to show that
Z1 ∪Z2 ∪ Y is a district inH[Z1 ∪Z2 ∪ Y]. By definition of hedge, Z ∪ Y is a district in G[Z ∪ Y].
By construction of H, exactly the same bidirected edges (and therefore bidirected paths) exist in
H[Z2 ∪ Y]. Therefore, Z2 ∪ Y is a district in H[Z2 ∪ Y]. Now note that by construction of H′,
each vertex z1 ∈ Z1 has a bidirected edge to z2 ∈ Z2. And by definition of G and H, since the
vertices Z exist in G, none of these edges are removed inH. As a result, Z1 ∪ Z2 ∪ Y is a district in
H[Z1 ∪ Z2 ∪ Y], which completes the proof.

16

Proof of Theorem 1. A polynomial-time reduction from MCIP to the edge ID problem follows
immediately from Proposition 3. MCIP is shown to be NP-hard [2]. As a result, the edge ID problem
is Np-hard.

A.2 Reduction from edge ID to MCIP

Proposition 2. There exists a polynomial-time reduction from edge ID to MCIP and vice versa.

To prove Proposition 2, we begin with presenting a transformation T2(G, Y) which is in the core of
reduction from edge ID to MCIP.

Suppose we want to solve the edge ID problem given ADMG G = (V G , EGd , E
G
b), query Q[Y], and

edge weights WG = {we|e ∈ G}. Let X = V G \ Y denote the set of vertices of G excluding Y .
We define the transformation (H, Y mcip) = T2(G, Y) whereH = (V H, EHd , EHb) is an ADMG and
Y mcip ⊆ V H as follows. Note that V H will consist of two disjoint set of vertices, namely V Htop and
V Hbot, i.e., V H = V Htop ∪ V Hbot.

a. Begin with V Htop = V Hbot = ∅, Y mcip = ∅. For any vertex v ∈ V G , add a vertex v to V Htop with
cost C(v) =∞. If v ∈ Y , add v to Y mcip.

b. For any directed edge (vi, vj) ∈ EGd with weight wd
ij in G, add a new vertex vdij to V Htop, with cost

C(vdij) = wd
ij , where

vdij =

xd
ij if vi, vj ∈ X,

zdij if vi ∈ Y or vj ∈ Y,

ydij if both vi, vj ∈ Y.

Draw directed edges (vi, vdij) and (vdij , vj). Further, draw a bidirected edge between vi and vdij .

c. For any bidirected edge {xi, xj} ∈ EGb with weight wb
ij , add a new vertex, xb

ij to V Htop with cost
C(xb

ij) = wb
ij . Add two bidirected edges {xi, x

b
ij} and {xj , x

b
ij}. Further, draw two directed

edges (xb
ij , xi) and (xb

ij , xj) inH.

d. For any bidirected edge {xi, yj} with weight wb
ij , add a new vertex zbij to V Htop with cost C(zbij) =

wb
ij . Draw bidirected edges {zbij , xi} and {zbij , yj}. Then draw a directed edge from zbij to xi.

e. For any bidirected edge between {yi, yj} ∈ EGb with weight wb
ij in G, add a new vertex, ybij to

V Htop with cost C(ybij) = wb
ij . Draw bidirected edges {ybij , yi} and {ybij , yj}. Further, for any

x ∈ X , draw a directed edge from ybij to x.

f. Let y1 ≺ ... ≺ yk denote a topological ordering among vertices of Y . For every pair {yi, yj}
of vertices of Y , where i < j, add vertices yiji , yiji+1, . . . , y

ij
j to V Hbot. Add yijj to Y mcip. Draw

the directed edges (yk, y
ij
k) for every i ≤ k ≤ j. Draw the directed edges (yijk , yiji) for every

i < k < j, and the directed edge (yiji , yijj). Draw a bidirected edge between yj and yiji . Further,
for any bidirected edge {yk, yl} ∈ EGb where i ≤ k, l ≤ j, add a new vertex yijkl to V Hbot, draw
two bidirected edges {yijkl, y

ij
k } and {yijkl, y

ij
l }, and a directed edge (yijkl, y

b
ij). The costs of the all

of the vertices in V Hbot are infinite.

With abuse of notation, for any bidirected edge ebij = {vi, vj} ∈ EGb and any directed edge edij =

(vi, vj) ∈ EGd , we define T2(ebij) = vbij and T2(edij) = vdij , respectively, where vbij , v
d
ij ∈ V H are the

vertices representing their corresponding edges.

We will utilize the following results to prove Proposition 2. More precisely, Lemmas 2 through 9 are
used to prove Proposition 4, which in turn is used to prove Proposition 2.
Lemma 2. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y). Each
vertex y ∈ Y mcip is a district inH.

Proof. It suffices to show that for every pair of v1, v2 ∈ Y mcip there is no bidirected edge between
them inH. Suppose first that v1, v2 ∈ Y . Any bidirected edge between v1 and v2 in G (if it exists)

17

is removed in step (e) of the transformation, and none of the steps (a) through (f) add a bidirected
edge between them. Otherwise, at least one of v1, v2, w.l.o.g. v1, is in Y mcip \ Y . Suppose w.l.o.g.
that v1 = yijj . From step (f) of the transformation T , we know that v1 has bidirected edges only to
vertices yijkj , where none of them is a member of Y mcip.

Lemma 3. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T2(G, Y). Suppose
there is a hedge formed for Q[y] inH, where y ∈ Y . Let H denote the set of vertices of this hedge. H
does not include any of the vertices added in the step (f) of the transformation. That is, H ∩ V Hbot = ∅.

Proof. Define V1 = {yijkl ∈ V Hbot,∀i, j, k, l}, and V2 = V Hbot \ V1. By construction ofH, the vertices
of V2 have directed edges only to vertices in V2. Therefore, for each vertex v ∈ V2, we have
v /∈ AncH[H](y). As a result, V2 ∩ H = ∅, since by definition of hedge, any vertex of H is an
ancestor of y in H[H]. Now, consider an arbitrary vertex v ∈ V1. By construction of H, if there
exists a bidirected edge {v, v′} ∈ EHb , we must have that v′ ∈ V2. Therefore, if v ∈ H , there must
be at least one vertex v′ ∈ V2 ∩H . Since we proved V2 ∩H = ∅, v cannot be in H . Consequently,
V1 ∩H = ∅.

Lemma 4. Suppose G is an ADMG, Y is a set of its vertices, and (H, Y mcip) = T (G, Y). Suppose
there is a hedge formed for Q[yijj] inH, where yi, yj ∈ Y and yijj is the vertex corresponding to the
pair (yi, yj) added in step (f) of the transform T . Let H denote the set of vertices of this hedge. If
v ∈ H ∩ V Hbot, then v has the superscript ij, that is, v is either one of the vertices yijk , or one of the
vertices yijkl, where i ≤ k, l ≤ j. In the latter case, ybkl ∈ H .

Proof. Define V1 = {ymn
kl ∈ V Hbot,∀m,n, k, l}, and V2 = V Hbot \ V1. Suppose V ∗1 = {vijkl ∈

V Hbot,∀k, l} and V ∗2 = {vijk ∈ V Hbot,∀k}. Also define V ′1 = V1 \ V ∗1 , V ′2 = V2 \ V ∗2 . For the first
part of the claim, it suffices to show that V ′1 ∩ H = ∅, V ′2 ∩ H = ∅. By construction of H, the
vertices of V

′

2 do not have any child out of V
′

2 . Therefore, V ′2 ∩ AncH[H](y
ij
j) = ∅. This implies that

V
′

2 ∩H = ∅. Now let vi
′
j
′

1 be an arbitrary vertex in V
′

1 . By construction ofH, vi
′
j
′

1 has bidirected

edges only to vertices of V ′2 . This implies that if vi
′
j
′

1 ∈ H , there must be at least one vertex of V ′2
in H which is in contradiction with V ′2 ∩H = ∅. Therefore, vi

′
j
′

1 /∈ H . Since vi
′
j
′

1 is an arbitrary
vertex in V ′1 , we conclude V ′1 ∩H = ∅.

Now, we prove that if v ∈ H is one of the vertices yijkl, we have ybkl ∈ H . Since yijkl ∈ H , there exists
a directed path from yijkl to yijj inH[H]. Since ybkl is the only child of yijkl, the aforementioned path
passes through ybkl. Therefore, ybkl ∈ H .

Lemma 5. Suppose G′ = (V G
′
, EG

′

d , EG
′

b) is an ADMG, Y ⊆ V G
′

is a set of its vertices, and
(H′, Y mcip) = T (G′, Y). Let E′′d ⊆ EG

′

d and E′′b ⊆ EG
′

b be arbitrary edges of G, and define
EGd = EG

′

d \ E′′d , EGb = EG
′

b \ E′′b . Define G = (V G , EGd , E
G
b) and H = H′[V H′ \ V ′], where

V G = V G
′

and V ′ = {v ∈ V H
′ |∃e ∈ E′′b ∪ E′′d , v = T2(e)}. Suppose there is a hedge formed

for Q[yijj] in H for some i, j. Let H denote the set of vertices of this hedge in H. The set of
vertices Y ∗ = {yk|yijk ∈ H} is a district in G[Y]. Moreover, Htop = AncH[Htop](Y

∗), where
Htop = H ∩ V Htop.

Proof. First we prove that Y ∗ is a district in G[Y]. Consider an arbitrary vertex yijk in H . By definition
of hedge, there exists a bidirected path, p1, between yijk and yijj inH[H]. Let Y ij denotes the set of
vertices in H such that their superscript is ij. Lemma 4 implies that H ⊆ V Htop ∪ Y ij . Furthermore,
by construction ofH, there is only one bidirected edge between Y ij and H \ Y ij , which is {yj , yiji }.
Therefore, all of the vertices on the path p1 are in Y ij . Now, we define Y

′

1 = {yk|yijk ∈ p1} and

18

Y ′2 = {ybkl|y
ij
kl ∈ p1}, i.e., the V Htop counterparts of the vertices in p1. Since the vertices on p1

are in H , Y ′1 ⊆ Y ∗. From Lemma 4, we know that if yijkl ∈ H , then, ybkl ∈ H . It implies that
Y
′

2 ⊆ H . As a result, Y ′1 and Y ′2 are both vertices ofH. Now if we replace all the vertices in p1 with
their corresponding counterpart in Y ′1 ∪ Y ′2 , we arrive at a bidirected path p2 between yk and yj in
H[Y ′1 ∪ Y ′2] (as by construction the same edges exist in V Htop). By definition of G andH, if a vertex
ybkl exists inH, the corresponding edge {yk, yl} exists in G. As a result, a bidirected path between yk
and yl exists in G[Y ′1]. Noting that yk is an arbitrary vertex in Y ∗ and Y ′1 ⊆ Y ∗, this implies that all
of the vertices of Y ∗ are in the same district as yj in G[Y ∗], which completes the proof.

Next, we prove that Htop = AncH[Htop](Y
∗). To this end, it suffices to show that there is a directed

path form an arbitrary vertex v ∈ Htop to Y ∗ in H[Htop]. Since H forms a hedge for Q[yijj] in H,
there exists a directed path from v to yijj inH[H]. This path must go through the only parent of yijj ,
which is yiji . Then, the last vertex on the path is one of the parents of yiji . If this parent is yi, we are
done as we have a directed path from v to yi, where yi ∈ Y ∗ and it has no ancestors in H \Htop.
Otherwise, let this parent be yijk for some i < k < j. Now the last vertex on the path before yijk must
be yk, which is the only parent of yijk . Note that by definition of Y ∗, yk ∈ Y ∗. Therefore, v has a
directed path to Y ∗ inH[Htop].

Lemma 6. Suppose G = (V G , EGd , E
G
b) is an ADMG, Y is a set of its vertices, and (H, Y mcip) =

T2(G, Y). Suppose there is a hedge formed for Q[y] inH for some y ∈ Y mcip. Let H denote the set
of vertices of this hedge. Then H ∩X 6= ∅, where X = V G \ Y .

Proof. Since H forms a hedge for Q[y] in H, there exists a vertex h ∈ H such that {y, h} ∈ EHb .
There are two possibilities for y ∈ Y mcip:

• y = yi ∈ Y . From Lemma 4 we have h /∈ V Hbot. Therefore, by construction ofH, h = ybij
for some j.

• y = yijj ∈ V Hbot. By construction ofH, h = yijkj for some k. Vertex h must have a directed
path to y in H by definition of hedge, which must go through the only child of h, i.e., ybkl.

In both cases, we showed that there exists a vertex v = ybij ∈ H for some i, j. By definition of hedge,
there is a bidirected path, p, from v to y inH because v ∈ AncH(y). Since all of the children of v are
in X , there is at least one vertex in X on path p. Therefore, H includes at least one vertex of X .

Lemma 7. [Inverse transform preserves hedges.] Suppose G′ = (V G
′
, EG

′

d , EG
′

b) is an ADMG,
Y ⊆ V G

′
is a set of its vertices, and (H′, Y mcip) = T2(G′, Y). Let E′′d ⊆ EG

′

d and E′′b ⊆ EG
′

b be
arbitrary edges of G, and define EGd = EG

′

d \ E′′d , EGb = EG
′

b \ E′′b . Define G = (V G , EGd , E
G
b)

and H = H′[V H′ \ V ′], where V G = V G
′

and V ′ = {v ∈ V H
′ |∃e ∈ E′′b ∪ E′′d , v = T2(e)}. Let

W ⊆ V Htop be a set of vertices ofH. Let Ws ⊆W ∩ V G be a subset of W such that Ws are vertices
of G as well. Consider the inverse transform of H[W] in the ADMG G, i.e., for any v = vbij ∈ W ,
delete v and all edges incident to it and draw a bidirected edge between vi and vj , and for any
v = vdij , delete v and all edges incident to it and draw a directed edge from vi to vj . Let the resulting
subgraph (which is a subgraph of G) be denoted by G[W−1] with the set of vertices W−1 ⊆ V G . If
AncH[W](Ws) = W , then AncG[W−1](Ws) = W−1. Moreover, if W is a district in H[W], then
W−1 is a district in G[W−1].

Proof. First, we show that if AncH[W](Ws) = W , then AncG[W−1](Ws) = W−1. Let v be an
arbitrary vertex in W−1. Vertex v is in W because W−1 ⊆W . Since v ∈W and v ∈ AncH[W](Ws),
v has a directed path v → . . . vi → vdij → vj · · · → w, denoted by l, to a vertex w ∈ Ws in H[W].
For each vertex vdij on path l, we have vi, vj ∈ G[W−1] and since vdij ∈ V H, by definition of G
and H, there exists (vi, vj) ∈ EGd s.t. i ≺ j, and consequently, (vi, vj) ∈ E

G[W−1]
d . Therefore,

19

there exists a directed path from v to w in G[W−1]. Noting that v is an arbitrary vertex in W−1, we
conclude that AncG[W−1](Ws) = W−1.

Now, we prove that if W is a district in H[W], then W−1 is a district in G[W−1]. Consider two
vertices v1, v2 ∈ W−1. Since v1, v2 ∈ W and W is a district, there exists a bidirected path
v1 ↔ . . . vi ↔ vbij ↔ vj · · · ↔ v2, denoted by p, between v1 and v2 in H[W]. Each vertex vbij on
path p is in H and vi, vj ∈ G[W−1]. By definition of G and H, we have {vi, vj} ∈ EGb . Therefore,

{vi, vj} ∈ E
G[W−1]
b . Then, there is a bidirected path between v1 and v2 in G[W−1]. Since v1 and v2

are two arbitrary vertices in W−1, it implies that W−1 is a district in G[W−1].

Lemma 8. [Transform preserves hedges.] Suppose G′ = (V G
′
, EG

′

d , EG
′

b) is an ADMG, Y ⊆ V G
′

is
a set of its vertices, and (H′, Y mcip) = T2(G′, Y). Let E′′d ⊆ EG

′

d and E′′b ⊆ EG
′

b be arbitrary edges
of G, and define EGd = EG

′

d \E′′d , EGb = EG
′

b \E′′b . Define G = (V G , EGd , E
G
b) andH = H′[V H′ \V ′],

where V G = V G
′

and V ′ = {v ∈ V H
′ |∃e ∈ E′′b ∪E′′d , v = T2(e)}. Let W ⊆ V G be a set of vertices

of G such that W \ Y 6= ∅. Let Ws ⊆ W be a subset of W . Let the transformed graph of G[W]

under T2 be denoted by H′′, where H′′ ⊆ H. Define W ∗ = V H
′′

top . If AncG[W](Ws) = W , then
AncH[W∗](Ws) = W ∗. Moreover, if W is a district in G[W], then W ∗ is a district inH[W ∗].

Proof. First, we prove that if AncG[W](Ws) = W , then AncH[W∗](Ws) = W ∗. Take an arbitrary
vertex v ∈W ∗. There are two possibilities for v:

• v ∈W . That is, vertex v is in G[W].

• v /∈ W . This implies that v represents an edge e between two vertices vi and vj in G[W].
There are three possibilities for e:

– e = (vi, vj). By construction ofH, v is parent of vj inH[W ∗], where vj is a vertex of
G[W].

– e = {vi, vj} and vi ∈ X or vj ∈ X . In this case, v is parent of at least one of vi and
vj inH[W ∗], w.l.o.g. vi, where vi is a vertex of G[W].

– e = {vi, vj} and vi, vj ∈ Y . By construction ofH, v is parent of all vertices in V G \Y .
Since W \ Y 6= ∅, there exists a vertex x in G[W] such that v is a parent of x.

In all three cases above, we proved that there exists a vertex x ∈W such that v is a parent
of x.

Therefore, we showed that any vertex v ∈W ∗ either is itself a vertex in W or is a parent of a vertex
in W . As a result, it suffices to show that every w ∈ W has a directed path to Ws in H[W ∗]. We
know that w has a directed path to Ws in G[W] such as p. Take an arbitrary pair of consecutive
vertices on this path, such as v1 and v2. The directed edge (v1, v2) exists in G[W]. As a result, the
directed path v1 → vd12 → v2 exists inH[W ∗]. Starting at w and repeating this argument for every
pair of consecutive vertices on p, we conclude that there exists a directed path from w to Ws, which
completes the proof.

Now, we show that if W is a district in G[W], then W ∗ is a district in H[W ∗]. Take an arbitrary
vertex v ∈W ∗. There are two possibilities for v:

• v ∈W . That is, v is a vertex in G[W].

• v /∈W . In this case, at least one of the vertices v represents an edge e between two vertices
vi and vj in G[W]. By construction ofH, v is connected to at least one of vi or vj , w.l.o.g.
vi, by a bidirected edge, where vi ∈W .

We showed that any vertex v ∈ W ∗ either is in W , or is connected to a vertex in W through a
bidirected edge. Therefore, it suffices to show that for any two vertices w1, w2 ∈ W there exists
a bidirected path between w1 and w2 in H[W ∗]. Since w1, w2 ∈ W , there is a bidirected path, p,
between w1 and w2 in G[W]. Take an arbitrary pair of consecutive vertices on this path, such as v1
and v2. The bidirected edge {v1, v2} exists in G[W]. As a result, the bidirected path v1 ↔ vb12 ↔ v2

20

exists inH[W ∗]. Starting at w and repeating this argument for every pair of consecutive vertices on
p, we conclude that there exists a bidirected path from w1 to w2, which completes the proof.

Lemma 9. Suppose G is an ADMG, and Y is a subset of its vertices. Also let Y ∗ be a district in
G[Y]. If the set of vertices H form a hedge for Q[Y ∗], then H \ Y 6= ∅.

Proof. Assume by contradiction H \ Y = ∅, i.e., H ⊆ Y . By definition of hedge, we know
H \ Y ∗ 6= ∅. Take an arbitrary vertex v ∈ H \ Y ∗. Furthermore, v ∈ Y \ Y ∗ because H ⊆ Y . Since
H forms a hedge for Q[Y ∗], H is a district in G[H]. Therefore, there exists a bidirected path between
v and a vertex y∗ ∈ Y ∗ in Q[Y] which is in contradiction with the assumption that Y ∗ is a district in
G[Y].

Proposition 4. Suppose G′ = (V G
′
, EG

′

d , EG
′

b) is an ADMG, Y ⊆ V G
′

is a set of its vertices, and
(H′, Y mcip) = T2(G′, Y). Let E′′d ⊆ EG

′

d and E′′b ⊆ EG
′

b be arbitrary edges of G, and define
EGd = EG

′

d \E′′d , EGb = EG
′

b \E′′b . Q[Y] is identifiable in G = (V G , EGd , E
G
b) if and only if Q[Y mcip]

is identifiable in H = H′[V H′ \ V ′], where V G = V G
′

and V ′ = {v ∈ V H
′ |∃e ∈ E′′b ∪ E′′d , v =

T2(e)}.

Proof. We prove the contrapositive, i.e., Q[Y] is not identifiable in G iff Q[Y mcip] is not identifiable
inH.

If part. Suppose Q[Y mcip] is not identifiable inH. That is, there exists a hedge formed for Q[Y mcip]
inH. From Lemma 2, this hedge is formed for Q[y′] for some y′ ∈ Y mcip. Denote the set of vertices
of this hedge by H . We consider two possibilities separately:

• y′ = yi, where yi ∈ Y . From Lemma 3, H ⊆ V Htop. Taking W = H in Lemma 7, W−1 is a
set of vertices in G such that AncG[W−1](y) = W−1, and W−1 is a district in G. Now take
Y ∗ to be the district of G[Y] that includes yi. By definition of hedge, G[W−1 ∪ Y ∗] forms a
hedge for Q[Y ∗] in G. Note that from Lemma 6, W−1 \ Y 6= ∅. As a result, Q[Y] is not
identifiable in G.

• y′ = yijj , where yi, yj ∈ Y and y′ is one of the vertices added to H in the last step of the
transformation T (step (f)). Define the set Y ∗ = {yk|yijk ∈ H}. From Lemma 5, Y ∗ is a
district in G, and therefore a district in G[Y]. As a result, it suffices to show that there exists
a hedge formed for Q[Y ∗] in G. Now define Htop = H ∩ V Htop. By definition of hedge,
H is a district in H[H], i.e., it is connected over its bidirected edges. By construction of
H, there is only one bidirected edge between the vertices in Htop and H \Htop, which is
the bidirected edge between yj and yiji . Therefore, this edge is a cut set that partitions the
graphH[H] into two connected componentsH[Htop] andH[H \Htop]. That is,H[Htop]
is connected over its bidirected edges and therefore Htop is a district inH[Htop]. Further,
from Lemma 5, Htop = AncH[Htop](Y

∗). Noting that Htop ⊆ V Htop, taking W = Htop in
Lemma 7, W−1 is a district in G and AncG[W−1](Y

∗) = W−1. Note that from Lemma 6,
W−1 \ Y 6= ∅. Therefore, the set of vertices W−1 form a hedge for Q[Y ∗] in G. Hence,
Q[Y] is not identifiable in G.

Only if part. Suppose Q[Y] is not identifiable in G. It implies that there exists a district of G[Y] such
as Y ∗ such that there is a hedge formed for Q[Y ∗] in G. Let H denote the set of vertices of this hedge.
From Lemma 9, H \ Y 6= ∅. Define W ∗ as in Lemma 8, that is the transform T (G[H], Y ∗) without
step (f) (only on the vertices of V Htop). Note that Y ∗ ⊆ W ∗. We consider the following two cases
separately:

• Y ∗ = {y}, that is, Y ∗ is a single vertex. From Lemma 8, W ∗ is a district in H[W ∗], and
AncH[W∗](y) = W ∗. By definition of hedge, the vertices W ∗ form a hedge for Q[y] inH.
Note that y ∈ Y mcip, and from Lemma 2 it is a district ofH[Y mcip]. As a result, Q[Y mcip]
is not identifiable inH.

21

• |Y ∗| ≥ 2. Let yi and yj be the first and the last vertices of Y ∗ in the topological order. Define
Y ij∗ = {yijk |yk ∈ Y ∗} ∪ {yijkl|yk, yl ∈ Y ∗}. Y ij∗ are the vertices in V Hbot with superscript
ij corresponding to the vertices in Y ∗. Note that yiji , yijj ∈ Y ij∗, since yi, yj ∈ Y ∗. Since
yijj ∈ Y mcip and from Lemma 2 yijj is a district inH[Y mcip], it suffices to show that there
is a hedge formed for yijj inH. We show that the vertices W = W ∗ ∪ Y ij∗ form a hedge
for yijj inH. From Lemma 8, AncH[W∗](Y

∗) = W ∗, that is, all of the vertices in W ∗ are
ancestors of Y ∗ in H[W ∗], and therefore in H[W]. Also, the vertices yijkl in Y ij∗ have a
direct edge to their corresponding vertex in W ∗, i.e., ybkl, and therefore are ancestors of
Y ∗ in H[W] as well. Further, each vertex in Y ∗ such as yk is a parent of yijk , which is
in turn a parent of yiji (or is yiji itself if k = i.) Finally, yiji has a directed edge to yijj by
construction. As a result, all of the vertices W have a direct path to yijj in H[W]. That is,
AncH[W](y

ij
j) = W . It now remains to show that W is a district inH[W]. From Lemma 8,

W ∗ is a district in H[W ∗]. As a result, the vertices W ∗ are connected through bidirected
edges in H[W]. There is a bidirected edge between yj and yiji by construction of H. It
suffices to show that for any v ∈ Y ij∗, there exists a bidirected path between v and yiji in
H[W]. A vertex yijkl ∈ Y ij∗ (with double subscript, which are due to the bidirected edges
among Y ∗) has bidirected edges to yijk and yijl , which are both in Y ij∗ by definition. Now
take an arbitrary vertex yijk ∈ Y ij∗ (with single subscript, due to vertices in Y ∗). We know
yk ∈ Y ∗, as yijk ∈ Y ij∗, by definition of Y ij∗. Y ∗ is a district in G[Y ∗]. That is, there exists
a bidirected path from yk to yi in G[Y ∗]. From Lemma 8 by taking W = Y ∗, there is a
bidirected path p from yk to yi inH[Y ∗ ∪ {ylm|yl, ym ∈ Y ∗}]. By construction ofH, if we
replace each vertex v on p by vij , we achieve a bidirected path p′ with vertices in Y ij∗ from
yijk to yiji , which completes the proof.

Proof of Proposition 2. The reduction from the edge ID problem to MCIP was shown through the
proof of Proposition 4. The opposite direction is an immediate corollary of Proposition 3.

Corollary 2. The edge ID problem and MCIP are equivalent.

B Maximal Hedge

Algorithm 3 Maximal Hedge.

1: function MH(G, Y)
2: Initialize M ← ∅
3: for Yi in districts of G[Y] do
4: M ←M ∪HHull(G, Yi)

5: return G[M]

1: function HHULL(G, Yi)
2: Initialize H ← V G

3: while True do
4: C ← connected component (district) of Yi via bidirected edges in G[H]
5: A← ancestors of Yi in G[C]
6: if C 6= A then
7: H ← A
8: else
9: break

10: return H

Herein, we present the algorithm for recovering the maximal hedge formed for Q[Y] in a given
ADMG G (see Definition 5). Maximal hedge was initially defined in [2] under the name hedge hull.

22

xz yp q

Figure 6: An example where the expert is aware that there is no causal path from z to y, e.g., because
z ⊥⊥ y with high confidence.

We adopt the same definition, and when G[Y] comprises several districts, we define the maximal
hedge as the union of the hedge hulls formed for each district of G[Y]. As a result, the complete
procedure of recovering the maximal hedge for a query Q[Y], summarized in Algorithm 3, finds the
maximal hedge formed for each district Yi of G[Y] and returns the union of them. This procedure is
used as a subroutine MH in Algorithm 1. The function HHull is in fact Algorithm 1 borrowed from
[2]. This function is proven to recover the union of all hedges formed for Yi, where Yi is one of the
districts of G[Y] (see Lemma 6 of [2]).

C Generalizing Assumption 1

Lemma 1 states the equivalence of Problems 1 and 2 with the edge ID problem under Assumption 1.
However, as mentioned in the main text, this equivalence holds in the more general setting where we
allow for perfect negative correlations among edges. As an example, consider the graph of Figure
6. Suppose that the performed statistical independence tests show that the two variables z and y are
independent of each other with high confidence. As a result, the expert believes that the edges (z, x)
and (x, y) must not exist simultaneously, as otherwise the causal path from z to y would make them
dependent. In such cases, the belief of the expert can be modeled as probabilities p and q assigned
to the existence of the edges (z, x) and (x, y), respectively, as well as a perfect negative correlation
between them.

Note that the aforementioned constraint, i.e., that the edges do not exist simultaneously, can be
specified for any number of edges, not limited to two edges only. For instance, the expert might
believe at least one of the edges along a causal path of length n must not exist in the true ADMG
describing the system. This belief can be modeled as an extra constraint in the optimization of
Equations 2 and 3. We show that with the specification of such negative correlations, Problems 1 and
2 can still be cast as an instance of the edge ID problem. Therefore, the results presented in this work
are valid in this setting as well.
Assumption 2. The edges in G are assigned probabilities pe,∀e ∈ G, and perfect negative corre-
lations are defined among subsets of edges. More precisely, for any subset E ⊆ EGd ∪ EGb , there is
either 1) no constraint (mutually independent), or 2) the constraint that at least one of the edges in E
must not exist in the true ADMG (perfect negative correlation).
Proposition 5. Under Assumption 2, there exists a reduction from Problems 1 and 2 to the edge ID
problem and vice versa with the time complexity in the order of O(|C| · |V G |+ |EGd ∪ EGb |), where
C is the set of perfect correlation constraints.

Proof. First note that we proved the equivalence of Problems 1 and 2 with the edge ID problem
without the perfect correlation constraints in Lemma 1. As a result, under assumption 2, i.e., by adding
the perfect correlation constraints, Problems 1 and 2 are equivalent to a modified edge ID problem
with those constraints. But we claim that there exists and instance of the original unconstrained edge
ID problem which is equivalent to these problems. To see this, first note that we know from Corollary
2 that the edge ID problem is equivalent to MCIP. Therefore, it suffices to show that there exists
an instance of MCIP which is equivalent to the constrained edge ID mentioned above. To this end,
consider the transform T2(G, Y) introduced in Section A.2. This transformation maps an instance of
the edge ID problem to an instance of MCIP. Applying this transformation to the constrained edge ID
problem, we can map the constrained edge ID to an instance of MCIP with extra constraints, with
transforming the constraints as well. That is, if for instance, there is a perfect negative correlation
among the edges e1, e2 in G, this constraint is mapped to a negative perfect correlation on the
corresponding vertices inH, namely T2(e1), T2(e2). In words, this constraint would be that at least
one of T2(e1) and T2(e2) must be intervened upon. We show that such constraints can be integrated
into the original definition of MCIP.

Suppose we have an MCIP problem in ADMG G with query Q[Y], with the extra constraint that
at least one of the vertices X ⊆ V G must be intervened upon. Consider the example of X =

23

x1 x2 x3

x′1 x′2 x′3

ŷ

Figure 7: Integrating the perfect negative correlation constraint into MCIP.

{x1, x2, x3} in Figure 7. We build a new ADMG G′ by adding vertices {x′|x ∈ X}, i.e., a new vertex
corresponding to each vertex in X , along with an auxiliary vertex ŷ to G. We fix a random ordering
over the vertices of X , and denote the set of vertices of X as x1, ..., xm. We add the directed edges
(xi, x

′
i) to G′, as well as the bidirected edges {xi, x

′
i}. Further, we draw directed edges (x′i, x

′
i+1) for

every 1 ≤ i < m. Finally, we draw the directed edge (x′m, ŷ) and the bidirected edge {x1, ŷ}. Refer
to the graph in Figure 7 for an example with X = {x1, x2, x3}. Note that the set X ∪X ′∪{ŷ} forms
a hedge for Q[ŷ], where X ′ = {x′|x ∈ X} Now it suffices to set the cost of intervention on vertices
of X ′ to infinity, and consider MCIP for the query Q[Y ∪ {ŷ}] in G′. It is straightforward to see that
the objective of this problem would be to find the minimum cost intervention for identification of
Q[Y], with the constraint that at least one of the vertices in X must be intervened on. Note that as
soon as one vertex in X gets intervened upon, there is no hedge left for Q[ŷ]. Also it is noteworthy
that adding this structure does not add any new hedges formed for Q[Y], since the structure only
includes new descendants for X which have no directed paths to Y . Also note that the vertices X ′
and ŷ are specific to the very constraint corresponding to the set of vertices X . For any constraint, we
add such a structure to G. The number of vertices (and therefore the time complexity) is at most in
the order O(|C| · |V G |), where C is the set of constraints.

C.1 Further applications

The relaxation provided in this Appendix allows the approaches proposed in this work to be applicable
to a more general set of problems. Herein, we discuss one such application.

Let us assume we run our algorithm which returns the subgraph with the highest probability, G1.
However, the probability that G1 is the true causal structure describing the system might be too low.
In such a case, the researcher might be interested in having a ranking of most probable graphs (for
instance, the 10 most probable graphs), rather than only one most probable graph. This could be
helpful for instance, when a unique identification formula is valid in a few of these graphs, or the
researcher is interested in identifying more than one causal query. The methods discussed in this
work along with the relaxation proposed in this appendix provide the tools to recover such a ranking
(of the most probable graphs in which a query is identifiable). To see this, note that based on what
we proposed in this Appendix, perfect negative correlation constraints can be added to the edge
ID problem without additional computational cost. So we begin by solving the original problem,
which yields a graph G1. We then solve it for a second time (i.e., re-run the algorithm), with the only
difference that we add the perfect negative correlation constraint over the set of all edges of G1 (i.e.,
we force the algorithm to exclude at least one of the edges of G1.) The solution to this problem (let us
call it G2) is the highest probability graph among all subgraphs except G1, i.e., it is the second highest
probability graph in which the query is identifiable. Continuing in this manner, running the algorithm
n times would give us a ranking of the n highest probability graphs.

D Heuristic Algorithms

Algorithm 2 was devised considering the fact that every hedge formed for Q[Y] must include a vertex
that has a bidirected edge to Y . As mentioned in Section 4.2, an analogous approach, summarized in
Algorithm 4, uses the fact that any hedge formed for Q[Y] must include a parent of Y .

24

Let Y ⊆ V G be a set of vertices of G such that G[Y] comprises of only one district. Let Z := {z ∈
V G |∃ y ∈ Y : (z, y) ∈ EGd } \ Y denote the set of vertices that have at least one directed edge to a
vertex in Y , i.e., the parents of Y excluding Y . Any hedge formed for Q[Y] contains at least one
vertex of Z. As a result, in order to eliminate all the hedges formed for Q[Y], it suffices to ensure that
none of the vertices in Z appear in the final hedge. To this end, for any z ∈ Z, it suffices to either
remove all the directed edges between z and Y , or eliminate all the bidirected paths from z to Y .
The problem of eliminating all bidirected paths from Z to Y can be cast as a minimum cut problem
between Z and Y in the edge-induced subgraph of G over its bidirected edges. To add the possibility
of removing the directed edges between Z and Y , we add an auxiliary vertex z∗ to the graph and
draw a bidirected edge between z∗ and every z ∈ Z with weight w =

∑
y∈Y w(z,y), i.e., the sum of

the weights of all directed edges between z and Y . Note that z can have directed edges to multiple
vertices in Y . We then solve the minimum cut problem for z∗ and Y . If an edge between z∗ and
z ∈ Z is in the solution to this min-cut problem, it translates to removing all the directed edges from
z to Y in the original problem. Note that we can run the algorithm on the maximal hedge formed for
Q[Y] in G rather than G itself.

Algorithm 4 Heuristic algorithm 2.

1: function HEID2(G, Y,WG)
2: G′ ←MH(G, Y)

3: Z ← {z ∈ V G
′ |∃y ∈ Y : (z, y) ∈ EG

′

d } \ Y
4: H ← The induced subgraph of G′ on its bidirected edges.
5: WH ← {we ∈WG |e ∈ H}
6: V H ← V H ∪ {y∗, z∗}
7: for z ∈ Z do
8: EH ← EH ∪ {z∗, z}
9: WH ←WH ∪ {w{z∗,z} =

∑
y w(z,y)}

10: for y ∈ Y do
11: EH ← EH ∪ {y, y∗}
12: WH ←WH ∪ {w{y,y∗} =∞}
13: E ←MinCut(H,WH, z∗, y∗)
14: return (E,

∑
e∈E we)

E Experiments

Noting that the synthetic/simulation results in the main paper were for graphs with a log(n)/n sparsity
constraint, we begin this section by providing a set a results on the simulated graphs without the
sparsity penalty for comparison. Then, we provide information about the causal discovery algorithm
used to derive the psychology ‘Psych’ real-world graph. We also provide experimental results for
Problem 2 formulation in Section E.3.

E.1 Additional Simulation Results without Sparsity Constraint

The simulation results for graphs generated without the sparsity constraint are shown in Figure 8.
These results illustrate monotonic increases in runtime and cost as the number of nodes increases. Our
proposed heuristic algorithms (HEID-1 and HEID-2) maintain runtimes less than 0.5 seconds even
for 250 nodes. In contrast, the two exact algorithms (MCIP-exact and EDGEID) exceed the three
minute runtime limit at only 20 nodes, and the MCIP heuristic variants (MCIP-H1 and MCIP-H2)
have runtimes which increase exponentially with the number of nodes. These results highlight the
efficiency of our proposed heuristic algorithms to find solutions with equivalent cost with significantly
faster runtimes.

E.2 Psychology Graph Discovery

The settings for deriving the putative structure used on the psychology real-world graph are provided
in Table 3.

25

(a) Runtimes. (b) Solution costs.

(c) Fraction for which runtime of 3 minutes exceeded.

Figure 8: Experimental results (for graphs generated without the sparsity constraint) for runtime,
solution costs, fraction of graphs for which no solution was found, and fraction of graphs for which
runtime limit of 3 minutes was exceeded. Error bars for runtime and cost graphs indicate 5th and
95th percentiles. Best viewed in color.

Table 3: Hyperparameter settings for the Structural Agnostic Model used to generate the putative
(directed) structure for the ‘Psych’ real-world dataset.

Parameter Value
Learning Rate 0.01
DAG Penalty True
DAG Penalty Weight 0.05
Number of Runs 50
Train Epochs 3000
Test Epochs 800
Mixed Data True
hlayers 2
dhlayers 2
lambda1 10
lambda2 0.001
dlr 0.001
linear False
nh 20
dnh 200

E.3 Simulation Results for Problem 2 Formulation

The experimental setup is exactly as in the main text (the results depicted in Figure 4), except that the
probabilities are chosen in the range [0.01, 1] instead of [0.51, 1], and we use the weight mapping
corresponding to Problem 2 as described in Lemma 1. That is, we map each probability pe to the
weight − log(1− pe) in the corresponding edge ID problem.

The simulation results are presented in Figure 9. Runtimes and costs are shown for the subset of
graphs for which all algorithms found a solution (to facilitate comparison). Runtimes for each
algorithm are shown in Fig. 9a, where it can be seen that our proposed HEID-1 and HEID-2 heuristic
algorithms have negligible runtime. In contrast, EDGEID had large runtime variance which depended
heavily on the specifics of the graph under evaluation, particularly for graphs with fewer vertices.

26

(a) Runtimes. (b) Solution costs.

(c) Fraction runtime exceeded 3 min.

Figure 9: Experimental results for runtime, solution costs, fraction of graphs for which no solution
was found, and fraction of graphs for which runtime limit of 3 minutes was exceeded. Error bars for
runtime and cost graphs indicate 5th and 95th percentiles. Best viewed in color.

The costs for each graph are shown in Fig. 9b. Figure 9c shows the fraction of evaluations for which
the runtime exceeded 3 minutes (applicable to the exact algorithms). In general, and owing to the
sparsity penalty in our graph generation mechanism, the cost of identified solutions falls with the
number of vertices. Overall, HEID-1 was both the most consistent in terms of finding a solution,
having a short runtime, and achieving a close to optimal cost.

27

	1 Introduction
	2 Preliminaries
	2.1 Problem setup

	3 Reduction to Edge ID problem and establishing complexity
	4 Algorithmic approaches
	4.1 Recursive exact algorithm
	4.2 Heuristic algorithms
	4.3 Alternative approach: reduction to MCIP

	5 Experiments
	6 Conclusion
	A Formal Proofs
	A.1 Reduction from MCIP to edge ID
	A.2 Reduction from edge ID to MCIP

	B Maximal Hedge
	C Generalizing Assumption 1
	C.1 Further applications

	D Heuristic Algorithms
	E Experiments
	E.1 Additional Simulation Results without Sparsity Constraint
	E.2 Psychology Graph Discovery
	E.3 Simulation Results for Problem 2 Formulation

