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Abstract

We revisit the problem of general identifiability

originally introduced in [Lee et al., 2019] for

causal inference and note that it is necessary to

add positivity assumption of observational distri-

bution to the original definition of the problem.

We show that without such an assumption the

rules of do-calculus and consequently the pro-

posed algorithm in [Lee et al., 2019] are not sound.

Moreover, adding the assumption will cause the

completeness proof in [Lee et al., 2019] to fail.

Under positivity assumption, we present a new

algorithm that is provably both sound and com-

plete. A nice property of this new algorithm is

that it establishes a connection between general

identifiability and classical identifiability by Pearl

[1995] through decomposing the general identifi-

ability problem into a series of classical identifia-

bility sub-problems.

1 INTRODUCTION

Causal effect identification (or ID for short) problem, a

central concern in causal inference, pertains to whether,

given a causal graph, an interventional distribution can be

uniquely computed from observational distribution [Pearl,

2009]. When all the variables in the system are observable,

Pearl’s do-calculus (a collection of three rules) allows deter-

mining whether a causal effect is identifiable [Pearl, 1995].

Moreover, it was shown that Pearl’s do-calculus is both

sound and complete for ID problem [Shpitser and Pearl,

2006a, Huang and Valtorta, 2008].

In the classical setting of ID problem, both the causal graph

and the observational distribution, denoted by P (V) (V is

the set of observed variables in the causal graph), are given.

However, it is assumed that no extra information (such

as interventional distribution) is available. Recently, sev-

eral work in the literature relax these assumptions [Tikka

et al., 2021, Shpitser and Pearl, 2006b, Bareinboim and

Tian, 2015, Bareinboim and Pearl, 2014, Mokhtarian et al.,

2022]. Before discussing these results, let us introduce a

notion. We denote by Px(Y) the distribution of a set of

variables Y resulting from intervening on another set of

variables X. Bareinboim and Pearl [2012] introduced the

z-identification problem (or zID for short) in which for a

fixed set Z ⊆ V, given a set of interventional distribu-

tions of the form {Pz′(V) : ∀Z′ ⊆ Z}, one asks whether

Px(Y) is identifiable. Note that the observational distribu-

tion P (V) always belongs to the set of available distribu-

tions. Furthermore, the form of given interventional distri-

butions is restrictive. Lee et al. [2019] generalized zID and

proposed so-called general identifiability problem (or gID

for short). In the gID, observational distribution is not nec-

essarily given but instead we have access to {Pzi(V)}mi=0

for some subsets {Zi}
m
i=0 of observed variables. When one

of Zis is an empty set, we have access to P (V).

We give formal definitions of identifiability (Definition 3)

and general identifiability (Definition 5) in Section 2. An

important contribution of this paper is to add an assumption

on the positivity of the observational distribution in the def-

inition of general identifiability, i.e., P (v) > 0 for all the

realizations of observed variables. As we shall discuss in

detail in Section 3, this assumption, or at least a relaxed ver-

sion of it, is crucial. More specifically, do-calculus-based

methods are no longer sound for the ID problem if we ig-

nore the positivity assumption. In other words, there ex-

ist causal graphs with non-positive distribution P (V) such

that do-calculus would claim a causal effect is identifiable

while it cannot be uniquely computed from mere observa-

tional distribution. Violation of the positivity assumption

can happen in practice. For instance, some empirical dis-

tributions would be zero when the observational data is not

large enough. An even more important reason for including

the positivity assumption is that without it, the proposed

algorithm in the original gID in [Lee et al., 2019] is not

sound. Furthermore, as we shall discuss in Section 3, the
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proof of completeness in [Lee et al., 2019] relies on build-

ing two models that have zero probabilities for certain re-

alizations of observed variables. Therefore, unfortunately,

simply adding the positivity assumption to the definition of

general identifiability (g-identifiability) will fail the proof

technique in [Lee et al., 2019] for the completeness of their

proposed algorithm. On the other hand, ignoring the posi-

tivity assumption makes the soundness of their algorithm

incorrect.

In summary, our main contributions are as follows. We re-

define the g-identifiability by adding the positivity assump-

tion of observational distribution (Definition 5). We show

in Section 3 that this assumption is essential for the gID

problem. We then provide a sound and complete algorithm

for the gID problem (Algorithm 2). A nice property of our

algorithm is that it establishes a connection between gID

and classical ID by showing that gID can be reduced to

solving a series of ID problems (Theorem 1).

2 PRELIMINARIES

2.1 TERMINOLOGY

Throughout the paper, we denote random variables by cap-

ital letters (e.g., X), their realizations by small letters (e.g.,

x), and sets by bold letters (e.g., X or x). We use XX to

denote the domain of random variable X and XX to denote

the Cartesian product of the domains of all the variables in

set X, i.e.,
∏

X∈X
XX . For integer numbers a ≤ b, we use

[a : b] to denote {a, a+ 1, · · · , b}.

Suppose G = (V∪U,E) is a directed acyclic graph (DAG)

over vertex set V∪U, where V and U represent the set of

observed and unobserved variables, respectively. For each

edge (X,Y ) ∈ E, X is called a parent of Y , and Y is

called a child of X . Vertex X is an ancestor of Y in G if a

directed path exists from X to Y in G. Note that X is an

ancestor of itself. PaG(X), ChG(X), and AncG(X) denote

the set of parents, children, and ancestors of X in G, respec-

tively. These notations are also used for a set of vertices.

In this case, they refer to the union over the set elements.

For instance, PaG(X) =
⋃

X∈X
PaG(X). We assume G is

semi-Markovian, that is for each U ∈ U, PaG(U) = ∅
and |ChG(U)| = 2. Note that this is not a restrictive as-

sumption as there exists an equivalency for identifiability

in DAGs and semi-Markovian DAGs [Huang and Valtorta,

2006].

Structural Equation Models (SEMs) are used to model

causal systems [Pearl, 2009]. G is a causal graph for SEM

M if each X ∈ V ∪ U is generated as fX(PaG(X), ǫX),
where {ǫX : X ∈ V} is a set of mutually independent ex-

ogenous random variables. We denote by PM(·) the joint

distribution of the variables inM and drop the superscript

M when it is clear from the context. Markov factorization

property implies that PM(·) can get factorized as

P (v) =
∑

U

∏

X∈V

P (x|PaG(X))
∏

U∈U

P (u), (1)

where
∑

U
denotes the marginalization over U.

Definition 1. M(G) denotes the set of SEMs with causal

graph G. M+(G) denotes the set of SEMsM ∈M(G) such

that PM(v) > 0 for each v ∈ XV.

For X ⊆ V and x ∈ XX, the intervention do(X = x)
convertsM to a new SEM where the equations of X inM
are replaced by the constants in x. We denote by Px(·) the

corresponding post interventional distribution.

Remark 1. For three disjoint subsets X,Y,W of V, if

M ∈ M+(G), then PM
x

(y | w) > 0 for any x ∈ XX,

y ∈ XY, and w ∈ XW.

For v ∈ XV and S ⊆ V, we define Q[S](·) by

Q[S](v) := Pv\s(s). (2)

Similar to Equation (1), Q[S] can get factorized as

Q[S](v) =
∑

U

∏

S∈S

P (s|PaG(S))
∏

U∈U

P (u). (3)

For X ⊆ V, G[X] denotes the inducing subgraph of G over

X and the unobserved variables with both children in X.

Note that G is semi-Markovian. Furthermore, we denote by

GX the partially directed graph over X obtained by remov-

ing unobserved variables of G[X] and replacing them by

bidirected edges.

Definition 2 (c-component, c-forest). For X ⊆ V, con-

founded components or c-components of X are the con-

nected components of the graph obtained by only the bidi-

rected edges of GX. Also, a subgraph of GV is called a sin-

gle c-component if its bidirected edges form a connected

graph. Suppose H is a subgraph of G over observed ver-

tices X. The root set ofH is the maximal subset of X with

no children in H. H is called R-rooted c-forest if R is the

root set of H, HX is a single c-component, and each node

in X has at most one child inH.

Example 1: Consider the causal graph G in Figure 1a,

where V = {X1, X2, Y1, Y2} andU = {U1, U2}. GV is de-

picted in Figure 1b. The c-components of V are {X1, X2}
and {Y1, Y2}. Figure 1c depicts the inducing subgraph

of G over {X1, X2} and G{X1,X2} is depicted in Figure

1d. Herein, G[{X1, X2}] is {X1, X2}-rooted c-forest since

G{X1,X2} is single c-component.
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X1 X2

Y1 Y2

U1

U2

(a) G

X1 X2

Y1 Y2

(b) GV

X1 X2U1

(c) G[X1, X2]

X1 X2

(d) G{X1,X2}

Figure 1: An example for a causal DAG G over observed

variables V = {X1, X2, Y1, Y2} and unobserved variables

U = {U1, U2}.

2.2 IDENTIFIABILITY

The goal in the identifiability problem is to understand

whether a post-interventional distribution can be uniquely

computed from observational distribution P (V), given the

causal graph [Pearl, 2009].

Definition 3 (identifiability). Suppose X and Y are two

disjoint subsets of V. The causal effect of X on Y is said

to be identifiable from G if for any x ∈ XX and y ∈ XY,

PM
x (y) is uniquely computable from PM(V) in any SEM

M ∈ M+(G). Also, Q[Y] is said to be identifiable from G
if the causal effect of V \Y on Y is identifiable from G.

Huang and Valtorta [2008] showed that identifiability of

a causal effect is equivalent to identifiability of a specific

Q[·].

Proposition 1 (Huang and Valtorta [2008]). The causal

effect of X on Y is identifiable from G if and only

Q[AncGV\X
(Y)] is identifiable from G.

For a subset S of observed nodes, [Tian and Pearl, 2003]

showed that identifiability of a Q[S] is equivalent to identi-

fiability of all its c-components.

Proposition 2 (Tian and Pearl [2003]). Suppose

S1, · · · ,Sl are the c-components of S ⊆ V. Q[S] is

identifiable from G if and only if Q[Si] is identifiable from

G for all i ∈ [1 : l].

Based on Propositions 1 and 2, [Tian and Pearl, 2003] pro-

posed an algorithm that for two disjoint subsets X and Y

checks the identifiability of the causal effect of X on Y

from observational distribution given the causal graph G.

As we will use their algorithm as a subroutine in our al-

gorithm for g-identifiability, we present their method in

Algorithm 1. In this algorithm, function ID_Single deter-

mines whether Q[S] is identifiable from G when S is a sin-

gle c-component. More precisely, this function starts from

Algorithm 1: Identifiability

1: Function ID(X,Y,G)

2: Output: True, if the causal effect of X on Y is

identifiable from G.

3: S← AncGV\X
(Y)

4: {S1, . . . ,Sl} ← c-components of S

5: for i from 1 to l do

6: if ID_Single(Si,G) = False then

7: Return False

8: Return True

1: Function ID_Single(S,G)

2: Output: True, if Q[S] is identifiable from G, where S

is a single c-component.

3: Y ← V

4: while Y 6= S do

5: A← AncGY
(S)

6: Ynew ← The c-component of A that contains S

7: if Ynew = Y then

8: Return False

9: else

10: Y ← Ynew

11: Return True

Y = V and at each step, it decreases Y such that both

Q[Y] remains identifiable from G and S ⊆ Y. If this proce-

dure can reduce Y to S, then Q[S] is identifiable otherwise,

Q[S] is not identifiable. This algorithm is both sound and

complete [Shpitser and Pearl, 2006a, Huang and Valtorta,

2008].

2.3 GENERAL IDENTIFIABILITY

In the previous section, we explained the classical identifia-

bility problem which determines whether a causal effect is

identifiable from observational distribution given the causal

graph. As we discussed earlier, in many problems of in-

terest, the goal is to identify a causal effect from a set of

both observational and interventional distributions given a

causal graph. A variant of this problem was defined by Lee

et al. [2019] under the name g-identifiability.

Definition 4 (g-identifiability in [Lee et al., 2019]). Let

X,Y be disjoint subsets of V, Z = {Zi}
m
i=0 be a collec-

tion of subsets of V, and let G be a causal diagram. Px(y)
is said to be g-identifiable from Z in G, if Px(y) is uniquely

computable from distributions {P (V|do(z))}Z∈Z,z∈XZ
in

any causal model which induces G.

Note that the causal model in this definition belongs to

M(G). However, as we shall discuss in Section 3, it is cru-

cial to assume that the causal model is positive, i.e., it be-

longs to M+(G). Therefore, we modify the above definition

as follows.
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Definition 5 (g-identifiability). Suppose A = {Ai}
m
i=0 is

a collection of subsets of V and X,Y are two disjoint sub-

sets of V. The causal effect of X on Y is said to be g-

identifiable from (A,G) if for any x ∈ XX and y ∈ XY,

PM
x (y) is uniquely computable from the set of distributions

{Q[Ai]}
m
i=0 in any SEMM ∈ M+(G). Also, Q[Y] is said

to be g-identifiable from (A,G) if the causal effect of V\Y
on Y is g-identifiable from (A,G).

Note that knowing P (V|do(Z)) for some subset Z ⊆ V is

equivalent to knowing Q[V \ Z], and therefore, by setting

Ai = V \ Zi, the two aforementioned definitions are the

same except for the positivity assumption. For the remain-

der of this paper, we use Definition 5 for g-identifiability.

3 ON THE POSITIVITY ASSUMPTION

IN G-IDENTIFIABILITY

In our definition of g-identifiability and the classical defi-

nition of identifiability (Definitions 5 and 3), only SEMs

that belong to M+(G) instead of M(G) are considered

[Huang and Valtorta, 2008, Shpitser and Pearl, 2006a].

That is, SEMs with positive probabilities for any realization

v ∈ XV. In this section, we discuss why this assumption is

crucial by showing that ignoring positivity leads to wrong

conclusions. As a consequence, since Lee et al. [2019] pre-

sented the soundness and completeness of their algorithm

for g-identifiability, ignoring the positivity assumption, we

discuss how after imposing the assumption, their results are

no longer valid. We further show that this issue cannot be

fixed by the relaxed version of the positivity assumption

introduced by [Shpitser and Pearl, 2006a]. After this dis-

cussion, we present a new algorithm in the next section for

g-identifiability and prove its soundness and completeness

under the positivity assumption.

3.1 SOUNDNESS REQUIRES POSITIVITY

The following example shows that do-calculus-based meth-

ods (e.g., Algorithm 1) are no longer sound for the ID prob-

lem ignoring the positivity assumption.

Example 2: Consider again the causal graph in Figure

1. Herein, do-calculus-based methods (e.g., Algorithm 1)

would report that the causal effect of X = {X1, X2} on

Y = {Y1, Y2} is identifiable given G. However, by ignor-

ing the positivity assumption, we can introduce two SEMs

M1 andM2 in M(G) that have the same observational dis-

tribution but result in two different post-interventional dis-

tributions after intervening on {X1, X2}. This clearly con-

tradicts with the identifiability of Px1,x2(y1, y2).

All variables in both models are binary. Also, for both mod-

els and i ∈ {1, 2}, we define P (Ui = 0) = P (Ui = 1) =
0.5 and Xi = U1. In modelM1, we define Y1, Y2 to have

the following conditional distributions:

PM1(y1 | u2, x1) =
1

3
1y1=u2 +

2

3
1y1 6=u2 ,

PM1(y2 | u2, x2) =
1

3
1y2=(u2⊕x2) +

2

3
1y2 6=(u2⊕x2),

where 1A is the indicator function which is one whenever

the statement in A is true and is zero otherwise. For model

M2, we define the conditional distributions of Y1, Y2 as

PM2(y1 | u2, x1) =
2

3
1y1=(u2⊕x1) +

1

3
1y1 6=(u2⊕x1),

PM2(y2|u2, x2) =
2

3
1y2=u2 +

1

3
1y2 6=u2 .

It is straightforward to see that for any realizations

(x1, x2, y1, y2) ∈ XV, we have

PM1(x1, x2, y1, y2) = PM2(x1, x2, y1, y2).

However,

4

9
= PM1

x1=0,x2=1(Y1 = 0, Y2 = 0)

6= PM2
x1=0,x2=1(Y1 = 0, Y2 = 0) =

5

9
.

Note that M1 and M2 do not belong to M+(G), since

P (x1 = 0, x2 = 1, y1, y2) = 0 for any y1 ∈ XY1 and

y2 ∈ XY2 . This example shows that if we use M(G) instead

of M+(G) in Definition 3, the causal effect of X on Y is

not identifiable from G, and therefore, do-calculus-based

methods such as the proposed algorithm in Lee et al. [2019]

are not sound. Specifically, the proposed algorithm in Lee

et al. [2019] suggests the causal effect in this example is

g-identifiable and returns the following expression:

Px1,x2(y1, , y2) = P (y1|x1, x2)P (y2|y1, x2, x1).

This expression is not well-defined for all realizations ig-

noring the positivity assumption because for some realiza-

tions P (x1, x2) is zero which means the conditional dis-

tribution P (y1|x1, x2) is not well-defined. Thus, the algo-

rithm in Lee et al. [2019] is not sound.

Next, we discuss the g-identifiability in Lee et al. [2019]

and show that the completeness result provided in that work

relies on two models in M(G) that violate the positivity as-

sumption.

3.2 COMPLETENESS

[Lee et al., 2019] presented necessary and sufficient condi-

tions to determine if a causal effect Px(y) is g-identifiable

w.r.t. the Definition 4. To prove that their proposed condi-

tions are necessary for g-identifiability, they construct two

modelsM1 andM2 such that the available distributions in

4



the definition of the problem are the same for both models

yet PM1
x (y) 6= PM2

x (y). The issue here is that they con-

structed their models ignoring the positivity assumption, al-

lowing for zero probability for some realizations. In fact,

having zero probabilities in their model is essential for the

proof. For instance, Lemma 3 in Lee et al. [2019] states

that under certain conditions, there is an observed variable

R ∈ V such that it takes value zero in both their models

with probability one. In other words, the probability of R
not being zero is zero (see Appendix A.2 for more details.)

This shows that adding the positivity assumption to the def-

inition of gID will fail the proof technique in [Lee et al.,

2019] for the completeness of their proposed algorithm.

It is noteworthy to mention that an alternative positivity as-

sumption is introduced by Shpitser and Pearl [2006a]. Be-

low, we describe this assumption and discuss that the mod-

els introduced in Lee et al. [2019] also violate this assump-

tion.

3.3 RELAXED POSITIVITY ASSUMPTION

Shpitser and Pearl [2006a] show that in the ID problem of a

causal effect Px(y), one can relax the positivity constraint

P (V) > 0 to P (X| (PaG(X) ∩V) \X) > 0. They show

that the rules of do-calculus are sound under the relaxed

positivity assumption. However, as we mentioned, even the

relaxed constraint does not hold for the constructed mod-

els in Lee et al. [2019]. More precisely, consider the causal

graph G in Figure 2 which is brought here from Lee et al.

[2019]. Assume that we are interested in g-identifying the

causal effect Q[R] from Z = {∅}, i.e., from mere obser-

vational distribution P (V), w.r.t. Definition 4. In this case,

X = {T1, T2, T3} and therefore:

P (X| (PaG(X) ∩V) \X) = P (T1, T2, T3).

The result in Lee et al. [2019] implies that the causal ef-

fect Q[R] is not g-identifiable given the causal graph G
in Figure 2. To prove the non g-identifiability, Lee et al.

[2019] constructed two models M1 and M2 that im-

pose similar observational distributions, i.e., PM1(V) =
PM2(V), while the causal effect Q[R] under these two

models are not the same for at least one realization. Next,

we present these two models and show that they violate

the positivity assumption claimed in Shpitser and Pearl

[2006a], i.e., P (T1, T2, T3) is zero for certain realizations

of {T1, T2, T3}.

By the construction in Lee et al. [2019], variables

T3, U1, U2, U3 are binary variables and T1, T2 are binary

vectors of length two. For both models, all unobserved vari-

ables are defined to be binary with uniform distribution,

and the observed variables T1, T2, T3 are defined as fol-

T1 T2 T3R

U1

U2

U3

Figure 2: A causal graph of [Lee et al., 2019] that shows the

violation of relaxed positivity assumption in constructed

models of [Lee et al., 2019].

lows.

T3 = U2 ⊕ U3,

T2,1 = T3, T2,2 = U1,

T1,1 = T2,1 ⊕ U2, T1,2 = T2,2.

In modelM1, variable R is defined as

R = 1T1,1=0 ∧ 1T1,2=0 ∧ 1U3=1 ∧ 1U1=1,

and in modelM2, it is defined to be zero, i.e., R = 0.

Given the above models, it is clear that the probability

P (t1, t2, t3) is equal to zero whenever t2,1 6= t3, and there-

fore, the relaxed positivity constraint P (T1, T2, T3) > 0
does not hold for the models in Lee et al. [2019]. See Ap-

pendix A for more details.

To summarize, in this section, our goal was to prove the im-

portance of positivity assumption in both classical ID and

its generalization gID. We did so by showing that the rules

of do-calculus and consequently the proposed algorithm in

Lee et al. [2019] are not sound without the positivity as-

sumption. Moreover, we discussed that the completeness

proof in Lee et al. [2019] only holds when there is no pos-

itivity assumption. This motivates our work to revisit the

gID problem by including the positivity assumption in the

definition of gID and presenting a new algorithm that is

provably sound and complete.

4 AN ALGORITHM FOR GID

In this section, we propose an algorithm for gID from

(A,G), where A = {Ai}
m
i=0 is a collection of subsets of

V. To this end, we first extend Propositions 1 and 2 from

identifiability to g-identifiability.

Proposition 3. Let X and Y be two disjoint subsets of V.

The causal effect of X on Y is g-identifiable from (A,G) if

and only if Q[AncGV\X
(Y)] is g-identifiable from (A,G).

Proposition 4. Suppose S1, · · · ,Sl are the c-components

of S ⊆ V. Q[S] is g-identifiable from (A,G) if and only if

Q[Si] is g-identifiable from (A,G) for all i ∈ [1 : l].

Proofs are provided in Appendix B. Proposition 3 allows

us to solve the gID problem for Px(Y) by solving an

5



Algorithm 2: g-identifiability

1: Function GID(X,Y,A = {Ai}
m
i=0,G)

2: Output: True, if the causal effect of X on Y is

g-identifiable from (A,G).
3: S← AncGV\X

(Y)
4: {S1, . . . ,Sl} ← c-components of S

5: for i from 1 to l do

6: if GID_Single(Si,A = {Ai}
m
i=0,G) = False then

7: Return False

8: Return True

1: Function GID_Single(S,A = {Ai}
m
i=0,G)

2: Output: True, if Q[S] is identifiable from (A,G),
where S is a single c-component.

3: for i from 0 to m do

4: if S ⊆ Ai and ID_Single(S,G[Ai]) = True then

5: Return True

6: Return False

equivalent problem for Q[S], where S is given in the same

proposition. Proposition 4 shows that the g-identifiability

of Q[S] from (A,G) is equivalent to g-identifiability of

its single c-components. The following result provides a

method for solving g-identifiability of Q[S] when S is a

single c-component.

Theorem 1. SupposeS ⊆ V is a single c-component.Q[S]
is g-identifiable from (A,G) if and only if there exists A ∈
A such that S ⊆ A and Q[S] is identifiable from G[A].

A proof for Theorem 1 is provided in Section 5. Note

that the equivalent condition provided in Theorem 1 is

identifiability of a Q[·]. This can be checked by function

ID_Single in Algorithm 1. Therefore, when S is a single c-

component, in order to check whetherQ[S] is g-identifiable

from (A,G), we need to check the identifiability of Q[S]
from G[A] for all A ∈ A that S ⊆ A. Algorithm 2 summa-

rizes the steps for solving g-identifiability of a causal effect

given (A,G).

Theorem 2. Algorithm 2 is sound and complete.

Proof. It directly follows from Propositions 3 and 4 and

Theorem 1.

Remark 2. Under the relaxed positivity assumption, the al-

gorithm is still sound and complete because Algorithm 2 is

based on the rules of do-calculus, and these rules are both

sound and complete under the relaxed positivity assump-

tion.

Suppose Algorithm 2 determines that the causal effect of

X on Y is g-identifiable from (A,G). Analogous to the

method in Tian and Pearl [2003], we can derive a formula

for Px(Y) as follows. For each Si ∈ {S1, · · · ,Sl}, we can

derive a formula for Q[Si] using ID_Single function in line

4 of GID_Single. This allows us to compute Q[S] using

Q[S] =

l
∏

i=1

Q[Si].

Finally, the expression for Px(Y) will be

Px(Y) =
∑

S\Y

Q[S].

5 MAIN RESULT: THEOREM 1

In this section, we present the main steps of the proof of

Theorem 1. The technical lemmas in this section are proved

in Appendix B.

Sufficient part: This part is straightforward: if Q[S] is

identifiable from G[A] for some A ∈ A such that S ⊆ A,

then Q[S] is uniquely computable from Q[A], and there-

fore, Q[S] is g-identifiable from (A,G).

Necessary part: Suppose S is a single c-component and

Q[S] is not identifiable from G[Ai] for all Ai ∈ A such that

S ⊆ Ai. We need to show that Q[S] is not g-identifiable

from (A,G). Recall that A = {Ai}
m
i=0. To this end, we

will introduce two SEMsM1 andM2 in M+(G) such that

for each i ∈ [0 : m] and any v ∈ XV,

QM1 [Ai](v) = QM2 [Ai](v), (4)

but there exists v0 ∈ XV such that

QM1 [S](v0) 6= QM2 [S](v0). (5)

This shows that Q[S] cannot be uniquely computed from

{Q[Ai]}
m
i=0.

For sake of space, we assume that there exists at least one

i ∈ [0,m] such that S ⊂ Ai. In this case, without loss of

generality, we assume that there exists k ∈ [0 : m] such

that S ⊂ Ai for i ∈ [0 : k] and S * Ai for i ∈ [k + 1 : m].
A proof for the case in which S is not a subset of Ai for all

i ∈ [0,m] is provided in Appendix C.

We first modify G by deleting some nodes and edges and

show that it is enough to prove Theorem 1 for the modified

graph. Then, we provide our method for constructingM2

fromM1 by introducing a system of linear equations.

Graph modification: Since S is single c-component, the

bidirected edges in GS form a connected graph over S. Let

FS be a minimal (in terms of edges) spanning subgraph

of G[S] such that FS

S
is single c-component. Thus, FS

S
has

no directed edges, and its bidirected edges form a spanning

tree.
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Lemma 1 (Shpitser and Pearl [2006a]). Suppose

S ⊆ A ⊆ V. Q[S] is not identifiable from G[A] if and

only if there exists at least one S-rooted c-forest F with

the set of observed variables B such that S ( B ⊆ A,

the bidirected edges of FB form a spanning tree, and the

induced subgraph of F over S is FS, i.e., FS = F [S].

Recall that for each i ∈ [0 : k], S ⊂ Ai and Q[S] is not

identifiable from Q[Ai]. Hence, Lemma 1 implies that for

each i ∈ [0 : k], there exists a S-rooted c-forest Fi over

a set of observed variables Bi such that S ( Bi ⊆ Ai,

the bidirected edges of (Fi)S form a spanning tree, and

FS = Fi[S]. Next, we use {Fi}
k
i=0 to modify G.

We define G′ to be the union of all the subgraphs in {Fi}
k
i=0

with the observed variables V′ :=
⋃k

i=0 Bi and unob-

served variables U′. Furthermore, let A′ := {A′
i := Ai ∩

V′}mi=0. Because for each i ∈ [0 : k], Fi is a S-rooted c-

forest in G′, Lemma 1 implies that Q[S] is not identifiable

from G′[A′
i].

Next result establishes the connection between non g-

identifiability of Q[S] from (A,G) and non g-identifiability

of Q[S] from (A′,G′).

Lemma 2. If Q[S] is not g-identifiable from (A′,G′), then

Q[S] is not g-identifiable from (A,G).

To complete the proof using Lemma 2, it is enough to show

that Q[S] is not g-identifiable from (A′,G′).

From g-identifiability to a system of linear equations:

To show that Q[S] is not g-identifiable from (A′,G′), we

introduce two models in M+(G′) such that equations (4)

and (5) are satisfied. That is, Q[S] cannot be uniquely com-

puted from {Q[A′
i]}

m
i=0.

Note that to define a SEMM over a causal graph G′, it suf-

fices to define the domains XX and either the conditional

distributions PM(X |PaG′(X)) or the corresponding equa-

tion in the SEM for all X ∈ V′ ∪ U′, where V′ and U′

denote the observed and unobserved variables in G′. We de-

fine the domains of all variables to be finite, i.e., |XX | <∞
for all X ∈ V′ ∪U′. Let U0 ∈ U′ be a fixed unobserved

variable (we will discuss later how to select U0) with do-

main XU0 := {γ1, · · · , γd}. We define both models M1

andM2 to have similar distributions over all variables ex-

cept variable U0 (We will specify these distributions in Sec-

tion 5.) More specifically, for all V ∈ V′,

PM1(V | PaG′(V )) = PM2(V | PaG′(V )), (6)

and for all U ∈ U′ \ {U0},

PM1(U) = PM2(U) =
1

|XU |
. (7)

As the distributions in Equations (6) and (7) are the same

for both models, for the sake of brevity, we drop the super-

scripts M1 and M2 from here on. For j ∈ [1 : d], We

define PM1(U0 = γj) = 1/d and PM2(U0 = γj) = pj ,

where we will specify {pj}
d
j=1 later such that M2 ∈

M+(G′) and both Equations (4) and (5) hold.

For v ∈ XV′ , i ∈ [0 : m], and j ∈ [1 : d], we define

θi,j(v) :=
∑

U′\{U0}

∏

X∈A′
i

P (x | PaG′(X))
∏

U∈U′\{U0}

P (u),

ηj(v) :=
∑

U′\{U0}

∏

X∈S

P (x | PaG′(X))
∏

U∈U′\{U0}

P (u),

where the index j indicates that U0 = γj in the factor-

izations. Using these definitions, we can write {Q[A′
i]}

m
i=0

and Q[S] for both modelsM1 andM2 as follows:

QM1 [A′
i](v) =

d
∑

j=1

1

d
θi,j(v),

QM2 [A′
i](v) =

d
∑

j=1

pjθi,j(v),

(8)

and

QM1 [S](v) =

d
∑

j=1

1

d
ηj(v),

QM2 [S](v) =

d
∑

j=1

pjηj(v).

(9)

As we mentioned, we need to define {pj}
d
j=1 such that

M2 ∈ M+(G′) and both Equations (4) and (5) hold. Sub-

stituting Equations (8) and (9) into (4) and (5) yield the

following set of equations.

d
∑

j=1

(pj −
1

d
)θi,j(v) = 0, ∀v ∈ XV′ , i ∈ [0,m],

d
∑

j=1

(pj −
1

d
)ηj(v0) 6= 0, ∃v0 ∈ XV;,

d
∑

j=1

pj = 1,

0 < pj < 1, ∀j ∈ [1 : d].

(10)

Note that the last inequalities ensure thatM2 ∈ M+(G′).
The system of linear equations in (10) is solvable with re-

spect to {pj}
d
j=1 if and only if the following system of lin-

ear equations is solvable with respect to {βj}
d
j=1.

d
∑

j=1

βjθi,j(v) = 0, ∀v ∈ XV′ , i ∈ [0 : m]

d
∑

j=1

βjηj(v0) 6= 0, ∃v0 ∈ XV′

d
∑

j=1

βj = 0.

(11)
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Remark 3. If {β∗
j }

d
j=1 is a solution for (11), then

p∗j :=
1

d
+

β∗
j

2hd
, (12)

is a solution for (10), where h = max
j∈[1:d]

|β∗
j |. Note that the

division by 2h in Equation (12) ensures that 0 < p∗j < 1
for each j ∈ [1 : d].

A solution to the system of linear equations in (11) will

specify the distribution of U0 in model M2. Clearly, ex-

istence of a solution to (11) depends on the choices of

{θi,j(v)} and {ηj(v)}. The following result presents a suf-

ficient condition under which (11) admits a solution.

For v ∈ XV′ and i ∈ [0 : m], let θi(v) and η(v) denote the

vectors (θi,1(v), ..., θi,d(v)) and (η1(v), ..., ηd(v)) in Rd,

respectively.

Lemma 3. Consider the following set of vectors in Rd

Ω := {θi(v) : i ∈ [0 : m],v ∈ XV′} ∪ {1d}, (13)

where 1d denotes the all-ones vector in Rd. If there exists

v0 ∈ XV′ such that η(v0) is linearly independent from all

the vectors in Ω, then the system of linear equations in (11)

admits a solution.

To summarize, so far, we have introduced two models for

proving the necessary part of Theorem 1. In order to com-

plete the proof, it remains to specify the conditional distri-

butions in (6) for all observed variables which consequently

specify the vectors in Ω in Equation (13) and to find a re-

alization v0 ∈ XV′ such that η(v0) is linearly independent

from the set of the vectors in Ω.

Constructing the conditional distributions: In order to

specify the conditional distributions in (6), we first intro-

duce the following definitions and notations.

Since B0 is a single c-component, the bidirected edges in

G′
B0

form a connected graph. Hence, there exists a bidi-

rected edge between S and B0 \ S. Accordingly, let U0

be an unobserved variable in subgraph F0 that has one

child in S and one child in T := V′ \ S. We denote

the set of unobserved variables in G[S] by US and define

UT := U′ \ (US ∪ {U0}). For X ∈ V′ ∪ U′, we de-

fine α(X) to denote the number of graphs in {Fj}
k
j=0 that

contains X .

For each i ∈ [0 : k], let Ti denotes a node in Bi\S such that

ChFi
(Ti) ∩ S 6= ∅. Note that such variables exist because

Fis are S-rooted c-forest.

Now, we are ready to introduce the domains of all variables

in V′ ∪U′. Recall that V′ = S∪T and U′ = US ∪UT ∪

{U0}.

XX := [0 : κ], ∀X ∈ S,

XX := {0, 1}α(T ), ∀X ∈ T,

XX := [0 : κ], ∀X ∈ US,

XX := {0, 1}α(U), ∀X ∈ UT,

XU0 := [0 : κ]× {0, 1}α(U0)−1.

In the above definition, κ is an arbitrary odd integer greater

than 4. Note that the number of elements in XU0 is d =
(κ+ 1)2α(U0)−1.

According to the above definitions, for each X ∈ T∪UT∪
{U0}, its domain XX is a subset of Rα(X) and it belongs to

exactly α(X) number of subgraphs in {Fi}
k
i=0. SupposeX

belongs to Fi1 , · · · ,Fiα(X)
, where i1 < · · · < iα(X). Thus,

we denote X by a vector (X [i1], · · · , X [iα(X)]) of length

α(X). Next, we construct the conditional distributions of

the observed variables by specifying their functional depen-

dencies to their parents.

When X ∈ T, we define the entries of its corresponding

vector as

X [ij] ≡







∑

Y ∈PaFij
(X)

Y [ij]






(mod 2),

where j ∈ [1 : α(X)].

We now construct the variables in S. Recall that U0 has one

child in S which we denote it by S0. For each S ∈ S\{S0}
and any realization of PaG′(S), we define I(S) to be one if

there exists i ∈ [0 : k] such that

1. Ti ∈ PaG′(S) and Ti[i] = 0, or

2. there exists X ∈ PaG′(S) \ (US ∪ {Ti}) such that Fi

contains X and X [i] = 1,

and zero, otherwise. Note that according to the definition of

Ti, it belongs to Fi and therefore, Ti[i] exists. Analogously,

we define I(S0) to be one if there exists i ∈ [0 : k] such

that

1. Ti ∈ PaG′(S) and Ti[i] = 0, or

2. i 6= 0, Fi contains U0, and U0[i] = 1, or

3. there exists X ∈ PaG′(S) \ (US ∪{Ti, U0}) such that

Fi contains X and X [i] = 1.

Now, for each S ∈ S and s ∈ [0 : κ], we define P (S = s |
PaG′(S)) as











1
κ+1 if I(S) = 1

1− κǫ if I(S) = 0 and s ≡M(S) (mod κ+ 1),

ǫ if I(S) = 0 and s 6≡M(S) (mod κ+ 1),
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where 0 < ǫ < 1
κ

and

M(S) :=

{
∑

x∈PaG′[S](S) x , if S ∈ S \ {S0},

u0[0] +
∑

x∈PaG′[S](S) x , if S = S0 .

Note that M(S) is an integer number. This is because

PaG′[S](S) ⊆ US and thus all terms in the above definition

belong to [0 : κ].

Lemma 4. The SEM constructed above belongs to

M+(G′).

Existence of realization v0: Herein, we show that for the

aforementioned conditional distributions, there exists a re-

alization v0 such that η(v0) is linearly independent from

the set of the vectors in Ω (in Equation (13)). Consider the

following subset of XU0 = {γ1, ..., γd} with κ+1
2 elements:

Γ :=
{

(2x, 0, · · · , 0): x ∈ [0 :
κ− 1

2
]
}

.

Recall that for v ∈ XV′ and i ∈ [0 : m], θi(v) and η(v) are

two vectors in Rd with j-th entry corresponds to U0 = γj .

Suppose that Γ = {γj1 , ..., γjκ+1
2

}. Next result shows that

in our constructed models, all entries of θi(v) with indices

in {j1, ..., jκ+1
2
} are equal.

Lemma 5. For any v ∈ XV′ and i ∈ [0 : m],

θi,j1(v) = θi,j2(v) = · · · = θi,j κ+1
2

(v).

An immediate consequence of this result is that any linear

combination of the vectors in Ω will have equal entries at

the indices in {j1, ..., jκ+1
2
}. Next, we show there exists a

realization v0 for which η(v0) does not follow this pattern

and thus it is linearly independent of all vectors in Ω.

Lemma 6. There exists 0 < ǫ < 1
κ

for which there exists

v0 ∈ XV′ and 1 ≤ r < t ≤ κ+1
2 such that

ηjr (v0) 6= ηjt(v0).

Lemma 6 implies that there existM1 and ǫ for which there

exists v0 ∈ XV′ such that η(v0) is linearly independent

from the set of vectors in Ω. As we discussed before, this

completes our proof for Theorem 1.

6 CONCLUSION

We revisited the problem of general identifiability and

showed that the positivity assumption of observational dis-

tributions is crucial for the soundness of do-calculus rules.

This assumption was ignored in previous work. We pre-

sented a novel algorithm for g-identifiability, which is prov-

ably sound and complete considering the positivity assump-

tion.
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Appendix

A ON THE POSITIVITY ASSUMPTION

We first present some definitions and notations from [Lee et al., 2019] including their illustrations using the causal graph

G from Example 2 (Figure 2).

A.1 NOTATION

Definition 6 ([Lee et al., 2019]). Assume that R is a subset of observed variables V. A hedge is a pair of R-rooted

c-forests 〈F ,F ′〉 such that F ′ is a subgraph of F .

In Figure 2: SubgraphsF = G[{R, T1, T2, T3}] and F ′ = G[{R}] form a hedge 〈F ,F ′〉.

Denote by C(G) = {Wi}
k
i=1, the set of c-components that partition observed variables in G such that each Wi is a

maximal c-component. Maximal in the sense of number of nodes that is there is no W ∈ V such that Wi ( W and W is

a c-component in G. Assume that T is the set of all observed variables in F but not in F ′. We define F ′′ := F [T].

In Figure 2: C(G[{T1, T2, T3}]) = {{T1, T3}, {T2}}. Additionally, F ′′ = G[{T1, T2, T3}] for the hedge constructed

before.

Definition 7 (Lee et al. [2019]). Given a hedge 〈F ,F ′〉. Denote by V′ a set of all observed variables of F ′. The hedgelet

decomposition of a hedge 〈F ,F ′〉 is a collection of hedgelets {F(W)}W∈C(F ′′) where each hedgeletF(W) is a subgraph

of F made of (i) F [W ∪V′] and (ii) F [DeF(W)] without bidirected edges, that is all observed descendants of W and

all directed edges between them. Let HF := {F(W)}W∈C(F ′′) be the set of hedgelets of 〈F ,F ′〉.

In Figure 2: For the hedge 〈F ,F ′〉, where F = G[{R, T1, T2, T3}] and F ′ = G[{R}], there are two hedgelets H1,H2

displayed in Figures (3b)-(3c). Moreover, we have HF = {H1,H2}.

Definition 8 ([Lee et al., 2019]). Let R be a non-empty set of variables and Z be a collection of sets of variables in G. A

thicket J is a subgraph of G which is an R-rooted c-component consisting of a minimal c-component over R and hedges

FJ := {〈FZ,J [R]〉 | FZ ⊆ G[V \ Z],Z ∩R = ∅}Z∈Z.

Let X and Y be disjoint sets of observed variables in G. A thicket J is said to be formed for Px(y) in G with respect to Z
if R ⊆ AncG[V\X](Y) and every hedgelet of each hedge 〈FZ,J [R]〉 intersects with X.

T1

T2

T3

R

U1

U2

U3

(a) Thicket J

T1

T2

T3

R

U2

U3

(b) Hedgelet H1

T1

T2

R

U1

(c) Hedgelet H2

Figure 3: (a) Thicket is formed for the causal effect of {T1, T2, T3} on {R}
in Example 2; (b) and (c) are the hedgelets formed by the thicket J
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In Figure 2: This graph is a thicket, also displayed in Figure 3a. Let FJ be

FJ = {〈F ,F ′〉},

where F = G[{R, T1, T2, T3}] and F ′ = G[{R}]. One can observe that thicket J is formed for the causal effect X =
{T1, T2, T3} on Y = {R}.

Denote by T all observed variables in thicket J outside of subgraphJ [R]. Let H =
⋃

{〈F ,F ′〉}∈FJ
HF , that is, a collection

of all hedgelets induced by the hedges of J .

In Figure 2: T = {T1, T2, T3} and H = {H1,H2}.

A.2 ON THE POSITIVITY ASSUMPTION

Given the above definitions, we can state Lemma 3 in [Lee et al., 2019].

Lemma. Let T′ ( T such that there exists a hedgelet H ∈ H \ H(T′), where H(T′) is a set of hedgelets from H which

contain at least one variable from T
′. Then, under the intervention do(t′), there exists R ∈ R, for any instantiation of U,

such that r = 0 in both models.

Note that by the construction in [Lee et al., 2019], R in the above Lemma is a binary random variable. In the above

Lemma, let T′ = ∅. Based on this Lemma, for any instantiation of unobserved variables U, P (V = v) = 0, where v is

a realization for observed variables in which r = 1. This clearly shows that the constructed models in [Lee et al., 2019]

violate the positivity assumption.

A.3 ON THE RELAXED POSITIVITY ASSUMPTION

Herein, we study Figure 2 in more details and show that the models in [Lee et al., 2019] violate the relaxed positivity

assumption. To this end, we present the modelsM1 andM2 constructed in [Lee et al., 2019] for the thicket J which is

defined for this case in Appendix A.1. By the construction, each variable from {U1, U2, U3, T3} is a binary number, i.e.,

{0, 1} and each variable from {T1, T2} is a vector of length two, because each variable from {U1, U2, U3, T3} appears in

only one hedgelet and each variables in {T1, T2} appears in exactly two different hedgelets. Thus, T1 = (T1,1, T1,2) and

T2 = (T2,1, T2,2), where T1,1, T1,2, T2,1, T2,2 are binary numbers. The first coordinate captures some properties of the

hedgeletH1 while the second coordinate captures some properties of the hedgeletH2. Lee et al. [2019] define both models

M1,M2 for the hedgeletH1 as

T3 = U2 ⊕ U3, T2,1 = T3, T1,1 = T2,1 ⊕ U2,

and for the hedgeletH2 as

T2,2 = U1, T1,2 = T2,2, T2,2 = U1.

Additionally, in modelM1, variable R is defined by

R = 1T1,1=0 ∧ 1T1,2=0 ∧ 1U3=1 ∧ 1U1=1,

and in modelM2, it is defined to be zero, i.e., R = 0.

B TECHNICAL PROOFS

In this section, we first present some technical lemmas which we use throughout our proofs. The proofs of the lemmas and

propositions within the main text are provided in Subsections B.2 and B.3.

The logical order of our proofs is depicted in Figure 4. For instance, we use Theorem 1 to prove Lemma 8. Also note that

the proof of Theorem 1 is provided in the main text using Lemmas 2, 3, 4, 5, and 6.

Definition 9 (Ancestral). We say a subset X of observed variables V is ancestral in G, if X = AncGV
(X).
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Theorem 1 Lemma 8

Proposition 4

Lemma 10

Lemma 9

Proposition 3

Lemma 2

Lemma 4

Lemma 3

Lemma 5 Lemma 6

Lemma 11

Figure 4: Logical order of our proofs.

B.1 TECHNICAL LEMMAS

Lemma 7 ([Tian and Pearl, 2003]). Let W ⊆ C ⊆ V, T = C \W, S = V \T. If W is an ancestral set in G[C], then:

Q[W] =
∑

C\W

Q[C].

Lemma 8. Consider a causal graph G with observed variables V. Suppose X ⊆ V and e := (X1, Z) is a directed edge

such that X1 ∈ X. Q[X] is g-identifiable from (A,G) if and only if Q[X] is g-identifiable from (A,H), where H is the

graph obtained by deleting e from G.

Proof. X has the same c-components in G and H since GV and HV have the same undirected edges. Let X1, · · · ,Xl

be the c-components of X. For any i ∈ [1 : l] and A ∈ A such that Xi ⊆ A, Huang and Valtorta [2008] showed that

Q[Xi] is identifiable from G[A] if and only if Q[Xi] is identifiable from H[A]. Hence, Theorem 1 implies that Q[Xi] is

g-identifiable from (A,G) if and only if Q[Xi] is g-identifiable from (A,H). In this case, Proposition 4 implies that Q[X]
is g-identifiable from (A,G) if and only if Q[X] is g-identifiable from (A,H).

Lemma 9. Suppose that X and Y are disjoint subsets of V. Let (Y1, Y2) (i.e., Y1 → Y2) denotes a directed edge in G,

where Y1, Y2 ∈ Y. Let G′ denotes the resulting graph after removing edge (Y1, Y2) from G. If the causal effect of X on Y

is not g-identifiable from (A,G′), then the causal effect of X on Y \ {Y1} is not g-identifiable from (A,G).

Proof. Herein, we provide a proof that is similar to one of the proofs in [Huang and Valtorta, 2008].

Using Markov factorization property in graph G′, Px(y) is given by

Px(y) =
∑

V\(X∪Y)

∑

U

∏

W∈V\X

P (w | PaG′(W ))
∏

U∈U

P (u).

Similarly, in graph G we have

Px(y \ {Y1}) =
∑

{Y1}∪(V\(X∪Y))

∑

U

∏

W∈V\X

P (w | PaG(W ))
∏

U∈U

P (u).

Since the causal effect of X on Y is not g-identifiable from (A,G′), there existsM1 andM2 in M+(G′) such that:

QM1 [Ai](v) = QM2 [Ai](v), ∀v ∈ XV, ∀i ∈ [0 : m],

PM1
x (y) 6= PM2

x (y), ∃x ∈ XX, ∃y ∈ XY.

UsingM1 andM2, we construct two SEMsM′
1 andM′

2 in M+(G). Define a surjective function F : XY1 → {0, 1} and

a function Ψ : {0, 1} × XY1 → (0, 1) such that Ψ(0, y1) + Ψ(1, y1) = 1 for each y1 ∈ XY1 . We will later assume some

constraints for these functions, but for now lets assume they are arbitrary.
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For any node S which is either unobserved or in V \ ({Y2} ∪ ChG(Y2)), we define

PM′
i(s|PaG(S)) = PMi(s|PaG′(S)),

where i ∈ {1, 2}. The domain of Y2 inM′
i is defined as XM

Y2
×{0, 1}, where XM

Y2
is the domain of Y2 inMi. For y2 ∈ X

M
Y2

,

i ∈ {0, 1}, and k ∈ {0, 1} we define:

PM′
i((y2, k) | PaG′(Y2), y1) = PMi(y2 | PaG′(Y2))Ψ(F (y1)⊕ k, y1).

Note that PaG′(Y2) ∪ {Y1} = PaG(Y2). Moreover, for a fixed realization (PaG′(Y2), y1), we have:
∑

k∈{0,1}

∑

y2∈XM
Y2

PM′
i((y2, k)|pa(Y2), y1) = 1.

For each S ∈ ChG(Y2), we define:

PM′
i(s | PaG(S) \ {Y2}, (y2, k)) = PMi(s | PaG(S) \ {Y2}, y2).

Next, we show that QM′
1 [Ai](v) = QM′

2 [Ai](v) for each v ∈ XV and i ∈ [0 : m]. Suppose v is a realization of V in

M′
1 with realizations y1 and (y2, k) for Y1 and Y2, respectively. Consider two cases:

• If Y2 /∈ Ai:

QM′
1 [Ai](v) =

∑

U

∏

A∈Ai

PM′
1(a | PaG(A))

∏

U∈U

PM′
1(u)

=
∑

U

∏

A∈Ai

PM1(a | PaG′(A))
∏

U∈U

PM1(u) = QM1 [Ai](v) = QM2 [Ai](v)

=
∑

U

∏

A∈Ai

PM2(a | PaG′(A))
∏

U∈U

PM2(u)

=
∑

U

∏

A∈Ai

PM′
2(a | PaG(A))

∏

U∈U

PM′
2(u)

= QM′
2 [Ai](v).

• If Y2 ∈ Ai:

QM′
1 [Ai](v) =

∑

U

∏

A∈Ai

PM′
1(a | PaG(A))

∏

U∈U

PM′
1(u)

= Ψ (F (y1)⊕ k, y1)
∑

U

∏

A∈Ai

PM1(a | PaG′(A))
∏

U∈U

PM1(u)

= Ψ(F (y1)⊕ k, y1)Q
M1 [Ai](v) = Ψ(F (y1)⊕ k, y1)Q

M2 [Ai](v)

= Ψ(F (y1)⊕ k, y1)
∑

U

∏

A∈Ai

PM2(a | PaG′(A))
∏

U∈U

PM2(u)

=
∑

U

∏

A∈Ai

PM′
2(a | PaG(A)))

∏

U∈U

PM′
2(u)

= QM′
2 [Ai](v).

Therefore, QM′
1 [Ai](v) = QM′

2 [Ai](v) for each v ∈ XV and i ∈ [0 : m].

We know that there exists x̂ ∈ X
M
X

and ŷ ∈ X
M
Y

such that PM1

x̂
(ŷ) 6= PM2

x̂
(ŷ). Denote by ŷ1 and ŷ2 the realizations of Y1

and Y2 in the realization ŷ, respectively. Assume that PM1

x̂
(ŷ) = d1 > PM2

x̂
(ŷ) = d2. Assume that Ψ(F (ŷ1) ⊕ 0, ŷ1) =

0.5 and Ψ(F (y)⊕ 0, y) = d1−d2

4 for all y ∈ XY1 \ {ŷ1}. Then we have:

P
M′

1

x̂
(ŷ \ {ŷ1}) =

∑

y1∈XY1

∑

V\(X∪Y)

∑

U

∏

Z∈V\X

PM′
1(z | PaG(Z))

∏

U∈U

P (u)

>
∑

y1=ŷ1

∑

V\(X∪Y)

∑

U

∏

Z∈V\X

PM′
1(z | PaG(Z))

∏

U∈U

P (u)

= PM1

x̂
(ŷ)Ψ(F (ŷ1)⊕ 0, ŷ1) = 0.5d1.

13



but,

P
M′

2

x̂
(ŷ \ {ŷ1}) =

∑

y1∈XY1

∑

V\(X∪Y)

∑

U

∏

Z∈V\X

PM′
1(z | PaG(Z))

∏

U∈U

P (u)

=
∑

y1=ŷ1

∑

V\(X∪Y)

∑

U

∏

Z∈V\X

PM′
1(z | PaG(Z))

∏

U∈U

P (u)

+
∑

y1∈XY1\{ŷ1}

∑

V\(X∪Y)

∑

U

∏

Z∈V\X

PM ′
1(z | PaG(Z))

∏

U∈U

P (u)

≤ PM2

x̂
(ŷ)Ψ(F (ŷ1)⊕ 0, ŷ1) + PM2

x̂
(ŷ \ {ŷ1})Ψ(F (Y1 6= y1)⊕ 0, Y1 6= y1)

= 0.5d2 +
d1 − d2

4
< 0.5d1.

This implies that P
M′

1

x̂
(ŷ \ {ŷ1}) 6= P

M′
2

x̂
(ŷ \ {ŷ1}) which concludes the proof.

Lemma 10. Assume Y ⊂ W ⊂ V such that for each W ∈ W \Y, there exists a directed path in G[W] from W to a

variable in Y. Then, the causal effect of V \W on Y is g-identifiable from (A,G) if and only if Q[W] is g-identifiable

from (A,G).

Proof. Let X := V \W.

Sufficient part: Suppose Q[W] is g-identifiable from (A,G). Since Q[W] = Px(W), we have

Px(y) =
∑

W\Y

Q[W].

Hence, Px(y) is uniquely computed and the causal effect of X on Y is g-identifiable from (A,G).

Necessary part: Suppose Q[W] is not g-identifiable from (A,G), we will show that Px(y) is also not g-identifiable. To this

end, first, we order the nodes in W\Y, say (W1,W2, · · · ,Wn), such that for each 1 ≤ i ≤ n, Wi is a parent of at least one

node in Y ∪ {W1,W2, . . . ,Wi−1}. Assume that ei is the directed edge from Wi to its child in Y ∪ {W1,W2, . . . ,Wi−1}.
We also define G′ to be the graph obtained by deleting all the edges {ei}

n
i=1 from G. Applying Lemma 8 repeatedly n times

imply that Q[W] is not g-identifiable from (A,G′).

Let Gn := G and for 0 ≤ i ≤ n−1, we define Gi to be the graph obtained by removing ei+1 from Gi+1. From Lemma 9, we

know that if Q[W] is not g-identifiable from (A,G′), then adding edge e1 will make the causal effect of X on W \ {W1}
not g-identifiable from (A,G1). Note that G1 is obtained from G′ by adding edge e1. Using this lemma again implies that

the causal effect of X on W \ {W1,W2} is not g-identifiable from (A,G2). Repeating this procedure yields that the causal

effect of X on W \ {W1, . . .Wn} = Y is not g-identifiable from (A,Gn). Since Gn = G, the causal effect of X on Y is

not g-identifiable from (A,G).

Lemma 11. Consider a set of vectors {ci}
n
i=1, where ci ∈ Rd. Assume c ∈ Rd is a vector that is linearly independent of

{ci}
n
i=1, then there is a vector b ∈ Rd such that

〈ci, b〉 = 0, ∀i ∈ [1 : n],

〈c, b〉 6= 0.

Proof. Denote by {φi}
l
i=1 a subset of {ci}

n
i=1 which forms a basis for the vectors in {ci}

n
i=1. Clearly, we have l < d. Now,

consider the following system of linear equations with respect to b:

〈φi, b〉 = 0, ∀i ∈ [1 : l],

〈c, b〉 = 13 6= 0.
(14)

By the assumption, vectors in {φi}
l
i=1 ∪ {c} are linearly independent, thus there exists a solution to (14).
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B.2 PROOFS OF SECTION 4

Proposition 3. Let X and Y be two disjoint subsets of V. The causal effect of X on Y is g-identifiable from (A,G) if and

only if Q[AncGV\X
(Y)] is g-identifiable from (A,G).

Proof. Let W := AncGV\X
(Y). Since Q[V \X] = Px(V \X), using marginalization, we obtain

Px(y) =
∑

V\(X∪Y)

Q[V \X] =
∑

W\Y

∑

V\(W∪X)

Q[V \X]. (15)

Since W is an ancestral set in G[V \X], Lemma 7 implies

∑

V\(W∪X)

Q[V \X] = Q[W].

Substituting the above equation into (15) implies

Px(y) =
∑

W\Y

Q[W] = Pv\w(y). (16)

Sufficient part: Suppose Q[W] is g-identifiable from (A,G). Equation (16) implies that Px(y) is uniquely computable

from Q[W], and therefore, the causal effect of X on Y is g-identifiable from (A,G).

Necessary part: Suppose Q[W] is not g-identifiable from (A,G). For each W ∈ W \ Y, there exists a directed path in

G[W] from W to a variable in Y. Hence, Lemma 10 implies that the causal effect of V \W on Y is not g-identifiable

from (A,G). Hence, Equation (16) implies that Px(y) cannot be uniquely computed and the causal effect of X on Y is not

g-identifiable from (A,G).

Proposition 4. Suppose S ⊆ V and S1, · · · ,Sl are the c-components of S. Q[S] is g-identifiable from (A,G) if and only

if Q[Si] is g-identifiable from (A,G) for each i ∈ [1 : l].

Proof. Sufficient part: Suppose Q[Si] is g-identifiable from (A,G) for each i ∈ [1 : l]. Tian and Pearl [2003] showed that

Q[S] =

l
∏

i=1

Q[Si].

Hence, Q[S] is uniquely computable and therefore, g-identifiable from (A,G).

Necessary part: Suppose Q[S] is g-identifiable from (A,G). For i ∈ [1 : l], Tian and Pearl [2003] provided a formula for

computing Q[Si] from Q[S] (Lemma 4, Equations (71) and (72) in [Tian and Pearl, 2003]). Hence, for each i ∈ [1 : l],
Q[S] is uniquely computable and therefore, g-identifiable from (A,G).

B.3 PROOFS OF SECTION 5

Lemma 2. If Q[S] is not g-identifiable from (A′,G′), then Q[S] is not g-identifiable from (A,G).

Proof. If Q[S] is not g-identifiable from (A′,G′), then there exists two modelsM′
1 andM′

2 in M+(G′) such that for each

i ∈ [0 : m] and any v ∈ XV′ ,

QM′
1 [A′

i](v) = QM′
2 [A′

i](v),

and there exists v0 ∈ XV′ such that

QM′
1 [S](v0) 6= QM′

2 [S](v0).

Next, we will construct two modelsM1 andM2 in M+(G) to prove that Q[S] is not g-identifiable from (A,G). We define

the domains of variables in V′ in the modelMi similar to modelM′
i, for i ∈ {1, 2}. Since for each node V ∈ V′, we

have PaG′(V ) ⊆ PaG(V ), then for all V ∈ V′ and i ∈ {1, 2}, we can define:

PMi(V |PaG(V )) := PM ′
i (V | PaG′(V )).
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And for V ∈ V \V′, we define:

XV = {0}, P (V = 0) = 1.

Because variable V ∈ V \V′ can only take value 0 with probability one, then QMj [Ai](v) = QM′
j [A′

i](v) for all i and

QMj [S](v0) = QM′
j [S](v0) for j ∈ {1, 2}. Thus, we have

QM1 [Ai](v) = QM2 [Ai](v), i ∈ [0 : m],

QM1 [S](v0) 6= QM2 [S](v0).

This shows that Q[S] is not g-identifiable from (A,G).

Lemma 3. Consider the following set of vectors in Rd

Ω := {θi(v) : i ∈ [0 : m],v ∈ XV} ∪ 1d, (17)

where 1d denotes the all-ones vector in Rd. If there exists v0 ∈ XV such that η(v0) is linearly independent from all the

vectors in Ω, then the system of linear equations in (11) admits a solution.

Proof. This is a direct consequence of Lemma 11 with {ci} to be Ω and c to be η(v0).

Lemma 4. The SEM constructed above belongs to M+(G′).

Proof. By the construction, it is clear that the model belongs to M(G′). Hence, we need to show that P (v) > 0 for any

v ∈ XV′ . To this end, it is enough to show that for any realization v ∈ X
′
V

, there exists a realization û ∈ XU′ such that

P (v, û) > 0, because in this case we have

P (v) =
∑

u=X
U′

P (v,u) ≥ P (v, û) > 0.

Let v be a fixed realization in XV′ . For the rest of the proof, we assume all the realizations for V′ are consistent with v.

By Markov factorization property, for any u ∈ XU′ we have

P (v,u) =
∏

V ∈V′

P (v | PaG′(V ))
∏

U∈U′

P (u). (18)

By the construction of our model, we have P (u) > 0 for any U ∈ U′ and u ∈ XU . Moreover, for any X ∈ S and any

realization for PaG′(X) ∩U′ we have P (x | PaG′(X)) > 0. Hence, it is enough to show that there exists û ∈ XU′ such

that P (x | PaG′(X)) > 0 for each X ∈ T.

Recall that for each X ∈ T, we have X = (X [i1], · · · , X [iα(X)]), where X belongs to Fi1 , · · · ,Fiα(X)
and

X [ij] ≡







∑

Y ∈PaFij
(X)

Y [ij]






(mod 2).

By the construction, we define the entries corresponding to each Fi separately. For each i ∈ [0 : k], let Ui to be the set of

unobserved variables in UT that are in Fi.

Let us fix an i ∈ [0 : k]. To finish the prove, we will introduce a method to determine û[i] for each U ∈ Ui such that

x[i] ≡





∑

Y ∈PaFi
(X)

y[i]



 (mod 2), (19)

for each X ∈ T ∩Bi.

Lets start with an arbitrary set of values for {û[i] : U ∈ Ui} which are either 0 or 1. Suppose X ∈ T ∩Bi. We introduce

a trick such that x[i] will be replaced by 1− x[i] while for all Y ∈ T ∩Bi, y[i] remains the same:
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By the construction of Fi, there exists a path (X = X1, U1, X2, · · · , Xl, Ul, Z = Xl+1) from X to a variable Z ∈ S such

that {U1, · · · , Ul} ⊆ Ui, {X1, · · · , Xl} ⊆ Bi ∩ T, and ChFi
(Uj) = {Xj, Xj+1} for each j ∈ [1 : l]. Now for each

j ∈ [1 : l], we replace ûj [i] by 1 − ûj [i]. Since Equation (19) is in mod 2, the value of xj [i] will be the same for each

j ∈ [2 : l] while x[i] will be replaced by 1− x[i]. Note that Xl+1 = Z /∈ T.

With the trick described above, we can construct any realization for the i-th bit of the variables in T ∩Bi. Hence, we can

construct û ∈ XU′ such that P (x | PaG′(X)) > 0 for each X ∈ T.

Lemma 5. For any v ∈ XV′ and i ∈ [0 : m],

θi,j1(v) = θi,j2(v) = · · · = θi,j κ+1
2

(v).

Proof. Lets fix a realization v for the observed variables V′. Suppose that l1 and l2 are two integers such that

γl1 = (2x, 0, . . . , 0)),

γl2 = (2x+ 2 (mod κ+ 1), 0, . . . , 0),

where x is any fixed integer in [0 : κ−1
2 ]. To show the result, we will prove that θi,l1(v) = θi,l2(v). Let

fi,j(v,u
T) :=

∑

u∈US

∏

V ∈A′
i

P (v | PaG′(V ))
∏

U∈U′\{U0}

P (u)

=
∏

V ∈A′
i
\Bi

P (v | PaG′(V ))
∏

V ∈Bi\S

P (v | PaG′(V ))
∑

u∈US

∏

V ∈S

P (v | PaG′(V ))
∏

U∈U′\{U0}

P (u).

where index j indicates U0 = γj . Note that variable U0 may appear in the parent set of some observed variables. Using the

above definition, we have

θi,j(v) =
∑

uT∈UT

fi,j(v,u
T).

Hence, if we show fi,l1(v,u
T) = fi,l2(v,u

T) for any fixed realization uT, the above equation implies θi,l1(v) = θi,l2(v).

When T ∈ A′
i \ Bi, then for fixed realizations of uT, P (t|PaG′(T )) is the same for both realizations γl1 and γl2 since

γl1 ≡ γl2 mod 2.

When T ∈ Bi \ S, unobserved variables in PaG′(T ) are a subset of UT ∪ {U0}. Note that in the definition of fi,j(v,u
T),

all such unobserved variables are fixed. Thus, if there exists T ∈ Bi \ S, such that P (t|PaG′(T )) = 0, then

fi,l1(v,u
T) = fi,l2(v,u

T) = 0.

When P (t|PaG′(T )) = 1 for all T ∈ Bi \S, to prove fi,l1(v,u
T) = fi,l2(v,u

S), we show that for any realization (u1, γl1)
of (US, U0), there is a realization (u2, γl2) of (US, U0) such that

∏

V ∈S

P (v | PaG′(V ))
∣

∣

∣

(US,U0)=(u1,γl1
)
=

∏

V ∈S

P (v | PaG′(V ))
∣

∣

∣

(US,U0)=(u2,γl2
)
,

where P (v | PaG′(V ))
∣

∣

∣

(US,U0)=(u1,γl1
)

denotes the conditional probability of v given its parents in which the unobserved

variables (US, U0) are fixed to be (u1, γl1). To this end, we consider two cases depending on i.

First case, when i ∈ [0 : k]: In this case, we have

t[i] =





∑

Y ∈PaFi
(T )

y[i]



 (mod 2). (20)

Consider the set Λ := PaFi
(S) \ PaFi[S](S), that is the set of all parents of nodes in S that are outside of S. By the

construction of our models, summation of the values of the observed and unobserved nodes in Λ are the same, i.e.,

∑

W∈Λ∩Bi

w[i] ≡
∑

W∈Λ∩U′

w[i] (mod 2),
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or equivalently
∑

W∈Λ

w[i] ≡ 0 (mod 2). (21)

This is because, in graph Fi, each observed variable outside of S has at most one child outside of S, and each unobserved

node has either one or two children outside of S. According to (20), those unobserved nodes with two children outside

of S do not belong to Λ ∩ U′. Such unobserved nodes have exactly two observed descendants in Λ ∩ Bi, and because

both descendants appear in (21), their summation is zero mod 2. On the other hand, the unobserved nodes with only one

child outside of S belong to Λ ∩U′ and have exactly one observed descendant in Λ ∩ Bi. Thus, the summation of such

unobserved variables and their observed descendant is again zero mod 2 in (21).

If I(S) = 0 for all S ∈ S, then by our model construction, for any variable W ∈ Λ \ {Ti}, w[i] is an even number but

Ti takes value 1 with probability one. Hence, the summation in (21) cannot be an even number. Therefore, there exists at

least a variable S ∈ S such that I(S) = 1. In this case, the value of P (S|PaG′(S)) does not depend on the realizations of

variables in US. Next, we show that for any realization u1 of US, there is a realization u2 such that

P (s|PaG′(S))
∣

∣

∣

(US,U0)=(u1,γl1
)
= P (s|PaG′(S))

∣

∣

∣

(US,U0)=(u2,γl2
)
. (22)

Since G′
S

is a c-component, there exists a sequence of variables U0, Ŝ1, Û1, Ŝ2, Û2, . . . , Ûl, S, such that U0 is a parent of

Ŝ1, S is a children of Ûl and Ûj is a parent of variables Ŝj and Ŝj+1 for j ∈ [1 : l − 1]. Let Û := {Û1, . . . , Ûl}. For

realization u1, we define u2 by

u2,Ûj
:= u1,Ûj

+ 2(−1)j (mod κ+ 1), j ∈ [1 : l],

u2,U := u1,U , ∀U ∈ U′ \ (Û ∪ {U0}),
(23)

where u2,U denotes the realization for variable U in u2. It is straightforward to see that this mapping is a bijection between

u1 and u2 and (22) holds.

Second case, when i ∈ [k + 1 : m]: In this case, S \ A′
i 6= ∅. Since G′

S
is a c-component, there exists a sequence of

variables U0, Ŝ1, Û1, Ŝ2, Û2, . . . , Ûl, S, such that U0 is a parent of Ŝ1, S ∈ S \A′
i is a children of Ûl and Ûj is a parent of

variables Ŝj and Ŝj+1 for j ∈ [1 : l − 1]. Let Û := {Û1, . . . , Ûl}. Similar to the previous case, for a given realization u1

of US, we define u2 ∈ XUS by

u2,Ûj
:= u1,Ûj

+ 2(−1)j (mod κ+ 1), j ∈ [1 : l],

u2,U := u1,U , ∀U ∈ U′ \ (Û ∪ {U0}),
(24)

where u2,Û denotes the realization for variable U in u2. Analogous to the previous setting, we have (22).

Herein, we proved that θi,l1(v) = θi,l2(v). By varying x within [0 : κ−1
2 ] in the definition of γl1 and γl2 , we conclude the

lemma.

Lemma 6. There exists 0 < ǫ < 1
κ

such that there exists v0 ∈ XV′ and 1 ≤ r < t ≤ κ+1
2 such that

ηjr (v0) 6= ηjt(v0).

Proof. Lets consider r and t such that γr = (0, 0, . . . , 0) and γt = (2, 0, . . . , 0). Recall that:

ηr(v) :=
∑

U′\{U0}

∏

X∈S

P (x | PaG′(X))
∣

∣

∣

U0=γr

∏

U∈U′\{U0}

P (u), (25)

ηt(v) :=
∑

U′\{U0}

∏

X∈S

P (x | PaG′(X))
∣

∣

∣

U0=γt

∏

U∈U′\{U0}

P (u). (26)

We choose v0 as follows: set all variables in S to be zero and select a realization for variables in V′ \ S such that I(S) = 0
for all S ∈ S. Denote by S0 a child of U0 in S.

Note that there is a term in the summation of the right side of equation (25) that is (1 − κǫ)|S|. For instance, this occurs

when all realizations of unobserved variables in US are zero.
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Next, we prove that there is no realization of unobserved variables US such that P (S|PaG′(S)) = 1− ǫκ for all S ∈ S and

U0 = γt. In other words, each term in the summation of (26) has at least a term ǫ. To do so, it suffices to show that there is

no realization of US such that:

s =
∑

W∈PaG′[S](S)

w, S ∈ S \ {S0},

s0 = u0[0] +
∑

W∈PaG′[S](S)

w.

Suppose there is a realization of US such that the above equations hold. In this case, since G′
S

is a tree, we can color its

nodes with two colors, red and black, such that connected nodes by biderected edges have different colors. Suppose that S1

is the set of black variables and S2 is the set of red variables which (without loss of generality) contains S0 ∈ S1. Then:

∑

W∈S1

w ≡ u0[0] +
∑

U∈US

u (mod κ+ 1),

∑

W∈S2

w ≡
∑

U∈US

u (mod κ+ 1).

The left-hand sides of both above equations are zero because of our choice of v0. However, the right-hand sides cannot

be the same since u0[0] = 2. Hence, in Equation (26), there exists a term in the summation with probability ǫ. Therefore,

in extreme case, when ǫ = 0, ηt(v
′) = 0. However, ηr(v

′) ≥ (1 − κǫ)|S|
∏

U∈U′\{U0}
P (u) > 0. Since ηr(v) and ηt(v)

are polynomial functions of ǫ and they are not equal at ǫ = 0, then there exists a small enough 0 < ǫ < 1
κ

such that

ηr(v
′) 6= ηt(v

′).

C A SPECIAL CASE IN THE PROOF OF THEOREM 1

In this section, we provide our proof for the necessary part of Theorem 1 when S * A′
i for all i ∈ [0 : m].

We define FS to be a minimal (in terms of edges) spanning subgraph of G[S] such that FS

S
is a single c-component. In this

case, we can assume V′ = S, G′ is FS, and A′ = {A′
i := Ai ∩V′}mi=0. For each i ∈ [0 : m], we have A′

i ( V′. Note

that Lemma 2 holds for this case. Hence, it is enough to show that Q[S] is not g-identifiable from (A′,G′).

Recall that our assumptions and goal in this section are as follows:

G′ is a DAG with observed variables V′ and unobserved variables U′ such that G′
V′ has no directed edges and its bidirected

edges form a spanning tree over V′. A′ = {A′
i}

m
i=0 is a collection of subsets such that A′

i ( V′. The goal is to show that

Q[V′] is not g-identifiable from (A′,G′).

For this case we will define two modelM1 andM2 such that for each i ∈ [0 : m] and any v ∈ XV′ ,

QM1 [A′
i](v) = QM2 [A′

i](v),

but there exists v0 ∈ XV′ such that

QM1 [S](v0) 6= QM2 [S](v0).

For both models M1 and M2 we define each observed and unobserved variable to be binary, i.e XW = {0, 1} for all

W ∈ V′ ∪U′. Next, we define the equation of the variables in each model.

Model 1: For V ∈ V′:

V =











⊕

PaG′(V ), with probability 1− ǫ,

1, with probability ǫ
2 ,

0, with probability ǫ
2 ,

(27)

and for U ∈ U′:

P (U = 0) = P (U = 1) = 0.5.
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Model 2: Suppose V1 is a fixed observed variable in V′. Then, for all V in V′ \ {V1} we define:

V =











⊕

PaG′(V ), with probability 1− ǫ

1, with probability ǫ
2 ,

0, with probability ǫ
2 ,

(28)

and for V1:

V1 =











q
⊕

PaG′(V1), with probability 1− ǫ

1, with probability ǫ
2 ,

0, with probability ǫ
2 ,

(29)

where q denotes the logical not. Similar to the first mode, for each unobserved variables U ∈ U′,

P (U = 0) = P (U = 1) = 0.5.

Lemma 17. Let i ∈ [0,m] and denote the cardinality of A′
i by n, i.e. |A′

i| = n. Then for any realization v ∈ XV′ :

QM1 [A′
i](v) = QM2 [A′

i](v) =
1

2n
.

Proof. Suppose A′
i := {A1, A2, . . . , An}. Since A′

i ( V′, there are distinct unobserved variables U1, U2, . . . , Un, such

that Uj is a parent of the Aj for j ∈ [1 : n]. Denote byM any of the modelM1 orM2.

Assume that for some realization of observed and unobserved variables, exactly t ∈ [0, n] variables in A′
i are defined by the

XOR or qXOR of their parents. Without loss of generality, assume that these variables are {A1, A2, . . . , At}. If we know

all unobserved variables U′ except {U1, U2, . . . , Ut}, then we can determine uniquely the values of {U1, U2, . . . , Ut} from

the following equations:

Ai =
⊗

PaG′(Ai), i ∈ [1 : t],

where
⊗

denotes the corresponding equation, either XOR or qXOR, for variable Ai in modelM. Thus, by considering

all possible realizations of unobserved variables that lead to a realization v ∈ XV′ , we obtain

Q[A′
i] =

n
∑

j=0

Cj
n(1− ǫ)j

( ǫ

2

)n−j
(

1

2

)j

=

(

1

2

)n

,

where Cj
n is the number of different ways to choose j variables out of n, such that with probability (1− ǫ) their values are

determined by either XOR or qXOR equation. All other n− j variables are equal to either 0 or 1 with probability ǫ
2 .

Lemma 18. Let v = 0 be the realization of V′ such that all observed variables are equal to 0. Then QM1 [V′](v) 6=
QM2 [V′](v).

Proof. Define n = |V′| and V′ = {V1, V2, . . . , Vn}. Firstly, we will prove that for any v ∈ XV′ , the value of QM2 [V′](v)
does not depend on the position of V1 in graph G′. Denote by V2 an observed variable which is connected to the V1 by a

bidirected edge in G′
V′ . Let U denotes the unobserved variable (corresponding to the bidirected edge) which is a parent of

V1 and V2. Next, we define a new modelM′
2 in which all variables in V′ are defined similarly as they are defined in model

M2 except for variables V1 and V2. InM′
2, we define V2 in the same way as V1 is defined inM2. We also define V1 in

M′
2 in the same way as V2 is defined inM2. Then, we have

n
∏

i=1

PM2(vi|PaG′(Vi)) = PM2(v1|PaG′(V1))P
M2(v2|PaG′(V2))

n
∏

i=3

P (vi|PaG′(Vi))

= PM′
2(v1|PaG′(V1) \ {U}, u⊕ 1)PM′

2(v2|PaG′(V2) \ {U}, u⊕ 1)
n
∏

i=3

P (vi|PaG′(Vi)).

This implies that substituting V1 by V2 does not change the value of QM2 [V′](v).
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Without loss of generality, suppose that V1 is a leaf in G′ and U1 is a parent of V1. Note that there are exactly n − 1
unobserved variables in graph G′. This is because G′

V′ is a tree with bidirected edges over V′. Therefore, we have

2n−1QM1 [V′](0) = PM1(V1 = 0|U1 = 0)
∑

U′\{U1}

∏

j>1

P (vj |PaG′(Vj)) + PM1(V1 = 0|U1 = 1)
∑

U′\{U1}

∏

j>1

P (vj |PaG′(Vj)),

2n−1QM2 [V′](0) = PM2(V1 = 0|U1 = 0)
∑

U′\{U1}

∏

j>1

P (vj |PaG′(Vj)) + PM2(V1 = 0|U1 = 1)
∑

U′\{U1}

∏

j>1

P (vj |PaG′(Vj)).

Note that:

PM1(V1 = 0|U1 = 0) = 1−
ǫ

2

PM1(V1 = 0|U1 = 1) =
ǫ

2

PM2(V1 = 0|U1 = 0) =
ǫ

2

PM2(V1 = 0|U1 = 1) = 1−
ǫ

2

More over, we have

∑

U1=0,U′\{U1}

∏

j>1

P (vj |PaG′(Vj)) +
∑

U1=1,U′\{U1}

∏

j>1

P (vj |PaG′(Vj)) = Q[V′ \ {V1}] =

(

1

2

)n−1

This yields

2n−1QM1 [V′](0) =
(

1−
ǫ

2

)

a+
ǫ

2
b,

2n−1QM2 [V′](0) =
(

1−
ǫ

2

)

b+
ǫ

2
a,

where

a =
∑

U1=0,U′\{U1}

∏

j>1

P (Vj = 0|PaG′(Vj)),

b =
∑

U1=1,U′\{U1}

∏

j>1

P (Vj = 0|PaG′(Vj)).

To prove that QM1 [V′](0) 6= QM2 [V′](0), it is enough to show that a 6= b.

Denote by Sn an observed variable connected to the V1 by a bidirect edge in G′
V′ . We define V′

n−1 := V′ \ {V1},

U′
n−1 := U′ \ {U1} and Gn−1 := G′[V′ \ {V1}]. We also define modelsM

(n−1)
1 andM

(n−1)
2 as follows:

New modelM
(n−1)
1 : For V ∈ V′

n−1:

V =











⊕

PaGn−1(V ), with probability 1− ǫ,

1, with probability ǫ
2 ,

0, with probability ǫ
2 ,

(30)

and for U ∈ U′
n−1:

P (U = 0) = P (U = 1) = 0.5.

ModelM
(n−1)
2 : For all V in V′

n−1 \ {Sn}:

V =











⊕

PaGn−1(V ), with probability 1− ǫ

1, with probability ǫ
2 ,

0, with probability ǫ
2 ,

(31)
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and for Sn:

Sn =











q
⊕

PaGn−1(Sn), with probability 1− ǫ

1, with probability ǫ
2 ,

0, with probability ǫ
2 .

(32)

Similar to the first model, for each unobserved variables U ∈ U′
n−1, we define

P (U = 0) = P (U = 1) = 0.5.

Note that:

(

1

2

)n−2
∑

U1=0,U′
n−1

∏

j>1

P (Vj |PaG′(Vj)) =

(

1

2

)n−2

a = QM
(n−1)
1 [V′

n−1](0),

(

1

2

)n−2
∑

U1=1,U′
n−1

∏

j>1

P (Vj |PaG′(Vj)) =

(

1

2

)n−2

b = QM
(n−1)
2 [V′

n−1](0).

It remains to show QM
(n−1)
1 [V′

n−1](0) 6= QM
(n−1)
2 [V′

n−1](0). Note that if this holds, then by our construction,

QM1 [V′](0) 6= QM2 [V′](0). In other words, we could reduce the size of the graph while keeping the same problem.

Thus, by continuing this procedure, we eventually reach graph G2 that consists of only two observed nodes and showing

QM
(2)
1 [V′

2](0) 6= QM
(2)
2 [V′

2](0) in that graph will conclude the result. For graph G2, we have

QM
(2)
1 [V′

2](0) =
( ǫ

2

)2

+ 2
ǫ

2
(1− ǫ)

1

2
+ (1− ǫ)2

1

2
,

QM
(2)
2 [V′

2](0) =
( ǫ

2

)2

+ 2
ǫ

2
(1− ǫ)

1

2
.

This clearly shows that QM
(2)
1 [V′

2](0) 6= QM
(2)
2 [V′

2](0).
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