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Abstract—We consider the question of what performance metric to maximize when designing ad hoc wireless network protocols such

as routing or MAC. We focus on maximizing rates under battery-lifetime and power constraints. Commonly used metrics are total

capacity (in the case of cellular networks) and transport capacity (in the case of ad hoc networks). However, it is known in traditional

wired networking that maximizing total capacity conflicts with fairness, and this is why fairness-oriented rate allocations, such as max-

min fairness, are often used. We review this issue for wireless ad hoc networks. Indeed, the mathematical model for wireless networks

has a specificity that makes some of the findings different. It has been reported in the literature on Ultra Wide Band that gross

unfairness occurs when maximizing total capacity or transport capacity, and we confirm by a theoretical analysis that this is a

fundamental shortcoming of these metrics in wireless ad hoc networks, as it is for wired networks. The story is different for max-min

fairness. Although it is perfectly viable for a wired network, it is much less so in our setting. We show that, in the limit of long battery

lifetimes, the max-min allocation of rates always leads to strictly equal rates, regardless of the MAC layer, network topology, channel

variations, or choice of routes and power constraints. This is due to the “solidarity” property of the set of feasible rates. This results in all

flows receiving the rate of the worst flow, and leads to severe inefficiency. We show numerically that the problem persists when

battery-lifetime constraints are finite. This generalizes the observation reported in the literature that, in heterogeneous settings, 802.11

allocates the worst rate to all stations, and shows that this is inherent to any protocol that implements max-min fairness. Utility fairness

is an alternative to max-min fairness, which approximates rate allocation performed by TCP in the Internet. We analyze by numerical

simulations different utility functions and we show that the proportional fairness of rates or transport rates, a particular instance of

utility-based metrics, is robust and achieves a good tradeoff between efficiency and fairness, unlike total rate or maximum fairness. We

thus recommend that metrics for the rate performance of mobile ad hoc networking protocols be based on proportional fairness.

Index Terms—System design, mathematical programming/optimization, wireless, max-min, utility fairness, best-effort.
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1 INTRODUCTION

1.1 Rate-Based Performance Metrics with Power
Constraints

WE consider the question of what metric to use when
evaluating the performance of ad hoc wireless

network protocols such as routing or MAC. We focus on
maximizing rates under battery-lifetime and power con-
straints. Typical application examples are networks of
wireless laptops and PDAs; this is also the framework used
by many papers analyzing various models of physical
layers (purely information theoretic approach [29], [32],
CDMA [7], UWB [8]). In contrast, some sensor networks put
more emphasis on minimizing energy under minimum rate
constraints. Here, we study the former and leave the latter
to a companion paper.

For cellular wireless networks, a frequently chosen
performance metric is total capacity, i.e., the sum of the
rates of all flows. An extension that maximizes a weighted
sum of the rates is applied in CDMA/HDR [24]. In
multihop wireless networks, the same metrics are used,
but also used is transport capacity, a variant popularized by
Gupta and Kumar in [10]. This is in fact a weighted sum of
rate, where weights are the distances between the source
and the destination of each flow.

1.2 The Tension between Efficiency and Fairness

Traditionally, wired networking has also focused on
performance metrics that incorporate some form of fairness.
Indeed, it is known that considering only total capacity
yields gross unfairness if implemented in a wired network
[17]. The unfairness has been observed in the framework of
multihop ad hoc networks in [8]. Hence, different perfor-
mance metrics that account for fairness have been devel-
oped. A typical example is max-min fairness [3], which is
used in many existing networking protocols, including the
ABR mode of ATM [5]. This is an egalitarian approach by
which the rate of a flow can be increased only when it is not
possible to increase the rate of an already smaller flow.
Max-min fairness is often viewed as an extreme fairness;
this justifies using a fairness index that measures the
departure from max-min fairness (it is a slight variant of
the fairness index defined by Jain in [14]; see Section 4.4).

Max-min fairness is also used, often implicitly, in many
existing wireless multihop network protocols (e.g. [30],
[12]). In fact, as we show, 802.11 essentially implements
max-min fairness. However, in wireless networks, there is
still no tradition of evaluating a system in light of both total
rate and fairness. It turns out that the issue is significantly
different than in wired networking, due to the peculiarities
of the mathematical models for wireless networks. This
phenomenon has been first observed in [2]. In particular, we
find that the allocations that implement max-min fairness
have fundamental efficiency problems. This is due to the
“solidarity” property of the set of feasible rates (Section 5.1).
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Another way to reduce the tension between efficiency
and fairness is to use a weighted sum of the rates as a
design objective. The most well-known example of this type
of criteria in wireless networks is transport capacity [10]
where each flow is assigned a weight equal to the distance
between the source and the destination of the flow. We
show in Fig. 7 in Section 7 that this approach does not
reconcile the tension.

1.3 Utility Fairness

Utility fairness is often used as an alternative, a less
egalitarian approach to max-min fairness. It corresponds
to the “utility” metric

P
j UðxjÞ, where xj is the rate of flow j

and UðÞ is a concave function (called the utility function).
The concept of utility is a convenient way to represent user
preferences and a utility function UðÞ can be interpreted as a
user satisfaction [19]. The Internet congestion control
performed by TCP approximates some form of utility
fairness.

The properties of utility fairness depend on the choice of
utility functions. It is known in wired networking that, for a
large class of strictly concave utility functions, maximizing
the utility metric is fairer than maximizing the total
capacity, but less egalitarian than a max-min fair allocation.

The most often used class of utility functions is of form

Uðx; �Þ ¼ ð1� �Þ�1x1�� if � 6¼ 1
logðxÞ if � ¼ 1;

�
ð1Þ

proposed in [21]. This class of utility function is general
enough to incorporate the most often used objectives: rates
maximization (for � ¼ 0), proportional fairness [16] (for � ¼ 1),
minimum potential delay [20] (for � ¼ 2), and max-min
fairness (for � ! 1). We consider this form of utility in
order to evaluate if and how the tradeoff between efficiency
and fairness can be tuned through parameter � of the utility
function.

Note that the utility approach can easily be extended to
account for power and energy—not in the form of
constraints as we do here, but through a cost function
subtracted from the utility metric. This is explored, for
example, by Baldi et al. [1]. We leave such metrics out of the
scope of this paper, as we focus on rate-based metrics with
power constraints.

1.4 Modeling of Ad Hoc Wireless Networks

We are interested in a model of a wireless network in order
to analyze efficiency and fairness of different design criteria
for various network technologies. We define a model of an
ad hoc wireless network that allows for the most general
assumptions on a physical layer (including variable rate
802.11, UWB, or CDMA), MAC, and routing protocols. And,
for a given network topology, channel and noise statistics
and traffic demand, we characterize a set of feasible long-
term average end-to-end rate and transport rate allocations.
Next, we find the optimal allocations on the two sets, with
respect to the three design criteria considered. In some
numerical examples, where it is not possible to find an exact
solution of the optimization problem due to its nonconvex-
ity, we consider an approximation that is close to the
optimal solution and that allows us to accurately character-
ize the efficiency and fairness of the optimum.

1.5 Our Findings

We prove that, under a general model of an ad hoc wireless
network, in the limit of long battery lifetime, max-min
fairness leads to equal long-term average rates of all flows,
regardless of network topology, channel and noise varia-
tions, routing, or power constraints. This means that all
rates are equal to the rate of the worst flow, making the
network very inefficient. The same happens when con-
sidering long-term average transport rates. We show
numerically that the problem persists with battery-lifetime
constraints. This conclusion is in sharp contrast with the
findings from the framework of wired networks, where
max-min fairness is widely used. Also, this generalizes the
result in [2]; it shows that their finding is not a unique
property of 802.11 and that any protocol that strives for
max-min fairness will have the same problem.

We also show that a protocol that maximizes the total
capacity starves flows with bad channel conditions for
sufficiently high powers. We prove analytically in this
setting that if we consider a network with no random
fading, only the most efficient flow gets a positive rate and
all other flows have a zero rate. The same holds when
maximizing transport capacity.

We verify numerically, on a large number of random
networks, that this unfairness occurs in networks with or
without random fading, and not only at the limit, but also
with realistic transmission power constraints. This gener-
alizes the results in [8], showing that this unfairness
property is not a problem of UWB, but rather of the design
criteria. We also show that the use of transport capacity,
although fairer than total capacitys, does not completely
alleviate unfairness, and can also assign zero rates to the
worst flows.

We further show that for very small battery lifetimes, the
max-min fair, proportionally fair, and rate maximizing
allocations are almost equivalent. In this case, fairness is not
an issue and any of these metrics can be used in a design.
However, we find that this, in general, does not hold for
realistic power constraints.

Finally, we analyze the general form of the utility
fairness, described by (1). We show that for values of �

around one, the utility fairness represents a robust trade-off
between fairness and efficiency, insensitive to different
transmission power and Long-Term Average Power con-
straints, and network topologies. Thus, the proportional
fairness (the sum of the logarithms of the achieved rates
over all source destination pairs; corresponds to � ¼ 1) is an
ideal candidate metric when designing or evaluating
performance of an ad hoc wireless network.

We also present detailed simulation results for different
network topologies and different power constraints. These
results can be used as a guideline for choosing a perfor-
mance metric for a given design objectives. One can use the
results to fine-tune the utility metric through parameter � in
order to achieve the desired trade-off between efficiency and
fairness for a given power limitations.

The findings also suggests that 802.11 should be
redesigned with proportional fairness as a design objective,
in order to avoid inefficiencies observed in [2].
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1.6 Organization of This Paper

The outline of the paper is as follows: In the next section, we
give an overview of the related work in this field. In
Section 3, we describe system assumptions. In Section 4, we
give a mathematical formulation of the model of a network.
In Sections 5, 6, and 7, we present findings related to max-
min fairness, maximizing total capacity, and proportional
fairness objectives, respectively. In Section 8, we discuss the
influence of Long-Term Average Power constraints. In the
last section, we give conclusions and directions for further
work. Proofs of propositions can be found in the Appendix.

2 RELATED WORK

2.1 Efficiency and Fairness

The tension between efficiency and fairness for a cellular
network was reported by Tse and Hanly in [32]. A strategy
that maximizes the total capacity is such that a node with
the best channel conditions in a given slot should send data.
Nodes that are farther away will less frequently satisfy this
constraint, but will still have a positive throughput, due to
the random part of fading. However, if a node is very far
away from the base station, its average rate is going to be
very small and, essentially, it will not be able to commu-
nicate. In [32], a remedy is found by assigning weights to
node rates, such that a level of fairness is assured. The
implicit assumption in this type of network is that an area
with mobile nodes is well covered with base stations, so
there is no big variation in distances from the mobile nodes
to the closest base stations.

However, variations in the distances between sources
and destinations in the case of ad hoc networks are
typically much higher since a node does not talk to the
closest base-station but to an arbitrary destination in a
network. This makes it difficult to remedy fairness with
weights, and longer flows risk low or zero throughput.
Indeed, it has been observed in the context of Ultra Wide
Band by Cuomo et al. [8] that the unfairness of total
capacity persists in wireless networks and some long
distance flows obtain zero throughput.

A performance anomaly was reported by Berger-
Sabatel et al. in [2] for 802.11. There, several nodes talk
to a base station. One of them is far away and codes for 1
Mb/s while others are near and code for 11 Mb/s. Still,
on average, all nodes achieve the same throughput of
approximately 1 Mb/s. We show later in this paper that
this anomaly is in fact not abnormal behavior, rather a
fundamental property of max-min fairness for wireless
networks, regardless of any underlying physical, MAC, or
routing protocol.

2.2 Max-Min and Utility Fairness

Max-min fairness is originally proposed in [3]. Its use
within the framework of wireless networking is presented
in [30], [12].

Different approaches to the use of utility fairness in
wired networking is presented in [21], [16], [20]. Variants of
utility fairness are used in existing wireless multihop
network protocols. In [22], per-link proportional fairness
is considered. An algorithm that achieves end-to-end
proportional fairness using hop-by-hop congestion control

is presented in [34]. In [18], a general framework for finding
a utility-fair rate allocation in a multihop wireless network
is presented. The influence of parameter � from (1) on the
tradeoff between efficiency and fairness in wired networks
is considered in [28]. An approach that combines power and
rates through cost and utility functions is given in [1].

Another type of fairness for ad hoc networks is defined
in [9]. Instead of considering a fair rate sharing, the authors
consider a fair time sharing. They assume a physical model
similar to 802.11. Two links can either transmit concur-
rently, or collide with each other forming a contention
region. If several links compete for the same contention
region, then time sharing is necessary and a form of max-
min fair time sharing is proposed. Although this approach
alleviates the inefficiency of max-min fairness, it is difficult
to generalize it to more general wireless physical models
that include rate or power adaptations.

2.3 Modeling Wireless Networks

General models of wireless networks that incorporate
various physical layers, and MAC and routing protocols
are discussed in [7], [31], [15], [23], [18], [34]. Maximizing a
weighted sum of the rates as a criteria is considered in [7],
[31] for a very general model of a network. Proportional
fairness and maximizing the minimal rate in a network (a
weaker version of max-min fairness) are analyzed in [15].
However, the latter considers only a subset of possible
routing and MAC protocols, those that can be transformed
to convex problems.

3 SYSTEM ASSUMPTIONS

We analyze an arbitrary ad hoc wireless network that
consists of a set of nodes, and each two nodes that directly
exchange information are called a link. Next, we give
properties of the physicalmodel of communications on links.

3.1 Physical Model Properties

3.1.1 Power Attenuation and White Noise

For each pair of nodes, we define a signal attenuation (or
fading). If a signal on link l is transmitted with power Pl,
then it is received with power Plhl, where hl is the
attenuation on link l. This attenuation is usually a
decreasing function of a link size due to power spreading
in all directions.

The attenuation is also random, due to mobility and
variability in the transmission medium. We assume the
system is in the state that varies over time according to
some stationary stochastic process fðSðtÞÞ; t > 0g, where
SðtÞ 2 S is the state at time t. The attenuation of link l is a
function hlðSðtÞÞ of the state of the system.

We assume the network is located on a finite surface and
that all attenuations are always strictly positive (hlðsÞ > 0
for all s 2 S), hence every node can be heard by any other
node in the network at all times, and there is no clustering.

We also assume a presence of a white Gaussian back-
ground noise in the system. This noise may differ in space
and time. Similarly to attenuations, we model it as a
function of the system state:NlðsÞ is the white noise on link l

when system state is s (NlðsÞ > 0 for all s 2 S).
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3.1.2 Rate Function

All physical links are point-to-point, that is, each link has a
single source and a single destination. There are more
advanced models such as broadcast channel and relay
channel [6] that attain higher performances, but they are not
used in most of the contemporary networks, and their
performances are in general not known and are still an open
research issue. Broadcast is used by 802.11, by MAC layer
control packets, but this is an aspect we do not model here.

A node can either, at one given time, send to one
destination or receive from one source. There are more
complex transmitter or receiver designs that can overcome
these limitations. An example is a multiuser receiver that
could receive several signals at a time. This would change
the performance of links with a common destination, but
would not change the interactions over a network. How-
ever, these more complex techniques are not used in
contemporary multihop wireless networks (like 802.11,
UWB, bluetooth, or CDMA) due to high transceiver
complexity, and we do not analyze them here.

We model rate as a strictly increasing function rðSNRÞ of
the signal-to-noise ratio at the receiver, which is a ratio of
received power by the total interference perceived by the
receiver including the ambient noise and the communica-
tions of other links that occur at the same time. This model
corresponds to a large class of physical layer models, for
example:

. Shannon capacity of a Gaussian channel [6]:

rðSNRÞ ¼ 1=2 log2ð1þ SNRÞ:

. Ultra-wide band [8]: rðSNRÞ ¼ K � SNR.

. CDMA HDR [24]: rðSNRÞ is a stair function of SNR.

. Variable rate 802.11 [11]: rðSNRÞ is a stair function of
SNR.

We note that in the last two models, rate is not a strictly
increasing function of SNR, but in most applications can be
approximated as such. On the contrary, in the basic model
of 802.11 (e.g. [10]), the rate is assumed to be constant, hence
this model does not fit this framework.

3.2 MAC Protocol

We further assume a slotted protocol. In each slot, a node
can either send data, receive, or stay idle, according to the
rules defined in Section 3.1.2. Each slot has a power
allocation vector associated with it, which denotes what
power is used for transmitting by the source of each link. If
a link is not active in a given slot, its transmitting power is
0. An example of a schedule is depicted in Fig. 1.

For each slot, we define its relative frequency, which
represents a fraction of time of the schedule it occupies.
Consider the example from Fig. 1b. There, we have two
slots, slots 1 and 2. Suppose we first schedule slot 2
during a time interval T 2

1 , then we schedule slot 1
during a time interval T 1

1 , then again slot 2 for another
T 2
2 and, finally, slot 1 for another T 1

2 . This schedule than
repeats in time. The relative frequency of slot 1 is thus
ðT 1

1 þ T 1
2 Þ=ðT 1

1 þ T 1
2 þ T 2

1 þ T 2
2 Þ and the relative frequency

of slot 2 is ðT 2
1 þ T 2

2 Þ=ðT 1
1 þ T 1

2 þ T 2
1 þ T 2

2 Þ.

In general, although durations of slots may vary
depending of the available data at nodes, or packet sizes,
the average link rate depends only on the relative
frequency. A schedule can consist of an arbitrary number
of slots of arbitrary durations and we consider only
frequencies of the slots and power allocations within slots
as a parameter of a schedule. There is a schedule assigned
to every possible system state, and these parameters are a
function of the system state.

We assume an ideal MAC protocol that always knows
the state of the system and disposes of an ideal control
plane with zero delay and infinite throughput to negotiate
power allocations. Given the state, it calculates the optimal
transmission power of each link in each slot, as well as the
optimal slot frequencies, in a centralized manner and
according to a predefined metric. It then schedules a
random slot from the schedule that corresponds to the
system state, with the probability equal to the relative
frequencies of the slots (as in [23]).

The assumptions on a MAC protocol, with an ideal
control plane and the complete knowledge of the system,
might seem overly simplified for a wireless multihop
network scenario. However, as shown in [23], [7], there
exist decentralized protocols whose performances come
close to the optimal one. Also, by considering an ideal
protocol, we focus our analysis on the properties of
performance metrics, and not artifacts of leaks in protocol
design. Our assumption corresponds to neglecting the
overhead (in rate and power) of the actual MAC protocol.

3.3 Routing Protocol and Traffic Flows

We assume an arbitrary routing protocol. Flows between
sources and destinations are mapped to paths, according to
some rules specific to the routing protocol. At one end of
the spectrum, nodes do not relay and only one-hop direct
paths are possible. At the other end, nodes are willing to
relay data for others and multihop paths are possible. There
can be several parallel paths. The choice of routes may also
depend on the current state of the system. All these cases
correspond to different constraint sets in our model, as
explained in Section 4.1.

Flow control is assumed to use all available links’
capacities in order to maximize performance while keeping
the network stable without dropping packets. Hence, it can
be TCP, UDP (with with optimally choosen rates), or some
other best-effort flow control.
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slot link, ðS1; D1Þ transmits, and in the second, slots link ðS2; D2Þ
transmits.



3.4 Power Control

There are three types of power constraints in a wireless
network: peak constraint, short-term average constraint,
and long-term average constraint. Here, we describe them
in detail:

Peak Power Constraint. Given a noise level on a
receiver, a sender can decide which codebook it will use
to send data over the link during one time slot. Different
symbols in the codebook will have different powers. The
maximum power of a symbol in a codebook is then called
the peak power. It depends on the choice of the physical
interface and its hardware implementation and we cannot
control it. It limits the choice of possible codebooks and it
puts restrictions on the available rate, For example, the rate
of an UWB link, given the average SNR on the receiver,
depends on the shape of the pulse, thus on the peak power
level of the pulse [33]. In our model, the peak power
constraint is integrated in a rate function, given as an input.

Transmission Power. We assume a slotted system. In
each slot, a node chooses a codebook and its average power
and sends data using this codebook within the duration of
the slot. We call the transmission power the average power of
a symbol in the codebook. This is a short-term average
power within a slot since a codebook is fixed during one
slot. We assume that this transmission power is upper-
bounded by PMAX. This power limit is implied by technical
characteristics of a sender and by regulations, and is not
necessarily the same for all nodes. For example, this is the
only power constraint that can be set by users on 802.11
equipment.

Long-Term Average Power. While transmitting a burst
of data (made of a large number of bits), a node uses several
slots, and possibly several different codebooks. Each of
these codebooks has its transmission power. We call the
Long-Term Average Power the average of transmission
powers during a burst, and we assume it is limited by
P

MAX
. Long-Term Average Power is related to the battery

lifetime in the following way:

Tlifetime � Ebattery

P
MAX � u

;

where Tlifetime is the battery lifetime, Ebattery is the battery

energy, P
MAX

is the Long-Term Average Power constraint

and u is the fraction of time a node has data to send (or

activity factor, measured in Erlangs). The approximation

corresponds to ignoring overhead spent managing the

sleep/wakeup phases, etc. P
MAX

is thus set by a node to

control its lifetime; it can vary from node to node.
We incorporate explicitly in our model the transmission

power and the Long-Term Average Power constraints. The
peak power is incorporated implicitly through the choice of
the rate function.

4 MATHEMATICAL FORMULATION OF THE FEASIBLE

SETS AND OF THE METRICS

4.1 Feasible Set of Rates

We model the wireless network as a set of I flows, L links,
and N time-slots. At every time instant, the system is in

some state belonging to the set of possible states S
(depicting different channel conditions and noise levels).
There is a finite (possibly very large) number of states jSj.
Every flow can use one or several paths. There are P paths
(P � 2L). We also assume that there exists a schedule for
each system state, and that the schedule consists of time
slots n ¼ 1; � � � ; N of relative frequency �nðsÞ. We are
interested in the set of feasible long-term average end-to-
end rates.

Here, we give a list of notations used throughout the
paper:

. S 2 S is a random variable representing the system
state. We assume system state is a continuous,
stationary random process, and due to stationarity,
we drop the time argument (the model can be easily
extended to a larger class of ergodic processes, as in
[23], [4]).

. hl1l2ðsÞ is the attenuation of a signal from the source
of link l1 to the destination of link l2 when the
network is in state s.

. �nðsÞ for n 2 f1; � � � ; Ng is the relative frequency of
time slots in the schedule assigned to system state s.
We have

PN
n¼1 �nðsÞ ¼ 1.

. pn
l ðsÞ is the power scheduled to link l in slot n and

state s.
. SNRn

l ðsÞ is the signal-to-noise ratio at the receiver of
link l in slot n and system state s.

. rðSNRÞ is the rate function that defines the rate of a
link given the signal-to-noise ratio at the receiver of
the link.

. xn
l ðsÞ ¼ rðSNRn

l ðsÞÞ is the rate of link l in slot n
and state s.

. xlðsÞ ¼
P

n¼1���N �nðsÞxn
l ðsÞ is the average rate

achieved on link l in state s.
. yðsÞ 2 IRP is the vector of average rates used on

paths in state s.
. fðsÞ 2 IRI is the vector of average rates achieved by

flows when the network is in state s.
. F ðsÞ (flow matrix) is such that Fi;pðsÞ ¼ 1 if path p

belongs to flow i in the state s, and 0 elsewhere. We
have fðsÞ ¼ F ðsÞyðsÞ.

. RðsÞ (routing matrix) is such that Rl;pðsÞ ¼ 1 if path p
uses link l in state s. We have xðsÞ � RðsÞyðsÞ. The
matrix RðsÞ is defined by the routing algorithm and
may depend on the state s.

. f 2 IRI is the vector of long-term average rates
achieved by flows. We have f ¼ IEffðSÞg.

. F is the set of feasible average rates.

. T is the set of feasible average transport rates.

Since xnðsÞ has dimension L (where L is a number of
links), by virtue of the Carathéodory theorem, it is enough
to consider N ¼ Lþ 1 time slots of arbitrary lengths
f�nðsÞgn¼1���N in order to achieve any point in the convex
closure of points xnðsÞ.

We are interested in the set F of feasible long-term
average flow rates, which is the average over the system
state S, and over slots allocations in each system state. It is
the set of f 2 IRI such that for each system state s 2 S there
exist a schedule �nðsÞ, a set of power allocations pnðsÞ, a
corresponding set of rate allocations xnðsÞ, and average
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rates and powers xðsÞ and pðsÞ, such that the following set

of equalities and inequalities are satisfied:

f ¼ IEffðSÞg; ð2Þ

fðsÞ ¼ F ðsÞyðsÞ; ð3Þ

xðsÞ � RðsÞyðsÞ; ð4Þ

xðsÞ ¼
XLþ1

n¼1

�nðsÞxnðsÞ; ð5Þ

xn
l ðsÞ ¼ rðSNRn

l ðsÞÞ; ð6Þ

SNRn
l ðsÞ ¼

pn
l ðsÞhllðsÞ

NlðsÞ þ
P

k 6¼l p
n
kðsÞhklðsÞ

; ð7Þ

pn
l ðsÞ � PMAX

l ; ð8Þ

IEfplðsÞg � P
MAX

l ; ð9Þ

pðsÞ ¼
XLþ1

n¼1

�nðsÞpnðsÞ; ð10Þ

1 ¼
XLþ1

n¼1

�nðsÞ; ð11Þ

1 �
X

l:l:src¼o

1fpn
l
ðsÞ>0g þ

X
l:l:dst¼o

1fpn
l
ðsÞ>0g; ð12Þ

where l:src ¼ o and l:dst ¼ o are true if node o is the source

or the destination of link l, respectively. Function 1ðxÞ
denotes the identity function; it is 1 if x is true, or else it is 0.

Equations (6) and (7) give SNRs and rates for all links in

all slots and all states. The average rates of links during a

schedule, and in a given state, are given by (5). Routing for a

given state is defined by (3) and (4). Equations (8), (9), and

(10) define power constraints. Medium access constraints

are given by (12). The end-to-end rates, average with

respect to the system states, are given in (2).
We note that if xðsÞ ¼ RðsÞyðsÞ, there might be buffering

problems. However, as shown in [23], any point in the

interior of the set F is feasible, and the system is stable, for a

large class of traffic patterns and system state distributions,

thus we can approach arbitrarily close to the equality in (4).

To avoid an additional complexity of the presentation, we

will allow xðsÞ ¼ RðsÞyðsÞ.

4.2 Feasible Set of Transport Rates

In [10], the transport rate of a flow is defined as the rate of a

flow multiplied by the distance covered by the flow

between the source and destinations (call this lenðiÞ for

flow i). Therefore, we define the set of feasible long-term

average transport rates T as

T ¼ ft 2 IRI j ð9f 2 FÞ ti ¼ f ilenðiÞg: ð13Þ

4.3 Design Criteria

Given network technology, for each topology and traffic

demand there is a given set of feasible rates F and a set of

transport rates T . We consider optimizing the system

according to one of the following criteria:

4.3.1 Rate Criteria

. capacity: Maximize
PI

i¼1 f i over all f 2 F .
. max-min fairness: Find the max-min fair rate vector

f
�
in F .

. utility fairness: Maximize
PI

i¼1 Uðf i; �Þ over all
f 2 F .

It is easy to verify that F and T are convex and compact.

The first and the third criteria are defined by concave

maximization problems over F , thus they always have a

solution. Max-min fairness is defined as follows [3]: We say

a point x� is max-min fair on some set X iff for all x 2 X and

all index i xi > x�
i implies that there exists an index j such

that xj < x�
j � x�

i , i.e., increasing some component x�
i must

be at the expense of decreasing some already smaller

component x�
j . The max-min fair allocation does not always

exist, but, if it exists, it is unique. It always exists if X is

convex and compact [25], which is the case here.
The max-min fair allocation does not have x�

i ¼ x�
j in

general for i 6¼ j, even on convex sets (see [3] for some

examples).
In general, the rate vectors that satisfy each of the three

criteria are significantly different, as illustrated by the

examples in the following sections.

4.3.2 Transport Rate Criteria

Similarly, we define:

. transport capacity: Maximize
PI

i¼1 f ilenðiÞ over all
f 2 F .

. transport-max-min fairness: Find the max-min fair
transport rate vector t

�
in T .

. transport-utility fairness: Maximize

XI
i¼1

Uðf ilenðiÞ; �Þ

over all f 2 F .

A nice feature of the proportional fairness criterion

(� ¼ 1) is that the transport proportional fairness and

proportional fairness lead to the same objective (up to a

constant) and need not be considered separately. In

contrast, the rates that maximize utility for any � 6¼ 1 differ

from the rates that maximize the corresponding transport

utility. Existence and uniqueness hold for transport criteria

in the same way as for rate criteria.

4.4 Performance Indices

In the rest of this paper, we evaluate the properties of the

optimal rates that correspond to each of the criteria above. It

is convenient to use indices that quantify efficiency and

fairness.
The efficiency index of a feasible rate f in a given

feasible set F is
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PI
i¼1 f iPI
i¼1 f

c

i

;

where f
c
is the rate vector that maximizes capacity in F . It is

always between 0 and 1.
Similarly, the transport efficiency index of f in F isPI

i¼1 f ilenðiÞPI
i¼1 f

t

ilenðiÞ
;

where f
t
is the rate vector that maximizes transport capacity

in F .
The max-min fairness index of f in F is thus defined as

ð
P

i f
�
i f iÞ

2

ð
P

i f
�2
i Þð
P

i f
2

i Þ
;

where f
�
is the max-min fair element of F . The max-min

fairness index is defined as cos2 �, where � is the angular
deviation from f to the max-min fair allocation f

�
in F . The

max-min fairness index is between 0 and 1; it is equal to 1 if
f is proportional to the max-min fair allocation of rates. The
smaller it is, the less fair the allocation is. When the number
of flows I is large, the minimum value of the max-min
fairness index is close to 0.

Our max-min fairness index coincides with Jain’s
definition of fairness index [14] in the case where the
max-min fair allocation f

�
has all components equal.

Otherwise, it differs.
Similarly, the transport max-min fairness index of f

in F is

ð
P

i t
�
i f ilenðiÞÞ

2

ð
P

i t
�2
i Þð
P

iðf ilenðiÞÞ
2Þ
;

where t
�
is the max-min fair element of T .

4.5 Performance Metrics

The indices defined above require computing the reference
rate vector that is optimal with respect to a design criterion,
and they depend on the set of rate vectors that is being
considered. In contrast, metrics are defined as a function of
the rate alone, independent of any set of rate vectors. For
completeness, we now give the metrics that correspond to
the design criteria defined above. They may be useful in
practical situations where, unlike in this paper, the
computation of the reference rates is not feasible. This
occurs, for example, when a protocol is given by its
implementation in a simulator and the feasible set is hard
to define explicitly.

For a rate vector f , the capacity metric is
PI

i¼1 f i and the
transport capacity metric is

PI
i¼1 f ilenðiÞ. They both

measure the efficiency of f .

A metric that corresponds to max-min fairness is more

difficult to define. Many authors use Jain’s fairness index

defined above, but this is not always appropriate. Indeed, it

measures the deviation from an ideal rate vector where all

components are equal, and this is not necessarily the fairest

vector. A more accurate, but more complex, metric uses

leximin ordering [19], [27]. It is not a real number in the

usual sense. Instead, the fairness metric fðfÞ of a rate vector
f is the list of all its components in increasing order, and we

say that a rate vector f
1
is fairer than a rate vector f

2
if fðf 1Þ

is larger than fðf2Þ in lexicographic order. The max-min fair

vector is the fairest, in the sense of this metric. Similarly, the

transport fairness metric is defined as the order statistic of

the vector of transport rates ðf ilenðiÞÞi.
The �-utility is

PI
i¼1 Uðf i; �Þ. This defines a family of

metrics, obtained through a different choice of parameter �.
One example is logarithmic utility, corresponding to the
proportional fairness. The family also includes capacity
metric (� ¼ 0). However, the metric is not defined for � ! 1
and we cannot use this approach to derive a metric for max-
min fairness.

Analog to that,wedefined the �-transport utility metric
as
PI

i¼1 Uðf ilenðiÞ; �Þ. As noted in the discussion about
performance objectives, the �-transport utility and �-utility
of a rate allocation differ, in general, except for � ¼ 1 where
they differ by a constant additive factor, thus they can be
regarded as the same metric.

By using the utility performance metric, one can assess
both utility and fairness. The importance of one or another
is controlled by varying parameter �. We show that both
� ¼ 0 and very large � are not appropriate since they
completely ignore fairness and efficiency, respectively. We
also show that the design criteria based on values of �
around 1 are the best, in the sense of robustness, against
efficiency or fairness anomalies, for various power limita-
tions. This suggests using logarithmic utilities (� ¼ 1) as a
metric of choice for evaluating ad hoc wireless networks.

5 MAX-MIN FAIRNESS

In this section, we analyze properties of the max-min fair
allocation. We show that there exists a class of convex sets
with the property that a max-min fair vector on such a set
has all components equal. We then show that a set of
feasible long-term average rates in any wireless network
without Long-Term Average Power constraints, modeled
by (2)-(12), admits this property thus implying that the rates
in max-min fair allocation have to be equal.

5.1 Solidarity Property and Equality

Let us consider a class of sets in IRn with a property that for
any feasible point, we can trade a sufficiently small value of
one component for a sufficiently small value of other
components. More precisely, we define the solidarity
property as follows:

Definition 1. A subset X of IRn has the solidarity property iff
for all i; j; i 6¼ j, for all x 2 X such that xi > 0, and for all
� > 0 small enough, there exist positive 0 � �i < �, 0 < �j <
� and for all k 6¼ i; k 6¼ j, there exists 0 � �k < � such that
y ¼ x� �iei þ �jej þ

P
k 6¼i;k6¼j �kek belongs to X .

Not all sets have the solidarity property. In particular,
not all convex sets have the solidarity property. Simple
examples of networks with feasible rate sets with and
without the solidarity property are given in Fig. 2.

A characteristic of a set with the solidarity property is
that all components of the max-min fair vector are equal.
This is formulated in the following proposition:

Proposition 1. If a set X has the solidarity property, then the
max-min fair allocation x on X has all components equal:
xi ¼ xj for all i; j, if the max-min fair allocation on X exists.
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The proofs of this and the other propositions can be
found in the Appendix.

5.2 Solidarity of the Feasible Rate Set of a Multihop
Wireless Network

The feasible set of a wired network is given with a set of
linear constraints. It is convex, but, in general, it does not
have the solidarity property, as can be seen on the right of
Fig. 2. In the case of an ad hoc wireless network, defined
under the framework from Section 4, we show that the
feasible rate set of any such network without Long-Term
Average Power constraints, has the solidarity property.

Proposition 2. Any feasible rate set F given by a set of equalities

and inequalities (2)-(12), assuming P
MAX

l > PMAX
l for all

links l, has the solidarity property. Also, a feasible transport

rate set T given by (13) has the solidarity property.

The proofs of this and the other propositions can be
found in the Appendix.

5.3 Equality of Max-Min Fair Rates

Consider an arbitrary network where Long-Term Average
Power constraints are larger than transmission power
constraints. It is easy to verify that the feasible set given
by constraints (2) - (12) is convex, hence according to [25] it
has the max-min fair allocation. Since this set also has the
solidarity property, we have the following:

Corollary 1. The max-min fair average rate allocation of any
network given by constraints (2) - (12), with no Long-Term
Average Power constraints (P

MAX � PMAX), has all rates
equal. The max-min fair transport rate allocation has all
transport rates equal.

Equality of rates implies that all flows, including the
most inefficient ones, have an equal rate. This can be very
inefficient in a heterogeneous network. For example, if one
node is almost disconnected, then it will receive a rate close
to zero. According to Corollary 1, all other flows will have
the same rate.

Another example is given in Fig. 3. Fig. 3a shows an
example of a network where 12 nodes (siz flows) are

randomly placed on a square of 100m� 100m. The source
and the destination of each flow are joined with a line. Each
flow can use either the direct route or the minimum energy
route. In this example, we assume no random fading, and
we set all transmission power constraints to be equal to
PMAX=N ¼ 90dB, where N is a white background noise.
The actual SNR on each receiver depends on the distance
between the source of the link and the destination of the
link. For example, according to the UWB indoor path loss
model [13], if a source sends to a destination that is 10 m
away with maximum power and PMAX=N ¼ 90dB, we have
SNR at the receiver around 10 dB. This in turn leads to the
rate of 100 Mb/s within the framework of [8], [33].

In Fig. 3b, we see the optimal rate allocations with
respect to the three metrics, for this example. We see that,
when maximizing total capacity, only flow 1, which is the
shortest flow, has a positive rate, and the rates of other
flows are zero. In the case of max-min fairness, all rates are
the same. Proportional fairness exhibits larger variation in
rates than max-min fairness, but it does not starve the least
efficient flows. But, it is more efficient than max-min
fairness. We also illustrate the Corollary 1 on more random
examples in Fig. 4 in Section 6.2.

From Corollary 1, we also see that in the case of the max-
min fair transport rate allocation, all transport rates are
equal. Obviously, the rates themselves are not equal as the
flow lengths differ. Still in this case, as can be seen in the
numerical examples from Fig. 4 in Section 6.2, the
corresponding rate allocation suffers from the same
inefficiency problem.

5.4 Influence of Long-Term Average Power
Constraint

Corollary 1 holds when there are no Long-Term

Average Power constraints (which is equal to having

Long-Term Average Power constraints greater or equal

to transmission power constraints). When Long-Term

Average Power constraints are smaller than the trans-

mission power constraints, the max-min fair rates are
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Fig. 2. (a) Example of a wireless network whose set of feasible
rates has the solidarity property. Rate of flow 12 is constrained by
f12 � rðP12h12=ðN þ P34h32ÞÞ. Rate of flow 34 is constrained by
f34 � rðP34h34=ðN þ P12h14ÞÞ. It is always possible to increase the
rate of one flow at the expense of the other. (b) Example of a
wired network whose feasible rate set does not have the solidarity
property. Flows f12 and f13 are constrained by f12 þ f13 � x12 and
f13 � x23. When flow 13 hits limit on link 23 it cannot be further
increased by decreasing rate of flow 12.

Fig. 3. (a) Example of random network topology. Twelve nodes are
randomly placed on a 100m� 100m grid. Nodes are depicted with
circles, and source-destination pairs are joined with lines. Each flow
uses the optimal routing (the direct or the minimum-energy route).
(b) Corresponding rate distribution (total capacity, max-min fairness and
proportionally fairness).



not equal anymore. However, we see that for high

transmission power constraints (PMAX � 40dB, see Fig. 4

in Section 6.2) and high Long-Term Average Power

constraints (P
MAX

=PMAX � 0:5, see Fig. 8, Section 8) the

max-min fair rate allocation is still inefficient.
In Fig. 8, we also see that for very small Long-Term

Average Power constraints, the optimal allocation becomes
independent of the choice of the metric.

Overall, these arguments show that max-min fairness is
not an appropriate metric even when Long-Term Average
Power constraints exist.

5.5 An Application to an 802.11 Network

An example of the above findings can be seen in [2].
Consider an 802.11 network where several nodes send data
directly to a single destination (base-station). Assume node 1
is far away and it codes for 1Mb/s, and the others are close
enough to code for 11Mb/s. One would expect that node 1
achieves a smaller rate than the other nodes. However, as
shown in [2], this is not the case, and all nodes achieve an
effective throughput of around 1Mb/s.

According to the analysis done in [2], when a node gets
an access to the network, it sends a packet of a fixed size,
thus the occupancy time is inversely proportional to the
coding rate. In other words, a node sends the same amount
of data during a channel use, regardless of its coding rate.
Let us consider a discrete random process Xt representing a
user that occupies a channel during the tth channel use.
According to (7) and (8) from [2], Xt is an i.i.d. uniform
random process, and all nodes have an equal probability to
obtain network access when the network is idle. This leads
us straightforward to the following proposition:

Proposition 3. An 802.11 network in DCF mode where all nodes
talk directly to a single destination (hence, there is no hidden
terminal problem) implements max-min fairness.

In other words, the equality of rates observed in [2] is not
solely a property of the 802.11 physical layer, but rather of
max-min fairness that is obtained in this specific example.

This means that any other protocol that would implement

max-min fairness, and would fit in the framework of (2)-

(12), would have the same inefficiency problem.

5.6 When Max-Min Fairness Does Not Lead to
Equality

We note that the assumptions of Corollary 1 are not true in

general for any convex set, but only for those that have the

solidarity property. To illustrate this, we give a few counter

examples:

. Wired Networks: The corollary does not hold for a
class of wired networks. For an example, see Fig. 2b.

. Clustered Networks: The corollary does not hold for a
clustered wireless network. Assume a simple net-
work of two links, link ð1; 2Þ and link ð3; 4Þ, and
assume it is clustered such that nodes 3 and 4 do not
hear nodes 1 and 2 and vice versa (meaning that
h13 ¼ h14 ¼ h23 ¼ h24 ¼ 0). Then, rates �ff12 and �ff34 are
not going to be equal.

. Long-Term Average Power Constraint: The corollary
does not hold if the Long-Term Average Power
constraint is smaller than Transmission Power
constraints, as shown in Section 8.

6 MAXIMIZING TOTAL CAPACITY

6.1 Asymptotic Results

As previously discussed, maximizing the total capacity

metric is efficient but may lead to high unfairness,

especially in the case of large transmission power con-

straints. In order to demonstrate this, we first look at the

asymptotic case. We start by considering a network without

variable noise power and channel conditions (that is, with

only one state), and we show that total capacity metric

becomes totally unfair as transmission power tends to

infinity.
At thispoint,weneedanadditional assumptionon the rate

function limSNR!1 rðSNRÞ ¼ 1, that is we can increase the

rate of a link arbitrarily high by sufficiently increasing the
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Fig. 4. The fairness and efficiency indices of optimal rates with respect to different performance objectives (� ¼ 1 means proportional fairness),
versus the ratio of maximal transmitting power and noise (note that both the fairness index of the max-min fair allocation and the efficiency index of
the maximal total capacity are one). (a) and (b) Indices for the three performance objectives applied to the set of feasible rates. (c) and (d) Indices for
the three performance objectives applied to the set of feasible transport rates. In both cases, nodes are uniformly spread over the entire 100m�
100m square. Values of PMAX=N on the x axis represent a realistic values that can be found on existing UWB or CDMA systems. In all cases, we put
no constraints on Long-Term Average Power. All figures show 95 percent confidence intervals. Notice that the minimal value of fairness index is 1=I,
where I is the number of flows; in this example, the smallest fairness index is 0:17 and represents that only one flow has a positive rate and all others
have the zero rates.



signal-to-noise ratio on this link. We also assume here no
Long-TermAveragePower constraint, henceP

MAX � PMAX.
In order to simplify the presentation, we assume that all

transmission power constraints are the same, that is for all l,
PMAX ¼ PMAX

l . This can be generalized for nonuniform
power constraints, assuming that, when PMAX goes to
infinity, there exist fixed positive numbers �l such that
PMAX
l =PMAX > �l.

Proposition 4. Consider an arbitrary network with one system
state (jSj ¼ 1). Assume that, when the signal-to-noise ratio at
a receiver SNRi tends to infinity, the rate of link i, rðSNRiÞ
also tends to infinity, and assume there is no Long-Term
Average Power constraint (or equivalently, P

MAX � PMAX).
In a limiting case when PMAX ! 1, there will be one or more
flows that have the same rate f ¼ OðrðPMAX=NÞÞ and all the
others will have a rate that is oðrðPMAX=NÞÞ. The same
happens when considering transport rates.

The proofs of this and the other propositions can be
found in the Appendix. Proposition 4 tells us that if a
signal-to-noise ratio is high enough, then only the most
efficient flows are going to divide all the capacity of the
medium, whereas all other flows will starve. An example is
shown on Fig. 3. In this example, all flows are single hop,
and the most efficient flow is the shortest one, which is
flow 1. Therefore, all flows, except for flow 1, have zero
rates. In the following, we illustrate that the same problem
occurs for a large range of realistic signal-to-noise settings.

The proposition will not hold for a network with variable
channel fading or noise power. Consider a single-hop flow
over a long link (that is, a link with high average signal
attenuation). As suggested in [32], when maximizing total
capacity, it is always optimal to schedule the flow with the
best channel conditions. In most cases, the long flow will
not be scheduled. However, it can still happen that, due to
variability in the network medium, the long flow has the
best channel in some slots and the long-term average rate of
this flow is larger than zero. Nevertheless, in a very
asymmetric multihop network, the probability of the flow,
with a poor average performance, to have the best
realization is very small. A typical example is a multihop
network that has very short and very long links, and single-
hop and multihop flows. In those cases, as Proposition 4
indicates, the rates of flows with poor average conditions
will be close to zero, as is illustrated on Fig. 6.

6.2 Numerical Results

In the above section, we have seen that an increase in
transmission power constraints will eventually lead to all
but some flows having zero rates. It is not clear what the
realistic values of the constraints for which this phenom-
enon occurs are. From [8], we see the phenomenon has been
observed in a realistic network and, in this section, we
investigate in which transmission power region it occurs.
Another issue we evaluate is the effect of variable channel
fading and noise power on fairness of maximizing total
capacity metric.

6.2.1 Simulation Setting

In order to analyze the behavior of the total capacity
performance metric for a realistic power setting, we
numerically evaluated it on random network topologies.
We adapted the framework from [7], which assumes a rate
is a linear function of the signal-to-noise ratio at a receiver

(this also corresponds to an UWB model from [8]). It is
shown in [7] that the optimal power allocation strategy that
maximizes total capacity is either to send with maximal
power or not to send at all. Nevertheless, the optimization
problem is still exponentially complex so it was not possible
to run simulations for more than 12 nodes (six flows) and
with no random fading (the effect of random fading and
noise power is evaluated latter in this section).

For each flow, we consider a multipath routing with a set
of routes that comprise nodes that are on the shortest path
between the source and the destination. This is a sub-
optimal set of routes since, in the case of high congestion in
one area of a network, the optimal path may avoid that area
even if it is not the shortest one. However, in most cases,
this heuristic is a good approximation, and it simplifies our
calculation. Furthermore, by running tests on several
random topologies, we concluded that in all cases the
optimal heuristic among those is either the minimum
energy route (relaying over intermediate nodes that mini-
mizes total dissipated power), or the direct route (send
directly to the destination without relaying). Since con-
straining on these two routes for each flow further reduces
the complexity of optimization, we used these heuristics to
produce the results. In our example of networks with
12 nodes (six flows), average number of hops per route is
2.19.

6.2.2 Uniform Topologies

We first consider uniform random network topologies with
12 nodes uniformly distributed on a square of 100m� 100m.
Half of them are sources sending data, each to its own
destination among the other half. All nodes are assumed to
have the same transmission power constraints. We are
looking for routing, scheduling, and power control that
maximize the total capacity. An example of such a network,
together with the optimal end-to-end rates with respect to
different objectives, is given in Fig. 3.

In Fig. 4a, we show average fairness indices of the
optimal rates with respect to total capacity and utility
metrics, as well as the confidence intervals. On the x-axis, a
ratio between maximal transmitting power and noise in dB
is given.

From the numerical results depicted in Fig. 4a, we see
that maximizing total capacity leads to an acceptable
fairness in the case of small transmission power limits.
However, for large transmission power limits, we see that
maximizing total capacity exhibits high unfairness. The
minimal value of fairness index is 1=I ¼ 0:17 and corre-
sponds to the case when only one flow has a nonzero rate.
The fairness index of total capacity drops to minimum for
high power limits, as predicted by Proposition 4. We can see
that this happens already for PMAX=N > 70dB, and it
happens for smaller power constraints when topology is
nonuniform. These results confirm the unfairness observa-
tions made in [8], and show they are a consequence of the
performance metrics rather than physical layer particula-
rities. All these results are for unlimited battery lifetime
constraints. However, the unfairness exists for a limited
battery lifetime; for details, see Section 8.

Next, we used the three metrics to find the transport-
optimal solutions on the set of rates F . We calculated the
transport fairness and the transport efficiency indices of the
optimal rate allocations. This can be seen in Figs. 4c and 4d.
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We see that, when considering the transport fairness index,

we have similar results as for the fairness index: max-min

fairness is the most transport-fair metric and maximizing

total capacity is the least. Similarly, maximizing total

capacity is the most transport-efficient metric, and max-

min fairness is the least. We also see a drop of the transport-

efficiency of rate based metrics for PMAX=N ¼ 40dB. Thus,

there is a major transport-inefficiency of the optimal rate

allocations, but only in the case of intermediate transmis-

sion power limits. Intuitively, when powers are very small,

there is little interference and interactions between links.

Hence, maximizing capacity yields similar performances to

maximizing transport capacity. When powers are high,

whether maximizing capacity or transport capacity, radio

resources are allocated to the most efficient link, and the

two performances are similar again. For intermediate

powers, the two metrics differ, and we see a large dip.

6.2.3 Nonuniform Topologies

We also analyzed the fairness index of the optimal rates in a
case of random nonuniform networks. We consider two
nonuniform scenarios. The first one has a nonuniform node
distribution but a uniform source-destination distribution.
We again considered a square area of 100m� 100m and we
divided it into four equal subsquares of 50m� 50m each.
We placed, in total, 12 uniformly distributed nodes in the
upper left and lower right subsquares. Each node chose
uniformly one destination among all other nodes. We thus
had several short and several long flows, and a hot-spot in
the center of the big square. The results are depicted in
Figs. 5a and 5b.

The second scenario has a uniform node distribution and

a nonuniform source-destination distribution. A base

station is placecd in the middle of a 100m� 100m square.

Nodes are randomly distributed over the square and they

all talk to the base station. In this scenario, we consider six

flows, in order to maintain the same number of flows as in

the other simulations. The results are depicted in Figs. 5c

and 5d.

6.2.4 Variable Channel Fading and Noise Power

Finally, we analyze the case with random fading and

random noise powers. We assume that the fading between

the source of link i and the destination of link j belongs to

the set of possible fadings Hs
ij, and that the power of the

white noise at the destination of link i belongs to the set of

possible powers Ns
i . Then, the set of possible states of the

system is S ¼ Hs
11 � � � � �Hs

1L � � � � �Hs
LL �Ns

1 � � � � �Ns
L.

This means that the number of possible system states jSj
grows exponentially with the number of links in the

network and the number of possible states for each link.

Since we have to find the optimal schedule for each system

state, it is difficult to numerically evaluate this problem,

even for small networks. In order to show the effect of

randomness in a network, we consider a case of networks

with two single-hop flows. We assume that the set of

possible fadings is Hs
ij ¼ fhij; 0:75hij; 0:5hijg with probabil-

ities f0:75; 0:2; 0:5g, respectively, where hij is the attenua-

tion that depends on the distance, as used in the fixed

fading case. We assume the same distribution for the noise

power at receivers. We then construct the set of possible

system states S with the corresponding probabilities. Using

the same numerical approach as in the case of fixed fading,

this time for every possible state, we calculate the optimal

rates with respect to different metrics.
The results are depicted in Fig. 6. Max-min fair rate

allocation is as inefficient as it is in the case of constant

fading and noise power. Total capacity is less unfair than it

is in the case of constant fading. However, we still see that

for high power limits (PMAX=N > 70dB), one flow will have

the zero rate (that is, fairness index will be equal to 0:5).

7 UTILITY FAIRNESS

As seen in the previous sections (e.g., Fig. 3), both
maximizing total capacity and max-min fairness suffer
from either inefficiency or unfairness. In this section, we
analyze utility fairnesses in detail. We numerically evalu-
ated the efficiency and fairness of the proportional fairness
metric using the same setting as in Section 6.2. We show
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Fig. 5. Nonuniform topologies. (a) and (b) We see the indices for the performance objectives (� ¼ 1means proportional fairness) applied to the set of
feasible rates in the case when nodes are distributed only in the upper-left and lower-right quarters of a 100m� 100m square. (a) The fairness index
is given and (b) is the efficiency one (note that both the fairness index of the max-min fair allocation and the efficiency index of the maximal total
capacity are one). (c) and (d) The same indices are given for the case of uniformly distributed nodes talking to a base-station in the center. In all
cases, we put no constraints on Long-Term Average Power. All figures show 95 percent confidence intervals. Notice that the minimal value of
fairness index is 1=I, where I is the number of flows; in this example, the smallest fairness index is 0:17 and represents that only one flow has a
positive rate and all others have the zero rates.



that proportional fairness (� ¼ 1) in particular represents a
robust compromise between efficiency and fairness.

As explained in Section 6, the optimal power allocation
strategy that maximizes total capacity is either to send with
maximal power or not to send at all. It is shown in [26], that,
within the same framework, the same findings hold in the
case of utility fairness. Therefore, we use the same
numerical approach as explained in Section 6, to calculate
different utility fairnesses. We also use the same routing
heuristics.

The fairness and the efficiency indices of utility fair rate
allocations for different values of � are depicted in Figs. 4a
and 4b, respectively. We give the results for frequently used
proportional fairness (� ¼ 1) and minimum potential delay
(� ¼ 2), and also for � ¼ 0:5. We see that the difference
between the design objectives are smaller when power
limits are small (except for max-min fairness). This is due to
the fact that the interference, hence the mutual interactions
among nodes transmitting in parallel, become smaller when
power is small.

We next analyze the case of large power limits
(PMAX=N > 70dB). For � ¼ 0:5, the fairness index of the
optimal rate allocation is close to the fairness index of the
one that maximizes sum of rates, hence it exhibits the same
unfairness problems. For � ¼ 2, the efficiency index of the
optimal rate allocation becomes very close to the one of
max-min fair rate allocation, hence the optimal allocation is
inefficient. The proportionally fair rate allocation (� ¼ 1) is
the most robust. Its efficiency remains constant for all
values of transmission power constraint, and it is up to
10 times more efficient than the max-min fair allocation for
high transmission power constraints.

We analyzed the efficiency index of the optimal rates in a
case of random nonuniform networks, as above, and the
results are depicted in Fig. 5. In Figs. 5a and 5b, we
considered a nonuniform node distribution, and, in Figs. 5c
and 5d, we considered a nonuniform traffic distribution.
The fairness indices are given in the top row and the
efficiency indices are given in the bottom row. The results
are similar to those from the symmetric case, and the same
conclusions hold.

In Figs. 4c and 4d, we depict the transport fairness and
transport efficiency properties of the optimal rates on set F .
Max-min fairness is again much less transport-efficient than
utility fairnesses and maximizing total capacity is much less

transport fair than utility fairnesses. Like in the case of
fairness and efficiency indices, proportional fairness (� ¼ 1)
is the most robust, and balanced with respect to transport-
efficiency and transport-fairness.

In some existing work, like [10], maximum transport
capacity was used as a design objective for a multihop
network. An interesting question is how appropriate is this
metric with respect to the rate efficiency and the rate
fairness indices. In other words, can maximizing transport
capacity reconcile the rate unfairness of the total capacity
objective? According to Proposition 4, maximizing trans-
port capacity also exhibits high unfairness for large
transmission power constraints.

We give numerical examples for realistic transmission
power constraints on random uniform network topologies
in Fig. 7. We see that the rate that maximizes transport
capacity is only marginally more fair and marginally less
efficient than the one that maximizes total capacity. The
unfairness becomes the same in both cases for high powers,
as suggested by Proposition 4. Again, utility fairnesses
represents a much better compromise between efficiency
and fairness than the total capacity-based metrics.

To see why transport capacity does not alleviate the
fairness problem, consider a simple example with two links
of distances l1 and l2. Suppose that a transmitter of the
second link is close to the receiver of the first link, thus it is
not optimal to have them both sending together, but we
need to do time divisioning: the first link is scheduled �
fraction of the time, and the second on 1� �. For simplicity,
we assume the rate is a linear function of SNR: R ¼ K SNR,
and assume attenuation is constant, and equal to bl�a,
where l is the distance between nodes and a > 2; b are some
constants. The optimization problem now becomes

max
�

� l1 K
Pbl�a

1

N
þ ð1� �Þ l2 K

Pbl�a
2

N
:

Clearly, if l�aþ1
1 < l�aþ1

2 , which happens whenever l1 > l2,
the optimal is to let the second link transmit all the time. We
see that the unfairness properties of linear objective
function cannot be compensated through weights.
Although this is a very simple example, it is often found
as a part of a larger network, thus we can easily find
unfairness examples in arbitrary large networks. As we can
see from Fig. 7 for larger networks and longer flows,
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Fig. 6. Random fading and noise power: (a) Efficiency index and (b) fairness index of maximum total capacity, max-min fair and the proportionally fair

(� ¼ 1) rates. Results are obtained on random uniform network topologies with four nodes (two flows). Both fading and noise power take a fraction of

f1; 0:75; 0:5g of the constant fading case, with probabilities f0:75; 0:2; 0:5g, respectively. Note that in this example, fairness index of 0:5means the one

flow has zero rate.



transport capacity brings only a minor improvement in
fairness.

We conclude by saying that the choice of optimal �
depends on the system design constraints and the desired
tradeoff between efficiency and fairness, as can be seen
from the numerical results presented in this section.
However, we observe that in most cases the proportional
fairness (� ¼ 1) is the most robust tradeoff between
efficiency and fairness.

8 INFLUENCE OF LONG-TERM AVERAGE POWER

CONSTRAINT

In the previous sections, we have seen that when we do not
put constraints on battery lifetime, we have no Long-Term
Average Power constraints; in the case of max-min fairness,
this leads to the equal rates of all flows and in the case of
maximizing total capacity to zero rates of some flows.

This is not the case when the Long-Term Average Power
constraint is smaller than the Transmission Power con-
straint, as it is illustrated in Fig. 8. When the Long-Term
Average Power limit is very small, the optimal allocation is
almost the same, regardless of the choice of the performance
metrics. As the Long-Term Average Power limit grows, the
difference becomes more significant and the unfairness of
total capacity and inefficiency of max-min fairness are
visible.

9 CONCLUSION

We analyzed three rate-based performance metrics: total
capacity, max-min fairness, and different utility fair-
nesses, within the framework of ad hoc wireless net-
works. We defined a general model of such a network,
which incorporates all existing physical layers (CDMA,
UWB, variable rate 802.11, etc.), and allows for arbitrary

scheduling, routing, and power control policy. We then
evaluated the three metrics on this model.

We found that max-min fairness yields equal average
rates to all flows, when users are not implying battery-
lifetime constraints. In a heterogeneous network, this means
that the rates of all flows are equal to the rate of the smallest
flow, which makes a network very inefficient. This is true
for both constant and variable channel fading and noise
power.

The finding confirms and generalizes the observations
from [2]. In the presence of Long-Term Average Power
constraints, the max-min fair rate does not necessarily have
this property, but the inefficiency persists. Also, the rate
allocation of all flows depends on Long-Term Average
Power constraints of a single user, which is an undesirable
property of a performance objective.

We proved that for constant channel fading and noise
power, and for large enough power constraints, maximizing
total capacity gives zero rates to all but the most efficient
flows. We showed that this type of unfairness occurs on
most of the networks for realistic power constraints, even in
presence of variable channel fading and noise power. This
is a confirmation and a generalization of the findings from
[8]. Like in the case of max-min fairness, this phenomenon
is somewhat remedied in the case of a small Long-Term
Average Power constraint, but it remains. We also showed
that in the case of small Long-Term Average Power
constraints, the optimal rate allocation depends more on
these constraints than on the choice of the performance
metrics.

Finally, we analyzed the utility fair rate allocations for
different utility functions (different values of �) and on a
large number of arbitrary networks with variable transmis-
sion power and Long-Term Average Power constraints. We
found that the tradeoff between efficiency and fairness can
be fine-tuned by the choices of parameter �. This choice
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Fig. 7. (a) Efficiency index and (b) fairness index of the rates that maximizes total capacity and transport capacity, and the proportionally fair (� ¼ 1)
rates. Results are obtained on random uniform network topologies.

Fig. 8. (a) Efficiency index and (b) fairness index of max-min and proportional fairness for finite Long-Term Average Power constraint.



depends to a large extent on Transmission Power and Long-
Term Average Power limits. We also found that propor-
tional fairness (� ¼ 1) is particularly robust with respect to
changes in topology and power constraints. In all cases, it
maintains fairness and it achieves relatively high efficiency.
These properties make proportional fairness a suitable
performance metric when evaluating or designing a MAC
or a routing protocol for an ad hoc wireless network.

We analyzed a model of a wireless network, which
includes mobility (which is implicit in the model), fading,
routing, power control, scheduling, and rate adaptation.
Although fading, routing, and flow control may be
arbitrary, we do assume that scheduling, rate adaptation,
and power control are optimal (which corresponds to a
network without protocol overhead). The main reason for
doing so is that we want to analyze the fundamental trade
offs in the choice of a performance metric, and we want the
analysis to be independent of the choice of the MAC
protocol. Our results suggest the kind of behavior that can
be expected of a performance metric with an arbitrary
MAC. The results do not apply directly to a specific MAC
and they greatly depend on the implementation of schedul-
ing, rate, and power control. However, as we show in the
example on 802.11, the results are likely to hold for realistic
protocols. Our findings thus give guidelines for choosing a
performance metric when designing or evaluating a
wireless network.

All the metrics analyzed in this paper are rate-based
performance metrics. The power constraints were consid-
ered explicitly, rather than through performance metrics.
Still, powers can be incorporated in all three types of
metrics analyzed here. Future work would be to analyze the
ideal power-based and combined performance metric for an
ad hoc wireless network.

APPENDIX A

A.1 Proof of Proposition 1

Let us denote by x a max-min fair allocation on X and let us
assume the contrary, that there exists i and j such that xi �
xj > 2� for some � > 0. Then, according to the solidarity
property, there exists y such that

xi � yi > xi � � > xj þ � > yj > xj;

and yk � xk for all k6¼ i; k 6¼ j which contradicts with the
definition of max-min fairness. tu

A.2 Proof of Proposition 2

Let us denote by ðyðsÞ; �xxðsÞ; �ðsÞ; ðpiðsÞÞn¼1���NÞs2S the
values of slack variables, used in the constraint set given
by (2)-(12), that satisfies these constraints for rates �ff . We
want to show that for every i and j, such that �ff i > 0, it is
possible to increase �ff j by an arbitrary small value, by
decreasing �ff i.

We first show that the average power limit is always

satisfied if PMAX
l � P

MAX
. We have that for every link l,

slot n, and state s, the transmission power is limited by

pnl ðsÞ � PMAX
l . We then have IEf�pplðSÞg � PMAX

l � P
MAX

,

and we conclude that further on we do not have to

explicitly consider the average power constraint.

Since �ff i > 0, there exist a nonempty set Sþ � S such that
for all s 2 Sþ, we have f iðsÞ > 0. We will first show by
contradiction that for every s 2 Sþ we can increase f jðsÞ by
decreasing f iðsÞ. Then, we will show that this will in turn
increase �ff j.

We first choose an arbitrary s 2 Sþ, and we proceed by
contradiction. Consider a feasible rate fðsÞ such that we
cannot increase �ff jðsÞ by decreasing �ff iðsÞ > 0.

For every state s 2 S, there exist a set Kðs; jÞ 6¼ ; of links
(rows in matrice RðsÞ) such that, for each k 2 Kðs; jÞ, there
exists path m with positive rate (ymðsÞ > 0), that belongs to
flow j (FmjðsÞ ¼ 1), and passes over link k ( RkmðsÞ ¼ 1), and
there is a strict equality �xxkðsÞ ¼ ðRðsÞyðsÞÞk (else, we can
increase f jðsÞ, at no cost). In plain words, Kðs; jÞ is a
nonempty set of bottleneck links for flow j.

Suppose that for each link k from Kðs; jÞ there exist path
m that has a positive rate (ymðsÞ > 0), belonging to flow i,
that passes over link k. If we decrease rates of all such paths
by some �, we decreased f iðsÞ, and in the newly obtained
rate allocation, we have for all k, �xxjðsÞ < ðRðsÞyðsÞÞj. This in
turn means that we can increase �xxjðsÞ that leads to
contradiction. Therefore, we can find a link l that is not a
bottleneck for flow j (l 62 Kðs; jÞ) and on which flow i has a
positive throughput (there exists path m such that
ymðsÞ > 0; FmiðsÞ ¼ 1; RkmðsÞ ¼ 1).

Let us denote with

ComðkÞ ¼ fm 2 1 � � �L : k:src ¼ m:src _ k:src

¼ m:dst _ k:dst ¼ m:src _ k:dst ¼ m:dstg

a set of links that cannot be scheduled at the same time
as link k since they share a common node. We pick an
arbitrary k 2 Kðs; jÞ (we have l 6¼ k), a slot n when link l

is active, and divide it in three slots, n1, n2, and n3 of
lengths �n1

ðsÞ; �n2
ðsÞ; �n3

ðsÞ > 0, respectively, such that
�n1

ðsÞ þ �n2
ðsÞ þ �n3

ðsÞ ¼ �nðsÞ. In the first slot, we keep
the same power allocation as in slot n. In the second slot,
we turn off the link l, and leave the rest as it is. In the
third slot, we turn off link l and all of the links from
ComðkÞ, and increase, if necessary, the power of link k

such that 0 < pn3

k ðsÞ � PMAX
k and the interferences per-

ceived by other active users is smaller than in the original
scheduling of slot n. As we have shown above, this is
always possible since P

MAX

k � PMAX
k for all k, and all

links from ComðkÞ are silent.
In the new scheduling, links belonging to ComðkÞ have

the same rates in slot n1, higher rates in slot n2, and lower
rates in slot n3. It is easy to see that there exists a small
�k > 0 and a choice of �n1

ðsÞ; �n2
ðsÞ; �n3

ðsÞ such that all links
have the same or higher rates, except for link k whose rate
has decreased by at most �l and link k whose rate has
increased by at least �k. We repeat the same for all
k 2 Kðs; jÞ.

We thus have a new average link rate allocation
�xx0ðsÞ such that �xxlðsÞ �

P
k2Kðs;iÞ �k < �xx0

lðsÞ < �xxlðsÞ and
�xxkðsÞ < �xx0

kðsÞ < �xxkðsÞ þ �k, for all k 2 Kðs; iÞ. Now, we
can increase f jðsÞ by at least mink2Kðs;jÞ �k, by decreasing
f iðsÞ by at most

P
k2Kðs;iÞ �k.

This leads to a contradiction, and we have proved that
for every s 2 Sþ we can increase f jðsÞ by some positive �ðsÞ.
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We repeat the same for every s 2 Sþ. We then have the

new average rate of flow j,

�ff 0j ¼
X
s2Sþ

IPfS ¼ sg ðf jðsÞ þ �ðsÞÞ

¼ �ff j þ
X
s2Sþ

IPfS ¼ sg �ðsÞ;

> �ff j;

since
P

s2Sþ PfS ¼ sg�ðsÞ > 0. This proves the solidarity

property of set F .
The same reasoning holds for a set of transport rate,

hence the second part of the statement. tu

A.3 Proof of Proposition 4

Since in the theorem we consider a network with only one

system state, we will omit the state S from the notation

throughout the proof.
We first propose a lemma that characterizes the optimal

schedule and power allocation when transmission power

limit tends to infinity.

Lemma 1. Let pn be the optimal power allocation in slot n, that

maximizes sum of rates, given transmission power limit

PMAX. For all slots n there exists link i such that both are true:

1. There exists �i > 0 such that for all �i, there exists
PMAX > �i such that pn

i =P
MAX > �.

2. For all j 6¼ i and for all �j > 0, there exists �j such
that for all PMAX > �j, we have p

n
j =p

n
i < �.

Proof. We begin by showing that first statement is true

using contradiction. Suppose that for some slot n and for

each link i and all �i > 0 there exists �i such that for

some PMAX > �i, we have pn
i =P

MAX < �. Let us choose

an arbitrary link j and increase its power allocation in

slot n to p0n
i ¼ PMAX. We then have the following:

SNR0n
j

SNR0n
i

¼ PMAXhjj

pn
i hii

N þ
P

k6¼i p
n
khki

N þ
P

k6¼j p
n
khkj

ð14Þ

¼ PMAX

pn
i

K > �iK; ð15Þ

whereK is a fixed constant. Therefore, we can make new

SNR0n
j arbitrary higher than any signal-to-noise ratio in

slot n. Due to the assumption on the rate function, in the

same way we can make a rate of link j in slot n arbitrary

larger than rates of other links in slot n, as well as the

sum of rates of all links in slot n. In particular, if link j

connects a source and a destination of a flow, by

increasing pn
j to PMAX we increased the total rate, which

contradicts with the initial assumption.
Next, we show the second part of the statement, again

by contradiction. We suppose that in some slot n, there
exists link j such that for some �j and for all �j there
exists PMAX such that pn

j =p
n
i > �j. Again, we consider a

new power allocation where p0n
l ¼ PMAX and all the

other powers are zero. We have the following

SNR0n
l

SNRn
i

¼ PMAXhll

pn
i hii

N þ pn
j hji þ

P
k 6¼i;j p

n
khki

N

>
PMAXpn

j

pn
i

K > PMAX�jK:

Here K and �j are fixed constants and for an arbitrary �j

there exists PMAX > �j that satisfies the above inequal-

ity. This in turn means that we can make SNR0n
l arbitrary

larger than SNRn
i . The same applies for SNRn

j . We can

do similarly for a link k 6¼ i; k 6¼ j by virtue of (15). As we

have shown above, if l is a link between a source and a

destination of a flow, the new allocation increases total

rate which contradicts with the initial assumption. tu
Intuitively, Lemma 1 shows that in the optimal power

allocation for very large power constraints, there should be
only one link with a very large power active at a time. All
the other links should be allocated very small powers. We
proceed to the proof of the proposition.

Proof of Proposition 4. Consider a link i. From (2)-(12), we

have the following inequality
P

p3i yp �
P

n �nx
n
i . By

Lemma 1, we know that in the optimal power allocation,

in each slot there is exactly one link whose power is

OðPMAXÞ and all other links have powers oðPMAXÞ.
Therefore, we can assign all time to the power allocation

achieving the highest rate
P

p3i yp �
P

n �n

� �
maxn x

n
i .

We might assume equality, since we otherwise can

assign all extra time to other power allocations. Also, we

can divide the new slot into subslots, each serving only

one path, hence we can write yp ¼ �nði;pÞx
nði;pÞ
i .

Suppose we have an additional time �� to serve path
yp. We need to spread it on all links belonging to path yp
such that each link i gets �nði;pÞ=

P
j2p �nðj;pÞ fraction of it,

and the overall increase in rate of p is

�� �nði;pÞx
n
i =
X
j2p

�nðj;pÞ

 !
:

Now, since the total capacity is a sum of the rates on all
paths, in order to maximize total capacity, we will assign
time only to links of those paths that have the highest
increase factor, and will not serve the other paths letting
them have zero rate.

The same happens in the case of transport rates, since
the increase factor is the same as above, multiplied by a
length of the corresponding flow. Consequently, the
corresponding rates will also tend to zero. tu
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