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ABSTRACT

We consider monotone variational inequality (VI) problems in multi-GPU settings
where multiple processors/workers/clients have access to local stochastic dual
vectors. This setting includes a broad range of important problems from distributed
convex minimization to min-max and games. Extra-gradient, which is a de facto
algorithm for monotone VI problems, has not been designed to be communication-
efficient. To this end, we propose a quantized generalized extra-gradient (Q-GenX),
which is an unbiased and adaptive compression method tailored to solve VIs. We
provide an adaptive step-size rule, which adapts to the respective noise profiles
at hand and achieve a fast rate of O(1/T ) under relative noise, and an order-
optimal O(1/

√
T ) under absolute noise and show distributed training accelerates

convergence. Finally, we validate our theoretical results by providing real-world
experiments and training generative adversarial networks on multiple GPUs.

1 INTRODUCTION

The surge of deep learning across tasks beyond image classification has triggered a vast literature
of optimization paradigms, which transcend the standard empirical risk minimization. For example,
training generative adversarial networks (GANs) gives rise to solving a more complicated zero-sum
game between a generator and a discriminator (Goodfellow et al., 2020). This can become even more
complex when the generator and the discriminator do not have completely antithetical objectives and
e.g., constitute a more general game-theoretic setup. A powerful unifying framework which includes
those important problems as special cases is monotone variational inequality (VI). Formally, given a
monotone operator A : Rd → Rd, i.e.,

⟨A(x)−A(x′),x− x′⟩ ≥ 0 for all x,x′ ∈ Rd,

our goal is to find some x∗ ∈ Rd such that:

⟨A(x∗),x− x∗⟩ ≥ 0, for all x ∈ Rd. (VI)

Several practical problems can be formulated as a (VI) problem including those with convex-like
structures, e.g., convex minimization, saddle-point problems, and games (Facchinei & Pang, 2003;
Bauschke & Combettes, 2017; Antonakopoulos et al., 2021) with several applications such as auction
theory (Syrgkanis et al., 2015), multi-agent and robust reinforcement learning (Pinto et al., 2017),
adversarially robust learning (Schmidt et al., 2018), and GANs.

For various tasks, it is widely known that employing deep neural networks (DNNs) along with
massive datasets leads to significant improvement in terms of learning (Shalev-Shwartz & Ben-David,
2014). However, DNNs can no longer be trained on a single machine. One common solution is to
train on multi-GPU systems (Alistarh et al., 2017). Furthermore, in federated learning (FL), multiple
clients, e.g., a few hospitals or several cellphones learn a model collaboratively without sharing local
data due to privacy risks (Kairouz et al., 2021).
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To minimize a single empirical risk, SGD is the most popular algorithm due to its flexibility for
parallel implementations and excellent generalization performance (Alistarh et al., 2017; Wilson et al.,
2017). Data-parallel SGD has delivered tremendous success in terms of scalability: (Zinkevich et al.,
2010; Bekkerman et al., 2011; Recht et al., 2011; Dean et al., 2012; Coates et al., 2013; Chilimbi
et al., 2014; Li et al., 2014; Duchi et al., 2015; Xing et al., 2015; Zhang et al., 2015; Alistarh et al.,
2017; Faghri et al., 2020; Ramezani-Kebrya et al., 2021; Kairouz et al., 2021). Data-parallel SGD
reduces computational costs significantly. However, the communication costs for broadcasting huge
stochastic gradients is the main performance bottleneck in large-scale settings (Strom, 2015; Alistarh
et al., 2017; Faghri et al., 2020; Ramezani-Kebrya et al., 2021; Kairouz et al., 2021).

Several methods have been proposed to accelerate training for classical empirical risk minimiza-
tion such as gradient (or model update) compression, gradient sparsification, weight quantiza-
tion/sparsification, and reducing the frequency of communication though local methods (Dean et al.,
2012; Seide et al., 2014; Sa et al., 2015; Gupta et al., 2015; Abadi et al., 2016; Alistarh et al., 2017;
Wen et al., 2017; Zhou et al., 2018; Bernstein et al., 2018; Faghri et al., 2020; Ramezani-Kebrya
et al., 2021; Kairouz et al., 2021). In particular, unbiased gradient quantization is interesting due
to both enjoying strong theoretical guarantees along with providing communication efficiency on
the fly, i.e., convergence under the same hyperparameteres tuned for uncompressed variants while
providing substantial savings in terms of communication costs (Alistarh et al., 2017; Faghri et al.,
2020; Ramezani-Kebrya et al., 2021). Unlike full-precision data-parallel SGD, where each pro-
cessor is required to broadcast its local gradient in full-precision, i.e., transmit and receive huge
full-precision vectors at each iteration, unbiased quantization requires each processor to transmit only
a few communication bits per iteration for each component of the stochastic gradient.

In this work, we propose communication-efficient variants of a general first-order method that
achieves the optimal rate of convergence with improved guarantees on the number of communication
bits for monotone VIs and show distributed training accelerates convergence. We employ an adaptive
step-size and both adaptive and non-adaptive variants of unbiased quantization schemes tailored
to VIs.

There exist three major challenges to tackle this problem: 1) how to modify adaptive variants of
unbiased quantization schemes tailored to solve general VIs; 2) can we achieve optimal rate of
convergence without knowing noise profile and show benefits of distributed training?; 3) can we
validate improvements in terms of scalability without compromising accuracy in large-scale settings?
We aim to address those challenges and answer all questions in the affirmative:

1.1 SUMMARY OF CONTRIBUTIONS

• We propose quantized generalized extra-gradient (Q-GenX) family of algorithms, which
employs unbiased compression methods tailored to general VI-solvers. Our framework uni-
fies distributed and communication-efficient variants of stochastic dual averaging, stochastic
dual extrapolation, and stochastic optimistic dual averaging.

• Without prior knowledge on the noise profile, we provide an adaptive step-size rule for
Q-GenX and achieve a fast rate of O(1/T ) under relative noise, and an order-optimal
O(1/

√
T ) in the absolute noise case and show that increasing the number of processors

accelerates convergence for general monotone VIs.
• We validate our theoretical results by providing real-world experiments and training genera-

tive adversarial networks on multiple GPUs.

1.2 RELATED WORK

We overview a summary of related work. Complete related work is provided in Appendix B. Adaptive
quantization has been used for speech communication (Cummiskey et al., 1973). In machine
learning, adapting quantization levels (Faghri et al., 2020), adapting communication frequency in
local SGD (Wang & Joshi, 2019), adapting the number of quantization levels (communication budget)
over the course of training (Guo et al., 2020; Agarwal et al., 2021), adapting a gradient sparsification
scheme over the course of training (Khirirat et al., 2021), and adapting compression parameters across
model layers and training iterations (Markov et al., 2022) have been proposed for minimizing a single
empirical risk. In this paper, we propose communication-efficient generalized extra-gradient family
of algorithms with adaptive quantization and adaptive step-size for a general (VI) problem. In the
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VI literature, the benchmark method is EG, proposed by Korpelevich (1976), along with its variants
including (Nemirovski, 2004; Nesterov, 2007). Rate interpolation between different noise profiles
under an adaptive step-size has been explored by Antonakopoulos et al. (2021). However, their results
are limited to centralized and single-GPU settings. Beznosikov et al. (2021); Kovalev et al. (2022)
have proposed communication-efficient algorithms for VIs with finite-sum structure and variance
reduction in centralized settings and (strongly) monotone VIs in decentralized settings, respectively.
Unlike (Beznosikov et al., 2021; Kovalev et al., 2022), we achieve fast and order-optimal rates
with adaptive step-size and adaptive compression without requiring variance reduction and strong
monotoncity, and improve variance and code-length bounds for unbiased and adaptive compression.

2 PROBLEM SETUP

Our objective throughout this paper is to solve VI with A : Rd → Rd being a monotone operator1.

Moreover, in order to avoid trivialities, we make the following mild assumption:
Assumption 1 (Existence). The set X ∗ := {x∗ ∈ Rd : x∗ solves (VI)} is non-empty.

Let C denote a non-empty compact test domain. A popular performance measure for the evaluation
of a candidate solution for VI is the so-called restricted gap function defined as:

GapC(x̂) = sup
x∈C
⟨A(x), x̂− x⟩. (Gap)

Gap is used to measure x̂’s performance mainly because it characterizes the solutions of VI via its
zeros. Mathematically speaking, we have the following proposition:
Proposition 1 (Nesterov 2009). Let C be a non-empty convex subset of Rd. Then, the following holds

1. GapC(x̂) ≥ 0 for all x̂ ∈ C

2. If GapC(x̂) = 0 and C contains a neighbourhood of x̂, then x̂ is a solution of VI.

Proposition 1 is an extension of an earlier characterization shown by Nesterov (2007); we refer the
reader to (Antonakopoulos et al., 2019; Nesterov, 2009) and references therein.

From an algorithmic perspective, we primarily consider the generic family of iterative methods,
which have access to a stochastic first-order oracle, i.e., a black-box feedback mechanism (Nesterov,
2004). The respective iterative algorithm can call the oracle over and over at a (possibly) random
sequence of points x0,x1, . . . When called at x, the oracle draws an i.i.d. sample ω from a (complete)
probability space (Ω,F ,P) and returns a stochastic dual vector g(x;ω) given by

g(x;ω) = A(x) + U(x;ω) (2.1)

where U(x;ω) denotes the measurement error or noise. We consider two important noise profile
models, i.e., absolute and relative noise models formally described in the following assumptions:
Assumption 2 (Absolute noise). Let x ∈ Rd and ω ∼ P. The oracle g(x;ω) enjoys these proper-
ties: 1) Almost sure boundedness: There exists some M > 0 such that ∥g(x;ω)∥∗ ≤ M a.s.; 2)
Unbiasedness: E [g(x;ω)] = A(x); 3) Bounded absolute variance: E

[
∥U(x;ω)∥2∗

]
≤ σ2.

The conditions in Assumption 2 are mild and hold for standard oracles, in particular, in the context of
adaptive algorithms (Kavis et al., 2019; Levy et al., 2018; Bach & Levy, 2019; Antonakopoulos &
Mertikopoulos, 2021) and typically guarantee a convergence rates in O(1/

√
T ) (Nemirovski et al.,

2009; Juditsky et al., 2011; Antonakopoulos et al., 2021). Alternatively, one may consider the relative
noise model following (Polyak, 1987):
Assumption 3 (Relative noise). The oracle g(x;ω) satisfies: 1) Almost sure boundedness: There
exists some M > 0 such that ∥g(x;ω)∥∗ ≤ M a.s; 2) Unbiasedness: E [g(x;ω)] = A(x); 3)
Bounded relative variance: There exists some c > 0 such that E

[
∥U(x;ω)∥2∗

]
≤ c∥A(x)∥2∗.

While Assumption 2 is enough for obtaining the typical O(1/
√
T ) rate in stochastic settings, As-

sumption 3 may allow us to recover the well-known order-optimal rate of O(1/T ) in deterministic

1Notations are provided in Appendix A.
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Algorithm 1 Q-GenX: Loops are executed in parallel on processors. At certain steps, each processor
computes sufficient statistics of a parametric distribution to estimate distribution of dual vectors.
Input: Local data, parameter vector (local copy) Xt, Yt, learning rate {γt}, and set of update steps U

1 for t = 1 to T do
2 if t ∈ U then
3 for i = 1 to K do
4 Compute sufficient statistics and update quantization levels ℓt
5 for i = 1 to K do
6 Compute Vi,t, encode ci,t ← CODE ◦Q

(
Qℓt(Vi,t); ℓt

)
, and broadcast ci,t

7 Receive ci,t from each processor i and decode V̂i,t ← DEQ ◦ CODE(ci,t; ℓt)

8 Aggregate Xt+1/2 ← Xt − γt

K

∑K
k=1 V̂k,t

9 Compute Vi,t+1/2, encode di,t ← CODE ◦Q
(
Qℓt(Vi,t+1/2); ℓt

)
, and broadcast di,t

10 Receive di,t from each processor i and decode V̂i,t+1/2 ← DEQ ◦ CODE(di,t; ℓt)

11 Aggregate Yt+1 ← Yt − 1
K

∑K
k=1 V̂k,t+1/2 and update Xt+1 ← γt+1Yt+1

settings. Intuitively, this improvement is explained by the fact that the noisy error measurements
vanish while we approach a solution of VI. In Appendix J, we highlight random coordinate descent
and random player updating as popular examples, which motivate Assumption 3.

3 QUANTIZED GENERALIZED EXTRA-GRADIENT

3.1 SYSTEM MODEL AND PROPOSED ALGORITHM

We now describe the algorithmic framework unifying communication-efficient variants of generalized
extra-gradient (EG) family of algorithms. In particular, we consider a synchronous and distributed
system with K processors along the lines of e.g., data-parallel SGD (Alistarh et al., 2017; Faghri et al.,
2020; Ramezani-Kebrya et al., 2021; Kairouz et al., 2021). These processors can be cellphones and
hospitals in FL or GPU resources in a data center. In multi-GPU systems, processors partition a large
dataset among themselves such that each processor keeps only a local copy of the current parameter
vector and has access to independent and private stochastic dual vectors. At each iteration, each
processor receives stochastic dual vectors from all other processors and aggregates them. To accelerate
training, stochastic dual vectors are first compressed by each processor before broadcasting to other
peers and then decompressed before each aggregation step. We focus on unbiased compression where,
in expectation, the output of the decompression of a compressed vector is the same as the original
uncompressed vector. We use Qℓt to denote a random and adaptive quantization function where
the quantization levels ℓt may change over time. We use Vk,t to denote the original (uncompressed)
stochastic dual vector computed by process k at time t.

Using multiple processors reduces computational costs significantly. However, communication costs
to broadcast huge stochastic dual vectors is the main performance bottleneck in practice (Alistarh
et al., 2017). In order to reduce communication costs and improve scalability, each processor receives
and aggregates the compressed stochastic dual vectors from all peers to obtain the updated parameter
vector. Let ℓt = (ℓ0, ℓ

t
1, . . . , ℓ

t
s, ℓs+1) denote the sequence of s quantization levels optimized at

iteration t with 0 = ℓ0 < ℓt1 < · · · < ℓts < ℓs+1 = 1. We now define quantization function Qℓt :

Definition 1 (Random quantization function). Let s ∈ Z+ denote the number of quantization levels.
Let u ∈ [0, 1] and ℓt = (ℓ0, ℓ

t
1, . . . , ℓ

t
s, ℓs+1) denote the sequence of s quantization levels at iteration

t with 0 = ℓ0 < ℓt1 < · · · < ℓts < ℓs+1 = 1. Let τ(u) denote the index of a level such that
ℓtτ(u) ≤ u < ℓtτ(u)+1. Let ξt(u) = (u − ℓtτ(u))/(ℓ

t
τ(u)+1 − ℓtτ(u)) be the relative distance of u to

level τ(u) + 1. We define the random function qℓt(u) : [0, 1] → {ℓ0, ℓt1, . . . , ℓts, ℓs+1} such that
qℓt(u) = ℓtτ(u) with probability 1− ξt(u) and qℓt(u) = ℓtτ(u)+1 with probability ξt(u). Let q ∈ Z+

and v ∈ Rd. We define the random quantization of v as follows:

Qℓt(v) := ∥v∥q · s⊙ [qℓt(u1), . . . , qℓt(ud)]
⊤

where ⊙ denotes the element-wise (Hadamard) product.
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Let V̂k,t = Qℓt(Vk,t) and V̂k,t+1/2 = Qℓt(Vk,t+1/2) denote the unbiased and quantized stochastic
dual vectors for k ∈ [K] and t ∈ [T ]. We propose quantized generalized extra-gradient (Q-GenX)
family of algorithms with this update rule:

Xt+1/2 = Xt −
γt
K

K∑
k=1

V̂k,t

Yt+1 = Yt −
1

K

K∑
k=1

V̂k,t+1/2

Xt+1 = γt+1Yt+1

(Q-GenX)

where (V̂k,0, V̂k,1, . . .) and (V̂k,1/2, V̂k,3/2, . . .) are the sequences of stochastic dual vectors computed
and quantized by processor k ∈ [K]. Provided that Vk,t and Vk,t+1/2 are stochastic dual vectors for
k ∈ [K], then 1

K

∑K
k=1 V̂k,t and 1

K

∑K
k=1 V̂k,t+1/2 remain unbiased stochastic dual vectors.

Q-GenX is described in Algorithm 1. In general, the decoded stochastic dual vectors are likely to be
different from the original locally computed stochastic dual vectors.

A particularly appealing feature of (Q-GenX) formulation is that it enables us to unify communication-
efficient and distributed variants of a wide range of popular first-order methods for solving VIs. In
particular, one may observe that under different choices of V̂k,t and V̂k,t+1/2, communication-efficient
variants of stochastic dual averaging (Nesterov, 2009), stochastic dual extrapolation (Nesterov, 2007),
and stochastic optimistic dual averaging (Popov, 1980; Rakhlin & Sridharan, 2013; Hsieh et al., 2021;
2022) in multi-GPU settings are special cases of Q-GenX:

Example 3.1. Distributed stochastic dual averaging: Consider the case where V̂k,t ≡ 0 and
V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2) + Uk,t+1/2). This setting yields to Xt+1/2 = Xt and hence
ĝk,t+1/2 = ĝk,t = V̂k,t+1/2. Therefore, Q-GenX reduces to the communication-efficient stochastic
dual averaging scheme:

Yt+1 = Yt −
1

K

K∑
k=1

ĝk,t

Xt+1 = γt+1Yt+1

(Quantized DA)

Example 3.2. Distributed stochastic dual extrapolation: Consider the case where V̂k,t ≡ ĝk,t =

Qℓt(A(Xt)+Uk,t) and V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2)+Uk,t+1/2) are noisy oracle queries
at Xt and Xt+1/2, respectively. Then Q-GenX provides the communication-efficient variant of the
Nesterov’s stochastic dual extrapolation method (Nesterov, 2007):

Xt+1/2 = Xt −
γt
K

K∑
k=1

ĝk,t

Yt+1 = Yt −
1

K

K∑
k=1

ĝk,t+1/2

Xt+1 = γt+1Yt+1

(Quantized DE)

Example 3.3. Distributed stochastic optimistic dual averaging: Consider the case V̂k,t ≡
ĝk,t−1/2 = Qℓt(A(Xt−1/2) + Uk,t−1/2) and V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2) + Uk,t+1/2)
are the noisy oracle feedback at Xt−1/2 and Xt+1/2, respectively. We then obtain the communication-
efficient stochastic optimistic dual averaging method:

Xt+1/2 = Xt −
γt
K

K∑
k=1

ĝk,t−1/2

Yt+1 = Yt −
1

K

K∑
k=1

ĝk,t+1/2

Xt+1 = γt+1Yt+1

(Quantized OptDA)
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This general formulation of Q-GenX allows us to bring these variants under one umbrella and provide
theoretical guarantees for all of them in a unified manner.

3.2 ENCODING

To further reduce communication costs, we can apply information-theoretically coding schemes on
top of quantization. Let q ∈ Z+. We first note that a vector v ∈ Rd can be uniquely represented
by a tuple (∥v∥q, s,u) where ∥v∥q is the Lq norm of v, s := [sgn(v1), . . . , sgn(vd)]

⊤ consists
of signs of the coordinates vi’s, and u := [u1, . . . , ud]

⊤ with ui = |vi|/∥v∥q are the normalized
coordinates. Note that 0 ≤ ui ≤ 1 for all i ∈ [d]. The overall encoding, i.e., composition of coding
and quantization, CODE ◦Q(∥v∥q, s,qℓt) : R+ × {±1}d × {ℓ0, ℓt1, . . . , ℓts, ℓs+1}d → {0, 1}∗ in
Algorithm 1 uses a standard floating point encoding with Cb bits to represent the positive scalar ∥v∥q ,
encodes the sign of each coordinate with one bit, and finally applies an integer encoding scheme
Ψ : {ℓ0, ℓt1, . . . , ℓts, ℓs+1} → {0, 1}∗ to efficiently encode each quantized and normalized coordinate
qℓt(ui) with the minimum expected code-length. The overall decoding DEQ ◦ CODE : {0, 1}∗ →
Rd first reads Cb bits to reconstruct ∥v∥q . Then it applies Ψ−1 : {0, 1}∗ → {ℓ0, ℓt1, . . . , ℓts, ℓs+1} to
reconstruct normalized coordinates. The encoding/decoding details are provided in Appendix K.

3.3 ADAPTIVE QUANTIZATION

Instead of using a heuristically chosen sequence of quantization levels, adaptive quantization estimates
distribution of uncompressed original vectors, i.e., dual vectors, by computing sufficient statistics
of a parametric distribution, optimizes quantization levels to minimize the quantization error, and
updates those levels adaptively throughout the course of training as the distribution changes. Let
(ΩQ,FQ,PQ) denote a complete probability space. Let qℓt ∼ PQ represent d variables sampled
independently for random quantization in Definition 1. Let v ∈ Rd denote a stochastic dual vector
to be quantized. Given v, we measure the quantization error by the variance of vector quantization,
which is the trace of the covariance matrix:

Eqℓt
[∥Qℓt(v)− v∥22] = ∥v∥2q

d∑
i=1

σ2
Q(ui; ℓt) (3.1)

where ui = |vi|/∥v∥q and σ2
Q(u; ℓt) = Eqℓt

[(qℓt(u) − u)2] = (ℓtτ(u)+1 − u)(u − ℓtτ(u)) is the
variance for a normalized coordinate u. We optimize ℓt by minimizing the quantization variance:

min
ℓt∈L

EωEqℓt

[
∥Qℓt(g(xt;ω))−A(xt)∥2∗

]
where L = {ℓ : ℓj ≤ ℓj+1, ∀ j, ℓ0 = 0, ℓs+1 = 1} denotes the set of feasible solutions.

Since random quanitzation and random samples are statistically independent, we can solve the
following equivalent problem:

min
ℓt∈L

EωEqℓt

[
∥Qℓt(g(xt;ω))− g(xt;ω)∥22

]
(MinVar)

To solve MinVar, we first sample J stochastic dual vectors {g(xt;ω1), . . . , g(xt;ωJ)}2. Let Fj(r)
denote the marginal cumulative distribution function (CDF) of normalized coordinates conditioned
on observing ∥g(xt;ωj)∥q . By the law of total expectation, MinVar can be approximated by:

min
ℓt∈L

J∑
j=1

∥g(xt;ωj)∥2q
s∑

i=0

∫ ℓi+1

ℓi

σ2
Q(u; ℓt) dFj(u) ≡ min

ℓt∈L

s∑
i=0

∫ ℓi+1

ℓi

σ2
Q(u; ℓt) dF̃ (u) (QAda)

where F̃ (u) =
∑J

j=1 λjFj(u) is the weighted sum of the conditional CDFs with λj =

∥g(xt;ωj)∥2q/
∑J

j=1 ∥g(xt;ωj)∥2q .

Finally, we solve QAda efficiently by either updating levels one at a time or gradient descent along
the lines of (Faghri et al., 2020).

2A more fine-grained analysis can be done by considering two sequences of adaptive levels one for Vk,t’s
and another one for Vk,t+1/2’s. While in this paper, we quantize both sequences with the same quantization
scheme, it is possible to further reduce quantization errors by considering two fine-grained quantization schemes
at the cost of additional computations at processors.
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4 THEORETICAL GUARANTEES

We first establish a variance error bound for a general unbiased and normalized compression scheme
and a bound on the expected number of communication bits to encode Qℓ(v), i.e., the output of
CODE ◦Q, which is introduced in Section 3.2. The detailed proofs are provided in the appendix.

Let ℓ := max1≤j≤s ℓj+1/ℓj and dth = (2/ℓ1)
min{q,2}. Under general Lq normalization and

sequence of s quantization levels ℓ, we first establish an upper bound on the variance of quantization:

Theorem 1 (Variance bound). Let v ∈ Rd, q ∈ Z+, and s ∈ Z+. Let ℓ = (ℓ0, . . . , ℓs+1) denote a
sequence of s quantization levels defined in Definition 1. The quantization of v in Definition 1 is
unbiased, i.e., Eqℓ

[Qℓ(v)] = v. Furthermore, we have

Eqℓ
[∥Qℓ(v)− v∥22] ≤ ϵQ∥v∥22, (4.1)

where ϵQ = ℓ+ℓ
−1

4 + 1
4ℓ

2
1d

2
min{q,2} 1{d ≤ dth} +

(
ℓ1d

1
min{q,2} − 1

)
1{d ≥ dth} − 1

2 and 1 is the
indicator function.

Theorem 1 implies that if g(x;ω) is an unbiased stochastic dual vector with a bounded absolute
variance σ2, then Qℓ(g(x;ω)) will be an unbiased stochastic dual vector with a variance upper bound
ϵQσ

2. Note that, the dominant term 1
4ℓ

2
1d

2
min{q,2} 1{d ≤ dth} +

(
ℓ1d

1
min{q,2} − 1

)
1{d ≥ dth}

monotonically decreases as the number of quantization levels increases. Unlike (Alistarh et al.,
2017, Theorem 3.2) and (Ramezani-Kebrya et al., 2021, Theorem 4) that hold under the special
cases of L2 normalization with uniform and exponentially spaced levels, respectively, our bound
in Theorem 1 holds under general Lq normalization and arbitrary sequence of quantization levels. For
the special case of L2 normalization in the regime of large d, which is the case in practice, our bound
in Theorem 1 is O(ℓ1

√
d), which is arbitrarily smaller than O(

√
d/s) and O(2−s

√
d) in (Alistarh

et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al., 2021, Theorem 4), respectively, because
ℓ1 is adaptively designed to minimize the variance of quantization. Furthermore, unlike the bound
in (Faghri et al., 2020, Theorem 2) that requires an inner optimization problem over an auxiliary
parameter p, the bound in Theorem 1 is provided in an explicit form without an inner optimization
problem, which matches the known Ω(

√
d) lower bound.

Theorem 2 (Code-length bound). Let pj denote the probability of occurrence of ℓj (weight
of symbol ℓj) for j ∈ [s]. Under the setting specified in Theorem 1, the expectation
EωEqℓ

[|CODE ◦Q(Qℓ(g(x;ω)); ℓ)|] of the number of bits to encode Qℓ(g(x;ω)) is bounded by

EωEqℓ
[|CODE ◦Q(Qℓ(g(x;ω)); ℓ)|] = O

(
(

s∑
j=1

pj log(1/pj)− p0)d
)
. (4.2)

Note {p0, . . . , ps+1} can be computed efficiently using the weighted sum of the conditional CDFs
in QAda and quantization levels. We provide their expressions in Appendix E. Unlike (Alistarh
et al., 2017, Theorem 3.4) and (Ramezani-Kebrya et al., 2021, Theorem 5) that hold under the
special cases of L2 normalization, our bound in Theorem 2 holds under general Lq normalization.
For the special case of L2 normalization with s =

√
d as in (Alistarh et al., 2017, Theorem 3.4),

our bound in Theorem 2 can be arbitrarily smaller than (Alistarh et al., 2017, Theorem 3.4) and
(Ramezani-Kebrya et al., 2021, Theorem 5) depending on {p0, . . . , ps+1}. Compared to (Faghri
et al., 2020, Theorem 3), our bound in Theorem 2 does not have an additional nℓ1,d term. We show
that a total expected number of O(Kd/ϵ) bits are required to reach an ϵ gap, which matches the
lower bound developed for convex optimization problems with finite-sum structures (Tsitsiklis &
Luo, 1987; Korhonen & Alistarh, 2021).

We finally present the convergence guarantees for Q-GenX given access to stochastic dual vectors
under both absolute noise and relative noise models in Assumptions 2 and 3, respectively.

Theorem 3 (Q-GenX under absolute noise). Let C ⊂ Rd denote a compact neighborhood of a
solution for (VI) and let D2 := supX∈C ∥X −X0∥2. Suppose that the oracle and the problem (VI)
satisfy Assumptions 1 and 2, respectively, Algorithm 1 is executed for T iterations on K processors
with an adaptive step-size γt = K(1 +

∑t−1
i=1

∑K
k=1 ∥V̂k,i − V̂k,i+1/2∥2)−1/2, and quantization

levels are updated J times where ℓj with variance bound ϵQ,j in (4.1) and code-length bound NQ,j
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in (4.2) is used for Tj iterations with
∑J

j=1 Tj = T . Then we have

E
[
GapC

( 1

T

T∑
t=1

Xt+1/2

)]
= O

( (∑J
j=1

√
ϵQ,jTj/TM + σ)D2

√
TK

)
.

In addition, Algorithm 1 requires each processor to send at most 2
T

∑J
j=1 TjNQ,j communication

bits per iteration in expectation.

We now establish fast rate of O(1/T ) under relative noise and a mild regularity condition:
Assumption 4 (Co-coercivity). Let β > 0. We assume that operator A is β-cocoercive:

⟨A(x)−A(x′),x− x′⟩ ≥ β∥A(x)−A(x′)∥2∗ for all x,x′ ∈ Rd. (4.3)

For a panoramic view of this class of operators, we refer the reader to (Bauschke & Combettes, 2017).
Remark 1. The order-optimal rate of O(1/

√
T ) under absolute noise does not require co-cocercivity.

Our adaptive step-size also does not depend on the noise model or co-coercivity. Co-coercivity is
required only to achieve fast rate of O(1/T ) in the case of relative noise.
Theorem 4 (Q-GenX under relative noise). Let C ⊂ Rd denote a compact neighborhood of a solution
for (VI) and let D2 := supX∈C ∥X −X0∥2. Suppose that the oracle and the problem (VI) satisfy
Assumptions 1, 3, and 4, Algorithm 1 is executed for T iterations on K processors with an adaptive
step-size γt = K(1 +

∑t−1
i=1

∑K
k=1 ∥V̂k,i − V̂k,i+1/2∥2)−1/2, and quantization levels are updated J

times where ℓj with variance bound ϵQ,j in (4.1) and code-length bound NQ,j in (4.2) is used for Tj

iterations with
∑J

j=1 Tj = T . Then we have

E
[
GapC

( 1

T

T∑
t=1

Xt+1/2

)]
= O

(((c+ 1)
∑J

j=1 TjϵQ,j/T + c
)
D2

KT

)
.

In addition, Algorithm 1 requires each processor to send at most 2
T

∑J
j=1 TjNQ,j communication

bits per iteration in expectation.

To the best of our knowledge, our results in Theorems 3 and 4 are the first ones proving that increasing
the number of processors accelerates convergence for general monotone VIs under an adaptive step
size. Theorems 3 and 4 show that we can attain a fast rate ofO(1/T ) and an order-optimalO(1/

√
T )

without prior knowledge on the noise profile while significantly reducing communication costs.

Compared to saddle point problems, our rates are optimal. This can be verified by lower bounds
in (Beznosikov et al., 2020). For convex problems in deterministic settings, the rate can be improved
to O(1/T 2) via acceleration. However, it is known that in the stochastic and distributed settings,
our rates cannot be improved even with acceleration. E.g., for convex and smooth problems under
absolute noise model, the lower bound of Ω( 1√

TK
) can be established by (Woodworth et al., 2021,

Theorem 1) and setting the number of gradients per round to one.

In Appendix I, we build on Theorems 3 and 4 to capture the trade-off between the number of iterations
to converge and time per iteration, which includes total time required to update a model on each GPU.

5 EXPERIMENTAL EVALUATION

In order to validate our theoretical results, we build on the code base of Gidel et al. (2019) and run
an instantiation of Q-GenX obtained by combining ExtraAdam with the compression offered by the
torch_cgx pytorch extension of Markov et al. (2022), and train a WGAN-GP (Arjovsky et al.,
2017) on CIFAR10 (Krizhevsky, 2009).

Since torch_cgx uses OpenMPI (Gabriel et al., 2004) as its communication backend, we use
OpenMPI as the communication backend for the full gradient as well for a fairer comparison. We
deliberately do not tune any hyperparameters to fit the larger batchsize since simliar to (Gidel et al.,
2019), we do not claim to set a new SOTA with these experiments but simply want to show that our
theory holds up in practice and can potentially lead to improvements. For this, we present a basic
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Figure 1: FID evolution during training (left). We compare full-precision ExtraAdam with a simple instantiation
of Q-GenX. FID stands for Frechet inception distance, which is a standard GAN quality metric introduced
in (Heusel et al., 2017). Fine grained comparison of average .backward() times on generator, discriminator,
gradient penalty as well as total training time (s) (middle and right). The .backward() function is where
pytorch DistributedDataParallel (DDP) handles gradient exchange.

experiment showing that even for a very small problem size and a heuristic base compression method
of cgx, we can achieve a noticeable speedup of around 8%. We expect further gains to be achievable
for larger problems and more advanced compression methods. Given differences in terms of settings
and the lack of any code, let alone an efficient implementations that can be used in a real-world
setting (i.e. CUDA kernels integrated with networking), it is difficult to impossible to conduct a
fair comparison with Beznosikov et al. (2021). More details and a comparison with QSGDA of
Beznosikov et al. (2022) are provided in Appendix H. We are not aware of any other existing method
dealing with the same problem in our paper without the cost associated with variance reduction.

We follow exactly the setup of (Gidel et al., 2019) except that we share an effective batch size of
1024 across 3 nodes (strong scaling) connected via Ethernet, and use Layernorm (Ba et al., 2016)
instead of Batchnorm (Ioffe & Szegedy, 2015) since Batchnorm is known to be challenging to work
with in distributed training as well as interacting badly with the WGAN-GP penalty. The results are
shown in Figure 1 (left) showing evolution of FID. We note that we do not scale the learning rate or
any other hyperparameters to account for these two changes so this experiment is not meant to claim
SOTA performance, merely to illustrate that

1. Even with the simplest possible unbiased quantization on a relatively small-scale setup, we
can observe a speedup (about 8%).

2. This speedup does not drastically change the performance.

We compare training using the full gradient of 32 bit (FP32) to training with gradients compressed to
8 (UQ8) and 4 bits (UQ4) using a bucket size of 1024. Figure 1 (middle and right) shows a more
fine grained breakdown of the time used for back propagation (BP) where the network activity takes
place. GenBP, DiscBP and PenBP refer to the backpropagation for generator, discriminator, and the
calculation of the gradient penalty, respectively. Total refers to the sum of these times.

6 CONCLUSIONS

We have considered mononote VIs in a synchronous and multi-GPU setting where multiple processors
compute independent and private stochastic dual vectors in parallel. We proposed Q-GenX, which
employs unbiased and adaptive compression methods tailored to a generic unifying framework for
solving VIs. Without knowing the noise profile in advance, we have obtained an adaptive step-size
rule, which achieves a fast rate of O(1/T ) under relative noise, and an order-optimal O(1/

√
T ) in

the absolute noise case along with improved guarantees on the expected number of communication
bits. Our results show that increasing the number of processors accelerates convergence.

Developing new VI-solvers for asynchronous settings and establishing convergence guarantees while
relaxing co-coercivity assumption on the operator are interesting problems left for future work.
Expected co-coercivity has been used as a more relaxed noise model (Loizou et al., 2021). It is
interesting to study monotone VIs under expected co-coercivity and adaptive step-sizes in the future.
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A APPENDIX

Notation. We use E[·], ∥ · ∥, ∥ · ∥0, and ∥ · ∥∗ to denote the expectation operator, Euclidean norm,
number of nonzero elements of a vector, and dual norm, respectively. We use | · | to denote the length
of a binary string, the length of a vector, and cardinality of a set. We use lower-case bold letters to
denote vectors. Sets are typeset in a calligraphic font. The base-2 logarithm is denoted by log, and
the set of binary strings is denoted by {0, 1}∗. We use [n] to denote {1, . . . , n} for an integer n.

Content of the appendix. The appendix is organized as follows:

• Complete related work is discussed in Appendix B.
• Special cases of Q-GenX are provided in Appendix C.
• Theorem 1 (variance bound) is proved in Appendix D.
• Theorem 2 (code-length bound) is proved in Appendix E.
• Theorem 3 (Q-GenX under absolute noise) is proved in Appendix F.
• Theorem 4 (Q-GenX under relative noise) is proved in Appendix G.
• Additional experimental details are included in Appendix H.
• Trade-off between number of iterations and time per iteration is provided in Appendix I.
• Popular Examples motivating Assumption 3 are provided in Appendix J.
• The encoding/decoding details are provided in Appendix K.
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B FURTHER RELATED WORK

Unbiased compression. Seide et al. (2014) proposed SignSGD, an efficient heuristic scheme to
reduce communication costs drastically by quantizing each gradient component to two values. (This
scheme is sometimes termed as 1bitSGD (Seide et al., 2014).) Bernstein et al. (2018) later provided
convergence guarantees for a variant of SignSGD. Note that the quantization employed by SignSGD
is not unbiased, and so a new analysis was required. Alistarh et al. (2017) proposed quantized
SGD (QSGD) focusing on the uniform quantization of stochastic gradients normalized to have unit
Euclidean norm. Their experiments illustrate a similar quantization method, where gradients are
normalized to have unit L∞ norm, achieves better performance. We refer to this method as QSGDinf
or Qinf in short. Wen et al. (2017) proposed TernGrad, which can be viewed as a special case
of QSGDinf with three quantization levels. Ramezani-Kebrya et al. (2021) proposed nonuniform
quantization levels (NUQSGD) and demonstrated superior empirical results compared to QSGDinf.
Recently, lattice-based quantization has been studied for distributed mean estimation and variance
reduction (Davies et al., 2021).

Adaptive quantization has been used for speech communication and storage (Cummiskey et al., 1973).
In machine learning, several biased and unbiased schemes have been proposed to compress networks
and gradients. In this work, we focus on unbiased and coordinate-wise schemes to compress gradients.
Zhang et al. (2017) proposed ZipML, which is an optimal quantization method if all points to be
quantized are known a priori. To find the optimal sequence of quantization levels, a dynamic program
is solved whose computational and memory cost is quadratic in the number of points to be quantized,
which in the case of gradients would correspond to their dimension. Faghri et al. (2020) have proposed
two adaptive gradient compression schemes where multiple processors update their compression
schemes in parallel by efficiently computing sufficient statistics of a parametric distribution. Adaptive
quantization methods in (Faghri et al., 2020) are applicable only when minimizing a single empirical
risk. In addition, convergence guarantees in (Faghri et al., 2020) are established for smooth nonconvex
optimization with a fixed step-size. In this paper, we propose communication-efficient variants of
generalized EG family of algorithms with an adaptive and unbiased quantization scheme for a general
(VI) problem. Furthermore, we establish improved variance and code-length bounds and optimal
convergence guarantees for nonconvex problems with an adaptive step-size.

Adaptive gradient compression has been studied in other contexts when minimizing a single empirical
risk, such as adapting the communication frequency in local SGD (Wang & Joshi, 2019), adapting the
number of quantization levels (communication budget) over the course of training (Guo et al., 2020;
Agarwal et al., 2021), adapting a gradient sparsification scheme over the course of training (Khirirat
et al., 2021), and adapting compression parameters across model layers and training iterations (Markov
et al., 2022). We focus on unbiased and normalized quantization and adapt quantization levels to
minimize quantization error for generalized EG family of algorithms, which has not been considered
in the literature.

First-order methods to solve VIs. In the VI literature, the benchmark method is extra-
gradient (EG), proposed by Korpelevich (1976), along with its variants including (Nemirovski,
2004; Nesterov, 2007). Furthermore, there have been a line of work that aims to focus on establishing
convergence guarantees though adopting an adaptive step-size policy. To that end, we review the
most relevant works below.

For unconstrained problems with an operator that is locally Lipschitz continuous (but not necessarily
globally), the Golden Ratio Algorithm (GRAAL) of Malitsky (2020) achieves convergence without
requiring prior knowledge of the problem’s Lipschitz parameter. Moreover, such guarantees are
provided in problems with a bounded domain by the Generalized Mirror Prox (GMP) algorithm of
Stonyakin et al. (2018) under the umbrella of Hölder continuity.

A more relevant method that simultaneously achieves an O(1/
√
T ) rate in non-smooth and/or

stochastic problems and an O(1/T ) rate in smooth ones is the recent algorithm of Bach & Levy
(2019). This algorithm employs an adaptive, AdaGrad-like step-size policy which allows the method
to interpolate between these regimes. On the negative side, this algorithm requires a bounded domain
with a (Bregman) diameter that is known in advance.
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In optimization community, similar rate interpolation guarantees between different noise profiles has
been explored by Antonakopoulos et al. (2021). However, their results are limited to centralized,
single GPU settings.

While all these algorithms concern standard single-GPU settings with having access to full-precision
stochastic dual vectors, we consider multi-GPU settings, which has not been considered before.

Beznosikov et al. (2021); Kovalev et al. (2022) have proposed communication-efficient algorithms for
VIs with finite-sum structure and variance reduction in centralized settings and (strongly) monotone
VIs in decentralized settings, respectively. Unlike (Beznosikov et al., 2021; Kovalev et al., 2022),
we achieve fast and order-optimal rates with adaptive step-size and adaptive compression without
requiring variance reduction and strong monotoncity, and improve variance and code-length bounds
for unbiased and adaptive compression.

Detailed comparison with (Antonakopoulos et al., 2021; Alistarh et al., 2017; Faghri et al., 2020;
Ramezani-Kebrya et al., 2021). In this section, we elaborate and provide a detailed comparison
with the most relevant related work (Antonakopoulos et al., 2021; Alistarh et al., 2017; Faghri et al.,
2020; Ramezani-Kebrya et al., 2021).

Although our results build upon the extra-gradient literature Korpelevich (1976), as Antonakopoulos
et al. (2021) does, in this paper, we address monotone VI/ convex-concave min-max problems in
distributed and large-scale settings, which has not been considered in Antonakopoulos et al. (2021)
that strictly refers to a strictly single-GPU and centralized setting. The considered distributed
framework complicates the analysis in a significant manner, since we have to simultaneously treat
two different types of randomness. In particular, on one hand, we face randomness associated with
the compression scheme (which is necessary to achieve substantial communication savings in a
distributed setup) where on the other hand we deal with different noisy feedback models stemming
from inexact operator calculations (before any compression takes place), which together result
in efficient implementations at each GPU. We show benefits of distributed training in terms of
accelerating convergence for general monotone VIs.

Unlike (Alistarh et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al., 2021, Theorem 4) that
hold under the special cases of L2 normalization with uniform and exponentially spaced levels,
respectively, our bound in Theorem 1 holds under general Lq normalization and arbitrary sequence
of quantization levels. For the special case of L2 normalization in the regime of large d, which is the
case in practice, our bound in Theorem 1 isO(ℓ1

√
d), which is arbitrarily smaller thanO(

√
d/s) and

O(2−s
√
d) in (Alistarh et al., 2017, Theorem 3.2) and (Ramezani-Kebrya et al., 2021, Theorem 4),

respectively, because ℓ1 is adaptively designed to minimize the variance of quantization. Furthermore,
unlike the bound in (Faghri et al., 2020, Theorem 2) that requires an inner optimization problem over
an auxiliary parameter p, the bound in Theorem 1 is provided in an explicit form without an inner
optimization problem, which matches the lower bound.

Unlike (Alistarh et al., 2017, Theorem 3.4) and (Ramezani-Kebrya et al., 2021, Theorem 5) that hold
under the special cases of L2 normalization, our code-length bound in Theorem 2 holds under general
Lq normalization. For the special case of L2 normalization with s =

√
d as in (Alistarh et al., 2017,

Theorem 3.4), our bound in Theorem 2 can be arbitrarily smaller than (Alistarh et al., 2017, Theorem
3.4) and (Ramezani-Kebrya et al., 2021, Theorem 5) depending on {p0, . . . , ps+1}. Compared to
(Faghri et al., 2020, Theorem 3), our bound in Theorem 2 does not have an additional nℓ1,d term.

C SPECIAL CASES OF Q-GENX

In this section, we show that under different choices of Vk,t and Vk,t+1/2, one can obtain
communication-efficient variants of stochastic dual averaging (Nesterov, 2009), stochastic dual
extrapolation (Nesterov, 2007), and stochastic optimistic dual averaging (Popov, 1980; Rakhlin &
Sridharan, 2013; Hsieh et al., 2021; 2022) in multi-GPU settings as special cases of Q-GenX.

Example C.1. Communication-efficient stochastic dual averaging: Consider the case where
V̂k,t ≡ 0 and V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2) + Uk,t+1/2). This setting yields to Xt+1/2 =

Xt and hence ĝk,t+1/2 = ĝk,t = V̂k,t+1/2. Therefore, Q-GenX reduces to the communication-
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efficient stochastic dual averaging scheme:

Yt+1 = Yt −K−1
K∑

k=1

ĝk,t

Xt+1 = γt+1Yt+1

(Quantized DA)

Example C.2. Communication-efficient stochastic dual extrapolation: Consider the case where
V̂k,t ≡ ĝk,t = Qℓt(A(Xt)+Uk,t) and V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2)+Uk,t+1/2) are noisy
oracle queries at Xt and Xt+1/2, respectively. Then Q-GenX provides the communication-efficient
variant of Nesterov’s stochastic dual extrapolation method (Nesterov, 2007):

Xt+1/2 = Xt −
γt
K

K∑
k=1

ĝk,t

Yt+1 = Yt −K−1
K∑

k=1

ĝk,t+1/2

Xt+1 = γt+1Yt+1

(Quantized DE)

Example C.3. Communication-efficient stochastic optimistic dual averaging: Consider the case
V̂k,t ≡ ĝk,t−1/2 = Qℓt(A(Xt−1/2) + Uk,t−1/2) and V̂k,t+1/2 ≡ ĝk,t+1/2 = Qℓt(A(Xt+1/2) +
Uk,t+1/2) are the noisy oracle feedback at Xt−1/2 and Xt+1/2, respectively. We then obtain the
communication-efficient stochastic optimistic dual averaging method:

Xt+1/2 = Xt −
γt
K

K∑
k=1

ĝk,t−1/2

Yt+1 = Yt −K−1
K∑

k=1

ĝk,t+1/2

Xt+1 = γt+1Yt+1

(Quantized OptDA)

D PROOF OF THEOREM 1 (VARIANCE BOUND)

Let uj = |vj |/∥v∥q , B0 := [0, ℓ1], and Bj := [ℓj , ℓj+1] for j ∈ [s]. Let Vℓ(v) = Eqℓ
[∥Qℓ(v)−v∥22]

denote the variance of quantization in Eq. (3.1). Then we have

Vℓ(v) = ∥v∥2q
( ∑
ui∈B0

(ℓ1 − ui)ui +

s∑
j=1

∑
ui∈Bj

(ℓj+1 − ui)(ui − ℓj)
)
. (D.1)

We first find the minimum kj that satisfies (ℓj+1 − u)(u− ℓj) ≤ kju
2 for u ∈ Bj and j ∈ [s]. The

minimum kj can be obtained by changing the variable u = ℓjθ:

kj = max
1≤θ≤ℓj+1/ℓj

(ℓj+1/ℓj − θ)(θ − 1)

θ2

=

(
ℓj+1/ℓj − 1

)2
4(ℓj+1/ℓj)

.

(D.2)

We note that ℓj+1/ℓj > 1 and (x− 1)2/(4x) is monotonically increasing function of x for x > 1.

Furthermore, note that ∑
ui /∈B0

u2
i ≤
∥v∥22
∥v∥2q

.
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Substituting Eq. (D.2) into Eq. (D.1), an upper bound on Vℓ(v) is given by

Vℓ(v) ≤ ∥v∥2q
((ℓ+ ℓ

−1

4
− 1

2

)∥v∥22
∥v∥2q

+
∑

ui∈B0

(ℓ1 − ui)ui

)
.

In the rest of the proof, we use the following known lemma.

Lemma 1. Let v ∈ Rd. Then, for all 0 < p < q, we have ∥v∥q ≤ ∥v∥p ≤ d1/p−1/q∥v∥q .

We note that Lemma 1 holds even when q < 1 and ∥ · ∥q is merely a seminorm.

We now establish an upper bound on
∑

ui∈B0
(2−s − ui)ui.

Lemma 2 (Ramezani-Kebrya et al. 2021, Lemma 15). Let p ∈ (0, 1) and u ∈ B0. Then we have
u(ℓ1 − u) ≤ Kpℓ1

(2−p)up where

Kp =
( 1/p

2/p− 1

)(1/p− 1

2/p− 1

)(1−p)

. (D.3)

Let Sj denote the coordinates of vector v whose elements fall into the (j + 1)-th bin, i.e.,
Sj := {i : ui ∈ Bj} for j ∈ [s]. For any 0 < p < 1 and q ≥ 2, we have

∥v∥2q
∑

ui∈B0

up
i = ∥v∥2−p

q

∑
i∈S0

|vi|p

≤ ∥v∥2−p
q ∥v∥pp

≤ ∥v∥2−p
q ∥v∥p2d1−p/2

≤ ∥v∥22d1−p/2,

where the third inequality holds as ∥v∥p ≤ ∥v∥2d1/p−1/2 using Lemma 1 and the last inequality
holds as ∥v∥q ≤ ∥v∥2 for q ≥ 2. Using Lemmas 1 and 2, we establish an upper bound on Vℓ(v):

Vℓ(v) ≤ ∥v∥22
(ℓ+ ℓ

−1

4
− 1

2
+Kpℓ1

(2−p)d1−p/2
)
.

For q ≥ 1, we note that ∥v∥2−p
q ≤ ∥v∥2−p

2 d
2−p

min{q,2}−
2−p
2 , i.e.,

Vℓ(v) ≤ ∥v∥22
(ℓ+ ℓ

−1

4
− 1

2
+Kpℓ1

(2−p)d
2−p

min{q,2}

)
. (D.4)

Note that the optimal p to minimize ϵQ is obtained by minimizing:

λ(p) =
( 1/p

2/p− 1

)( 1/p

2/p− 1

)1−p
δ1−p

where δ = ℓ1d
1

min{q,2} .

Taking the first-order derivative of λ(p), the optimal p∗ is given by

p∗ =

{
δ−2
δ−1 , δ ≥ 2

0, δ < 2.
(D.5)

Substituting (D.5) into (D.4) gives (4.1), which completes the proof.

E PROOF OF THEOREM 2 (CODE-LENGTH BOUND)

Let | · | denote the length of a binary string. In this section, we obtain an upper bound on
EωEqℓ

[|CODE ◦Q(Qℓ(g(x;ω)); ℓ)|], i.e., the expected number of communication bits per iter-
ation. We recall from Section 3.2 that v is uniquely represnted by the tuple (∥v∥q, s,u). We first
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encode the norm ∥v∥q using Cb bits where. In practice, we use standard 32-bit floating point
encoding.

We then use one bit to encode the sign of each nonzero entry of u. Let Sj := {i : ui ∈ [lj , lj+1]} and
Nj := |Sj | for j ∈ [s]. We now provide the expression for probabilities associated with our symbols
to be coded, i.e., {ℓ0, ℓ1, . . . , ℓs+1}. The associated probabilities can computed using the weighted
sum of the conditional CDFs of normalized coordinates in QAda and quantization levels:

Proposition 2. Let j ∈ [s]. The probability of occurrence of ℓj (weight of symbol ℓj) is given by

pj = Pr(ℓj) =

∫ ℓj

ℓj−1

u− ℓj−1

ℓj − ℓj−1
dF̃ (u) +

∫ ℓj+1

ℓj

ℓj+1 − u

ℓj+1 − ℓj
dF̃ (u)

where F̃ is the weighted sum of the conditional CDFs of normalized coordinates in QAda. In addition,
we have

p0 = Pr(ℓ0 = 0) =

∫ ℓ1

0

1− u

ℓ1
dF̃ (u) and ps+1 = Pr(ℓs+1 = 1) =

∫ 1

ℓs

u− ℓs
1− ℓs

dF̃ (u).

We have an upper bound on the expected number of nonzero entries as follows:

Lemma 3. Let v ∈ Rd. The expected number of nonzeros in Qℓ(v) is given by

Eqℓ
[∥Qℓ(v)∥0] = (1− p0)d. (E.1)

We then send the the associated codeword to encode each coordinate of u. The optimal expected
code-length for transmitting one random symbol is within one bit of the entropy of the source (Cover
& Thomas, 2006). So the number of required information bits to transmit entries of u is bounded
above by d(H(L) + 1) where H(L) = −

∑s
j=1 pj log(pj) is the entropy in bits. Putting everything

together, we have

EωEqℓ
[|CODE ◦Q(Qℓ(g(x;ω)); ℓ)|] ≤ Cb + (1− p0)d+ (H(L) + 1)d

where Cb = O(1) is a universal constant. Finally, we note that the entropy of a source with n
outcomes is upper bounded by log(n).

F PROOF OF THEOREM 3 (Q-GENX UNDER ABSOLUTE NOISE)

We note that the output of Algorithm 1 follows the iterates of (Q-GenX):

Xt+1/2 = Xt −
γt
K

K∑
k=1

V̂k,t

Yt+1 = Yt −K−1
K∑

k=1

V̂k,t+1/2

Xt+1 = γt+1Yt+1

(Q-GenX)

We first prove the following Template Inequality for (Q-GenX), which is a useful milestone to prove
both Theorems 3 and 4.

Proposition 3 (Template inequality). Let X ∈ Rd. Suppose the iterates Xt of (Q-GenX) are updated
with some non-increasing step-size schedule γt for t = 1, 1/2, . . . Then, we have

T∑
t=1

〈 1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
≤ ∥X∥

2
∗

2γT+1
+

1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

− 1

2

T∑
t=1

1

γt
∥Xt −Xt+1/2∥2∗.

(F.1)
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Proof. We first decompose 1
K ⟨

∑K
k=1 V̂k,t+1/2, Xt+1/2 −X⟩ into two terms and note:

1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
= SA + SB .

where

SA =
1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
and

SB =
1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1 −X
〉
.

Note that the update rule in (Q-GenX) implies:

SB = ⟨Yt − Yt+1, Xt+1 −X⟩

=
〈
Yt −

γt+1

γt
Yt+1, Xt+1 −X

〉
+

〈γt+1

γt
Yt+1 − Yt+1, Xt+1 −X

〉
=

1

γt
⟨γtYt − γt+1Yt+1, Xt+1 −X⟩+

( 1

γt+1
− 1

γt

)
⟨−γt+1Yt+1, Xt+1 −X⟩

=
1

γt
⟨Xt −Xt+1, Xt+1 −X⟩+

( 1

γt+1
− 1

γt

)
⟨−Xt+1, Xt+1 −X⟩.

By algebraic manipulations, we can further show that

SB =
1

γt

(
1

2
∥Xt −X∥2∗ −

1

2
∥Xt+1 −X∥2∗ −

1

2
∥Xt+1 −Xt∥2∗

)
+
( 1

γt+1
− 1

γt

)(
1

2
∥X∥2∗ −

1

2
∥Xt+1∥2∗ −

1

2
∥Xt+1 −X∥2∗

)
≤ 1

2γt
∥Xt −X∥2∗ −

1

2γt+1
∥Xt+1 −X∥2∗ −

1

2γt
∥Xt −Xt+1∥2∗ +

( 1

2γt+1
− 1

2γt

)
∥X∥2∗

where the last inequality holds by dropping − 1
2∥Xt+1∥2∗.

Rearranging the terms in the above expression and substituting SB , we have

1

2γt+1
∥Xt+1 −X∥2∗ ≤

1

2γt
∥Xt −X∥2∗ −

1

2γt
∥Xt −Xt+1∥2∗ +

( 1

2γt+1
− 1

2γt

)
∥X∥2∗

− 1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1 −X
〉

=
1

2γt
∥Xt −X∥2∗ −

1

2γt
∥Xt −Xt+1∥2∗ +

( 1

2γt+1
− 1

2γt

)
∥X∥2∗

+
1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1/2 −Xt+1

〉
− 1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
.

(F.2)

On the other hand, we have

γt
K

〈 K∑
k=1

V̂k,t, Xt+1/2 −X
〉
= ⟨Xt −Xt+1/2, Xt+1/2 −X⟩

=
1

2
∥Xt −X∥2∗ −

1

2
∥Xt −Xt+1/2∥2∗ −

1

2
∥Xt+1/2 −X∥2∗

(F.3)
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Substituting X = Xt+1 and dividing both sides of (F.3) by γt, we have

1

K

〈 K∑
k=1

V̂k,t, Xt+1/2 −Xt+1

〉
=

1

2γt
∥Xt −Xt+1∥2∗ −

1

2γt
∥Xt −Xt+1/2∥2∗

− 1

2γt
∥Xt+1/2 −Xt+1∥2∗.

(F.4)

Combining (F.2) and (F.4), we have

1

K

〈 K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
≤ 1

2γt
∥Xt −X∥2∗ −

1

2γt+1
∥Xt+1 −X∥2∗ +

( 1

2γt+1
− 1

2γt

)
∥X∥2∗

+
1

K

〈 K∑
k=1

V̂k,t+1/2 − V̂k,t, Xt+1/2 −Xt+1

〉
− 1

2γt
∥Xt −Xt+1/2∥2∗ −

1

2γt
∥Xt+1 −Xt+1/2∥2∗.

Summing the above for t = 1, . . . , T and telescoping, we have

1

K

T∑
t=1

⟨
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X⟩ ≤ 1

2γ1
∥X1 −X∥2∗ − 1

2γT+1
∥XT+1 −X∥2∗ + (

1

2γT+1
− 1

2γ1
)∥X∥2∗

+
1

K

T∑
t=1

⟨
K∑

k=1

V̂k,t+1/2 − V̂k,t, Xt+1/2 −Xt+1⟩

−
T∑

t=1

1

2γt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2γt
∥Xt+1 −Xt+1/2∥2∗.

Substituting X1 = 0, we have3

1

K

T∑
t=1

⟨
K∑

k=1

V̂k,t+1/2, Xt+1/2 −X⟩ ≤ 1

2γT+1
∥X∥2∗ +

1

K

T∑
t=1

⟨
K∑

k=1

V̂k,t+1/2 − V̂k,t, Xt+1/2 −Xt+1⟩

−
T∑

t=1

1

2γt
∥Xt −Xt+1/2∥2∗ −

T∑
t=1

1

2γt
∥Xt+1 −Xt+1/2∥2∗.

(F.5)

By applying Cauchy–Schwarz and triangle inequalities, we have

1

K
⟨

K∑
k=1

V̂k,t+1/2 − V̂k,t, Xt+1/2 −Xt+1⟩ ≤
K∑

k=1

∥V̂k,t+1/2 − V̂k,t∥∗∥
1

K
(Xt+1/2 −Xt+1)∥∗. (F.6)

Furthermore, since ab ≤ γt

2K2 a
2 + K2

2γt
b2, we have

T∑
t=1

1

K
⟨

K∑
k=1

V̂k,t+1/2 − V̂k,t, Xt+1/2 −Xt+1⟩ ≤
T∑

t=1

γt
2K2

K∑
k=1

∥(V̂k,t+1/2 − V̂k,t)∥2∗

+

T∑
t=1

1

2γt
∥Xt+1/2 −Xt+1∥2∗.

(F.7)

Substituting (F.7) into (F.5) and applying the convexity of ∥ · ∥2∗, we obtain (F.1), which completes
the proof. ■

3The substitution X1 = 0 is just for notation simplicity and can be relaxed at the expense of obtaining a
slightly more complicated expression.
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The following lemmas show how additional noise due to compression affects the upper bounds
under absolute noise and relative noise models in Assumptions 2 and 3, respectively. Let qℓ ∼ PQ

represent d variables sampled i.i.d. for random quantization in Definition 1. We remind that qℓ

is independent of the random sample ω ∼ P in Eq. (2.1). We consider a general unbiased and
normalized compression scheme, which has a bounded variance as in Theorem 1 and a bound on the
expected number of communication bits to encode Qℓ(v), i.e., the output of CODE ◦Q introduced
in Section 3.2, which satisfies Theorem 2. Then we have:
Lemma 4 ( Unbiased compression under absolute noise). Let x ∈ Rd and ω ∼ P. Suppose the
oracle g(x;ω) satisfies Assumption 2. Suppose Qℓ satisfies Theorems 1 and 2. Then the compressed
Qℓ(g(x;ω)) satisfies Assumption 2 with

E
[
∥Qℓ(g(x;ω))−A(x)∥22

]
≤ ϵQM

2 + σ2. (F.8)

Furthermore, the number of bits to encode Qℓ(g(x;ω)) is bounded by the upper bound in (4.2).

Proof. The almost sure boudedness and unbiasedness are immediately followed by the construction
of the unbiased Qℓ. In particular, we note that the maximum additional norm when compressing
Qℓ(g(x;ω)) happens when all normalized coordinates of g(x;ω), which we call them u1, . . . , ud

are mapped to the upper level ℓτ(u)+1 in Definition 1. The additional norm multiplier is bounded
by

∑d
i=1(ℓτ(ui)+1 − ui)

2 ≤
∑d

i=1 u
2
i = 1. Then we have Qℓ(g(x;ω)) ≤ 2M a.s., so the additional

upper bound is constant. The final property also holds as follows:

EωEqℓ

[
∥Qℓ(g(x;ω))−A(x)∥22

]
= EωEqℓ

[
∥Qℓ(g(x;ω))± g(x;ω)−A(x)∥22

]
= EωEqℓ

[
∥Qℓ(g(x;ω))− g(x;ω)∥22

]
+ Eω

[
∥U(x;ω)∥22

]
≤ ϵQEω

[
∥g(x;ω)∥22

]
+ σ2

≤ ϵQM
2 + σ2

where the second step holds due to unbiasedness of qℓ and the last inequality holds since
∥g(x;ω)∥∗ ≤M a.s. ■

Lemma 5 (Unbiased compression under relative noise). Let x ∈ Rd and ω ∼ P. Suppose the
oracle g(x;ω) satisfies Assumption 3. Suppose Qℓ satisfies Theorems 1 and 2. Then the compressed
Qℓ(g(x;ω)) satisfies Assumption 3 with

E
[
∥Qℓ(g(x;ω))−A(x)∥22

]
≤

(
ϵQ(c+ 1) + c

)
∥A(x)∥22. (F.9)

Furthermore, the number of bits to encode Qℓ(g(x;ω)) is bounded by the upper bound in (4.2).

Proof. The almost sure boudedness and unbiasedness are immediately followed by the construction
of the unbiased Qℓ. The final property also holds as follows:

EωEqℓ

[
∥Qℓ(g(x;ω))−A(x)∥22

]
= EωEqℓ

[
∥Qℓ(g(x;ω))− g(x;ω)∥22

]
+ Eω

[
∥U(x;ω)∥22

]
≤ ϵQEω

[
∥g(x;ω)∥22

]
+ c∥A(x)∥22

= ϵQEω

[
∥U(x;ω) +A(x)∥22

]
+ c∥A(x)∥22

= ϵQ
(
Eω

[
∥U(x;ω)∥22

]
+ ∥A(x)∥22

)
+ c∥A(x)∥22

≤
(
ϵQ(c+ 1) + c

)
∥A(x)∥22.

where the first and fourth steps hold due to unbiasedness of qℓ and the noise model, respectively. ■

We now prove our main theorme:
Theorem 5 (Q-GenX under absolute noise). Let C ⊂ Rd denote a compact neighborhood of a
solution for (VI) and let D2 := supX∈C ∥X −X0∥2. Suppose that the oracle and the problem (VI)
satisfy Assumptions 1 and 2, respectively, Algorithm 1 is executed for T iterations on K processors
with an adaptive step-size γt = K(1 +

∑t−1
i=1

∑K
k=1 ∥V̂k,i − V̂k,i+1/2∥2)−1/2, and quantization

levels are updated J times where ℓj with variance bound ϵQ,j in (4.1) and code-length bound NQ,j

in (4.2) is used for Tj iterations with
∑J

j=1 Tj = T . Then we have

E
[
GapC

( 1

T

T∑
t=1

Xt+1/2

)]
= O

( (∑J
j=1

√
ϵQ,jTj/TM + σ)D2

√
TK

)
.
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In addition, Algorithm 1 requires each processor to send at most 2
T

∑J
j=1 TjNQ,j communication

bits per iteration in expectation.

In the following, we prove the results using the template inequality Proposition 3 and noise anslysis
in Lemma 4.

As a preliminary step, we prove this proposition for an adaptive step-size with a non-adaptive Qℓ,
which satisfies Theorem 1.

Proposition 4 (Algorithm 1 under absolute noise and fixed compression scheme). Under the setup
described in Theorem 3, with an adaptive step-size γt = K(1+

∑t−1
i=1

∑K
k=1 ∥V̂k,i−V̂k,i+1/2∥2)−1/2

and non-adaptive Qℓ satisfying Theorem 1, we have

E
[
GapC

( 1

T

T∑
t=1

Xt+1/2

)]
= O

( (√ϵQM + σ)D2

√
TK

)
.

Proof. Suppose that we do not apply compression, i.e., ϵQ = 0. By the template inequality Proposi-
tion 3, we have

T∑
t=1

〈 1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
≤ ∥X∥

2
∗

2γT+1
+

1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗. (F.10)

Let denote the LHS and RHS of (F.10) by SA =
∑T

t=1

〈
1
K

∑K
k=1 V̂k,t+1/2, Xt+1/2 − X

〉
and

SB =
∥X∥2

∗
2γT+1

+ 1
2K2

∑T
t=1 γt

∑K
k=1 ∥V̂k,t+1/2 − V̂k,t∥2∗, respectively.Then, by the noise model (2.1)

and monotonicity of operator A, we have

SA =

T∑
t=1

〈 1

K

K∑
k=1

Ak(Xt+1/2), Xt+1/2 −X
〉
+

T∑
t=1

〈 1

K

K∑
k=1

Uk,t+1/2, Xt+1/2 −X
〉

≥
T∑

t=1

〈 1

K

K∑
k=1

Ak(X), Xt+1/2 −X
〉
+

T∑
t=1

〈 1

K

K∑
k=1

Uk,t+1/2, Xt+1/2 −X
〉

=
T

K

K∑
k=1

⟨Ak(X), XT+1/2 −X⟩+
T∑

t=1

〈 1

K

K∑
k=1

Uk,t+1/2, Xt+1/2 −X
〉

where Ak = A for k ∈ [K]. Therefore, by rearranging the terms Eq. (F.10) using above inequality,
we have

T

K

K∑
k=1

⟨Ak(X), XT+1/2 −X⟩ ≤ −
T∑

t=1

⟨ 1
K

K∑
k=1

Uk,t+1/2, Xt+1/2 −X⟩

+
∥X∥2∗
2γT+1

+
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗.

(F.11)

By taking supermom on both sides of Eq. (F.11), dividing by T , and taking expectation, we have

E
[ 1

K

K∑
k=1

sup
X
⟨Ak(X), XT+1/2 −X⟩

]
≤ 1

T
(S1 + S2 + S3) (F.12)

where S1 = E
[

D2

2γT+1

]
, S2 = E

[
1

2K2

∑T
t=1 γt

∑K
k=1 ∥V̂k,t+1/2 − V̂k,t∥2∗

]
, and S3 =

E
[
supX

∑T
t=1⟨

1
K

∑K
k=1 Uk,t+1/2, Xt+1/2 −X⟩

]
. We now bound S1, S2, and S3 from above,
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individually. For S1, we have

S1 = E
[

D2

2γT+1

]

=
D2

2K
E


√√√√1 +

T−1∑
i=1

K∑
k=1

∥V̂k,i − V̂k,i+1/2∥2


≤ D2

2K

√√√√1 +

T−1∑
i=1

K∑
k=1

E
[
∥V̂k,i − V̂k,i+1/2∥2

]

≤ D2

2K

√√√√1 +

T−1∑
i=1

K∑
k=1

2(E[∥V̂k,i∥2] + E[∥V̂k,i+1/2∥2])

≤ D2

2K

√
1 + 4KTσ2.

(F.13)

We also have

S2 = E

[
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

]

=
1

2
E

[
T∑

t=1

( γt
K2

− γt+1

K2

) K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

]
+

1

2
E

[
T∑

t=1

γt+1

K2

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

]

≤ 2E

[
T∑

t=1

( γt
K2

− γt+1

K2

)
Kσ2

]
+

1

2
E

[
T∑

t=1

γt+1

K2

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

]

≤ 2σ2 +
1

2K
E

 T∑
t=1

∑K
k=1 ∥V̂k,t+1/2 − V̂k,t∥2∗√

1 +
∑T

t=1

∑K
k=1 ∥V̂k,t+1/2 − V̂k,t∥2∗


≤ 2σ2 +

1

2K
E


√√√√1 +

T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗


≤ 2σ2 +

1

2K

√√√√1 +

T∑
t=1

K∑
k=1

E
[
∥V̂k,t+1/2 − V̂k,t∥2∗

]
≤ 2σ2 +

1

2K

√
1 + 4σ2KT.

(F.14)

Finally we note that

S3 = E

[
sup
X

T∑
t=1

⟨ 1
K

K∑
k=1

Uk,t+1/2, Xt+1/2 −X⟩

]

= E

[
sup
X

T∑
t=1

⟨ 1
K

K∑
k=1

Uk,t+1/2, X⟩

]
− E

[
sup
X

T∑
t=1

⟨ 1
K

K∑
k=1

Uk,t+1/2, Xt+1/2⟩

]
.

(F.15)

We bound the first term in the RHS of (F.15) using the following known lemma:

Lemma 6 (Bach & Levy 2019). Let C ∈ Rd be a convex set and h : C → R be a 1-strongly convex
w.r.t. a norm ∥ · ∥. Assume that h(x)−minx∈C h(x) ≤ D2/2 for all x ∈ C. Then, for any martingle
difference (zt)

T
t=1 ∈ Rd and any x ∈ C, we have

E

[〈 T∑
t=1

zt,x
〉]
≤ D2

2

√√√√ T∑
t=1

E[∥zt∥2].
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Using Lemma 6, the first term in the RHS of (F.15) is bounded by

1

K
E

[
sup
X

T∑
t=1

⟨
K∑

k=1

Uk,t+1/2, X⟩

]
≤ D2

2K

√√√√E

[
T∑

t=1

K∑
k=1

∥Uk,t+1/2∥2
]

≤ D2σ
√
T

2
√
K

.

(F.16)

Similarly, we can bound the second term in the RHS of (F.15). Combining the results in Eq. (F.13),
Eq. (F.14), and Eq. (F.16) and applying Lemma 4, we obtain the upper bound in Proposition 4. ■

Applying Proposition 4 with the scaled step size schedule in Theorem 3, we complete the proof for
an adaptive compression scheme along the lines of (Faghri et al., 2020, Theorem 4).

G PROOF OF THEOREM 4 (Q-GENX UNDER RELATIVE NOISE)

We first remind the theorem statement:

Theorem 6 (Q-GenX under relative noise). Let C ⊂ Rd denote a compact neighborhood of a solution
for (VI) and let D2 := supX∈C ∥X −X0∥2. Suppose that the oracle and the problem (VI) satisfy
Assumptions 1, 3, and 4, Algorithm 1 is executed for T iterations on K processors with an adaptive
step-size γt = K(1 +

∑t−1
i=1

∑K
k=1 ∥V̂k,i − V̂k,i+1/2∥2)−1/2, and quantization levels are updated J

times where ℓj with variance bound ϵQ,j in (4.1) and code-length bound NQ,j in (4.2) is used for Tj

iterations with
∑J

j=1 Tj = T . Then we have

E
[
GapC

( 1

T

T∑
t=1

Xt+1/2

)]
= O

(((c+ 1)
∑J

j=1 TjϵQ,j/T + c
)
D2

KT

)
.

In addition, Algorithm 1 requires each processor to send at most 2
T

∑J
j=1 TjNQ,j communication

bits per iteration in expectation.

Suppose that we do not apply compression, i.e., ϵQ = 0. We first remind the template inequality
in (F.1), which holds for any γt and noise model:

T∑
t=1

〈 1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X
〉
≤ ∥X∥

2
∗

2γT+1
+

1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

− 1

2

T∑
t=1

1

γt
∥Xt −Xt+1/2∥2∗.

In the following proposition, we show that under γt and relative noise model in Theorem 4,∑T
t=1 E

[
∥A(Xt+1/2)∥2∗ + ∥A(Xt)∥2∗

]
is summable in the sense that

∑T
t=1 E

[
∥A(Xt+1/2)∥2∗ +

∥A(Xt)∥2∗
]
= O(1/γT ).

Proposition 5 (Sum operator output under relative noise). Let X∗ denote a solution of (VI). Under
the setup described in Theorem 4, we have:

T∑
t=1

E
[
∥A(Xt+1/2)∥2∗ + ∥A(Xt)∥2∗

]
≤ E

[∥X∗∥2∗
2γT+1

]
. (G.1)
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Proof. Substituting X = X∗ into E
[〈

1
K

∑K
k=1 V̂k,t+1/2, Xt+1/2 − X

〉]
and applying the law of

total expectation, we have:

E
[〈 1

K

K∑
k=1

V̂k,t+1/2, Xt+1/2 −X∗
〉]

= E
[ 1

K

K∑
k=1

E[⟨V̂k,t+1/2, Xt+1/2 −X∗⟩|Xt+1/2]
]

= E
[ 1

K

K∑
k=1

⟨Ak(Xt+1/2), Xt+1/2 −X∗⟩
]

= E
[
⟨A(Xt+1/2), Xt+1/2 −X∗⟩

]
≥ E

[
⟨A(Xt+1/2)−A(X∗), Xt+1/2 −X∗⟩

]
≥ βE[∥A(Xt+1/2)∥2∗]

(G.2)

where the fourth and fifth inequalities hold due to the definition of the monotone operator Eq. (VI)
and β-cocoecivity in Eq. (4.3), respectively.

Applying the lower bound in Eq. (G.2) into Eq. (F.1), we obtain:

T∑
t=1

βE[∥A(Xt+1/2)∥2∗] ≤ E
[∥X∗∥2∗
2γT+1

+
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

− 1

2

T∑
t=1

1

γt
∥Xt −Xt+1/2∥2∗

]
.

(G.3)

Moreover, by lower bounding (LHS) of the above:

T∑
t=1

E[∥A(Xt+1/2)∥2∗ =

T∑
t=1

E[1/K
K∑

k=1

∥A(Xt+1/2)∥2] (G.4)

≥ 1

c

T∑
t=1

E[1/K
K∑

k=1

∥V̂k,t+1/2∥2∗] (G.5)

with the second inequality being obtained by the relative noise condition. On the other hand, applying
Cauchy–Schwarz and β-cocoecivity in Eq. (4.3) imply ∥Xt−Xt+1/2∥2∗ ≥ β2∥A(Xt)−A(Xt+1/2)∥2∗.
It follows that:

1

2
E
[ T∑

t=1

β∥A(Xt+1/2)∥2∗ +
T∑

t=1

1

γt
∥Xt −Xt+1/2∥2∗

]
≥ 1

2
E
[ T∑

t=1

β∥A(Xt+1/2)∥2∗ +
T∑

t=1

β2

γt
∥A(Xt)−A(Xt+1/2)∥2∗

]
≥ 1

2
E
[ T∑

t=1

β∥A(Xt+1/2)∥2∗ +
T∑

t=1

β2

γt
∥A(Xt)−A(Xt+1/2)∥2∗

]
≥ 1

2
min

{
β,

β2

γ0

} T∑
t=1

E
[
∥A(Xt+1/2)∥2∗ + ∥A(Xt)−A(Xt+1/2)∥2∗

]
≥ 1

2
min

{
β,

β2

γ0

} T∑
t=1

E
[
∥A(Xt)∥2∗

]
≥ 1

2
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥A(Xt)∥2∗
]

≥ 1

2c
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥V̂k,t∥2∗
]

(G.6)
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where the last inequality holds due to the relative noise condition. Combining the above inequalities
we get the following:

β

c

T∑
t=1

E[1/K
K∑

k=1

∥V̂k,t+1/2∥2∗] ≤ E[
∥X∥2∗
2γT+1

+
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗] (G.7)

and

1

2c
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥V̂k,t∥2∗
]
≤ E[

∥X∥2∗
2γT+1

+
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗]

(G.8)
Therefore, by adding the above inequalities we get:

β

c

T∑
t=1

E[1/K
K∑

k=1

∥V̂k,t+1/2∥2∗] +
1

2c
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥V̂k,t∥2∗
]

≤ 2E
[ ∥X∥2∗
2γT+1

+
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
] (G.9)

We now establish an upper bound on the R.H.S. of Eq. (G.9). We first note that:

E
[ 1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

= E
[ 1

2K2

T∑
t=1

(γt − γt+1)

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗ +
1

2K2

T∑
t=1

γt+1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

≤ E
[ 1

2K
(4M2)

T∑
t=1

(γt − γt+1) +
1

2K2

T∑
t=1

γt+1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

≤ E
[2M2

K
γ1 +

1

2K2

T∑
t=1

γt+1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

≤ E
[
2M2 +

1

2K2

T∑
t=1

γt+1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

≤ E
[
2M2 +

1

K

√√√√1 +

T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]

≲ E[
1

γT+1
].

(G.10)

Therefore, an upper bound on the R.H.S. of Eq. (G.9) is given by :

β

c

T∑
t=1

E[1/K
K∑

k=1

∥V̂k,t+1/2∥2∗] +
1

2c
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥V̂k,t∥2∗
]
≤ E

[∥X∗∥2∗ + 1

γT+1

]
.

(G.11)
■

To establish a lower bound on the L.H.S. of Eq. (G.9), we first note that:

E
[ 1

K2

T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
]
= E

[ 1

K2

(
1 +

T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
)]
− 1

K2

= E[
1

γ2
T+1

]− 1

K2
.

(G.12)
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We also note that:

K

4c
min

{
β,

β2

γ0

}
E
[(
1/K2

T∑
t=1

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗
)]

≤ β

2c

T∑
t=1

E[1/K
K∑

k=1

∥V̂k,t+1/2∥2∗] +
1

2c
min

{
β,

β2

γ0

} T∑
t=1

E
[
1/K

K∑
k=1

∥V̂k,t∥2∗
]
.

(G.13)

Hence, combining, Eqs. (G.11)–(G.13), we can find an upper bound on E[ 1
γ2
T+1

]:

K

4c
min

{
β,

β2

γ0

}
E[

1

γ2
T+1

] ≤
[
∥X∗∥2 + 1

]
E[

1

γT+1
]

=
[
∥X∗∥2 + 1

]
E[

√
1

γ2
T+1

]

≤
[
∥X∗∥2 + 1

]√
E[

1

γ2
T+1

]

with the last inequality being obtained by Jensen’s inequality. So we have

E[
1

γT+1
] ≤ 4c

K
max

{ 1

β
,
γ0
β2

}
. (G.14)

Similar to the proof of Theorem 3, we have

E
[
sup
X
⟨A(X), XT+1/2 −X⟩

]
≤ 1

T
(S1 + S2 + S3) (G.15)

where S1 = E
[

D2

2γT+1

]
, S2 = E

[
1

2K2

∑T
t=1 γt

∑K
k=1 ∥V̂k,t+1/2 − V̂k,t∥2∗

]
, and S3 =

E
[
supX

∑T
t=1⟨

1
K

∑K
k=1 Uk,t+1/2, X −Xt+1/2⟩

]
.

By (G.10), we have

E

[
1

2K2

T∑
t=1

γt

K∑
k=1

∥V̂k,t+1/2 − V̂k,t∥2∗

]
≲ E

[ 1

γT+1

]
. (G.16)

We now decompose S3 into two terms S3 = E
[
supX

∑T
t=1⟨

1
K

∑K
k=1 Uk,t+1/2, X⟩

]
−

E
[∑T

t=1⟨
1
K

∑K
k=1 Uk,t+1/2, Xt+1/2⟩

]
.

Let the supremum on the first terms is attained by X = Xo. We can also establish an upper bound on
the first term using Lemma 6:
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1
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√
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(G.17)

where the last inequality holds by Proposition 5.

Finally, by the law of total expectation, we have:

E

[
T∑

t=1

⟨
K∑

k=1

Uk,t+1/2, Xt+1/2⟩

]
= E

[
T∑

t=1

K∑
k=1

E[⟨Uk,t+1/2, Xt+1/2⟩|Xt+1/2]

]
= 0. (G.18)

Substituting Eq. (G.14), Eq. (G.17), and Eq. (G.18) into Eq. (G.15), we have

E[GapC XT+1/2] = O
( 1

T
E
[ D2

2γT+1

])
. (G.19)

Following similar analysis as in Proposition 4 and applying Lemma 5 with the scaled step size
schedule in Theorem 4, we complete the proof for an adaptive compression scheme along the lines
of (Faghri et al., 2020, Theorem 4).

H EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In order to validate our theoretical results, we build on the code base of Gidel et al. (2019) and run
an instantiation of Q-GenX obtained by combining ExtraAdam with the compression offered by the
torch_cgx pytorch extension of Markov et al. (2022), and train a WGAN-GP (Arjovsky et al.,
2017) on CIFAR10 (Krizhevsky, 2009).

Since torch_cgx uses OpenMPI (Gabriel et al., 2004) as its communication backend, we use
OpenMPI as the communication backend for the full gradient as well for a fairer comparison. We
deliberately do not tune any hyperparameters to fit the larger batchsize since simliar to (Gidel et al.,
2019), we do not claim to set a new SOTA with these experiments but simply want to show that our
theory holds up in practice and can potentially lead to improvements. For this, we present a basic
experiment showing that even for a very small problem size and a heuristic base compression method
of cgx, we can achieve a noticeable speedup of around 8%. We expect further gains to be achievable
for larger problems and more advanced compression methods. Given differences in terms of settings
and the lack of any code, let alone an efficient implementations that can be used in a real-world
setting (i.e. CUDA kernels integrated with networking), it is difficult to impossible to conduct a fair
comparison with Beznosikov et al. (2021).

We follow exactly the setup of (Gidel et al., 2019) except that we share an effective batch size of
1024 across 3 nodes (strong scaling) connected via Ethernet, and use Layernorm (Ba et al., 2016)
instead of Batchnorm (Ioffe & Szegedy, 2015) since Batchnorm is known to be challenging to work
with in distributed training as well as interacting badly with the WGAN-GP penalty. The results are
shown in Fig. 2a, showing evolution of FID and Fig. 2b showing the accumulated total time spent
backpropagating. We note that we do not scale the learning rate or any other hyperparameters to
account for these two changes so this experiment is not meant to claim SOTA performance, merely to
illustrate that
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(a) FID evolution during training
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Figure 2: Comparing full gradient ExtraAdam with a simple instantiation of QGenX. FID stands for Frechet
inception distance, which is a standard GAN quality metric introduced in (Heusel et al., 2017).
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Figure 3: Fine grained comparison of average .backward() times on generator, discriminator, gradient
penalty as well as total training time. The .backward() function is where pytorch DDP handles gradient
exchange
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Figure 4: Comparing Q-GenX with QSGDA
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1. Even with the simplest possible unbiased quantization on a relatively small-scale setup, we
can observe speedup (about 10%).

2. This speedup does not drastically change the performance.

We compare training using the full gradient of 32 bit (FP32) to training with gradients compressed to
8 (UQ8) and 4 bits (UQ4) using a bucket size of 1024. Figure 3 shows a more fine grained breakdown
of the time used for back propagation (BP) where the network activity takes place. GenBP, DiscBP
and PenBP refer to the backpropagation for generator, discriminator and the calculation of the
gradient penalty, respectively. Total refers to the sum of these times.

We used Weights and Biases (Biewald, 2020) for all experiment tracking. Our time measurements
are performed with pythons time.time() function which has microsecond precision on Linux,
measuring only backward propagation times and total training time, excluding plotting, logging etc.
The experiments were performed on 3 Nvidia V100 GPUs (1 per node) using a Kubernetes cluster
and an image built on the torch_cgx Docker image.

H.1 COMPARISON WITH QSGDA

Figure 4 compares Q-GenX with QSGDA of Beznosikov et al. (2022), the only method without
explicit variance reduction. Due to the extra-gradient template, Q-GenX is able to make steady
progress without variance reduction.

I TRADE-OFF BETWEEN NUMBER OF ITERATIONS AND TIME PER ITERATION

In this section, we build on our theoretical results in Theorems 3 and 4 to capture the trade-off between
the number of iterations to converge and time per iteration, which includes total time required to
update a model on each GPU.
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Using the results of Theorems 3 and 4, we can obtain the minimum number of iterations required to
guarantee an expected gap of ϵ, which is a measure of solution quality. In particular, under absolute
noise model and average gradient variance bound ϵQ =

∑J
j=1 TjϵQ,j/T , the minimum number of

iterations to guarantee an expected gap of ϵ is T (ϵ, ϵQ) = (ϵQM
2 + σ2)2D4/ϵ2. Now suppose that

the time per iteration, which includes overall computation, encoding, and communication times to
compute, compress, send, receive, decompress and update one iteration, is denoted by ∆. Decreasing
the number of communication bits, i.e., compressing more aggressively increases the sufficient
number of iterations T (ϵ, ϵQ) and decreases time per iteration, ∆, due to communication savings,
which captures the trade-off. Theoretically, the best compression method is the one with the minimum
overall wall-clock time bounded by T (ϵ, ϵQ)∆. The exact optimal point depends on the specific
problem to solve (dataset, loss, etc.) and the hyperparameters chosen (architecture, number of bits,
etc.), which together determine ϵQ and the implementation details of the algorithm, networking, and
compression, along with the cluster setup and hyperparameters, which together influence ∆. We
defer more refined analysis of the optimal point to future work.

J EXAMPLES MOTIVATING ASSUMPTION 3

In this section, we provide some popular examples which motivate Assumption 3:
Example J.1 (Random coordinate descent (RCD)). Consider a smooth convex function f over
Rd. At iteration t, the RCD algorithm draws one coordinate it ∈ [d] uniformly at random and
computes the partial derivative vi,t = ∂f/∂xit . Subsequently, the i-th derivative is updated as
Xi,t+1 = Xi,t − d · α · vi,t where α > 0 denotes the step-size.

This update rule can be written in an abstract recursive form as x+ = x−αg(x;µ) where gi(x;µ) =
d · ∂f/∂xi · µ and µ is drawn uniformly at random from the set of basis vectors {e1, . . . , ed} ⊆ Rd.
We note that E[g(x;µ)] = ∇f(x). Furthermore, since ∂f/∂xi = 0 at the minima of f , we also have
g(x∗;µ) = 0 if x∗ is a minimizer of f , i.e., the variance of the random vector g(x;µ) vanishes at
the minima of f . It is not difficult to show that Eµ∥g(x;µ)−∇f(x)∥2 = O(∥∇f(x)∥2), which
satisfies Assumption 3 with A = ∇f .
Example J.2 (Random player updating). Consider an N -player convex game with loss functions fi,
i ∈ [N ]. Suppose, at each stage, player i is selected with probability pi to play an action following its
individual gradient descent rule Xi,t+1 = Xi,t + γt/piVi,t where Vi,t = ∇ifi(Xt) denotes player
i’s individual gradient at the state Xt = (X1,t, ..., XN,t) and pi is included for scaling reasons.

Note that E[Vt] = A(Xt) where Ai(x) = ∇ifi(x) for i ∈ [N ]. It is not difficult to show that Vt is an
unbiased oracle for A, and since all individual components of A vanish at the game’s Nash equilibria,
it is also straightforward to verify that Vt satisfies Assumption 3.

K ENCODING

To further reduce communication costs, we can apply information-theoretically inspired coding
schemes on top of quantization. In this section, we provide an overview of our coding schemes along
the lines of (Alistarh et al., 2017; Faghri et al., 2020; Ramezani-Kebrya et al., 2021). Let q ∈ Z+.
We first note that a vector v ∈ Rd can be uniquely represented by a tuple (∥v∥q, s,u) where ∥v∥q
is the Lq norm of v, s := [sgn(v1), . . . , sgn(vd)]

⊤ consists of signs of the coordinates vi’s, and
u := [u1, . . . , ud]

⊤ with ui = |vi|/∥v∥q are the normalized coordinates. Note that 0 ≤ ui ≤ 1 for
all i ∈ [d]. We define a random quantization function as follows:
Definition 2 (Random quantization function). Let s ∈ Z+ denote the number of quantization levels.
Let u ∈ [0, 1] and ℓ = (ℓ0, . . . , ℓs+1) denote a sequence of s quantization levels with 0 = ℓ0 <
ℓ1 < · · · < ℓs < ℓs+1 = 1. Let τ(u) denote the index of a level such that ℓτ(u) ≤ u < ℓτ(u)+1. Let
ξ(u) = (u− ℓτ(u))/(ℓτ(u)+1 − ℓτ(u)) be the relative distance of u to level τ(u) + 1. We define the
random function qℓ(u) : [0, 1]→ {ℓ0, . . . , ℓs+1} such that qℓ(u) = ℓτ(u) with probability 1− ξ(u)

and qℓ(u) = ℓτ(u)+1 with probability ξ(u). Let q ∈ Z+ and v ∈ Rd. We define the random
quantization of v as follows:

Qℓ(v) := ∥v∥q · s⊙ [qℓ(u1), . . . , qℓ(ud)]
⊤

where ⊙ denotes the element-wise (Hadamard) product.
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We note that qℓ = {qℓ(ui)}i=1,...,d are independent random variables. The encoding
CODE ◦Q(∥v∥q, s,qℓ) : R+ × {±1}d × {ℓ0, . . . , ℓs+1}d → {0, 1}∗ uses a standard floating
point encoding with Cb bits to represent the positive scalar ∥v∥q , encodes the sign of each coordinate
with one bit, and finally applies an integer encoding scheme Ψ : {ℓ0, ℓ1, . . . , ℓs+1} → {0, 1}∗ to ef-
ficiently encode each quantized normalized coordinate qℓ(ui) with the minimum expected code-length.
Depending on how much knowledge of the distribution of the discrete alphabet of levels is known,
a particular lossless prefix code can be used to encode qℓ. In particular, if the distribution of the
frequency of the discrete alphabet {ℓ0, ℓ1, . . . , ℓs+1} is unknown but it is known that smaller values
are more frequent than larger values, Elias recursive coding (ERC) can be used (Elias, 1975). ERC
is a universal lossless integer coding scheme with a recursive and efficient encoding and decoding
schemes, which assigns shorter codes to smaller values. If the distribution of the frequency of the
discrete alphabet {ℓ0, ℓ1, . . . , ℓs+1} is known or can be estimated efficiently, we use Huffman coding,
which has an efficient encoding/decoding scheme and achieves the minimum expected code-length
among methods encoding symbols separately (Cover & Thomas, 2006).

The decoding DEQ ◦ CODE : {0, 1}∗ → Rd in Algorithm 1 first reads Cb bits to reconstruct ∥v∥q .
Then it applies Ψ−1 : {0, 1}∗ → {ℓ0, ℓ1, . . . , ℓs+1} to decode the index of the first coordinate,
depending on whether the decoded entry is zero or nonzero, it may read one bit indicating the sign,
and then proceeds to decode its value. It then decodes the next symbol. The decoding continues
mimicking the encoding scheme and finishes when all quantized coordinates are decoded. Note
that the decoding will fully recover Qℓ(v) because the coding scheme is lossless. One may slightly
improve the coding efficiency in terms of the expected code-length by encoding blocks of symbols at
the cost of increasing encoding/decoding complexity. We focus on lossless prefix coding schemes,
which encode symbols separately due to their encoding/decoding simplicity (Cover & Thomas, 2006).

To implement an efficient Huffman code, we need to estimate probabilities w.r.t. the symbols in
our discrete alphabet {ℓ0, ℓ1, . . . , ℓs+1}. This discrete distribution can be estimated by properly
estimating the marginal probability density function (PDF) of normalized coordinates along the lines
of e.g., (Faghri et al., 2020, Proposition 6).

Given quantization levels ℓt and the marginal PDF of normalized coordinates, K processors can
construct the Huffman tree in parallel. A Huffman tree of a source with s + 2 symbols can be
constructed in time O(s) through sorting the symbols by the associated probabilities. It is well-known
that Huffman codes minimize the expected code-length:
Theorem 7 (Cover & Thomas 2006, Theorems 5.4.1 and 5.8.1). Let Z denote a random source with
a discrete alphabet Z . The expected code-length of an optimal prefix code to compress Z is bounded
by H(Z) ≤ E[L] ≤ H(Z) + 1 where H(Z) ≤ log2(|Z|) is the entropy of Z in bits.
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