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Abstract
LiReF4 ("Re" stands for rare-earth element) and their doped derivatives have long been

recognized as a family of compounds that exhibit rich phenomena in quantum magnetism,

drawing wide attention to them from both fundamental researchers and industrial applica-

tion designers. In particular, LiHoF4 is considered one of the best real-world realizations

of the 3D dipolar Ising model, which is of tremendous importance in facilitating our un-

derstanding of quantum phase transition, critical behaviors, and magnetism in general.

However, despite of decades of study, LiHoF4 is yet to be fully described and a thorough

understanding of it is hindered by complications arising from its dominant long range

interaction, many-body effect, and diverse inter-particle interactions. One particular exam-

ple is the strong hyperfine interaction present in LiHoF4 that has a plethora of physical

consequences with unclear mechanisms in addition to the further split of electronic spin

states. Partly due to the fact of that these finer electro-nuclear states lie above the oper-

ating frequency of conventional NMR, and below the energy resolution of most neutron

scattering instrument, scarce reports exist on the investigation of the hyperfine splitting

of electronic states in LiHoF4. In the present text, we take advantage of a high-finesse

re-entrant cavity resonator to resolve these electro-nuclear spin states. In addition, by de-

riving an adequate theoretical description of the cavity-spin hybrid system under existing

frameworks, we also make an attempt to understand their effects on some of the magnetic

properties of LiHoF4.
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Résumé
Les matériaux de la famille des LiTRF4 ("TR" signifie Terre Rare) et leurs dérivés dopés

sont reconnus depuis longtemps comme une famille de composés qui sont associés à une

vaste de gamme de phénomènes liés au domaine du magnétisme quantique. Ils attirent

particulièrement l’attention des chercheurs en science fondamentale et à la fois aussi des

concepteurs d’applications industrielles. Le LiHoF4 est en particulier considéré comme

l’une des meilleures réalisations expérimentales du modèle d’Ising dipolaire en trois dimen-

sions, et relève donc d’une importance capitale dans l’amélioration de la compréhension

des transitions de phase quantiques, des comportements critiques ainsi que du magné-

tisme en général. Cependant, en dépit de décennies d’études, il reste toujours à établir un

modèle complet décrivant le LiHoF4 et sa compréhension approfondie est entravée par des

complications résultant de l’interaction longue portée, dominante dans le système, d’effets

de physique à plusieurs corps, et de diverses interactions entre particules. Un exemple

de ces complications est la forte interaction hyperfine présente dans le LiHoF4 qui induit

une pléthore de conséquences aux mécanismes abscons, s’ajoutant à la levée de dégénéres-

cence des états électroniques de spin. Ces états fins électro-nucléaires sont associés à une

fréquence caractéristique trop élevée pour être sondés par la Résonnance Magnétique Nu-

cléaire (RMN), et ne sont pas non plus étudiables au travers de techniques habituelles de

diffusion de neutrons, qui présentent une résolution en énergie trop grossière. Le manque

d’adéquation des techniques expérimentales conventionnelles a considérablement limité le

nombre d’études de la structure hyperfine du LiHoF4. Dans la dissertation ci-après, une

cavité résonante réentrante à haute finesse est utilisée pour observer ces états de spin

électro-nucléaires. De plus, en établissant une description théorique ad hoc du système

hybride spin-cavité, un cadre général est établi, permettant une meilleure compréhension

de certaines des propriétés magnétiques du LiHoF4..
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1 Overview of topics

1.1 Overview

As a member of the LiReF4 compound family that harbors rich physics[34, 79], LiHoF4

has been the subject of intense research for decades[6, 32, 9, 13, 72] with a primary

focus on its magnetic properties. Being a 3D insulating magnet, LiHoF4 exhibits a Curie

temperature much lower than the boiling point of Helium-4 at 1.53 K[34, 51], below which

and down to 0 K, LiHoF4 enters an ordered state by spontaneous symmetry breaking

where all of its electronic spins are ferromagnetically aligned. Moreover, as we shall see

in details in later chapters that, the crystal electrostatic field (CEF) effect present in

LiHoF4 results in a doublet as its ground state and the first excited state lies far above

it, and ultimately allows one to map the magnetic hamiltonian of LiHoF4 onto the Ising

model[9]. Furthermore, when an external magnetic field is applied perpendicular to the

crystallographic c-axis of LiHoF4 , it induces quantum fluctuations in the spin ensemble,

granting the magnetic system a quantum nature. These features of LiHoF4 made it one

of the ideal naturally occurring candidates for studying the Ising model and its dynamic

properties. Since an analytical solution to 3D Ising model is yet to be found, LiHoF4 is also

under the spotlight as a potential platform for testing new theories on the topic. At large

fields, the ferromagnetic order is destroyed when crossing the quantum critical points

(QCP), a phenomenon known as quantum phase transition that is found in a plethora

of many-body-systems. This provides yet another strong incentive for studying LiHoF4

with the aim of better understanding of quantum phase transition and related critical

phenomena.

Moreover, the dominant contribution to the many-body effects in LiHoF4 is from the
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Chapter 1. Overview of topics

long-range dipole-dipole interaction, which is roughly 10 times bigger than the exchange

interaction[61]. Such a long-range interaction becomes intractable as the system size

grows, and therefore very little about Ising models with a long-range interaction in the

thermodynamic limit is known analytically. However, in the meantime, dipolar interaction

is prevalent among magnetic systems and particularly strong for dense ensembles of large

spins, the latter of which is desirable for applications in quantum computing. Therefore

studying dipolar ferromagnetic systems such as LiHoF4 is not only of fundamental research

interests, but also helps on the application end to illuminate effects that dipole-dipole

interaction may have on the coherence time of qubit states, their decay dynamics and

subjects alike.

Lastly, LiHoF4 is also relevant to another vibrant field of condensed matter physics in the

recent past, namely the study of random and disordered systems, where quench dynamics

and glass transitions have attracted a lot of attention. Among all the systems, spin glass

is one of the most prominent subjects that is still being actively studied to date, and it is

reported that LiHoF4 doped with non-magnetic ions such as Yttrium can experimentally

realize such a system[62, 68, 58]. Furthermore, there are diverse and intriguing behaviors

of LiHoxY1−xF4 at different levels of doping, with the most notably a decrease of magnetic

phase transition temperature with increasing impurity concentration until it undergoes a

spin-glass transition near x ∼ 20%[2, 27]. Once again, apart from the research interests in

these systems at a fundamental level, some motivations for studying LiHoxY1−xF4 systems

as well stems from their potential applications in the realm of quantum computing and

quantum information due to its unique dynamical properties[26, 70].

1.2 LiHoF4 as a quantum magnet

Having been put under magnifying glass for decades, there had been a number of interest-

ing experimental discoveries on LiHoF4 . One important realization about LiHoF4 as a

3D Ising magnet was that it isn’t perfect in terms of its magnetic phase diagram which

deviates quite appreciably from that of at ideal Ising model at low temperatures[9]. This

is revealed by a direct comparison between the experimentally measured phase boundary

of LiHoF4 and the calculated phase boundary for an ideal Ising magnet, both of which are

shown in figure 1.1(a) with the former plotted in solid circles and the latter in asterisks.

The difference in critical fields at zero temperature measures to nearly 2 T by extrapolation,

and is largely visible below 400 mK.

2



1.2 LiHoF4 as a quantum magnet

Figure 1.1: (a) Magnetic phase diagram of LiHoF4 , solid markers are measured values
from the present experiment. The dotted line is the calculated values for an ideal Ising
magnet without hyperfine interaction. Inset: Lowest electronic excitation mode of LiHoF4
measured (Solid markers) by inelastic neutron scattering experiment. The solid and
dashed lines represent calculations of the excitation mode by 1/z expansion method with
and without the inclusion of hyperfine interactions[40, 61]. Figure credit: Ref. [60]. (b)
Measurement results at 300 mK on the excitation spectra of LiHoF4 by inelastic neutron
scattering at the critical field of 4.2 T (left panel) and 3.6 T (right panel). Figure credit:
Ref. [60]. (c) Hyperfine splitting of the ground state doublet for the single-ion-hamiltonian
of LiHoF4 . Solid blue lines represent electro-nuclear spin states. The insets illustrate the
electronic (blue arrows) and nuclear spin (red arrows) configurations in different ordering
state (ferromagnetic or polarized paramagnetic) under a transverse magnetic field. (d)
Reproduction of the RPA excitation modes from the ground state (|0〉→ |n〉) from Ref. [48].
Insets: expanded view near the QCP of the lowest manifold of excitations.

The mechanism for this enhancement of critical field is well understood and attributed to

the presence of hyperfine interaction, which will be detailed in later chapters. Here we

only provide a hand-waving explanation: In LiHoF4 , all contributions to the net magnetic
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Chapter 1. Overview of topics

moment come from the 4 f electrons of Ho3+ ions, whose L-S coupling results in a set of 17

eigen-states then split by the CEF as mentioned above. The most important net effect is

a doublet ground state with a larger spin projection along the quantization axis at zero

temperature than that along the external field direction in the polarized paramagnetic

state. The holmium ions in LiHoF4 are predominantly Ho-165 with a nuclear spin moment

of 7
2 . An outcome of the Holmium’s 4 f orbit being very close to the nuclei is the presence of

a strong onsite hyperfine interaction (A ∼ 3.361×10−3 meV), which is roughly 30 times

bigger than the exchange interaction in LiHoF4 [61]. Consequently, at temperatures

comparable to this energy scale (≤ 280mK), the coupling of the electronic spin degree of

freedom to that of the nuclear spin becomes so important that it affects the stability of

ordered state, and ultimately facilitates an increase of critical fields[9] with the help of a

comparatively bigger diagonal spin projection mentioned above[13]. This enhancement of

critical field was also recorded by inelastic neutron scattering measurement in Ref. [60],

the key result is taken from the literature and presented in the inset of figure 1.1(a), where

the solid markers trace out an experimentally measured excitation spectrum of LiHoF4

at ∼ 300 mK, whose cusp marks the corresponding critical field. The value of this critical

field is apparently shifted toward higher field comparing to the calculated value (dashed

line) without taking into consideration the hyperfine interaction.

On the other hand, a related experimental observation in regard to the excitation spectrum

of LiHoF4 was also recorded in the same experiment, which is the halt of complete

softening of the electronic excitation mode at the QCP[60]. The authors of the same

report showed that the origin of this incomplete mode softening is again the hyperfine

interaction, and it can be seen again in the inset of figure 1.1(a): the calculated electronic

excitation mode softens completes at the QCP when the hyperfine interaction is excluded

(dashed line), while the same mode softens only to a finite gap at the QCP and agrees

with the experimental results when the hyperfine interaction is included (red solid line).

Accompanied by this finite gap is a "transfer" of spectral weight, manifested as neutron

absorption intensities, to electro-nuclear excitation modes at energies lower than the

resolution of the instrument used here. This observation is captured in the experimental

absorption data at finite momentum transfer given in figure 1.1(b), where the left and

right panels show respectively, the same measurement repeated at and below the critical

field. The former has an obviously bigger absorption intensity than the latter owing to the

soft mode at the elastic line.

The experimental observation of incomplete softening of electronic excitation mode in
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1.2 LiHoF4 as a quantum magnet

LiHoF4 then in turn motivated some theoretical works on the subject. This is because

it raises a controversial issue about the quantum phase transition in LiHoF4 since it

may imply a violation of basic thermodynamics, which prescribes for all continuous phase

transitions a diverging double-time-correlation-function at the QCP that ultimately results

in the closing of an energy gap, or in other words, a completely soft mode[64]. One notable

example of these theoretical works is Ref. [48], where the electronic excitation mode indeed

doesn’t soften completely, instead, the softening was found by RPA calculations to be

transferred to the lowest electro-nuclear excitation mode.

A summary of the finding from Ref. [48] is reproduced and plotted in figure 1.1(d) to be

compared to the MF results in figure 1.1(c), where we also provide a pictorial illustration of

the electro-nuclear spin configurations between ordered and disordered states in the inset.

In both figures, the two bundles of blue curves are the electronic ground state doublet, as

functions of transverse magnetic field, that each is split by the hyperfine interaction. By

comparison, though much of the eigen-states remained the same, two differences stand

out prominently in figure 1.1(d). The first is again the up shift of critical field marked

by the cusps in the eigen-states. The second change is the modification of two single

electro-nuclear spin states out of each electronic spin state manifold, with the one from

the upper state softening incompletely at the critical point, shown in the main panel, and

the one from the ground state manifold softens completely at the QCP as made clear in

the insets of the same figure. Although these findings satisfyingly resolve the conflict of

established thermodynamics theorems and experimental observations and echo both the

observation and proposition of Ref. [60], to date, an experimental smoking-gun-evidence

remains elusive despite some early promising success reported in Ref. [45].

Apart from the aforementioned problems, other issues such as the sudden "collapse" of

the ordered state at high temperature regime (seen in fig. 1.1), to a large degree, remain

a mystery despite a recent progress[19]. These fundamental research interests along

with the prospective applications in quantum computing give plenty of life to LiHoF4 as

a research subject. Motivated by these aspects of the topic, we carried out our work on

the compound with a focus on the hyperfine interaction and its effect on the dynamical

properties of LiHoF4 . Given the energy resolution required is not easily accessible by

conventional techniques such as NMR, ESR, and neutron scattering, we employ techniques

from the recent field of cavity magnonics at radio frequency (RF) as a spectroscopic method

to study these electro-nuclear spin states and excitation modes in LiHoF4 [41, 45].

All of these theoretical and experimental findings motivate us to look into the hyperfine
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Chapter 1. Overview of topics

interactions in LiHoF4 that promise both interesting fundamental physics and future tech-

nological applications. But due to the constrain of relevant energy scales the interaction

strength puts on the energy resolution, some of the conventional experimental techniques

either fall short on that aspect (e.g. NMR, EPR) or are not optimized for those energy

scales (e.g. neutron scattering). However, there do exist techniques that can probe at

great precision the hyperfine states such as optical absorption spectroscopy in Ref. [47].

Another technique is to use 2D radio-frequency (RF) co-planar cavity to couple directly

"pump and probe" hyperfine levels with photons of appropriate energies such as in Ref.

[66] and Ref. [41], the latter of which became the precursor of the present work. Despite

the concept of this technique being fairly straightforward, the implementation of it is

very challenging, primarily due to the fact that mode volumes of co-planar cavities are

innately small, this combined with typically low quality factor for being semi-open to

the free space, greatly hinders coupling to the spin ensembles strongly enough to for the

"pump and probe" scheme to work. Therefore, for our purpose, we take a step forward and

employ a well established spectroscopic technique that is sometimes known as the Cavity

Magnon-Polariton (CMP) method, which uses high-finesse 3D cavities to excite the spin

ensembles, for the current and on-going work on the investigation of hyperfine interaction

and its implications in LiHoF4 .

1.3 Cavity magnonics

Cavity magnonics, built on the well developed principles of quantum electrodynamics

(QED) and quantum optics, is an emerging field of perturbative spectroscopic method[59].

The chief idea is to hybridize magnetic excitations of spin ensembles inside cavities with

the photon/electromagnetic (EM) fields of the cavities in quantum/classical limit with the

aim of studying the underlying spin systems. Cavity resonators employed for magnon-

polariton coupling can take on different forms, such as co-planar cavity resonators[66], 3D

cavity[1], optical ring cavity[16] and so on. Regardless of the detailed format of the cavity,

the common feature is that, due to the physical and electromagnetic properties of an EM

cavity and the resulting boundary conditions, standing waves with well defined resonating

frequencies can sustain on these structures. By merit of such a frequency selection, one

gains control over the EM environment of the spin system inside the cavity. Energies can

then be injected and stored using these standing EM waves that would last for a long

duration, or many periods, before they decay through incoherent dissipation or cavity

leakage.
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1.3 Cavity magnonics

Conventionally, the magnetic materials being studied using cavity magnonics are mostly

paramagnetic salt such as DPPH[1, 10]. In principle, the higher the photon density and the

more spins, the stronger the coupling, which is desirable because it maximizes the energy

transfer for faster information extraction or efficient spin manipulation. However, since in

practice the photon density cannot increase unbounded, and the number of participating

spins are limited by sample volume and spin density, there is a limit to the coupling

strength for light-matter interaction one can achieve this way. Consequently, some of the

focus in the field lately has been on the realization of strong and ultra-strong coupling

between cavity fields and magnetic materials via other means. Some recent works have

turned attention to ferromagnetic materials with large effective spins such as yttrium iron

garnet (YIG)[50, 54] and achieved strong coupling in the sub-mm regime. Some efforts on

achieving strong coupling with 2D superconducting cavity and diamond NV-centers were

also reported [66], demonstrating the possibility of interacting coherently with nuclear

spin states. Meanwhile, so called ultra-strong coupling has also been demonstrated in both

superconducting artificial atoms and doped YIG samples[55, 37].

Other research focuses on the light-matter interaction inside an EM cavity have also

progressed. Notable examples include cavity mediated spin current manipulation[5],

active control of magnon-polariton coupling strength[33, 11], dissipative magnon-polariton

coupling[75, 78, 57], and magnon dark mode[8, 80]. Due to their limited relevance to the

present work, we will leave out the details.

Over the last decade, the field of cavity magnonics has experienced rapid development with

some of the sophisticated experimental and analytical techniques becoming mature and

standardized. The plethora of existing literature provide a wealth of information on how

to adapt it for different purposes. Driven by these appealing prospects, the accessibility to

a wide frequency range, and the applicability for general purposes, we employed some of

the aforementioned techniques of cavity magnonics to investigate the electro-nuclear spin

states in LiHoF4 , details of which will gradually unfold in the following chapters.
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2 Theoretical methods

In this chapter, for completeness, we will review some of the central theoretical techniques

or concepts employed in the project for the investigation of electro-nuclear spin states in

LiHoF4 . Many of these techniques were originally introduced a long time ago and have

been undergoing development for decades. Plenty of literature existing prior to the present

text gave detailed and thorough treatment of these subjects, we therefore only provide

a concise, but self-contained, outline of them along with examples by applying them to

simple toy models.

2.1 Mean Field Approximation of Spin Hamiltonian

The mean field theory (MFT) has found a wide range of applications in multiple fields

of condensed matter physics owing to its simplicity yet powerful capability of capturing

equilibrium physics in bulk states, where fluctuations of internal degrees of freedom is

of less importance. In essence, as its name implies, the MFT assumes uniformity over an

entire system under investigation and hence reduces many-body problems to single-body

problems. Because of the strong connection between LiHoF4 and the Ising model, we thus

choose to illustrate the main idea of MFT by applying it to the ideal transverse Ising model.

We start with the definition of the model with the following hamiltonian:

Ĥ = ∑
<i, j>

Ji jŜz
i Ŝz

j −
∑

i
BxŜx

i (2.1)

where Ji j characterizes interacting strength between two spins. In general, for interaction

ranges longer than the nearest neighbors, Ji j becomes a function dependent on inter-spin

distance. Ŝα
i stands for the α̂ (α = x, y, z) Cartesian component of an effective spin on

9



Chapter 2. Theoretical methods

Figure 2.1: (a) MF eigen-states of the transverse Ising model at zero-temperature as
a functions of magnetic field. Inset: expectation value of the spin projection along the
quantization axis as a function of temperature at zero field. (b) Color plot: magnetic phase
diagram from the MF solutions to the Ideal Ising model defined by Eq. 2.2, axes are in
units of spin-spin interaction strength (J). Red curve: phase boundary defined by the
vanishing point of 〈Sz〉. (c) Flow chart illustration of general steps for finding numerical
solutions to a mean field spin hamiltonian.

lattice site i. Bx is the transverse magnetic field perpendicular to the quantization axis. In

the present example, we have arbitrarily chosen it to be along x̂ and homogeneous across

the entire spin system. The first term is clearly a many-body term as it sums over all the

spin pairs on the lattice; and the second term, which doesn’t commute with the first term

and hence nor with the total hamiltonian, is what induces quantum fluctuation and gives

the system its quantum nature. Consider the simple case of a single domain structure, it is

then reasonable to assume that there exists a system-wide mean value for the expectation

value of spins, denoted by 〈〈Ŝz〉〉. Here the double angle bracket implies it’s an average

on two levels, the first is a real space average over all sites of the system, and the second

is a quantum mechanical expectation value. Subsequently the spin on each site can be

10



2.1 Mean Field Approximation of Spin Hamiltonian

rewritten in terms of fluctuations around this mean value: µ̂z
i = 〈〈µ̂〉〉+δµ̂z

i and the total

hamiltonian can be rewritten as:

Ĥ =∑
i

{∑
j<i

Ji j
[〈〈Ŝz〉〉+δŜz

i
][〈〈Ŝz〉〉+δŜz

j
]−BxŜx

i
}

=∑
i

{∑
j<i

Ji j
[〈〈Ŝz〉〉2 +δŜz

i 〈〈Ŝz〉〉+〈〈Ŝz〉〉δŜz
j +δŜz

i δŜz
j
]−BxŜx

i
}

=∑
i

{∑
j<i

Ji j
[〈〈Ŝz〉〉2 +2〈〈Ŝz〉〉]Ŝz

i −BxŜx
i
}

︸ ︷︷ ︸
ĤMF

+∑
j<i

Ji jδŜz
i δŜz

j

(2.2)

In the last step, we have also made the substitution δŜz
i = Ŝz

i −〈〈Ŝz〉〉 and discarded the

resulting constant term, since all it does is shifting all the eigen-states uniformly with

no effects on the excitation spectra and corresponding spectral weights that primarily

interest us. The essence of MFT is to assume that fluctuations on different sites are

random and not correlated, and therefore when integrated over the entire system the

last term vanishes (
∑
j<i
δŜz

i δŜz
j = 0), leaving the dominant spin-spin interaction effect

on individual spins entirely up to 〈〈Ŝz〉〉. This effectively replaces pair-wise summation

over the lattice with a summation of single-site hamiltonian that each interacts with the

same scalar internal field who oneself is a result of an averaged effect from the spin-spin

interaction. In the new summation, all terms except for the very last one are essentially

simple additives of single-site hamiltonians since the summation over j only affects the

interaction strength Ji j on an infinite lattice. The simplest case of this interaction is then

the isotropic exchange interaction among nearest neighbors, where Ji j =J is merely a

constant multiplied by the coordination number. In the case of dipole-dipole interaction,

as is for LiHoF4 , Ji j is slightly more complicated as it depends on both the distance and

relative bearing between spins, but it is nonetheless a trivial quantity to calculate under

the MFT.

Since the mean field approximation completely ignores the spin-spin correlation, it natu-

rally fails whenever this effect is strong, which is typically the case near critical points

when the correlation function (〈〈δŜz
i δŜz

j 〉〉) diverges. One subsequently can immediately

see that MF approximation is better suited for, 1. when fluctuations are small such as at

low temperatures and away from critical points; and 2. long range interaction dominant

systems. The reasoning for the latter assertion lies in the fact of that the more participants

of the interaction, the less important is the fluctuation of an individual spin.

In some limiting cases, analytical solutions to the hamiltonian in Eq.2.2 can be found, and

11
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hence various expectation values of the observables could be computed[64, 46]. However,

in the case of LiHoF4 , the dominant interaction is long range magnetic dipole interaction,

which creates a rather big hurdle in finding analytical solutions. Despite the fact of that

when all spins are considered equal, as they are in the MFT, the dipole-dipole interaction

becomes a mere scalar field from integration, in practice we nonetheless resort to numerical

methods for solutions. Therefore, we detail here the steps taken in finding such solutions:

the eigen-states and functions are found by a self-consistent process kicked off with an

educated guess of initial states, and the constructed hamiltonian in the basis of Ĵz is

diagonalized repeatedly until both the eigen-energies and the order parameter converge.

An abridged flow chart of this process is given in figure 2.1(c).

Since we are primarily concerned with the magnetic properties, the natural choice for the

order parameter here is magnetization, which is proportional to the expectation value

of the spin moment under MF approximation. Shown in figure 2.1(a) is the MF solution

obtained numerically to the eigen-states of a 1D transverse Ising model defined by Eq.

2.2, where Ji j = J < 0 is finite only among nearest neighbors. We demonstrate the

spontaneous symmetry breaking by plotting 〈Sz〉 at zero field as the order parameter in

the inset of the same figure. The value of 〈Sz〉 can be seen to change continuously as a

function of the temperature, betokening a continuous phase transition. The value of 〈Sz〉
is also plotted in a color map in figure 2.1(b) now as a function of both temperature and

magnetic field. A red curve is plotted on top of the color map, demonstrating a smooth

and monotonic curvature over the entire variable range. It marks the magnetic phase

boundary that separates the region where the order parameter is finite from those where

it vanishes. Most notably, it marks the zero-field-critical-temperature at Tc = |J |/2 and

the zero-temperature-critical-field at Bc = |J |, which is consistent with the Ising phase

boundary shown in blue asterisk in Fig. 1.1 from Chpt. 1.

As briefly mentioned in Chpt.1, an significant point of interest in LiHoF4 is the presence of

a strong hyperfine interaction and its consequences. Therefore, we also consider the case

of an ideal Ising model with hyperfine interactions and add an appropriate term to the

hamiltonian in Eq. 2.1:

Ĥ = ∑
<i, j>

Ji jŜz
i Ŝz

j −
∑

i

[
BxŜx

i + AŜi · Î i
]

(2.3)

where Î i represent the nuclear spin on lattice site i, and A is the hyperfine interaction

strength. First of all, noting the matching subscripts between the electronic and nuclear
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2.1 Mean Field Approximation of Spin Hamiltonian

Eigen-vectors α0,n(0) α1,n(0) α2,n(0) α3,n(0)
|0〉 1 0 0 0
|1〉 0 ∼−0.99 ∼−0.099 0
|2〉 0 0 0 1
|3〉 0 ∼−0.099 ∼ 0.99 0

Table 2.1: Decomposition of the eigen-states to the Ising Hamiltonian with hyperfine
interaction in Eq. 2.3.

spins, Eq. 2.3 takes into consideration only same-site (onsite) interactions, which is

reasonable in most of cases due to the fact that: 1. nuclear moments are typically very

small and the resulting dipole field decays rather fast; 2. nuclear moments are deeply

buried in the electron clouds, and the strongest interaction takes place primarily between

the nuclear spin moments and those from electrons that travel in orbits close to the

nucleus; 3. the magnetic moments from the electron clouds partially shield the dipole field

emanating from the nuclear spins. Moreover, the nuclear magnetic moment in principle

also interacts with the external magnetic field, but in most of the cases it is an exceedingly

weak interaction (e.g. it is more than 500 times smaller than the electronic Zeeman

interaction in LiHoF4 [48]), we therefore omit this interaction in the present case for

simplicity. Lastly, noting the vector product between the nuclear and electronic spin

moments, the hyperfine interaction can be isotropic or anisotropic, depending on tensor A.

Since the hyperfine interactions is isotropic in LiHoF4 , we will therefore add an isotropic

hyperfine interaction to our simple two-level Ising model and continue our calculation with

it.

The coupling of the two degrees of freedom then expand the dimension of the Hilbert space

from 2 to 4, and the product state of the electronic and nuclear spins form a new set of

orthogonal basis. Since they are both Ising spins, we can label these states using the

shorthand notation |SI〉 = |S〉⊗ |I〉: | ⇑↑〉, | ⇑↓〉, | ⇓↑〉, | ⇓↓〉, where we use the bigger arrow

for the electronic spin and the smaller one for the nuclear spin.

The rest of the procedure is the same as described before: the hamiltonian in Eq. 2.3 that

is now expressed in the aforementioned new basis is first diagonalized numerically under

the MF approximation, to find the eigen-states (En) and eigen-functions (|n〉). Then the

found solutions are used to compute for both expectation values of Ŝ and Î. To carry out

the calculation, we set |S| = |I| = 1/2 and Ax = A y = Az =−0.2|J |. The eigen-states found
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can be expressed in the electro-nuclear spin basis as |n〉(Bx)=α0,n(Bx)| ⇑↑〉+α1,n(Bx)| ⇑↓
〉+α2,n(Bx)| ⇓↑〉+α3,n(Bx)| ⇓↓〉, where n = 0,1,2,3 and the first subscript of α keeps track

of its corresponding basis vector. These coefficients (weights) of the expansion at zero field

is summarized in table 2.1. The results of En, 〈Ŝ〉, and 〈Î〉 are presented in figure 2.2(a-c)

in the same order.

The important thing to note from these eigen-states is that, the hyperfine interaction

entangles the spin states | ⇑↓〉 and | ⇓↑〉 and allows for flip-flop transitions even in absence

of an external magnetic field. The subsequent application of the transverse field then

further introduces tunneling among other electro-nuclear spin states.

Reading from figure 2.2(a-c), the eigen-states for the Ising model with hyperfine interaction

are seen to resemble those in figure 2.1(a), except for that the each of the original electronic

spin states is now split into a pair of electro-nuclear spin states. Each pair are parallel

between themselves as functions of external magnetic field throughout the variable range.

As to the expectation values of the electronic and nuclear spins, it is clear from figure 2.2(b,

c) that the presence of the nuclear degree of freedom, or spin bath, does not change the

continuous nature of the phase transition, which is manifested in the continuous change

of 〈Ŝz〉. On top of that, the three Cartesian components of both electronic and nuclear

spins are identical to each other as functions of magnetic field, "moving synchronously"

throughout the variable range. Thus the spin projections along the quantization axis of

both Ŝz and Î z vanish together, and at exactly the same location (Bc = |J |) as before when

hyperfine interaction was not considered.

These result seem to suggest that the hyperfine interaction does not affect the critical

behavior of the Ising system. However, the situation becomes very different if one intro-

duces an anisotropy to the hyperfine interaction[48]. To this end, we set Ax = A y =−0.2|J |
and Az =−|J |, then carry out the same MF calculation and present the results in figure

2.2(d-f). According to the results, now as the hyperfine anisotropy makes the interaction

between Ŝz and Î z 5 times stronger than those between spin projections along the other

two axes. The highest eigen-state is, on the one hand, pushed further up in energy at zero

field, and, on the other hand, the eigen-states no longer evolve synchronously along the

field axis but develop an uneven spacing among themselves at different external fields.

Furthermore, the anisotropic hyperfine interaction now creates a strong preference for

the nuclear spin to align along the quantization axis, and hence introduces an indirect

competition between the transverse (electronic) Zeeman interaction and the hyperfine
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2.1 Mean Field Approximation of Spin Hamiltonian

Figure 2.2: Eigen-states of Ising models with isotropic (a) and anisotropic (d) hyperfine
interactions. (b, c) Expectation values of electronic and nuclear spins as functions of
magnetic field for Ising model with isotropic hyperfine interaction (Ax = A y = Az = 0.2J

and J is exchange interaction strength). (e, f) The same as (b, c) but with anisotropic
hyperfine interaction (Ax = A y = 0.2J , Az = 1.0J ).

interaction as 〈Ŝz〉 diminishes while 〈Ŝx〉 grows. The foremost consequence of this compe-

tition is an enhanced critical field from the original value of Bc = |J | to Bc = 2.2|J |, which

is again marked by the vanishing point of 〈Ŝz〉 along the field axis. Though in this case, the

spin projections along the quantization axis for electronic and nuclear spins have overall

different line shapes, they nonetheless vanish at the same field as seen in figure 2.2(e, f).

Thus we have shown that the addition of hyperfine interaction doesn’t automatically

warrant an increase of critical field for the simple two-level Ising model, but require

an Ising anisotropy in the hyperfine interaction. This appears to be inconsistent with

observations made in the case of LiHoF4 , where the hyperfine interaction is isotropic and

causes an increase of critical field. If LiHoF4 is indeed described by the Ising model in a

nuclear spin bath, there is then no obvious source from which an anisotropic hyperfine

interaction would arise. Therefore, it appears that the simple two-level Ising model is

insufficient to encompass all aspects of LiHoF4 , and we shall return to this point in Chpt.

3 to develop a more adequate toy model.
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2.2 Dynamical Susceptibility

As the name implies, dynamical susceptibility, as opposed to static susceptibility, charac-

terizes a system’s response to time-dependent excitations. It encompasses a vast zoo of

excitations in magnetic, electronic, mechanical systems etc. There exists many well written

books on the subject matter[39, 56, 20, 77, 46]. We will hence not spend pages to reinvent

the wheel, but rather to just give an outline of relevant results in the specific context

of an localized spin system under the excitation of a time-dependent external magnetic

field. We will then make use of the model built in the previous section to demonstrate the

application of these results.

2.2.1 Linear Response Theory

We start by considering a quantum mechanical system under a longitudinal time-dependent

magnetic field. For simplicity, we assume the field is homogeneous across the entire system.

Thus the system can be described using the following hamiltonian:

Ĥ = Ĥ0 −Bz(t)
∑

i
µ̂z

i︸ ︷︷ ︸
Ĥ (t)

; (2.4)

where Bz(t) is the time-dependent longitudinal field. In the present pursuit, we would

like to know how the system’s response to this external excitation manifested in the

observable 〈Ŝz〉. For this purpose, we may define a response function (χzz(t)) that relates

the expectation value of Ŝz some point later in time (t) after the external field is turned on

at t0 to Bz(t) itself as:

〈Ŝz(t)〉 = 〈Ŝz(t0)〉+ 1
gLµB

∫ t

t0

χzz(t− t′)Bz(t′)dt′ (2.5)

then, by assuming Bz(t) is adiabatically turned on at t0 and taking t0 to −∞, a Fourier

transformation to the frequency space yield a simple expression: gLµB〈Ŝz(ω)〉 = χzz(ω)|Bz(ω)|,
where χzz(ω) is the response function we sought after in the frequency space, and Bz(ω) is

the Fourier transform of the time-dependent field. To acquire the explicit expression of

χzz(ω), we consider the time evolution of density operator ρ̂, which is governed by equation
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of motion:

d
dt
ρ̂(t)= i

ℏ
[Ĥ , ρ̂]

= i
ℏ

[Ĥ , ρ̂0 + ρ̂(t)]

= i
ℏ

{
[Ĥ , ρ̂0]+ [Ĥ , ρ̂(t)]

} (2.6)

in the second step, we have separated the density operator into time-independent and time-

dependent parts, and the linear response theory roots in discarding the second term, which

is higher order due to Ĥ is already linearly proportional to a time-dependent function

Bz(t′). Moreover, due to the fact that [Ĥ0, ρ̂0]= 0, we thus have:

d
dt
ρ̂(t)= i

ℏ
[Ĥ (t), ρ̂0]

= i
ℏ

[
∑

i
µ̂z

i , ρ̂0]Bz(t)
(2.7)

and this leads to

ρ̂(t)= ρ̂0 + i
ℏ

∫ t

t0

[
∑

i
µ̂z

i , ρ̂0]Bz(t′)dt′ (2.8)

since for any operator Ô, 〈Ô(t)〉 = Tr{ρ̂(t)Ô}, Eq. 2.5 implies:

〈Ŝz(t)〉 = 〈Ŝz(t0)〉+ i
ℏ

Tr{
∫ t

t0

[
∑

i
µ̂z

i , ρ̂0]ŜzBz(t′)dt′}

= 〈Ŝz(t0)〉+ i
ℏ

∫ t

t0

Tr{ρ̂0[Ŝz,
∑

i
µ̂z

i ]}︸ ︷︷ ︸
〈[Ŝz

i ,Ŝz]〉

Bz(t′)dt′

= 〈Ŝz(t0)〉+ 1
gLµB

∫ t

t0

χzz(t− t′)Bz(t′)dt′

(2.9)

we took advantage of permutation rules of trace in the second step, and it immediately

follows that: χzz(t− t′) = i
ℏ 〈[µ̂(t),

∑
i
µ̂z

i (t′)]〉, where t > t′. Adopting Heisenberg picture, in

which the eigen-states are time-independent whereas the operators are time-dependent

and given by Ô(t) = e
i
ℏ Ĥ tÔe−

i
ℏ Ĥ t, then setting t′ = 0 and the response function can be
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rewritten as:

χzz(t)= i
ℏ
〈[µ̂(t),

∑
i
µ̂z

i ]〉

= i
ℏ

Tr
{
e−βĤ [e

i
ℏ Ĥ tµ̂e−

i
ℏ Ĥ t,

∑
i
µ̂z

i ]
}

= i
ℏ

∑
m,n

1
Z

Tr
{
e−βĤ |m〉〈m|[e i

ℏ Ĥ tµ̂e−
i
ℏ Ĥ t,

∑
i
µ̂z

i ]|n〉〈n|}
(2.10)

where |m〉 and |n〉 are eigen-states of Ĥ , β = 1/kBT, and Z is the partition function

given by Z =∑
n

e−βEn . Take into consideration of that spin operators on different lattice

site commute with each other, denote the occupation number of state n as Pn = 1
Z e−βEn ,

and by using standard contour integral technique, we eventually arrive at the spectral

representation of the response function in frequency space as:

χzz(ω)= ∑
m,n

〈m|µ̂z|n〉〈n|µ̂z|m〉
En −Em −ℏω+ iℏγ

(Pm −Pn) (2.11)

since we are specifically investigating how the magnetization of a system changes under the

influence of a time-dependent magnetic field, this response function is in fact the dynamic

susceptibility. Given the exact eigen-states of the many-body hamiltonian, the result of Eq.

2.11 is also exact, with the caveat that it is to the first order of time-dependence. Hence,

the formulation should be regarded as perturbative, and only valid when the driving field

is small. In practice, one rarely knows the exact wave function to a many-body system, but

Eq. 2.11 can still be used with MF eigen-states to yield mean-field-dynamic-susceptibilities.

To differentiate it from the exact result, thus calculated susceptibility is denoted by χMF
zz .

Again as an example, we compute this susceptibility for the Ising model defined by Eq.

2.2 in the previous section by employing the MF eigen-function to obtain the off-diagonal

elements (〈m|µ̂z|n〉, m ̸= m), and MF eigen-energies for En as well as calculating the

partition function (Z) and population factors (Pn). A side note here is that, though in

general |⃗µz
i | = gLµB|S⃗z

i |, where gL and µB are Landé factor and Bohr magneton respectively.

Since these pre-factors only affect the amplitude, which is of less importance here, we set

gLµB = 1 in the following calculations for simplicity.

In figure 2.3(a), we show the imaginary part of the result in the color map where the

color scale represents the amplitude, from which one can see an excitation mode between

the ground state and the excited state evolves as a function of magnetic field with a

finite gap permanently open, identical to that in figure 2.1. The spectral weight of this

18



2.2 Dynamical Susceptibility

excitation mode also vary along the field axis, with it being much smaller at zero and low

fields. The mechanism behind this observation is rather straightforward: at zero field, the

total hamiltonian (Ĥ ) and the electronic spin projector along the quantization axis (Ŝz)

commute with each other, hence there are no off-diagonal elements for Ŝz when using the

eigen-states of the hamiltonian as the basis. But as the external magnetic field increases,

the transverse Zeeman term grows stronger, and so does the degree to which Ĥ and Ŝz

don’t commute. Therefore at higher fields, the off-diagonal elements (〈m|Ŝz|n〉, m ̸= n)

becomes bigger, and according to Eq. 2.11, it contributes to a higher amplitude of the

longitudinal susceptibility. Physically, this can be thought of as a stronger longitudinal

dynamic response facilitated by stronger tunneling between eigen-states that were induced

by the transverse Zeeman interaction.

Figure 2.3: The imaginary part of MF (a) and MF-RPA (b) susceptibilities along z-axis
(χzz) of the transverse Ising model with a nearest neighbor ferromagnetic interaction
(Ji j = J < 0). (c, d): The same as (a, b) but with isotropic hyperfine interaction (Ax =
A y = Az = 0.2J ). (e, f): The same as (a, b) but with anisotropic hyperfine interaction
(Ax = A y = 0.2J , Az =J ).

The same calculation for susceptibilities was also carried out for the cases with hyperfine

interactions. The imaginary parts of the result are presented in figure 2.3(b, c) for isotropic

and anisotropic cases respectively. Similar to the case in absence of the hyperfine inter-

action, both the excitation modes in the susceptibility data follow the predictions of MF

eigen-states and corresponding excitation spectra, and the amplitudes of modes increase

19



Chapter 2. Theoretical methods

with growing magnetic fields. However, in the case of isotropic hyperfine interaction, the

excitation mode |0〉→ |2〉 is completely missing from the spectra, while being finite within

some field range for the case of anisotropic hyperfine interaction.

For a better view, we plot in figure 2.4(a) the square root of the numerator of Eq. 2.11 as

functions of magnetic field at zero temperature, and with different degrees of anisotropy

of the hyperfine interaction. The results indeed reveal that, the specific excitation mode

between the ground state the second excited state vanishes for the isotropic case. At the

same time, it remains finite up until the critical field for all other cases as long as the

hyperfine interaction is anisotropy. Furthermore, the peak amplitude of this off-diagonal

matrix element is proportional to |Az/A⊥|, where |A⊥| = |Ax| = |A y|.

To understand this, we first realize that this missing excitation mode corresponds to,

at zero field, the excitation from the ground state of having the electronic and nuclear

spins being parallel to each other and the external field (| ⇑↑〉), to the state of having

both spins parallel to each other but anit-parallel to the external magnetic field (| ⇓↓〉).
Thus, for both cases of hyperfine interaction, this excitation mode vanishes at zero field:

〈2|Ŝz|0〉 B=0= 〈⇓↓ |Ŝz| ⇑↑〉 = 0.

Figure 2.4: (a) Amplitudes of the off diagonal matrix element (〈2|Ŝz|0〉) as functions of
transverse magnetic field with different anisotropies of the hyperfine interaction. (b, c)
The two contributing parts to (a) as functions of transverse magnetic field for the case of
isotropic (b) and anisotropic (c) hyperfine interactions.

Secondly, as mentioned before, the eigen-function to the total hamiltonian can be expressed

in the electro-nuclear spin product states: |n〉 = α0,n| ⇑↑〉+α1,n| ⇑↓〉+α2,n| ⇓↑〉+α3,n| ⇓↓〉,
where n = 0,1,2,3 and we have used the shorthand notation αm,n =αm,n(Bx). Therefore,
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the amplitude of this excitation mode is:

〈2|Ŝz|0〉 =α0,2α0,0sz
0〈⇑↑ | ⇑↑〉+α1,2α1,0sz

1〈⇑↓ | ⇑↓〉+α2,2α2,0sz
2〈⇓↓ | ⇓↓〉+α3,2α3,0sz

3〈⇓↑ | ⇓↑〉

= 1
2

[α0,2α0,0 +α1,2α1,0 −α2,2α2,0 −α3,2α3,0]

(2.12)

where we have used the fact that Ŝz| ⇑ X 〉 = (+1/2)| ⇑ X 〉 and Ŝz| ⇓ X 〉 = (−1/2)| ⇓ X 〉, and

X represent any nuclear spin state. Thus the amplitude of response function depends on

(α0,2α0,0 −α2,2α2,0)+ (α1,2α1,0 −α3,2α3,0). In figure 2.4(b,c), we plot the two parts of this

expression grouped in different brackets as functions of magnetic field for both isotropic

and anisotropic hyperfine interactions. We see that, in the isotropic case, the two parts

are identical but carry opposite signs and hence cancel out identically. Whereas in the

anisotropic case, only at zero field and above the critical field, the two parts cancel out,

giving rise to non-vanishing amplitude of the response function in between the two field

locations.

2.2.2 Random Phase Approximation

As demonstrated before, MF solutions ignore completely fluctuations and correlations. An

easy step forward to amend this problem is the so called random phase approximation

(RPA), in which effects from uncorrelated fluctuations of spins are included. We will

primarily follow Ref. [39] to show its application to our problem, and eventually arrive at a

susceptibility that, to a degree, takes into account spin-spin correlation effects. To begin,

we again introduce a vanishing fictitious time-dependent longitudinal field (Bz
i (t− t0)) that

turns on adiabatically at some point (t0) in time. The subscript i emphasize the locality

of the field but it should be noted that this field can be uniform over the entire system as

well. Then, following the previous definition of response function, the susceptibility may

be defined in the frequency space by 〈µ̂z
i (ω) = ∑

j
χzz(i j,ω)B⃗ j(ω), where B⃗ j(ω), where the

summation is over all the interacting neighbors of the spin on site i. Next we continue

with the Hamiltonian defined in Eq. 2.2, and express it in the Heisenberg picture:

Ĥ = ĤMF −∑
i< j

δµ̂z
iδµ̂

z
j )

= ĤMF (t)−∑
i

[
µ̂z

i (t)−〈µ̂z(t0)〉][ ∑
j ̸=i

Ji j[µ̂z
j (t)−〈µ̂z(t0)〉]+Bz

i (t− t0)
]

︸ ︷︷ ︸
B′

i(t−t0)

(2.13)
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the RPA comes in the form of treating the simultaneous fluctuation of spins in the system

as completely "random" and uncorrelated, such that
∑

j(µ̂z
j (t)−〈µ̂z(t)〉)∼ 0, or equivalently

µ̂z
j (t)∼ 〈µ̂z(t)〉, therefore the terms in the bracket in Eq. 2.13 become a scalar field (B′

i(t−t0)).

Assuming the fictitious field is homogeneous across the entire system, after Fourier

transform, we have a simple relation for the expectation value of single-site spin projection:

〈µ̂z
i (ω)〉 = χzz(ii,ω)B′

i(ω) (2.14)

where B′
i(ω)= ∑

j ̸=i
Ji jµ̂

z
j (ω)+Bz

i (ω) is the Fourier transform of the scalar field as a result

of RPA. Comparing the above expression to our definition of two-site susceptibility, we

arrive at a RPA corrected MF magnetic susceptibility upon another Fourier transform to

the reciprocal space:

χRPA
zz (⃗k,ω)= χMF

zz (ω)

1−χMF
zz (ω)J (⃗k)

(2.15)

In contrast to the original mean field susceptibility, the RPA susceptibility now has a

momentum dependence (⃗k-dependence) owing to accounting for spin-spin correlations.

However, as we have seen in the steps leading to this expression, it is still only valid when

the fluctuations are either small or uncorrelated so that a summation over the relevant

sites results in a net zero contribution to the total hamiltonian. Therefore, despite being

an improvement, RPA susceptibility is still a zeroth order result just like the MF result.

Further improvement will necessarily require the theory to account for the self-energy,

which usually is an infinite expansion series that becomes particularly intractable for

systems with long range interactions. Due to both limited capacity and focus, we will leave

such improvement out of the present text.

It is worth noting that Eq. 2.15 can be generalized to tensor calculations, more specifically

it reads [39]:
¯̄χRP A (⃗k,ω)= [ ¯̄I − ¯̄χMF (ω) ¯̄J (⃗k)]−1 ¯̄χMF (ω) (2.16)

where ¯̄I is the identity matrix, and both ¯̄J (⃗k) and ¯̄χMF (ω) are 3× 3 matrices, which

naturally result in ¯̄χRP A (⃗k,ω) being a matrix of the same rank. We have used the double-

bar over the operator to indicate the tensorial nature of them. In comparison to Eq. 2.15,

extra care must be taken with the order of multiplication since in general tensor product
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is not commutative. In the case of

¯̄J (⃗k)=


0 0 0

0 0 0

0 0 Jz (⃗k)

 ¯̄χMF (ω)=


χMF

xx (ω) 0 0

0 χMF
yy (ω) 0

0 0 χMF
zz (ω)

 (2.17)

Eq. 2.16 reduces to Eq. 2.15.

Next, in keeping up with the same format of previous sections, we now give examples of

RPA calculations using the Ising model with and without hyperfine interactions as defined

in Eq. 2.2 and Eq. 2.3 respectively. For the calculation, we use Eq. 2.15, and the starting

points are the MF susceptibilities (χRP A
zz ) presented in figure 2.3(a-c), the corresponding

results are given in the same column of the same figure (fig. 2.3(d-f)). The most striking

feature of RPA susceptibility compared to the MF susceptibility is the so called "soft

mode", in other words, an excitation mode that goes to zero energy/frequency. For the

present case, the RPA susceptibility predicts in all three examples that an energy gap

closes at the critical points, which is consistent with established knowledge of continuous

phase transitions. The softening of mode is the most visible in figure 2.3(d) for the Ising

model without hyperfine interaction, in which case there exists a sole excitation mode

between the | ↑〉 and | ↓〉 states for the single-ion hamiltonian as seen in figure 2.3(a). As

described above, by taking into consideration to a degree the spin-spin correlation, RPA

can predict collective modes of an interacting spin ensemble, and hence goes beyond the

simple single-ion picture without inclusions of higher order effects. Thus despite such

zero-energy excitation being forbidden by the eigen-states of single-ion hamiltonian, it is

allowed to exist as a collective excitation.

One important feature to note is that the softening of the excitation mode that occurs to the

electronic spin states in figure 2.3(d) is halted in figure 2.3(e), such incomplete softening of

the electronic excitation is strongly reminiscent of the experimental observation made on

LiHoF4 , shown in the inset of figure 1.1(a) from Chpt. 1. Here for the Ising mode with

isotropic hyperfine interaction, we see the softening is "transferred" to the first excited

electro-nuclear spin state. An expanded view is provided in the inset of figure 2.3(e), in

contrast to that of figure 2.3(b). The same transfer of mode softening also took place for

the Ising model with anisotropic hyperfine interaction given in figure 2.3(f). In addition,

viewed in combination with figure 2.2(d) and figure 2.3(c), the direct hybridization that

resulted in a typical "avoid crossing" pattern as well as the swap of spectral weights

between the two upper states is also clearly visible in figure 2.3(f).
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2.3 Scattering Parameters

Scattering parameters are frequently referred to as S-parameters, and are a concept

introduced for electrical network analysis and useful characterizing radio-frequency (RF)

circuits. It is conceptually similar to the S-matrix in that it describes the subject as

a standalone unit whose interaction with the environment is entirely captured by two

quantifiable processes per port: forward transmission, and backward reflection. These

processes are visualized by considering waves traveling in the circuit to (a⃗) and from (⃗b)

the load, which is the subject under investigation. For conciseness, we consider a one

dimensional four-port system and label them numerically 1 and 2, then a simple relation

between the waves: b⃗1

b⃗2

=
S11 S12

S21 S22

a⃗1

a⃗2

 (2.18)

where the square matrix contains the four S-parameters that describe the aforementioned

two processes at the two ports. It is then easy to deduce S11 = b⃗1 /⃗a1, S21 = b⃗2 /⃗a1, S12 =
b⃗1 /⃗a2, and S22 = b⃗2 /⃗a2. Furthermore, for a reciprocal 2-port system, it is easy to show that

S12 = S21, |S11|2 + |S21|2 = 1, and |S22|2 + |S12|2 = 1. In practice, in a microwave circuit,

assuming the characteristic impedance Z0 of the transmission line is real, the traveling

waves are given by [43]:

a⃗1 = U⃗1 + I⃗1Z0

2
√

Z0
(2.19)

b⃗1 = U⃗1 − I⃗1Z0

2
√

Z0
(2.20)

where U⃗i and I⃗ i stand for the voltage and current propagating toward port i. Thus

knowing the voltage and current on a microwave pathway on all the ports is enough to

fully characterize the load circuit without a detailed knowledge of the internal circuit. This

forms the foundation of our experimental investigation, where we treat the cavity loaded

with LiHoF4 as an isolated system that only couples to the environment through a limited

number of channels. Then by analyzing the S-parameters associated with these ports,

we are able to extract information regarding the cavity-LiHoF4 ensemble and infer the

dynamical properties of LiHoF4 .

In the classical regime, a cavity resonator has the same characteristics as an RLC circuit[10,

41], whose impedance and resonant frequency are given respectively by Z0 =
p

L/R2C and

ω0 = 1/
√

L0C0, where L0 is the inductance and C0 is the capacitance. When a sample is
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placed inside the cavity that interacts with the photon field, to a large degree, it can be

treated as a dielectric/magnetic filling material that interacts with either the electrical or

magnetic, or both, components of the EM field. Thus the the characteristic capacitor (C)

and inductor (L) would change according to:

C0 = Q

|E⃗|d
= ϵ0

A
d

⇒ C = Q

|P⃗|d
= ϵrC0 (2.21)

L0 =ΦN
I
=µ0

N2 A
l

⇒ L =µrµ0
N2 A

l
=µrL0 (2.22)

therefore, at the presence of a dielectric/magnetic sample, the resonant frequency changes

to ωc =ωc/
p
ϵrµr. Denoting the characteristic impedance of the transmission line by Zt,

then |S11| can be expressed classically as[3]:

|S11| = iωZtC
1− iω2RC−2ω2CL

= iωZtC0

ϵ−1 − iω2RC0 −2µrω2C0L0

(2.23)

where we have assumed that there is no significant change to R due to the sample, or in

other words there is no dissipation of energy due to the sample, but this is not to confuse

with absorption process which is captured by the imaginary part of both ϵr and µr. Thus

we have shown that, in the classical regime, S-parameters from a cavity resonator loaded

with a dielectric/magnetic sample can be used to extract bulk permittivity and permeability

of the sample. However, to study the microscopic spin structure in a sample by the same

method, one needs to develop a quantum theory for the above result, which will be given

below.

2.4 Input-Output Formalism

All experiments for the present project were carried out in an re-entrance cavity in

the RF range. The decay and excitation of atoms in a controlled electromagnetic (EM)

environment, such as a cavity resonator have long been subjected to investigation, notable

models includes Dicke model[18], Jaynes-Cummings model[38], and the related Tavis-

Cummings model[73]. One important technique for describing photon fields inside a cavity

resonator quantum mechanically was later developed in the 1980s primarily due to C. W.

Gardiner and M. J. Collett[23, 24], which is the so called input-output formalism that forms

the core analytical tool of this thesis. Many existing literature give detailed account of the

original input-output formalism[25, 52, 74], we hence bypass providing an abridged version
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of its account which is somewhat redundant, but instead provide below a self-contained

technical description of its application to the subject of this thesis.

We begin by considering some magnetic moments immersed in a cavity photon field, the

interaction between these two ensembles form a quasi-particle named magnon-polariton.

In principle, the hamiltonian of such a system can be conveniently compartmentalized in

three interacting parts: 1. the cavity resonator. 2. the spin ensemble, and 3. the photon

reservoir. More explicitly, this is written as:

Ĥ = Ĥ cavity + Ĥreservoir + Ĥspin + Ĥ int
cav−Res + Ĥ int

cav−spin + Ĥ int
res−spin (2.24)

where the first three terms are the aforementioned individual subsystems, and the other

three terms are the pairwise interaction terms among them. In practice, the reservoir

refers to the greater environment enclosing both the cavity and spin ensemble, its direct

interaction with the spins (Ĥ int
res−spin) is kept minimal in order to reduce incoherent

photon losses. Therefore, to the leading order, we can safely discard this term. For the

purpose of present experiment, we employ a linearly polarized EM field in a re-entrance

cavity, and accordingly impose quantization rules for cavities of arbitrary shape and

inhomogeneous field distributions such that the magnetic component of the EM field reads

B⃗(r, t)=∑
k i

√
µ0ℏωk/2(âk(r)+ â†

k(r)). Since the interaction between the cavity photon field

and a localized spin ensemble is in essence the Zeeman interaction, we can express this

part of Hamiltonian explicitly thus forth:

Ĥ int
cav−spin =−

∫
ω

∫
Vs

µ⃗ · B⃗(ω,r)drdω (2.25)

=−∑
c

∫
Vs

gc[âc(r)+ â†
c(r)] · µ⃗dr (2.26)

where α⃗ stands for the magnetic moment and the integration is over the sample volume

(Vs). Furthermore, we have used the subscripts "c" on the cavity photon creation and

annihilation operators (â(†)
c = â(†)(ωc)), as well as the pre-factor gc = g(ωc) in combination

with the definition g(ωk)= i
√
µ0ℏωk/2 [25], to indicate their correspondence to the discrete

cavity modes. We similarly define operators b̂(ω) and b̂†(ω) for the reservoir photons,

which are continuous functions in free space. The total Hamiltonian now reads (with the
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r-dependence of âc omitted for simplicity):

Ĥ =∑
c
ℏωc â†

c âc +
∫
ω
ℏωb̂†(ω, t)b̂(ω, t)+Ĥspin

+
Ñ
V

{∑
c

[∫
ω

K(ω)(g∗
c â†

c + gâc)[g∗(ω)b̂†(ω, t)

+ g(ω)b̂(ω, t)]
]+ (g∗

c â†
c + gc âc)µ̂α

}
dV

(2.27)

K(ω) characterizes the coupling between the cavity and reservoir fields and is dependent

on the the physical details of the cavity. Without knowing the detailed form of Ĥspin, it is

only assumed that there exists a complete set of eigen-states |n〉 that diagonalize it, namely

Ĥspin|n〉 = En|n〉. In the present study, the frequency window (≤ 200 MHz) within which

the experiments were carried out is far smaller than the resonant frequencies themselves

(∼ 2−5 GHz). Therefore it is appropriate to apply rotating wave approximation (RWA)

to cavity-reservoir interaction to discard â†b̂† and âb̂[67], which further simplifies the

reservoir-cavity interaction part of the hamiltonian to:

Ĥ int
Cav−Res =

∫
ω

dω i[K̃(ω)a†
cb(ω, t)− K̃∗(ω)b†(ω, t)ac] (2.28)

where we have absorbed |g∗
c g(ω)| and |g∗(ω)gc| into K̃(ω) and K̃∗(ω). Physically, the

reservoir-cavity interaction encompasses both the driving of the cavity as well as the

incoherent losses of photons from the cavity. Therefore the treatment of K̃ (∗)(ω) can

be very complicated, but to a good approximation, we can adopt the first Markovian

approximation[12, 15] to assume the coupling strength between the cavity field and

environment is frequency independent with an explicit expression: K(ω)= ℏκe to remove

it from the above integrand.

As to the interaction term between the cavity field and the spin ensemble, it plays a central

role in characterizing our experimental setup. For the sake of generality, we will not resort

to the usual semi-classical approximations for the description of the spin ensembles such as

macro-spins [69] or Holstein-Primakoff transformation [36, 81]. A benefit of this approach

that will emerge later is that, we do not need to create one species of quasi-particle for each

magnon mode. Since the distribution of spins is discrete in real space we transform the

real space integration into a summation over all the lattice sites. In addition, we normalize

the EM field amplitude in the same fashion as in Ref. [22] for application to arbitrary
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shaped cavity, the cavity-spin interaction hamiltonian subsequently reads:

Ĥ int
cav−spin =−∑

c

√
µ0ℏωc

2
(âc + â†

c)

∫
Vs
µ⃗ · B⃗(r)dr√∫

Vc
|B⃗(r′)|2dr′

=−∑
c

√
µ0ℏωc

2
(âc + â†

c)
∫

Vs

dr
( 1√

Ns

∑
q
µ⃗qeiq·r) ·∫ d3k

(2π)3
B⃗keik·r√∫

Vc
|B⃗(r′)|2dr′

=−∑
c

√
µ0ℏωc

2
âc + â†

c√∫
Vc
|B⃗(r′)|2dr′

1√
Ns

∑
q

∫
d3k

(2π)3 µ⃗q · B⃗k

∫
Vs

ei(q+k)·rdr

=−∑
c

√
µ0ℏωc

2
âc + â†

c√∫
Vc
|B⃗(r′)|2dr′

1√
Ns

∑
q

∫
d3k

(2π)3 µ⃗q · B⃗k
Ns

Vs
δ(q+k)

=−∑
c

√
µ0ℏωcρs

2
(âc + â†

c)
∑
q
|⃗µq|

√√√√ [
∫

Vs
|êµ · B⃗(r)|eik·rdr]2

Vs
∫

Vc
|B⃗(r′)|2dr′

(2.29)

where we have introduced Fourier transformations µ⃗= 1p
Ns

∑
q µ⃗qeiq·r and B⃗(r)= ∫ d3k

(2π)2 B⃗k ·
eik·r, and use Ns = Vsρs to represent the total number of spins in the ensemble. Finally,

êµ is the unit vector along the spin orientation is accounted. For convenience, define

η2
c = |∫Vs

êµ · B⃗(r)eikc·rdr|2/[Vs
∫

Vc
|B⃗(r′)|2dr′] as the filling factor that captures the degree

to which the mode volume overlaps between the sample and cavity field, in the long

wavelength and homogeneous field limit, B⃗(r) becomes r-independent, and hence the filling

factor takes on the simple form of a volume ratio: η2
c = |B⃗2Vs|2/Vs|B⃗|2Vc = Vs/Vc. Now

Ĥ int
cav−spin eventually becomes:

Ĥ int
Cav−Spin =∑

c
iηc gc

p
ρs

(
â†

cµ̂
α
kc
+ âcµ̂

α
−kc

)
(2.30)

where ρs stands for the volume density of spins in the sample. Next, introduce a multi-

level transition operator [25]: σ̂mn = |m〉〈n|, where |m〉 and |n〉 are eigen-states of the

spin Hamiltonian (Ĥspin|n〉 = En|n〉), so that we are able to write µ̂αq =∑
m,n〈m|µ̂αq |n〉σ̂mn,

where the summation runs over the entire Hilbert space. Evidently (µ̂αq)† = µ̂α−q, since∑
m,n〈m|µ̂αq |n〉σ̂mn =∑

m,n〈n|µ̂α−q|m〉∗σ̂†
nm.

All the data to be presented in this study were taken in the form of S11 parameters, thus

the experimental setup can be abstracted as a single sided lossy cavity with an input

field (â†
i âi) and an output field (â†

oâo)[74]. The Heisenberg equation of motion then gives:

∂t b̂ = (i/ℏ)[Ĥ , b̂] and ∂tâ = (i/ℏ)[Ĥ , â], from which we arrive at a dynamical equation for
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the cavity field operator:

∂tâc =−iωc âc +
∫
κ∗e b̂0(ω)e−iωtdω+∑

c
κ2

e âc +η
∑
c

√
µ0ωcρs

2ℏ
µ̂αkc

(2.31)

by defining âi =−∫
b̂0(ω)e−iω(t)dω (t < 0) and âo =

∫
b̂0(ω)e−iω(t)dω (t > 0)[52], we obtain a

set of PDEs:

∂tâc =
∑
c

(
Γ(ωc)âc + i

√
µ0ωcρsη

2ℏ
µ̂αkc

)
+p

κe âi (2.32)

∂tâc =
∑
c

(
Γ(ωc)âc + i

√
µ0ωcρsη

2ℏ
µ̂αkc

)
−p

κe âo (2.33)

where Γ(ωc)=−iωc + (κi −κe)/2. Here we have added an additional Langevin force char-

acterized by κi to account for the internal dissipation of the cavity field. Though this is

equivalent to adding an imaginary term to the Hamiltonian and breaks its hermicity, it is

necessary since it allows us to capture the impedance matching condition between the load

(cavity) and drive (VNA + circuit), which in the real world is never perfect yet difficult to

quantify. More detailed discussions about this term and the reasoning behind it can be

found in Ref. [65, 44]. Using the same Heisenberg equation of motion on µ̂k yields:

∂tµ̂
α
kc

=− i
ℏ

[Ĥspin, µ̂αkc
]− i

ℏ
[Ĥ int

cav−spin, µ̂αkc
]

=− i
ℏ

[Ĥspin, µ̂αkc
]− iη

√
µ0ωcρs

2

∑
m,n
p,q

〈m|µ̂αkc
|n〉〈p|µ̂αkc

|q〉[σ̂mn, σ̂pq]âc
(2.34)

Recall the definition µ̂kc =
∑

m,n〈m|µ̂αkc
|n〉σ̂mn, and the fact that our only constraint on

Ĥspin is that it is hermitian and hence can be diagonalized unitarily, which equates to

require: Ĥspin =∑
q ϵqσ̂qq [25]. We thus can write [Ĥspin, µ̂αkc

]=∑
m,n(ϵm−ϵn)σ̂mn. Define

Ωmn = (ϵm −ϵn)/ℏ for convenience and Fourier transform Eq.2.34, we arrive at:

µ̂αkc
= η

√
µ0ωcρs

2ℏ
∑
m,n
p,q

〈m|µ̂αkc
|n〉〈n|µ̂α−kc

|m〉[σ̂mn, σ̂pq]

i(ω−Ωmn + iγmn)
âc (2.35)

where the summation of m, n, p, and q runs over all the eigen-states of Ĥspin and

therefore accounts for contributions from all possible excitations. An infinitesimal variable

γmn is added to the denominator to avoid divergence at resonance, which is physically

equivalent to spectral line width. The commutation relation in the nominator can be

further expanded as [σ̂mn, σ̂pq]= δnpσ̂mq −δmqσ̂pn[25], so that for any eigen-state of the

spin system |ψ〉, it may be projected as σ̂nn|ψ〉 = 〈n|ψ〉|n〉. Under the MF approximation,
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the spectral weights in equilibrium are entirely governed by the Boltzmann distribution,

therefore 〈n|ψ〉 = e−βEn /Z and σ̂nn = Pn. By the merit of all the aforementioned definitions

and manipulations, plus Eq.2.11, we are able to express the last term of Eq.2.31 as:

−η2µ0ωcρs

2

∑
m,n

〈m|µ̂αkc
|n〉〈n|µ̂α−kc

|m〉
iℏ(ω−Ωmn)−ℏγmn

(Pn −Pm)

= i| g̃(ωc)|2χαα(kc,ω)

(2.36)

where we have defined g̃(ωc)= iη
√
µ0ℏωc/2= g(ωc)

√
η2ρs/ℏ. Finally, Fourier transforms

of Eq.2.32 and Eq.2.33 with some straightforward algebra offer us a simple expression for

the |S11| parameter:

|S11| =
∣∣∣∣1+ 2κe

i(ω−ωc)− (κe +κi)+ i| g̃(ωc)|2χαα(kc,ω)

∣∣∣∣ (2.37)

which, as far as the authors are aware, has never been derived microscopically without the

aid of semi-classical approximations as in the present text. In principle, Eq. 2.37 applies

to all systems alike in the linear response regime. Rewriting the generalized susceptibil-

ities in explicit real and imaginary parts (χαα(kc,ω) = Re
[
χαα(kc,ω)

]+ i · Im[
χαα(kc,ω)

]
)

subsequently gives:

|S11| =
∣∣∣∣∣1+ 2κe

i(ω−ω0 +| g̃(ωc)|2Re
[
χαα(kc,ωc)

]
)− (κe +κi +| g̃(ωc)|2Im

[
χαα(kc,ωc)

]
)

∣∣∣∣∣ (2.38)

from which the roles played by the real and imaginary parts of the susceptibility are

clearly seen: the former is responsible for the shifting of resonant frequencies of the

cavity-magnon-polariton system, while the latter affects the overall dissipation rate and

hence the resonant line width.

To visually illustrate the model, we take the eigen-states (fig. 2.2(d)) and corresponding

MF magnetic susceptibility (fig. 2.3(c)) found for the ideal Ising model with an anisotropic

hyperfine interaction, and simulate the |S11| that one would obtain in experiments with

cavities of three different resonance frequencies ( f0). Since the eigen-energies are measured

in units of spin-spin interaction strength, for the simulation, we set µB = gL = 1 for

convenience, the magnon mode line width γ = 1×10−4|J |, and use correspondingly an

arbitrary unit for the resonant frequency of cavity: f0 = 0.3, 0.8, and 4.0 E/(ℏ|J |).

The results are presented in figure 2.5. In fig. 2.5(a), we reiterate the eigen-states of

the Ising model with hyperfine interaction strength: Ax = A y = −0.2|J |, Az = −1.0|J |.
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Figure 2.5: (a) Eigen-states of an ideal Ising model defined in Eq. 2.3 with an Ax = A y =
0.2J , Az = 1.0J . The horizontal dashed lines represent the cavity resonance frequencies
for the simulation. (b-d) On- and off-resonance |S11| simulation with cavity resonance
frequency at 4.0 GHz (b), 0.8 GHz (c), and 0.3 GHz (d). The white dashed lines represents
the eigen-modes. The inset in (b) shows an expanded view of the anti-crossing pattern as a
result of strong hybridization between the cavity mode and the spin excitation mode. The
red dashed line in (d) marks the field location at which the |S11| is singled out to show in
the inset of the figure.

The three horizontal dashed lines are the cavity resonance frequencies chosen for the

simulation. As we can read off from Eq. 2.38, when χ = 0 or when there is no direct

hybridization between the cavity mode and magnon modes, the |S11| measured takes on a

line shape with a single peak resembles that of a Lorentzian. While when there is a strong

hybridization, a double peak emerges that forms a typical avoid-crossing (anti-crossing)

pattern[35]. This is consistent with what is revealed in figure 2.5(b), where the resonance

frequency is single-valued for the most part of magnetic field range except for near 3.5 T

when the magnon mode (indicated by the white dashed lines) crosses path with, and hence
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directly hybridizes to, the cavity mode. An expanded view of the avoid-crossing pattern

is given in the inset of this figure, in which the symmetrical solutions to the resonance

frequency of the spin-cavity ensemble as a result of strong hybridization is better visible.

An additional feature is that, despite the fact that there are two magnon modes of non-

vanishing amplitudes (see fig. 2.3(c)) the crosses path with the cavity mode, only one of

them (|0〉→ |3〉) hybridized with the cavity mode while the other one (|0〉→ |2〉) is virtually

invisible. This is primarily due to the large discrepancy in the spectral weights of different

modes that resulted in different coupling strengths.

In fig. 2.5(c), we have set f0 = 0.8 E/(ℏ|J |), and hence no direct hybridization between the

cavity mode and magnon modes are expected. Unsurprisingly, the loaded cavity resonance

frequency remained single-peaked throughout the field range. However, the absence of

mode hybridization does not mean no interplay between the cavity mode and magnon

modes. Instead, in this case, it is manifested as the position of the resonance peak being

shifted non-monotonically with increasing magnetic field strength due to changes in the

real part of magnetic susceptibility. The direct correlation of functional behaviors between

Re[χzz] and the loaded cavity resonance frequency is observed with the inset of fig. 2.5(c),

in which the real part of the AC magnetic susceptibility at 0.8 E/(ℏ|J |) is plotted as a

function of magnetic field. The cavity resonance frequency and Re[χzz] are seen to display

the opposite trend as the field strength is increased from 0 to 7 T, in accordance with the

description of Eq. 2.38.

Finally, we show in figure 2.5(d) another example of direct hybridization of cavity and

magnon modes with the inset showing the symmetrical solutions of resonance frequencies

of the cavity-spin ensemble at ∼ 3.68 T (marked by the red dashed line in the main frame

of the figure. For this case, we increased the filling factor (η) by almost ten fold from that

in figure 2.5(b). The tails of the avoid crossing pattern now extends over much wider field

range, revealing more parts of the magnon modes underneath as seen by comparing to

the magnon mode represented by the white dashed line. Recalling the missing mode in

figure 2.5(b) and the weaker avoid crossing pattern, these two figures show the importance

of increasing coupling strength, by bigger filling factors, longer effective spins, etc, when

using the RF cavity as a spectroscopy method.

For the last part of the chapter, we conduct a dimension analysis on the various quantities,

as one of the measures to validate our model. First, we define the glossary using SI unit

system: [J], [T], [s], [m], and [rad] represent respectively the unit Joule, Tesla, Second,
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Meter, and radian. Then recall our definition of filling factor and it is easy to show that:

[η2
c]=

|∫Vs
êα · B⃗(r)eikc·rdr|2

[Vs
∫

Vc
|B⃗(r)|2dr]

= |[T][m3]|2
[m3][T]2[m3]]

= 1 (2.39)

which shows that the filling factor is a dimensionless parameter. Next we turn to the

generalized susceptibility χ from Eq. 2.11:

[χαα]= [
∑

m,n,i

〈m|µ̂αi |n〉〈n|µ̂αi |m〉
En −Em −ℏω+ iℏγ

(Pm −Pn)]

= [µB]2

[J]
[1]= [J/T]2

[J]

= [J][T]−2

(2.40)

In Eq. 2.37, the pre-factor of the susceptibility is | g̃(ωc)|2, thus we also examine the

dimension of this coefficient:

[ g̃(ωc)2]= [η2µ0ωcρs

2
]

= [1]2[
J

mA2
rad

s
1

m3 ]= [
J2

m4 A2
rad

s
1
J

]

= [T]2[J]−1[rad/s]

(2.41)

Thus [| g̃(ωc)|2χαα(kc,ωc)]= [J]−1[T]2[J][T]−2[rad/s]= [rad/s], which has the same unit of

angular frequency, consistent with the rest quantities in the denominator of Eq. 2.37.

Since we have already defined κe as the dissipation rate, which is also in unit of angular

frequency after being multiplied by a 2π, it is therefore straight forward to see that |S11|
is a dimension less quantity. This concludes our dimension analysis of the model as a

consistency check.
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3 MF-RPA model for LiHoF4

In this chapter, we present detailed results from MF-RPA calculations using previously

described theories and show some of the findings. Dictated by the logical steps taken, the

chapter is divided roughly in two parts: Mean field calculations and dynamic susceptibility.

First, we establish the direct relation between LiHoF4 and Ising model in order to both

show relevance of preceding contents, as well as to provide some anticipation about the

magnetic properties of LiHoF4 . Then we give MF solutions to the full hamiltonian of

LiHoF4 before using it to compute its AC susceptibilities both with and without random

phase approximation. In order to show the validity of our theoretical model, and gain

insights into the complex physics involved in LiHoF4 , we carry out our calculation piece

by piece, starting from the bare minimum of the Hamiltonian, and at each step add an

additional term until the full spin Hamiltonian is constructed.

3.1 Connection to the Ising models

3.1.1 Ising model with exchange anisotropy

LiHoF4 has a Scheelite crystal structure (|⃗a| = |⃗b| = 5.175 Å, |⃗c| = 10.750 Å[60]) that

exhibits S4 point group symmetry. The crystal structure is shown using a conventional

unit cell in figure 3.1(a-c). Furthermore, as indicated by the spin configuration in the

ordered state in fig. 3.1(d), nearly all contributions to the effective magnetic moment in

LiHoF4 come from the 4f electrons in Ho3+, whose electronic configuration is [X e]4 f 10. By

Hund’s rule, this configuration gives an orbital angular momentum of 6 and spin angular

momentum of 2, resulting in a total angular momentum of 8 by so called L-S coupling.

Consequently, the effective spin of Ho3+ can assume 2J +1 = 17 values within the first
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Chapter 3. MF-RPA model for LiHoF4

Figure 3.1: (a) The crystal structure of a conventional cell of LiHoF4 in crystallographic ab-
plane (a), ac-plane (b), and bc-plane (c). Illustrations drawn using Vesta3[53](d): Electronic
spin configuration of LiHoF4 in the ordered state. Figure credit: Ref. [42]

manifold.

As previously shown in Eq. 2.1 in Chpt. 2, the transverse (as well as longitudinal) Ising

hamiltonian is bipartite, with one term capturing the inter-spin interaction and the other

for the usual Zeeman interaction that contains the most important tunable parameter

in an experiment, namely the external magnetic field. With respect to the inter-spin

interaction, it is dominated by the dipole-dipole interaction in LiHoF4 , hence one may

naively write the following bipartite hamiltonian to describe LiHoF4 :

Ĥ =−∑
i ̸= j

∑
αβ

Ĵα
i [(gLµB)2Dαβ

i j + Jex]Ĵβ

j − gLµB
∑

i
Ĵi · B⃗ (3.1)

where Dαβ

i j is the dipole interaction tensor, and Jex is the antiferrogmagnetic exchange

interaction tensor, that is only finite among the nearest neighbors, with all of its principle

axis elements equal to 0.1 µeV[61]. α and β again are used to denote Cartesian components.

Ĵ is the electronic spin operator that can take any integer value between -8 and 8, and B⃗

is the external magnetic field that is considered homogeneous across the crystal.

However, despite of the similar appearances, the hamiltonian in Eq. 3.1 does not qualify

LiHoF4 as an Ising magnet since the dipole-dipole interaction couples not just the spin

projections along the quantization axis on different sites but projections along all axes

together. Secondly, due to the possible values of J, the present model involves seventeen

eigen-states instead of two as in the case of Ising model. In order to see the latter point

more clearly, we diagonalize this hamiltonian at zero temperature under MF approximation
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3.1 Connection to the Ising models

and obtain corresponding eigen-states as well as spin expectation values.

To start, we first have to compute the long range dipolar interaction, which is numerically

trivial under the MF approximation (this is due to the fact that all spins on the lattice

are considered equal by MFT and therefore the spin operator can be separated from the

summation/integration over the real space and to become merely a multiplicative factor).

As a test, we summed over spherical single domains of different radii measured in unit

cells of LiHoF4 , the resulting energy convergence is presented in figure 3.2 as a function

of summation range, where we compare energies from summation over various ranges

but below 300 unit cells to that over exactly 300 unit cells. The result shows that the

summation converges to less than 0.1% of error (inset) by the time it reaches 100 unit cells.

Therefore, for the calculation,
∑
j

Dαβ

i j is summed over a spherical single domain, centered

around site “i”, that has an radius of 100 unit cells. Then a Lorentz term (4π
3 ) was

added after the summation to obtain the effective mean field dipolar coupling strength

at zero wave vector. As a checkpoint, we note that our results for the longitudinal part

(
∑
j

Dzz
i j = 6.821 µeV) is of the same value obtained in Ref. [61] and only marginally bigger

than that in Ref. [48].

Figure 3.2: Ratio between the dipolar energy at different summation ranges and that over
300 unit cells. Horizontal axis measures in unit cells. Inset: normalized error in reference
to the dipolar energy summed over 300 unit cells

The solutions to Eq. 3.1 are then plotted in fig. 3.3(a, c) for the longitudinal field case

and in fig. 3.3(b, d) for the transverse field case respectively. The blue lines in Fig. 3.3(a)

and (b) represent the eigen-energies in units of GHz while the red dashed lines represent

the excitation spectra. Given the allowed values of |J⃗|, the eigen-states split into 17
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Chapter 3. MF-RPA model for LiHoF4

non-degenerate symmetrical states due to the dipolar interaction, and evolve as functions

of the external magnetic field owing to the Zeeman interaction. Moreover, all δI z = 1

excitations can be seen to collapse onto the first excited state, indicating all eigen-states

are equally spaced in energy. In figure 3.3(c, d) we plot the expectation values of Cartesian

components of spin operators at zero temperature. The spins are always polarized under a

longitudinal field in the first scenario as expected, whereas in the transverse field model,

the system indeed ferromagnetically orders along the easy axis until the external magnetic

field overcomes it and force the system to go through a quantum phase transition into

polarized paramagnetic state. Hence, by combining the two sets of figures, it is easy to

see that, despite the ferromagnetic order and subsequent continuous phase transition to

paramagnetic order at higher fields, it cannot be reasonably regarded as a two-level system

at any given point.

Figure 3.3: (a, b) Single-ion eigen-states (blue lines) and the corresponding excitation
spectra (red dashed lines) among neighboring states in energy (δI z = 1) for the Hamiltonian
defined in Eq. 3.1 under longitudinal (a) and transverse (b) magnetic fields respectively.
(c, d) MF expectation values for the three Cartesian components of the electronic spin
operators as functions of longitudinal (c) and transverse (d) magnetic fields.
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3.1 Connection to the Ising models

This thus leads us to an important ingredient that ultimately allows us to characterize

LiHoF4 as an Ising system, which is the crystal electrostatic field (CEF). As previously

stated, in the ionic state of Ho in isolation, the eigen-states of the magnetic hamiltonian are

17-fold-degenerate in accordance with the degeneracy of 〈Ĵz〉. However, this degeneracy

is lifted due to the presence of crystal electrostatic field in LiHoF4 , and results in a

non-Kramers doublet as the ground state owing to the fact of that the effective spin isn’t

a half integer. These doublet states are what lay the foundation for a direct mapping of

LiHoF4 ’s hamiltonian onto that of an ideal Ising model without the spin-spin interaction

term. To demonstrate this mapping in detail, we trim the full magnetic hamiltonian of

LiHoF4 down to only the CEF term and the Zeeman term. The former can be conveniently

expressed using Steven’s operators with appropriate prefactors that have been refined over

the past decades [7, 13, 60, 4]. For the present study, we use the values given in Ref. [61]

with a minor refinement to B4
6(c), details of this choice can be found in the appendix B.

Now the hamiltonian reads:

Ĥ = ∑
l=2,4,6

B0
l Ô0

l +
∑

l=4,6
[B4

l (c)Ô4
l +B4

l (s)Ô4
l ]︸ ︷︷ ︸

ĤCF

− gLµB
∑

i
Ĵi · B⃗i︸ ︷︷ ︸

ĤZeeman

(3.2)

where Ôn
l are the Steven’s operators and Bn

l are corresponding coefficients. gL and µB are

Landé factor and Bohr magneton respectively. The calculated results are given in figure

3.4.

In fig. 3.4(a), the 17 now again non-degenerate eigen-states can be seen to evolve as

functions of the magnetic field with uneven spacing in energies. More importantly, the

ground state doublet (highlighted in red) is separated from the rest of the states by more

than 10 K throughout the entire magnetic field range. Consequently, at temperatures far

smaller than this energy separation, a subspace of the Hilbert space spanned by the ground

state doublet can adequately capture most of the spin physics of LiHoF4 . A expanded view

of these two states is given in Fig. 3.4(b), and they are seen to be degenerate at zero field

but develop an energy gap between each other at finite fields. If we label these two states

|0〉 and |1〉, it can then be shown that 〈0|Ĵz|0〉 =−〈1|Ĵz|1〉 everywhere and ∼ 5.54 at zero

field, which is consistent with previous reports[13, 48]. This symmetry in the expectation

value of Ĵz of the ground state doublet, and ultimately the wavefunctions themselves,

serves as another corner stone that allows one to equate this pair of ground state doublets

to the spin-up (| ⇑〉) and spin-down (| ⇓〉) states in the sing model.
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Chapter 3. MF-RPA model for LiHoF4

The ground state doublet can be expanded in the basis of eigen-vectors of the angular

momentum operator (Ĵz) as |Ψ〉 =∑
jα j| jz〉, where α j is the expansion coefficient for the

basis vector | jz〉, and |Ψ〉 can represent either | ⇑〉 or | ⇓〉. The specific values of these

complex coefficients for the ground state doublet, in absence of external magnetic fields,

are numerically solved and provided in figure 3.4(c) in real and imaginary parts separately.

Furthermore, the results are also presented in the form of sgn(α j)
p
α j to emphasize small

but finite values. We use upward and downward triangles to represent respectively the

spin-up and spin-down states. In addition, the solid lines with filled markers are used

for the real parts, while the dashed lines with open markers are for the imaginary parts.

In both cases, it can be seen that the two doublet states are perfectly symmetric in their

components.

Thus at temperature far bellow the energy gap between the ground state doublet and the

first excited state, the Hilbert space of LiHoF4 can be reduced to a subspace spanned by

this doublet. As a consequence of this truncation, the ranking of the total Hamiltonian

in matrix form is now 2 with symmetrical diagonal elements. Since all 2 matrices can

be rewritten as linear combinations of Pauli matrices and identity matrix, the single-ion

hamiltonian can thus be expressed in the basis of (| ⇑〉± | ⇓〉)/p2 as [13, 48]:

Ĥ = E(B⊥)σz −∆(B⊥)σx (3.3)

where σα (α = x, y, z) stand for the Pauli matrices. ∆(B⊥) then serves as the effective

transverse field that induces tunneling (〈1|∆(B⊥)|0〉) between the two eigen-states. This

effective field as a function of the actual magnetic field is shown in figure 3.4(d), and the

inset of the which zooms in on the low magnetic field regime, it is important to note from

them that ∆(B⊥) behaves roughly as a quadratic function of B⊥.

To understand this quadratic functional behavior, one recalls from before that every

the other expansion coefficient for the ground state doublet in the basis of | jz〉, jz =
8,7, . . . ,−7,−8 vanishes. More specifically: | ⇑〉 =α7|+7〉+α−5|−5〉+α3|+3〉+α−1|−1〉 and

| ⇓〉 = α−7| −7〉+α5| +5〉+α−3| −3〉+α1| +1〉. This means that a single flip of either the

spin-up or spin-down state of the ground state doublet would not result in projection to

the other state, only two (or even number of times of) consecutive single flips of the same

sign would do so. Since Ĵx = 1
2 (Ĵ++ Ĵ−) and Ĵ y = 1

2i (Ĵ
+− Ĵ−), a transverse field along

the x-axis (or y-axis) will result in terms ∝ (〈Ĵ+〉±〈Ĵ−〉), it would then necessarily imply

that any off diagonal terms connecting the two ground state doublet (〈⇓ |Ô| ⇑〉 or 〈⇑ |Ô| ⇓〉)
is quadratically proportional in value to the transverse Zeeman interaction term in the
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3.1 Connection to the Ising models

Figure 3.4: (a) Calculation of single-ion eigen-states of LiHoF4 under crystal electrostatic
field (CEF) splitting and a transverse magnetic field along the crystallographic a-axis (x-
axis). (b) Expanded view of single-ion ground state doublet of LiHoF4 shown in (a). (c) The
real part of the expansion coefficients for the crystal field ground state doublet of LiHoF4
at zero magnetic field. The coefficients are expressed in the basis of the eigen-vectors of Ĵz.
Inset: The imaginary parts of the expansion coefficients of the CEF ground state doublet
of LiHoF4 at zero field. (d) Effective transverse field as a function of the actual transverse
magnetic field for LiHoF4 upon Ising projection of the full Hamiltonian.

hamiltonian.

In the real compound of LiHoF4 , one does need to consider spin-spin interaction by dipolar

and exchange interactions, but both of them only involve, to the leading order, modifications

to the diagonal part of the hamiltonian [48, 19]. Therefore, we have shown that there is

a direct correspondence between the magnetic hamiltonian of LiHoF4 and model Ising

hamiltonian.
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Chapter 3. MF-RPA model for LiHoF4

3.1.2 Ising model with single-ion anisotropy

Despite of what was demonstrated in the last section, and in most literature, that LiHoF4

can indeed be mapped onto the simple two-level Ising model. We have shown in Chpt. 2

Sec. 2.1 that it has deficiencies. More specifically, when the nuclear degree of freedom is

included, the Ising model with exchange anisotropy can no longer qualitatively describe all

the behaviors of LiHoF4 without the introduction of an anisotropic hyperfine interaction.

In this section, we will show that a better minimal model that captures the essential

physics in LiHoF4 is the Ising model with a single-ion anisotropy, whose Hamiltonian

under a transverse magnetic field along x-axis reads (we set S = 1 for simplicity):

Ĥ = ∑
〈i, j〉

Ji jŜi · Ŝ j︸ ︷︷ ︸
spin-spin

interaction

−∑
i

[ BxŜx
i︸ ︷︷ ︸

Zeeman
interaction

+Dz(Sz
i )2︸ ︷︷ ︸

Ising
anisotropy

] (3.4)

where the last term introduces anisotropy with Dz being a scalar, and Ŝz has three eigen-

values: -1, 0, and +1. Here Dz < 0 plays the role of crystal electrostatic field in LiHoF4

that energetically favors spin alignment along z-axis, resulting in single-ion ground state

doublet of |Sz =+1〉 and |Sz =−1〉 at zero field while the |Sz = 0〉 state sits above them at a

distance determined by Dz. Furthermore, with the additional Ising anisotropy term, we

no longer have to require the spin-spin interaction being Ising in nature in order to model

LiHoF4 . But instead the inter spin interaction is kept Heisenberg like.

We then seek numerical solutions to Eq. 3.4 at 0 K and present the results in figure 3.5.

For the example, we restrict the interaction range to the nearest neighbors only on a 1D

spin-1 chain, and set Ji j =J < 0 and Dz = 11. First, we show in fig. 3.5(a) the eigen-states

of Eq. 3.4 without the spin-spin interaction term, where in total three states can be seen

across the entire field range with two of which (highlighted in red) being degenerate at

zero-field. This is quite easy to understand: At zero field, since [Ŝz,Ĥ ]= 0, the single-ion

eigen-states can therefore be labelled by the eigen-values of operator Ŝz: |Sz =−1〉, |Sz = 0〉,
and |Sz =+1〉. Due to the Ising anisotropy Dz(Sz

i )2, a single-ion ground state doublet is

formed by |Sz =±1〉 with |Sz = 0〉 being the first excited state that sits above the former by

Dz in energy. This is phenomenologically equivalent to the CEF terms in LiHoF4 lifting

the Jz degeneracy.

At finite transverse field, these states are mixed by the Zeeman interaction, which is off-

diagonal in the basis of |Ŝz〉⊗|Î z〉, to produce the new eigen-states of the Hamiltonian. The

degeneracy of the ground state doublet is subsequently lifted, and the gap between them
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3.1 Connection to the Ising models

is dependent of an effective transverse field that projects between these two eigen-states.

Similar to the case in the previous section, this effective transverse field is quadratically

proportional to the actual transverse magnetic field should the system again be projected

onto the simple two-level Ising system. The numerical result of this effective transverse

field as a function of the actual magnetic field is plotted in the inset of fig. 3.5(a) using

a blue curve. In the same figure, a red curve representing a quadratic function of the

actual field is also plotted and meant to serve as a visual guide. It can be seen that

the effective transverse field indeed depends quadratically on the real field for small

values of the field before becoming more linear at higher fields. The initial quadratic

functional behavior is very much the same as in the LiHoF4 as discussed before, a single

spin flip only results in projections toward the first excited state Ŝ+|Sz =−1〉 → Sz = 0〉
(Ŝ−|Sz =+1〉→ Sz = 0〉), thus the off-diagonal terms that connects the two ground state

doublet is as before quadratically proportional to the transverse Zeeman interaction term.

Upon the inclusion of the spin-spin interaction term, it allows the now many-body system to

order, and the spontaneous symmetry breaking accompanying it introduces a finite energy

gap between the ground state doublet even at zero field. At finite magnetic fields, the

transverse field competes with the ordering along the Ising axis and eventually completely

suppresses the spin order after inducing a quantum phase transition at the critical field.

These behaviors can be readily read off from figure 3.5(b), where the MF solutions of

normalized eigen-states to the Hamiltonian in Eq. 3.4 at 0 K is presented. In comparison

to fig. 3.5(a), the ground state doublet are now always gapped and the excited state is

pushed further up in energy.

Furthermore, excitation modes at 0 K can also be computed under MF-RPA, the results

are presented in figure 3.5(b) using dashed lines. Since the red solid lines are the MF

eigen-states normalized to the ground state, the upper eigen-states are equivalent to the

single-ion excitation modes |0〉→ |1〉 and |0〉→ |2〉 respectively. In the same figure, the RPA

excitation modes are plotted using black dashed lines on top of these excitations. From the

comparison of the two, it is immediately clear that RPA impacts only the lowest electronic

spin excitation mode, which deviates from the MF mode and softens completely at the

critical field just as in all previous examples.

Next, we proceed to examine the consequences of the hyperfine interaction, to which end,

we modify the Hamiltonian in Eq. 3.4 to:

Ĥ = ∑
〈i, j〉

Ji jŜi · Ŝ j −
∑

i
[BxŜx

i +Dz(Sz
i )2 + AŜi · Î i] (3.5)
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Chapter 3. MF-RPA model for LiHoF4

Figure 3.5: (a) Single-ion eigen-states of a Spin-1 model with single-ion anisotropy in
transverse magnetic field along x-axis. Inset: The effective transverse field after Ising
projection as a function of the actual transverse magnetic field. (b) MF (red solid lines)
eigen-states and MF-RPA (black dashed lines) excitation modes from the ground state
at 0 K for the spin-1 model with single-ion anisotropy. (c) Magnetic phase boundary of
spin-1 model with (solid line) and without (dashed line) the hyperfine interaction. Inset:
Expectation values of 〈Sx〉 (red) and 〈Sz〉 (black) for systems with (solid line) and without
(dashed line) hyperfine interactions. (d) MF (red solid lines) and MF-RPA (black dashed
lines) excitation modes from the ground state at 0 K. Inset: expanded view of the excitation
modes near the critical field.

where Î i is the nuclear spin moment on lattice site i, and A = 0.8J is isotropic. The MF

solutions of normalized eigen-states to this Hamiltonian is given in figure 3.5(d) with

the ground state being omitted for clarity. As expected, each state in figure 3.5(d) is now

further split in two. For the MF solutions, not only the electronic ground state doublet

is always gapped as in the case without hyperfine interaction, the split electro-nuclear
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3.1 Connection to the Ising models

ground state manifold is also always gapped. In addition, it is worth noting that the first

excited electronic state manifold, though appears to becomes degenerate above the critical

field, it is in fact still split with a finite gap in this regime upon a close inspection of the

locally expanded view shown in the inset.

The same as before, we plot on top of the MF eigen-states a set of black dashed curves

representing the RPA excitation modes from the ground state at 0 K (in both the main

and the inset of figure 3.5(d)). Now we see that although one of the electro-nuclear spin

state in the first electronic spin state manifold still softens, such softening is no longer

complete. Instead, the first excited state within the ground state manifold now softens to

zero energy at the critical field. Moreover, since the contribution to the response function

is dominated by the electronic moment, the impact of RPA is mostly felt by the flipping

operation of electronic spins, resulting in only the electro-nuclear branch, within each

electronic excitation manifold, that flips solely the electronic spin from the ground state is

substantially revised from its MF values. This echos what is observed in LiHoF4 as seen

in figure 1.1(d) that only one electro-nuclear excitation mode from the upper electronic

excitation manifold was heavily revised from the MF result inferred from figure 1.1(c).

Figure 3.6: (a, b, c) The imaginary parts of the MF susceptibilities along x-, y-, and z-axis
(χαα, α= x, y, z) for the Ising model with single-ion anisotropy in presence of the hyperfine
interaction (Ax = A y = Az = 0.8J ). (d, e, f) The same as (a, b, c) but for the MF-RPA
susceptibilities.

Apart from the further splitting of electronic spin states, another important effect of the
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Chapter 3. MF-RPA model for LiHoF4

hyperfine interaction is the apparent increase of the critical field. This is made obvious by

comparing figure 3.5(b) to figure 3.5(d) using the two vertical dashed lines connecting these

two figures as a visual guide. The effect is similar to the case described in Sec. 2.1 of Chpt.

2(more specifically in figure 2.2). But the present model reproduces the enhancement

effect on the critical field from the hyperfine interaction without the need of an artificial

anisotropy in the latter. This again shows that the Ising model with single-ion anisotropy

is more physically relevant to LiHoF4 .

Such an enhancement of the critical field also happens at finite but low temperatures,

which is illustrated in figure 3.5(c) where the magnetic phase diagrams of the present

model with (solid line) and without (dashed line) the inclusion of hyperfine interaction are

plotted as functions of temperature and magnetic field. The inset of fig. 3.5(c) gives the

expectation values of Ŝz and Ŝx as functions of magnetic field at 0 K (〈Ŝ y〉 = 0 and hence is

omitted). The vanishing point of the 〈Ŝz〉 is used as usual to determine the critical points.

Finally, as in the previous case, we compute for both the MF and the MF-RPA magnetic

susceptibilities at 0 K. Noting the spin-spin interaction is now a 3×3 tensor, we use Eq.

2.11 and Eq. 2.16 respectively for the calculations. The results are presented in figure

3.6, and the three panels (a, b, c) are respectively χxx, χyy, and χzz for the Ising model

with single-ion anisotropy in absence of the hyperfine interaction, whereas the panel (d,

e, f) are the same but for the model in presence of the hyperfine interaction. In addition

to the collective modes that were already revealed by the poles of RPA solutions, the

susceptibilities also provide information on the spectral weight of the excitation modes.

It is obvious from comparisons among each row of figure 3.6 that the spectral weight for

the same mode differs depending on the specific tensor element, which eventually boils

down to differences among 〈 f |Ŝx|i〉, 〈 f |Ŝ y|i〉, and 〈 f |Ŝz|i〉 (〈 f | and |i〉 stand for the final

and initial states) according to Eq. 2.11.

Furthermore, some electro-nuclear modes vanish above the critical field for specific sus-

ceptibility tensor elements (e.g. the excitation mode within the electronic ground state

manifold in fig. 3.6(a, d) for χxx). This is similar to the previous observation in figure 2.4

from Sec. 2.1 of Chpt. 2, and due to the cancellation of basis vectors. However, it is also

intuitive to interpret them from a physical standpoint. Take fig. 3.6(a) as an example,

above the critical field, the spins are fully polarized along the x-axis, and hence low energy

response function along this direction vanishes. In other words, flipping of the nuclear

spin is no longer viable through time-dependent modulation of the magnetic field along

x-axis. However, at higher energies, it is still possible to flip the electronic spins, hence in
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each electronic spin excitation manifold, the two branches (upper and lower) alternately

vanishes above the critical field as evident in both figure 3.6(a) and figure 3.6(b).

In conclusion, we have shown that the Ising model with single-ion anisotropy has a more

lucid connection to LiHoF4 , and hence is expected to be more instructive about the physics

of LiHoF4 , than the Ising model with exchange anisotropy that is frequently used in the

literature.

3.2 Mean Field Calculation for LiHoF4

Upon establishing the connection between LiHoF4 and the toy models, we continue to build

and solve the full magnetic hamiltonian of LiHoF4 . By now, we have already gathered

three ingredients, namely the CEF term, the dipole-dipole interaction term, and the

electronic Zeeman interaction term. We subsequently diagonalize this hamiltonian and

represent the eigen-states in blue and red curves in figure 3.7(a). Similar to the case in

the previous section without dipole-dipole interaction, the inclusion of the CEF term split

the 17 degenerate eigen-states unevenly along the energy axis as seen. However, in the

current situation, with the inclusion of spin-spin interaction term and thus allowing the

system to order, the ground state doublet is also split even in absence of external magnetic

field. This can be seen more clearly in figure 3.7(b), where we provide an expanded view of

the ground state doublet (highlighted in red) and the first excited singlet state from the

region enclosed by a dashed box in fig. 3.7(a). A more convenient version of Fig. 3.7(b)

is given in Fig. 3.7(c) by normalizing all energies to the ground state. The left and right

vertical axes of both figure 3.7(c) and (d) are to the same scale but in different units.

All the experiments of the present study were carried out at temperatures below 4.3 K,

which provides the first reference energy scale when considering the relevance of different

eigen-states. It is clear from figure 3.7(b, c) that in this temperature range, there is no

significant tunneling probability to the singlet state, only the ground state doublet are of

relevance to us. Furthermore, the majority of the experiments were done at below 300 mK,

and at this temperature there is also no substantial thermal occupation of the excited state

of the ground state doublet. This statement can be quantified by calculating the occupation

number ratio between the doublet defined as P1/P0 ≈ e−βE1 /e−βE0 , where E i and Pi are

the eigen-energy and occupation number of the ith state and 1/β= kBT, in which T stands

for temperature and kB is the Boltzmann constant. In figure 3.8(a), we show both P1/P0

and P2/P1 at 300 mK to visualize the sharp contrast of occupation numbers at different
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Figure 3.7: (a) MF eigen-states of LiHoF4 Hamiltonian with the inclusion of CEF term
under a transverse magnetic field up to 17 T. The red lines highlights the split ground state
doublet. (b) Ground state doublet and the first excited singlet state. (c) The same as (b) but
with eigen-energies normalized to the ground state. (d) The same as (c) but with hyperfine
interaction included in the Hamiltonian. (e) Expectation values of the three Cartesian
components of the electronic spin operator with (solid lines) and without (dashed lines)
hyperfine interaction term in the Hamiltonian.

electronic states. It is clear from the figure that the thermal populations between the two

double states are several orders of magnitudes apart, and that of the first excited singlet

state is even further close to zero.

Now we add in one of the most important ingredients of LiHoF4 , namely the hyperfine

interaction, and the total Hamiltonian now reads:

Ĥ = ĤCF −∑
i ̸= j

∑
αβ

Ĵα
i [(gLµB)2Dαβ

i j + Jex]Ĵβ

j −
∑

i
(gLµB Ĵi · B⃗⊥+ AÎ i · Ĵi) (3.6)
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3.2 Mean Field Calculation for LiHoF4

where the I i represents the nuclear spin on site "i", and we have also used the value from

Ref. [61], that is A = 3.361×10−3 meV.

The same set of electronic spin states shown in figure 3.7(c) is then recalculated with

the hyperfine interaction included and the results are shown in figure 3.7(d) to provide

a side-by-side comparison. We see the immediate effect of hyperfine splitting on each of

the electronic states, each of which are now 8 finer eigen-states due to the 8 possible spin

states of the nuclear spin (|Î| = 7
2 ) of Ho ions. This effect now provides us with the second

important energy scale: within each electronic state manifold, the total hyperfine splitting

is of an order of 2 · A|Îmax| = 2×3.361×10−3 × 7
2 ≈ 0.0235 meV, or 272.7 mK. Thus it sets

the upper temperature bound for resolving the hyperfine splitting in experiments.

At the MF level, since the expectation value of the spin component along the quantization

axis is equivalent to the sample (spontaneous) magnetization that often is taken as the

order parameter when considering magnetic phase transitions, we can therefore infer

the state of ordering in LiHoF4 by this expectation values along quantization axis (〈Ĵz〉).
We then are able to compare this value between cases of finite and vanishing hyperfine

interactions, which are represented respectively by the yellow dashed lines and solid lines

in figure 3.7(e). The two curves arrive at zeros at different fields, marked by the black

arrows in the figure, showing a sizeable difference in critical field that is consistent with

that measured between figure 3.7(c) and (d). It should be noted these two figures closely

resemble fig. 3.5(d, e), echoing the connection in the physics between LiHoF4 and the

toy model. Subsequently, the same comparisons for the other two Cartesian components

of the spin operator both yield only minute difference exclusively near the critical field.

Thus we see another important effect of the hyperfine interaction, in addition to the

eigen-state splitting, is the shift of critical field (Hc) toward higher values. There exist

many literature that provide in-depth discussion of this phenomenon[9, 13, 60], we won’t

repeat the conclusion here, but rather provide a straight forward interpretation from the

perspective of present MF model.

First of all, this enhanced stability of the ferromagnetic state is reminiscent of what we

encountered in the Ising model in Chpt.2, explicitly shown in figure 2.2. In the previous

encounter, we found that only an anisotropic hyperfine interaction can cause a shift of the

critical point, whereas the hyperfine interaction in the hamiltonian described by Eq. 3.6

is isotropic at first glance. To understand the seemingly contradictory observation, we

need to take into consideration of the anisotropy of electronic spin projections in LiHoF4 .

Similar to the previous model, A is negative, thus the nuclear spin moments again favors
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Chapter 3. MF-RPA model for LiHoF4

alignment parallel to the electronic spin moment. Furthermore, as noted in figure 3.7(e),

the effective spin for Ĵz is larger than that for Ĵx and Ĵ y, which ultimately is a result

of the state mixing among the pure states due to the crystal field splitting as seen by

contrasting figure 3.7(e) to figure 3.3(d). This anisotropy of effective spin projection then

gives rise to an effectively anisotropic hyperfine interaction energy, leading to an increased

stability of ferromagnetic state along the quantization axis. This point echos what we have

found for the ideal Ising model in Chpt. 2 witht the twist that here, it is not A that is

anisotropic but instead is 〈Jα〉, α= x, y, z. Hence, we conclude that the enhancement of the

critical field in LiHoF4 is, at MF level, a consequence of an interplay between the crystal

electrostatic field and the hyperfine interaction.

Figure 3.8: (a) Ratio of occupation numbers at 300 mK between adjacent states in LiHoF4
for the first three electronic states from MF calculations without the inclusion of hyperfine
interaction. (b) The same as (a) but with hyperfine interaction included. (c) The occupation
numbers of electro-nuclear spin states within the electronic ground state manifold of
LiHoF4 as functions of temperature. Values were obtained from MFT calculations with the
inclusion of hyperfine interaction, and are normalized to the ground state values.

Based on the above argument, it is then natural to ask what happens if we add the nuclear

Zeeman interaction into the mix. Because of the presence of a transverse magnetic field,

there is now an added indirect competition between the nuclear Zeeman interaction and the

ferromagnetic state along the quantization axis. However, given the nuclear spin moment

of Ho µI = 4.173µN [17, 71], where µN = 3.15245×10−5 meV/T is the nuclear magneton,

one readily finds that the hyperfine interaction in LiHoF4 (A〈I〉〈J〉 ≈ 9.41×10−2 meV) is

about 200 times stronger than the nuclear Zeeman interaction at 4 T (µI |B⃗| ≈ 1.26×10−4

meV), therefore no sizeable effect from the nuclear Zeeman interaction should be expected.

Again in figure 3.7(e), using open circles we show the MF expectation values of electronic

spins with the nuclear Zeeman interaction included in the model, identified in the legend

by "ZeeN ̸= 0", and it is found that there is indeed no visible difference from the case

without nuclear Zeeman interaction. However, owing to the simplicity of MFT, we will
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3.2 Mean Field Calculation for LiHoF4

nonetheless include in our calculations the nuclear Zeeman interaction simply defined by

ĤnZ =−∑
i µ⃗N · B⃗⊥.

At finite temperatures, the high laying eigen-states start to mix in with the ground state

through the partition function, this in turn changes the expectation values of Ĵz, which

again is used as the order parameter for the ferromagnetic phase. More importantly,

as demonstrated in figure 3.7(e), by tracing out points in phase space where the order

parameter (〈Ĵz〉) vanishes, we are able to acquire a magnetic phase diagram for LiHoF4 .

In figure 3.9(a) we show in a dashed line the phase boundary calculated in such a fashion on

top of experimental data from Ref.[9] for comparison. It is clear at first glance that the MF

calculation overestimates critical fields/temperatures in the entire regime. To rectify the

problem, we resort to Ref. [40] and employ a renormalization factor (R−1 = 1.3004) for the

electronic moment to yield an effective spin value that accounts for fluctuations at higher

orders, which is by definition neglected by MFT. The derivation of this renormalization

factor is beyond the scope of this report and we leave the readers to Ref. [61] and Ref.

[40] for more details. The resulting new phase boundary is plotted in the same figure

(Fig. 3.9) using a solid line, and a much better agreement with experimental values is

reached below 1.5 K. As to the large discrepancy at high temperature regime, it has been a

persistent problem and an active research topic in the field. Though a recent study[19]

offered an explanation beyond the MF method to the steep phase boundary near critical

temperature, the final resolution of the issue is not entirely agreed upon. We therefore

refrain from postulating about the mechanism, but only to note that MF calculations are

known to overestimate critical temperatures since they completely ignore spin fluctuations

and correlations. Despite having employed the aforementioned renormalization factor, the

fluctuation near the critical temperature is far stronger an effect to be accounted for by

the renormalization factor alone. Hence it should not be a complete surprise that the MF

prediction fails at this part of the phase diagram, and we leave the issue for future studies

with more sophisticated theoretical models.

As we have already established that at ≤ 300mK there is virtually no thermal population

in the excited electronic states (Fig. 3.8(a)), we therefore narrow our focus down to the

hyperfine split electronic ground state manifold, whose eigen-energies at 300 mK is shown

in the left panel of figure 3.9(b) and in the right panel we give the zero-field occupation

number of each state. We also give the field dependence of the occupation numbers in figure

3.8(b) in the same fashion as (a). By combining these two figures and contrasting them with

fig. 3.8(a), one finds that, unlike the large gap in the occupation number shown between
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adjacent electronic states, the electro-nuclear states in the same manifold are populated to

the same order of magnitude at 300 mK, suggesting comparable contributions from all of

them to the collective response. Additionally, the zero-field temperature dependence of the

thermal population is calculated and given in 3.8(c), though the thermal population for

some of the states change several folds at different temperatures, all of them remain in

the same order of magnitude in the entire temperature range considered.

Figure 3.9: (a) Magnetic phase diagram of LiHoF4 , solid circles: experimental data from
off-resonance measurements of the present work. Dashed line: MFT calculation without
renormalized spins. Solid line: MF calculation with renormalized spins based on Ref.[61].
(b) Left panel: The hyperfine-split electronic ground state manifold at 300 mK. The black
arrow gives an example of excitations between states separated by δI z = 1 and the red
arrow does for δI z = 2 excitation. Right panel: MF thermal population of the eigen-states
shown in the left panel at zero field. (c) The imaginary part of the longitudinal AC magnetic
susceptibility as a function of transverse magnetic field and frequency by MF calculations,
the dummy spin line width used for the calculation is γ = 9×10−5 meV. (d) Left panel:
MF magnetic excitation spectra of the first and second order excitations as illustrated in
(b). Upper right panel: differential occupation number for the second order excitations
(Pn −Pn+2). Lower right panel: differential occupation number for the δI z = 1 excitations
(Pn −Pn+1).
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In addition to the spin expectation values, we can also calculate for excitation spectra of the

system. In figure 3.9(b), we use a black arrow and a red arrow to indicate excitations that

can occur between the δI z = 1 and the δI z = 2 excitations, whose corresponding excitation

spectra are given in fig. 3.9(d). By applying the MF eigen-functions to Eq. 2.11 and

using Eq. 2.15 in Chpt.2, we subsequently arrive at the AC susceptibility of LiHoF4 under

RPA, represented in figure 3.9(c) as a color map at the same frequency and field range as

figure 3.9(b). From comparison of the two, one immediately finds that, despite of having

allowed (δI z = 2) excitations between 5 and 10 GHz, the corresponding AC susceptibility

is much weaker than the δI z = 1 excitations. The reason for that lies in the off-diagonal

matrix elements that govern these transitions. This argument can be deduced without

explicitly showing the numerical values of the matrix elements as follow: use |i〉 and | f 〉 to

represent the initial and final states, recall and rewrite Eq. 2.11 as Eq. 3.7 with different

ingredients color coded for best visualization. Then according to this expression, the AC

susceptibility is roughly composed of three parts: a denominator (black), a numerator

(red), and a multiplier (blue). The denominator determines the divergent behavior when

the frequency matches the energy gap. For the calculation shown in figure 3.9(c), we

arbitrarily set γ= 0.1 µeV for all the states to avoid numerical errors from the divergence.

Hence this part is the same for all the spin excitation modes. The numerator part consists

solely of off-diagonal matrix elements of the Hamiltonian in the chosen basis, and it hence

contributes to the amplitude of the susceptibility. The multiplier is just a population factor

that also moderates the amplitude of susceptibility and, importantly, it hinges on not the

absolute occupation number of the states but rather the difference between the initial and

final states. Therefore, in order to have a large susceptibility, it is necessary to have a large

product of the off-diagonal matrix element and population factor. In the right panels of

figure 3.9(b) we plot the calculated population factors of all the modes shown in the left

panel and one finds they are all comparable in magnitudes, especially between the two sets

of modes. At the same time, the final susceptibilities have amplitudes differ by orders of

magnitudes, therefore the only logical explanation is then the corresponding off-diagonal

matrix elements are different from each other by orders of magnitudes.

χzz(ω)=∑
i, f

〈i|Ĵz| f 〉〈 f |Ĵz|i〉
E f −E i −ℏω− iγ

(Pi −P f ) (3.7)

Consequently, in order to couple to the cavity photon field strongly and resolve the electro-

nuclear spin states, we restrict our focus to AC susceptibilities at frequencies below 5
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Figure 3.10: (a, b) The real and imaginary parts of the AC magnetic susceptibility from
MFT calculations along the crystallographic c-axis of LiHoF4 at 300 mK. (c, d) The real (c)
and imaginary (d) parts of the MFT calculated AC susceptibilities of LiHoF4 at Bx = 4.25
T (marked by the white arrows in (a, b)) and 300 mK, presented separately for the three
diagonal tensor elements. (e, f) The same as (c, d) but at Bx = 4.51 T and 180 mK.

GHz for the rest of the discussion. It is found that the AC susceptibility along c-axis is

the strongest[48], and a direct visualization of all the susceptibility tensor elements is

provided in Appendix A. Here we use only a slice of data at 300 mK and at the critical field

to compare the three diagonal elements.

In figure 3.10(a, b) we show calculated real and imaginary parts of the MF AC susceptibility

along the quantization axis (χMF
zz ) as a function of magnetic field and frequency at 300

mK. In (c, d) of the same figure, we plot χMF
αα , α = x, y, z at the same temperature and

critical field (4.25 T) that is indicated by the white arrows in (a, b) for direct comparisons

of the amplitudes among the three tensor elements. As in the previous section, we set

the line width of all magnon modes to a small number (γ= 0.1 µeV) so that it is easier to

distinguish them from each other, and also to highlight differences that take place in other

aspects. As to the real values of γ for different modes at different temperatures, we will

extract them experimentally in Chpt. 5.

With respect to figure 3.10(c, d), our interpretation puts the emphasis on three important

features: the first is that the real part of the AC susceptibility oscillates between positive
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3.2 Mean Field Calculation for LiHoF4

and negative near its poles; as we have seen in Eq. 2.38, this will shift the cavity resonant

frequency up and down rapidly in the vicinity of mode hybridization. Secondly, a large

peak corresponding to the excitation |0〉→ |2〉 near 5 T is clearly visible in χMF
xx and χMF

yy )

in fig. 3.10(e) but not in χMF
zz , this shows the importance of taking into consideration the

cavity field polarization in relation to the crystallographic orientation. Finally, it is easy

to see from the plots that the peak amplitudes of these three diagonal elements of the

susceptibility tensor differ from each other by orders of magnitudes with χMF
zz being the

highest. To maximize the coupling strength between the photons and LiHoF4 sample

inside the cavity, we conduct all the experiments with the magnetic polarization of the

cavity field arranged along the c-axis of LiHoF4 .

Figure 3.11: Tensor elements of the MF susceptibility at 300 mK as functions of frequencies
under an external magnetic field at 4.25 T along x-axis (a), y-axis(b), and 45◦ in-plane (c)
from both x- and y-axes.

Before moving on, we provide a brief side remark on the large peaks located around 4.7

GHz and 5.0 GHz in figure 3.10(d) and (f) respectively. These peaks, that correspond to

single-ion excitation modes between eigen-states separated by δI z = 1 as stated before, are

most prominent in χMF
xx and completely missing from χMF

zz . Since the occupation numbers

are the same regardless which spin projection one inspects, according to Eq. 3.7, the only

obvious contribution to the differences in peak amplitudes are the off-diagonal elements

〈n+2|Ĵα|n〉, α = x, y, z. Furthermore, their amplitudes can be shown to depend on the

orientation of the external magnetic field, or in another word, the polarization field. In

figure 3.11(a-c), we plot calculated χMF
αα between 4 and 9 GHz with the transverse magnetic

field pointed, respectively, along x-axis, y-axis and 45◦ in between x- and y-axes. They

show clearly that there is a correlation between the (normalized) peak amplitudes and the

orientation of the polarizing field.

To demonstrate influences from the temperature, we repeat the same calculation at 180

mK and plot, in figure 3.10(e, f), a slice of the result at the critical field (4.182 T) for each
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of the three diagonal tensor elements of susceptibility. In comparison to figure 3.10(c, d),

while the overall amplitudes are within the same order of magnitude, there is an evident

shift of it from higher frequency modes to the lower ones for both real and imaginary parts

of susceptibility. This is expected due to an increase in the population factor (P|n〉−P|n+1〉)

for lower modes as a result of lower temperature and is particularly apparent for the

imaginary part of the susceptibility. A steep and monotonic decrease of peak amplitudes

toward higher frequencies is seen at 180 mK in contrast to that at 300 mK where all peaks

have more or less the same amplitude. Thus, in terms of contribution to the bulk dynamical

properties, those excitations from lower states gain more weight at lower temperatures.

Furthermore, there is an overall shift of peak positions toward higher frequencies at lower

temperatures as predicted by MF calculations.

Figure 3.12: (a, b) The real and imaginary parts of the AC magnetic susceptibility of
LiHoF4 along z-axis (χzz, between 0 and 5 GHz, along the quantization axis (c-axis) at
300 mK based on MFT calculations. (c, d) The same calculation but with random phase
approximation (MF-RPA). (e, f) MF-RPA calculation of the AC susceptibility for LiHoF4
along the quantization axis between 0 and 10 GHz.

3.3 RPA Calculation for LiHoF4

As the last part of AC susceptibility calculation, we apply RPA correction to the MF results

at various temperatures and compare the two. Identical to the procedure in the earlier

section for the Ising model with single-ion anisotropy, since the spin-spin interaction is a
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tensor instead of scalar, we apply Eq. 2.16 to the previously calculated MF susceptibility

tensor to obtain the RPA result. For such calculations, dipole and exchange interaction

tensor at zero wave vector were obtained as previously described:

∑
j

D i j =


3.912 0 0

0 3.912 0

0 0 6.822

 ,
∑

j
Jex =


−0.4 0 0

0 −0.4 0

0 0 −0.4

 (3.8)

In figure 3.12(a, b) we plot the real and imaginary parts of χMF
zz respectively, and do the

same for χRPA
zz in (c, d). We remark that all four panels (fig. 3.12(a-d) share the same color

scale. In comparison to the MF result, it appears that only the functional behavior of the

lowest excitation mode is appreciably modified: 1. The mode now completely softens at the

QCP. 2. There is an apparent and significant increase in the amplitude (spectral weight)

of the lowest excitation mode that is clearly visible even from direct inspection, and is

particularly pronounced near the QCP. The same calculation was also carried out at a

wider frequency range shown in fig. 3.12(e), comparing to figure 3.9(c), it indeed appears

that only the lowest electro-nuclear excitation mode was significantly affected by the RPA

correction.

The last point becomes more evident when comparing the low energy excitation modes

(within the ground state manifold of the electronic spin) at zero temperatures. In figure

3.13, we plot in solid lines MF excitation modes from the ground state (|0〉 → |n〉) as

functions of transverse magnetic field, and plot in dashed lines the RPA excitation modes.

A good agreement is achieved by all of them except for the lowest excitation mode (|0〉→ |1〉),
and the largest deviation takes place near the critical point as seen before. To take a closer

examination, we plot a single slice of each of the two susceptibilities close to the critical

field (Bc = 5.40 T) in figure 3.13(b). The blue curve represents the imaginary part of the

MF susceptibility and the red curve represents that of the RPA susceptibility. Using the

two dashed lines connecting the two peaks and the y-axis as visual guide, one can easily

see that there is a close to two orders of magnitude difference in peak amplitudes. This

would naturally, by definition, mean a much stronger response to perturbations, and hence

a much stronger coupling to the environment

Next we extend the investigation to the effect of RPA correction at finite temperatures. In

figure 3.13(c, d), we plot isolated slice of both χMF
zz and χRP A

zz at 4.25 T (approximately the

critical field at 300 mK) in real (c) and imaginary (d) parts. Again we use red curves for
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RPA susceptibility and blue curves for the MF one. Between the two results, there is now

an even larger increase of peak amplitudes for the lowest excitation mode. Comparing to

Fig. 3.13(b), the RPA susceptibility peaks share very similar height, while the MF peak

amplitude of the lowest mode decreased, primarily due to the thermal population spread

at finite temperature. For the higher excitation mode, it is worth noting that they aren’t

completely free from the RPA correction, each of these modes is also red shifted to varying

degrees depending on it proximity to the lowest excitation mode. It appears that the closer

an excitation mode is to the fundamental mode in energy, the more red shift it experiences.

At the same time, the peak amplitudes of these higher modes are barely affected. All

these observations in the imaginary part of the susceptibility are consistent with those

in the real parts, with a notable difference being that the amplitude change of the MF

susceptibility by RPA correction is nearly three orders of magnitude.

Figure 3.13: (a) zero-temperature electro-nuclear excitation modes from the ground state
based on MF (blue solid lines) and MF-RPA (black dashed lines) calculations. (b) The
imaginary parts of MF (blue) and MF-RPA (red) susceptibilities of LiHoF4 at 0 K and 5.4 T.
(c, d) The real (c) and imaginary (d) parts of the MF (blue lines) and MF-RPA (red lines)
susceptibilities of LiHoF4 at 300 mK and 4.25 T.
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As the last note about the RPA, in principle it allows one to compute k-dependent suscepti-

bilities. However, in the present case this is irrelevant since the wavelength of the photon

field employed is far greater than the atomic spacing in LiHoF4 , and we therefore are

always working in k⃗ = 0 limit. Hence we omit from the present document calculations of

RPA susceptibilities at finite |⃗k|.

Before proceeding further, we take a brief detour for some practical considerations. So

far we have only considered the scenario where we have a perfectly aligned transverse

magnetic field, but the situations in real experiments are rarely perfect as such. Therefore,

we consider two possible scenarios when, 1. the magnetic field is not perfectly aligned with

one of the hard axis but remains in the crystallographic ab-plane, and 2. the magnetic

field is slightly out of ab-plane and hence induces a small but finite longitudinal field. We

will examine the effects of these scenarios on the single-ion excitation spectrum before

investigating those on the RPA susceptibility, and finally look at their consequences on the

magnetic phase diagram of LiHoF4 .

In the first case, assuming the magnetic field rotates with respect to the crystallographic

a-axis within the ab-plane, we denote φ as the angle between the external magnetic field

(B⃗⊥) and e⃗a, then the hamiltonian in Eq. 3.6 is diagonalized at zero temperature with

φ= 0◦, 5◦, and 45◦ respectively. The resulting eigen-states in the electronic ground state

manifold are normalized to the lowest hyperfine levels of the three angles and plotted,

along with the corresponding excitation spectrum, in figure 3.14(a, c). Two important

changes take place with such an in-plane rotation, the lowering of both energy and critical

field with an increasing φ, the latter is best seen in fig. 3.14(c), identified by the cusp in the

magnon modes along the field axis. The mechanism behind the first changes is relatively

trivial, and can be understood by considering the single-ion energy difference between

φ= 0 and φ ̸= 0:

∆E = Ĵx|B⃗⊥|− (Ĵx|B⃗⊥|cosφ+ Ĵ y|B⃗⊥|sinφ) (3.9)

= Ĵx|B⃗⊥|(1− cosφ− Ĵ y

Ĵx
sinφ)≥ 0 ∀φ ∈ [0,90◦] (3.10)

where the condition of 0 ≤ φ ≤ 90◦ is always fulfilled for symmetry reasons. Thus, any

rotation of the magnetic field within the ab-plane necessarily lowers the energy. The

second change from the field rotation is less obvious and more related to the wavefunction

composition than energies; it can be made more transparent by examining the expectation

values of the electronic spin operators, which vanishes at lower fields when the magnetic
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field is rotated in plane by 45◦ as seen in figure 3.14(e).

Figure 3.14: (a) Mean field eigen-energies in the electronic ground state manifold as a
function of the external magnetic field at different rotation angles (φ) within the crys-
tallographic ab-plane. (b) The same as (a) but at different rotation angles (θ) out of the
ab-plane. (c, d) The corresponding respective electro-nuclear excitation spectra of (a, b). (e,
f) The corresponding expectation values of electronic spin operators of (a, b).
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For the second field rotation to be considered, we similarly define θ as the angle between

the magnetic field and a⃗ inside ac-plane so that a finite value of this angle produces a

finite longitudinal field. To isolate the effects, we fix φ defined in the previous step to zero

and only consider small angles to be relevant since its occurrence in the experiment is

most likely due to misalignment and should therefore be minute. In figure 3.14(b, d) we

show the MF eigen-states and first order excitations at θ = 0◦, 0.25◦, and 1◦. In figure

3.14(f), we omit the case when θ = 0.25◦ for clarity and show only expectation values of

electronic spins at θ = 0◦, 1◦. In this case, the field rotation always generates a longitudinal

field, which provides a bias through Zeeman interaction for the electronic spins during

the spontaneous symmetry breaking at a phase transition, and determines the ordering

orientation. Therefore, as long as the field polarity is not changed after the LiHoF4 sample

enters the ferromagnetic state, θ is always less than 90◦, and thus again always lowers

the energy comparing to θ = 0◦ as shown in Fig. 3.14(b). In addition, a striking change

from such a field rotation is the "rounding" of phase transition seen in Fig. 3.14(b, d).

We postulate the mechanism with the help of figure 3.14(f), where we see that, while the

expectation values of Ĵx and Ĵ y barely change between the two cases of θ, the behavior of

〈Ĵz〉 exhibit drastic change from rapidly vanishing at the critical field when θ = 0 to slowly

evolving into a smaller but finite value. It suggests that, in contrary to the transverse field

inducing quantum fluctuation via Zeeman interaction, the longitudinal field works against

it and stabilizes the spin order, consequently halting the sharp decay of order parameter.

To see the effects that tilting angles have on the AC susceptibility under RPA, we plot

Re[χRP A
zz ] and Im[χRP A

zz ] for finite φ and θ in figure 3.15(c, d) and figure 3.15(e, f) re-

spectively. We also plot in figure 3.15(a, b) the case with φ = θ = 0 for reference. It is

immediately clear from the figures that the soft mode persisted for a finite φ (= 45◦),

with the only visible change being a steeper climb of the excitation spectra toward higher

energies at higher fields in the paramagnetic phase (just as in the MF susceptibility). For

a finite θ (= 0.25◦) as seen in figure 3.15(e, f), a more substantial change is apparent as

a longitudinal field appears to have suppressed the complete softening of the collective

excitation mode. Instead, the softening is halted at a finite frequency/energy, and a much

rounded cusp is in place of the sharp transition found in the other two cases. The latter

feature is consistent with the results in fig. 3.14(d) for the MF susceptibility. However, it is

also different from the MF case in terms of both, that the lowest excitation mode is still

red-shifted toward lower energies, and that the spectral weight is still much larger than

other modes.
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Figure 3.15: (a, b) The real and imaginary parts of the MF-RPA susceptibility of LiHoF4
at 180 mK along the quantization axis (c-axis) as functions of frequency and an external
magnetic field along a-axis. (c, d) The same as (a, b) but with the external magnetic field
rotated within crystallographic ab-plane by 45◦. (e, f) The same as (a, b) but with the
external magnetic field rotated away from the ab-plane by 0.25◦.

Lastly, a rotation of the magnetic field is also expected to revise the magnetic phase

diagram, we therefore apply MF calculations and consider explicitly the influence of φ and

θ on the phase boundary, which in practice is determined by identifying locations in the

phase space where the order parameter, 〈Ĵz〉 in our case, vanishes. However, in the case of

finite θ, which necessarily results in a small longitudinal field , the symmetry is already

broken by the longitudinal field and there isn’t a real quantum phase transition. The order

parameter 〈Ĵz〉 never truly vanishes, as one can see in figure3.16(b) as an example at 1

K. Thus, in this case, despite that one may still distinguish between different phases at

macroscopic levels (domain structures) as in Ref. [76]. At microscopic scale and at the MF

level, the phase boundary in this case becomes ill defined.

Therefore we proceed to consider the phase diagram only when θ = 0. In figure 3.16(a),

we plot calculated phase boundaries of LiHoF4 under external magnetic fields within the

crystallographic ab-plane on top of the experimental values obtained in the present work

(details in Chpt. 5.1). The solid red and black lines are for, respectively, φ= 0◦ and φ= 45◦,

and the solid markers represent the experimental result. It is evident that the critical

field is lowered at each temperature by the in-plane rotation of the transverse field. Due to

the symmetry, it is foreseeable that the critical fields will increase back up to the original
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3.3 RPA Calculation for LiHoF4

value as φ goes beyond 45◦ toward 90◦, which equivalent of aligning the external field

along the b-axis of LiHoF4 .

In conclusion, the phase boundary is substantially revised by either rotation of the external

magnetic field, and one should always bear this in mind when analyzing and comparing

experimental results from different measurements.

Figure 3.16: (a) Solid circles: experimentally extracted phase boundary of LiHoF4 separat-
ing ferromagnetic and paramagnetic phases. Black curve: calculated phase boundary with
an external magnetic field along the crystallographic a-axis of LiHoF4 . Red curve: MFT
calculated phase boundary with the external field rotated away from a-axis by φ = 45◦

within ab-plane. Blue curve: MFT calculated phase boundary with the external field
rotated away from a-axis by θ = 0.25◦ out of ab-plane. (b) MF expectation values for the
electronic spin in LiHoF4 with an external magnetic field along a-axis (black marker-line)
and that with the external field rotated away from a-axis out of ab-plane by θ = 0.25◦
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4 Experimental setup

In this section, we provide a description of the experimental setup. For conciseness, we

place emphasis on the customized setup without providing unnecessary and redundant

details regarding standard equipment or commercial products such as dilution refrigerator,

vector network analyzer, and cryogenic superconducting magnet.

An overview of the measurement setup is illustrated in figure 4.1(a). The cavity loaded

with a single crystal of LiHoF4 is placed in a dilution refrigerator (Kelvinox-400®) by

Oxford Instrument. A superconducting (NbTi) coax cable mounted and thermalized to

the fridge is connected between a vector network analyzer (VNA) by Rohde & Schwarz

(ZVL-6 or ZNB-40) and the re-entrance cavity resonator. The RF signals generated by

the VNA is injected into the cavity via a single-loop antenna, and reflected signals are

collected by the same VNA for analysis of the S11 parameter. The red arrow denotes the

relative orientation of magnetic polarization of cavity EM field (B⃗AC), and that of the static

magnetic field, labeled as B⃗DC, is represented by the black straight arrows. The ZVL-6

unit is capable of generating RF signals at power up to +15 dBm, but in order to maintain

the probe field within perturbative regime, all experimental data were taken at power less

than -20 dBm, with the exception of power-dependence measurement, detailed discussion

of which will be presented in Chpt. 5. The DC magnetic field is generated by a cryogenic

superconducting magnet controlled by IPS-120® during the experiment and is continuously

ramped at quasi-static rates in comparison to the sampling rate of VNA. In addition, the

cavity temperature is measured via a thermometer mounted at the bottom of the cavity

(fig. 4.1(e)), and monitored at the bottom of the cavity and measured continuously via a

Lakeshore® 370 resistance bridge.

In fig. 4.1(b) we show a corner view of the design of the RF cavity in parts, with the inner
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Figure 4.1: (a) Schematic illustration of the experimental setup. The red arrow denotes the
orientation of magnetic polarization of the cavity EM field (B⃗AC). Black straight arrows
indicates the orientation of the external static magnetic field (B⃗DC). Curly black arrows
illustrates the traveling directions of the RF signals. (b) 3D corner view of the resonator
cavity assembly used in the experiment. (c) Top view (upper panel) and side view (lower
panel) of simulated magnetic flux density of the EM field inside the cavity. Small black
arrows in the color plot indicates the orientation of the magnetic polarization. The black
square marks the sample position inside the cavity to the scale. The black arrows at
the corner of the upper panel and middle of the lower panel denote the crystallographic
orientations of the sample with respect to the view angles. (d) An actual photo of the
cavity assembly in parts for the present experimental study. (e) An actual photo of the
assembled cavity for |S11|/|S21| measurements with two antennas attached to it at the top
and a thermometer mounted at the bottom.

insert highlighted in blue. The cavity used in the present experiment makes use of the

transverse magnetic mode in a typical cylindrical re-entrant cavity[21, 14] with a diameter

of 24 mm, and height of 5 mm. Its design differs from a conventional cylindrical cavity

by an inner metallic cylinder of 15 mm in diameter that protrudes out of the bottom of

the cavity, but does not reach the top lid. Instead, the inner part forms a small gap from

the ceiling of the cavity. In addition, apart from the screw holes along the edges that are

used to assemble the cavity parts together, two openings symmetrically placed off the

center can be see on the top lid, the square hole is used to orient and mount the sample

holder. The four fold geometry ensures proper alignment of the crystallographic axis in

relation to the magnetic polarization of the cavity field. In contrast, the round hold is for

the single-loop antenna, and its high symmetry shape allows for the antenna to be rotated
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continuously until the ideal matching condition is reached. Both the antenna and the

sample holder are subsequently pinned down by side screws. Actual photos of the cavity

assembly in parts and as a whole are given in figure 4.1(d,e). Due to the high magnetic

field applied during the experiment, all parts of the cavity are made of high purity copper

instead of superconducting materials. All the screws used are either made from brass or

non-magnetic stainless steel to avoid distortion of field flux during the experiment, and

the differential thermal contraction at low temperatures doesn’t result in the loosening of

the assembly.

Using COMSOL®, we are able to calculate magnetic flux density from the cavity EM field

by the finite element method (FEM), and the results are presented in color plots in figure

4.1(c). The upper and lower panels of the figure show respectively top and side views of the

cavity. The pairs of perpendicular arrows indicate the crystallographic orientation of the

sample in each panel. The black arrows in the upper panel along the azimuthal direction

indicate the magnetic polarization direction of the cavity field, which is parallel to the

crystallographic c-axis of the sample as it was shown in Chpt. 3 that, the EM field couples

much stronger to the spins in LiHoF4 when it is aligned such. Moreover, the color plot in

both panels show the magnetic flux density from the EM field, and the sample is by design

placed where the density is the highest to further maximize the coupling strength. In the

lower panel, we also show the relative orientation of the static magnetic field, which is

along the crystallographic a-axis of LiHoF4 and perpendicular to the magnetic polarization

of the cavity field to avoid unintended AC modulation of the external magnetic field.

Owing to the small variable gap between the insert and the ceiling of the cavity, the cavity

can, by design, have a fundamental mode between 1 GHz and 5 GHz for a gap size between

400 µm to 150 µ respectively. Further more, a different diameter of the insert also affects

the resonant frequency. In figure 4.2(a, b) we show simulated results of the resonant

frequency of fundamental mode as a function of insert height and diameter respectively.

The reason for the gap size and the insert diameter dependence of the resonant frequency

can be easily understood by considering the cavity resonator again as an equivalent RLC

circuit, whose resonant frequency is given by ω0 = 1/
p

LC and the insert forms the capacitor

with the cavity ceiling. If we denote the gap size with h and the diameter of the insert as

D, then the capacitance is given by C = ϵπD2/4h, where ϵ is the dielectric constant of the

capacitor filling material, which in our case is vacuum. Combine the two expression, we

easily obtain ω0 ∝ 1/D ∝p
h, which is fully consistent with the convex and concave shape

of the curves in fig. 4.2(a, b).
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Chapter 4. Experimental setup

Figure 4.2: (a) Cavity resonance frequency as a function of the height of the metallic insert.
Inset: the equivalent RLC circuit and the corresponding element to the insert. (b) Cavity
resonance frequency as a function of the diameter of the insert. Inset: an isolated capacitor
and its characteristic physical dimensions. (c) Experimentally measured |S11| and |S21| at
room temperature of an empty re-entrant cavity used in the present work. (d) Smith chart
of the experimentally measured |S11| on a reentrant cavity (figure 4.1(d, e)) loaded with a
single crystal sample of LiHoF4 at the room temperature (∼ 300 K) and at 800 mK.

The cavity is characterized without a loaded sample at room temperature, and the result

is given in figure 4.2(c), where both |S11| and |S21| are given. A strong resonant peak

is seen in |S11| data between 3.5 GHz and 3.6 GHz, with a mildly noisy but mostly flat

background. By the definition of quality factor Q = fc/FWHM, where fc stands for the

resonant frequency of the cavity and FWHM is the full-width-half-maximum centered

at the resonant frequency, we obtained a typical value of ∼ 4000 for the quality factor

of the present cavity design. In contrast to measured |S11|, the transmission data |S21|
show rather low transmission of signal even on resonance, and the background reveals
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many fine structures resulting from parasitic capacitance and inductance. Partly due to

this difference in data quality between |S11| and |S21|, all experimental data on LiHoF4

in the present thesis were taken in the form of |S11|. As mentioned earlier, the antenna

that injects the signal into the cavity is allowed to rotate in order to fine tune the coupling

condition. In practice, due to the dramatic change in magnetic properties of LiHoF4

between ordered and disordered states, it induces a drastic change of coupling condition

between the two states as well, which is further aggravated by the change of impedance of

the transmission line inside the dilution fridge as it cools down from room temperature to

milli-kelvins. Consequently, in order to achieve (near) critical coupling at low temperatures

when LiHoF4 is in ferromagnetic state, the coupling condition has to be tuned away from

critical condition at room temperature. Though the amount of detuning is difficult to

predict theoretically, it is possible to obtain through trial-and-error thanks to its decent

reproducibility. In figure 4.2(d), we use the smith chart to show an example of such

detuning and its result at low temperatures. The blue curve is the zero-field data taken at

room temperature and can be seen, by large, in the over-coupled regime; whereas the red

curve was taken at 800 mK and again at zero field is seen to be near critical coupling.

As previously discussed, the magnetic polarization direction of the cavity field in relation to

the crystallographic orientation of LiHoF4 is rather important. In Chpt. 3, we have shown

how sensitive the experimental results are to misalignment of these two orientations.

Therefore, to ensure a configuration where the external field and the crystallographic

c-axis of LiHoF4 are as perfectly aligned as possible, a few measures are taken between

sample is diced and the eventual mounting to the cavity. In figure 4.3, we use the X-ray

diffraction pattern of the single crystal sample used in the present experiment, along with

photos of it on the sample holder, to demonstrate the possibility of aligning the sample

better than 1◦. Both the cavity lid and the sample holder are made from high purity copper,

and precision cut on CNC machines. While the precisely cut square guide in the cavity

lid for the sample holder ensures a precise relative orientation of the sample holder to

the cavity field, the contact surface between the sample holder and the crystal is made to

be perpendicular to the longitudinal axis of the sample holder, and this ensures a precise

relative orientation between the sample and the sample holder provided the orientation

of the sample contact surface is precisely known. As a reminder, the desired relative

orientation of the sample to the cavity field is illustrated in figure 4.1(b).

To achieve a precise cut surface of the sample, it is first mounted onto a goniometer with

resolution finer than 0.5◦. Then the sample is aligned by adjusting the three axes of
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Chapter 4. Experimental setup

Figure 4.3: (a, b) X-ray Laue diffraction patterns of LiHoF4 single crystals in crystallo-
graphic ab-plane and ac-place. The two sets of red and blue lines are guide to the eyes
to demonstrate a relative rotation of 1◦ and 2◦. (c,d) top and side views of a cut LiHoF4
sample on its holder. White dashed lines give the crystallographic axes, and the red dashed
boxes single out the LiHoF4 crystal itself.

the goniometer under the guidance of real time Laue diffraction pattern. Examples of

such diffraction patterns of LiHoF4 along its crystallographic ab- and ac-planes are given

respectively in figure 4.3(a, b), on top of which sets of blue and red guidelines that are

rotated relative to each other are drawn to show that it is entirely possible to discern a

deviation of 1◦ by naked eyes. To certain limit, the finer the collimator used, the better

resulting angle resolution. The sample is then transferred together with the goniometer to

a diamond wire saw so that the crystal can be diced precisely. In figure 4.3(c, d), we show

photos of the cut sample (singled out by the red dashed lines) mounted on the holder along

the contact surface, the crystallographic a, b, and c axes are marked using white dashed

lines. In addition, the two bigger and exposed surfaces of the sample are reinforced with

sapphire substrate to counteract the strong magnetic torque during the experiment when

the transverse field is applied.
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5 Experimental results and discus-
sion

Here we present our experimental results and compare them to the calculations from

the prior chapter. This chapter is roughly categorized under two sections: off-resonance

and on-resonance experiments. The choices of cavity resonant frequencies are based on

the energy scales of the first and second order modes of single-ion excitation spectrum

within the electronic ground state manifold, which is presented in figure 5.1 using series

of dashed lines. In both figures, the black curves represent excitations among the nearest

neighboring eigen-states in energy (δI z = 1) while the blue curves are for those among the

next-nearest neighboring states in energy (δI z = 2). The special excitation mode (|0〉→ |1〉)
between the ground state and the first excited electro-nuclear state is colored in red for

convenience of comparing to the soft mode predicted by RPA, which is plotted also in red

in the same figure in a dash-dotted line. Finally, the solid purple horizontal lines in the

two figures mark the bare resonance frequencies of the cavity used for the measurements,

with the two in figure 5.1(a) for off-resonance experiments and the four in figure 5.1(b)

for on-resonance experiments. In practice, the experimental data are typically obtained

by sweeping the cavity through a frequency window at fixed temperatures and magnetic

fields at each time before stitching together individual frequency scans to form a 3D data

set.
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Figure 5.1: (a) Cavity resonant frequencies (purple solid lines) for the off-resonance
experiments in relation to δI z = 1 and δI z = 2 excitation modes within the electronic
ground state manifold. Inset: expanded view of the region enclosed by the dashed box in
the main figure. (b) Single-ion excitation modes of δI z = 1 and the RPA soft modes. Purple
solid lines: Cavity resonance frequencies for the on-resonant experiments.

5.1 Off-Resonance Results and Analysis

In off-resonance experiments, the cavity resonance frequency is detuned away from the of

spin excitation modes. Hence there should be no coherent exchange of energies between

the cavity photon field and the spin ensemble. The interaction between the two subsys-

tems (the photon field and the spin ensemble) are purely classical and is expected to be

characterized by classical electrodynamics. In our experiments, the scattering parameter

|S11| is measured as a function of magnetic field, temperature and frequency.

5.1.1 Field-Ramping measurement (∼ 5 GHz)

In the left panels of figure 5.2(a, c), we show two sets of 3D data of |S11| measured at

150±10 mK while the magnetic field is swept from 0 to 9 T simultaneously with the

frequency between 4.71 and 4.75 GHz. These data are obtained on the same sample and

with the same cavity, and the only appreciable difference is that a finite longitudinal field

is applied to the sample when obtaining figure 5.2(c). At first glance, the most striking

feature is that the resonant frequency of the cavity changes as a function of magnetic field

but remains singly peaked at the entire field range. Furthermore, the resonant frequency

doesn’t monotonically decrease or increase along the field axis, an inflection point can be

clearly seen near the critical field (∼ 5 T) in both sets of data. An important distinction
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Figure 5.2: (a, c) Left panels: experimentally measured |S11| parameter as functions of
magnetic field and frequency on the same sample with (c) and without (a) a longitudinal
field at ∼ 150 mK. Right panels: Individual slices of experimental data (solid markers)
as functions of frequency at selected external magnetic field marked by both the arrows
and white dashed lines, as the visual guide, in the left panels. Black dashed lines are
numerical fits to these measurements using Eq. 2.38. Both color plots share the same color
scale displayed on top of (a). (b, d) The real (blue dots) and imaginary (red dots) parts of
the diagonal AC magnetic susceptibility along z-axis (χzz) obtained from numerical fits to
experimental data in (a) and (c), respectively, as functions of magnetic field.

between these two sets of data are the shape of the inflection point, with the one in figure

5.2(a) being clearly sharper than the one in figure 5.2(c).

At each given magnetic field, the |S11| response is fitted between 4.71 and 4.75 GHz using

Eq. 2.38 to extract the real and imaginary parts of the AC susceptibility, examples of which

at three different field values (marked by both the white dashed lines and arrows in the

left panels) are given in the right panels of figure 5.2(a, c), and the experimental data is

represented by color-coded markers while the fits are plotted using black dashed lines. The

resulting off-resonance susceptibilities from these fits are shown in figure 5.2(b, d), whose

real parts (blue dots) are seen to peak at the critical field, demonstrating a similar but

inverted trend of the resonant frequency as expected. In contrast, the imaginary parts of
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the susceptibilities show surprising double peaks on the opposite side of the critical field,

whose origins are not obvious since, at ∼ 4.73 GHz, the cavity mode and electro-nuclear

excitation modes in LiHoF4 don’t coincide in the given magnetic field range (see fig. 5.1

(a)).

To understand the behavior of the experimental data and its implication, we turn to our

models. Since it is assumed that |ω−ωc|≫ γ for single-ion excitations in an off-resonance

measurement, γ in the denominator of Eq. 2.11 is of no importance. This enables us to

calculate susceptibilities without the actual knowledge of spin line widths. By setting

γ= 9×10−4 meV, we compute χMF
zz from Eq. 2.11 and subsequently χRP A

zz from Eq. 2.15

at experimental temperatures, which are eventually plugged into Eq. 2.37 to simulate

measured |S11| as functions of frequency and field.

The calculated resonance frequencies as functions of magnetic field are presented as black

(MF) and red (RPA) dashed lines on top of experimental data in color maps in figure 5.3(a,

b) to provide a direct comparison. In both figures, a small discrepancy can be seen between

the experimental values and those from MFT, from which we deduce that the longitudinal

field in figure 5.3(b) is of 0.26% of the transverse field, equivalent to a tilting angle less

than 0.5◦ from the ab-plane. In contrast, the RPA results yield a much poorer agreement

with the experiment. What’s more, apart from the curvature discrepancy displayed by

both comparisons, an additional discrepancy of the locations on the field axis of the cusps

along the resonance frequencies between the experimental and theoretical values are also

apparent in figure 5.3(b), which are highlighted using two vertical white dashed lines. We

shall discuss this shortly.

The minute "amplitude" discrepancy along the frequency axis between the MF and experi-

mental results, in both figure 5.3(a), is attributed to the imprecision of FEM modeling of

the dimensions of LiHoF4 and its position inside the cavity. In other words, it is considered

an uncertainty originating from the filling factor (η in Eq. 2.30), and once corrected by a 6%

inflation of the theoretical values for both figure 5.3(a, b), shown using solid black lines in

figure 5.3(c, d), the model appears to achieve an excellent agreement with the experimental

data. As for the RPA results however, the large discrepancy along the frequency axis is

only resolved with a scaling of the filling factor by 32%, shown using solid red lines in

figure 5.3(c, d). It is much too large to be considered a mere uncertainty and the resulting

curves also displayed very different line shapes from the experimental data. Both imply

that the RPA correction to the MF off-resonance susceptibility is beyond simple scaling of

amplitudes, and therefore the resulting disagreement with the experimental data cannot
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Figure 5.3: Color maps in (a-d): experimentally measured |S11| parameter as functions
of transverse magnetic field and frequency on the same sample and in the same cavity,
without (a, c) and with (b, d) a longitudinal field of 0.26% of the transverse field. Dashed
lines in (a, b): The resonance frequencies of the spin-cavity ensemble as functions of
magnetic field without adjustment, calculated by the MFT (black) and MF-RPA (red). The
white dashed lines in (b) are intended as visual guide to the QCP mismatch. Solid lines in
(c, d): The resonance frequency with corrected filling factors (c) and adjusted critical field
(d), obtained from the MFT (black) and MF-RPA (red) calculations. (e, f) Simulations of
|S11| shown in (a) and (b) respectively by the MFT.

be resolved by a simple multiplicative factor to the filling factor.

Since we were able extract the real and imaginary parts of AC susceptibility from the

experimental data, we proceed to compare them to calculated values as well. In all four

panels of figure 5.4, experimental values for the real and imaginary parts of susceptibility

are presented in blue and red dots, while the theoretical values for those are given in black

solid and dashed lines respectively. For both the cases without (figure 5.4(a)) and with

(figure 5.4(b)) longitudinal field, MF calculations and experiment reached good agreements

on the real part of susceptibility, whereas that between the RPA and experimental results

shown in figure 5.4(c, d) did not, consistent with the observations on |S11|.

Similar to figure 5.3(b), we used two vertical dashed lines as a visual guide in figure

5.4(d) to highlight the shifted critical field. On the surface, it is tempting to brush off this

shift in critical field by projecting doubts onto the measurement accuracy of the sample

temperature. However, a quick MF calculation reveals that only a temperature difference
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greater than 100 mK can bring the theoretical and experimental results together, and it is

achieved not without loss of agreements in other parts of the data. This value far exceeds

any reasonable error tolerance for calibrated thermometers in this temperature range.

Moreover, since both measurements with and without the longitudinal field were taken

using the same setup, the same sample, and the same parameters, there is no apparent

reason for one to treat their accuracy differently.

Thus we sought after explanations elsewhere, and incidentally, it appears to be consistent

with a recent finding in Ref. [76], where a shift of critical field toward lower field in AC

susceptibility measurement is discussed in detail. The author of this report concludes that

the discrepancy roots from the symmetry breaking at the microscopic and the mesoscopic

scales do not coincide with each other on the field axis as a result of finite longitudinal

field. A detailed calculation and subsequently quantitative comparison to the experimental

results is provided and presented in fig. 1(h) and fig. 3(e-i) of Ref. [76], and we refer

readers to the literature for further details. According to Ref. [76], in order to predict the

correct critical field, one in practice is required to take into consideration of the magnetic

domain structure. In the present work, although the dipole-dipole interaction summation

takes into consideration of the domain shape, it does not account for broken symmetries

caused by the longitudinal field and therefore unable to capture the physical consequence

of it. However, as noted in Ref. [61], the renormalization of the effective electronic spin

from higher order contributions to the self-energy will result in a shift of the critical field

without affecting the critical behavior itself. Therefore, instead of crudely scaling the data

along the field axis, we fit for the best renormalization factor of the effective spin to yield

the correct critical field in cases where the longitudinal field is finite. We note that such

correction is always applied to the MF and MF-RPA results equally and simultaneously.

In moving forward, the theoretical predictions for the imaginary part of AC susceptibility

in all four panels of figure 5.4 also show qualitatively different behaviors from those of

experimental data that was not revealed in the previous comparison of |S11|. In both

fig. 5.3(a, b), a set of double peaks is observed surrounding the critical field in the fitted

imaginary part of susceptibility, yet they are completely missing from both MF and MF-

RPA calculated results. In addition, for the case without longitudinal field (fig. 5.4(a, c)),

the amplitudes of the imaginary part, in contrast to the real parts, differ by up to one order

of magnitude between theoretical and experimental values. For the case with longitudinal

field (fig. 5.4(b, d)), though the magnitudes between MF predicted and measured values

are in a reasonably good agreement in terms of the magnitude (fig. 5.4(b)), it is not the
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case for the RPA results (fig. 5.4(d)).

What’s most intriguing is that these double peaks in the imaginary part of the AC magnetic

susceptibility surrounding the QCP, or conversely can be viewed as a dip at the QCP in an

otherwise slow evolving curve, resemble the double peaks discussed in Ref. [45], in which

they were taken as signatures of weakly interacting modes hybridizing with the cavity

mode. Though this mechanism is entirely possible (since hybridization with extremely

broad excitation mode does manifest as an elevated dissipation rate, which is characterized

by the imaginary part of susceptibility), the observation in figure 5.4 is most definitely

not the same spin excitation mode as observed in the aforementioned literature, because

the cavity resonance frequency chosen here is above the first electro-nuclear excitation

mode (|0〉 → |1〉 in fig. 5.1(a)). Therefore if these double peaks were to be interpreted

as hybridization between cavity field and spin excitation modes, it is not from the RPA

soft mode discussed in Ref. [48] & Ref. [45]. However, it goes without saying that other

possibilities exist, for example, it could be from a higher order correction to the MF eigen-

states that resulted in excitation modes appearing in this frequency window, or it could be

an outcome of mode-mode interactions that shifts the collective mode in energy. Both of

these potential mechanisms are not included in our present model.

In spite of the failure of RPA in the present case, the good agreement between the MF

results and the experiment nonetheless allows us to make some physical interpretations of

the experimental data: On the one hand, the resonant frequency as a function of magnetic

field experiences an inflection point exactly at the quantum critical point simply due

to the divergence of the real part of AC susceptibility, as is described by the diverging

denominator of Eq. 2.38. On the other hand, as we have already seen in figure 3.14, a

small longitudinal field has the effect of "rounding" the quantum phase transition. This

is directly manifested in figure 5.3(b, d), where a longitudinal field that is < 0.3% of the

transverse field causes the loss of sharpness in the line shape of the resonance frequency

trace. For a direct visualization, we simulate |S11| using the single-ion susceptibility and

present the results in figure 5.3(e, f) in the same fashion as the experimental data shown

in figure 5.3(a-d).

In terms of the large discrepancy between the RPA and experimental results. It appears

to be consistent with observations made in an recent report (Ref.[49]), where the authors

hypothesized that, due to an ultra strong coupling to its environment, the coherence time

of the collective mode predicted by RPA is extremely short and in the order of hundreds of

GHz, causing the mode to rapidly decay into single-ion modes (MF modes) on a pico-second
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Figure 5.4: (a-d) Blue and red dots represent experimental values of the real and imaginary
parts of the AC magnetic susceptibility of LiHoF4 obtained from numerical fits to data
presented in Fig. 5.3(a-d). Solid and dotted-dashed lines are theoretical predictions for
the real and imaginary parts of the susceptibility under MFT (a, b) and RPA (c, d). The
vertical dashed lines in (d) are for visual guide only.

time scale. Consequently, when probed in CW mode, one is effectively always measuring

the single-ion excitation spectrum.

As the last remark, we comment on the appreciably smaller amplitude in the imaginary

part of susceptibility when a longitudinal field is applied. The difference is readily seen

by comparing Fig. 5.4(a) and Fig. 5.4(b). As previously stated, if we were to attribute the

increase in Im[χzz] to dissipative coupling between the cavity mode and spin excitation

mode, we then can reasonably assume that a longitudinal field would suppress such

dissipation channels by stabilizing spins through polarization, and effectively weaken the

hybridization. We stress again that these are speculations rooted in our understanding of

the system and experimental observations. The eventual resolution of these discrepancies

between experiment and theories necessarily a requires more sophisticated theory that

goes beyond MF-RPA, which lies both outside of the current expertise of the author and
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the scope of this report, we therefore leave it for future projects.

We repeat these measurements at various temperatures up to 800 mK and show the results

in figure 5.5, where we plotted real and imaginary parts of the susceptibilities in figure

5.5(a) and figure 5.5(b) separately, the temperature series are color coded in the same

fashion for both experimental and simulation results, and are coordinated between the

two panels. In response to the poor agreement between the RPA and experimental results

demonstrated above, we now only compare the latter to MF calculations for analysis. But

shall return to RPA from time to time for other measurements.

The same as previously with the real part of the susceptibility, MF results yield good

agreement with the experiments at all temperatures across the entire field range except

for the region near the critical fields. This is understandable, considering MF theory

doesn’t include spin-spin correlation, and hence ignores fluctuation altogether, while RPA

introduces some corrections to that, it is only valid when the equal-time fluctuations are

uncorrelated. Thus when the correlation length diverges near the critical field and the spin

fluctuation becomes very strong, the MF calculated results deviate from the reality the

most. For the imaginary part of the susceptibility on the other hand, the calculated values

are again off by nearly an order of magnitude like before and neither capture the shapes of

the experimental data. It is noted however, that the dip in the experimental data coincides

with the predicted critical field, and deepens as the temperature rises. This offers another

potential explanation to the observation: instead of viewing the double peaks as results of

weakly interacting modes surrounding critical point hybridizing with the cavity mode, it is

rather a dip at the quantum critical point in a broad "hump". However, due to a lack of

further evidence and quantitative argument, the author refrains from postulating about

the mechanism behind it and leaves the resolution to future work.

To further test the strength and weakness of our model, we repeat the same measurement

with rotated transverse field on a much larger sample. The setup is shown along with the

experimental results in figure 5.6. In this setup, in order to minimize uncertainties in the

rotation angle, the inner cone and the cavity are machined as one piece (left panel of figure

5.6(c)). The side of the inner cone, on which the sample is attached along the ac-plane,

was precision machined to lie at 45◦ with respect to the bottom of the cavity as seen in

the technical drawing of the cavity in the right panel of fig. 5.6(c). Since the external

magnetic field is applied perpendicular to the bottom of the cavity resonator as indicated

by the black arrow in the actual photo of the cavity-LiHoF4 setup in fig. 5.6(d), the field is

now rotated by 45◦ within LiHoF4 ’s ab-plane. Furthermore, the volume ratio between the
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Figure 5.5: (a) The real part of the AC magnetic susceptibility of LiHoF4 obtained from
numerical fit to the experimental data (markers) and the MFT calculations (solid lines).
(b) The same as (a) for the imaginary part of the susceptibility from experiments (dots)
and calculations (dashed lines). Both figures share the same color code.

present sample and that in fig. 5.3 (as well as fig. 5.2) is ∼ 5.8, and we again modeled for

the filling factor using FEM, which yield a value of, not 5.8 times bigger than that of fig.

5.2, but rather only 1.96 times bigger. This is primarily due to the inhomogeneity of the

magnetic flux density in the cavity shown in fig. 4.1.

Taken into consideration of both the field rotation angle and the new filling factor, the

resonance frequency is calculated and plotted in solid red line in figure 5.6(a) on top of the

experimental data, and it is found that the best agreement between the two is reached

when a tiny angle of 0.05◦ between the magnetic field direction and ab-plane is introduced,

which necessarily introduces an extremely weak longitudinal field. We attribute this

potential misalignment to human error when mounting the sample, in spite of which the

result lends some further support to our model. In addition, MF-RPA calculated resonance

frequency is also plotted in figure 5.6(a) using a red dashed line, and once again the

calculation based on single-ion susceptibility agrees far better with the experiment than

the result based on RPA susceptibility.

Subsequently, we present in figure 5.7(a) a χMF
zz -based-simulation of |S11| seen in figure

5.6(a). In addition, susceptibilities fitted from the experimental data as well as MFT

calculated values are compared in 5.7(b). The two sets of values are again in good agree-

ment with each other for the real part of susceptibility but not for the imaginary part.

Moreover, two important features are noted to differ from previous cases. The first is that

the discrepancy in Im[χzz] between experimental and theoretical results is no longer as
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large as orders of magnitude and is only limited to near the QCP. The second is the disap-

pearance of the double peak surrounding the QCP. Given the small yet finite longitudinal

field and previous observations in figure 5.4, it is reasonable to conjecture that the two

features are related and due to the already weak hybridization between the cavity mode

and the unspecified background mode being suppressed by the small longitudinal field.

However, we emphasize again that the exact reason and mechanism is not known and

more experimental investigation is required for any meaningful further discussion.

Figure 5.6: (a) Color map: experimental data of |S11| as a function of magnetic field and
frequency at 150 mK. Red solid line: cavity resonance frequency at the experimental condi-
tion obtained from MFT calculations with the inclusion of a longitudinal field that is only
< 0.1% in amplitude of the transverse field. Red dashed line: cavity resonance frequency
from the MF-RPA calculation (with the same parameters for the MFT calculation). (b) Left
panel: expanded view of the small features present in the raw data in (a) at fields between
1 and 2 T. Right panel: Individual |S11| measurements at field locations marked in the
left panel by the roman numerals. (c) Technical drawing of the re-entrant cavity used for
the present particular measurement. (d) An actual photo of the cavity with the sample
on which data shown in (a) is measured. The upward black arrow indicates the external
magnetic field direction, and the annotated white dashed lines show the angle between
the crystallographic ac-plane and the normal plane to the external magnetic field.

A side note here is that new features appeared in the raw data upon increasing the sample

size: a closer examination of the data at the low field region between 1 and 2 T reveals

some disruption to the resonance frequency as shown in figure 5.6(a), which is clearly

not present in our simulation in fig. 5.7(a). Carefully repeated measurements confirm
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that these features were not from instrument fault or artifacts, and very sensitive to

temperature changes. Upon discussions with authors of Ref. [45], the author takes the

liberty and postulate that the origin of these features is likely a hybridization between the

cavity mode and so called Walker’s mode, or magnetostatics mode. However, sliced data

given in the right panel of fig. 5.6(b) show no sign of branching, implying the potential

line widths of these Walker modes are much finer than the experimental resolution of

magnetic field. In light of the fact that these modes don’t affect the discussion of the main

focus of the present thesis, and only scarce amount of data are available, we refrain from

digressing into discussing them further and leave the issue for future development.

Figure 5.7: (a) Simulated |S11| using the single-ion susceptibility under the same exper-
imental conditions as those for the measurement shown in fig. 5.6(a). (b) Fitted values
for the real (blue dots) and imaginary (red dots) parts of the AC susceptibility from the
measurement shown in fig. 5.6(a). Black lines: The real (solid line) and imaginary (dashed
line) parts of the single-ion susceptibility of LiHoF4 (along the quantization axis) calculated
by the MFT

5.1.2 Field-Ramping measurement (∼ 2 GHz)

In complement to off-resonance measurements in the previous section, a series of exper-

iments was also carried out at a frequency (∼ 2.2 GHz) below the single-ion excitation

modes predicted by MFT, but will intercept the collective mode around the QCP according

to calculations under MF-RPA as is shown in figure 5.1. Incidentally, this is also the

frequency at which the authors of Ref. [45] chose to detect the RPA predicted soft mode.

The experimentally measured |S11| is as usual presented as a color map in figure 5.8(a),
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and again we see the trace of the resonance frequency taking on a familiar line shape

as a function of the magnetic field. As with the previous case, we had to correct for the

filling factor (the same value for both MF and MF-RPA calculations), but since it is of

no relevance to the current discussion we omit it to avoid confusion and instead show

only corrected results. In figure 5.8(a), plotted on top of the experimental data are two

sets of MF results with different spin line widths (γ). While the solid red curve was

obtained with γ set to 9×10−5 meV (21.7 MHz) as before, the dashed curve was calculated

using γ= 9×10−2 meV (21.7 GHz). It is obvious from the direct inspection that the latter

theoretical result drastically deviates from the experimental values, and the discrepancies

cannot be eliminated by simple scaling. On the contrary, the results from γ = 9×10−2

meV achieved an excellent agreement with the experiment across the entire field range.

Furthermore, to achieve such a degree of agreement, a longitudinal field of 0.1%, or

equivalently a tilting angle of 0.05◦ out of crystallographic ab-plane, had to be introduced.

This angle, despite being tiny in value, translates to visible and consequential changes to

the eventual result of |S11|.

The same comparison between two values of γ is also done with the MF-RPA calculations,

and the resulting resonance frequencies are presented in figure 5.8(b). Since the MF-RPA

calculation predicts a soft mode that traverses through this frequency and field window,

unlike the previous case with the MF calculations, we expect it to directly hybridize with

the cavity mode. This is indeed the case, and is more apparent for when γ= 9×10−5 meV

as shown in the inset of figure 5.8(b), where the color map is the calculated |S11|, and the

two white dotted lines are the predicted soft modes. In the present example, a small spin

excitation line width (along with a small cavity line width) produces a higher cooperativity

that contributes to the formation of an avoid-crossing-pattern[66, 33, 37]. Upon increasing

the spin line width, the avoid-crossing-pattern eventually goes away even though the

two modes still cross paths. This is precisely the case for the RPA results represented

by the white dashed line in the main frame of figure 5.8(b). Furthermore, the line shape

now resembles that of the MF result with γ= 9×10−5 meV, and exhibits vastly different

behavior from the experimental results. The author would also like to note that, this line

shape shown by the RPA results (white dashed line in figure 5.8(b)) is consistent with what

is given in Ref. [49] (fig. 2(b) & fig. 5(c)).

Since the discrepancy in |S11| eventually boils down to that in the AC susceptibilities be-

tween experimental and theoretical results, we compare as before directly the theoretically

calculated and the experimentally fitted values of χzz in figure 5.8(c). All numerical results
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shown in this figure are done by calculations with γ= 9×10−2 meV, and we see that, in

accordance with figure 5.8(a), the MF results (red solid line) for the real part of the suscep-

tibility again agree very well with fitted values from experiments (blue markers for the

real part and red markers for the imaginary part). Moreover, the imaginary part of the MF

susceptibility (red dashed line) is within the same order of magnitude of the experimental

data (red solid markers), and exhibits qualitatively the same overall trend, despite not

being able to capture the double peaks surrounding the QCP as in previous cases. In the

inset, we provide an expanded view on the imaginary part of the susceptibility in order to

show the double peak feature that is now drown out by the noise but still discernible. The

black curve in the figure is intended for visual guide only. The elevated noise level found

here may be an impact from a change of coupling conditions between the cavity and the

antenna.

In contrast, values for the AC susceptibility obtained from RPA calculations are strongly

peaked at the QCP and in poor agreement with the experiment. The contrast between

these two results once again indicate the necessity to go beyond MF-RPA on the theoretical

front. To reiterate, as postulated by the authors of Ref. [45, 49], the difficulty of RPA

in describing experimental observations for the present case (or similar experimental

schemes) may be the result of a short coherence time of the soft mode, which causes the

collective mode to quickly decay into the single-ion mode, giving the latter substantially

more weight in contribution to the eventual effect after integration over the time. Hence

the more suitable model to use for CW measurements is always the MFT in the frequency

domain. Furthermore, if we assume that, for the specific example of figure 5.8, the good

agreement between the MF result based on a γ= 9×10−2 meV and the experimental one

is not coincidental, and we recall the fact established previously that, when the cavity is

far enough off-resonance from the spin excitation modes, it is insensitive to the spin line

width, then it implies that the present cavity resonance frequency may be sensing, but

not direct hybridizing to, a magnon mode that is much closer in proximity than what the

MFT predicted (see figure 5.1). Thus in a combined view, one necessarily has to go beyond

MF-RPA, that will actually change the eigen-states and eigen-energies, in order to obtain

a more satisfying description of the physics involved in these experiments.

To verify from a different angle that the predicted sharp peak of susceptibility is missing

from experiment, we compare the present set of numerically fitted susceptibility from

experiments at ∼ 2 GHz to those at ∼ 5 GHz at the same temperature in figure 5.8(d), where

the blue and black dots represent the experimental values of the real part of susceptibility
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Figure 5.8: (a) Color map: experimentally measured |S11| as a function of magnetic
field and frequency at 150 mK between 2.10 GHz and 2.21 GHz. Red dashed line: MFT
calculation of cavity resonance frequency as a function of magnetic field based on γ =
9×10−5 meV. Red solid line: MFT calculation of cavity resonance frequency based on
γ = 9× 10−2 meV. (b) Color map: experimentally measured |S11|. White dashed line:
MF-RPA calculation of cavity resonance frequency based on γ= 9×10−2 meV. Inset: MF-
RPA simulated |S11| based on γ= 9×10−5 meV, the white dotted lines are the soft mode
predicted by RPA. (c) Fitted values of χzz in real (solid blue markers) and imaginary (solid
red markers) parts from experimental data given in (a). Solid lines: calculated values for
the real (solid lines) and imaginary (dashed lines) part of susceptibility from MFT (red)
and MF-RPA (black). (d) Comparison of fitted values for AC susceptibilities in real and
imaginary parts from experiments carried out at ∼ 4.8 GHz and ∼ 2.2 GHz.

from 4.8 GHz and 2.2 GHz experiments respectively, and the red and yellow dots are

the imaginary parts of those measurements. The two sets of data on the real part of

susceptibilities agree very well throughout the field range, with the exception of the peak

sharpness that has been shown to be related to the longitudinal field. The imaginary part

of susceptibility also agree with each other rather well in terms of both the amplitudes

and the general line shapes. This comparison indicates that there may be no qualitative

85



Chapter 5. Experimental results and discussion

differences in the off-resonance susceptibility between the two frequency windows (one

above and one below the spin excitation modes inside the electronic ground state manifold),

and hence provides further evidence that the current theoretical description at the lower

energy scale calls for further considerations.

As we have seen that, in spite of the double peak in the imaginary part of the susceptibility

surrounding the QCP is still visible in the inset of figure 5.8(c), the increased noise level

begin to mask any potential features, rendering it difficult to pinpoint the spin excitation

modes underneath if there is any. To amend the issue, we recall that the quality factor

(Q) is also a measure of dissipation rates. we can therefore make use of the inverse of

Q-factors to keep track of any potential "leaky channels" coupled to the cavity mode as in

Ref. [41] and Ref. [45].

To that end, we use the usual definition of quality factor: Q = ω0/∆ω, where ω0 is the

resonance frequency of the resonating structure, and ∆ω is the spectral bandwidth of

resonant peak. The inverse of thus measured Q from experimental data are then plotted

using solid markers in figure 5.9(d), in a series of data sets taken at different temperatures.

The most striking features of these 1/Q measurements are the presence of two peaks

surrounding the critical field at each temperature. Furthermore, the peaks above the

critical fields, when the sample is expected to be in the (polarized) paramagnetic state,

have much sharper profile than those below the critical fields when the sample is in

ferromagnetic state. Moreover, As the temperature is raised, the critical field shifts lower,

and so do the two peaks surrounding it. More importantly, the peak amplitudes also go

down with raised temperatures, while at the same time don’t exhibit obvious broadening.

These observations thus appear to suggest lower dissipation rates for higher temperatures

at the location of these two peaks. This is quite counter-intuitive, since we assume they

are caused by mode hybridizing with the spin system, and a higher temperature usually

tends to shorten the spin lifetime and consequently broaden the corresponding absorption

peak, contrary to what we are seeing here.

In order to compare to calculations and make physical sense of these peaks, we turn to MF-

RPA calculations to obtain soft modes as functions of the magnetic field, and then compute

for the field locations of expected crossing points between these modes and the cavity mode.

Examples at 150 mK and 280 mK are given in figure 5.9(a, b), where experimental data

are given as color maps as before, plotted on top of which are pairs of white dashed lines

that represent the soft modes from calculations. It is clear from these two figures that

86



5.1 Off-Resonance Results and Analysis

Figure 5.9: Color map: experimentally measured |S11| as a function of magnetic field
and frequency at 150 mK (a) and 280 mK (b) between 2.10 GHz and 2.21 GHz. White
dashed line: MF-RPA predicted soft mode in LiHoF4 . (c) Estimates of crossing points
between the cavity mode (red dashed line) and MF-RPA predicted soft modes (solid lines)
at various temperatures. (d) Temperature series of the inverse of quality factors (Q) as
functions of magnetic field, obtained from experimental results at ∼ 2.2 GHz. The red
vertical lines indicate the locations on the field axis of the corresponding crossing points
with the MF-RPA predicted soft mode.
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within the given frequency window, they are nearly vertical. Consequently, one need not to

take into consideration of the bending of the cavity resonance frequencies at different field

when estimating for the crossing points between them and the soft modes. Subsequently,

we carry out this estimate for all temperatures listed in Fig. 5.9(d) and summarize it

in figure 5.9(c), where the cavity mode now is simply represented by a straight line (red

dashed line).

The crossing points are then translated into red solid vertical lines in figure 5.9(d) in order

to compare their field locations with those of the peaks in the 1/Q measurement. We see

the two in fact do agree with each other rather well across a wide temperature range, with

a worsening of agreement toward higher temperatures. In addition, there is a minor but

notable difference in the agreement with calculations between the case at 140 mK and the

one at 150 mK. However, this is potentially explained by the inaccuracy of temperature

measurement, considering that all other measurements follow a consistent pattern. If this

is true, then the actual temperature of the sample in the first panel of figure 5.9(d) is likely

slightly higher than the reading (at ∼ 170 mK).

Thus it indeed appears that we are detecting the RPA predicted soft mode using peaks in

the experimentally measured 1/Q data, consistent with previous studies[45, 49]. However,

the author would like to remark that the evidence provided here is more qualitative

than quantitative, and taking into considerations of the inadequacy of RPA in capturing

other aspects of the experimental observation as the present report has already outlined,

more definitive experimental evidence as well as quantitative comparisons to theoretical

predictions are imperative. Furthermore, as the authors of Ref. [49] have already noted

that CW measurement scheme may be inherently unsuitable for the detection of the

expected soft mode in LiHoF4 due to its extremely fragile collectiveness. Therefore, it

is likely that a more quantitative measurement on the collective soft mode can only be

obtained through other experimental schemes in the time domain.

5.1.3 Temperature-Ramping Measurement (∼ 5 GHz)

Since the inflection point in the trace of resonance frequencies, or equivalently the peak

position of the real part of susceptibility, gives away the critical field, a phase diagram can

thus be constructed by recording the field position of this cusp at various temperatures.

However, this method fails at higher temperatures near 1.5 K when the phase boundary

takes on a much steeper slope along the field axis, which is evident from previously reported

data (solid red circles) in figure 5.11(c). This creates difficulties for reliably pinpointing
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critical points from field-sweeping measurements at fixed temperatures.

The problem is more evident by examining data taken at 1.48 K, 1.66 K, 1.92 K and 4.27

K shown in figure 5.10, all of which were taken on the same sample in a cavity whose

resonant frequency is 4.755 GHz. In the left panels of figure 5.10(a-d), the 3D raw data

of |S11| are given in color plots as before, whereas the right panels provide examples of

fitted data (the black dashed lines are fits and the colored markers are experimental

data) at three selected magnetic fields (the field locations are marked by both the white

dashed lines and the arrows in the left panels). The fitted real and imaginary parts of

susceptibilities are given in figure 5.10(e-h) in the corresponding order. Although the

temperatures of these four sets of data spread across a wide range that encloses the known

zero-field critical temperature[9, 61], there is virtually no difference in the collected data

to differentiate the ferromagnetic and paramagnetic phases. This is particularly the case

when contrasting data taken at 1.48 K and 1.66 K, despite of being on opposite sides of

the critical temperature (1.53 K)[9], there are neither obvious changes to the features in

the color plot (fig. 5.10(a, c)), nor substantial differences in the fitted susceptibilities (fig.

5.10(b, d)). Moreover, in a wide field range between 0.5 T and 2.5 T, the measured |S11|
peaks become too broad and shallow to be used for the search of inflection points along the

trace of resonance frequencies.

We make a remark here regarding the broadened peaks of measured |S11| in figure 5.10(a-

d): the broadening is entirely possible due to strong damping resulting from changes of

coupling conditions between the cavity system and the transmission line, which itself is

potentially caused by changes in the permeability of LiHoF4 when the magnetic field is

swept. However, since an increased amplitude of the imaginary part of AC susceptibility,

such as those in figure 5.10(e-h), implies an elevated dissipation rate, or photon loss

rate, there is another possible explanation to the broadened peaks, which is weak mode

hybridization between the LiHoF4 sample and the cavity photon field. Given that the peak

positions in the imaginary parts of the susceptibility at temperatures below and above

the critical temperature don’t appear to differ from each other, it necessarily implies an

excitation mode that persists through the phase transition, which is unusual and in itself

an interesting topic. The intuitive approach is to compare experimental data to calculations,

but since MF is known to overestimate the critical temperature and completely ignore

fluctuations, it prevents us from comparing the two in a meaningful way. We therefore

only stress the potential importance here and leave the issue for future investigations.

As a consequence of this inability to discern the critical points from field-sweeping data
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Figure 5.10: (a-d) Left panels: Experimental results of |S11| as functions of magnetic
field and frequency at 1.48 K, 1.66 K, 1.92 K, and 4.27 K, obtained from Field-Ramping
measurements. Right panels: Individual measurements (markers) at selected external
magnetic field locations marked by the white arrows and roman numerals in the left panels.
Black dashed lines: corresponding numerical fits to the data using Eq. 2.38. All color plots
share the same color scale displayed above (a). (e-h) Fitted real (blue dots) and imaginary
parts (red dots) of the AC magnetic susceptibilities of LiHoF4 from measurements shown
in (a-d) in corresponding order.
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at high temperatures, we resort to temperature-sweeping measurements at constant

magnetic field for this region of the phase space. Figure 5.11(a) shows, again in the left

panel, raw data taken at zero magnetic field and, in the right panel, fits to individual

measurements at selected temperatures. An immediate observation from figure 5.11(a)

is that the |S11| peak position remains more or less constant along the temperature axis,

whereas its width and depth change dramatically. The first observation is quantified in

figure 5.11(b) by extracting the resonance frequencies through numerical fits. The second

observation is presented using both the imaginary part of sample susceptibility from the

same fit routine as a function of temperature (blue dots) as well as the inverse of quality

factor (Q) of the CMP system (red dots), defined by the ratio between its bandwidth and its

resonant frequency in figure 5.11(c). All three variables show drastic changes of curvatures

at the same temperature, which is taken as the critical temperature.

By complementing field-sweeping data at low temperatures with temperature-sweeping

measurements near the zero-field-critical-temperature, we map out the magnetic phase

diagram of LiHoF4 and present it in figure 5.11(d), where the constructed phase diagram

is given in two parts: the solid blue triangle markers are from temperature-sweeping

measurements while the solid circles of matching color are from field-sweeping data. We

also plotted previous experimental results from Ref. [9] in solid red circles for comparisons,

and within the entire phase space considered, the two agree reasonably well with only

small discrepancies, which may be a result of small misalignment of crystal orientation

in relation to the external magnetic field (see fig. 3.16). Furthermore, in order to test the

reproducibility of the measurement, we repeated the measurements on another sample of

identical geometry and orientation. The result is represented by the solid black squares in

the same figure and is in excellent agreement with the other set of data.

We note that the experimentally measured phase boundary near the zero-field critical-

temperature (blue triangles in figure 5.11(d)) appears to "zig-zag" along the vertical axis.

All temperature-sweep data used for the phase diagram mapping have clear inflection

points as those shown in figure 5.11(b,c). Despite the presence of fluctuations of data

points around the mean, they are not enough to account for the significant shift along the

temperature axis of the phase diagram shown in 5.11(d). According to the experimental

data, the phase boundary indeed shows re-entrance features in this region, which is

consistent with the previous report[63] and raises unanswered interesting questions.

However, due to the limited availability of experimental data and the inadequacy of

MF and RPA models near critical temperatures, we will leave the study of underlying
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Figure 5.11: (a) Left panel: Measurement of |S11| as a function of temperature and
frequency at zero magnetic field. Right panel: Individual measurements (markers) at
selected external magnetic field given by the arrows and roman numerals in the left panel.
Black dashed lines are numerical fits to the data using Eq. 2.38. (b) The real part of the AC
magnetic susceptibility of LiHoF4 obtained from fitting to experimental data shown in (a).
(c) Fitted imaginary part of the susceptibility (blue dots) and the inverse of quality factors
(red dots). (d) Magnetic phase diagram of LiHoF4 constructed in the present experiment
(blue solid circles, triangles, and black solid squares) and that from a previous literature
(red solid circles)[9].

mechanism for future effort.

5.2 On-Resonance Results and Analysis

As per its definition, the cavity resonance frequency during an on-resonance measurement

matches at least one of the energy gaps between spin states, and thus it allows for coherent

exchange of energy quanta between the spin ensemble and cavity photon field. The choices

of cavity resonance frequency were previously given in figure 5.1. Based on both the MF

and MF-RPA excitation spectra, we expect on-resonance hybridization at multiple points
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along the field axis across the QCP. However, due to the failure of RPA results previously

shown, we will focus primarily on analysis based on MF calculations, but will provide a

brief comparison to RPA results toward the end of the chapter.

5.2.1 Low Power Excitation

The raw data of experimentally measured |S11| at 150 mK is shown in figure 5.12(a) as a

function of magnetic field and frequency. Apart from the now familiar QPT induced cusp

in the resonant frequency that is marked by the white arrow in the same panel, multiple

new features that weren’t present in off-resonance data emerged. The white dashed boxes

single out some of these features, the zoomed-in images are given in panel (c), (d), and

(e) respectively with adjusted color scales. In addition to these local features, near 12 T

(inside the box III in fig. 5.12(a)), the cavity resonance peak becomes extremely broad,

implying a strong damping effect.

It is known that when two modes hybridize strongly enough the collective mode splits in

two and the phenomenon is described as "level repulsion". This is both well recorded in the

literature [35, 66, 57], and consistent with what we found in figure 2.5 in Chpt. 2. In fig.

5.12, two of such avoid-crossing-patterns are clearly visible and are located at ∼ 3.3 T and

13.4 T on the opposite side of the critical field. These two regions are blown up in panel (c)

and (e) for closer inspection with a slice of data shown in the right panels at magnetic field

indicated by the white dashed lines in the left panels. In both cases, we see clear patterns

of mode branching where a single cavity resonance mode branches into two. The distance

between the two peaks when they are roughly equal heights give an estimate of twice the

coupling strength between the spin excitation mode and cavity mode[30, 67]. In fig. 5.12(c),

this coupling strength is measured to be 54 MHz, and in fig. 5.12(e), it is 42 MHz.

Apart from these strong coupling features, five weak coupling features are also visible to

varying degrees between 5 T and 14 T, where the cavity mode shows no branching effect

throughout the region. An example of these features is isolated and shown in fig. 5.12(d),

and even the data slice at exactly the field when the spin excitation mode and cavity mode

are expected to coincide has a single peak. However, from the color map, a discontinuity

of the cavity resonance frequency takes place and is accompanied by a broadening of the

peak.

In order to extract the resonance frequencies, spin line width, and coupling strength, the

experimental data in close vicinity of these features are fitted. Unlike in the off-resonance
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Figure 5.12: Color plots in (a-h) are the same experimentally measured |S11| in parts
(c-h) or in whole (a, b) as a function of magnetic field and frequency on a single crystal
sample of LiHoF4 at 150 mK in a reentrant cavity with a resonant frequency at 3.63 GHz.
(b) White dotted lines: calculated δI z = 1 excitation spectra within the electronic ground
state manifold. Red dots: Numerically fitted values for the spin excitation modes. (c-e)
Expanded views with adjusted color scales of regions enclosed by white dashed boxes
in (a). The roman numerals indicate the correspondence. (f-h) The fitted values for the
resonance frequencies (red dots) of the spin-cavity ensemble and the electro-nuclear spin
excitation spectra (white dots) plotted on top of the experimental data also shown in (c-e)
in the corresponding order. (i) The coupling strength between the cavity mode and δI z = 1
excitation modes in LiHoF4 obtained from MF calculations (blue bars) and fits to the
experimental data (Solid red markers). (j) Excitation linewidth from numerical fits to the
experimental data.

case, the AC susceptibility can no longer be treated as frequency independent. Instead,
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5.2 On-Resonance Results and Analysis

the susceptibilities are again split into parts, the explicit function reads:

|S11| =
∣∣∣∣∣∣1+ 2κe

i(ω−ωc)− (κe +κi)+χoff + G̃2

i(ω−Ω0)−γ0

∣∣∣∣∣∣ (5.1)

where ωc is the bare cavity resonance frequency, χoff contains contributions from all the

locally off-resonance spin modes and is assumed to be frequency independent. In contrast,

Ω0 is the spin excitation mode that is locally on-resonance with the cavity mode, and

G̃2 = | g̃(ωc)|2 ∑
i, f 〈i|µ̃z

kc
| f 〉〈 f |µ̃z

−kc
|i〉(Pi −P f ) characterizes the coupling strength between

the two modes. Recalling from the previous text, κe and κi are again the external and

internal dissipation rates of the cavity and ω represents the frequency as the variable.

Here, in comparison to Eq. 2.37, we assumed that there is only one on-resonance mode

and isolated it from the rest, hence reducing the number of necessary fitting parameters.

This fitting approach is entirely justified for data of LiHoF4 in the paramagnetic state

according to our MF calculations. In fig. 5.12(b), a series of white dotted lines on top of

the experimental data is used to represent the spin excitation modes in LiHoF4 , and we

can see the modes are well separated along the field axis above the critical field near 5

T. Conversely, in the ferromagnetic state, these excitation modes appear to be in a close

bundle but not entirely degenerate according to MF predictions. However, recalling that

these modes are δI z = 1 excitations and thus only one of them starts from the ground

state, it is safe to assume that, at very low temperature in mK range and with comparable

exp(β∆E(δI z)) among the modes, the excitation mode originating from the ground state

will dominate simply due to its high occupation number. Therefore, to a good approximation,

we can fit the experimental data assuming only one spin mode hybridizing with the cavity

mode locally.

Part of the numerical fits to experimental data shown in figure 5.12(c, d, e) are respectively

given in figure 5.12(f, g, h), where the fitted values are plotted on top of the experimental

data. The red dots are fitted collective modes of cavity-LiHoF4 system, and the white dots

represent the local on-resonance spin excitation mode. Fit results to the slices of data given

in the right panels of figure 5.12(c, d, e) are also shown in the same panels to provide a

visual confirmation of the goodness of fit. These results provide some insights into the new

features that emerged in the on-resonance data. Apart from the expected branching due to

strong hybridization with the spin mode, the shifts that cavity mode exhibits in the weak

coupling regime are also a direct consequence of mode coupling. A temporarily broadened

resonant peak at the location of mode hybridizing tokens an increase of dissipation of
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cavity photons due to its absorption by the spin system.

Figure 5.13: (a) Color plot: experimentally measured |S11| on a LiHoF4 single crystal at
150 mK. Dotted lines: δI z = 1 excitation spectra within the electronic ground state, with
an angle of 0◦ (red dashed lines) and 11◦ (white dashed lines) between the transverse field
and the crystallographic a-axis within the ab-plane. (b) Expanded view of (a) at the anti-
crossing below the QCP. Dotted lines: MF excitation spectra of δI z = 1. The red dashed line
highlights the fundamental mode of the spectrum. Red solid circles: single-ion excitation
mode according to numerical fit to the experimental data. (c) Comparison between the
MFT calculation of the resonance frequency of the spin-cavity ensemble (red dots) and the
experimental data (color plot). (d) Expanded view of (c) below the critical field.

In figure 5.12(b), we compare MF calculated δI z = 1 eigen-modes (white dotted lines) to

fitted values (red solid markers), a reasonably good agreement is seen across the entire

field range with some exceptions. It is found that these discrepancies in terms of field

locations at which mode hybridization happen cannot be reconciled by simple scaling,

demonstrating an aspect of inadequacy of the mean field approach in the present context

and need for more sophisticated theory. Moreover, in order to achieve the shown agreement,

a small in-plane rotation of φ= 1.0◦ of the magnetic field within ab-plane is imperative,
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5.2 On-Resonance Results and Analysis

which is demonstrated in fig. 5.13(a), where the δI z = 1 spin excitation spectra from MF

calculations with (white dotted lines) and without (red dotted lines) such a rotation are

shown together on top of the experimental data for a visual comparison. Furthermore,

though the assumed degenerate spin mode below the critical point indeed appears to follow

the bundled spin excitation spectra predicted by MF calculations, a closer inspection of

zoomed in figure of this region shown in figure 5.13(b) reveal some important discrepancies.

In fig. 5.13(b), the solid red circles represent fitted spin excitation spectrum, and the

dashed lines are those from MF calculations. Among the calculated spectra, the excitation

mode originating from the ground state is specially highlighted in red for comparison to

fitted results since we expect this mode to dominate the contribution. Though the two sets

of values follow each other closely, the curvature/slope appear to disagree.

There is another way of testing the adequacy of our approximation of treating these closely

bundled transitions as a single excitation mode. As we can see in fig. 5.13 (b, d) that,

the coupling strengths between the cavity and the electro-nuclear excitation modes are

of the order of 50 MHz, while these modes themselves are of the order of 3.6 GHz, which

is much bigger than the former. Consequently, we are allowed to employ the second

order perturbation theory to fit these two branching modes in close proximity in order to

obtain the underlying spin excitation mode. To do so, we also assume the spin excitation

spectra are locally linear functions of magnetic field, which is reasonable according to MF

calculations. A brief description of the fit is given as following:

Denote the creation and annihilation operators for the cavity photon field by â† and â,

then similarly denote those for the single magnon mode by m̂† and m̂, thus we construct a

Hamiltonian that hybridizes them at a real valued coupling strength of g:

Ĥ = ℏωaâ†â+ℏωmm̂†m̂+ g(â†m̂+ âm̂†) (5.2)

Hence this is a two-level system, and we use |g〉 to label the ground state where there is a

photon but no magnon, and |e〉 to label the excited state where there is no photon but one

magnon. Then by assuming there exists an eigen-state of the total hamiltonian denoted by

|ψ〉, we have

Ĥ |ψ〉 =
ℏωa g

g ℏωm

|g〉〈g|ψ〉
|e〉〈e|ψ〉

= E|ψ〉 (5.3)

Following through the procedure of standard second order perturbation theory[31], we
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arrive at the eigen-frequencies given by:

ω± =ωc + ω+−ω−
2

±
√

(ω+−ω−)2 +4(g/ℏ)2

2
(5.4)

where ωc is the resonant frequency of bare cavity, and we used subscript + and − to indicate

the upper and lower branch of the eigen-state at higher orders. Next we parametrize the

magnon mode in the close vicinity of the anti-crossing (mode hybridization) as a linear

function of magnetic field. Then, with the split expression (Eq. 5.4), we can fit separately

the upper and lower branches, extracted from experimental data by simple minimum

search algorithm, with the appropriate sign of slope and reiteratively until it converges.

The results are presented in figure 5.14(a) and (b) respectively using blue dot-dashed

lines. For comparison, we also plot in black dashed lines the MF result of the first order

magnon mode originated from the electro-nuclear ground state. An excellent agreement

in the higher field case (Fig. 5.14(b)) is reached, whereas that for the low field case (Fig.

5.14(a)) has considerable discrepancies. This again hints that the excitation modes in the

ferromagnetic states are likely not fully degenerate.

Given the agreement between the MF prediction and the experimental data in figure

5.12, we can attribute each feature to a specific spin excitation mode. By denoting the

electro-nuclear eigen-states with an ascending numeral |n〉, n = 1,2,3, ..., the six visible

features starting from higher field near 14 T toward the critical field at 5 T correspond

respectively to |0〉→ |1〉, |1〉→ |2〉, |2〉→ |3〉, |3〉→ |4〉, |4〉→ |5〉, |5〉→ |6〉.

In addition to the spin resonance mode, the coupling strength as well as the spin line

widths were also fitted from experimental data. In particular, the coupling strength, as

seen in Eq. 5.1, can be computed under MF approximation. Therefore we plot both its

experimental and calculated values in fig. 5.12(i) using solid markers and bars respectively,

and the two agree with fitted values very well. At the same time, since we do not have a

microscopic model for the spin lifetime in LiHoF4 , we simply present the fitted values as

it is in fig. 5.12(j). However, here we make a remark about the spin line width: since the

transition line width between two states are affected by the lifetime of both states, the

transition from the ground state should exhibit finer line width due to the infinitely long

lifetime of ground state. This is indeed observed in Fig.5.12(i), but at the same time, the

spin line width of the highest transition is also lower than others. We understand this

by considering the stimulated absorption rate, which is increased when the cavity mode

is on-resonance with the excitation mode, however, this rate is vanishingly small for the

highest state of the manifold since the energy required for the next excitation lies far out
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5.2 On-Resonance Results and Analysis

Figure 5.14: Fitting using second order perturbation theory of the anti-crossings found
in the experimental data near 3.3 T (a) and 14 T (b). The open circles are cavity mode
extracted from the experimental data, the red curves are that from numerical fitting. The
blue dot-dashed lines are fitted spin excitation mode and the black dashed lines are those
from MF calculations.

of the present cavity frequency, hence the lifetime of the top state is in comparison longer

than it would have been for an intermediate state. Therefore, when stimulated emission

and absorption rates dominate the decay rate, the excitation line width should always take

a "bell" shape across a set of nearly equal distant states.

We repeated this fit routine at five different temperatures. Examples at the highest and

lowest temperatures are given in figure 5.15(a, b), aligned by the field axis. Fitted values

for the coupling strengths of the lowest six magnon modes and corresponding spin line

widths are presented in figure 5.15(d, e). The calculated values of the coupling strength

agree with the experimental values reasonably well at all five fitted temperatures. Some

data points are missing due to a strong damping that prevented the author from carrying

out the fit, examples of which are presented using the raw data between 8 and 12 T panel in

figure 5.15(b), where the cavity resonant peaks are extremely broad, hindering meaningful

extraction of physical parameters. The exact origin of this broadening is not known, but

it is reflected in the excitation mode line width. In figure 5.15(e) we show the fitted spin

line width in the similar fashion as in Fig.5.12(j) but for all five temperatures measured.

Apart from the missing data points, the line width of the same excitation mode indeed

appear to broaden with raised temperature, and we postulate this is related to stronger

fluctuations by raised temperature, which results in inhomogeneous broadening owing to

the long range interaction between spins.
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Chapter 5. Experimental results and discussion

Figure 5.15: (a, b) Color plot: experimentally measured |S11| at 100 mK and 240 mK. Red
dots: Fitted magnon modes. White arrow: expected location of hybridization between
the fundamental magnon mode (|0〉→ |1〉) and the cavity mode. (c) Solid lines: Coupling
strengths between the cavity mode and different magnon modes at, respectively, 100 mK,
130 mK, 180 mK, 240 mK, and 260 mK from MFT calculations. Solid markers: fitted values
from experimental data for the coupling strengths between the cavity mode and magnon
modes. (d) Numerically fitted values for the spectral line-width of different magnon modes
at various temperatures. (e) Cooperativity of hybridized modes at various temperatures,
calculated from the experimental data. Inset: expanded view of cooperativity for the higher
magnon modes. (f) Calculated off-diagonal matrix element and population factor of the
magnon modes at different temperatures. Color code is shared among (c-e) and indicate
correspondence.

An ascending trend of the coupling strength toward lower excitation mode is evident from

both calculations and experimental results for all data in the temperature series given in

figure 5.15(c). The tendency is also most prominent at lower temperatures, which is best

visualized in figure 5.12(i). Though according to linear response theory, both off-diagonal

matrix element as well as population factor (Pn+1−Pn) contribute to the overall amplitude

of coupling strength, based on MF calculations, the latter is primarily responsible for the

ascending trend. We show in figure 5.15(f) both the population factors (squares on the

right axis) as well as the off-diagonal matrix elements (circles on the left axis). Contrary to

the ascending trend of the coupling strength for the lower modes, the lower states actually

overlaps less with each other than the higher ones and this tendency barely changes with

the temperature. However, the Boltzmann distribution dictates that more spins are at

lower states and participate the coherent exchange of energies with the photon field, and it
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is apparent that the population factor dominated in its product with the off-diagonal matrix

element and determined their eventual weight in the mode hybridization. This changes

slightly as the sample is warmed up when the higher states become more populated,

resulting in an overall stronger coupling of these modes to the cavity mode. The described

mechanism is directly manifested in the raw data when comparing figure 5.15(a) and

figure 5.15(b) at locations pointed out by the white double arrow between these two figures,

the hybridization between the cavity mode and excitation mode (|5〉→ |6〉) is clearly visible

in figure 5.15(b) at 240 mK, while being missing in figure 5.15(a) at 100 mK.

Another useful measure of coupling strength is a dimensionless ratio called cooperativity,

which essentially measures the coupling strength against dissipation rates and is usu-

ally defined as C =G2
mn/γmn(κe +κi)[66, 37, 29]. In figure 5.15(e) we plot the calculated

cooperativity for different magnon modes at five temperatures using fitted values from ex-

periments, where a trend of higher cooperativity for lower modes is obvious and consistent

with the raw data. Furthermore, the cooperativity of the fundamental mode progressively

lowers as the temperature rises, a tendency that also agrees with the raw data where a

less severe branching accompanied by broader peaks is observed in figure 5.15(b) than

(a). In the inset the cooperativity for higher modes clearly increases with the temperature,

presumably due to an increase of population as in the previous analysis.

Now with fitted values of spin excitation line widths, we can again use the combination

of Eq. 2.11, Eq. 2.15, and Eq. 2.37 to simulate |S11| at experimental temperatures.

For the missing values of the spin line width of specific modes, we use the value of its

nearest neighbor as an approximation. As for all other excitation modes, since they are

off-resonance and their line widths are thus less relevant, we therefore assume a value of

9×10−5 meV uniformly for all of them.

In the first row of figure 5.16(a-c) we show respectively |S11| calculated from the single-ion

susceptibility (a), RPA susceptibility (b) and the experimentally measured values (c). In

the second row of panels, we show the corresponding susceptibilities between 1 and 5

GHz in figure 5.16(d, e). The biggest difference between the two susceptibilities is still

the complete softening of the fundamental mode that is only predicted by the RPA. The

resulting consequence in the relevant frequency window that is decided by the present set

of experimental data (3.52 - 3.76 GHz) reveals that the crossing point between the cavity

and soft mode is further to the right on the field axis comparing to that between the cavity

mode and the single-ion fundamental mode. This is demonstrated in figure 5.16(f), where

the horizontal line represents the cavity resonant frequency, and the two aforementioned
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Figure 5.16: (a, b) Simulated |S11| at 130 mK based on the single-ion susceptibility (a) and
RPA susceptibility (b). (c) Experimentally measured |S11| on a single crystal of LiHoF4
in a re-entrance cavity at 130 mK. (d, e) The corresponding susceptibility used for |S11|
simulations in (a, b) respectively. (f) Dashing lines: the single-ion excitation spectra of
δI z = 1 within the electronic ground state manifold. The fundamental mode (|0〉→ |1〉) is
highlighted in red. Dotted line: The soft mode predicted by MF-RPA calculation at the
same temperature.

crossing points are singled out by the black arrows in the figure, the distance between

which is measured to be more than 1 T along the field axis. This is indeed reflected in the

eventual simulation of |S11| as seen by comparing the MF results in figure 5.16(a) to the

RPA results in fig. 5.16(b), where the cavity line in the latter is pushed further toward the

right end of the figure, in apparent contradiction to what is observed in the experimental

data given in fig. 5.16(c). Comparatively, the MF results struck an excellent agreement

with the measured data. Another relatively smaller feature is that, due to the stronger

diverging behavior of the soft mode at the QCP, the cusp along the resonance frequency

near 5 T is much more pronounced in fig. 5.16(b) than in fig. 5.16(a), and again the latter of

which appears to be in a better agreement with the experimental data even by just visual

inspection.

Thus we have shown again that the MF predictions appear to be more accurate without

RPA corrections for the present measurement scheme. Prompted by this observation, we

again proceed to simulate |S11| using only MF susceptibilities at other temperatures. The
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results are presented in in figure 5.17(d-e) in order to provide a side-by-side comparison to

the experimental results (figure 5.17(a-c)). A good overall qualitative agreement is seen

across different temperatures with the high field data at 250 mK displaying some visible

discrepancies, presumably due to the inaccuracy of mode line widths as a result of missing

fits for these modes. To better visualize the agreement, we also plot the calculated cavity

resonance frequency as a function of magnetic field on top of experimental data in figure

5.13(c), and there is a small discrepancy at the anti-crossings near 3.5 T, an expanded view

of which is given in panel fig. 5.13(d). At this anti-crossing, the MF-RPA model predicted a

"multi-anti-crossing" due to the excitation modes being not completely degenerate locally,

which is not visible in the experimental data, suggesting a potential deficiency of the MF

model. However, we make a remark about an observation of the raw data: while the lower

branch has a long tail with vanishing amplitudes going from low to high field, the the

upper branch at the anti-crossing doesn’t exhibit such a tail symmetrical to the lower one,

but rather it starts abruptly with a broad peak at the anti-crossing, potentially due to

spectral diffusion that would necessarily implies non-degenerate excitation modes. The

spectroscopic method in the present report failed to resolve this feature at better resolution,

we hence reserve the discussion of it for future work when more detailed experimental

data is available.

Figure 5.17: (a-c) Experimental data of |S11| measured at 100, 130, and 250 mK. (d-f)
Simulation of (a-c) using the single-ion susceptibilities.
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An important and controversial issue involving LiHoF4 is the soft mode near the quantum

critical point. Previous literature has suggested a complete softening of the first excited

electro-nuclear state at QPT[48]. Only recently, experimental evidence[45] has emerged

surrounding this soft mode, but the issue is far from concluded. In search of this soft

mode, we therefore repeat on-resonance measurement at five different frequencies as

indicated earlier in figure 5.1 on the same sample. The overview of measured |S11| is

given in color maps in figure 5.18(a), and avoid-crossing-patterns that are tokens of mode

hybridization can be observed over a wide frequency range until 2.2 GHz. By contrasting

these sets of data, the absence of experimental evidence of mode hybridization below 2.2

GHz imply that no excitation mode visibly softened through this frequency. This combined

with the previous observation of that the two dissipative peaks in off-resonance data

surrounding the critical field are found both above and below first order excitation spectra

of the electronic ground state manifold, it is safe to draw the conclusion that no single-ion

electro-nuclear state softens completely at QPT. However, limited by the MF-RPA approach,

we could not explain the aforementioned double peaks around the critical point, nor rule

out existence of collective modes that soften completely at QPT in LiHoF4 .

For comparison to MF results, we plot calculated excitation spectra with the fundamental

mode highlighted in red on top of experimental data in figure 5.18(a). Over a large

frequency and field range, calculated results appear to predict correctly locations of mode

hybridization, particularly for those at higher frequencies shown in more detail in figure

5.18(b). However, at lower frequencies, expanded views in fig. 5.18(c, d, e) reveal some

discrepancies. Most importantly, the anti-crossing patterns in the experimental data in

panel (b) clearly suggest at least three spin modes present locally yet the MF calculation

predicted that only the fundamental mode is in the vicinity. Since where the mode

hybridization takes place in this case is very close to the critical point, it is not a complete

surprise that MF prediction fails here, but the difference between experimental data and

MF calculations is striking. We thus refrain from further interpretation of experimental

data with MF-RPA calculations and leave for future endeavor the search of a suitable

model in this particular region of phase space.

5.2.2 High Power Excitation

For the very last presentation of experimental data, we briefly discuss the power depen-

dence of measured |S11|. The motivation for investigating excitation power dependence

is two fold: 1. Since the foundation of our quantitative analysis is linear response theory,
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Figure 5.18: (a) Color map: experimental data of |S11| measured at 130 mK near 2.2,
2.5, 2.8, 3.5, and 3.6 GHz. (b) Expanded view of (a) between 3.45 GHz and 3.7 GHz. (c)
Expanded view of (a) between 2.45 GHz and 2.56 GHz. (d, e) Isolated and expanded
view of (c). Dotted lines in all panels: the δI z = 1 excitation spectra of LiHoF4 from MF
calculations with the mode originating from the ground state colored in red.

it is imperative to keep probing field power down in the perturbative regime in order

for the analysis to be valid; 2. Since at low temperatures (≤ 400 mK), the upturning of

the magnetic phase boundary of LiHoF4 is caused by the mixing of nuclear spin states

with the electronic spin states, there exists an intuitive and appealing idea of driving the

quantum phase transition by actively decoupling the nuclear spin degree of freedom from

that of electronic spin via population inversion of the hyperfine levels. It was proposed

theoretically that it can be done using AC magnetic field modulation[41, 28]. As far as the

author is concerned, there hasn’t been any report of experimental success on the effort.

We first establish the perturbative regime, this is done by both searching for the heating

effect from the RF excitation, and comparing |S11 signal change among different excitation

powers (Pex). To maximize the change, we use small samples (a⃗× b⃗× c⃗ = 2.5×1.0×0.5 mm)

so that the saturation limit is lower and hence easier to reach. In figure 5.19(a), we present

experimentally measured |S11| at 400 mK and Pex = -10 dBm, or equivalently 0.1 mW,

and the expected anti-crossing pattern is clearly visible around 2.5 T below the critical
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field. The measurement was repeated at the same temperature and Pex = -30 dBm (0.001

mW), -20 dBm (0.01 mW), and the peak intensity at each magnetic field is recorded and

plotted together in figure 5.19(c). No significant difference was found among the three sets

of data, particularly at 2.3 T where the magnon modes are expected to hybridize with the

cavity mode, which indicate all three values for the excitation power are well below the

saturation limit in the linear response regime.

Having established the baseline, the power is increased in order to reach or approach the

saturation limit. Experimental data of |S11| collected with an excitation power at +15

dBm (∼ 32 mW) is presented in figure 5.19(b) for a side-by-side comparison to (a), and

there is an apparent and dramatic change in the line shape as well as noise level. At

higher excitation powers, the avoid crossing patter disappears, and the measured |S11|
appears to be single peaked at the entire field range. Violent fluctuation of both peak

position and peak intensity emerges near the location where mode hybridization would

have been, accompanied by large heating effect: the dilution fridge was kept at the base

temperature ∼ 100 mK before the RF signal was turned on to sweep continuously, after

which measured temperature of the cavity eventually stabilizes at ∼ 400 mK. This provides

a retrospective explanation for the choice of 400 mK to collect power-dependence data at

low excitation powers. In other words, it was determined by the temperature of the steady

state at the highest RF excitation power, all measurements at lower powers were carried

our subsequently by stabilizing the cavity at the same temperature in order to have a valid

comparison.

We similarly collected the same peak intensity data shown in figure 5.19(c) for Pex = 0 dBm

(1 mW), +7 dBm (∼ 5 mW), and +15 dBm (∼ 32 mW), the results are plotted together with

that for Pex = -30 dBm (0.001 mW) in figure 5.19(d). In addition to the elevated noise level,

the peak intensities at 2.4 T are significantly reduced comparing to that under Pex = -30

dBm. Though we have yet to develop a quantitative model to account for the observation,

a hand-waving interpretation purely from physical intuition is attainable. Consider the

extreme case of reaching the saturation limit, where photon emission and absorption

rates reach a dynamical equilibrium, which diminishes further coherent energy exchange

between the magnon modes and cavity mode, effectively cutting off the coupling between

the subsystem. As a consequence, the spectroscopic signal from the cavity should reflect

this decoupling by returning to the line shape of an empty cavity. In the present case, this

means the measured |S11 should return to being single peaked and field-independent. In

figure 5.19(b), the situation can thus be deemed to be in between the above extremity and
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Figure 5.19: (a) Experimentally measured |S11| at 400 mK and -10 dBm RF excitation
power as a function of magnetic field and frequency. (b) Same measurement as (a) but at
+15 dBm. (c) Peak amplitude of experimentally measured |S11| at 400 mK and different
excitation powers in the perturbative regime. (d) Same measurement as (c) but with
excitation powers near the saturation limit.

perturbative regime, where the photon absorption rate is approaching the saturation limit,

and hence reduces density of state for the magnon modes, lowering its effective coupling to

the cavity field.

It is important to note that electro-nuclear excitations in LiHoF4 do couple to phonons, and

consequently the energies these magnons carry dissipate in the form of heat as well, which

is particularly pronounces at high RF excitation power and in CW mode. However, even at

higher temperatures, magnon modes would nonetheless cross path, and hence hybridize,

with the cavity mode, which would manifest as avoid-crossing patterns as usual should

the coupling strength, that hinges on the population factor, is strong enough. Thermal

excitations from simple heating effect would not level the population distribution enough
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to suppress completely the branching of resonance frequency.

Furthermore, as figure 5.19(c) shows that the hybridization between the cavity mode and

the magnon modes results in a peak in the minimal |S11| along the field axis, one can

infer from figure 5.19(d) the locations of such hybridization, from which it is clear that

the sample temperatures at higher RF excitations aren’t far from the those at lower RF

excitation powers. This on the one hand lends support for comparing data under different

RF excitation powers at the same nominal temperature, and on the other hand implies

a continuous and gradual change as the excitation power is raised, in contrast to the

qualitatively different appearances between 5.19(a) and 5.19(b).

However, one should be bear in mind that, due to the continuous nature of the current

experimental setup, although measurements were taken at steady states, they aren’t

necessarily measurements of equilibrium states. Consequently, the usual magnetic phase

transition and critical point for LiHoF4 may be ill defined in this case. In author’s opinion,

in order to meaningfully discuss change of the magnetic phase of LiHoF4 in response to

the decoupling of electronic and nuclear degrees of freedom, measurements of transient

states with pulsed RF excitation is a better suited experimental scheme for the purpose.
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In summary, we have carried out both on-resonance and off-resonance measurements

of |S11|, at dilution temperatures and across a wide magnetic field range that encloses

a quantum critical point (QCP), on a cavity-magnon-polariton system that consists of a

high-finesse reentrant cavity and a single crystal of LiHoF4 . The theoretical model, based

on the mean field theory (MFT), generalized susceptibility in linear response regime, and

input-output formalism, that we have developed can adequately explain and simulate

direct experimental observations over a large area in the phase space, and is capable

of being readily applied to other systems alike owing to its generality. Through off-

resonance experiment, we demonstrated reliable measurement method on the AC magnetic

susceptibility of LiHoF4 , which can in turn be used to map out its magnetic phase diagram,

and detect weakly interacting or fast decohering modes such as the soft mode predicted

by RPA calculations[48, 45]. In the meantime, on-resonance experiments have shown

the possibility of strongly hybridizing a cavity photon field at a few GHz with individual

electro-nuclear spin states in LiHoF4 . Furthermore, we have taken the first experimental

step of illustrating the potential of driving a dynamical quantum phase transition through

high power magnon pumping.

However, we have conversely also shown that some significant inconsistencies exist be-

tween RPA predictions and experimental results. More specifically, we have demonstrated

that the MFT calculations appear to consistently show better agreement with the ex-

perimental data than the MF-RPA calculations in many aspects (fig. 5.4, fig. 5.16, etc).

Moreover, despite of that both Ref. [45] and the present work have found indications of the

soft mode predicted by RPA in the experimental data (fig 5.9), major difficulties persist

for the MF-RPA calculation to reproduce experimental results (fig. 5.8). Although this
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difficulty was addressed in Ref. [49] and attributed to the extremely short coherence time

(∼ 1 ps) of the collective mode, large discrepancies, such as the line shapes of the resonant

frequencies, is not eliminated by this explanation. Furthermore, another disagreement of

great importance takes place at frequencies above 2 GHz but below 3 GHz and near QCP,

where the experimental data (fig. 5.18 (c-e)) showed clear signatures of strong hybridiza-

tion between the cavity mode and spin excitation modes in LiHoF4 , yet it is not predicted

by either the MFT nor the MF-RPA calculations. These unexplained yet unequivocal

features may signal non-trivial physics that is yet to be described by our current model,

and raise important questions with respect to the nature of quantum phase transition in

LiHoF4 as well as the expected soft mode. With the progress and puzzles, we summarize

bellow some promising prospects of LiHoF4 as a quantum magnet lay ahead that could be

further studied using RF spectroscopy:

• As mentioned above, in spite of the success of the MFT description of LiHoF4 over

a vast area of the parameter space, major discrepancies between theoretical and

experimental results for both off- and on-resonance measurements of |S11| persist

and cannot be cured by the RPA corrections. These issues are particularly pronounced

at low frequencies as demonstrated in fig. 5.8 and fig. 5.18. For the former example,

existing data suggest that the required revision to the model is beyond simple

scaling, while for the latter, the multiple features of unclear origins open doors to

many possibilities. Therefore, more sophisticated model beyond MF-RPA is needed to

adequately account for the discrepancies, the resolution of which is likely to provide

new insights into the quantum criticality in LiHoF4 .

• One of the central issues concerning LiHoF4 is the soft mode at the QCP. The double

peaks in the imaginary part of AC magnetic susceptibility at low frequencies indeed

suggest weak hybridization to such collective modes (fig. 5.9 (d)), that soften near the

QCP to energies below the cavity resonance frequencies used in either the present

work or in the previous literature[48, 45]. However, at the same time, the RPA that

predicts such a soft mode also creates more difficulties than explanations to the

experimental observations in nearly all other aspects, which casts doubts on the

truthfulness of the MF-RPA picture, including its description of the collective mode.

Thus more quantitative comparison between experimental and theoretical data is

needed for a better understanding of these collective modes.

• In matters related to the soft mode in LiHoF4 , similar dual peaks were observed

in the experimental data of the imaginary part of AC susceptibility at frequencies
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much higher than the predicted soft mode (fig. 5.5). These features are not explained

by neither the MFT or the MF-RPA. In consideration of their similarities to the

manifestation of the soft mode in LiHoF4 and yet distinctively different behaviors.

It is in the author’s opinion that it is worth the effort to attempt understanding

their mechanisms. One possible origin of these modes could arise if the next-nearest-

neighbor-state excitation spectra is dramatically revised (e.g. lowered in energy) due

to higher order effects, then the cavity mode can potentially cross path with these

magnon modes in this frequency window (fig. 5.1 (a)). Then according to fig. 3.11,

χzz may only produces a weak coupling to the cavity mode, resulting in the fable

signals that we see in fig. 5.5 (b). However, given that this is the first observation of

these features and hence only limited data exists, both experimental and theoretical

work are likely required for further study.

• In both Fig. 5.9(a, b) and fig. 5.6(a), we see strong disturbance of cavity resonant

frequency, potentially caused by mode hybridization with the magneto-static mode

known as the Walker mode with extremely fine line width. Due to its close relation

to the geometry of the sample at macroscopic level, a strong coupling of it to the

photon field in an RF cavity is thus very relevant and interesting for investigations

of magnetic domain dynamics.

• Not until recently, some progresses were made in advancing the theoretical de-

scription of the high temperature part of the phase diagram for LiHoF4 [19], and

a complete theoretical description of LiHoF4 in this regime is still out of reach.

Furthermore, as it has been shown both in Ref.[63] and the present experiment that

the high temperature part of the phase boundary appears to exhibit re-entrance

character that may signal some type of ordering instability. Given the fact that

LiHoF4 is one of the best materialization of the 3D Ising magnet, an understanding

of its critical behavior potentially has profound impact. It is therefore well worth

the effort to complete our grasp of the system near critical points. However, at the

moment, detailed data on the subject in this part of phase space remain scarce, thus

further work on both experimental and theoretical front are much needed.

• Last but not the least, both theoretical and experimental results have attributed the

enhancement of critical field to the hyperfine interaction present in LiHoF4 . This

in turn motivated the question of whether or not this effect, and subsequently its

influence on the phase boundary, can be removed by decoupling the nuclear spin

degree of freedom of from that of electronic spins. In principle, this is achievable
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through the so called “population inversion” by active pumping of spins to excited

state as briefly discussed in the last part of Chpt. 5. In spite of a potentially strong

magnon-polariton coupling that could lead to heating effect, it is entirely foreseeable

to reach, in a pulse experiment, a transient/non-equilibrium state with skewed

Boltzmann distribution of spins before the energy dissipates as heat[28], so that

one avoids the potential confusion from crossing the phase boundary by warming

up the sample. Being able to drive the quantum phase transition with RF electro-

magnetic wave would then open doors for many interesting research topics such as

non-equilibrium states and spin dynamics near quantum phase transition.
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A MF-RPA Susceptibility Tensor

Applying Eq. 2.11 and Eq. 2.15 to all combinations of Cartesian component pairs, the

imaginary part of AC susceptibility tensors are calculated for LiHoF4 at 300 mK. The

results calculated under the mean field (MF) approximation and the random phase ap-

proximation (RPA) are presented respectively in figure A.1 and figure A.2 as functions of

external magnetic field and frequency. The panels arrangement are in accordance with the

placement of tensor elements:

¯̄χ=


χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

 (A.1)

the relative amplitude between different tensor elements clearly show, for both MF and

RPA results, that the element |χzz| has the largest amplitude, implying the strongest AC

magnetic response to the EM field polarized along this orientation.
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Appendix A. MF-RPA Susceptibility Tensor

Figure A.1: (a-i) Matrix elements of MF susceptibility of LiHoF4 at 300 mK and in magnetic
field up to 17 T. The arrangement of the panels is consistent with the elements’ relative
location within the susceptibility tensor. All panels except for (i) share the color scale in
(c), and panel (i) uses its own color scale for clarity.
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Figure A.2: (a-i) Matrix elements of MF-RPA susceptibility of LiHoF4 at 300 mK and in
magnetic field up to 17 T. The arrangement of the panels is consistent with the elements’
relative location within the susceptibility tensor. All panels except for (i) share the color
scale in (c), and panel (i) uses its own color scale for clarity.
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B CEF parameter choice

Figure B.1: (a) Colormap: Experimentally measured |S11| parameter with cavities having
resonance frequencies at 3.52 and 3.65 GHz respectively. Data were taken separately
on the same single crystal of LiHoF4 and then stitched together postproduction. (b, c)
Expanded views of the same region singled out by the yellow dashed box in (a). White
dashed lines in all panels represent calculated magnon modes in LiHoF4 using adjusted
CEF parameters. Red dashed lines in all panels represent calculated magnon modes in
LiHoF4 using the original values of CEF parameters supplied in Ref. [61].
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Appendix B. CEF parameter choice

Coefficient 103B0
2 103B0

4 103B0
6 103B4

4(c) 103B4
4(s) 106B4

6(c) 106B4
6(s)

Ref. [4] Value -57.9 +0.309 +0.54 +3.51 0.00 +63.1 +17.1
Uncertainty[4] ±3.2 ±0.047 ±0.13 ±0.60 – ±12.0 ±3.3
Ref. [61] Value -60.0 +0.350 +0.40 +3.60 0.00 +70.0 ±9.8
Present report -60.0 +0.350 +0.40 +3.60 0.00 +65.5 +9.8

Table B.1: The crystal field parameters used in Ref. [61] and the present work.

For all the calculations carried out in the present study, we adopt the same set of expansion

coefficients for the Steven’s operators from Ref. [61] with minor revision, both of which

are given in Table B.1. The 0.7% adjustment of coefficient B4
6(c) comes from noting a

weak hybridization between the cavity mode and the magnon mode between |6〉 nad |7〉
at 3.51 GHz and near 4.8 T. The experimental data is shown in colormaps in figure B.1(a-

c) with panel (b, c) being the zoomed-in displays of the same region singled out by the

yellow dashed square in panel (a). In all three panels of fig. B.1, the white dashed lines

are magnon modes calculated under MF approximation using adjusted CEF parameters,

whereas the red dashed lines are those calculated from the original values. It is easy to

see in Fig. B.1(a) that there is a large discrepancy between the two results with the one

with adjusted parameters providing a much better agreement with the experimental data.

In fig. B.1(b), a small feature can be spotted near 5 T along the cavity resonance line,

yet the predicted MF mode from the original set of CEF parameters is located far away

from the feature. In the meantime in fig. B.1(c), the calculated modes from adjusted CEF

parameters yield a very precise coincidence between predicted location of hybridization

and that of experimentally observed feature. Further prompting the choice of the latter for

all computations of the present study.

However, in a more recent report, by fitting to experimental data from neutron powder

diffraction measurement, a different set of parameters, which is also given in Table B.1. To

again compare results from the literature and our values, we repeat the same calculations

from the two sets of CEF parameters and compare to the experimental data. The results

are presented in In fig. B.1(a), where again the white dashed lines are computed from

adjusted CEF parameters and the red ones are from those provided in Ref. [4]. Again

the results from the former set of parameters yield a visibly better agreement with the

experimental data.

Since the set of CEF parameters from Ref. [4] was obtained by fitting to experimental data
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as well. We further compare the three sets of parameters by computing from them the

zero field CEF levels at 4 K. We first include, in fig. B.2 (b), the original experimental data

and corresponding fit from Ref. [4], in which markers represent experimental data and

the solid red curve represents the fit. Then we plot in figure B.2 (c) calculated crystal field

levels from the three sets of CEF parameters tabulated in Tab. B.1 together. Immediately

we can see that all three curves capture the lowest peak around 1 meV adequately while

missing the small peak at 5 meV completely. In addition, they disagree with one another

to varying degrees for all other small peaks located near 2 and 8 meV. It’s worth noting

that the parameters used in the present study, despite being numerically very close to

those from Ref. [61] (identical except for the minor difference in B4
l (s)), produced a result

that agrees much better with the experimental data and corresponding fit from Ref. [4] at

higher energies between 5 and 8 meV than the original values. However, it also produced

a large discrepancy from the experimental data for the peak located near 3 meV.

Figure B.2: (a) Colormap: Experimentally measured |S11| parameter with cavities having
resonance frequencies at 3.52 and 3.65 GHz respectively. Data were taken separately
on the same single crystal of LiHoF4 and then stitched together postproduction. White
dashed lines: calculated magnon modes in LiHoF4 using adjusted CEF parameters. Red
dashed lines: calculated magnon modes in LiHoF4 using the CEF parameters provided in
Ref. [4]. (b) Original neutron powder diffraction data and corresponding fit from Ref. [4].
Figure credit: Ref. [4]. (c) Calculated differential scattering cross-section of LiHoF4 using
CEF parameters tabulated in Tab. B.1.
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