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Abstract

We study distribution dependent stochastic differential equation driven by a continu-
ous process, without any specification on its law, following the approach initiated in
[17]. We provide several criteria for existence and uniqueness of solutions which go
beyond the classical globally Lipschitz setting. In particular we show well-posedness
of the equation, as well as almost sure convergence of the associated particle system,
for drifts satisfying either Osgood-continuity, monotonicity, local Lipschitz or Sobolev
differentiability type assumptions.
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1 Introduction

In this work we consider distribution dependent SDEs (henceforth DDSDEs) of the
form

Xt =

∫ t

0

Bs(Xs, µs) ds+ Yt, µt = L(Xt) (1.1)

where B : R+ ×Rd × P(Rd)→ Rd, X is the unknown and Y is a continuous stochastic
process with prescribed law; L(Xt) stands for law of the random variable Xt.

In the literature the process Y is typically sampled as Yt = ξ +
√

2εWt, where ε ≥ 0,
W is a standard Brownian motion and ξ is an Rd-valued random variable independent
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DDSDEs driven by additive continuous noise

of W , encoding the initial condition. In this case the DDSDE is also called a McKean–
Vlasov SDE, after the pioneering work [39] where it was first introduced (setting ε = 0

corresponds to the Vlasov equation).

One reason for the importance of McKean–Vlasov equations is their connection to
systems of N particles subject to a mean field interaction of the form

Xi,N
t =

∫ t

0

Bs
(
Xi,N
s , LN (X(N)

s )
)

ds+ Y it , LN (X
(N)
t ) :=

1

N

N∑
i=1

δXi,Nt
(1.2)

for all i = 1, . . . , N ; where LN (X
(N)
t ) stands for the empirical measure of the system

at time t and Y i are usually sampled as i.i.d. copies of Y . One expects the DDSDE
(1.1) to be the mean field limit of (1.2) in the sense that, as N goes to infinity, LN (X

(N)
t )

converges weakly to L(Xt) with probability 1. Moreover for Y = ξ +
√

2εW , by Itô
calculus, the evolution of the marginal L(Xt) is given by the nonlinear Fokker–Planck
equation (also called McKean–Vlasov equation)

∂tρ+∇ · ((Bt( · , ρ) ρ) = ε∆ρ, ρ0 = L(ξ). (1.3)

In particular, both (1.1) and (1.3) provide a macroscopic, compact description of system
(1.2), reducing its complexity. For this reason, DDSDEs have found applications in
numerous fields, including galaxy formation, plasma physics, 2D fluid dynamics, bacteria
chemotaxis, agent-based modelling, neuroscience, flocking and swarming dynamics; we
refer the interested reader to [17], the review [35] and the references therein. In recent
years they have also attracted a lot of attention due to their connection to mean-field
games [38].

Classical results concerning the mean-field limit property go back to Dobrushin [22]
for ε = 0 and to Sznitman [50] for general ε ≥ 0, under Lipschitz continuity of B; let us
also mention the work by Gärtner [30] which remains among the most general on the
topic.

Recently the field has received a lot of attention both from the analytic and probabilis-
tic communities. On one hand, new methods based on entropy inequalities [28, 36, 9]
and modulated energy [47, 48] have allowed for the rigorous derivation of mean field
limits for fairly singular B; on the other, DDSDEs with very irregular drifts are related to
the flourishing field of regularization by noise phenomena, see [3, 42, 45, 14, 37, 15].

Most of the works mentioned above rely on exploiting either the connection to the
PDE (1.3) or stochastic analysis tools related to the Brownian motion W . In this work
we instead focus on studying the DDSDE (1.1) with as minimal assumptions on the noise
Y as possible, usually merely continuity and finiteness of moments. We are strongly
inspired by the recent work [17], where the authors show that in this setting, for globally
Lipschitz drifts B, (1.1) is still the mean field limit of (1.2), although the connection
to the PDE (1.3) breaks down; they present many additional results including the use
of common noise, large deviations and a central limit theorem. Let us stress that the
additive structure of the noise Y is such that the DDSDE (1.1) in integral form is pathwise
meaningful, without any need of stochastic integration; in particular the results apply to
naturally non-Markovian, non-martingale choices of Y , e.g. fractional Brownian motion.

A fundamental feature of [17] is the revisitation of a technique first introduced by
Tanaka [51]; it allows, by a clever transformation of the underlying probability space,
to transfer any stability estimate available for (1.1) into a bound for the corresponding
empirical measure LN (X(N)) of the system (1.2). The argument is quite robust and
allows one to deduce the mean field convergence property under very mild assumptions,
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DDSDEs driven by additive continuous noise

even when the family {Y i}i is not i.i.d. but only requiring

LN (Y (N)) =
1

N

N∑
i=1

δY i ⇀ L(Y ) P-a.s.

together with some finiteness of moments. The i.i.d. assumption indeed is quite strong,
as it implies exchangeability of the system (see [50, Section I.2] for a detailed discussion)
and sometimes one would prefer to avoid it, see [20, Example II]. In this regard, like
[17], our work can be seen as another attempt to advertise the power of Tanaka’s idea,
which has found applications also in the rough path setting in [13, 2].

As the global Lipschitz assumption considered in [17] is quite restrictive, our main
goal is conduct a deeper analysis of the DDSDE (1.1) providing sufficient conditions for
existence, uniqueness and stability, which will also imply the mean field limit. As our
setting includes in particular the typical case Y = ξ +

√
2εW , it also serves as a review

of many standard techniques used in McKean–Vlasov SDEs, including Yamada–Watanabe
principles, compactness arguments and monotonicity assumptions; we believe one of
the merits of this work is to highlight their extreme robustness, as they apply for any
given Y . On the downside, since our results all apply in the case ε = 0, our noise can be
very degenerate and we can never go beyond the classical Vlasov setting.

In this regard, another motivation for the current work is to provide a family of
“baseline results” to be compared to the regularizing features of suitable nondegenerate
choices of Y ; in our second article [29] we will study in detail the well-posedness of (1.1)
for highly irregular B when the noise is sampled as a fractional Brownian motion.

However, we stress that this work is more than just a survey of known facts; our aim
is also to provide state-of-the-art results.

To illustrate this, for the rest of the introduction we will present a specific result
from Section 4, concerning mean field convergence for McKean–Vlasov equations with
potentially degenerate noise and convolutional drift. Namely, the drift B is assumed to
be of the form Bt(x, µ) = (bt ∗ µ)(x) and the noise Y = ξ + W is given by independent
variables (ξ,W ) such that L(ξ)(dx) = ρ(x) dx for some density function ρ; we make no
assumption on W other than continuity. The corresponding DDSDE becomes

Xt = ξ +

∫ t

0

∫
Rd
bs(Xs − y)L(Xs)(dy) +Wt. (1.4)

In the next statement we let Pr(CT ) denote the space of probability measures on the
space of continuous functions CT with finite r < ∞ moment, and refer to Section 1.1
below for details of some other notation used.

Theorem 1.1. Assume b ∈ L1
TW

1,q
x , div b ∈ L1

TL
∞
x and ρ ∈ Lpx for (p, q) ∈ (1,∞) satisfying

q > d,
1

p
+

1

q
< 1;

then there exists a unique solution to (1.4), which moreover satisfies

sup
t∈[0,T ]

‖L(Xt)‖Lpx <∞. (1.5)

Suppose additionally that L(ξ + W ) ∈ Pr(CT ) for all r < ∞ and that we are given a
sequence {Y i, i ∈ N} of CT -valued random variables such that, for any r <∞,

lim sup
N→∞

‖LN (Y (N))(ω)‖r <∞, LN (Y (N))(ω) ⇀ L(ξ +W ) for P-a.e. ω;

then any solution {Xi,N} to (1.2) associated to {Y i}i satisfies

LN (X(N))(ω) ⇀ L(X) for P-a.e. ω.
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The above statement applies in particular for the choice W = 0, i.e. when Y i is taken
as i.i.d. copies of ξ (see Lemma 5.5) and the result becomes a mean field limit for the
corresponding Vlasov equation. Although singular drifts have already been considered
in such settings, see [32, 33], to the best of our knowledge no general statements for
b ∈ L1

TW
1,q
x are available in the literature; in any case, our proof technique is novel and

quite simple, as we illustrate below.
As typical of transport PDEs, the assumption div b ∈ L1

TL
∞
x is used to propagate the

regularity L(X0) ∈ Lpx and construct a solution X to (1.4) satisfying (1.5) by compactness
arguments; the regularity b ∈ L1

TW
1,q
x for q > d, together with the one-sided Lipschitz

estimates recently obtained in [11], is then used to show that this solution X is stable
around any other solution X̃, not necessarily satisfying (1.5). Finally, Tanaka’s argument
allows to translate this information into an estimate for the corresponding particle
system and obtain the conclusion.

We conclude this introduction by outlining the structure of the paper. In Section
1.1 we briefly recall some notation, conventions and well-known facts used throughout;
Section 2 shortly revisits the theory of DDSDEs with Lipschitz drifts, in order to derive
useful estimates for the sequel. Section 3 constitutes the main body of the paper,
establishing sufficient conditions for existence and uniqueness in several situations
for general B. Section 4 provides some more refined results in the more specific
convolutional case B = b ∗ µ. Finally, in Section 5 we present Tanaka’s idea and apply it
to all the cases previously considered, deriving mean field limit results for each one. The
appendices A and B contain analytic tools used throughout the paper.

1.1 Notations, conventions and well-known facts

Throughout the article we will always work on a finite time interval [0, T ], that may be
arbitrarily large; in particular we do not investigate the long-time behaviour of solutions
nor convergence to equilibrium. We will use the convention that whenever there exists
a positive constant C such that a ≤ Cb we write a . b; if the constant C depends on a
significant parameter p, we write a .p b.

For a Banach space E we write CTE := C([0, T ];E) for the space of continuous
E-valued maps f : [0, T ] → E. Similarly, for p ≥ 1 we write LpTE := Lp(0, T ;E) for
Bochner–Lebesgue space of maps of the same form. When E = Rd we simply write
CT , L

p
T etc.

Given a map f : Rd → Rm we write Df for the d×m matrix of first derivatives. For
p ∈ [1,∞], we denote by Lp(Rd;Rm), W 1,p(Rd;Rm) (or simply Lpx, W

1,p
x when it does

not cause confusion) the classical Lebesgue and Sobolev spaces. We treat the space
W 1,∞
x as synonymous with the Lipschitz continuous functions. Whenever p ∈ [1,∞] and

where it will not cause confusion, we write p′ to denote the dual exponent to p, that is
1/p+ 1/p′ = 1, with the interpretation p = 1 ⇐⇒ p′ =∞. Similarly, we write C0

b for the
space of bounded, continuous functions from Rd to Rm; f ∈ C1

b if f and Df belong to C0
b .

Given a separable Banach space E, we denote by P(E) the set of probability measures
over E; we write µn ⇀ µ for weak convergence of measures; i.e. convergence against
continuous bounded functions.

Given µ, ν ∈ P(E), Π(µ, ν) stands for the set of all possible couplings of (µ, ν), i.e. the
subset of P(E ×E) with first and second marginals given respectively by µ and ν. For
any p ∈ [1,∞), we define

dp(µ, ν) := inf
m∈Π(µ,ν)

(∫
E×E

‖x− y‖pEm(dx,dy)

)1/p

which is a well defined quantity (possibly taking value +∞). By [52, Theorem 4.1], an
optimal coupling m̄ ∈ Π(µ, ν) realizing the above infimum always exists. Noting that we
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may equally describe the set Π(µ, ν) as the collection of all E-valued random variables
X, Y defined on the same probability space, such that L(X) = µ and L(Y ) = ν, we
obtain the frequently used inequality

dp(µ, ν) ≤ E[‖X − Y ‖pE ]1/p ∀ (X,Y ) ∈ Π(µ, ν).

We define Pp(E) to be set of p-integrable probability measures; that is, µ ∈ P(E) s.t.

‖µ‖p :=

(∫
E

‖x‖pE µ(dx)

)1/p

<∞.

It is well known that dp(µ, ν) < ∞ for µ, ν ∈ Pp(E) and that (Pp(E), dp) is a complete
metric space, usually referred to as the p-Wasserstein space on E; let us stress however
that our definition of dp(µ, ν) holds for all µ, ν ∈ P(E). We recall that, given a sequence
{µn}n ⊂ Pp(E), dp(µn, µ)→ 0 is equivalent to µn ⇀ µ weakly and ‖µn‖p → ‖µ‖p, see [52,
Theorem 6.9].

Given µ ∈ P(Rd), with a slight abuse of notation we will write µ ∈ Lq(Rd) (or simply
Lqx) for q ∈ [1,∞] to indicate that µ admits a density µ(dx) = ρ(x) dx with respect to the
d-dim. Lebesgue measure, such that ρ ∈ Lq(Rd).

Whenever it doesn’t create confusion, we will use the bracket 〈·, ·〉 to denote both
scalar product in Rd, 〈x, y〉 =

∑
i xiyi, and duality pairing between functions and mea-

sures, 〈f, µ〉 =
∫
f(z)µ(dz).

Throughout the article, whenever not mentioned explicitly, we will consider an
underlying probability space (Ω,F ,P), where the σ-algebra F is P-complete, and L(X)

is the push-forward measure of a random variable X on this probability space, i.e.
LP(X) = L(X) = P ◦ X−1 =: X#P. For p ≥ 1, we will frequently consider E-valued
random variables in the space Lp(Ω,F ,P;E) which for notational simplicity we will
denote by LpΩE. This applies for instance to LpΩCT , L

p
ΩR

d, etc. We say that a sequence of
random variables {Xn}n converges to X in law if L(Xn) ⇀ L(X).

2 Well-posedness under Lipschitz assumptions

We start by treating DDSDEs with Lipschitz continuous drifts. Although this case was
already treated in [17], we revisit it in order to derive useful a priori estimates for the
sequel; to avoid repetitiveness, we will also present alternative proofs to those of [17].

In this section we consider the DDSDE

Xt =

∫ t

0

Bs(Xs,L(Xs)) ds+ Yt (2.1)

under the assumption that B : [0, T ]×Rd × Pp(Rd)→ Rd satisfies

|Bt(x, µ)−Bt(x′, ν)| ≤ gt (|x− x′|+ dp(µ, ν)), |Bt(x, µ)| ≤ ht (1 + |x|+ ‖µ‖p) (2.2)

for some p ∈ [1,∞) and some g, h ∈ L1(0, T ;Rd).
Although the functions g, h could be unified, we keep them separate to highlight the

differing roles they play in the following estimates. Let us also point out that if B is of
the form Bt(x, µ) =

∫
bt(x, y)µ(dy), then sufficient conditions for (2.2) to hold for p = 1

(and thus for any p ∈ [1,∞)) are

|bt(x, y)− bt(x′, y′)| ≤ gt(|x− x′|+ |y − y′|), |bt(x, y)| ≤ ht(1 + |x|+ |y|).

We refrain for now from providing a rigorous definition of solution to (2.1), which will
be discussed in detail in Section 3; for now we note that thanks to the assumptions on
B, the integral appearing in (2.1) is pathwise meaningful and thus, given Y ∈ LpΩCT for
some probability space (Ω,F ,P), we say that X ∈ LpΩCT solves (2.1) if the identity holds
P-a.s.
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Proposition 2.1. Assume B satisfies (2.2); then for any Y ∈ LpΩCT there exists a unique
X ∈ LpΩCT solving (2.1). Moreover given Y 1, Y 2 as above, denoting by X1, X2 the
associated solutions, it holds that

E[‖X1 −X2‖pCT ]1/p ≤ e2‖g‖
L1
T E[‖Y 1 − Y 2‖pCT ]1/p. (2.3)

Proof. Given Y as above, we define a map I on LpΩCT , by

I(X) · :=

∫ ·
0

Bs(Xs,L(Xs)) ds+ Y · ;

it is immediate to check, using assumption (2.2), that I maps LpΩCT into itself. Let us
endow CT with the equivalent norm

‖x‖̃CT := sup
t∈[0,T ]

{
e−4

∫ t
0
gr dr |xs|

}
,

and by extension LpΩCT with the norm ‖ · ‖̃LpCT . We claim that I is a contraction

on (LpΩCT , ‖ · ‖̃LpCT ), which implies existence and uniqueness of a solution X by the
Banach–Caccioppoli theorem.

By the definition of ‖ · ‖̃CT , for any X1, X2 ∈ LpΩCT ,

dp(L(X1
t ),L(X2

t )) ≤ E[|X1
t −X2

t |p]1/p ≤ e4
∫ t
0
gr dr‖X1 −X2‖̃LpCT ;

therefore for any X1, X2, by assumption (2.2) it holds that

e−4
∫ t
0
gr dr|I(X1)t − I(X2)t| ≤ e−4

∫ t
0
gs ds

∫ t

0

|Bs(X1
s ,L(X1

s ))−Bs(X2
s ,L(X2

s ))|ds

≤ e−4
∫ t
0
gr dr

∫ t

0

gs [|X1
s −X2

s |+ dp(L(X1
x),L(X2

s ))] ds

≤ e−4
∫ t
0
gr dr

(∫ t

0

gs e
4
∫ s
0
gr dr ds

)
[‖X1 −X2‖̃CT

+ ‖X1 −X2‖̃LpCT ]

≤ 1

4
[‖X1 −X2‖̃CT + ‖X1 −X2‖̃LpCT ].

Taking first the supremum over t on the l.h.s., then the LpΩ-norm on both sides, we obtain

‖I(X1)− I(X2)‖̃LpCT ≤
1

2
‖X1 −X2‖̃LpCT

showing that I is a contraction.
Now let Xi be solutions associated to Y i for i = 1, 2. Their difference satisfies

|X1
t −X2

t | ≤
∫ t

0

|Bs(X1
s ,L(X1

s ))−Bs(X2
s ,L(X2

s ))|ds+ |Y 1
t − Y 2

t |

≤
∫ t

0

gs

(
sup
r≤s
|X1

r −X2
r |+ E

[
sup
r≤s
|X1

r −X2
r |p
]1/p)

ds+ ‖Y 1 − Y 2‖CT ;

taking the LpΩ-norm on both sides, applying Minkowski’s integral inequality, we arrive at

E
[

sup
r≤t
|X1

r −X2
r |p
]1/p

≤
∫ t

0

2gsE
[

sup
r≤s
|X1

r −X2
r |p
]1/p

ds+ ‖Y 1 − Y 2‖CT .

Inequality (2.3) then follows from an application of Grönwall’s lemma.
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So far we have regarded X,Y as CT -valued random variables on an abstract prob-
ability space (Ω,F ,P); as the result holds on any such space, we may work with
(CT ,B(CT ), µY ), where µY = L(Y ) and Y is realized as the canonical process.

Let us define the drift b̄(s, x) := Bs(x,L(Xs)); by assumption (2.2), b̄ also satisfies
a standard Lipschitz-type condition, so by classical ODE theory, for any ω ∈ CT there
exists a unique solution x ∈ CT to

x· =

∫ ·
0

b̄(s, xs) ds+ ω·

which can be expressed as xt = Φ(t, ω) for some continuous map Φ : [0, T ]× CT → CT .
Since X is a solution to (2.1), it satisfies

X·(ω) =

∫ ·
0

b̄(s,Xs(ω)) ds+ Y·(ω) for P-a.e. ω ∈ Ω

implying that it satisfies X(ω) = Φ(·, Y (ω)). In particular, since X can be expressed as a
measurable function of Y , its law L(X) = µX = Φ#µY on CT is entirely determined by
µY . As a consequence, we can regard the solution map SB coming from Proposition 2.1
not only as a map LpΩCT to itself, but also as a map from Pp(CT ) to itself, SB(µY ) = µX ,
thus independent of the specific probability space in consideration.

We then obtain the following estimate, recovering the stability results from [17].

Corollary 2.2. Assume B satisfies (2.2) and let S be defined as above, then

dp(S(µ1), S(µ2)) ≤ e2‖g‖
L1
T dp(µ

1, µ2) ∀µ1, µ2 ∈ Pp(CT ).

Proof. Given any coupling m ∈ Pp(CT×CT ) of µ1, µ2, considering Y 1, Y 2 as the canonical
variables on CT × CT , by Proposition 2.1 we have

dp(S(µ1), S(µ2)) ≤ E[‖X1 −X2‖pCT ]1/p ≤ e2‖g‖
L1
T E[‖Y 1 − Y 2‖pCT ]1/p;

the conclusion follows by choosing m to be the optimal coupling for dp(µ1, µ2).

By the above discussion, in what follows we could always deal with measures µ ∈
Pp(CT ); however for the sake of computations we prefer to keep working with random
variables X,Y defined on an abstract probability space (which can be taken as the
canonical one if needed).

Given h ∈ L1(0, T ;Rd), we denote by fh the associated modulus of continuity, namely
for any δ > 0,

fh(δ) := sup
s,t∈[0,T ],|t−s|<δ

∫ t

s

|hr|dr;

let us also define, for any x ∈ CT , the associate seminorm

JxKh := sup
s,t∈[0,T ],s6=t

|xt − xs|
fh(|t− s|)

Lemma 2.3. Let B satisfy (2.2), Y ∈ LpΩCT ; then there exist a constant C, only depend-
ing on ‖h‖L1

T
, such that the solution X to (2.1) satisfies

E[‖X‖pCT ]1/p ≤ C(1 + E[‖Y ‖pCT ]1/p) (2.4)

as well as the pathwise bound

‖X(ω)‖CT ≤ C
(
1 + ‖Y (ω)‖CT

)
for P-a.e. ω ∈ Ω. (2.5)

Moreover, X = Z + Y for some Z ∈ LpΩCT satisfying Z0 = 0 and

E[ JZKph]1/p ≤ C E[ ‖Y ‖pCT ]1/p. (2.6)
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Proof. Let X be a solution, then by assumption (2.2)

sup
r≤t
|Xr| ≤

∫ t

0

hs(1 + |Xs|+ ‖L(Xs)‖p) ds+ |Yt|

≤
∫ t

0

hs

(
1 + sup

r≤s
|Xr|+ E

[
sup
r≤s
|Xr|p

]1/p)
ds+ ‖Y ‖CT .

(2.7)

Taking the LpΩ-norm on both sides, applying Minkowski’s integral inequality, we find

E
[

sup
r≤t
|Xr|p

]1/p
≤
∫ t

0

ht

(
1 + 2E

[
sup
r≤s
|Xr|p

]1/p)
ds+ E[‖Y ‖pCT ]1/p;

inequality (2.4) then follows by Grönwall’s lemma, with C = exp(2‖h‖L1
T

)(1 + ‖h‖L1
T

).
On the other hand, we can apply Grönwall’s lemma at a pathwise level to (2.7) to find

‖X(ω)‖CT ≤ e
‖h‖

L1
T

(
‖h‖L1

T
+ E[‖X‖pCT ]1/p + ‖Y (ω)‖CT

)
which together with (2.4) implies (2.5), for a suitable choice of C.

Finally, since Zt =
∫ t

0
Bs(Xs,L(Xs)), applying again (2.2) we find

|Zt − Zs| ≤
∫ t

s

|hr|dr(1 + ‖X‖CT + E[‖X‖pCT ]1/p);

combined with (2.4), (2.5) this implies the pathwise bound

JZ(ω)Kh ≤ 1 + ‖X(ω)‖CT + E[‖X‖pCT ]1/p .h 1 + ‖Y (ω)‖CT + E[‖Y ‖pCT ]1/p.

Inequality (2.6) readily follows taking the LpΩ-norm on both sides.

3 Refined criteria for existence and uniqueness

In many applications one cannot expect the drift B to be globally Lipschitz, thus
making the results of Section 2 not applicable. Motivated by this fact, in this section
we present several alternative conditions to establish existence and/or uniqueness of
solutions to (2.1).

The first part of this section is focused on the different concepts of solution and
the relations between them; Section 3.1 provides a general result of existence of weak
solutions under continuity and linear growth assumptions; Section 3.2 deals with several
refinements of the globally Lipschitz condition which are still sufficient to establish
uniqueness. While we treat existence and uniqueness as separate problems, we provide
examples of well-posedness results that combine the two. We leave open the possibil-
ity that ad-hoc existence or uniqueness results may be found in more specific cases,
complementing the general results contained here.

The equations considered here are of the general form

Xt =

∫ t

0

Bs(Xs,L(Xs)) ds+ Yt ∀ t ∈ [0, T ] (3.1)

where B : R+ × Rd × Pp(Rd) → Rd is a measurable map, for p ∈ [1,∞), and Y is a
continuous process with finite p-moment. We detail a variety of assumptions on B below.

Definition 3.1 (Weak Solutions I). Given a drift B as above and µY ∈ Pp(CT ), we say
that a tuple (Ω,F ,P;X,Y ), consisting of a probability space (Ω,F ,P) and a measurable
map (X,Y ) : Ω→ CT × CT , is a weak solution to the DDSDE (3.1) on [0, T ] if:
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1. L(Y ) = µY ;

2. supt∈[0,T ] ‖L(Xt)‖p <∞;

3. P-a.s.
∫ T

0
|Bt(Xt,L(Xt))|dt <∞;

4. the relation (3.1) holds P-a.s., the integral being interpreted in the Lebesgue sense.

We will refer to both µY and Y as the input data of the DDSDE.

We readapt here the classical concepts of existence and uniqueness for SDEs to our
setting.

Definition 3.2 (Uniqueness in Law). Given µY ∈ P(CT ), we say that weak uniqueness
holds for the DDSDE (3.1) if for any pair of weak solutions (Ωi,F i,Pi;Xi, Y i), i = 1, 2,
such that LPi(Y i) = µY , one has LP1(X1) = LP2(X2) ∈ P(CT ).

Definition 3.3 (Pathwise Uniqueness). Given µY ∈ P(CT ), we say that pathwise unique-
ness holds for the DDSDE (3.1) if for any two solutions X1, X2 defined on the same
probability space (Ω,F ,P) and w.r.t. to the same input process Y , it holds that X1 = X2

P-a.s.

Definition 3.4 (Strong Existence). Given µY ∈ P(CT ), we say that strong existence
holds for the DDSDE associated to µY if there exists a solution (Ω,F ,P, X, Y ) such that
the process X is adapted to the filtration FYt = σ{Ys : s ∈ [0, t]}.

It follows from the definition that if strong existence holds, we can construct a solution
X on any given probability space (Ω,F ,P;Y ) on which a process with LP(Y ) = µY is
defined.

We now provide several links between the various concepts of existence and unique-
ness for DDSDEs; we start with a result in the style of the Yamada–Watanabe theorem
[54, Prop. 1], showing that pathwise uniqueness implies uniqueness in law.

Proposition 3.5. Let p ∈ [1,∞), µY ∈ Pp(CT ), B : [0, T ]×Rd×Pp(Rd)→ Rd measurable;
if pathwise uniqueness holds for the DDSDE, then uniqueness in law holds as well.

Proof. Let (Ωi,F i,Pi;Xi, Y i), i = 1, 2 be two weak solutions to (3.1) with L(Y 1) =

L(Y 2) = µY . In order to prove uniqueness in law, it suffices to construct a coupling
(X̃1, X̃2) of (X1, X2) such that (X̃1, X̃2) solves (3.1) on the same probability space and
with same input Ỹ ; indeed once this is done, pathwise uniqueness implies LP1(X1) =

LP̃(X̃1) = LP̃(X̃2) = LP2(X2).
To construct the aforementioned coupling, we follow the proof of [54, Prop. 1] based

on disintegration of measures, for which we refer the reader to [1, Thm. 5.3.1].
Set µi := L(Xi, Y i) ∈ P(CT × CT ) for i = 1, 2; since CT is Polish, we can disintegrate

µi as {µiy}y∈CT ⊂ P(CT ), µiy representing the law of Xi given Y i = y. Define a measure
µ̄ ∈ P(CT × CT × CT ) by setting

dµ̄(x1, x2, y) := dµ1
y(x1) dµ2

y(x2) dµY (y)

and consider the probability space (Ω̄, F̄ , µ̄) given by Ω = CT × CT × CT , F̄ the µ̄-
completion of B(CT × CT × CT ). We also define the projection maps πx1,x2(x1, x2, y) =

(x1, x2), and similarly πxi,y for i = 1, 2.
We claim that (Ω̄, F̄ , µ̄;πx1,x2) is the desired coupling. By construction,

LP̄(πxi,y) = dµiy(xi) dµY (y) = LPi(Xi, Y i) for i = 1, 2.
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Moreover the DDSDE relation (3.1) can be written as Y i = F i(Xi) for some measurable
maps F i : CT → CT given by F i(Xi)· := Xi −

∫ ·
0
Bs(X

i
s,LPi(Xi

s)) ds; the same relations
must then hold for µ̄-a.e. (x1, x2, y), namely

xit =

∫ t

0

Bs(x
i
s,LPi(Xi

t)) ds+ yt =

∫ t

0

Bs(x
i
s,Lµ̄(πxit)) ds+ yt for i = 1, 2

where the property Lµ̄(πxit) = LPi(Xi
t) comes from the identity Lµ̄(πxi,y) = LPi(Xi, Y i).

Overall this shows that πx1,x2 is a coupling of X1, X2 solving the DDSDE (3.1) with same
input πy, Lµ̄(πy) = µY .

Remark 3.6. The proof above also contains the nontrivial information that, given any
two weak solutions (Ωi,F i,Pi;Xi, Y i), we may construct a coupling of them. This is also
true in the case µY

1

= LP1(Y 1) 6= LP2(Y 2) = µY
2

, assuming we already have a coupling
m ∈ P(CT × CT ) of (µY

1

, µY
2

) available. Following the notation of the proof, in this case
one can take

dµ̄(x1, x2, y1, y2) := dµ1
y1(x1) dµ2

y2(x2)m(dy1,dy2)

which defines µ̄ ∈ P(CT × CT × CT × CT ); (πx1,y1 , πx2,y2) is then a coupling of (X1, Y 1),
(X2, Y 2).

The next proposition is in the style of [53, Theorem 6.3].

Proposition 3.7. Let p ∈ [1,∞), B : [0, T ] × Rd × Pp(Rd) → Rd measurable. Suppose
that for any µY ∈ Pp(CT ) and any measurable µ : [0, T ]→ Pp(Rd), strong existence and
both pathwise uniqueness and uniqueness in law hold for the SDE

Xt =

∫ t

0

Bs(Xs, µs) ds+ Yt. (3.2)

Then weak existence (resp. uniqueness in law) holds for the DDSDE (3.1) if and only if
strong existence (resp. pathwise uniqueness) holds for it.

Proof. Strong existence always implies weak existence and by Proposition 3.5, pathwise
uniqueness implies weak uniqueness.

Suppose now that there exists a weak solution (Ω,F ,P;X,Y ) to the DDSDE, then
X is also a solution to the SDE (3.2) for the choice µt = L(Xt). By hypothesis, we can
construct a strong solution X̄ to the SDE on the canonical space (CT ,B(CT ), µY ); since
weak uniqueness holds for the SDE, LP(X) = LµY (X̄), which implies that X̄ is a strong
solution to the DDSDE.

Finally, assume that weak uniqueness holds and let X1, X2 be two solutions defined
on the same probability space and with same input Y . Then L(X1

t ) = L(X2
t ) =: µt and

they solve the same SDE with drift (t, x) 7→ Bt(x, µt), so by pathwise uniqueness for the
SDE it holds X1 = X2 P-a.s.

3.1 Existence

Here we study existence of solutions to (3.1) for continuous drifts B satisfying suitable
linear growth conditions.

Assumption 3.8. Given p ∈ [1,∞), B : [0, T ]×Rd×Pp(Rd)→ Rd is measurable and s.t.:

i. For any t ∈ [0, T ], Bt : Rd ×Pp(Rd)→ Rd is uniformly continuous on bounded sets.

ii. There exists h ∈ L1
T such that for all (t, x, µ) ∈ [0, T ]×Rd × Pp(Rd) one has

|Bt(x, µ)| ≤ ht (1 + |x|+ ‖µ‖p) . (3.3)
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Remark 3.9. Let δ0 denote the Dirac delta in 0, which belongs to Pp(Rd) for any p ∈ [1,∞);
it’s then easy to check that ‖µ‖p = dp(µ, δ0) for any µ ∈ Pp. Therefore if B satisfies
Assumption 3.8, it also satisfies Assumption A.1 from Appendix A in the metric space
E = Rd × Pp(Rd).

The next result can be seen as an extension of Peano’s theorem to DDSDEs.

Proposition 3.10. Let B satisfy Assumption 3.8 for some p ∈ [1,∞) and µY ∈ Pp(CT );
then there exists a weak solution to (3.1) in the sense of Definition 3.1. Moreover, any
weak solution (Ω̃, F̃ , P̃; X̃, Ỹ ) satisfies the pathwise bound

‖X̃‖CT ≤ C(1 + ‖Ỹ ‖CT ) P̃-a.s. (3.4)

for some constant C = C(‖h‖L1
T

).

Proof. Estimate (3.4) follows in exactly the same manner as (2.5), since it only relies on
the linear growth of B and Grönwall’s lemma; thus we focus on establishing existence.

Thanks to Assumption 3.8 and Remark 3.9, we can apply Proposition A.3 from
Appendix A to B; we then find a sequence of drifts {Bn}n such that each Bn : [0, T ] ×
Rd × Pp(Rd) → Rd satisfies condition (2.2) with the same growth function ht and Bn

is Lipschitz with constant gn > 0 independent of t. Denote by Y the canonical process
associated to µY ; since µY ∈ Pp(CT ), we may apply Proposition 2.1 to obtain the
existence of a sequence {Xn}n, each Xn solving (3.1) with B replaced by Bn.

Lemma 2.3 furnishes us with suitable a priori estimates for the family {Xn}n: there
exists C = C(‖h‖L1

T
) such that

E
[
‖Xn‖pCT

]1/p
+ E

[
JZnKph

]1/p ≤ C(1 + E[‖Y ‖pCT ]1/p
)

(3.5)

where the estimate is uniform over n and Zn are given by the relation Xn = Zn + Y ; we
recall that J · Kh was the seminorm associated to the modulus of continuity fh defined in
Section 2.

By Arzelà–Ascoli, subsets of CT of the form {ω ∈ CT : ω0 = 0, JωKh ≤ R} are compact;
therefore by the moment estimate (3.5), the family of measures {L(Zn)}n are tight in
CT . Since L(Y ) is also tight on CT (being a probability measure on a Polish space), we
deduce that the family {L(Y,Xn)}n of probability measures on CT × CT is tight as well.

We can then apply Prokhorov’s theorem to extract a (not relabelled) subsequence
such that {L(Xn, Y )}n converge weakly to a limit measure µ. By Skorokhod’s theorem
we can construct a new probability space (Ω̃, F̃ , P̃), carrying a family of random variables
(X̃n, Ỹ n), (X̃, Ỹ ), such that (X̃n(ω̃), Ỹ n(ω̃)) → (X̃(ω̃), Ỹ (ω̃)) for P̃-a.e. ω̃, LP(Xn, Y ) =

LP̃(X̃n, Ỹ n) and µ = LP̃(X̃, Ỹ ). It remains to show that (Ω̃, F̃ , P̃; X̃, Ỹ ) is a weak solution
to (3.1).

First of all, observe that LP̃(Ỹ n) = LP(Y ) = µY and LP̃(Ỹ n) ⇀ LP̃(Ỹ ) so that LP̃(Ỹ ) =

µY , as well as EP̃[‖Ỹ n‖pCT ]→ EP̃[‖Ỹ ‖pCT ]; together with the convergence Ỹ n → Ỹ P̃-a.s.,

we find that Ỹ n → Ỹ in Lp
Ω̃
CT . Since (Ỹ n, X̃n) have the same law as (Y,Xn), they are

still solutions to the DDSDEs associated to Bn; in particular they satisfy the pathwise
bound (2.5). This information together with the convergence Ỹ n → Ỹ in Lp

Ω̃
CT implies

that {X̃n}n is uniformly p-integrable. However, since we also have X̃n → X̃ P̃-a.s., by
Vitali’s convergence theorem X̃n → X̃ in Lp

Ω̃
CT . In particular dp(LP̃(X̃n

t ),LP̃(X̃t))→ 0

and overall we have the P̃-a.s. convergence (X̃n
t ,L(X̃n

t ))→ (X̃t,L(X̃t)) in Rd × Pp(Rd)
for any t ∈ [0, T ].

The above convergence also implies that X̃ satisfies the pathwise bound (3.4); to-
gether with assumption (3.3) this shows that points (2) and (3) of Definition 3.1 are
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satisfied. To conclude that identity (3.1) holds P̃-a.s. it then suffices to show that∫ ·
0
Bns (X̃n

s ,L(X̃n
s )) ds converge to

∫ ·
0
Bs(X̃s,L(X̃s)) ds.

Since Bn converge to B uniformly on compact sets and (X̃n
t ,L(X̃n

t )) → (X̃t,L(X̃t))

P̃-a.s., it holds Bn(X̃n
t ,L(X̃n

t ))→ B(X̃t,L(X̃t)) P̃-a.s. as well. Moreover since Bn and B
both satisfy the growth assumption (3.3), we have

sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

Bns (X̃n
s ,L(X̃n

s )) ds−
∫ t

0

Bs(X̃s,L(X̃s) ds

∣∣∣∣
≤
∫ T

0

|Bns (X̃n
s ,L(X̃n

s ))−Bs(X̃s,L(X̃s))|ds

with the second integrand satisfying the uniform bound

|Bns (X̃n
s ,L(X̃n

s ))−Bs(X̃s,L(X̃s)| ≤ ‖h‖L1
T

(2 + ‖X̃n‖CT + ‖L(X̃n)‖p + ‖X̃‖CT + ‖L(X̃)‖p)

.h 1 + ‖Ỹ n‖CT + ‖Ỹ ‖CT + ‖L(Ỹ )‖p

where we used again the a priori bound (3.4), as well as L(Ỹ n) = L(Ỹ ). But ‖Ỹ n‖CT →
‖Ỹ ‖CT P̃-a.s., thus the previous integrands must be uniformly integrable.

Since [0, T ] is finite, we may now apply again Vitali’s convergence theorem to give
that ∫ ·

0

Bn(s, X̃n
s ,L(X̃n

s )) ds→
∫ ·

0

B(s, X̃s,L(X̃s)) ds P̃-a.s.

which implies the conclusion.

Remark 3.11. Condition i. from Assumption 3.8 can be verified in a variety of situations;
it suffices to check that for any t ∈ [0, T ], the map (x, µ) 7→ Bt(x, µ) is continuous under
a weak topology of Rd ×Pp(Rd) for which bounded balls are compact (as we can then
apply Heine–Cantor theorem).

For instance, if Bt(·, ·) is continuous on Rd ×Pp(Rd), then it’s uniformly continuous
on bounded balls on Rd ×Pq(Rd) for any q > p, due to the compact embedding Pq ↪→ Pp.
Similarly, in the case p = 1 it’s enough to require

|Bt(x, µ)−Bt(y, ν)| .t F
(
|x− y|+ inf

m∈Π(µ,ν)

∫
R2d

|x′ − y′|θm(dx′,dy′)
)

for some θ ∈ (0, 1) and some continuous F such that F (0) = 0. On the use of more
abstract weak topologies guaranteeing sequential compactness of bounded balls of
P(Rd) we also refer to [30, Section B].

Remark 3.12. The reader might wonder if we can replace the growth condition in (3.3)
by a monotonicity assumption like 〈Bt(x, µ), x〉 . 1 + |x|2; there are several difficulties in
doing so. On a technical side, one would need to control

∫ t
0
〈Xs, Ẏs〉, which require either

Y to be of bounded variation or some more refined integration theory (Itô, rough paths)
to be available; recall that here we are not imposing any assumption on Y other than
continuity.

More importantly, already in the case of standard ODEs there are examples of
finite time blow-up for suitable choices of b and continuous Y , see [18, Section 3.3];
the monotonicity assumption can be replaced by more refined criteria, see [44] and
the recent work [8], which however don’t seem to transfer easily to the distribution-
dependent setting.
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3.2 Uniqueness

In this section we provide various conditions for uniqueness of solutions to the DDSDE
(3.1), thus extending already known results for ODEs and SDEs to the the distribution
dependent case. We do not aim at maximal generality, as the criteria from Sections
3.2.1-3.2.3 could be combined together to create new ones; rather we aim to illustrate
how many classical assumptions on B still work perfectly without any need for Y to be
Brownian or Markovian.

Whenever possible, we try to keep uniqueness statements separate from their exis-
tence counterparts (which in our setting always comes from Proposition 3.10) and only
afterwards unite them together in a well-posedness result. Depending on the DDSDE
in consideration, ad-hoc existence results which go beyond Assumption 3.8 might be
available; they can still be combined with the uniqueness criteria presented here, which
are thus of independent interest.

3.2.1 Osgood-type condition

It is well known that classical ODEs admit a unique solution under Osgood type conditions
on the drift (originally proposed in [43]); we include here an analogous statement for
DDSDEs.

Assumption 3.13. It holds that

|Bt(x, µ)−Bt(y, ν)| ≤ ht f(|x− y|+ d1(µ, ν)), (3.6)

for all (x, y) ∈ R2d, (µ, ν) ∈ P1(Rd)2 and t ∈ [0, T ], where h ∈ L1
T and f : R+ → R+ is a

modulus of continuity satisfying∫ ε

0

1

f(u)
du =∞ for any ε > 0. (3.7)

Remark 3.14. By a result of Stechkin which can be found as [40, Lem. A], given any
modulus of continuity f , there exists another concave modulus f̃ satisfying the two-sided
bound f̃ ≤ f ≤ 2f̃ . Thus we can always assume the modulus f appearing in (3.7) to be
concave, which also implies it is increasing and subadditive.

Before proving our uniqueness results, we recall Bihari’s inequality, see e.g. [4].

Proposition 3.15. Let f : [a, b]→ (0,+∞) be a continuous, monotone, strictly positive
function and let x and h be two functions on an interval [t0, t0+T ] such that x([t0, t0+T ]) ⊂
[a, b], h ≥ 0. Assume that for some α ∈ [a, b] one has

xt ≤ α+

∫ t

t0

hs f(xs) ds, t ∈ [t0, t0 + T ];

then

xt ≤ G−1

(
G(a) +

∫ t

t0

hs ds

)
, t ∈ [t0, t0 + T̃ ], (3.8)

where

G(u) :=

∫ u

x0

1

f(r)
dr (3.9)

and T̃ ≤ T is chosen such that

G(a) +

∫ t

t0

h(s) ds ∈ Dom(G−1), ∀t ∈ [t0, t0 + T̃ ].
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Remark 3.16. It’s easy to check, using the definition of G, that functions of the form
a 7→ G−1(G(a) + κ) as appearing on the r.h.s. of (3.8) do not depend on the choice of
x0 (as long as a belongs to the corresponding domain). Since any concave modulus of
continuity f can grow at most linearly at infinity, under the assumption (3.7) we deduce
that G satisfies limx→0G(x) = −∞, limx→+∞G(x) = +∞ and Dom(G−1) = R, so that we
can take T̃ = T .

We now provide a stability estimate for solutions defined on the same probability
space; given two drifts B1, B2 : [0, T ]×Rd × P1(Rd)→ Rd, we introduce the notation

‖B1 −B2‖∞ := sup
(s,x,µ)∈[0,T ]×Rd×P1(Rd)

|B1
s (x, µ)−B2

s (x, µ)|.

Proposition 3.17. Let B1 and B2 be two drifts satisfying Assumption 3.13 for the same
f , h. Assume X1 and X2 are two solutions to (3.1) defined on the same probability space
with input (Y 1, B1) and (Y 2, B2) respectively. Then

E[‖X1 −X2‖CT ] ≤ G−1
(
G
(
E[‖Y 1 − Y 2‖CT ] + ‖B1 −B2‖∞T

)
+ 2‖h‖L1

T

)
(3.10)

where G is defined in (3.9). In particular, pathwise uniqueness and uniqueness in law
hold for the DDSDE.

Proof. We begin by observing that

X1
t −X2

t =

∫ t

0

B1
s (X1

s ,L(X1
s ))−B2

s (X2
s ,L(X2

s )) ds+ Y 1
t − Y 2

t ;

adding and subtracting B1
s (X2

s ,L(X2
s )), applying Assumption 3.13 and the monotonicity

of f , we see that

sup
r≤t
|X1

r −X2
r | ≤ ‖Y 1 − Y 2‖CT + T‖B1 −B2‖∞

+

∫ t

0

hs f(|X1
s −X2

s |+ d1(L(X1
s ),L(X2

s )) ds

≤ ‖Y 1 − Y 2‖CT + T‖B1 −B2‖∞

+

∫ t

0

hs f

(
sup
r≤s
|X1

r −X2
r |+ E

[
sup
r≤s
|X1

r −X2
r |
])

ds

Taking expectation on both sides, using subadditivity and concavity of f along with
Jensen’s inequality, we get that

E
[

sup
r≤t
|X1

r −X2
r |
]
≤ E[ ‖Y 1 − Y 2‖CT ] + T‖B1 −B2‖∞ +

∫ t

0

2hs f

(
E
[

sup
r≤s
|X1

r −X2
r |
])

ds.

Applying Proposition 3.15 readily gives estimate (3.10).
Regarding the last statement, observe that for Y 1 = Y 2, B1 = B2 estimate (3.10)

implies X1 ≡ X2, proving pathwise uniqueness. Uniqueness in law then follows from
Proposition 3.5.

Combining Assumptions 3.8 and 3.13 we can obtain strong existence and uniqueness
of solutions; moreover we can recast the stability estimate (3.10) into a corresponding
bound on the Wasserstein distance between the laws of solutions.

Theorem 3.18. Let B1 and B2 satisfy Assumption 3.8, with p = 1 and Assumption 3.13
for the same f , h and let µY

1

, µY
2 ∈ P1(CT ) be two input laws. Then for i = 1, 2 there

EJP 27 (2022), paper 37.
Page 14/38

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP756
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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exist strong solutions, unique both pathwise and in law, with laws µX
i

, associated to
(Bi, µY

i

). Furthermore, there exists a continuous, increasing function M : R+ → R+,
M(0) = 0, only depending on f and h, such that

d1(µX
1

, µX
2

) ≤M
(
d1(µY

1

, µY
2

) + T‖B1 −B2‖∞
)
. (3.11)

Proof. Since both B1 and B2 satisfy Assumption 3.8, weak existence holds by Proposition
3.10; Assumption 3.13 and Proposition 3.7 then imply strong existence as well. Pathwise
uniqueness and uniqueness in law instead are consequences of Proposition 3.17.

Now let (Y 1, Y 2) be an optimal coupling for d1(µY
1

, µY
2

), which induces a coupling
(X1, X2) for µX

1

, µX
2

by strong existence and uniqueness in law. Define M : (0,+∞)→
(0,+∞) by

M(r) := G−1
(
G(r) + 2‖h‖L1

T

)
for G defined as in (3.9); by the properties limx→0G(x) = −∞, limx→−∞G−1(x) = 0 we
deduce that M extends uniquely and continuously at r = 0 with M(0) = 0.

But then inequality (3.10) and the choice of optimal coupling (Y 1, Y 2) readily implies

d1(µX
1

, µX
2

) ≤ E[‖X1 −X2‖CT ] ≤M
(
E[‖Y 1 − Y 2‖CT ] + T‖B1 −B2‖∞

)
and the conclusion follows.

Let us provide some relevant examples of drifts B satisfying Assumption 3.13 above.

Example 3.19. Consider the case of a true McKean–Vlasov drift, i.e. B of the form

Bt(x, µ) =

∫
Rd
bt(x, y)µ(dy)

for some measurable function b : [0, T ]×Rd×Rd → Rd. Then Assumption 3.13 is satisfied
if there exist h ∈ L1

T , and a (concave) modulus of continuity f satisfying (3.7) such that

|bt(x, z)− bt(y, z′)| ≤ ht f(|x− y|+ |z − z′|).

Indeed, for any µ, ν ∈ P1(Rd) and any coupling m ∈ Π(µ, ν) it holds

|Bt(x, µ)−Bt(y, ν)| =
∣∣∣ ∫
Rd
bt(x, z)µ(dz)−

∫
Rd
bt(y, z

′)ν(dz′)
∣∣∣

≤
∫
R2d

|bt(x, z)− bt(y, z′)|m(dz,dz′)

≤ ht
∫
R2d

f(|x− y|+ |z − z′|)m(dz,dz′)

≤ ht
[
f(|x− y|) +

∫
R2d

f(|z − z′|)m(dz,dz′)
]

≤ ht
[
f(|x− y|) + f

(∫
R2d

|z − z′|m(dz,dz′)
)]

where we used monotonicity, subadditivity and concavity of f as well as Jensen’s inequal-
ity; minimizing over m ∈ Π(µ, ν) gives (3.6).

Of particular relevance are convolutional driftsBt(x, µ) = (bt∗µ)(x) =
∫
bt(x−z)µ(dz),

in which case the above condition reduces to

|bt(x)− bt(y)| ≤ ht f(|x− y|), ∀ (t, x, y) ∈ [0, T ]×Rd ×Rd.
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3.2.2 Monotone drifts

Another classical assumption in ODE theory, that goes beyond the Lipschitz setting, is
a monotonicity condition (sometimes also referred to as one-sided Lipschitz condition).
Similar assumptions in the DDSDE setting have been employed for example in [30, Sec.
5]; see also the more recent works [53] (Assumption (H2) therein) and [23]. Finally, let
us mention that monotonicity may be interpreted as a Lyapunov condition on the energy
| · |2 and is therefore also close in spirit to the assumptions considered in [41], [31].

We consider the following working assumption for the drift B.

Assumption 3.20. Given p ∈ (1,∞), there exists an h ∈ L1
T such that

〈x− y,Bt(x, µ)−Bt(y, ν)〉 ≤ ht
[
|x− y|2 + |x− y| dp(µ, ν)

]
(3.12)

uniformly over x, y ∈ Rd, and µ, ν ∈ Pp(Rd).

Proposition 3.21. Let B : [0, T ]×Rd × Pp(Rd) → Rd be a measurable map satisfying
Assumption 3.20 for some p ∈ (1,∞); then pathwise uniqueness and uniqueness in law
hold for (3.1).

Proof. By virtue of Proposition 3.5, we only need to establish pathwise uniqueness. Let
X1, X2 be two solutions to (3.1) defined on the same probability space and with same
input Y ; setting µit = L(Xi

t) for i = 1, 2, it holds that

Xi
t =

∫ t

0

Bs(X
i
s, µ

i
s) ds+ Yt

and the difference X1 −X2 is an absolutely continuous path. By Assumption 3.20 we
have that

d

dt
|X1

t −X2
t |p = p |X1

t −X2
t |p−2 〈X1

t −X2
t , Bt(X

1
t , µ

1
t )−Bt(X2

t , µ
2
t )〉

≤ p ht
[
|X1

t −X2
t |p + |X1

t −X2
t |p−1 dp(µ

1
t , µ

2
t )
]

.p ht
(
|X1

t −X2
t |p + dp(µ

1
t , µ

2
t )
p
)

where in the last passage we used the basic inequality ab . a
p
p−1 + bp. Since X1

0 = Y0 =

X2
0 , integrating and taking expectations we obtain

E
[
|X1

t −X2
t |p
]
.
∫ t

0

hs

(
E[|X1

s −X2
s |p] + dp(µ

1
s, µ

2
s)
p
)

ds .
∫ t

0

hsE[|X1
s −X2

s |p] ds

and by Grönwall’s lemma we deduce that E[|X1
t −X2

t |p] = 0 for all t ∈ [0, T ]; since Xi

are continuous paths, pathwise uniqueness follows.

Remark 3.22. If p ≥ 2, we can further weaken condition (3.12) by requiring instead

〈x− y,Bt(x, µ)−Bt(y, ν)〉 ≤ ht
[
|x− y|2 + dp(µ, ν)2

]
(3.13)

uniformly over t, x, y, µ, ν. Indeed, going through the same computations as in the proof
above, gives

d

dt
|X1

t −X2
t |p ≤ p ht

[
|X1

t −X2
t |p + |X1

t −X2
t |p−2 dp(µ

1
t , µ

2
t )

2
]

.p ht
[
|X1

t −X2
t |p + dp(µ

1
t , µ

2
t )
p
]

where we used the basic inequality ab . a
p
p−2 + b

p
2 which holds since p/2 ≥ 1.
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Example 3.23. It is clear that any Lipschitz B satisfies Assumption 3.20; more generally,
one can take Bt(x, µ) = Ft(x) +G(x, µ) for globally Lipschitz G and F satisfying

〈Ft(x)− Ft(y), x− y〉 ≤ ht|x− y|2. (3.14)

A similar computation holds for Bt(x, µ) = Ft(x)G(µ) with F as above, once we addition-
ally impose ‖Ft‖L∞ ≤ ht and G : Pp(Rd)→ Pp(Rd) is globally Lipschitz and bounded.

In the case h ≡ C for some C ∈ R, condition (3.14) is satisfied if F = −∇V for some
V : Rd → R such that x 7→ V (x) + λ|x|2/2 is convex for some λ ≥ 0; interesting cases
include F (x) = −xe|x|2 and F (x) = −|x|γ−1x for γ ≥ 0 where for γ ∈ [0, 1), F is not even
locally Lipschitz.

Although Assumption 3.20 covers a wide range of drifts, sometimes it’s natural to
further weaken it to an integrated monotonicity assumption.

Lemma 3.24. Suppose B : [0, T ]×Rd × P2(Rd)→ Rd satisfies∫
R2d

〈x− y,Bt(x, µ)−Bt(y, ν)〉m(dx, dy) ≤ ht
∫
R2d

|x− y|2m(dx, dy) (3.15)

uniformly over all possible t ∈ [0, T ], µ, ν ∈ P2(Rd) and m ∈ Π(µ, ν), for some integrable
h : [0, T ]→ R; then pathwise uniqueness and uniqueness in law hold for the DDSDE.

Proof. By virtue of Proposition 3.5, we only need to establish pathwise uniqueness. Let
X1, X2 be two solutions defined on the same probability space (Ω,F ,P) and with same
input Y . It follows that X1 −X2 is a process of bounded variation satisfying P-a.s.

|X1
t −X2

t |2 = 2

∫ t

0

〈X1
t −X2

t , Bs(X
1
s ,L(X1

s ))−Bs(X2
s ,L(X2

s ))〉 ds ∀ t ∈ [0, T ].

Taking expectation and applying assumption (3.15) for

m = P ◦ (X1
s , X

2
s )−1 ∈ Π(L(X1

s ),L(X2
s )),

we arrive at

E[|X1
t −X2

t |2] ≤ 2

∫ t

0

hsE[|X1
s −X2

s |2] ds

and the conclusion follows by Grönwall’s lemma.

Example 3.25. Let b : Rd ×Rd → Rd be a function satisfying

b(x, x′) = −b(x′, x), 〈b(x, x′)− b(y, y′), x− x′ − y + y′〉 ≤ C(|x− y|2 + |x′ − y′|2)

for some constant C ∈ R, uniformly over x, x′, y, y′ ∈ Rd; then the McKean-Vlasov drift
Bt(x, µ) =

∫
Rd
b(x, x′)µ(dx′) satisfies condition (3.15) with ht = C.

Indeed, for any m ∈ Π(µ, ν) it holds∫
R2d

〈x− y,Bt(x, µ)−Bt(y, ν)〉m(dx, dy)

=

∫
R2d×R2d

〈x− y, b(x, x′)− b(y, y′)〉m(dx, dy)m(dx′,dy′)

=
1

2

∫
R2d×R2d

〈x− y − x′ + y′, b(x, x′)− b(y, y′)〉m(dx, dy)m(dx′,dy′)

where the last passage follows by exchanging (x, y) and (x′, y′) and applying b(x′, x) =

−b(x, x′); by the monotonicity condition on b we readily obtain the conclusion.
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For convolutional drifts B = b ∗ µ it suffices to require

b(−x) = −b(x), 〈x− y, b(x)− b(y)〉 ≤ 2C|x− y|2 ∀x, y ∈ Rd;

as in Example 3.23, this is true for instance if b(x) = −∇V (x) for some even function
V : Rd → R such that x 7→ V (x) + λ|x|2 is convex for some λ ≥ 0. This class includes
drifts not satisfying the linear growth assumption 3.8, but for which uniqueness still
holds.

Let us mention that the special cases b(x) = −λ|x|γ−1x for λ, γ > 0 are also the drift
terms considered in [53, 27, 12]; the setting of these works however, also includes a
non-linear diffusion term, associated to kernels of the form a(x) = |x|γ−1(|x|2 Id − x⊗ x).

It follows from the above results that if B satisfies Assumption 3.8 and one between
Assumption 3.20 or conditions (3.13), (3.15), then for any µY ∈ Pp(CT ) there exists a
unique solution µX ∈ Pp(CT ); this correspondence defines a solution map SB : Pp(CT )→
Pp(CT ). Unfortunately we cannot establish Lipschitz continuity for SB, the issue being

similar to that of Remark 3.12 and related to controlling
∫ t

0
〈X1

s −X2
s ,d(Y 1

s − Y 2
s )〉; we

can still at least show continuity.

Lemma 3.26. Let the drift B satisfy Assumption 3.8 and one between Assumption 3.20
or conditions (3.13), (3.15); then the solution map SB : Pp(CT )→ Pp(CT ) is continuous.

Proof. Given a sequence {µY n}n with µY
n → µY in Pp(CT ), we need to show that

µX
n

= SB(µY
n

) → SB(µY ) = µX . By the assumptions and estimate (3.4) it follows
that (µY

n

, µX
n

) is tight in P(CT × CT ), so by Prokhorov’s theorem we can extract a
(not relabelled) subsequence s.t. (µY

n

, µX
n

) ⇀ (µY , µZ) for a suitable µZ ∈ P(CT ). By
Skorokhod’s theorem, we can work on a common probability space where all processes
(Xn, Y n) and (Z, Y ) are well defined; using the fact that Y n → Y ∈ Lp(Ω;CT ), Xn

satisfy (3.4) and arguing as in the proof of Proposition 3.10 we deduce that Xn → Z

in Lp(Ω;CT ) and that Z solves the DDSDE associated to Y . But then by uniqueness
Z = X and µX

n → µX in Pp(CT ); as the reasoning works for any possible subsequence,
conclusion follows.

3.2.3 Locally Lipschitz drifts with growth conditions

In the classical ODE and SDE setting, it is well known that uniqueness holds as soon
as the drift is merely locally Lipschitz; the same is not true for DDSDEs, with explicit
counterexamples given in [46]. Since global Lipschitz assumptions are often too re-
strictive to work with, we provide here some uniqueness results for drifts with local
Lipschitz constant not growing too fast; the price one has to pay is a strong integrability
requirement on the input µY . Similar type of conditions have been proposed in the
classical work [7] and more recently in [53], [24].

Assumption 3.27. Given α > 0 and p ≥ 1; the drift B : [0, T ] × Rd × P(Rd) → Rd and
input data µY satisfy the following:

i. |Bt(x, µ)| ≤ ht(1 + |x|+ ‖µ‖p),

ii. |Bt(x, µ)−Bt(y, ν)| ≤ gt(|x− y|+ dp(µ, ν))(1 + |x|α + |y|α + ‖µ‖αp + ‖ν‖αp ),

iii.
∫
CT

exp(λ‖ω‖αCT )µY (dω) <∞ for all λ ∈ R,

for integrable functions h, g ∈ L1
T .

To obtain a stability estimate under Assumption 3.27, we need the following simple
lemma.
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Lemma 3.28. For any γ ∈ (0, 1) there exists a C > 0 such that the map Rd 3 x 7→
e(C+|x|)γ is convex.

Proof. We reduce to the one dimensional case by arguing component-wise. Then note
that it suffices to choose C = C(γ) > 0 such that γCγ + γ − 1 ≥ 0 and to check that the
resulting second derivative is non-negative.

Proposition 3.29. Under Assumption 3.27, strong existence, pathwise uniqueness and
uniqueness in law hold for the DDSDE (3.1) associated to µY . Moreover for any q > p

there exists a constant C = C(‖h‖L1
T
, ‖g‖L1

T
, α, p, q) such that, for any two solutions µX

1

and µX
2

driven by the inputs µY
1

and µY
2

respectively, we have the stability estimate:

dp(µ
X1

, µX
2

) ≤ C
(∫

CT

exp(C‖ω‖αCT ) (µY
1

+ µY
2

)(dω)

)
dq(µ

Y 1

, µY
2

). (3.16)

Proof. Assumption 3.27 implies that the hypothesis of Proposition 3.10 are met, thus
weak existence holds. Moreover any solution X satisfies the a priori estimate (3.4),
namely ‖X‖CT .h ‖Y ‖CT .

Strong existence follows from weak existence and Proposition 3.7; by Proposition
3.5, weak uniqueness and pathwise uniqueness are equivalent and will follow from the
stability estimate.

Now let (Y 1, Y 2) be an optimal coupling for dq(µY
1

, µY
2

); by Remark 3.6, given

any pair of weak solutions µX
1

, µX
2

, we can construct an associated coupling (X1, X2)

and thus work with all variables defined on the same probability space. Let us set
µit := L(Xi

t).
By point ii. of Assumption 3.27, the difference X1 −X2 satisfies

|X1
t −X2

t | ≤ |Y 1
t − Y 2

t |

+

∫ t

0

gs (|X1
s −X2

s |+ dp(µ
1
s, µ

2
s))(1 + |X1

s |α + |X2
s |α + ‖µ1

s‖αp + ‖µ2
s‖αp ) ds.

Setting Zt := 1 + |X1
t |α + |X2

t |α + ‖µ1
t‖αp + ‖µ2

t‖αp , it follows from the pathwise bound (3.4)
that

‖Z‖CT .h,α 1 + ‖Y 1‖αCT + ‖Y 2‖αCT + ‖µY
1

‖αp + ‖µY
2

‖αp P-a.s.; (3.17)

moreover by Grönwall’s lemma, for any t ∈ [0, T ] we have the P-a.s. pathwise estimate

sup
r≤t
|X1

r −X2
r | ≤ exp

(∫ t

0

gsZs ds

)(
‖Y 1 − Y 2‖CT +

∫ t

0

gs dp(µ
1
s, µ

2
s)Zs ds

)
. exp

(
(1 + ‖g‖L1

T
)‖Z‖CT

)(
‖Y 1 − Y 2‖CT +

∫ t

0

gs dp(µ
1
s, µ

2
s) ds

) (3.18)

Now taking the LpΩ-norm on both sides, using an Hölder inequality on the r.h.s. (using
the fact that q > p), we can find another constant C ′ = C ′(‖g‖L1

T
, p, q) such that

E
[

sup
r≤t
|X1

r −X2
r |p
] 1
p

. E[exp(C ′‖Z‖CT )]

(
E[‖Y 1 − Y 2‖qCT ]

1
q +

∫ t

0

gs dp(µ
1
s, µ

2
s) ds

)
. E[exp(C ′‖Z‖CT )]

(
dq(µ

Y 1

, µY
2

) +

∫ t

0

gsE
[

sup
r≤s
|X1

r −X2
r |p
] 1
p

ds

)
.

Applying Grönwall’s lemma again, we deduce that

dp(µ
X1

, µX
2

) ≤ E[‖X1 −X2‖pCT ]1/p . e
‖g‖

L1
T E[exp(C ′‖Z‖CT )] dq(µ

Y 1

, µY
2

).
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Now consider the quantities exp(‖µY i‖αp ) = exp(E[‖Y i‖pCT ]α/p) for i = 1, 2. In the

case α > p one can directly apply Jensen’s inequality to give that exp(E[‖Y i‖pCT ]α/p) ≤
E[exp(‖Y i‖αCT )]. For α < p, we first apply Lemma 3.28 with γ = α/p, followed by Jensen’s
inequality to give, for some Cγ > 0,

exp
(
E[‖Y i‖pCT ]α/p

)
≤ exp

(
(Cγ + E[‖Y i‖pCT ])α/p

)
≤ E

[
exp((Cγ + ‖Y i‖pCT )α/p)

]
.α,p E

[
exp(‖Y i‖αCT )

]
.

In either case we have exp(‖µY i‖αp ) .α,p E[exp(‖Y i‖αCT )] and so combined with (3.17) we
finally obtain the stability estimate (3.16) for some new constant C.

As the estimate holds for any possible pair of solutions X1, X2, taking Y 1 = Y 2 we
deduce pathwise uniqueness and this completes the proof.

Remark 3.30. It’s clear from the proof above that Assumption 3.27 admits other variants,
for instance we could instead require, i., iii. and

ii′. |Bt(x, µ)−Bt(y, ν)| ≤ gt(|x− y|+ dp(µ, ν))(1 + |x|α + |y|α + 〈ec |·|α , µ〉+ 〈ec |·|α , ν〉)

for some c > 0. The only difference is that in this case existence of solutions doesn’t
follow from a straightforward application of Proposition 3.10. However, it’s easy to check
that, due to the available a priori estimates, the same compactness argument can be
readapted in this setting.

The next example provides concrete choices of B satisfying Assumption 3.27.

Example 3.31. If Y = ξ+W , where ξ has Gaussian tails and W is a continuous Gaussian
process (e.g. fractional Brownian motion), then condition iii. is satisfied for any α ∈ [0, 2).

Suppose b : [0, T ]×Rd ×Rd → Rd satisfies for some α > 0

|bt(x, y)| ≤ gt(1 + |x|+ |y|),
|bt(x, x′)− bt(y, y′)| ≤ gt(|x− y|+ |x′ − y′|)(1 + |x|α + |y|α + |x′|α + |y′|α),

for some integrable function g. Then a few elementary computations reveal that

Bt(x, µ) :=

∫
Rd
bt(x, x

′)µ(dx′)

satisfies conditions i., ii. for p = α+ 1. Indeed by Hölder’s and Minkowski’s inequalities

|Bt(x, µ)−Bt(y, ν)| ≤
∫
R2d

|bt(x, x′)− bt(y, y′)|m(dx′,dy′)

≤ gt
(
|x− y|+

(∫
R2d

|x′ − y′|pm(dx′,dy′)
)1/p

)
×

×
(

1 + |x|α + |y|α +
(∫

R2d

(|x′|α + |y′|α)p
′
m(dx′,dy′)

)1/p′
)

≤ gt(|x− y|+ dp(µ, ν))(1 + |x|α + |y|α + ‖µ‖αp′α + ‖ν‖αp′α)

once we take m to be an optimal coupling for dp(µ, ν); choosing p = α+1, so that p′α = p,
we get the desired estimate for ii. and condition i. can be checked similarly.

The above assumption on b is satisfied for instance if Db satisfies a growth condition
of the form |Dbt(x, x′)| . gt(1 + |x|α + |x′|α), for all (x, x′) ∈ R2d.
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4 DDSDEs with convolutional structure

In this section we will focus on a particular subcase of (3.1), given by drifts with the
convolutional structure Bt(x, µ) = (bt ∗ µ)(x). Contrary to the previous sections, we now
impose the noise term Y to be of the form Yt = ξ +Wt where ξ and W are independent
random variables taking respectively values in Rd and CT ; the reason for this, which
will become clearer later on, is to exploit the transport structure to show that some
integrability features of L(ξ) are propagated at positive times. Still, no assumption on
W are imposed apart from its continuity.

The DDSDE in consideration therefore becomes

Xt = ξ +

∫ t

0

(bs ∗ L(Xs))(Xs) ds+Wt = ξ +

∫ t

0

∫
Rd
bs(Xs − y)L(Xs)(dy) ds+Wt (4.1)

for some measurable b : [0, T ]×Rd → Rd.
The convolutional structure arises naturally in the study of particle systems with

pairwise interactions; it also allows to discuss kernels b with poor spatial regularity,
possibly unbounded and merely integrable.

Since the drift is not necessarily continuous anymore, we require a new notion of
solution, compared to Definition 3.1, that ensures that the integral appearing in (4.1)
is meaningful in the Lebesgue sense. As usual, we work for simplicity on a finite time
interval [0, T ].

Definition 4.1 (Weak Solutions II). Let b : R+ ×Rd → Rd be a measurable map. We say
that a tuple (Ω,F ,P;X,W, ξ), consisting of a probability space (Ω,F ,P) and a measurable
map (X,W, ξ) : Ω→ CT × CT ×Rd is a weak solution to (4.1) on [0, T ] if:

1. For all t > 0, L(Xt) = P ◦X−1
t =: µt is absolutely continuous w.r.t. Lebesgue.

2. There exists a measurable representative of (t, x) 7→ |bt| ∗ L(Xt)(x) such that∫ T

0

|bs| ∗ L(Xs)(Xs) ds <∞, P-a.s..

3. The relation (4.1) holds P-a.s., the integral being interpreted in the Lebesgue
sense.

Remark 4.2. Definition 4.1 is insensitive to the choice of measurable representative for
bt ∗ L(Xs) appearing in (2). Consider any two measurable maps f, f̃ : [0, T ]×Rd → Rd

such that f(t, x) = f̃(t, x) for Lebesgue a.e. (t, x), then by condition (1) and Fubini we
have

E
[ ∫ T

0

|f(s,Xs)− f̃(s,Xs)|dt
]

=

∫ T

0

∫
Rd
|f(s, x)− f̃(s, x)| L(Xs)(dx) ds = 0.

As a consequence, if P-a.s.
∫ T

0
|f(s,Xs)|ds <∞, then the same holds for f̃ and one has

that
∫ ·

0
f(s,Xs) ds =

∫ ·
0
f̃(s,Xs) ds as CT -valued random variables. A similar argument

shows that the definition is insensitive to modifications of the kernel b on Lebesgue
negligible sets; for this reason we can consider kernels belonging to equivalence classes
like L1

TL
p
x.

In order for the requirement (2) in Definition 4.1 to be met, it is desirable to have
some information on the integrability properties of L(Xt). To derive it, we need to recall
known facts from classical ODE and transport PDE theory.
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Given x0 ∈ Rd, a drift b̄ : [0, T ]×Rd → Rd with continuous and bounded first derivative
and a continuous path ω ∈ CT , there exists a unique solution x ∈ CT to the Cauchy
problem

xt = x0 +

∫ t

0

b̄(s, xs)ds+ ωt ∀ t ∈ [0, T ]; (4.2)

similarly to Section 2, we can define the solution map xt = Φ(t, x0;ω) associated to the
drift b̄, which is a continuous map Φ : [0, T ] ×Rd × CT → Rd. For fixed (t, ω), the map
x0 7→ Φ(t, x0;ω) is a diffeomorphism of Rd, with Jacobian given by the formula

detDΦ(t, x0;ω) = exp

(∫ t

0

div b̄(s,Φ(s, x0;ω))ds

)
.

In particular we have the following two-sided estimate independent of ω:

0 < exp
(
− ‖ div b̄‖L1

TL
∞
x

)
≤ detDΦ(t, x0;ω) ≤ exp

(
‖ div b̄‖L1

TL
∞
x

)
<∞; (4.3)

similarly for detDΨ(t, x0;ω), where Ψ(t, · ;ω) denotes the inverse of x0 7→ Φ(t, x0;ω).
On the other hand, we can consider the solution map as a continuous (thus measur-

able) map (x0, ω) 7→ Φ( · , x0;ω) from Rd × CT into CT ; in particular if we now consider a
random variable (ξ,W ) defined on a probability space (Ω,F ,P), we consider the asso-
ciated variable Φ( · , ξ;W ), which amounts to the solution of the random ODE problem
(4.2).

With this considerations in mind, we can prove the following preliminary a priori
estimate.

Proposition 4.3. Let b ∈ L1
TC

1
b , p ∈ [1,∞] and (ξ,W ) be independent input data s.t.

L(ξ)(dx) = ρ(x) dx with ρ ∈ Lpx for p ∈ [1,∞] and let X denote the unique solution to
(4.1). Then there exists a constant C = C(p, ‖div b‖L1

TL
∞
x

) such that

sup
t∈[0,T ]

‖L(Xt)‖Lpx ≤ C‖ρ‖Lpx (4.4)

Furthermore, only using the assumption that ρ is a probability density, for any ε > 0

there exists a δ > 0, only depending on ρ and ‖ div b‖L1
TL
∞
x

, s.t.

sup
t∈[0,T ]

L(Xt)(A) ≤ ε ∀A ⊂ Rd, |A| ≤ δ. (4.5)

Proof. Let X be the aforementioned solution, which exists by the results of Section 2.
Then X is also a solution to the random ODE (4.2) for the choice b̄t(x) = bt ∗ L(Xt)(x)

and we can represent it as Xt = Φ(t, ξ;W ); without loss of generality we can take (ξ,W )

to be the canonical variables on the probability space (Rd × CT ,B(Rd × CT ), (ρ dx)⊗ µ)

where µ = L(W ). Moreover it holds that

‖ div b̄‖L1
TL
∞
x

= ‖(div b·) ∗ L(X·)‖L1
TL
∞
x
≤ ‖div b‖L1

TL
∞
x
.

For any measurable and bounded f : Rd → R and any t ∈ [0, T ] we have

〈f,L(Xt)〉 = E[f(Φ(t, ξ;W ))] =

∫
CT

∫
Rd
f(Φ(t, x;ω))ρ(x)dxµ(dω)

=

∫
CT

∫
Rd
f(y)ρ(Ψ(t, y;ω)) detDΨ(t, y;ω) dy µ(dω)

=

∫
Rd
f(y)

[ ∫
CT

ρ(Ψ(t, y;ω)) detDΨ(t, y;ω)µ(dω)

]
dy.
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As a consequence, L(Xt) is absolutely continuous w.r.t. Lebesgue with density given by

ρt(y) :=

∫
CT

ρ(Ψ(t, y;ω)) detDΨ(t, y;ω)µ(dω).

Given the bounds on the Jacobian of Φ and Ψ as above, for p ∈ [1,∞) we can estimate
‖ρt‖Lp by∫

Rd
|ρt(y)|p dy ≤

∫
Rd

∫
CT

|ρ(Ψ(t, y;ω))|p|detDΨ(t, y;ω)|p µ(dω) dy

.div b

∫
CT

∫
Rd
|ρ(Ψ(t, y;ω))|p dy µ(dω)

=

∫
CT

∫
Rd
|ρ(x)|p detDΦ(t, x;ω) dxµ(dω) .div b

∫
Rd
|ρ(x)|p dx;

the estimate for p =∞ is similar. To prove the last statement, applying several times the
fact that the incompressibility constants of Φ(t, ·;ω) are controlled by exp(‖ div b‖L1

TL
∞
x

)

uniformly in ω ∈ CT for any t ∈ [0, T ] and A ⊂ Rd, see (4.3), we have that

L(Xt)(A) .h

∫
A

∫
CT

ρ(Ψ(t, y;ω))µ(dω) dy .h

∫
CT

∫
ρ(x)1ψ(t,A;ω)(x) dxµ(dω);

the conclusion follows by observing that ρ ∈ L1
x is uniformly integrable and that

|ψ(t, A;ω)| .h |A| uniformly in t, ω.

With the a priori bound (4.4) at hand, we are now ready to prove existence of solutions
to (4.1) for integrable drifts b, up to the price of requiring additional assumptions on
div b and ρ.

Proposition 4.4. Suppose b ∈ L1
TL

q
x, div b ∈ L1

TL
∞
x and L(ξ)(dx) := ρ(x) dx for a

probability density ρ ∈ Lpx with p, q ∈ [1,∞] such that

1

2q
+

1

p
≤ 1. (4.6)

Then there exists at least one weak solution Xt to (4.1) in the sense of Definition 4.1,
which moreover satisfies supt∈[0,T ] ‖L(Xt)‖Lpx <∞.

Proof. The proof is based on classical compactness arguments; since ρ ∈ L1
x ∩ Lpx, by

interpolation w.l.o.g. we can assume equality holds in (4.6).
Let {bn}n be a sequence in L1

TC
1
b satisfying ‖bn‖L1

TL
q
x
≤ ‖b‖L1

TL
q
x
, ‖div bn‖L1

TL
∞
x
≤

‖div b‖L1
TL
∞
x

(take for instance bns := bs ∗ ϕ1/n with {ϕε}ε>0 standard mollifiers); by
Section 2, for each n ≥ 1 there exists a unique strong solution (Xn,L(Xn)) ∈ CT ×P(CT )

to the DDSDE associated to bn, with input data (ξ,W ). By Proposition 4.3, we can find
some C = C(‖ div b‖L1

TL
∞
x

) such that

sup
t∈[0,T ]

‖L(Xn
t )‖Lp ≤ C‖ρ‖Lpx ∀n ∈ N.

Set Znt :=
∫ t

0
bns ∗ L(Xn

s )(Xn
s ) ds = Xn

t − ξ −Wt. Our first goal is to establish uniform
bounds on {Zn}n. It holds that

E[‖Zn‖W 1,1
T

] ≤ E
[ ∫ T

0

|bns | ∗ L(Xn
s )(Xn

s ) ds

]
≤
∫ T

0

〈|bns | ∗ L(Xn
s ),L(Xn

s )〉 ds

≤ ‖bn‖L1
TL

q
x

sup
t∈[0,T ]

‖L(Xn
t )‖2Lpx . ‖b‖L1

TL
q
x
‖ρ‖2Lpx
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where in the third passage we applied Hölder’s and Young’s inequalities.
Then Helly’s selection theorem, together with the fact that W 1,1

T embeds compactly
in LrT for any r < ∞ as well as in the topology of pointwise convergence, implies that
{Zn}n is tight in LrT and {(ξ,W,Zn)}n is tight in Rd × CT × LrT .

We can therefore apply Prokhorov’s and Skorohod’s theorems to construct another
probability space (Ω̃, F̃ , P̃), carrying a family of random variables (ξ̃n, W̃n, Z̃n) converg-
ing P̃-a.s. to (ξ̃, W̃ , Z̃) in Rd × CT × LrT , such that LP̃(ξ̃n, W̃n, Z̃n) = LP(ξ,W,Zn). From
this we deduce as before that P̃-a.s. Z̃n → Z̃ also in the sense of pointwise conver-
gence, similarly for X̃n := ξ̃n + W̃n + Z̃n; moreover X̃n are still solutions to the DDSDE
associated to bn and Z̃nt =

∫ t
0
bns ∗ LP̃(X̃n

s )(X̃n
s ) ds.

In order to conclude, it remains to show that (X̃, W̃ , ξ̃) is a weak solution to the
DDSDE associated to b, on the probability space (Ω̃, F̃ , P̃). For notational simplicity we
will drop the tildes from now on.

We first treat the case p > 1. Since P-a.s. Xn
t → Xn, L(Xn

t ) ⇀ L(Xt) weakly and they
are uniformly bounded in Lpx with p > 1; thus L(Xt) ∈ Lpx and by lower semicontinuity of
weak convergence (weak-∗ if p =∞) it holds that

sup
t∈[0,T ]

‖L(Xt)‖Lpx ≤ sup
t∈[0,T ]

lim inf
n→∞

‖L(Xn
t )‖Lpx ≤ C‖ρ‖Lpx ,

which checks requirement (1) of Definition 4.1. The verification of (2) is similar and we
are left with showing that Zn → Z for Zt =

∫ t
0
bs ∗ L(Xs)(Xs) ds.

In the case p > 1, q <∞, we may further assume that bn → b in L1
TL

q
x. We fix ε > 0

and choose b̄ ∈ C1
b ([0, T ]×Rd;Rd) such that ‖b− b̄‖L1

TL
q
x
< ε and split the estimate as

‖Zn − Z‖CT ≤
∫ T

0

|bns − b̄s| ∗ L(Xn
s )(Xn

s ) ds+

∫ T

0

|b̄s ∗ L(Xn
s )(Xn

s )− b̄s ∗ L(Xs)(Xs)|ds

+

∫ T

0

|b̄s − bs| ∗ L(Xs)(Xs) ds

:= In1 + In2 + I3.

Regarding In1 , we can apply the uniform estimates on ‖L(Xn
t )‖Lpx to obtain

E[In1 ] . sup
s∈[0,T ]

‖L(Xn
s )‖2Lpx‖b

n − b̄‖L1
TL

q
x
. ‖bn − b‖L1

TL
q
x

+ ‖b− b̄‖L1
TL

q
x
;

similarly for I3. On the other hand, since b̄ ∈ C1
b and L(Xn) ⇀ L(X), b̄∗L(Xn) converges

uniformly to b̄ ∗ L(X); combined with Xn → X P-a.s. and the uniform bounds, by
dominated convergence we have E[In2 ]→ 0. Thus overall we obtain

lim sup
n→∞

E[‖Zn − Z‖CT ] ≤ lim sup
n→∞

(E[In1 ] + E[In2 ] + E[I3])

. lim sup
n→∞

‖bn − b‖L1
TL

q
x

+ 2‖b− b̄‖L1
TL

q
x
. 2ε;

by the arbitrariness of ε > 0 we deduce that E[‖Zn − Z‖CT ] → 0 and that X is a weak
solution.

In the case p = 1, q = ∞ we cannot assume ‖bn − b‖L1
TL
∞
x
→ 0, but only that

bnt (x) → bt(x) for Lebesgue a.e. (t, x) ∈ [0, T ] × Rd. Since Xn
t ⇀ Xt, the sequence

{L(Xn
t )}n is tight, which together with (4.5) implies its equiintegrability. But then

by Dunford–Pettis theorem L(Xt) ∈ L1
x and L(Xn

t ) ⇀ L(Xt) weakly in L1
x, checking

requirement (1) of Definition 4.1; (2) follows trivially since b ∈ L1
TL
∞
x . Finally, since

L(Xn
t ) ⇀ L(Xt) weakly in L1

x, we can apply Lemma B.1 from Appendix B at any fixed
t ∈ [0, T ] to conclude that E[‖Zn − Z‖CT ]→ 0 still holds.
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Having established existence under suitable integrability assumptions on b, it is
natural to establish uniqueness under similar requirements on the derivative Db. We
start with a conditional result of uniqueness in a class of sufficiently regular solutions.

Proposition 4.5. Let q, p ∈ (1,∞] be such that 1
p + 1

q < 1 and assume b ∈ L1
TW

1,q
x ,

ρ ∈ Lpx. Then both uniqueness in law and pathwise uniqueness holds for (4.1) in the
class of solutions satisfying

sup
t∈[0,T ]

‖L(Xt)‖Lpx <∞ (4.7)

in the following sense: if X1 and X2 are both solutions satisfying (4.7), then their laws
as probabilities on the path space CT coincide; if Xi are defined on the same probability
space and solve the DDSDE w.r.t. same input data (ξ,W ), then X1 = X2 P-a.s.

Proof. Given two solutions Xi as above, let us set µit = L(Xi
t) and bit(x) = (bt ∗ µit)(x);

from Proposition 4.4, for all t ∈ [0, T ], µit ∈ L1
x∩Lpx for p > q′, by interpolation µi ∈ L∞t Lq

′

x

and so by Young’s inequality

‖bi‖L1
TW

1,∞
x

. ‖b‖L1
TW

1,q‖µi‖
L∞T L

q′
x
. 1.

In particular, both drifts bi are spatially Lipschitz continuous; moreover by arguing as
in Proposition 3.5, we only need to check pathwise uniqueness for solutions Xi to (4.1)
satisfying (4.7).

First observe that the difference Y := X1 −X2 satisfies

|Yt| ≤
∫ t

0

|b1s(X1
s )− b1s(X2

s )|ds+

∫ t

0

|(b1 − b2)s(X
2
s )|ds

≤
∫ t

0

‖bs ∗ µ1
s‖W 1,∞

x
|Ys|ds+

∫ t

0

‖bs ∗ (µ1
s − µ2

s)‖L∞x ds

.µi
∫ t

0

‖bs‖W 1,q
x

(1 + |Ys|) ds;

applying Grönwall’s lemma, we find a deterministic constant C = C(b, µi) > 0 such that
‖X1 −X2‖CT = ‖Y ‖CT ≤ C P-a.s.

As a consequence, we also have that dr′(µ1
t , µ

2
t ) ≤ C < ∞ for any r′ ∈ (1,∞); in

particular, the assumptions of Lemma B.2 from Appendix B are met, as there exists r > 1

such that r/q + 1/p ≤ 1. It follows that

‖bs ∗ (µ1
s − µ2

s)‖L∞x . ‖bs‖W 1,q

(
‖µ1

s‖
1/r

Lpx
+ ‖µ2

s‖
1/r

Lpx

)
dr′(µ

1
s, µ

2
s) .µi ‖bs‖W 1,q‖Ys‖Lr′Ω .

We use this new bound to improve the estimates on Y , giving:

|Yt| .µi
∫ t

0

‖bs‖W 1,q
x

(|Ys|+ ‖Ys‖Lr′Ω ) ds

and now applying Minkowski’s integral inequality (with r′ > 1) we obtain

‖Yt‖Lr′Ω .µi
∫ t

0

‖bs‖W 1,q
x
‖Ys‖Lr′Ω ds.

However, by the hypothesis b ∈ L1
TW

1,q
x and applying Grönwall’s lemma, we deduce

‖Yt‖Lr′Ω = 0 for all t ∈ [0, T ] and so X1 = X2 P-a.s.

Combining Propositions 4.4 and 4.5 we get the following existence and uniqueness
result.
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Theorem 4.6. Let q, p ∈ (1,∞] be such that 1
p+ 1

q < 1 and b ∈ L1
TW

1,q
x with div b ∈ L1

TL
∞
x .

Then for any ρ ∈ Lpx there exists a strong solution Xt satisfying supt∈[0,T ] ‖L(Xt)‖Lpx <∞,
which is unique in this class (in the sense of Proposition 4.5).

Proof. The assumption on (p, q) implies that (4.6) holds, thus by Proposition 4.4 weak
existence holds; as observed in the proof of Proposition 4.5, the drift b̄t = bt ∗ L(Xt) ∈
L1
TW

1,∞
x and so arguing as in Proposition 3.7 we deduce strong existence. Uniqueness

follows again from Proposition 4.5.

Theorem 4.6, together with the a priori estimates from Proposition 4.3, guarantees
that such solution X is the only possible accumulation point of solutions Xn constructed
from mollified drifts bn = b ∗ ϕ1/n as in the proof of Proposition 4.4. It doesn’t however

exclude the existence of different solutions X̃, associated to the same input data (ξ,W ),
which fail to meet the requirement supt∈[0,T ] ‖L(X̃t)‖Lpx <∞.

In order to strengthen the result and truly establish uniqueness in law, without any
regularity assumption on L(X̃)t, we need more restrictive conditions on b; the advantage
is that we deduce some strong stability estimates, in the form of equation (4.8) below.
This result relies on the results of [11] and in particular Lemma B.3.

Proposition 4.7. Let (p, q, r) ∈ (1,∞)3, b ∈ L1
TW

1,q
x with div b ∈ L1

TL
∞
x and

q > d,
r

p
+

1

q
≤ 1,

1

r
+

1

r′
= 1.

Also assume we are given input data L(ξ1,W 1) = µξ
1 ⊗ µW 1 ∈ Pr′(Rd × CT ), such that

µξ
1

(dx) = ρ(x) dx for some ρ ∈ Lqx. Denote by µX
1

the unique solution associated to
µξ

1+W 1

, in the sense of Theorem 4.6. Then there exists a constant C, depending on
d, T, p, q, r, ‖ div b‖L1

TL
∞
x

, ‖b‖L1
TW

1,p
x

and ‖ρ‖Lq , with the following property: for any other

solution µX
2

to (4.1) with input µY
2

,

dr′(µ
X1

, µX
2

) ≤ Cdr′
(
µξ

1+W 1

, µY
2)
. (4.8)

Proof. Since q > d, by Sobolev embeddings b ∈ L1
TC

0
b , so that the DDSDE (4.1) is

meaningful in the sense of Definition 3.1, without the need of any regularity assumption
on µX

2

. By Remark 3.6, given any coupling of µξ
1+W 1

, µY
2

, we can construct a coupling of
the associated solutions µX

1

, µX
2

as well, so from now on we will work withXi, ξ1,W 1, Y 2

all defined on the same probability space; also for simplicity we will adopt the compact
notation Y 1 = ξ1 +W 1. Since Xi are solutions to the DDSDE and b ∈ L1

TC
0
b , we have the

trivial estimate
E
[
‖Xi‖r

′

CT

]
. ‖b‖r

′

L1
TW

1,q
x

+ E
[
‖Y i‖r

′

CT

]
which shows that µX

i ∈ Pr′(CT ).
Having made these preparations, we can now pass to the proof of estimate (4.8). Set

µit = L(Xi
t), then the process X1 −X2 satisfies

|X1
t −X2

t | ≤
∫ t

0

|bs ∗ µ1
s(X

1
s )− bs ∗ µ2

s(X
2
s )|ds+ |Y 1

t − Y 2
t |;

since supt∈[0,T ] ‖µ1
t‖Lpx <∞, we can apply Lemma B.3 from Appendix B to obtain

|X1
t −X2

t | .
∫ t

0

‖bs‖W 1,q
x

(1 + ‖µ1
s‖Lpx) (|X1

s −X2
s |+ dr′(µ

1
s, µ

2
s)) ds+ |Y 1

t − Y 2
t |

.div b,ρ

∫ t

0

‖bs‖W 1,q
x

(|X1
s −X2

s |+ dr′(µ
1
s, µ

2
s)) ds+ ‖Y 1 − Y 2‖CT ;
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taking the Lr
′

Ω -norm on both sides and applying Minkowski’s inequality we find

‖X1
t −X2

t ‖Lr′Ω .
∫ t

0

‖bs‖W 1,q
x
‖X1

s −X2
s‖Lr′Ω ds+ ‖‖Y 1 − Y 2‖CT ‖Lr′Ω .

By Grönwall’s lemma we can find some constant κ such that

sup
t∈[0,T ]

dr′(µ
1
t , µ

2
t ) . e

κ‖b‖
L1
T
W

1,q
x ‖‖Y 1 − Y 2‖CT ‖Lr′Ω .

In order to obtain a bound in the path space CT it suffices to observe that the previous
inequalities also imply, again by Grönwall’s lemma,

‖X1 −X2‖CT .b ‖b‖L1
TW

1,q
x

sup
t∈[0,T ]

dr′(µ
1
t , µ

2
t ) + ‖Y 1 − Y 2‖CT ;

inserting the estimate for dr′(µ1
t , µ

2
t ) and taking expectation, we find a constant C as

above s.t.

dr′(µ
X1

, µX
2

) ≤ E[‖X1 −X2‖r
′

CT ]1/r
′
≤ C E[‖Y 1 − Y 2‖r

′

CT ]1/r
′
.

Minimizing over all possible couplings (Y 1, Y 2) gives the conclusion.

5 Mean field convergence

In this section we prove mean field limits for the interacting particle systems associ-
ated to the drifts considered in Sections 3-4. We start by presenting Tanaka’s idea in a
rather abstract fashion and then apply it to our cases of interest.

5.1 Abstract criteria

Let us shortly recall the setup. Given a family of CT -valued random variables {Y i, i ∈
N} defined on a probability space (Ω,F ,P) and a measurable drift B : [0, T ] × Rd ×
P(Rd)→ R (possibly with P(Rd) replaced by Pp(Rd) for some p ∈ [1,∞)), we say that a
family X(N) := {Xi,N}Ni=1, seen as a (CT )N -valued random variable, is a solution to the
N -particle system if for P-a.e. ω ∈ Ω it holds

Xi,N
t (ω) =

∫ t

0

Bs(X
i,N
s (ω), LN (X(N)

s (ω))) ds+ Y it ∀ t ∈ [0, T ], i = 1, . . . , N (5.1)

where the integral is imposed to be meaningful in the Lebesgue sense for any such ω and

LN (X
(N)
t (ω)) :=

1

N

N∑
i=1

δXi,Nt (ω)

denotes the empirical measure of the system at time t. For notational simplicity we will
assume different particle systems to be defined on the same probability space, although
we could allow (Ω,F ,P) to vary as a function of N . In this case we would adopt the
notation Y (N) := {Y i,N}Ni=1 for the sequence of input data below.

We will adopt the following notion of mean field convergence.

Definition 5.1 (Mean Field Convergence). Let {Y i}i∈N be a sequence of input data
such that, defining Y (N) = {Y i}Ni=1, one has P-a.s.

LN (Y (N)(ω)) =
1

N

N∑
i=1

δY i(ω) ⇀ µY in P(CT ) as N →∞,
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with Y such that there exists a unique solution, µX to the DDSDE (3.1) with input µY .
Then we say that mean field convergence of the particle system (1.2) to the DDSDE

(1.1) holds along {Y i}i∈N if for any sequence of solutions {Xi,N} to the associated
N -particle system, P-a.s. we have

LN (X(N)(ω)) ⇀ µX in P(CT ) as N →∞.

Let us remark that although our definition is non-standard, it is well suited to our
purposes below: it doesn’t require the solution {Xi,N} to be unique, only the candidate
limit µX ; similarly we don’t impose the property to hold for all possible families {Y i},
allowing us some freedom in their choice. As the applications in the next section will
show, it covers the i.i.d. case for a large class of L(Y ) ∈ P(CT ).

We are now ready to present Tanaka’s argument; as already mentioned in the intro-
duction, it can be regarded as a “transfer principle” from the DDSDE to the particle
system.

Proposition 5.2. Consider the DDSDE (3.1) for a given drift B. Assume there exists
µY

1 ∈ P(CT ) with the following properties:

i. there exists a unique solution µX
1

associated to µY
1

;

ii. there exist p ∈ [1,∞), a measurable function F : Pp(CT )×P(CT )→ [0,+∞] and an
increasing continuous function M : [0,+∞)→ [0,+∞) with M(0) = 0 such that, for
any other input µY

2

and any solution µX
2

associated to µY
2

, it holds that

dp(µ
X1

, µX
2

) ≤ F (µY
1

, µY
2

)M(dp(µ
Y 1

, µY
2

)). (5.2)

Then for any solution {Xi,N}i to the N -particle system associated to {Y i}i, P-a.s.

dp(µ
X1

, LN (X(N)(ω)) ≤ F (µY
1

, LN (Y (N)(ω)))M
(
dp

(
µY

1

, LN (Y (N)(ω))
))

. (5.3)

Before giving the proof, let us explain the meaning of condition (5.2). In the simplest
cases like Section 2, it can be shown that the DDSDE (3.1) is well-posed for all µY ∈
P(CT ) and defines a continuous solution map SB : P(CT ) → P(CT ) by µY 7→ µX . In
this case condition (5.2) is satisfied for F ≡ 1 and M the modulus of continuity of SB

around µY
1

; if SB is globally Lipschitz, then M(r) = Cr for some constant C > 0. The
assumptions of Proposition 5.2 are just a convenient generalization to the case in which
SB is not well-defined anymore, or maybe not on an open neighbourhood of µY

1

in
Pp(CT ) but only on a strict subset of it (encoded by the presence of F which can take
value +∞).

Proof. Let the family Y (N) = {Y i}Ni=1 be defined on a probability space (Ω,F ,P), together
with a solution X(N) = {Xi,N}Ni=1 to the N -particle system; we can regard X(N), Y (N) as
(CT )N -valued random variables. Define a new probability space (ΩN ,FN ,PN ) by

ΩN := {1, . . . , N}, FN := 2ΩN , PN :=
1

N

N∑
i=1

δi.

We can identify any element y(N) = {yi}Ni=1 ∈ (CT )N as a random variable ΩN 3 i 7→ yi ∈
CT . With this identification in place, for any ϕ ∈ Cb(CT ) we have

EPN

[
ϕ
(
y(N)

)]
=

1

N

N∑
i=1

ϕ(yi) =
〈
ϕ,

1

N

N∑
i=1

δyi
〉

= 〈ϕ,LN (y(N))〉;
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that is, LN (y(N)) = LPN (y(N)). Applying the above to Y (N)(ω), X(N)(ω) we deduce that
for P-a.e. ω,

Xi,N
t (ω) =

∫ t

0

Bs(X
i,N
s (ω),LPN (X(N)

s (ω)) ds+ Y it (ω) ∀ i ∈ ΩN .

Namely for any such ω the solution X(N)(ω) to the particle system can be regarded
as a solution to the DDSDE (3.1) with input Y (N)(ω) with respect to the probability
space (ΩN ,FN ,PN ). Applying assumption (5.2) for the choice µY

2

= LPN (Y (N)(ω)) =

LN (Y N (ω)), similarly µX
2

, readily gives the conclusion.

Remark 5.3. The proof also reveals the following simple fact: if the DDSDE (3.1) is well-
posed with a globally defined solution map SB : Pp(CT )→ Pp(CT ), then any solution to
the particle system (5.1) satisfies X(N)(ω) = SB(Y (N)(ω)). In particular strong existence,
pathwise uniqueness and uniqueness in law hold for the particle system as well.

We immediately deduce the following.

Corollary 5.4. Suppose µY
1

satisfies the assumptions of Proposition 5.2. Then the mean
field convergence holds along any sequence {Y i}i such that P-a.s.,

lim sup
N→∞

F
(
µY

1

, LN (Y (N)(ω))
)
<∞, lim

N→∞
dp

(
µY

1

, LN (Y (N)(ω))
)

= 0.

The above sufficient conditions still need to be checked case-by-case; however if
F ≡ 1, the next general lemma shows that they hold in the classical case of i.i.d. data.

Lemma 5.5. Let E be a separable Banach space, p ∈ [1,∞) and {Zi}i≥1 be a family of
i.i.d. random variables with common law µ ∈ Pp(E). Then

lim
N→∞

dp(L
N (Z(N)(ω)), µ) = 0 for P-a.e. ω. (5.4)

Proof. The statement is very close to [17, Lem. 54]; the fact that LN (XN (ω)) ⇀ µ

for P-a.e. ω is a classical result, sometimes referred to as Glivenko–Cantelli theorem.
Moreover by the law of large numbers we have

‖LN (X(N))(ω))‖pp =
1

N

N∑
i=1

‖Xi(ω)‖pE →
∫
E

‖x‖pE µ(dx) = ‖µ‖pp P-a.s.

and combining these facts gives the conclusion.

Remark 5.6. If the data {Y i}Ni=1 are exchangeable (which is true in the i.i.d. case), then
so are {Xi,N}. It then follows from [50, Proposition 2.2] that the mean field convergence
is equivalent to the property of propagation of chaos; the proof therein is based on purely
combinatorial arguments and does not rely on any assumption on Y , thus can be applied
directly to our setting.

Remark 5.7. Often one is not just interested in establishing the mean field limit property
but also to derive rates of convergence for dp(LN (X(N)),L(X)) as a function of N ; thanks
to Proposition 5.2, once the functions F and M are explicit, it suffices to find similar
rates for dp(LN (Y (N)),L(Y )). In the case of i.i.d. data, this problem has been studied
extensively, see for instance [25, 21]; the most advanced result in the case of measures
supported on Rd we are aware of are the ones presented in [26]. Unfortunately, the
results therein cannot be applied to our setting, since they don’t deal with convergence
in Pp(CT ) (although they can still be combined with Sznitman’s argument to provide
explicit estimates, see Section 7.3 from [26]). Indeed, rates of convergence of empirical
measures in Pp(CT ) are much more difficult to obtain and only partial results (mostly
relying on Sanov’s theorem and Talagrand inequalities) are available, see [5, 6].
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5.2 Applications to particular drifts

We are now ready to apply the previous results to the drifts considered in Sections
3-4.

5.2.1 Osgood drifts

We assume that B satisfies Assumption 3.8, with p = 1 and Assumption 3.13; it
then follows from Theorem 3.18 that the DDSDE has an associated solution map
SB : P1(CT )→ P1(CT ) with modulus of continuity M of the form

M(r) = G−1
(
G(r) + ‖h‖L1

T

)
forG given by (3.9). By Remark 5.3, the particle system (5.1) is well-posed andX(N)(ω) =

SB(Y (N)(ω)).

Corollary 5.8. Under the above assumptions on B, for any µY ∈ P1(CT ) we have

d1(LN (X(N)(ω)), SB(µY )) ≤M(d1(LN (Y (N)(ω)), µY )) P-a.s.;

as a consequence, mean field convergence holds along any sequence {Y i} such that

d1(LN (Y (N)(ω)), µY )→ 0 P-a.s.

which is true in particular if {Y i} are taken as i.i.d. variables distributed as µY .

Proof. The first statement is an immediate consequence of Proposition 5.2 for the choice
F ≡ 1 on P1(CT ) and M as above; the second one comes from Corollary 5.4. The claim
for i.i.d. variables follows from Lemma 5.5.

Let us finally mention that the function M can be explicitly computed from the
modulus of continuity f , so one can also obtain more precise information on the rate of
convergence.

5.2.2 Monotone drifts

We now assume that B satisfies Assumption 3.8 and one between Assumptions 3.20,
(3.13) or (3.15) (for the same p); thus Lemma 3.26 is applicable and we have a continuous
solution map SB : Pp(CT )→ Pp(CT ) associated to the DDSDE. As before, by Remark 5.3
the particle system (5.1) is also well-posed.

Corollary 5.9. Under the above assumptions on B, for any µY ∈ Pp(CT ) we have

dp(L
N (X(N)(ω)), SB(µY )) ≤MY (dp(L

N (Y (N)(ω)), µY )) P-a.s.

once we take MY to be the modulus of continuity of SB around µY , namely

M(r) := sup
{
dp(S

B(µY ), SB(ν))
∣∣ ν ∈ Pp(CT ), dp(ν, µ

Y 1

) ≤ r
}
.

As a consequence, mean field convergence holds along any sequence {Y i} such that

dp(L
N (Y (N)(ω)), µY )→ 0 P-a.s.

which is true in particular if {Y i} are taken as i.i.d. variables distributed as µY ∈ Pp(CT ).

The proof is identical to that of Corollary 5.8 and thus omitted; let us point out
however that in this case only qualitative continuity of SB is available, thus we can’t
obtain quantitative rates of convergence.
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5.2.3 Locally Lipschitz drifts

Here we impose B to satisfy Assumption 3.27; by Proposition 3.29, we can talk of stability
of solutions, but technically we don’t have a well defined solution map on all of Pp(CT )

since the result only applies to µY belonging to the class

Eα :=
{
ν ∈ P(CT ) :

∫
CT

eλ‖ω‖
α
CT ν(dω) <∞ for all λ ∈ R

}
.

Nevertheless, this class always includes convex combinations of Diracs and so by Remark
5.3 the result transfers to well-posedness of the particle system (5.1).

Corollary 5.10. Let B satisfy the above assumptions and fix p, q ∈ [1,∞) with p < q.
Then there exists a constant C such that for any µY ∈ Eα we have

dp(L
N (X(N)(ω)), µX)) ≤ C F (LN (Y (N)(ω)), µY ) dq(L

N (Y (N)(ω)), µY ) P-a.s.

for F given by

F (ν1, ν2) :=

∫
CT

eC‖ω‖
α
CT ν1(dω) +

∫
CT

eC‖ω‖
α
CT ν2(dω).

As a consequence, mean field convergence holds along any sequence {Y i} such that

lim sup
N→∞

F (LN (Y (N)(ω)), µY ) <∞, dq(L
N (Y (N)(ω)), µY )→ 0 P-a.s.

which is true in particular if {Y i} are taken as i.i.d. variables distributed as µY ∈ Eα.

Proof. The first statement is a consequence of Propositions 3.29 and 5.2; technically
here contrary to (5.2) we have p < q, but the proof can be readapted to cover this case.
The second statement is analogous to Corollary 5.4 and so it only remains to cover the
i.i.d. claim. Convergence of LN (Y (N)) to µY in Pq follows from Lemma 5.5; we have

F (LN (Y (N)(ω)), µY
1

) =
1

N

N∑
i=1

eC‖Y
i‖αCT +

∫
CT

eC‖ω‖
α
CT µY

1

(dω)

and by SLLN it holds

lim
N→∞

1

N

N∑
i=1

eC‖Y
i‖αCT =

∫
CT

eC‖ω‖
α
CT µY

1

(dω) P-a.s.

implying the conclusion.

5.2.4 Convolutional drifts

Let us now assume B = b ∗ µ for b satisfying the assumptions of Proposition 4.7; recall
in particular that q > d and L1

TW
1,q
x ↪→ L1

TC
α
x for some α > 0. As a consequence, the

equation to the particle system is always meaningful and existence of weak solutions to
(5.1) holds by standard arguments; uniqueness however does not need to hold.

Recall that here the input is of the form Y = ξ + W , for independent ξ,W with
L(ξ) ∈ Lpx; if we also considered Y (N) to be of the form Y i = ξi + W i, one would then
invoke the more refined results from [11] to show that there exists a unique solution to
the particle system (5.1) for P-a.e. realisation of W (N)(ω) and Lebesgue-a.e. choice of
initial data ξ(N) ∈ RNd. However we will not need this fact here and we will therefore
not impose such an assumption on Y (N).
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Corollary 5.11. Let b, ρ satisfy the assumptions of Proposition 4.7 and denote by µX

the unique solution to the DDSDE (4.1) associated to µY = µξ+W . Then for any input
Y (N) and any solution X(N) to the associated particle system (5.1) it holds that

dr′(L
N (X(N)(ω)), µX

1

) ≤ Cdr′(LN (Y (N)(ω)), µY )) P-a.s.

for the parameter r′ ∈ (1,∞) as defined in Proposition 4.7 and given by the relation

1

r′
= 1− q′

p
,

1

q
+

1

q′
= 1.

We deduce that mean field convergence holds along any sequence {Y i} such that P-a.s.

dr′(L
N (Y (N)(ω)), µY

1

)→ 0

which includes the case of {Y i} i.i.d. distributed as µξ+W ∈ Pr′(CT ).

Proof. The proof follows the same line of arguments as the previous corollaries, this
time based on Propositions 5.2 and 4.7.

In particular Corollary 5.11 holds in the case µξ+W ∈ ∩n∈NPn(CT ), completing the
proof of Theorem 1.1.

A Approximation in metric spaces

Our main result from Section 3.1 relies on approximating suitable drifts Bt(µ, x) by
more regular ones. For this reason, we provide here an abstract result on approximation
by Lipschitz functions in metric spaces (E, d); although our main focus is given by
E = Rd × Pp(Rd), the result is true in general.

Standards results of this kind can be found in [34, Theorem 6.8] and [16, Section
6]; however, as they are not directly suited for our purpose, we present the necessary
modifications below.

Assumption A.1. Given a metric space (E, d), we say that a measurable map f :

R+ ×E → Rd, has time inhomogeneous, linear growth if there exists a locally integrable
function h : R+ → R+ and some (w.l.o.g. any) z0 ∈ E such that

|ft(z)| ≤ ht (1 + d(z, z0)) ∀ t ≥ 0, z ∈ E. (A.1)

In order to prove Proposition A.3 below, we first need the following lemma.

Lemma A.2. Let g : E → R be a bounded map, uniformly continuous on bounded sets.
Define

gn(z) = inf
w∈E

{
g(w) + ndE(z, w)

}
; (A.2)

the sequence {gn}n has the following properties:

i. gn is n-Lipschitz;

ii. gn(z) ≤ gn+1(z) ≤ g(z) and |gn(z)| ≤ ‖g‖C0 for all z ∈ E and n ∈ N;

iii. gn → g uniformly on bounded sets.

Proof. Let us set K = ‖g‖C0 ; we can assume K 6= 0. Point i. and the first part of ii. follow
from [16, Theorem 6.4.1]; by the fact that g(w) + ndE(z, w) ≥ g(w) ≥ −K we deduce
gn(z) ≥ −K and thus |gn(z)| ≤ K for all z ∈ E and n ∈ N. The proof of iii. is mostly
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the same as [16, Theorem 6.4.1], which however only deals with globally uniformly
continuous functions; for this reason we give it explicitly.

Let us take n big enough so that 2K/n < 1 and fix z0 ∈ E, R > 0; let mR denote the
modulus of continuity of g on BR+1(z0), which exists by assumption. For any w ∈ E such
that d(z, w) ≥ 2K/n it holds that

g(z) + ndE(z, z) = g(z) ≤ K = 2K −K ≤ g(w) + ndE(z, w)

which implies that

gn(z) = inf
{
g(w) + ndE(z, w) : w ∈ E, dE(w, z) ≤ 2K/n

}
.

In particular if z ∈ BR(z0), since 2K/n < 1, the infimum is taken over a subset of
BR+1(z0). Fix ε > 0, z ∈ BR(z0); we can find wn s.t. dE(wn, z) ≤ 2K/n and g(wn) +

ndE(wn, z) ≤ gn(z) + ε. Thus

g(wn)− gn(z) ≤ g(wn)− gn(z) + ndE(wn, z) ≤ ε

and

0 ≤ g(z)− gn(z) = g(z)∓ g(wn)− gn(z) ≤ mR

(2K

n

)
+ ε→ ε as n→∞.

It follows that for all n large enough,

sup
z∈BR(z0)

|g(z)− gn(z)| ≤ 2ε;

by the arbitrariness of ε > 0, uniform convergence on bounded sets follows.

Applying Lemma A.2 to time inhomogeneous functions gives the following result.

Proposition A.3. Let f : [0, T ] × E → Rd be as in Assumption A.1 and such that, for
every t ∈ [0, T ], ft( · ) is uniformly continuous on bounded sets. Then there exists a
sequence of functions {fn}n : [0, T ]× E → Rd such that:

i. For every n ∈ N and t ∈ [0, T ], fnt ( · ) is globally Lipschitz with constant C = C(n) >

0 independent of t.

ii. For every n ∈ N, fnt ( · ) has time inhomogeneous linear growth, in the sense of
Assumption A.1, with growth function ht.

iii. For every t ∈ [0, T ], fnt ( · )→ ft( · ) uniformly on bounded sets.

Proof. Define the map

gt(z) :=
ft(z)

(1 + dE(z, z0))
;

for every t ∈ [0, T ], by assumption gt( · ) is bounded and uniformly continuous on bounded
sets, so we can apply Lemma A.2; this way we obtain a sequence gnt (x), defined for fixed
t by equation (A.2). Next, consider ρ ∈ C∞c (R; [0, 1]) such that ρ(x) ≡ 1 for |x| ≤ 1 and
ρ(x) ≡ 0 for |x| ≥ 2, and set

fnt (z) := gnt (z) (1 + dE(z, z0)) ρ

(
dE(z, z0)

n

)
.

We claim that fn has the desired properties. Indeed, since |gnt (z)| ≤ |gt(z)| ≤ ht, we
also have |fnt (z)| ≤ |gnt (z)|(1 + dE(z, z0)) ≤ ht(1 + dE(z, z0)), so that ii. is satisfied. Item i.
is clear from the construction of fn, while the convergence of item iii. follows from iii. of
Lemma A.2.
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B Analytic lemmas and inequalities involving maximal functions

We start by presenting a useful weak-strong convergence lemma.

Lemma B.1. Let Xn be a sequence of Rd-valued r.v. defined on the same probability
space such that Xn → X in probability; assume that µn := L(Xn), µ := L(X) all belong
to L1

x and µn ⇀ µ weakly in L1
x. Finally, consider a sequence bn ∈ L∞x such that

‖bn‖L∞x ≤ C and bn(x)→ b(x) for Lebesgue-a.e. x. Then it holds that

lim
n→∞

E[|(bn ∗ µn)(Xn)− (b ∗ µ)(X)|] = 0.

Proof. We split the estimate as follows:

E[|(bn ∗ µn)(Xn)− (b ∗ µ)(X)|] ≤ E[(|bn − b| ∗ µn)(Xn)] + E[|b ∗ (µn − µ)|(Xn)]

+ E[|(b ∗ µ)(Xn)− (b ∗ µ)(X)]

=: In1 + In2 + In3 .

To handle In1 , we recall the following classical fact, which can be checked using
Egorov’s theorem: since |bn − b| is a uniformly bounded sequence converging Lebesgue
a.e. to 0 and µn is equiintegrable, |bn − b| ∗ µn converges pointwise to 0; but then
iterating the procedure to fn := |bn − b| ∗ µn in place of |bn − b|, we can conclude that
In1 =

∫
fn dµn → 0 as well.

Convergence of In2 follows from similar arguments.
Finally, since b ∈ L∞x and µ ∈ L1

x, b ∗ µ ∈ C0
b and so convergence of In3 follows from

the uniform bounds and the convergence Xn → X in probability.

The remainder of this appendix is devoted to recalling some classical and more
recent properties of maximal functions and their use in estimates involving Wasserstein
distances.

Maximal functions play a fundamental role in ODEs driven by Sobolev drifts, see for
instance [19] for their application; let us recall some fundamental facts, which can be
found in [49].

Given b ∈ Lp(Rd), p ∈ [1,∞], its maximal function Mb is defined by

Mb(x) := sup
r>0

1

λd rd

∫
B(x,r)

|b(y)| dy

where λd stands for the Lebesgue measure of B(0, 1) in Rd. It is well known that if
p ∈ (1,∞], then Mf ∈ Lp(Rd) and

‖Mb‖p ≤ cd,p‖b‖p

for some constant cd,p > 0; similar definition and properties hold in the case of vector-
valued drifts b ∈ Lp(Rd;Rm) (in which case c = cd,p,m).

If b ∈ W 1,p(Rd;Rd), then there exists a Lebesgue-negligible set N ⊂ Rd and a
constant cd > 0 such that the Hajlasz inequality holds:

|b(x)− b(y)| ≤ cd |x− y| (MDb(x) +MDb(y)) ∀x, y ∈ Rd \N. (B.1)

The above and similar inequalities allows one to control the map µ 7→ b ∗ µ in
Wasserstein spaces; these results are relevant for applications in Section 4.

Lemma B.2. Let (p, q, r) ∈ (1,∞)3 be such that b ∈W 1,p
x , µ, ν ∈ Lqx and

r

p
+

1

q
≤ 1.

Then there exists a constant C = C(d, p, q, r) such that

‖b ∗ (µ− ν)‖∞ ≤ C‖b‖W 1,p
x

(
‖µ‖1/r

Lqx
+ ‖ν‖1/r

Lqx

)
dr′(µ, ν)
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Proof. If dr′(µ, ν) = +∞ the inequality is trivially true (recall our definition of dr′(µ, ν),
which is valid for any µ, ν ∈ P(Rd)), so we can assume dr′(µ, ν) < ∞. Moreover by
hypothesis µ, ν ∈ Lq̃x for any q̃ ∈ [1, q], therefore w.l.o.g. we can assume r/p+ 1/q = 1.

Let m ∈ Π(µ, ν) be any coupling of (µ, ν) and let N ⊂ Rd be as in (B.1); since µ, ν
are absolutely continuous w.r.t. Lebesgue, it holds that m((N × Rd) ∪ (Rd × N)) = 0.
Therefore applying (B.1), for any fixed x ∈ Rd, gives that

|b ∗ (µ− ν)(x)| =
∣∣∣∣ ∫
R2d

[b(x− y)− b(x− z)]m(dy,dz)]

∣∣∣∣
.
∫

((Rd×N)∪(N×Rd))c
|y − z| (MDb(x− y) +MDb(x− z))m(dy,dz)

≤
(∫

R2d

|y − z|r
′
m(dy,dz)

)1/r′

×
(∫

R2d

|MDb(x− y) +MDb(x− z)|rm(dy,dz)

)1/r

.

Moreover we have∫
Rd
|MDb(x− y)|rm(dy,dz) =

∫
Rd
|MDb(x− y)|rµ(dy) ≤ ‖MDb‖r

Lrq′
‖µ‖Lq

. ‖Db‖r
Lrq′
‖µ‖Lq ;

since rq′ = p, applying a similar estimate to MDb(x− z) we obtain that

sup
x∈Rd

|b ∗ (µ− ν)(x)| . ‖b‖W 1,p

(
‖µ‖1/rLq + ‖ν‖1/rLq

)(∫
R2d

|y − z|r
′
m(dy,dz)

)1/r′

.

Minimizing over all possible m ∈ Π(µ, ν) we obtain the conclusion.

Inequality (B.1) is an example of a family of possibly asymmetric inequalities involving
Mb, see [10] for a general discussion. It was shown in [11, Lemma 5.1] that, under the
stricter requirement that b ∈W 1,p(Rd;Rd) for p > d, there exists a function g ∈ Lp(Rd)
(which can be taken as g = cd,p (M |Db|p̃)1/p̃ for any p̃ ∈ (d, p)) and a Lebesgue-negligible
set N ⊂ Rd such that ‖g‖Lp .d,p ‖b‖W 1,p and

|b(x)− b(y)| ≤ g(x) |x− y| ∀x, y ∈ Rd \N. (B.2)

Contrary to Lemma B.2, which requires both µ, ν ∈ Lqx, the one-sided inequality (B.2)
provides the following estimate.

Lemma B.3. Let (p, q, r) ∈ (1,∞)3 be parameters satisfying

p > d,
r

p
+

1

q
≤ 1. (B.3)

Then there exists a constant C = C(d, p, q, r) such that, for any b ∈ W 1,p
x and µ, ν ∈ P

with µ ∈ Lqx, it holds that

|(b ∗ µ)(x)− (b ∗ ν)(y)| ≤ C‖b‖W 1,p(1 + ‖µ‖Lq )
(
|x− y|+ dr′(µ, ν)

)
.

Proof. As in the proof of Lemma B.2, we only need to consider the case dr′(µ, ν) < ∞
and may take b to be smooth and r/p+ 1/q = 1 if needed.

Since p > d, by the Sobolev embedding W 1,p ↪→ C0
b , so b ∗ µ and b ∗ ν are well defined

for any µ, ν ∈ P(Rd); by Young’s inequality

|(b ∗ µ)(x)− (b ∗ µ)(y)| ≤ ‖b ∗ µ‖W 1,∞ |x− y| . ‖b‖W 1,p(1 + ‖µ‖Lq )|x− y|.
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Let m ∈ Π(µ, ν), then by virtue of (B.2) (as before the negligible set N doesn’t play
any role), going through similar calculations to Lemma B.2 we have

|(b ∗ µ)(y)− (b ∗ ν)(y)| ≤
(∫

Rd
|g|r(y − z1) dµ(z1)

)1/r (∫
R2d

|z1 − z2|r
′

dm(z1, z2)

)1/r′

≤ ‖g‖Lrq′‖µ‖
1/r
Lq

(∫
R2d

|z1 − z2|r
′

dm(z1, z2)

)1/r′

. ‖b‖W 1,p(1 + ‖µ‖Lq )
(∫

R2d

|z1 − z2|r
′

dm(z1, z2)

)1/r′

where in the last passage we used the fact that rq′ = p and ‖g‖Lp . ‖b‖W 1,p . Combining
the two estimates above and taking the infimum over all possible couplings m ∈ Π(µ, ν)

yields the conclusion.
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