
LISA – A Modern Proof System1

Simon Guilloud Ñ2

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland3

Sankalp Gambhir Ñ4

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland5

Viktor Kunčak Ñ6

EPFL, Laboratory for Automated Reasoning and Analysis, Switzerland7

Abstract8

We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order9

logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order10

logic with equality and schematic predicate and function symbols. It implements polynomial-time11

proof checking and uses the axioms of ortholattices (which implies the irrelevance of the order12

of conjuncts and disjuncts and additional propositional laws). The kernel supports the notion of13

theorems (whose proofs are not expanded), as well as definitions of predicate symbols and objects14

whose unique existence is proven. A domain-specific language enables construction of proofs and15

development of proof tactics with user-friendly tools and presentation, while remaining within the16

general-purpose language, Scala. We describe the LISA proof system and illustrate the flavour17

and the level of abstraction of proofs written in LISA. This includes a proof-generating tactic for18

propositional tautologies, leveraging the ortholattice properties to reduce the size of proofs. We also19

present early formalization of set theory in LISA, including Cantor’s theorem.20

2012 ACM Subject Classification Theory of computation → Logic and verification21

Keywords and phrases Proof assistant, First Order Logic, Set Theory22

Digital Object Identifier 10.4230/LIPIcs...23

1 Introduction24

We present the design and initial implementation of a new proof assistant, named LISA.25

Much like Mizar [30], LISA aims to use classical mainstream foundations of mathematics with26

first order logic and set theory. LISA uses (single-sorted) first-order logic (with schematic27

variables) as the syntactic framework, sequent calculus as the deduction framework and set28

theory as the semantic framework. On top of this foundation, we can construct mathematical29

theories without introducing additional axioms. As the target use of LISA we envision a30

library of theorems, but also correctness proofs of computer systems.31

LISA’s source code and a reference manual, as well as all the examples in the present32

paper, are available from33

https://github.com/epfl-lara/lisa

1.1 Design Goals34

Our design is inspired by the LCF line of proof assistants, including HOL Light, HOL4, and35

Isabelle. The envisioned path for axiomatic foundations is closer to Mizar. LISA’s logical36

kernel is a hybrid between LCF-style encoding of theorems as a sealed Theorem type (similar37

to HOL Light [21]) and explicit requirement of proofs. Namely, proofs are self-contained38

sequences of proof steps that derive a conclusion from assumptions (they are not explicitly39

in the form of lambda terms). LISA’s kernel checks the validity of steps, the validity of40

assumptions, and then creates an instance of a theorem.41

© Simon Guilloud, Sankalp Gambhir and Viktor Kunčak;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://people.epfl.ch/simon.guilloud 
https://orcid.org/0000-0001-8179-7549
https://people.epfl.ch/sankalp.gambhir 
https://orcid.org/0000-0001-5994-1081
https://lara.epfl.ch/~kuncak/ 
https://orcid.org/0000-0001-7044-9522
https://doi.org/10.4230/LIPIcs...
https://github.com/epfl-lara/lisa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 LISA – A Modern Proof System

As the unified implementation, proof writing and tactic language, we use Scala instead of42

the ML family of languages that are common to many proof assistants. Scala is a high-level43

functional and object-oriented language. We hope to avoid a sharp boundary between user44

proofs and tactic developments by using a single language with good support for domain-45

specific constructs. To provide a flavour of LISA, consider several ways of constructing46

proofs that are available to LISA users. Figure 2 shows a proof of Pierce’s law as an explicit47

sequence of sequent calculus proof steps. Figure 5 and Figure 6 show proofs built using a48

higher-level domain-specific language (DSL). This DSL detects high-level errors in incorrect49

proofs, but always generates the underlying lower-level proof and forwards it to the kernel50

to obtain a kernel-certified theorem. Finally, Figure 9 shows a solver for propositional51

tautologies that uses the same mechanisms as the proofs to implement a proof tactic. It52

was not our immediate goal to create an interactive experience, so our interaction model is53

more HOL4-like than Isabelle/HOL-like. For us, this means using Scala IDEs, rerunning54

projects, relying on incremental compilation. As the sizes of theories grow, we plan to develop55

serializations for proofs and theories to reduce re-execution. We discuss both the kernel and56

the DSL in the rest of the paper.57

The design philosophy of LISA focuses on what one might call the Six Virtues of58

Modern Proof Systems. Efficiency says a proof system components should have polynomial59

complexity (as close as possible to linear). Trust means high confidence in the system,60

through a combination of well understood mathematical foundations, explicit proofs and a61

concise logical kernel. Usability is making it simple, both for human users and automated62

methods, to formalize mathematics and to develop tools. Predictability is the property of63

systems whose behaviour and output have clear characterizations. Interoperability, whose64

importance has become clear over the years, consists in making it as easy as possible for65

the system to be used by other systems and to export and import proofs to and from other66

systems. Finally, Programmability implies that as a computer system, a proof assistant67

should provide all the expressiveness allowed by a programming language. When designing68

and developing the LISA proof system, we aim to respect the six virtues as much as possible,69

and, when they oppose each other, to strike for the best balance between them.70

1.2 Contributions71

The contribution of this paper is to present the design of LISA, a new proof construction72

system embedded in Scala, based on schematic first-order logic with set theory axioms. We73

focus on the following aspects.74

We describe how the logical kernel is constructed and how it can be used or interacted75

with by other tools.76

As the most unusual design aspect, we describe ortholattice-based algorithms implemented77

in the kernel to make proofs shorter.78

We present a domain-specific language embedded in Scala that makes the writing of79

proofs easier and generates and checks kernel proofs to obtain kernel-certified theorems.80

We show that the same domain-specific language can scale from writing proofs of specific81

theorems to writing general tactics. As an example of a tactic, we present a (proof82

generating) solver for propositional formulas leveraging the ortholattice algorithm.83

We report on the initial steps of developing elementary axiomatic set theory in the system.84



S. Guilloud, S. Gambhir and V. Kunčak XX:3

2 Logical Kernel85

LISA’s deductive system is a variant of Gentzen’s Sequent Calculus for first-order logic (FOL)86

[14]. Formally, a sequent in LISA is a pair of sets of formulas Γ and ∆, represented Γ ⊢ ∆87

and its interpretation is
∧

Γ →
∨

∆. LISA extends the prototypical Sequent Calculus with88

schematic symbols, substitution rules, and a normalization of formulas.89

2.1 Schematic Symbols90

Formulas in LISA’s kernel are built with the usual variables, constant function and predicate91

symbols, logical connectors and binders, but also admit the use of schematic function,92

predicate and connector symbols. These symbols behave like uninterpreted constant symbols93

which can be substituted by any well-typed term or formula across a whole sequent, or like94

variables which cannot be bound. We refer to them as second-order schematic symbols, as95

opposed to regular variables, which are first-order schematic symbols. This gives the system a96

flavour of second order logic and allows writing axiom and theorem schemas, as the following97

example illustrates:98

▶ Example 1. The following sequent (whose proof we show in Figure 5) is provable without99

additional assumptions on the function symbol f and the predicate symbol P :100

∀x.P (x) → P (f(x)) ⊢ ∀x.P (x) → P (f(f(x)))101

This means that any specific term with a distinguished free variable replacing f remains102

provable by an analogous proof, and similarly for P replaced by a formula.103

In traditional first-order logic, this concept is formalized as a meta-theorem stating that104

for every f and P , a corresponding proof can be built. However, in a formal setting, this105

requires duplicating the whole proof for every specific f and P . Instantiation of schematic106

symbols avoids this issue of proof duplication. This is similar to the schematic variables found107

in Isabelle [32], and in particular Isabelle/FOL [34], where variables from the meta-logic can108

be used to represent arbitrary functions, predicates, and connectors in FOL. Crucially, it does109

not increase the expressive power of the system, because it can, in principle, be simulated.110

2.2 Ortholattice Algorithm Applied to First-Order Logic111

We find that using a proof system that is sensitive to the order of conjuncts and similar112

semantically irrelevant syntactic differences can be frustrating and increases proof size113

unnecessarily. To address this issue, LISA’s kernel strengthens sequent calculus with a114

built-in algorithm to compute normal form and equivalence of formulas with respect to a115

subset of equational rules of propositional logic. These rules, shown in Table 1, characterize116

the algebraic theory of ortholattices (abbreviated OL) [2, Chapter II.1], [6].117

Ortholattices are a generalization of Boolean algebra where instead of the law of dis-118

tributivity, the weaker absorption law (L9, Table 1) holds. In particular, every identity in119

the theory of ortholattices is also a theorem of propositional logic.120

This algebraic structure has been shown to possess a quadratic-time normalization121

algorithm [17] and has been suggested as the basis for normalization of formulas in the122

context of verification and mechanized proofs. Notably, it subsumes negation normal form.123

As a special kind of lattices, ortholattices can be viewed as partially ordered sets, with the124

ordering relation on two elements a and b of an ortholattice defined as a ≤ b ⇐⇒ a ∧ b = a125

, which, by absorption (L9), is also equivalent to a ∨ b = b. If s and t are terms over the126



XX:4 LISA – A Modern Proof System

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x

L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3: x ∨ x = x L3’: x ∧ x = x

L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0
L5: x ∨ 0 = x L5’: x ∧ 1 = x

L6: ¬¬x = x L6’: same as L6
L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0
L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x ∨ (x ∧ y) = x L9’: x ∧ (x ∨ y) = x

Table 1 Laws of ortholattices, an algebraic theory with signature (S,∧,∨, 0, 1,¬). [17]

signature (S,∧,∨, 0, 1,¬), we denote s ≤OL t if and only if OL ⊨ s ≤ t, i.e., it holds in127

all ortholattices. We write s ∼OL t if both s ≤OL t and s ≥OL t hold (or equivalently, if128

OL ⊨ s = t). Theorem 1 is the main result we rely on.129

▶ Theorem 1 ([17]). There exists an algorithm running in worst case quadratic time130

producing, for any terms s over the signature (∧,∨,¬), a normal form NFOL(s) such that for131

any t, s ∼OL t if and only if NFOL(s) = NFOL(t). The algorithm is also capable of deciding132

if s ≤OL t holds in quadratic time.133

Moreover, the algorithm works with structure sharing with the same complexity, which is134

very relevant for example when x ↔ y is expanded to (x ∧ y) ∨ (¬x ∧ ¬y). It can produce a135

normal form in this case as well.136

These properties, along with completeness characterization, make the OL algorithm a137

good candidate to include in a proof system. LISA’s kernel further extends OL inequality138

algorithm to first order logic formulas as follows. It first expresses the formula using de139

Bruijn indices [10], then desugars ∃.ϕ into ¬∀.¬ϕ. It then extends the OL algorithm with140

the rules in Table 2.141

To decide... Reduce to...
1 {∧,∨,→,↔,¬}(ϕ⃗) ≤ ψ Base algorithm
2 ϕ ≤ {∧,∨,→,↔,¬}(ψ⃗) Base algorithm
3 s1 = s2 ≤ t1 = t2 {s1, s2} == {t1, t2}
4 ϕ ≤ t1 = t2 s1 == s2

5 ∀.ϕ ≤ ∀.ψ ϕ ≤ ψ

6 ′C(ϕ1, ..., ϕn) ≤ ′C(ψ1, ..., ψn) ϕi ∼OL ψi, for every 1 ≤ i ≤ n

7 Anything else false
Table 2 Extension of OL algorithm to first-order logic. We call it the F(OL)2 algorithm. =

denotes the equality predicate in FOL, while == denotes syntactic equality of terms.

When either of the two formulas being compared have a top-level propositional operator142

(cases 1 and 2), the recursion is done according to the algorithm described in [17], considering143

any non-propositional expressions (predicates, quantified formulas, and schematic connectors)144

as propositional variables. The third and fourth rules take into account reflexivity and145

symmetry of equality. The fifth relies on monotonicity of ∀, and the sixth rule applies146

when ′C is a schematic connector, i.e., a logical connector about which we know nothing.147

These rules extend to the normal-form-producing algorithm, and it is easy to see that if148



S. Guilloud, S. Gambhir and V. Kunčak XX:5

≤ is interpreted as logical implication, they are sound. We decided not to include a rule149

such as ∀.ϕ ≤ ϕ(t). The reason is that incorporating such a rule systematically runs risk150

of introducing higher complexity [26] in the kernel. We instead decided that such steps151

should be implemented using tactics, outside the kernel in the future (possibly making use of152

type-like hints encoded in first-order logic [13]).153

Using the First Order Logic OrthoLattices algorithm, noted F(OL)2, the proof checker in154

LISA’s kernel performs every correctness check up to F(OL)2 equivalence. This does not155

prevent sequents and formulas from having arbitrary constructions and being inspected in a156

stable, predictable way by tactics, as formulas are not normalized in-place. The set of LISA157

deduction rules is shown in Figure 1.158

Moreover, the proof checker contains a special Restate proof step, which permits159

F(OL)2-transformations on the entire sequent, leveraging the interpretation of a sequent160

as a formula (an implication). We also leverage specifically the partial order computed161

by F(OL)2 to expand the usual Weakening rule so that the premise sequent only has to162

be ≤F(OL)2 stronger than the conclusion, with both interpreted as formulas. Weakening163

clearly subsumes Restate, but the latter ensures that the transformation is actually an164

equivalence and hence could be reversed, which can be a useful safeguard in practice. These165

rules subsume most propositional rules in Figure 1.166

2.3 Substitution Rules167

The substitution rules substitute equal terms or equivalent formulas inside a formula. They168

are deduced steps whose simulation from simpler steps can take a number of steps linear in169

the size of the sequent, yet are very frequent both in human-written proofs and automated170

reasoning (as done by SAT solvers or in systems with rewrite rules, for example), justifying171

their inclusion as base steps. A special case of substitution that is particularly important is172

the following:173

ϕ ⊢ ψ
SubstIff

ϕ ⊢ ψ[ϕ := ⊤]
174

Which holds in a single step because ϕ ↔ ⊤ ∼F(OL)2 ϕ. In fact, Restate and SubstIff175

form a complete basis for propositional logic that we will leverage in Subsection 4.1 to write176

a complete proof-producing tactic for propositional logic.177

The inclusion of F(OL)2 and the substitution and instantiation deduced rules in the178

logical kernel is a slight bend to the trust principle, but as the algorithm is only 300 lines179

of code, this is largely overshadowed by the increased usability and shorter proofs. In fact,180

the whole kernel adds up to a grand total of only 1607 lines of code. This comprises the181

implementation of first-order logic, the F(OL)2 algorithm, first and second-order substitution,182

the sequent calculus steps, the proof checker, and a manager for definitions and theorems183

(detailed in Subsection 2.5). Moreover, LISA’s kernel is efficient: except for the quadratic184

F(OL)2 algorithm, every procedure in the Kernel is linear (up to logarithmic coefficients) in185

the size of the formulas or proofs being considered.186

2.4 Proof Objects187

In LISA, a proof is an explicit list of proof steps, where each step can refer to previous steps188

via their respective position in the list and be referred by multiple subsequent steps. In189

other words, a proof is represented as a topological linearization of the proof tree, or, more190

generally, a directed acyclic graph (permitting reuse of intermediate steps). A proof step191



XX:6 LISA – A Modern Proof System

Hypothesis
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Σ, ϕ ⊢ Π
CutΓ,Σ ⊢ ∆,Π

Γ, ϕ, ψ ⊢ ∆
LeftAndΓ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Σ ⊢ ψ,Π RightAnd
Γ,Σ ⊢ ϕ ∧ ψ,∆,Π

Γ, ϕ ⊢ ∆ Σ, ψ ⊢ Π
LeftOrΓ,Σ, ϕ ∨ ψ ⊢ ∆,Π

Γ ⊢ ϕ, ψ∆ RightOr
Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,∆ Σ, ψ ⊢ Π LeftImplies
Γ,Σ, ϕ → ψ ⊢ ∆,Π

Γ, ϕ ⊢ ψ,∆ RightImplies
Γ ⊢ ϕ → ψ,∆

Γ, ϕ → ψ ⊢ ∆
LeftIffΓ, ϕ ↔ ψ ⊢ ∆

Γ ⊢ ϕ → ψ,∆ Σ ⊢ ψ → ϕ,Π RightIff
Γ,Σ ⊢ ϕ ↔ ψ,∆,Π

Γ ⊢ ϕ,∆
LeftNotΓ,¬ϕ ⊢ ∆

Γ, ϕ ⊢ ∆ RightNot
Γ ⊢ ¬ϕ,∆

Γ, ϕ[t := ′x] ⊢ ∆
LeftForall

Γ, ∀′x.ϕ ⊢ ∆
Γ ⊢ ϕ,∆ RightForall

Γ ⊢ ∀′x.ϕ,∆

Γ, ϕ ⊢ ∆
LeftExists

Γ, ∃′x.ϕ ⊢ ∆
Γ ⊢ ϕ[t := ′x],∆

RightExists
Γ ⊢ ∃′x.ϕ,∆

Γ ⊢ ∆ InstSchema
Γ[ψ(v⃗) := ′p(v⃗)] ⊢ ∆[ψ(v⃗) := ′p(v⃗)]

Γ, ϕ[s := ′f ] ⊢ ∆
LeftSubstEq

Γ, s = t, ϕ[t := ′f ] ⊢ ∆
Γ ⊢ ϕ[s := ′f ],∆

RightSubstEq
Γ, s = t ⊢ ϕ[t := ′f ],∆

Γ, ϕ[a := ′p] ⊢ ∆
LeftSubstIff

Γ, a ↔ b, ϕ[b := ′p] ⊢ ∆
Γ ⊢ ϕ[a := ′p],∆

RightSubstIff
Γ, a ↔ b ⊢ ϕ[b := ′p],∆

Γ, t = t ⊢ ∆
LeftReflΓ ⊢ ∆

RightRefl
⊢ t = t

Γ1 ⊢ ∆1 Restate if (
∧

Γ1 →
∨

∆1) ∼F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ2 ⊢ ∆2

Γ ⊢ ∆ Weakening if (
∧

Γ1 →
∨

∆1) ≤F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ, ϕ ⊢ ψ,∆

Figure 1 Deduction rules allowed by LISA’s Kernel. Different occurrences of the same symbols
need not represent equal elements, but only elements with the same F(OL)2 normal form.



S. Guilloud, S. Gambhir and V. Kunčak XX:7

also contains the arguments that allow the proof checker to efficiently verify it. In particular,192

LISA’s kernel does not rely on a unification algorithm to check correctness of proof steps193

related to quantifiers.194

Moreover, proofs are standalone objects checkable and exportable without the need for195

any kind of context. Figure 2 shows an example of sequent calculus proof as a sequence196

of steps. Each step lists a sequent with a rule from Figure 1 and a list of (the position of)197

previous steps from which the sequent follows. Figure 3 shows executable Scala code that198

denotes the same proof, which can be given directly to the LISA kernel. The kernel can199

efficiently check its correctness and create a theorem whose statement corresponds to the200

last sequent, corresponding to the root of the proof tree. Note that, in this particular case,201

the same conclusion could be reached in a single step using the Restate rule.202

If the proof relies on external theorems, axioms or definitions, those are stated after the203

list of proof steps and referred to with negative positions. We call those imported sequents204

(imports, for short). We adopt an analogous mechanism to support subproofs. A subproof205

simulates deduced steps by encapsulating an inner proof and appears as a single step in the206

outer proof. In that case, the premises of the subproof become imports of the inner proof.207

0 Hypothesis ϕ ⊢ ϕ

1 Weakening(0) ϕ ⊢ ϕ, ψ

2 RightImplies(1) ⊢ ϕ, (ϕ → ψ)
3 LeftImplies(2, 0) (ϕ → ψ) → ϕ ⊢ ϕ

4 RightImplies(3) ⊢ ((ϕ → ψ) → ϕ) → ϕ

Figure 2 The proof of Pierce’s Law as a sequence of steps using classical Sequent Calculus rules.

1 val PierceLawProof = SCProof(IndexedSeq(
2     Hypothesis(               ϕ ⊢ ϕ,                                 ϕ),
3     Weakening(                ϕ ⊢ (ϕ, ψ),                            0),
4     RightImplies(            () ⊢ (ϕ, ϕ =⇒ ψ),                1, ϕ, ψ),
5     LeftImplies( (ϕ =⇒ ψ) =⇒ ϕ ⊢ ϕ,                2, 0, (ϕ =⇒ ψ), ϕ),
6     RightImplies(            () ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
7                                                  3, (ϕ =⇒ ψ) =⇒ ϕ, ϕ)
8 ), Seq.empty /* no imports */ )

Figure 3 The proof from Figure 2 written for LISA’s kernel. ⊢ and =⇒ are alternative, nicer
constructors for sequents and formulas and are not part of the kernel. The second argument (here
empty) is the sequence of proof imports.

2.5 Theories208

LISA’s proof checker can be used as a tool to produce and check proofs, independent of any209

context, but is not a sufficient tool to develop mathematical theories, as it lacks in particular210

the ability to make definitions. For this task, the kernel also offers a minimal utility to allow211

development of mathematical theories with the ability to introduce axioms, theorems, and212

definitions with guaranteed soundness.213



XX:8 LISA – A Modern Proof System

Theorems214

This part of the kernel, called the Theory, is inspired from the LCF style [15]. It allows215

checking a proof once, producing a value of a sealed type Theorem, which can then be reused216

many times. The proof can then be forgotten. The Theory will also verify that the given217

proof’s imports are properly justified by existing axioms, theorems or definitions, so that the218

proven Theorem can be considered unconditionally true, unlike its standalone proof. Figure 4219

shows how to use the Theory to obtain a theorem.220

1 val theory = new Theory
2 val pierceThm: theory.Theorem = theory.makeTheorem(
3 "Pierce’s Law",
4 () ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
5 PierceLawProof,
6 Seq.empty
7 )

Figure 4 The proof from Figure 3 can be transformed into a Theorem by a Theory. The
arguments are, in order, the name of the theorem, its statement, a proof of the statement and the
list of previous theorems, axioms or definitions used to justify the proof’s imports, if any.

The Theory naturally corresponds to the concept of a “mathematical theory” in first221

order logic, containing the language and axioms of said theory. To allow coexistence of222

multiple different theories with different valid theorems, LISA makes the Theory a class that223

can be instantiated multiple times. The Theorem type is dependent on a specific instance of224

Theory, so that two different theories will reject the theorem of the other. In a language225

without dependent types, this could be replaced by a simple runtime check. Note that in226

proof development, it is expected that the user will never need to use more than one theory227

at once, so this aspect is abstracted by the DSL.228

Definitions229

The theory also allows introducing new definitions for predicate and function symbols.230

A predicate symbol P definition is of the form P (x1, . . . , xn) := ϕx1,...,xn
, where the231

x1, . . . , xn are the free variables of a given formula ϕ. To define a function symbol f , the232

definition requires a proof of unique existence of the form:233

∃!y. ϕy,x1,...,xn (1)234

and introduces a definitional axiom ϕf(x1,...,xn),x1,...,xn
, where again x1, . . . , xn are the free235

variables of the formula ϕ. To make such a definition, the Theory checks that the symbol236

has not already been defined and requires a proof (1), i.e., of existence and uniqueness.237

Remark on unique existence. One may hope that only the existence (but not uniqueness)238

was needed to obtain conservative extensions in first-order logic. Unfortunately, this is not239

true in the presence of axiom schemas. In particular, with such a definition principle, it240

becomes possible to prove the Axiom of Choice in ZF set theory, while they are well known241

to be independent [7]. Indeed, in ZF it is possible to prove242

∀x.∃y. (x ̸= ∅ =⇒ y ∈ x)243

from which we would obtain a function pick with the property244

∀x. (x ̸= ∅ =⇒ pick(x) ∈ x)245



S. Guilloud, S. Gambhir and V. Kunčak XX:9

If then the symbol pick is allowed in axiom schemas, as would be the case in LISA, it is then246

easy to use pick and the replacement schema to construct a choice function on any set (see247

also LISA’s Reference Manual [16]).248

Abstraction via underspecified definitions. We have seen that we need uniqueness to249

ensure conservative extensions. On the other hand, such requirement often forces the defining250

formula to be overly specific and representation-dependant. For example, one may want to251

define the set of real numbers, R, as a structure that satisfies the axioms of real closed fields.252

Since there are many isomorphic structures satisfying these, a uniqueness proof cannot be253

obtained. It is then necessary to use a specific construction, such as Cauchy sequences, as254

the definition of the set of real numbers. This, however, means that it becomes possible to255

prove properties of real numbers which are specific to the chosen representation, which is256

undesirable and especially so when transferring proofs to other proof systems, which may257

have different representations of reals. Our solution is to allow underspecified definitions.258

An underspecified definition still requires existence and uniqueness (ensuring a conservative259

extension), but the theorem that the kernel provides is only the desired, weaker, one. This260

mechanism makes use of the ≤ relation of F(OL)2. Section 3 shows an example of the use of261

underspecified definitions in set theory.262

This issue is addressed in Metamath [28] by assuming a specific construction of the263

structure to conditionally prove a desired defining property (for example, the axioms of the264

real field) and then introducing said property independently as an axiom 1. This mechanism265

however is not enforced by Metamath itself but only an informal practice. LISA’s kernel266

support for underspecified definitions ensures that the same goal is achieved with guaranteed267

soundness.268

3 DSL for LISA in Scala269

While the minimality of the kernel makes it tedious to use directly, the tools offered by270

Scala (and especially Scala 3) allow us to design a more intuitive DSL, similar to other271

proof assistants, directly within the host language. Moreover, essentially all the verification272

related to the syntactic construction and writing of the proof are checked at compilation273

time, leaving only the wrong use of proof steps and tactics (such as when trying to prove an274

invalid statement) as possible failure at runtime. LISA’s interface encapsulates the kernel275

and provides convenient tools and syntax to make mathematical development easier to write276

and read. Figure 5 shows a minimal example of how to use the DSL to write a proof. This277

approach makes LISA programmable. It offers the user the full range of tools of the host278

language when writing proofs, allowing them to express proofs in novel ways or adapted to279

different areas of mathematics, similar to writing on paper.280

LISA’s environment is activated simply by creating an object extending lisa.Main. This281

will make available all the essential features to develop mathematics in LISA. Declarations in282

lines 2, 3 and 4 define a variable, a schematic predicate of arity one, and a schematic function283

of arity one, such that their symbols are the same as their Scala name, i.e., respectively "x",284

"P" and "f". This is made possible by implicit arguments and reflection. Line 6 starts the285

declaration of a theorem. (Note that the kernel itself does not rely on such specific features;286

we expect the kernel to be straightforward to implement in most languages.)287

1 Example: https://us.metamath.org/mpeuni/ax-resscn.html

https://us.metamath.org/mpeuni/ax-resscn.html


XX:10 LISA – A Modern Proof System

1 object Exercise extends lisa.Main {
2 val x = variable
3 val P = predicate(1)
4 val f = function(1)
5
6 val fixedPointDoubleApplication = Theorem(
7 ∀(x, P(x) =⇒ P(f(x))) ⊢ P(x) =⇒ P(f(f(x)))
8 ) {
9 assume(∀(x, P(x) =⇒ P(f(x))))

10 val step1 = have(P(x) =⇒ P(f(x))) by InstantiateForall
11 val step2 = have(P(f(x)) =⇒ P(f(f(x)))) by InstantiateForall
12 have(thesis) by Tautology.from(step1, step2)
13 }
14 }

Figure 5 A small proof written with LISA’s DSL. Unicode characters are obtained in practice
through ligatures or Scala’s direct support for unicode.

3.1 Higher-Level Proofs288

LISA’s interface defines a proof constructing class. This class uses proof tactics to generate289

pieces of the final pure sequent calculus proof, which are encapsulated into kernel subproofs.290

The result from the point of view of the user is the ability to define arbitrarily computed291

deduced proof steps (here Tautology and InstantiateForall) from the base steps of292

sequent calculus. Thanks to Scala 3’s implicit functions types [31], the proof constructor is293

automatically created in the code block following the Theorem declaration (line 6 of Figure 5)294

without the need for the user to even realize it exists. The existence of an implicit proof295

constructor in scope is necessary for the other keywords (have, assume, ...) to be well-defined,296

meaning that using those outside of a theorem environment will fail to compile.297

The assume keyword (line 9) allows stating a formula that will be assumed true for the298

rest of the proof. Technically, it will be considered as part of the left-hand-side of any further299

written sequent in the proof. have states a proposition that can be reached using a proof300

tactic (or a subproof, see next example). If a step requires some premises, they can be given301

as parameters to the tactic, as in line 12. have produces a Fact that can be used by later302

steps.303

The example in Figure 6 illustrates a more advanced proof structure, using axioms from304

set theory. As the proof independently proves both directions of the double implication, it305

makes use of the subproof construction. Similarly to the Theorem keyword, this construction306

implicitly creates a new proof constructor environment, internal to the outer proof and with307

its own goal. In a proof, a Fact is a type that contains external theorems, axioms and308

definitions, as well as previously proven steps from the current or outer proof, but not from309

any proof that is not a direct ancestor of the current proof. This is made possible by using310

recursively defined path-dependent types (see Figure 7) and can be checked at compile-time.311

Moreover, a fact can also be one of the above, accompanied by information about a312

specific instantiation of schematic symbols. The actual instantiation step is then carried313

automatically. This is done in practice with the of keyword, as in line 11.314

When a tactic requires a single premise, and this premise is the most recently proven fact,315

thenHave passes said premise directly to the tactic without the step having to be named. For316

some tactics, such as the Substitution step at line 21, the resulting sequent will be inferred317

by the tactic and isn’t required to be given by the used. In this case, have and thenHave318



S. Guilloud, S. Gambhir and V. Kunčak XX:11

1 val unionOfSingleton = Theorem( (union(singleton(x)) ≡ x) ) {
2 val X = singleton(x)
3 val forward = have( (in(z, x) =⇒ in(z, union(X))) ) subproof {
4 ...
5 }
6 val backward = have( in(z, union(X)) =⇒ in(z, x) ) subproof {
7 have(in(z, y) ⊢ in(z, y)) by Restate
8 val step2 = thenHave((y≡x, in(z, y)) ⊢ in(z, x))
9 by Substitution

10 have(in(z, y) ∧ in(y, X) ⊢ in(z, x))
11 by Tautology.from(pairAxiom of (y→x, z→y), step2)
12 val step4 = thenHave(∃(y, in(z, y) ∧ in(y, X)) ⊢ in(z, x))
13 by LeftExists
14 have( in(z, union(X)) =⇒ in(z, x))
15 by Tautology.from(unionAxiom of (x → X), step4)
16 }
17 have( in(z, union(X)) ⇐⇒ in(z, x))
18 by RightIff(forward, backward)
19 thenHave( forall(z, in(z, union(X)) ⇐⇒ in(z, x)))
20 by RightForall
21 andThen(Substitution(extensionalityAxiom of (x → union(X), y → x)))
22 }

Figure 6 A LISA proof with more advanced construction.

takes the tactic as argument. The Tautology step proves statements using propositional319

laws and the Substitution makes substitution of equals for equals, either everywhere or320

using unification to find the specific occurrences to replace.321

1 class Proof {
2 class ProofStep {...}
3 class InnerProof extends Proof {
4 val parent:Proof.this.type = Proof.this // The encapsulating proof
5 type Fact = parent.Fact | this.ProofStep
6 }
7 }
8 class BaseProof extends Proof {
9 type Fact = Theorem | Axiom | Definition | this.ProofStep

10 }

Figure 7 Simplified outline of the type structure for proof constructors and their facts.

Definitions Transparent definitions come for free with the Scala host language (see line 2 of322

Figure 6), these are not visible to the kernel. The DSL offers syntax for the non-transparent323

definitions. Predicate symbol and function symbol (of which constant symbols are a special324

type) definitions can be direct, as illustrated by the two first examples in Figure 8. Function325

symbols can also be defined by unique existence, as shown in the last example. Note that326

this is an example of an underspecified definition, as mentioned in the previous Section. It327

defines a constant symbol nonEmpty with only the property ¬(nonEmpty≡∅), but the given328

proof shows the existence of a specific non-empty set.329



XX:12 LISA – A Modern Proof System

1 val succ = DEF(x) → union(uPair(x, singleton(x)))
2 val inductive = DEF(x) → in(∅, x) ∧ ∀(y, in(y, x) =⇒ in(succ(y), x))
3 val nonEmptySetExists = Lemma( ∃!(x, ¬(x ≡ ∅) ∧ (x ≡ uPair(∅, ∅)))){...}
4 val nonEmpty = DEF() → The(x, ¬(x ≡ ∅))(nonEmptySetExists)

Figure 8 Definitions in LISA

4 Tactics in LISA and Comparison330

Developing proof tactics in proof assistants where the proof-writing language is different331

from the host language (and sometimes when both are different from the tactic-writing332

language), tend to exhibit high entry barriers for newcomers. They require learning multiple333

new languages and how they interact with each other. This difficulty can be observed for334

example with the length of the tactic-writing tutorial for Isabelle [39], or in the Coq Reference335

Manual, where the Ltac tactic language [12] is described as having unclear semantics, being336

slow, non-uniform, error-prone and even lacking essential programming features such as data337

structures. Ltac2 [23], yet another tactic language, aims to solve some of these problems.338

Newly developed systems, such as Lean [11], have the advantage of being designed from339

scratch and addressing these problems. We have similar aims with LISA, but rely on an340

existing programming language which has already solved those issues, has an active user base341

that draws on more than the development of theorems and has well-developed and actively342

maintained IDEs and libraries. In particular, for a LISA user, seeing how a proof tactic343

works is ever only a ctrl-click away from their proof and when a new tactic is written, using344

it is as simple as writing import MyTactic.345

Not unlike in HOL Light, where a proof tactic is essentially any function returning a346

value of type Theorem, a tactic in LISA is simply a function returning a proof or an error347

message. The tactic can take arbitrary arguments, such as a target sequent and known348

facts (which will be imports of the resulting proof) and can access the current state of the349

proof constructor (if needed). To write a low level or highly optimized proof tactic, the user350

can directly construct a sequent calculus proof and give it to the kernel, but they can also351

use LISA’s DSL directly inside the body of the function and use pre-existing proof tactics.352

Writing a tactic then consists in writing a generic LISA proof computationally.353

LISA defines tactics that correspond to each basic proof step within the kernel, but with354

all the parameters automatically inferred. These tactics are intended for didactic purpose.355

Compared to directly using kernel proof steps, these simple tactics are more convenient356

to write, but also slightly less efficient to check because the system needs to compute the357

parameters of the proof step. Moreover, most of these simple tactics are subsumed by more358

general tactics.359

4.1 A Proof-Producing SAT Solver Using F(OL)2
360

The Tautology tactic is able to prove any valid sequent that requires only propositional361

reasoning. It is based on a simple proof-producing DPLL-like [9] procedure complete for362

propositional logic. The procedure makes decisions on atoms, so the worst case complexity is363

exponential in the number of unique atoms in the formula. It is a non-clausal solver (like,364

e.g., [24]) whose unique aspect is that, between each decision, it simplifies the propositional365

formula using the algorithm presented in Subsection 2.2). In the context of proving validity366

as in LISA as well as when trying to find a satisfying assignment in a SAT solver, this allows367



S. Guilloud, S. Gambhir and V. Kunčak XX:13

to close branches early in the exploration of the decision tree, or simply to eliminate atoms368

before they even need to get decided. Moreover, this procedure does not need to compute369

Tseytin’s normal form, avoiding creating more atoms, and conveniently allows producing a370

proof of the statement. Figure 9 sketches the proof search procedure as it is implemented371

in LISA. Our current implementation uses a simple decision heuristics that picks the atom372

that occurs most frequently. Further work may also include extension of the algorithm with373

quantifier reasoning, to obtain a complete procedure for FOL.

1 def solveFormula(f: Formula,
2 decisionsPos:List[Formula],
3 decisionsNeg:List[Formula]): ProofTacticJudgement = {
4 val redF = reduceWithFol2(f)
5 if (redF == ⊤) {
6 Restate(decisionsPos ⊢ f :: decisionsNeg)
7 } else if (redF == ⊥) {
8 InvalidProofTactic("Sequent is not a propositional tautology")
9 } else {

10 val atom = findBestAtom(redF)
11 val substInRedF: Formula => Formula = (f => RedF[atom:=f])
12 TacticSubproof {
13 have(solveFormula(substInRedF(⊤), atom::decisionsPos, decisionsNeg))
14 val step2 = thenHave(atom :: decisionsPos ⊢ redF :: decisionsNeg)
15 by Substitution(⊤ <=> atom)
16 have(solveFormula(substInRedF(⊥), decisionsPos, atom::decisionsNeg))
17 val step4 = thenHave(decisionsPos ⊢ redF :: atom :: decisionsNeg)
18 by Substitution(⊥ <=> atom)
19 thenHave(decisionsPos ⊢ redF :: decisionsNeg)
20 by Cut(step2, step4)
21 thenHave(decisionsPos ⊢ f :: decisionsNeg)
22 by Restate
23 }
24 }
25 }

Figure 9 Outline of the F(OL)2-based solver. Note that the actual implementation produces
directly kernel proofs for optimization. Each recursive call to solveFormula adds at most 4 kernel
steps to the final proof.

374

Thanks to properties of ortholattices, the solver is already capable of resolving proposi-375

tional problems that are too difficult for some proof assistants. As an example, we found376

that Isabelle’s Blast tactic (a general tableau prover, [33]) was in general not able to prove377

the equivalence of two reasonably large formulas made only of variables, disjunctions and378

conjunctions which only differed in the ordering of their arguments. On the other hand, this379

is instantaneous (one step) with our described OL-based approach.380

4.2 Error Reporting381

LISA’s DSL also contains a printer for proof (both kernel and high level) and defines382

specialized error reporting. Tactics are allowed to fail if they are used incorrectly and return383

an error. Figure 10 shows LISA’s output for an incorrect proof, with the current state of the384

proof, the faulty step, its line number and the error message from the tactic.385



XX:14 LISA – A Modern Proof System

∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(f(x)))
0 Hypothesis ∀x. P(x) =⇒ P(f(x)) ⊢ ∀x. P(x) =⇒ P(f(x))
1 Hypothesis P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x)
2 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(x))
3 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(f(x)) =⇒ P(f(f(x)))
have(thesis) by Tautology.from(step1)

Proof tactic Tautology used in (Example.scala:47) did not succeed:
The statement is not provable within propositional logic.
The proof search needs the truth of the following sequent:
P(f(x)); P(x); ∀x. ¬(P(x) ∧ ¬P(f(x))) ⊢ P(f(f(x)))

Figure 10 LISA’s output when the step in line 12 of proof in Figure 5 is incorrectly modified to
not use step2. The indicated sequent in fact corresponds to step2.

5 Beginning Set Theory Development and Cantor’s theorem386

In this section, we present a brief overview of the current mathematical development in LISA387

and outline an example of a short proof in set theory.388

Inspired by [30] and [5] we make the choice of Tarski-Grothendieck set theory (TG) as389

the axiomatic foundation for LISA’s associated mathematical library. As the main reference390

for the ZFC aspect of the set theory development, we follow Thomas Jech’s book Set Theory391

[25]. In the future, we plan to use the axiom on Grothendieck universes (corresponding to392

the existence of certain large cardinals) to support the embedding of category theory and393

systems such as Coq [43].394

5.1 Current Theory Development395

The mathematical library in LISA begins with the ZFC (and TG) axioms, defining the396

basic constructs and operations on sets, the subset relation, the empty set, power sets, and397

unordered pairs. On top of thes axioms, we define structures such as ordered pairs, relations,398

and functions. Relations are sets of ordered pairs drawing elements from a set, and functions399

are relations which contain the graph of the function. Function symbols have as a domain400

the whole set space and must not be mixed with function objects, which are special sets and401

considered as constants in the light of first order logic. During exploratory development,402

proofs involving case analysis on these basic structures required significant manual effort,403

but the Tautology and Substitution tactics as well as the quick instantiation of axioms404

and theorems offered by the of keyword tend to automate most tedious manipulations.405

Formalization of partial orders, well-ordered sets, ordinals and induction [25, Chapters 2, 3]406

is ongoing.407

Technically, we define for sets A and B the set of relations from A to B as the power set408

of their Cartesian product P (A×B), and its restriction to functional relations, A → B, the409

set of all functions with domain equal to A and their codomain included in B.410

A function symbol can always apply to any term, meaning we cannot rely on well-411

definedness of terms to define symbols with partial function semantics. Considering the412

unique existence requirement for definitions, the standard approach consists in extending the413

limited domain of the partial function by assigning a default value, for example the empty414

set, to all inputs where it should be undefined, constructing a unique object. This specific415

construction and default value can then be forgotten using an underspecified definition. In416



S. Guilloud, S. Gambhir and V. Kunčak XX:15

particular, interpretations of the function with all combinations of values outside the fixed417

domain will be valid models for the symbol, and no non-trivial property can be proved about418

those values.419

For example, consider the definition for function application, app(f, x). When f is not a420

functional relation, or x is not in its domain, we fix ∅ as the default value in order to obtain421

a proof of existence and uniqueness.422

423
1 val appDefinition = Theorem( ∀(f, (∀ x, (∃!(z,424

2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f)))) )425

3 ∧ ¬functional(f) ∨ ¬in(x, dom(f)) =⇒ z ≡ ∅)426427

We can then obtain the function symbol app with only the desired property using an428

underspecified definition:429

430
1 val app = DEF (f, x) → The(z,431

2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f))432

3 (appDefinition)433434

Cantor’s Theorem435

Finally, several of these definitions and lemmas build up to the formalization of Cantor’s436

theorem, stating that there is no surjection from any set to its power set:437

438
1 val cantorTheorem = Theorem( ¬surjective(f, x, powerSet(x)) )439440

where f and x are schematic set variables, making the sequent implicitly universally quantified.441

The proof of Cantor’s theorem is about 25 lines of code 2. Internally, the proof expands to442

130 sequent calculus steps.443

Cantor’s theorem is the first theorem formalized in LISA from the list Formalizing 100444

Theorems [44]. While not a difficult theorem, it requires some ground development and445

definitions related to set-theoretic functions and relations. The proof itself requires handling446

the quantifiers for a contradiction construction and combining lemmas about surjective447

functions. Much of the latter is achieved using Tautology. It shows that LISA is capable448

of non-trivial mathematical development. We expect future developments to become easier449

and faster with gradual development of reasoning tools and proofs.450

6 Related Work451

A polynomial algorithm for free ortholattices was presented in [17]. A weaker structure with452

log linear complexity was first presented in [18]. In LISA we use the ortholattice normal form453

for first-order logic formulas. Our F(OL)2 implementation does not aim to be complete for454

structures such as quantum monadic algebras that treat extensions of OL (and orthomodular455

lattices) to monadic first-order logic [20].456

Much of what we described is concerned with the schematic first-order logic kernel. We457

chose to include schematic variables to be able to state explicitly the axiom schemas of458

Zermelo-Fraenkel set theory and its extensions, as well as theorem schemas. Another way to459

generalize schematic second-order variables would be to use higher-order logic. This is the460

approach pursued by Isabelle as a framework, and instantiated in Isabelle/ZF.461

2 https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/
src/main/scala/lisa/mathematics/SetTheory.scala#L1700

https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/mathematics/SetTheory.scala#L1700
https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/mathematics/SetTheory.scala#L1700


XX:16 LISA – A Modern Proof System

The choice of set theory may be considered unusual by some, as Coq [3], Lean [11],462

the HOL-family [21] and Isabelle/HOL [42] are based either on type theory or on higher-463

order logic. We consider HOL to be one of the most elegant formulations for formal proof464

developments. However, set theory is arguably the most widely recognized foundation of465

mathematics in the mathematical community, and, despite type-theory based tools having466

the advantage of being easier to express formalisms in from the get-go, we believe that467

through the development and use of abstracting tactics, a soft-type system and adequate468

tools, more familiarity and flexibility in writing proofs can be achieved with a set-theory469

based mathematical library. We also hope to provide a test bed to explore direct first-order470

foundations as an alternative to the many current systems based on higher-order logic.471

Concrete results in Mizar [30], Isabelle/ZF [19], ZF in Isabelle/HOL [5, 35], and TLA+472

[8, 36] suggest substantial relevance of set-theoretic foundations. Arguments in favour of set473

theoretic foundations have also been discussed by John Harrison [22].474

Even one more level of indirection than in Isabelle/ZF is present in Isabelle/HOL/TG [5],475

which develops the Tarski-Grothendieck extension of ZF inside Isabelle/HOL. Whereas our476

system is less flexible and does not currently connect to such a well-developed ecosystem as477

Isabelle/HOL has, our hope is that it is conceptually simpler thanks to fewer layers and a478

kernel that does not rely on unification.479

Another modern approach to theorem proving is Lean [11], a proof assistant based on480

dependent type theory and inspired in part by Coq. We believe Lean makes significant481

improvements over older proof assistant regarding the Six Virtues. In particular, it has a482

strong focus on programmability, with the new version of Lean [29] even having a compiler483

written in its own proof language. While LISA and Lean’s design objectives share similarities,484

their strategies and specific choice (foundations, language, interface) are uniquely different.485

To automate proofs that do not instantiate schematic formulas we hope to make use of486

proof generating theorem provers, such as Vampire [27], SPASS [41], E [37], as well as SMT487

solvers [1]. Higher-order provers such as Zipperposition [40], LEO III [38], and Satallax [4]488

would further increase automation even in the case of axiom schema instantiation.489

7 Conclusion490

LISA is both a proof system for automated tools and a proof assistant based on first order491

logic and set theory. It uses Scala as both a host language and a proof writing language,492

relying on the advanced features it offers to make the system as programmable as the493

user desires. LISA is strongly committed to interoperability. In particular, it has a small494

logical kernel which has guaranteed complexity and completeness characterizations, simple495

foundations and explicit proofs checkable without context. Moreover, it can be compiled496

into a Scala and Java library. All these properties should favour transfer of proofs from497

and to other proof systems and uses of LISA as a tool for program verification. To improve498

usability and reduce the size of proofs, LISA makes use of an efficient normal form algorithm499

for propositional logic extended to first order logic. This algorithm is also the basis for a500

complete propositional proof-producing procedure implemented in LISA as a tactic.501

LISA is still under active development, but already proposes an advanced proof writing502

DSL not entirely dissimilar to already existing interpreted languages in other assistants.503

LISA also allows defining arbitrary tactics in a simple way and has specialized error reporting.504

The current embryo of set-theoretic development encompasses properties of relations and505

functions, and in particular Cantor’s theorem has been successfully proven.506



S. Guilloud, S. Gambhir and V. Kunčak XX:17

References507

1 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,508

Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,509

Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A510

Versatile and Industrial-Strength SMT Solver. In Dana Fisman and Grigore Rosu, editors,511

Tools and Algorithms for the Construction and Analysis of Systems, volume 13243, pages512

415–442. Springer International Publishing, Cham, 2022.513

doi:10.1007/978-3-030-99524-9_24.514

2 Ladislav Beran. Orthomodular Lattices (An Algebraic Approach). Springer Dordrecht, 1985.515

doi:10.1007/978-94-009-5215-7.516

3 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development:517

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.518

An EATCS Series. Springer-Verlag, Berlin Heidelberg, 2004.519

doi:10.1007/978-3-662-07964-5.520

4 Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich, Dale521

Miller, and Uli Sattler, editors, Automated Reasoning, pages 111–117, Berlin, Heidelberg,522

2012. Springer Berlin Heidelberg.523

5 Chad E. Brown, C. Kaliszyk, and Karol Pak. Higher-Order Tarski Grothendieck as a524

Foundation for Formal Proof. In ITP, 2019. doi:10.4230/LIPIcs.ITP.2019.9.525

6 Gunter Bruns and John Harding. Algebraic aspects of orthomodular lattices. In Bob Coecke,526

David Moore, and Alexander Wilce, editors, Current Research in Operational Quantum Logic:527

Algebras, Categories, Languages, pages 37–65. Springer Netherlands, Dordrecht, 2000.528

doi:10.1007/978-94-017-1201-9_2.529

7 Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the National530

Academy of Sciences of the United States of America, 50(6):1143–1148, 1963. URL:531

http://www.jstor.org/stable/71858.532

8 Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and533

Hernán Vanzetto. TLA+ proofs. In Dimitra Giannakopoulou and Dominique Méry, editors,534

FM 2012: Formal Methods, pages 147–154, Berlin, Heidelberg, 2012. Springer Berlin535

Heidelberg.536

9 Martin Davis, George Logemann, and Donald Loveland. A machine program for537

theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.538

doi:10.1145/368273.368557.539

10 Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a tool for540

automatic formula manipulation, with application to the church-rosser theorem. In541

Indagationes Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.542

11 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.543

The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp,544

editors, Automated Deduction - CADE-25, volume 9195, pages 378–388. Springer545

International Publishing, Cham, 2015. doi:10.1007/978-3-319-21401-6_26.546

12 David Delahaye. A tactic language for the system coq. In LPAR, volume 1955, pages 85–95.547

Springer, 2000.548

13 Harald Ganzinger, Christoph Meyer, and Christoph Weidenbach. Soft typing for ordered549

resolution. In William McCune, editor, Automated Deduction - CADE-14, 14th International550

Conference on Automated Deduction, Townsville, North Queensland, Australia, July 13-17,551

1997, Proceedings, volume 1249 of Lecture Notes in Computer Science, pages 321–335.552

Springer, 1997. doi:10.1007/3-540-63104-6\_32.553

14 G. Gentzen. Untersuchungen über das logische schließen i. Mathematische Zeitschrift,554

39:176–210, 1935. URL: http://eudml.org/doc/168546.555

15 Michael J. C. Gordon, Robin Milner, Christopher P. Wadsworth, and P. Ted Christopher.556

Edinburgh LCF: a mechanized logic of computation. Lecture Notes in Computer Science,557

1978.558

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-94-009-5215-7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.4230/LIPIcs.ITP.2019.9
https://doi.org/10.1007/978-94-017-1201-9_2
http://www.jstor.org/stable/71858
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-63104-6_32
http://eudml.org/doc/168546


XX:18 LISA – A Modern Proof System

16 Simon Guilloud. LISA Reference Manual. EPFL-LARA, February 2023.559

17 Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kunčak. Formula560

normalizations in verification. Technical Report 297701, EPFL, 2023. URL:561

http://infoscience.epfl.ch/record/297701.562

18 Simon Guilloud and Viktor Kunčak, editors. Equivalence Checking for Orthocomplemented563

Bisemilattices in Log-Linear Time. Springer, 2022. doi:10.48550/arXiv.2110.03315.564

19 Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, and Matías Steinberg. The565

independence of the continuum hypothesis in isabelle/zf. Archive of Formal Proofs, March566

2022. https://isa-afp.org/entries/Independence_CH.html, Formal proof567

development.568

20 J Harding. Quantum monadic algebras. Journal of Physics A: Mathematical and Theoretical,569

55(39):394001, sep 2022. doi:10.1088/1751-8121/ac845b.570

21 John Harrison. HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow, Christian571

Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674,572

pages 60–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.573

doi:10.1007/978-3-642-03359-9_4.574

22 John Harrison. Let’s make set theory great again! In Axiomatic Set Theory, page 46, Aussois,575

2018.576

23 CNRS Inria and contributors. Ltac2 — Coq 8.16.1 documentation. URL:577

https://coq.inria.fr/refman/proof-engine/ltac2.html.578

24 Himanshu Jain, Constantinos Bartzis, and Edmund Clarke. Satisfiability checking of579

non-clausal formulas using general matings. In Armin Biere and Carla P. Gomes, editors,580

Theory and Applications of Satisfiability Testing - SAT 2006, pages 75–89, Berlin, Heidelberg,581

2006. Springer Berlin Heidelberg. doi:https://doi.org/10.1007/11814948_10.582

25 Thomas Jech. Set theory: The third millennium edition, revised and expanded. Springer, 2003.583

26 Deepak Kapur and Paliath Narendran. Complexity of unification problems with584

associative-commutative operators. J. Autom. Reason., 9(2):261–288, 1992.585

doi:10.1007/BF00245463.586

27 Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Natasha587

Sharygina and Helmut Veith, editors, Computer Aided Verification, Lecture Notes in588

Computer Science, pages 1–35, Berlin, Heidelberg, 2013. Springer.589

doi:10.1007/978-3-642-39799-8_1.590

28 Norman Megill. Metamath. The Seventeen Provers of the World: Foreword by Dana S. Scott,591

pages 88–95, 2006.592

29 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming593

language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28,594

pages 625–635, Cham, 2021. Springer International Publishing.595

30 Adam Naumowicz and Artur Kornilowicz. A Brief Overview of Mizar. In Proceedings of the596

22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674,597

pages 67–72, August 2009. doi:10.1007/978-3-642-03359-9_5.598

31 Martin Odersky, Aggelos Biboudis, Fengyun Liu, and Olivier Blanvillain. Foundations of599

implicit function types. Technical report, EPFL, 2017. URL:600

http://infoscience.epfl.ch/record/229203.601

32 Lawrence C. Paulson. Isabelle: The next 700 theorem provers. CoRR, cs.LO/9301106, 1993.602

URL: https://arxiv.org/abs/cs/9301106.603

33 Lawrence C. Paulson. A generic tableau prover and its integration with Isabelle. JUCS -604

Journal of Universal Computer Science, 5(3):73–87, 1999.605

arXiv:https://doi.org/10.3217/jucs-005-03-0073,606

doi:10.3217/jucs-005-03-0073.607

34 Lawrence C Paulson. Isabelle’s logics: FOL and ZF, 2013.608

http://infoscience.epfl.ch/record/297701
https://doi.org/10.48550/arXiv.2110.03315
https://isa-afp.org/entries/Independence_CH.html
https://doi.org/10.1088/1751-8121/ac845b
https://doi.org/10.1007/978-3-642-03359-9_4
https://coq.inria.fr/refman/proof-engine/ltac2.html
https://doi.org/https://doi.org/10.1007/11814948_10
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-03359-9_5
http://infoscience.epfl.ch/record/229203
https://arxiv.org/abs/cs/9301106
http://arxiv.org/abs/https://doi.org/10.3217/jucs-005-03-0073
https://doi.org/10.3217/jucs-005-03-0073


S. Guilloud, S. Gambhir and V. Kunčak XX:19

35 Lawrence C. Paulson. Zermelo Fraenkel set theory in higher-order logic. Archive of Formal609

Proofs, October 2019. https://isa-afp.org/entries/ZFC_in_HOL.html, Formal610

proof development.611

36 TLA Proof System Project. TLA+ proof system.612

https://tla.msr-inria.inria.fr/tlaps/content/Home.html.613

37 Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei614

Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, Lecture615

Notes in Computer Science, pages 735–743, Berlin, Heidelberg, 2013. Springer.616

doi:10.1007/978-3-642-45221-5_49.617

38 Alexander Steen. Leo-iii 1.7, July 2022. doi:10.5281/zenodo.7650205.618

39 Christian Urban. The Isabelle Cookbook. URL: https://web.cs.wpi.edu/~dd/619

resources_isabelle/isabelle_programming.urban.pdf.620

40 Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin,621

and Sophie Tourret. Making Higher-Order Superposition Work. In André Platzer and Geoff622

Sutcliffe, editors, Automated Deduction – CADE 28, Lecture Notes in Computer Science,623

pages 415–432, Cham, 2021. Springer International Publishing.624

doi:10.1007/978-3-030-79876-5_24.625

41 Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and626

Patrick Wischnewski. SPASS Version 3.5. In Renate A. Schmidt, editor, Automated627

Deduction – CADE-22, Lecture Notes in Computer Science, pages 140–145, Berlin,628

Heidelberg, 2009. Springer. doi:10.1007/978-3-642-02959-2_10.629

42 Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Framework. In630

Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher631

Order Logics, Lecture Notes in Computer Science, pages 33–38, Berlin, Heidelberg, 2008.632

Springer. doi:10.1007/978-3-540-71067-7_7.633

43 Benjamin Werner. Sets in types, types in sets. In Gerhard Goos, Juris Hartmanis, Jan van634

Leeuwen, Martín Abadi, and Takayasu Ito, editors, Theoretical Aspects of Computer Software,635

volume 1281, pages 530–546. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.636

doi:10.1007/BFb0014566.637

44 Freek Wiedijk. Formalizing 100 theorems. https://www.cs.ru.nl/~freek/100/.638

https://isa-afp.org/entries/ZFC_in_HOL.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.5281/zenodo.7650205
https://web.cs.wpi.edu/~dd/resources_isabelle/isabelle_programming.urban.pdf
https://web.cs.wpi.edu/~dd/resources_isabelle/isabelle_programming.urban.pdf
https://web.cs.wpi.edu/~dd/resources_isabelle/isabelle_programming.urban.pdf
https://doi.org/10.1007/978-3-030-79876-5_24
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1007/BFb0014566
https://www.cs.ru.nl/~freek/100/

	1 Introduction
	1.1 Design Goals
	1.2 Contributions

	2 Logical Kernel
	2.1 Schematic Symbols
	2.2 Ortholattice Algorithm Applied to First-Order Logic
	2.3 Substitution Rules
	2.4 Proof Objects
	2.5 Theories

	3 DSL for LISA in Scala
	3.1 Higher-Level Proofs

	4 Tactics in LISA and Comparison
	4.1 A Proof-Producing SAT Solver Using FOL2
	4.2 Error Reporting

	5 Beginning Set Theory Development and Cantor's theorem
	5.1 Current Theory Development

	6 Related Work
	7 Conclusion

