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Abstract

Eusocial life is characterized by division of labour, collective decision making and self or-

ganization, and regarded as the highest form of social organisation in groups. Ants are a

model organism for research in collective behavior and the evolution of eusociality. Recently,

mobile robots have been developed as an experimental tool to investigate animal behavior in

manipulative interactive experiments with mammals, fish, birds and bees. Manipulating the

collective behavior of an eusocial organism at the individual level is instrumental to study the

mechanisms of self-organization. In this thesis, the Antbot, a robotic manipulation platform, is

developed with an ant-sized robotic dummy to deliver a tactile stimulus to a target individual

without interacting with any other ant. The system is integrated with a state-of-the-art tracking

system to provide real-time visual feedback for teleoperated and autonomous manipulation.

We use the Antbot in an experiment to investigate the social factors that influence the levels

of individual aggression and responsiveness. Aggression is a central behavior in animals,

particularly in eusocial insects, as it serves to maintain the colony integrity by protecting

resources such as brood, food, territory and workforce. We found that aggression and respon-

siveness to tactile stimuli depend on the previous activity of the ants, the social context, and

the individual task profile. We also demonstrated a habituation effect in individuals that were

previously more active. As a milestone towards automated experimentation, a navigation

algorithm for socially aware navigation in dynamic crowded environments is developed and

implemented on the platform. A software framework is developed for real-time processing

of social parameters, such as interaction network measures, that provide the basis for experi-

mental automation with easily re-programmable behavior for the robot. The autonomous

operation of the Antbot platform is tested with a proof-of-concept experiment.

Keywords: Animal behavior, Robotics, Ants, Animal-robot interaction, Robot navigation
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Zusammenfassung

Eusoziales Leben ist durch Arbeitsteilung, kollektive Entscheidungsfindung und Selbstorgani-

sation gekennzeichnet und gilt als die höchste Form der sozialen Organisation in Gruppen.

Ameisen sind ein Modellorganismus für die Erforschung des kollektiven Verhaltens und der

Evolution von Eusozialität. Als experimentelles Werkzeug wurden in jüngster Zeit mobile

Roboter entwickelt, um das Verhalten von Tieren wie Säugetiere, Fische, Vögel oder Bienen in

manipulativen interaktiven Experimenten zu untersuchen. Die Manipulation des kollektiven

Verhaltens eines eusozialen Organismus auf individueller Ebene ist ein wichtiges Instrument

zur Untersuchung der Mechanismen der Selbstorganisation. Das Ziel dieser Arbeit ist die

Entwicklung eines Experimentalaufbaus, genannt Antbot, mit einem mobilen Roboter als

ameisengroße Attrappe, um bei einem Individuum in einer ungestörten Ameisenkolonie

einen taktilen Reiz zu erregen. Der Antbot ist integriert in ein state-of-the-art Tracking-System

für Echtzeit-Feedback im teleoperierten oder autonomen Betrieb. Es besteht aus einem Ro-

botermanipulator zur Fortbewegung und Signalerzeugung und einer magnetisch geführten

Attrappe ("Dummy"), dessen Ausführung je nach Bedarf für alternative Reize modifiziert

werden kann.

Zur Untersuchung der sozialen Faktoren, die das Ausmass der individuellen Aggression und

Reaktionsfähigkeit beeinflussen, setzen wir den Antbot in einem Experiment ein. Aggressi-

on ist insbesondere bei eusozialen Insekten ein zentrales Verhalten, da sie dazu dient, die

Integrität der Kolonie aufrechtzuerhalten und so den Verlust von Ressourcen wie Brut, Nah-

rung, Territorium oder Arbeitsleistung zu vermeiden. Mit dem Antbot haben wir festgestellt,

dass Aggression und Reaktionsfähigkeit auf taktile Reize von der vorangehenden Aktivität

der Ameisen, dem sozialen Kontext und dem individuellen Aufgabenprofil abhängen. Ferner

konnten wir bei Individuen die zuvor aktiver waren einen Gewöhnungseffekt nachweisen.
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Zusammenfassung

Als Meilenstein hin zur Autonomie wird zudem ein Algorithmus für die Roboternavigation

in dichten dynamischen Umgebungen entwickelt und auf der Hardware implementiert. Es

wird ein Software-Framework für die Echtzeitverarbeitung sozialer Parameter, wie z. B. Inter-

aktionsnetzwerke, entwickelt, das die Grundlage für eine experimentelle Automatisierung mit

leicht umprogrammierbarem Verhalten des Roboters bildet. Die Autonomie des Antbot wird

in einem demonstrativen Experiment getestet.

Schlüsselbegriffe:

Verhaltensbiologie, Robotik, Ameisen, Tier-Roboterinteraktion, Roboternavigation
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Introduction

Motivation: Social life and the engineering perspective

The organization of social life fascinates people of every background, and provides a rich

source of inspiration for roboticists. Ant colonies are a prime example of a superorganism, ca-

pable of solving complex tasks collectively with limited individual capabilities and information

(Hölldobler et al., 1990). The evolutionary advantage of this collective intelligence manifests

itself in the ubiquitous abundance of ants on the planet. A recent study has estimated the total

number of ants on earth as 20×1015, and the total ant biomass to exceed that of birds and

mammals combined (Schultheiss et al., 2022). Through self-organization, individual ants form

a superorganism with spatially organized task division (Mersch et al., 2013), robustness in task

solving (Feinerman et al., 2018) and resilience towards perturbations and hazards (Stroeymeyt

et al., 2018).

The collective behavior of ants has been a source of inspiration for solving complex engineering

problems with distributed algorithms running on simple machines. An example on one end

of the spectrum of organizational complexity are the leaf-cutter ants. These ants farm fungus

with highly evolved task division that is in some species functionally linked to a big variety

in worker morphology (Hölldobler and Wilson, 2010). On the other end of the spectrum

we see division of labour and task specialization emerging in groups with fewer than 10

individuals with very similar appearance (Ulrich et al., 2018). This is great news to the designer

of collaborative robots, as the prerequisites are, in an abstract sense, are quite similar. Bio-
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Introduction

inspired engineering designates the effort to design applications by adopting some of these

strategies from biological observations. Examples range from collective transport of physical

robots (Berman et al., 2011) to algorithms for non-convex optimization (Dorigo et al., 2006),

communication routing (Di Caro and Dorigo, 1998) or robot task allocation (Krieger et al.,

2000). While acknowledging the great potential of learning from biological systems, this

thesis is primarily dedicated to building a robotic tool to help researchers understand the

mechanisms of social life rather than to mimic it.

Problem formulation: Precise manipulative experiments

Studying self-organization of social organisms in their native environment is extremely chal-

lenging (Mitri et al., 2013). Complex phenomena may emerge from the interplay of inert

sub-units, yet self-organization in social organisms is inherently more complex since the indi-

viduals have their own behavioral state (Camazine et al., 2001a). Traditionally, advancements

in this field have relied on carefully designed experiments that are done under controlled

laboratory conditions (Mitri et al., 2013). Preserving the essential context of the natural envi-

ronment is however crucial to investigate the authentic social behavior of the colony. To reach

a consolidated conclusion, observations must be carried out for long duration and under

realistic conditions. In experimental research, manipulation is the only way to demonstrate

causality. Robotic technology brings precision, dexterity, and repeatability to manipulation,

and may eliminate experimental bias. The overall goal of this thesis is to develop a robotic

manipulation tool that can be used to perform experiments with behaving ants in their social

context. The thesis aims to create the basis for experimental automation using interactive

mobile robotic agents in behavioral experiments with eusocial insects.

Aggression is a fundamental behavior of social organisms. For the survival of the colony,

ants must direct their aggression towards intruders. Only this way, they can protect their

offspring and livestock. It is also a simple behavior to characterize and detect. It is well-known

that pheromones and olfactory signals play a central role but the mechanisms that control

2



Introduction

aggression in ants is not fully understood (Akino, 2008; Sturgis and Gordon, 2012; Guerrieri

et al., 2009). We ask the following fundamental questions to show the capabilities of our

robotic manipulation system: What is the repertoire of behavioral responses of individual

ants in a colony towards an interactive mobile robotic agent? And how does social context

influence these individual responses?

Methodology and major contributions

The Antbot is developed as an experimental tool for individual level manipulations of ants

within the undisturbed social environment. The system is built upon the infrastructure and

capabilities of our automated ant tracking system. As a design objective, we desired the

manipulation to be versatile with respect to the type of stimulus. The solution consists of a

mobile electromagnetic control module that navigates an ant-sized magnetic agent to desired

locations inside the colony where the stimulus is delivered. The current version of the agent is

capable of applying a tactile antennation-like stimulus. The agent can be exchanged on the fly

during experiments.

With aggression as a first noncommittal area of interest, we present original experiments

provide novel insight into the research question stated above, and therefore validates the

concept of the Antbot as a useful tool for fundamental research in ant behavior. The the-

sis presents milestones towards running fully autonomous behavioral experiments, where

manipulation is carried out based on a programmed hypothesis considering social factors

that are inferred in real time. A software framework processes tracking data in real time,

generates the robot behavior that implements the experimental plan, and navigates the agent

autonomously. Path planning in crowded dynamic environments is a state of the art problem

in robotics research, which must be properly addressed for the successful implementation of

automated micromanipulation. A novel algorithm is presented that can achieve persistent

and socially compliant navigation for the magnetic agent. This algorithm is then implemented

to command the control module of the Antbot. The capabilities of the integrated autonomous

3
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Antbot is demonstrated with case studies.

Thesis organization

Chapter 1 gives a short introduction of the social life in ants and summarizes common tech-

niques that were successfully used in manipulative experiments. Experimental automation is

motivated and the concept, state of the art and challenges of mixed robot-animal societies

is introduced. In chapter 2 the Antbot robotic manipulation platform for autonomous ex-

periments with ant colonies is presented. Chapter 3 reports an experiment with the model

species Leptothorax acervorum, in which individuals were targeted with a tactile stimulus by

a teleoperated robotic dummy and their behavioral response was analyzed with respect to

the social context. Chapter 4 introduces a novel algorithm for navigation in crowded dynamic

environments like ant colonies, as a milestone towards fully autonomous experiments. Finally,

Chapter 5 outlines future biological questions to be addressed with the present system and

technical challenges.

4



1 Background

1.1 Social behavior in ants

Ants live in large groups, called colonies, that often consist of a single reproductive individual,

the queen, and a bigger number of sterile workers. In addition to this reproductive division of

labour, colony members cooperatively take care of their offspring, the brood, forage for food,

or defend the nest. This highly evolved form of social life is called eusociality. Although the

reproductive individuals are called queen, it is widely accepted that division of labour and

eusociality emerge through self-organization, as a result of individual actions and without a

central governor (Keller and Chapuisat, 2001). In this respect, ant colonies, along with bees,

termites and some other animals, are organizationally distinct from fish swarms or bird flocks.

A great challenge in research on eusocial animals is that their behavior can only be studied

when the social structure is intact, observations of on an isolated ant have limited value.

Aggression is one of the basic social behaviors and serves to maintain the safety and integrity

of the colony, and, not surprisingly, is ubiquitous in the ant world.1 It manifests not only

between individuals of different colonies, but also among nest mates. From an evolutionary

perspective, conflict and aggression play a central role in the self-organization of eusocial

insects colonies. The context repertoire of aggressive responses ranges from defensive attacks

1Popular science book on the topic: "Les guerres secrètes des fourmis", Cleo Bertelsmeier, Edition Favre, 2019

5



Chapter 1. Background

against intruders such as predators, parasites and ants that belong to another colonies, to the

regulation of the right to reproduce by mutilation of the reproductive organs of other fertile

individuals in certain species of Diacamma (Annagiri, 2021). A more detailed account of the

role of aggression in ants will be given in Chapter 3, together with a manipulative experiment

that centers around aggressive behavior.

How ants recognize nest mates vs intruders and modulate aggressive behavior is a ques-

tion closely linked to our understanding of signaling, perception and communication in ant

colonies. It is known that chemical signals, called pheromones, are the primary carriers of

information. Pheromones can be deposited or sprayed purposely to mark a location or an

event. They are also used passively on the ant ‘skin’, the cuticle, as a means of displaying colony

identity. Using their antennae, ants can detect and identify these chemical compounds with

extreme sensitivity and pinpoint accuracy. The visual capabilities are very limited in most

species; ants spend in fact a large portion of their life in complete darkness inside their nest.

In addition to chemical signals, tactile signals are believed to facilitate communication for

example when food is exchanged or in tandem running, a behavior which is used by colony

members to lead others to a new nest site or food source (Hölldobler et al., 1990).

Manipulative experiments using artificial stimuli posses the power to demonstrate causality,

but are intrusive by nature. Studies targeted at understanding the mechanisms and context of

individual aggressive behavior have used manipulative techniques, in which alien individuals

were mixed with sub-colonies to register a change in behavior with respect to prior acclimati-

zation (Guerrieri et al., 2009) or setups with restrained individuals that were presented with

chemical stimuli to measure the mandible opening response, a proxy for aggression (Guerrieri

and d’Ettorre, 2008). Despite the mechanistic insights that such tests offer, these studies

are performed with individual ants that were not in their undisturbed social context. The

extent to which individuals are embedded in an environment that they can sense and modify

is described by the term situatedness (Mitri et al., 2013). Compared to solitary insects like

fruit flies, studying eusocial insects poses an exceptionally high standard for manipulative

studies with respect to situatedness. A minimally invasive and precisely targeted method is

6



1.2 Automated experimental techniques

therefore required to deliver a stimulus, for example to trigger aggression, to an individual

in a colony while preserving its social organization during the experiment. A more realistic

stimulus is expected to increase the situatedness in the experiment, which means that less

experimental factors are controlled. As a consequence, the behavioral response is expected

to be more subtle and more complex to analyze. This requires more repetition and longer

observation periods to allow statistically significant conclusions. A particular difficulty in

using artificial stimuli is to understand its effect on the animal in order to understand its

response (Lahti, 2015). It is therefore advisable to start with stimulus as simple as possible, but

in an environment as realist as possible, before moving on to attempt a biomimetic approach,

in order to understand whether the stimulus is for examples a replacement of an existing

stimulus or whether it is completely new.

1.2 Automated experimental techniques

Automating protocols for recording and manipulating ant behavior have a number of advan-

tages, including significantly increased throughput, reduced error and bias, and repeatability.

Tracking refers to the inference of the positions and, preferably, the pose of individuals, where

pose refers to any additional geometric information on the body posture of the individuals on

top of the location and orientation of a representative identification point on the body (Dell

et al., 2014). For technical and practical reasons, tracking is usually performed on ants that are

studied in the laboratory.

1.2.1 Tracking individual ants

Ants have been cultivated under laboratory conditions for a long time. Notably, there are

century old protocols in the literature (Forel, 1923). Ants, like most other insects, have a passive

respiratory system, which makes them sensitive to humidity and environmental conditions

general. To recapitulate their natural living conditions, ants must be kept under controlled am-

bient humidity, illumination, and temperature. The first aspect of automation is maintaining

7



Chapter 1. Background

the natural humidity and temperature at all times. To this end, the observation chamber can

be placed inside a automated incubation system that is programmed to vary illumination and

ambient humidity and temperature, allowing to simulate a daily cycle (Mersch et al., 2013).

The second aspect of automation is the continuous recording of individual ant movements

and interactions. Time-lapse imaging and visual tracking of individual ants is instrumental to

study their collective behavior. There are three techniques to identify ants: paint, fiducial iden-

tification labels or marker-less techniques based on visual recognition. Color coded labelling

has been used long before automated tracking became available. For studies that require very

long-term identification, e.g. for age marking over the entire lifespan (Kay et al., 2022), color

marking would be preferable as it is more durable than tagging with fiducial markers. For

colonies with relatively small size, color marking can be used for automated tracking. Color

marking is less restrictive for ants with very small body size (Gal et al., 2020). Tracking methods

using fiducial markers that are glued on to the ants became available approximately a decade

ago (Mersch et al., 2013). The use of identification tags is more laborious to prepare and more

restrictive for the ants, but has the advantage of ambiguity free identification over time, which

is crucial to build social abstractions including interaction networks. For practical reasons

imposed by the tagging procedures with fiducial markers, ant colonies are limited to roughly

500 individuals. Species that form colonies with with a higher minimal individual count are

not suited for tracking experiments. Marker-less tracking is to date mainly used in scenarios

with a focus on detecting events with limited temporal significance and in simpler settings

with fewer individuals. While marker-less tracking requires less experimental preparation and

no intervention on the organism, the accompanying computational techniques are intensive,

making real-time tracking and identification very challenging. In all cases, imaging relies on

optical access to the nest. For good detection, the species must be able to live essentially on

the surface and inhabit preexisting structures to avoid visual obstruction. Therefore, ants that

need to dig their nests inside soil are excluded from such studies.

Different ant species may have a very different lifestyle. In addition to the colony architecture

and size, the overall activity patterns, social structure and many other characteristics can
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1.2 Automated experimental techniques

greatly vary (Parr et al., 2017). The robotic micromanipulation platform presented in this thesis

is built on top of the Formicidae Tracking System (FORT), a state-of-the-art automated video

tracking system developed in our group at UNIL. FORT is described in more detail in Section

2.1. Table 1.1 contains a list of species that have been successfully tracked with this system to

give an idea about species characteristics that determine the complexity of the environment to

operate a mobile agent. The values were computed based on a day of tracking data of a colony.

Some colonies occupy a larger space in the system with one or even two coupled arenas for

foraging and nest (L or L-L configuration in Table 1.1). Other species prefer a covered nest

inside a single arena, which is linked to their natural nesting behavior, where they live under

the bark of dead trees (L. acervorum) or under stones (L. niger). As a consequence, the nesting

behavior of L. niger, L. acervorum, T. nylanderi and others requires a covered nest with low

ceiling (1-2mm). The geographical distribution of a species can be of practical consideration,

as it is easier to collect endemic species, which is instrumental to perform quick tests during

the development of a new manipulation technique such as ours.

Tracking can be performed online or offline on recorded images. Real-time processing pro-

vides higher standards for tracking accuracy and resolution. However, processing images in

real-time bears a heavy computational load. With real-time reactive manipulative systems

that recently have gained popularity in behavioral research, online tracking has obtained an

additional practical value. Data becomes available for further processing while the experi-

ment is running, providing a basis for automated manipulative interventions. Recent work

has introduced an automated framework where a reward is presented upon detection of a

particular action to condition behavior (Kane et al., 2020).

1.2.2 Motorized manipulation systems

Manipulative experiments on animal behavior are often performed using artificial stimuli

(Tinbergen, 1951). The organisms that have been studied this way range from birds to ants,

which demonstrates the benefit of manipulation as a strong test for causality. A stimulus can

be direct, such as the presentation of dummy egg to a bird, or indirect like the change of an
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Leptothorax acervorum∗ Myrmicinae 160 3.7 1.1 35.7 47.1 7.5 S(N) this thesis
Temnothorax nylanderi∗† " 136 2.85 0.4 23.1 30.0 10.6 S(N) Richardson et al. (2022)
Pogonomyrmex barbatus " 104 8.5 5.3 63.0 27.5 42.9 L-L Kay et al. (2022)
Lasius niger∗† Formicinae 102 4.25 1.1 38.9 25.8 14.9 S(N) Richardson et al. (2022)
Camponotus fellah " 96 6.5 1.6 33.4 60.0 60.9 L-L Kay et al. (2022)
Camponotus floridanus " 68 7.8 8.0 78.2 25.1 34.1 L(N) Kay et al. (2022)
Diacamma rugossum Ponerinae 95 10.3 3.9 49.5 40.2 29.5 L-L Kay et al. (2022)
Iridomyrmex purpureus Dolichoderinae 95 7.9 5.0 29.5 70.5 37.2 L-L Kay et al. (2022)
Rhytidoponera metallica Ectatomminae 104 6.1 2.8 61.5 25.0 26.8 L-L Kay et al. (2022)
Apis mellifera∗ Apidae/Apis 81 13.4 11.1 106.1 59.8 60.8 S(N) Liberti et al. (2022)

Table 1.1: Tracking characteristics of ant species tracked with FORT and (†) predecessor system
(Mersch et al., 2013). Colony size reported for specific experiment, can vary substantially in
the wild. Time active: when moving faster than 5% of body size per second. ∆θ/∆t : directional
change, angle between two segments of ant trajectory. Speed and directional change are
only measured during active period. Time active, speed and directional change are colony
averages. Occupancy: Average percentage of nest space occupied by ants, area of union of
disks representing ants divided by convex hull area of all ants in nest. Arena configuration:
S: Small arena [105× 145] mm, (N) integrated nest space [65× 95] mm or 90 mm ∅ for C.
floridanus, L: Large arena [170×220] mm, L-L: nest/foraging arena double box setup. Values
calculated from 24 h tracking data. (∗): endemic in Switzerland.

environmental parameter. A famous example in ants is the study of trail formation to exploit

different food sources. The question spawned a variety of manipulative experiments, whereby

paths to different food sources were offered under laboratory conditions and manipulated to

observe the adaptation of the collective foraging behavior. Such experiments allowed to build

testable models, which describe the collective foraging success based on the environmental

factors and a small number of colony specific behavioral parameters (Camazine et al., 2001b).

Studying social behavior is very challenging due to the manifold of known and unknown

factors. In some situations, reducing the dimensionality of the experiment or the number

of choices of the organism by restricting its movement is a valid strategy to cope with this

complexity. This has been done for example in the study of collaborative transport in ants,

where the food item to be transported was attached to a shaft or string, in order to reduce the

directional decision to left or right (Feinerman et al., 2018). In an experiment with fish schools

in interaction with a robot dummy, the aquarium was built in the shape of a ring to restrict the
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1.2 Automated experimental techniques

swimming direction to clock- or counterclockwise, making it simpler for the robotic agent to

provoke a predictable response (Bonnet et al., 2018) (Figure 1.2, center).

Figure 1.1: Motorized setups in ant behavioral research. Left: rotating nest geometry (Heyman
et al., 2019), Center: moving nest wall to extend physical distance between two chambers (T.
Richardson et al., unpublished). Right: floor heating patches to provoke evacuation behavior
(Gal and Kronauer, 2022)

Manipulative systems with the possibility to change the stimulus automatically during the

experiment have been developed for many species including ants. A modern version of an

experiment to understand the orientation capabilities of ants with respect to food sources

and the nest was developed in (Heyman et al., 2019). A rotating nest is used to decouple the

effect of visual and chemical cues in ant navigation (Figure 1.1, left). In an unpublished study

of the Keller group at UNIL, we have used a partitioned nest to force the colony to segregate

into two chambers. This is a common situation in nature for ant species who do not build

their nests but inhabit pre-existing structures such as rock crevasses or the bark of a dead trees.

Several papers have suggested that social insect colonies are spatially divided into partially

overlapping worker groups, and that some of these groups function as intermediaries, i.e. as a

sort of ‘social glue’ between the groups. These individuals move back and forth between nurse

and forager communities, and in doing so, supposedly maintain the cohesion of the colony.

To investigate these intermediaries, we performed a manipulative experiment in which ant

colonies were housed in nests that were divided with an automated moving wall to physical

manipulate the distance between the groups and test if the switching frequency would be

maintained by the intermediaries (Figure 1.1, center).
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Chapter 1. Background

In (Gal and Kronauer, 2022) a floor heating system was designed to provoke evacuation

behavior of the colony as a response to unfavorable temperature conditions (Figure 1.1, right).

The fine control of the stimulus allowed to show that collective response is characterized by

an emergent sensory response threshold as opposed to an individual one. The calibrated

and spatiotemporally controlled application of a stimulus allows to abstract and and test

a hypothesis formulated by mathematical models. In (Rajendran et al., 2022), a motorized

selective door setup was used to impose a conflict of interest with respect to prospective new

nests upon a migrating colony by blocking the access to certain areas for given individuals. In

this example, automation was necessary to reduce erroneous manipulations and increase the

throughput, as it is infeasible for an experimenter to identify individuals and operate the door

simultaneously. Direct artificial stimuli are often designed to target a single perceptive channel,

like a sound (De Rosa et al., 2022), a visual illusion generated with a hologram (Stowers et al.,

2017), a bio-mimetic dummy (Landgraf et al., 2010) or a local heat source like it was used to

attract bees to defined sites inside the hive (Griparić et al., 2017). In a system designed for

Drosophila, a moving dummy was used to provoke an optic flow stimulus for the animal to

understand how it reacts to approaching obstacles (Agrawal et al., 2014).

1.2.3 Automation and closed-loop manipulation

Besides increasing the experimental throughput, automation standardizes the application

of artificial stimuli. Moreover, automated systems can be programmed to react to a complex

input based on which a decision must be taken while respecting experimental constraints

(Krause et al., 2011). As a semi-automated manipulation scheme, parts of the process could

be automated, while the decision on when, where and how to interact is still left to the

experimenter. This can be achieved by using pre-processed data, i.e., the identity of an

individual and its current location, as an assistive measure for the operator to decide on

the specifics of manipulation. In complex settings, it may become necessary to automate

the process of the manipulation itself. This can be especially useful if the manipulation is

difficult or the intensity of the stimuli must be controlled with precision. In neurological

12



1.3 Mobile agents as manipulation tools

studies, behavioral patterns are detected from the real-time representation of the animal pose.

Manipulation as a reaction to such events requires a low latency. An integrated framework,

called DLClive, that estimates the pose of the animal in real-time to automatically generate

an artificial stimulus has been recently presented (Kane et al., 2020). This framework is very

analogous to the FORTloop package that is introduced in Chapter 2.

1.3 Mobile agents as manipulation tools

Figure 1.2: Autonomous agents for animal-robot interaction. Left: pheromone coated cock-
roach robot (Halloy et al., 2007). Center: fish robot with biomimetic morphology (Bonnet
et al., 2018, 2017). Right: rat robot with biomimetic posture dynamics and stuffed rat (Shi et al.,
2013).

Mobile agents can penetrate deeper into a colony or group of animals, and directly target an

individual (Mondada et al., 2013). In (Halloy et al., 2007), a pheromone marked mobile robot

was used to target the light avoiding behavior of cockroaches by preoccupying shaded areas,

and thereby manipulate its decision making process (Figure 1.2, left). In this example, it was

shown that, aside from the robot movement, the biomimetic signal on the chemoreceptive

channel is sufficient to provoke a typical behavior. Thus, it is not necessary to mimic the

appearance of the cockroach. In (Shi et al., 2013), an autonomous mouse agent is used to

investigate the factors for a hostile or friendly response to a perceived behavioral pattern

(Figure 1.2, right). In this example, actuation is needed for two reasons. First, the targeted

perception is not only a static visual cue, but the recognition of a an articulated posture. To

this end, the robot attempts to mimic a behavior, which requires a complex design of the

agent itself, include a number of articulated joints. Second, the distance between the behaving

animal and robotic agent must be carefully controlled because this distance is expected to act
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Chapter 1. Background

as an influencing factor. The bee robot introduced in (Landgraf et al., 2010) imitates the waggle

dance. To date, this robot is the only mobile system that has been integrated in a eusocial

community. Figure 1.2, center, shows an autonomous fish robot that is mimetic in morphology

and movement. It delivers a stimulus to a local range of individuals in a swarm to provoke a

collective reaction. This example highlights the importance of tracking and feedback, as the

propagation of the signal from one fish to the next by changing its direction of movement is

very fast and the robot must be able to follow the swarm to precisely apply its stimulus. In

ants, spatial organization plays an important role in the organization of social life (Mersch

et al., 2013; Richardson et al., 2022), therefore restrictive geometries to facilitate the access

to deliver a stimulus, as described in Section 1.2.2 has limited used compared to a mobile

agent. To study the individual response to stimulation in a social context, it is mandatory to

preserve the social organization of the colony and to deliver a stimulus in a precise manner to

an individual at the location of its own choice.

Navigation of mobile agents in dynamic environments

The colony should be left intact and minimally disturbed, therefore, the stimulus needs to

be delivered to a moving target, i.e. an ant, inside an colony while reducing the number

of unintended and unnecessary interactions. Although positional data is available on a

global level at a given time through the tracking system, little can be said about the motion

of the ants in the near future or their reaction to a moving object nearby. Human crowds

permit certain simplifications and predictive strategies, e.g. the stream of people who walk in

approximately the same direction on a sidewalk. However, ants in their nest often appear to

show bursty, random-walk like movement patterns, which are hard to predict. Furthermore,

ants communicate mostly by means of chemical cues (as opposed to humans in crowds who

visually process their surroundings), especially inside the darkness of the nest. Fortunately,

the instantaneous information in the tracking system is almost complete, in the sense that

the position and orientation of every individual is known with the exception of short term

detection miss due to visual obstruction or reflections.
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1.3 Mobile agents as manipulation tools

Teleoperation refers to the process of remotely navigating the mobile agent by a human

operator. The ant system with the incubation chamber restricts direct visual and physical

access, yet provides a live video stream as feedback for the operator. The behavioral data

shown in Chapter 3 is collected by teleoperating the robotic agent. Inaccuracies and variance

in the way stimuli are applied by a human operator can cause blurred results or completely

prevent experiments if the task is too delicate. If the stimulus has a complex form, like an entire

behavioral pattern, as for the example of the rat robot given above, human bias may become

a problem. Experimenter bias is the situation when researchers’ expectations influence the

outcome of the study and can lead to increased effect observation (Holman et al., 2015). During

long experiments and many replications, the experimenter may undergo a learning curve,

even when the experimenter is unaware of the tested hypothesis (Rosenthal and Rosnow,

2009). As a further motivation for automation, even if the task is as simple as contacting a

target individual, teleoperation may take significant time if the path is obstructed or the ants

are moving relatively fast. The more complex the task and the environment are, the higher

is the need for automation. While technically challenging, closing the loop for automation

removes bias, increases throughput and precision, and makes the effects of the applied stimuli

more traceable. To the best of our knowledge, no mobile autonomous system for a mixed

eusocial robot-animal society exists. In this thesis, the first steps are taken to build such a

system for ant colonies.

An important aspect of automated navigation is the development of proper algorithms for

motion planning and control. A global path planning algorithm designed for a static world

could be implemented. However, the disregard of the dynamic aspects of ant motion may

lead to repeated re-planning due to frequent change of ant positions, which may manifest

itself as oscillatory agent motion without notable progress towards the goal. In this thesis, we

considered motion planning based on the following intuition: a plan should not be changed if

the latest optimal solution offers only a slight improvement over the current solution while

requiring a drastic correction. The objective is to be as socially-acceptable as possible by

minimizing unintended interactions with the ants, avoiding situations where we come too

15



Chapter 1. Background

close to a non-targeted ant or stay around her vicinity too long, while completing the tasks in

a reasonable amount of time. Socially aware navigation will be discussed in more detail in

Chapter 4. We formally implemented this intuition in a novel algorithm to achieve a form of

temporal persistence in path planning.
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2 Robotic manipulation platform

This chapter introduces the hardware and software architecture of the Antbot, the robotic

manipulation platform that is designed to navigate an ant-sized magnetic dummy inside

the colony and deliver a targeted stimulus to individual ants. The Antbot can be manually

controlled by an operator using teleoperation or programmed to run an experimental plan

autonomously. The real-time tracking data that is used to assist the operator during teleoper-

ation or as a visual feedback for autonomous operation is provided by Formicidae Tracking

System (FORT). The capabilities and the software interface of FORT is explained in Section 2.1.

Section 2.2 lists the specifications of a representative manipulation experiment to motivate

the design choices for the remaining of the chapter. The hardware components of the Antbot

are described in Section 2.3. Section 2.4 introduces the brain of then Antbot, FORTloop, a ver-

satile software framework to standardize and facilitate the design of automated manipulative

experiments with FORT.

The trajectory data acquired by FORT can be post-processed to detect social events or infer

individual or group social characteristics. For example, social communities can be inferred

from the interaction network, which can serve as an online feedback for the Antbot. Section

2.4.1 summarizes these metrics and the code base developed to compute them for post-

processing or in real-time.
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Chapter 2. Robotic manipulation platform

Automation has the following advantages that are considered during the design of the Antbot:

1. Increased precision and repeatability for manipulation

2. Increased throughput and longer operation

3. Adaptive changes in the experimental plan using real-time tracking data

4. Avoidance of human bias that is introduced through learning or cognitive processes

In this thesis, we use a tactile stimulus in the form of an oscillatory movement. The stimulus

is exerted by the mobile robotic Antbot dummy through a pair of synthetic antennae that is

mounted on its body. The intensity of this signal must be precisely controlled to interpret

the behavioral response of the ants depending on the biologically relevant factors. Moreover,

stimuli must be delivered to different individuals at their current location in the nest while

avoiding interactions with other ants. Navigating the robotic dummy via teleoperation is

very challenging due to the complex environment of the colony (e.g., crowded space, ants are

moving around) and due to the lag in the visual feedback. Thus, automation can make an

important contribution.

Some of the social representations of the colony include the detection of communities, i.e.

partitions, in the interaction network or in the site-visiting network. Both data structures are

proxies for division of labour. Depending on the actual hypothesis, providing the experimenter

with such information is instrumental to include social parameters as factors in the adaptation

of the manipulation tasks. Automated data processing is therefore required to enable more

complex action planning.

Even when a manipulative experiment is carried out as a blind study, where the experimenter

is unaware of the hypothesis tested, a learning curve can be developed in the way the ma-

nipulations are performed. Therefore the manipulation is not constant over time, which can

bias the behavioral response. This problem and other potential artifacts that introduced by a

human experimenter are known issues in behavioral research (Rosenthal and Rosnow, 2009).
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2.1 FORT tracking system

These effects are more pronounced in experiments involving social interactions with humans

or primates, but can also be a problem in experiments with ants. Although it can be desirable

that a robotic system learns as well during an experiment (Landgraf et al., 2021), artificial

learning is reproducible and can be reenacted and interpreted.

Automation in complex scenarios is challenging and requires a high degree of autonomy.

Closing the loop for a fully autonomous experiment might seem to result in a small benefit

compared to the programmatic effort. Yet, it promises a further increase of throughput, as

experiments could be run around the clock for several days. Automation can also help to

remove sources of human error, already in semi-supervised operation, and further offload

decisive tasks from the operator by deliberate experimental planning. This chapter presents

the efforts taken towards full autonomy.

2.1 FORT tracking system

The FORT system was developed between 2018 and 2020 by Dr. Alexandre Tuleu in the group of

Prof. Laurent Keller at University of Lausanne, as an upgrade to the tracking system presented

in (Mersch et al., 2013).

The system uses fiducial markers to identify individuals with ultimate accuracy during long-

term studies. To date, the longest experiment involved 100 days of consecutive tracking per

colony replicate, which lasted the typical lifespan of a worker of the species under investigation

(Richardson et al., 2021). Such experiments are needed to investigate transitions in social

behavior due to individual maturation. The tracked positions per image, called tracking frame,

are saved continuously in a data file and only a compressed version of the video stream is

stored for visual inspection. This reduces data to storage, and decreases the risk and amount

of data loss due to technical interruptions of the tracking. These advantages were already

identified in the first design and proved practical in a number of experiments (Mersch et al.,

2013; Richardson et al., 2021; Stroeymeyt et al., 2018).

FORT, the second generation tracking system, inherits the real-time tracking capability from
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its predecessor. As an upgrade, it provides easy access to the tracking data through real-time

data transfer with network sockets over the local area network (LAN). This new feature opens

the doors for closed-loop or human-in-the-loop manipulative experiments, during which the

tracking data is further processed online to infer social characteristics of the colony or the

individual. A collection of the characteristics used so far is given in Section 2.4.1.

Compared to its predecessor, FORT received additional major upgrades that are essential for

the development of the FORTloop. Most importantly, the frame rate was increased from 2 Hz,

hard coded, to a maximum 26 Hz when used with secondary tracking computers that can be

daisy-chained to process a fraction of the visual input in parallel. As an important remark, a

frame rate of 8 Hz is sufficient for safe navigation of an autonomous robotic dummy inside

the colony and represents the maximal tracking frequency of a single host. The design is more

modular and compact, which results in more room for the necessary hardware for the Antbot.

Further improvements are the resolution from 12 MPx to 48 MPx and the decoupling of its

climate and tracking subsystems, which results in a more fail-safe operation. Notably, the

FORT hardware and software is fully opensource.1

FORT consists of an experimental component with hardware and software for tracking and

climate control and a component for essential post-processing of the raw data (Figure 2.1).

The tracking PCs, called hosts, store the tracking frames in a serialized data file. hermes is

the software component to serialize and store (.hermes file) or exchange the data among

hosts in case the computational load of one experiment is distributed to increase the tracking

frequency. The data stream is made available to external clients for further processing (see py-

hermes component in Figure 2.1 and Section 2.4.2). The post-processing component consists

of the myrmidon library for data interpretation (interaction detection, trajectory extraction,

etc.) and the fort-studio graphical user interface for the necessary post processing step of

marker alignment. The latter is needed for correct interaction detection. myrmidon stores the

generated metadata in a file with the same name.

1https://github.com/formicidae-tracker
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tracking frames

meta data

.myrmidon-�le

tracking data

.hermes-�le

classic o�ine data post-processing

e.g. python-myrmidon package

online data processing

via python-hermes package and FORTloop

Figure 2.1: FORT conceptual overview. fort-studio: basic post-processing GUI e.g. for tag
alignment and basic data viewer. myrmidon: post processing library: interaction detection,
trajectory extraction, etc. hermes: data exchange protocol. The tracking hardware setup
(without host) is shown in Figure 2.3.

The FORT hardware setup along with the Antbot is shown in Figure 2.3. FORT has the capability

to regulate the humidity and temperature and the visible light, allowing to simulate a diurnal

cycle. The infrared flashlight, which is used to capture images for tracking around the clock,

is decoupled from the climate system. The field of vision, given by the camera, is adjusted

according to the tag size used.2 A smaller tag requires a higher spatial resolution, which in

turn reduces the field of vision. The ant arena, the space where the ants live, is a box in the

center of the system (blue box in Figure 2.3). This box constraints the motion of the ants to a

plane for continuous tracking. The insulating box, needed for climate control, puts further

constraints on the workspace regarding the robot integration. FORT makes it technically

possible to connect one or more additional arenas via tubes, if necessary.

2A spreadsheet to calculate optical settings for an experiment is found at
https://docs.google.com/spreadsheets/d/1O8jTYh_x0X60FvLMI6AnxPJqFTBPCzauivXxzxy9Sjo/edit#gid=0
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Chapter 2. Robotic manipulation platform

2.2 Model experiment and requirements

As a basic model experiment, we chose to investigate the individual factors for showing

aggressive individual behavior. Aggression is a basic behavioral response with a central role in

social organisms and it is relatively simple to detect. For this purpose, we chose L. acervorum

with low implications on actuation. The members of this species are relative calm in their

activity patterns (Table 1.1) and show low aggression in general (Forel, 1874). Notably, they

show a number of intriguing and not well understood behavioral responses (Richardson et al.,

2017; Bourke, 1991; Franks et al., 1990). The following specifications are identified:

R1 (Mobility and workspace) (1) The end-effector must be capable of reaching individuals

in a cluttered environment to deliver the stimulus while minimizing unintended inter-

actions. (2) Here we consider manipulations carried out inside the nest, which displays

a lower limit on the robotic dummy workspace.

R2 (Size) (1) The end-effector, i.e. the robotic dummy, must operate inside an ant colony

and deliver a tactile stimulus at the approximate ant body height. (2) The manipulator

must be integrated in the incubator which displays a limit on all dimensions.

R3 (Accessibility) In the lab, L. acervorum are kept in glass covered nests of 2 mm height

under which the robot must operate. The nest and the use of the overhead camera only

allow an manipulator operating under the floor.

R4 (Subtlety) The emanating signal or cues must be subtle enough to measure a gradual

behavioral response of the individual. A signal that is too weak or too strong might elicit

no response or potentially unnatural behavior in all interactions, respectively.

R5 (Smell) Ants mostly communicate through chemical signals. It has been shown that

the colony odor can be passively acquired by items that are left inside the nest for

acclimatisation. To be able to compare acclimated dummies to non-acclimated ones,

and for potential future studies with pre-treated dummies, it is important to have the

capability to exchange dummies during the experiment. The nest entrance is often
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occupied by many individuals. To introduce new dummies without attracting the

attention of ants, it is useful to build a nest with a secondary entrance that is only

opened during the entry and exit of the robotic dummy. The dummies should not

provide any chemical cue and must be treatable to make it chemically inert.

R6 (Variable stimulus) A priori, the form of the tactile signal is not known. It is therefore

desirable to decouple the angular actuation needed for guidance with the magnetic

signal applied for the tactile stimulus.

R7 (Versatile end-effector design) Future studies may use different sized or shaped dum-

mies. Designs that are used to displace items instead of performing interactions might

be considered as well.

R8 (Long term operation) Ants are able to carry heavy payloads and in Leptothorax in

particular, it is known that colonies improve the nest geometry with lose material found

inside the preexisting nest they inhabit (Camazine et al., 2001a). It is therefore desirable

that the robotic dummy remains stationary unless it is moved by the system. Long term

operation is also a requirement on the software side.

R9 (Automation and Autonomy) Processing the input and coordinating hardware, either

as a visual aid for the operator or to be used as closed loop feedback, requires a soft-

ware platform capable of (a) Managing the acquisition, pre-processing (tag-heading

alignment, interaction detection) and re-distribution of FORT data to (b) Asynchronous

sub-processes for target selection/experimental objective planning based on (c) real-

time data processing, trajectory planning, hardware communication and data visual-

ization (d) reactive robot control which is fast and easy to reprogram for alternative

experimental scenarios.

R10 (Safe navigation) Certain (polygonal) areas inside the nest should be avoided (brood).

Ants that are not currently targeted for a contact with the antbot, should also be avoided.

For this purpose we define a safety region, i.e. a large enough disk centered at each ant,

with which the robot should minimize collisions. This task can be carried out in by the
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operator in manual mode. Automating it represents the challenge of socially compliant

navigation, which is addressed with the algorithm developed in Chapter 4.

2.3 Hardware setup

Table 2.1 lists the complete hardware for the Antbot. The system consists of three major com-

ponents: a robotically-actuated mobile robotic dummy as the end-effector, an electromagnetic

control system to navigate the dummy and apply the tactile signal, and the stacked actuator

on top of which the electromagnetic control system is mounted (2.2).

The dummy moves by sliding on the Teflon™covered surface of the nest arena. In this basic

version, it is intended to deliver tactile stimuli to individuals in ant colonies. Smell plays a

major role in ant communication, therefore it is important to control the chemicals displayed

on the dummy using an inert coating. To this end, we use a gold-coated cuboid magnet. Gold

film also prevents oxidation of the magnetic material inside the warm and humid nest, and

improves motion by reducing friction. The antennae are fabricated from the tip of synthetic

paint brush fibres.

The control system, shown in Figure 2.2b, consists of two permanent magnets to move the

dummy and two electromagnetic coils to oscillate the dummy. It houses the cables and a

sliding contact to follow the infinite rotation of the DC stage it is mounted on. The signal

generator and amplifier can be commanded via a serial interface, and are housed outside the

incubator of the tracking system. The adapter is adjustable in all relevant dimensions in order

to center the magnetic capture with respect to the rotational movement, adjust the distance to

the arena plane, and position the electromagnetic coils with respect to the guidance magnet.

The adapter is 3D printed with a Form2™using clear resin™.

The control system is mounted on a translation - translation - rotation (TTR) DC stage with

integrated encoders and leadscrew/toothed belt transmissions. The maximal omnidirectional

speed is 20 mm/sec and 675 °/sec.
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2.3 Hardware setup

(a) ©Bart Zijlstra, UNIL

(b) ©Bart Zijlstra, UNIL

Figure 2.2: Antbot (a) Magnetically actuated robotic dummy with mock antennae for tactile
stimulus and worker of L. acervorum, resting on transparent Teflon™covered surface. Cuboid
length is 2.5 mm (b) Adjustable control system with two permanent magnets for navigation
and two electromagnetic coils for oscillating the antenna. The control system is mounted on a
rotary stage. Permanent magnet diameter is 2 mm.

To ensure that the dummy is always under the control of the magnetic system, it must be

navigated using a unicycle model, i.e. with blocked lateral movements:

ẋ ≈ v[cos(θ),sin(θ)]T , v ∈ [−vmax , vmax ], (2.1)

θ̇ =ω, ω ∈ [−ωmax ,ωmax ], (2.2)
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Chapter 2. Robotic manipulation platform

where x and θ are the position and the heading of the robotic dummy and v and ω the

translation and rotation velocities ([·]T denotes the transpose). There are limits on the angular,

ωmax , and lateral, vmax , speed determined by the hardware and safety considerations. To

circumvent the lag effect introduced by the unavoidable distance between the guidance

magnet and the dummy, it is beneficial to use a forward-moving unicycle model with v ∈
[0, vmax ]. In autonomous navigation, this will also ensure that the dummy arrives head-first at

the manipulation site.
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Chapter 2. Robotic manipulation platform

Figure 2.3: Antbot integrated in FORT. (a) Antbot stage controllers (b) Humidity and illumi-
nation controllers (c) Heater (d) Camera (e) Visible light and IR flashlight (f) Humidifier (g)
Extraction fan. Green inset: Ant arena (i) with nest (height: 2mm), covered with infrared
pass filter (h), entrance to the right (width: 2mm). Underneath arena: Magnetic adapter with
adjustable geometry round inset). Adapter is mounted on θ-rotary stage (j) and linear x − y
stages (k). Round inset: magnetically guided robotic dummy (small gold cuboid (2.5×1.5×0.5
mm) above guidance magnets (m) and coils (n).
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2.4 Software

2.4 Software

The software developed for the teleoperated and automated manipulation has two main parts:

perceptive processing and action planning. The perceptive part takes the tracked positions

as input, calculates individual and colony level parameters, called proxies, that are suitable

to study collective behavior. A representative example is the community partition of the

interaction network to describe the social structure of a colony. As another example, individual

activity levels can be used to study division of labour. These results can be visualized in real-

time to support the action planning of the human operator who applies teleoperated stimuli

or it can be used in a closed-loop scenario, where the hardware is controlled autonomously.

Although the software structure is specifically designed for the Antbot, it is ready to be adapted

to control any type of hardware. This framework is presented in Section 2.4.2 as the brain of the

Antbot, which is described in Section 2.4.3. Figure 2.4 conceptualized the overall integrated

operational framework. Through a hermes server (see Section 2.1 and Figure 2.1), the FORT

tracking system provides tracked positions in real time. This data is processed by FORTloop to

be displayed in a customizable form to a human observer (see for example Figure 2.8) or to

control the relevant hardware.

2.4.1 Processing of social proxies

The data available after post-processing of the recorded images includes trajectories that are

corrected for the heading of the animal, and interactions between individuals 3. Table 2.2 is

a summary of the proxies that are currently used to describe the social life in an ant colony

along with the a note on whether they have been inferred automatically or manually.

3A project to process the visual input with respect to individual pose in addition to tag position is currently
ongoing.
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Chapter 2. Robotic manipulation platform

FORT tracking system

Data processor

Antbot
teleoperation autonomy

Manipulator
guidance signal

Colony Dummy

Alternative
manip-
ulative

hardware,
e.g. Ar-

duino for
passage
control

metadata

coordinate readout

navigation

- target position- live plot

serial commands

magnetically guided

Figure 2.4: Schematic of the FORTloop and the Antbot control framework
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Chapter 2. Robotic manipulation platform

2.4.2 FORTloop: experiment automation

The operational concepts specifically developed for the Antbot are generalized to build a

generic platform for easy design and prototyping of manipulative experiments. To this end,

we provide a comprehensive library of examples and reduce boilerplate code as much as

possible. FORTLoop is essentially a concurrent python library, standardizing experimental

programs that process tracking data from the FORT tracking system in real time. The data

can be aggregated in interaction or spatial networks, for example, to obtain individual social

parameters such a social maturity (Richardson et al., 2021), foraging score, and activity. These

parameters can then be used interactively to perform the manipulation experiment.

FORTLoop is composed of two components that are accessible. The Loop class is the main

process that includes a hermes client polling the tracking frames and manages all subprocesses

and distributes the data to its Hook class instances. The user can instantiate as many Hook

objects as needed, and pass them to the Loop before running it. The Hook class has an abstract

method called process_frame(frame) that receives a dictionary containing the timestamp

in seconds since epoch, the frame coordinate range xmax / ymax and the positions, an array

of dimension n ×6 for the n tags detected in the frame (tag ID, x coordinate, y coordinate,

orientation, zone, timestamp). Besides receiving real-time data from the tracking system,

FORTloop can also be used in a simulation mode, where data is read from a prerecorded

experiment or dryrun mode, where recorded and real-time tracked data are concatenated.

This can be helpful to prototype an experiment which includes hardware. Listing 2.1 shows a

simple use case. FORTloop is available open-source including the comprehensive code for the

application examples given below.4

The main intention of FORTloop is to handle the data and control flow for the Antbot described

below, which represents the most complex application to date. In addition, its interface is

abstracted in a way that it can be adapted easily to other use cases. The code for the following

examples can be found on the FORTloop repository.5

4https://c4science.ch/source/fortloop/
5https://c4science.ch/source/fortloop/browse/master/demos/
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2.4 Software

Live plotting is a basic visual representation of tracking data. Listing 2.1 shows the code for

a minimal example, based on which live plots such as the ones shown in Figure 2.8 can be

generated.

1 from fortloop import Loop
2 from fortloop .hooks. liveplot import LivePlot
3

4 liveplot = LivePlot ( update_period_sec =1.0)
5 fortloop = Loop ([ liveplot ])
6

7 fortloop .run(’trackinghost ’)
8 # for simulation , i.e. reading from file:
9 fortloop . simulate (’prerecorded . hermes ’)

Listing 2.1: Python code for FORTloop live plotting

Simple hardware controlled by Raspberry Pi. The platform uses a Raspberry Pi to operate any

hardware such as a single-board computer, micro-controller with network capability, servo

motor, and LEDs as a response to some condition met by the tracking data. As an illustrative

example, Figure 2.5 (a) shows the prototype of a selective food source setup, where food is

displayed to the ants through a hole on the floor. Food with varying nutritious content can

be place in the grey trays on the revolving table. The servo motor can then be actuated to

display the chosen food to a selected individual. With FORTloop, a Loop can be used to gather

information about the social behavior of an individual. This can be the amount of time a

worker spends outside the nest or its position in the interaction network. According to the

experimental design, food with a high nutritious value can then be displayed for example to

individuals who are not specialized foragers to see if the reward influences their behavior. The

code would look similar to Listing 2.2. This example has a worker Hook which revolves the

food source and a concurrent Hook for live plotting.
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Chapter 2. Robotic manipulation platform

Figure 2.5: FORTloop automated and reactive hardware examples. Top: rotating food sources,
steered by servo motor and Raspberry Pi computer to selectively expose different quality
food. Red rectangle represents ant nest, black circle is rotary table holding food trays that are
presented through a hole in the ground. FORTloop program running on PC controls presented
food source with respect to individual ID present in green polygonal zone. See code example
in Listing 2.2. Center: moving wall nest, introduced in Chapter 1. Connecting path between
two nest chambers can be extended with the underfloor linear DC motor. Bottom: ‘ANT°C’
system introduced in (Uslu, 2022; McGregor, 2022) as temperature regulation system for the
ant nest using Thermo-Electric Cooling (TEC) elements. Temperature can be changed locally
e.g. as response to aggregation of brood. FORTloop runs on a separate PC connected to the
LAN.
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2.4 Software

1 import socket
2 from fortloop import Loop , Hook
3 from fortloop .hooks. liveplot import LivePlot
4 ...
5

6 # Derive Hook class
7 class RPiServoHook (Hook):
8 def __init__ (self , rpi_ip , zone , focal_antid , ...):
9 self.host = rpi_ip

10 self.zone = Polygon (zone)
11 self. focal_antid = focal_antid
12 ...
13

14 def connect (self):
15 self.s = socket . socket (...). connect ()
16 ...
17

18 def process_frame (self , frame):
19 crds = frame[" positions "][ antid == self. focal_antid ]
20 # rotate food source if ant goes inside food zone
21 if self.zone. contains (Point(crds [0, 1:3])):
22 self.s.send(" rotate positive ")
23 # and back when it leaves zone
24 elif not self.zone. contains (Point(crds [0, 1:3])):
25 self.s.send(" rotate negative ")
26

27 liveplot = LivePlot ( update_period_sec =1.0)
28 rpiservo = RPiServoHook ("130. xx.xx.xx", zone , ’ant_of_interest ’)
29 fortloop = Loop ([ rpiservo , liveplot ])
30 rpiservo . connect ()
31 fortloop .run(’trackinghost ’)

Listing 2.2: Python code for FORTloop food source example

Complex hardware with dedicated serial controllers. More complex hardware that comes

with a serial controller should be integrated directly into a Loop. The Ant Nest Temperature

Controller system (ANT°C) is a system that allows to change the floor temperature of the ant

arena to provoke a collective reaction, such as the displacement of brood to a milder spot.

The system has been developed by Fazil Uslu of the Microbiorobotic Laboratory and Sean

McGregor of the Keller group (Uslu, 2022; McGregor, 2022). It consists of array of Peltier

elements which are controlled by a Thermo-electric Cooler (TEC) Controller. The controller

has a serial interface which, in the ANT°C system, is used in a Loop to command a change in

temperature if a certain percentage of individuals aggregate in a given spot. Another example

is the moving wall setup that is programmed to extend the access path as a response to activity.

A motorized stage was used to insert and retract a mobile wall inside the nest. All these
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Chapter 2. Robotic manipulation platform

hardware can be operated by the FORTloop framework.

2.4.3 Autonomous interactive experiments

Depending on the hypothesis and experimental design of a manipulative study, the Antbot

must deliver the stimuli to individuals of different groups with sufficient replicates to obtain

statistically significant results. These groups represent the set of explanatory factors and can

be formed based on a temporally fixed features such as age and caste, or a variable feature

like the current nest area and the activity state of the individuals within. At the same time,

randomization might be necessary to average out systematic effects, e.g. effects coming from

the time of the day when the manipulation is performed. The sum of these requirements,

paired with the delicacy of applying the stimuli, poses a great challenge for action planning.

In the teleoperated experiment presented in Chapter 3, the operator guided the dummy to an

individual during a predefined period in a predefined density area of the nest because it was

expected that ant density would influence the response. A density-map based on real-time

data was displayed as a visual aid, in order to follow the predefined experimental schedule.

This way, more than 600 stimuli were applied in three different colonies to derive a statistically

valid conclusion about the factors that influence the individual response. A lesson learned

from this experiment is that choosing the next individual in the correct zone, safely navigating

the dummy towards the target ant, and triggering the tactile signal at the correct distance from

the target ant within the predefined time period is very demanding. Yet, this manipulation

task has a comparatively simple experimental design. The analysis has shown that, among the

approximately 100 individuals per colony, few were involved in sufficiently many interactions

in different groups, e.g. in high and low density areas. Thus, the replication on the individual

level was limited.

Programming the behavior of the robot for a diverse set of tasks in a complex and unpredictable

environment demands reactive planning. The Antbot uses a behavior tree (BT), a technical

alternative to a finite state automaton (FSA), for the behavior to implement experimental
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plans. BTs are more modular than FSAs, and describe the hierarchy of behavior in sub-trees

instead of interlinked states. When the behavior has to be reprogrammed, which is anticipated,

BTs do not suffer from the increased combinatorial complexity of rewiring FSAs. Equivalent

to FSA, BT represents a procedure of graphic programming that streamlines the design of

robot behavior, and facilitate cooperative development by experts from Biology and Robotics.

The detailed description of behavior trees and common design paradigms can be found in

(Colledanchise and Ögren, 2018).

sequence

parallel

selector

navigate to goal

interact, evacuate

attempt interaction while timer running

navigate, interact navigate to safe space action

navigate to target action align heading action interaction action

interaction seqeucnce

interact, wait
select target action

timeout action

magnet locked condition recover action

magnet locked move

timeout condition
agent on target condition navigation

Figure 2.6: Antbot behavior tree

Figure 2.6 shows the basic BT for an Antbot experiment. As the name suggests, the control

flow is defined as a tree of subordinate behaviors. A given BT sub-tree is executed when it

receives a tick emanated from the tree root and reaching its parent. Child behaviors receive

the tick as they are ordered from left to right. Unlike FSAs, ticks are distributed periodically. In

the Antbot, a tick is emitted whenever a new frame of tracking data is available. BTs consist of

five main components:

• Execution nodes (leaves) consisting of action and condition

• Control flow nodes consisting of sequence, selector or fallback and parallel

In the program of Figure 2.6, the tick is emitted from the root which is the ‘interaction sequence’
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node if <...> success else if <...> running else (if <...> failure)

sequence all any* any*
parallel all all any
selector/fallback any* any* all

return success running failure

Table 2.3: Behavior tree control flow nodes. State returned based on child node states.
*: priority in child tick execution order ‘left to right’, see Figure 2.6.

node, down the subordinate routines of either attempting an interaction or choosing a new

target. Upon receiving a tick, each node returns either success, running or failure, based on

its own state for leaves or the sub-tree status for control flow nodes. Table 2.3 summarizes

the returned state of the different control flow nodes, based on the state of their children. A

representative Antbot BT program is shown in Figure 2.6. The intent of this program is to

automate the following experimental sequence that is followed in Chapter 3 to teleoperate the

dummy.

1. safely navigate in front of a target individual

2. enter its safety perimeter from the front with the proper heading

3. apply tactile signal

4. move to the waiting area upon completion of the task

5. repeat the sequence every 5 min

Execution of even this relatively simple program requires reactions. First, the dummy may

get stuck during navigation, e.g. on a piece of debris, and thus cannot be steered by the mag-

netic control system. Second, the allocated time budget to contact an individual may expire

when the target ant is hard to reach. When such problems occur during teleoperation, the

experimenter rectifies the situation by either recovering the dummy with the manipulator or

changing the target. With the BT framework, a similar solution is achieved through navigation

sub-trees that ensure that the dummy is magnetically guided to the control system at all times

and time constraints are respected. The latter is a BT idiom with a selector and a condition

38



2.4 Software

(‘timeout condition’) that is in the sub-tree of a parallel node, together with an action that

controls the condition (‘timeout action’ - ‘timeout condition’). This is called an eternal guard6

as it keeps constantly checking for a set of conditions while a given action is performed (here

the ‘interact, evacuate’ subtree). This way, an ant which seems unreachable, does not become

a bottleneck for the continuation of the experiment. If it is desirable to insist on contacting a

certain individual, the BT can be easily rewired accordingly, which illustrates the advantage of

using this framework.

main process

- data polling

- synchronization 

plotting

tracking frame

data aggregation

- interactions

- networks 

objective

- general control

- behavior tree 

navigation 

position
local

goal: x*statecommand

features

state

global

goal: xg

Figure 2.7: Antbot processes and data flow. Solid arrows: queues for asynchronous one-way
communication. Solid boxes: Sub-processed synchronized by incoming tracking frames
(FORTloop hooks). Dashed box: Asynchronous hardware control loop (FORTloop process)
for trajectory generation and as a collision safety layer.

The BT control flow is purely sequential, yet, its actions might run in different threads. This is

the case for the Antbot software that builds on the multithreaded FORTloop framework with

multiple hooks and processes for objective generation, general control, navigation and low

level motion planner (Figure 2.7). A single lightweight hook is used to generate the behavior7

and manage the control of other hooks by means of asynchronous inter-thread signal queues.

These queues are also used for inter-hook (= inter-thread) exchange of data and states. In

FORTloop programs, the main thread, which is launched initially when calling Loop.run(),

6py_trees package documentation: https://py-trees.readthedocs.io/
7The Antobot uses the py_trees BT package, release 2.1.6: https://github.com/splintered-reality/py_trees/
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synchronizes the hook processes indirectly by distributing the data from the tracking system.

This mechanism is used here to distribute the BT Tick. The hardware controller is implemented

as an independent routine to generate a smooth trajectory and enforce the non-holonomic

unicycle constraint which is needed to keep the magnetic dummy in capture. To this end, a

FORTloop.Process class is implemented to run a customizable loop() method in an infinite

and asynchronous loop. FORTloop.Processes do not receive any tracking frame data directly.

In the Antbot program, the navigation loop provides the necessary data via a queue to the

controller process. This data consists of temporally valid safe space for navigation and an

intermediate goal.

The details of the global path planning algorithm and how it is connected to the local controller

are given in Chapter 4. The internal state machines that interconnect the navigation with

the controller are given in the Appendix (Figures A.1, A.2). All hardware communication

with the function generator and the stage controller is managed by the controller process

(Figure 2.7). The target ant can be selected randomly. Or, targets could be selected based on a

social parameter (data aggregation block in Figure 2.7, see Section 2.4.1) or considering the

probability for success in reaching them that is captured by a navigation cost.

As mentioned above, FORTloop has three ways of providing input data streams. To stream

data from a prerecorded experiment, Loop.simulate() is used. This is useful for code devel-

opment and hardware testing, especially when visual feedback from the tracking system is

needed in real-time. Loop.dryrun() is designed for another scenario where data is streamed

from a prerecorded experiment. Compared to a pure simulation, here the loop is closed and

the timing is realistic as it is based on incoming tracking frames over the LAN. The dryrun

mode is useful as a last verification stage, before the robot is set to physically move inside

an ant colony, in which case the data is streamed from an ongoing tracking experiment with

Loop.run() and no recorded data is involved. The coordinates of the manipulation stage and

the camera must be coordinated through a calibration process. We use a linear transformation

that is fitted with least squares after performing a calibration random walk with n = 50 steps of

the tagged dummy over the entire arena. The details for performing the calibration are given
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in Appendix A.2.3. The precision and repeatability of manipulation is reported in Table 2.1.

2.5 Experimental validation

Figure 2.2a shows the robotic dummy interacting with a Leptothorax acervorum worker. This

dummy, which is designed to deliver a tactile stimulus, is used throughout the entire thesis.

In this section, the concrete steps that were taken to demonstrate the use of Antbot in be-

havioral experiments is discussed. Here, we describe a study that involves three colonies of

L. acervorum and approximately 600 targeted interactions with a dummy as an extension to

the basic manipulation scheme introduced in Section 2.2. In Chapter 3, the data collected

throughout this study is analyzed using statistical tools to gain insights into the factors that

drive individual aggression. In this section, the focus is on the technical aspects.

As ants must be kept immobile to glue the tag markers for tracking, which is challenging to

perform with relatively small ants such as L. acervorum. Ants are temporarily anesthetized

either by releasing CO2 or cooling them on ice. Application of these techniques requires

extensive training, in order to acquire skills that are required to reduce tag loss due to imprecise

application of the glue or tag, and to avoid increased mortality due to keeping the animals

anesthetized for too long. A new technique was invented to tag the ants by immobilizing them

mechanically and without anesthesia, allowing to work without time pressure (Appendix A.2).

The fabrication and insertion of the robot is explained in Appendix A.2.2. The entire protocol

to set up an Antbot experiment, involving the referencing and calibration of the manipulator

stage is given in Appendix A.2.3. The keyboardAntbot program used to command the robotic

dummy for teleoperation and is explained in Appendix A.2.3 as well.

The nest arena is placed inside the tracking system and left for acclimatization for at least

two days. Using a second nest entrance, hidden to the ants, the robot dummy is inserted into

the colony in a minimally invasive fashion (Figure 2.8). The set goal is to contact individuals

in different density zones, where these density zones are computed in real time using the

tracking data. FORTloop displays the density plot to allow the operator to select individuals
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based on their location in the updated map. Using the visual feedback from the video stream

plus the density map, the operator is then able to steer the dummy to an individual that is

chosen based on the density zone dictated by the experimental plan (compare Table 3.1).

Teleoperation works smoothly in most cases. Exceptions include dummy loss due to debris

collected during navigation and mistakes made by the operator (‘Problem’ group in in Figure

2.9a).

Figure 2.8: Data visualization as visual aid for experimenter for Antbot teleoperation. Left:
FORT live videostream. Red circle: dummy. Red lines left: hidden door for dummy exchange.
Red below: main nest entrance. Right: Density plot using FORTloop (compare similar code
example in Listing 2.1). Gaussian kernel estimate and two equidistant contour curves. Green
pentagon: dummy location.

The dummy is able to provoke a spectrum of behavioral responses in addition to aggression

(Figure 2.9). To investigate the effectiveness of a targeted actuated tactile interaction of the

dummy, we compared interactions of ants with a dummy that was kept stationary and with

the same dummy that was navigated and actuated. Interactions between an idle and an

active individual are naturally directed: the active individual is contacting the inactive one.

Therefore it is expected that indifferent responses are unlikely for individuals that interact

with the static dummy, as the fact that the interaction takes place presumes that the active

ant is not indifferent towards the dummy. Figure 2.9a compares the behavioral response of

individuals to targeted robot interactions to when the static robot is encountered. Ants almost

never get alarmed when they encounter the stationary dummy. Furthermore, we analyzed the

duration of the interaction during exploratory interactions when the ant was previously active
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and found no significant difference (Figure 2.9b).
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Figure 2.9: (a): Behavioral response of individuals to targeted robot interaction (moving) or
when static robot is encountered. Problem represents mismanipulations of the operator and
few situations where stick slip motion led to a harsh bump. (b): Duration of exploratory
interactions are not significantly different when robot is static or moving (M.W.U.-test: U =
45063.5, p = 0.138).

Chemical cues detected by the antennae are central for ant to ant communication. A colony

specific smell is used to discriminate nest mates from intruders and other foreign objects.

Cuticular hydrocarbons (CHCs) act as a pheromone for recognition. Hydrocarbons passively

deposited on other ants or objects can serve as recognition signal (Hölldobler et al., 1990). To

avoid the formation of any kind of foreign smell on the dummy, we used a gold-coated magnet

that was washed thoroughly before each experiment. The same tag and glue that was used for

the ants are used to tag the magnet (see Appendix A.2.3).

In the beginning of each experiment, a dummy was placed in the center of the nest for seven

consecutive days. After this acclimatization phase, the dummy was used in the following three

days for interactions with the ants. The dummy was removed using the hidden passage, and

placed in Hexane for ten minutes to extract the chemical surface profile. The chemical surface

profiles of the dummies and a worker ant from the respective colony were analyzed after

each experiment. The profiles were detected with a gas chromatography-mass spectrometry

(GCMS) machine from Thermo Scientific™and the locations, intensity and spectra of the

CHC peaks were assessed with the Xcalibur™1.4 SR1 software from Thermo Scientific™(ISIS

peak detection algorithm, NIST spectra library). Three hydrocarbon molecules, one of which
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(C27H56) is reported in the CHC profile in species of the Myrmicinae subfamiliy (Sprenger

and Menzel, 2020), were identified in the chromatogram (Figure 2.10). For all molecules, the

intensity was significantly higher in the workers than in the fresh dummies without acclimation

(C34H70: 18.9×, p < 10−24, C27H56: 10.7×, p < 10−19, C27H56: 4.8×, p < 10−12, C44H90: 1.6×,

p < 10−8, area under peak, t-test). In the profiles of the acclimated dummies, the average

intensity was lower compared to that of the worker ants but still significantly higher than for

peaks in the profiles of the fresh dummies (C34H70: 4.6×, p < 10−12, C27H56: 4.75×, p < 10−12,

C27H56: 2.1×, p < 0.005, C44H90: 1.2×, p = 0.002, area under peak, t-test). We did not find a

significantly different behavioral response to dummies that are freshly used or acclimatized

inside the nest (Figure 2.11, see also Chapter 3).

2.5.1 Towards autonomous manipulation

We performed a test using the Antbot behavior defined in Figure 2.6 to demonstrate the

potential for automated manipulation inside an ant colony. Figures 2.12 and 2.13 show

snapshots from a video sequence of an experimental sequence performed with a physical

dummy inside the arena using prerecorded experimental data and the ‘dryrun’ mode of

FORTloop. This helps to spot current problems that will need to be addressed in the future

in order to achieve a fully autonomous experiment that runs stable over the entire duration

of the experiment (≈ 7 days). In this regard, two major challenges are identified. First, the

robotic dummy sometimes fails to retract after the interaction is complete. This is caused by

the security layer of the controller which detects a collision and stops all movements (Figure

2.7). The controller essentially ensures that the assumptions in terms of admissible collisions

for the navigation algorithm are met (see Chapter 4). Interactions, which naturally imply with

very close contact, and other situations robotic dummy is blocked by the ants occur frequently

and can impede to pursue an experimental schedule. A solution for this problem is therefore

necessary and could be approached by (1) disabling the collision detection after interactions

or if stuck for long enough, (2) allowing the otherwise unidirectional unicycle to move in

both directions (in this solution, it must be ensured that the robotic dummy will return to the
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Figure 2.10: GCMS Chromatograms of worker and dummy chemical surface profiles for
different colonies.

Fa
lse Tr
ue

acclimated

0

20

40

60

80

co
un

t

colony 209, χ2=1.96, p=0.74
alarmed
exploratory
indifferent
other
problem

Fa
lse Tr
ue

acclimated

0

20

40

60

80

co
un

t

colony 207, χ2=9.20, p=0.06
alarmed
exploratory
indifferent
other
problem

Fa
lse Tr
ue

acclimated

0

20

40

60

80

co
un

t

colony 201, χ2=0.95, p=0.92
alarmed
exploratory
indifferent
other
problem

Figure 2.11: Individual behavioral with respect to dummy acclimatization.

45



Chapter 2. Robotic manipulation platform

forward-moving scheme as soon as possible in order to arrive head-first at the next interaction

site) or (3) implementing a tailored unblocking behavior using an alternative motion planning

approach to seek the closest free robot configuration. All solutions can easily be integrated

an flexibly tested with the BT that governs the robot behavior. Second, in Figure 2.13 the

robotic dummy can be seen to perform ‘pirouette’ movements, in which it does a full turn to

finally continue in the same direction. This is presumably caused by a short discontinuity in

the motion planning which induces a high angular speed causes it to perform a full rotation

instead of reverting the movement due to the forward-moving constraint (v ∈ [0, vmax ] in

Equation 2.1). The problem needs further investigation, but can potentially be solved either

damping the angular velocity in the case of a drastic jump of the local planner reference or

allowing reverse movements on a short term.

Figure 2.12: Dryrun demo, start configuration, continuation in Figure 2.13. Autonomous
experiment sequence: navigate to target ant > align heading > perform interaction > navigate
to safe space and wait until timeout. Antbot dummy is marked with black circle, its heading is
indicated with green rectangle and the trajectory with green dots. Ants are marked with black
dots and heading is indicated with red bar. Nest entrance is seen in the bottom. Secondary
(closed) entrance on the left. Green text represents state changes in behavior tree of Figure 2.6.
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Figure 2.13: Dryrun demo. See caption of Figure 2.12. Time evolves left to right, top to bottom.
Green dots depict robotic dummy positions sampled at ∆t = 500 ms.
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Table 2.4 shows the performance evaluation of the integrated Antbot system. An overall la-

tency of ≈ 1300 ms for navigation and ≈ 130 ms on the security layer (local motion planner

receiving tracking frames at 8 Hz) where collisions are ultimately avoided. This is well withing

the acceptable range of the values reported for safe navigation of human scale robots in un-

known cluttered environments (Falanga et al., 2019) (as the Antbots’ inertia is negligible, it can

profit from the full acceleration of the stage). FORT is designed to maximize throughput of

acquisition in observational experiments, and not yet optimized for real-time manipulation

experiments. If the computational load of the host exceeds the capacity, frames are auto-

matically dropped. For this reason, the delay of tracking is a theoretical upper bound. As an

example, while tracking ants at 8 Hz, FORT drops up to 100 frames in a week-long experiment

(i.e. dropping rate < 10−5), hence the upper bound for delay can be given as 125 ms. A list of

improvements for the computational efficiency of bottlenecks in the navigation algorithm is

given in Appendix A.1.2.

Module/component latency [ms] jitterRMS [ms]

FORT tracking 125 (upper limit1) 10.9
Network7 < 0.2 < 0.1
closed navigation loop6 1057.9 97.1

pyantbot navigation 981.7 75.0
path planning 961.8 74.3

triangulation 426.4 44.9
graph construction2 494.8 34.0
subregion identification3 39.6 35.4
graph search4 < 1.0 < 1.0

pyantbot local motion planner5 2.0 0.3

Table 2.4: Antbot loop characteristics (N = 16838 frames =̂ > 35 min) at 8 Hz standard tracking
frequency. Periods where measured with python’s time package perf_counter function.
1 FORT is not designed to respect RT constraints (explanation see text). 8 Hz is standard
achievable single host tracking frequency, therefore the latency is an upper bound only. 2

Derivation of the motion graph with edge cost according to distance and clearance, see Section
4.4.1. 3 Identification of subregion coverd by previous path solution needed for temporally
persistent planning, see Section 4.4.2. 4 Shortest path algorithm on motion graph (using
python networkx function single_source_dijkstra on full domain and subregion, see
Section 4.4.1. 5 Smooth and safe low level trajectory generation in local free space, see Section
4.5.1. 6 hardware controller loop for smooth trajectory generation (see Figure 2.7) is limited by
the local motion planner latency and set to fctr l = 10 Hz, processing the tracking frames at 8
Hz in the collision security layer. 7 Inferred with ping (N = 1000) and 5 kB packet size.
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2.6 Conclusion

With the compact hardware in the form of a stacked TTR setup, using DC lead screw linear

stages, a DC rotary stage and a custom designed magnetic manipulator to guide and actuate

the ant-sized robotic dummy, the hardware requirements on mobility, workspace, size, acces-

sibility, versatility are met by design (Requirements R1, R2, R3, R8). The electromagnetic coils

allow to actuate the fine motion of the dummy to produce a tactile signal that can be varied

instantaneously if needed. To this end, the signal generator can be controlled remotely and

automated with software (Requirement R6). The software introduced here is written with the

many experimental scenarios in mind that have already been used with ants. FORTloop allows

to build automated experiments in a safe and fast way by hiding the complexity of process

management and data acquisition from the user. This is to ensure that programs will run stable

for the long experimental periods commonly used here (Requirement R8). In the behavioral

experiment presented in this section, it was shown that, although the robotic dummy acquires

potential CHC pheromones, this does not affect the behavioral response (Requirement R5). It

is also capable to elicit a spectrum of behavioral response rather than a simple single reaction,

such as aggression (Requirement R4). The Antbot is indeed capable of provoking reactions that

depend on various measurable social factors, which will be investigated in detail in Chapter 3.

To achieve full autonomy of the robotic dummy in an experiment, the action planning and

navigation need to be automated (Requirements R9, R10). The former is addressed with the BT

framework that allows to compose the behavior of the Antbot in a modular way, which is im-

portant in the prototyping process of a specific experiment. The latter capability is addressed

separately in Chapter 4, as the problem of navigation in a crowded environment represents a

challenge also identified in the field of robotics. The algorithm developed therein was tested

in a demonstrative experiment presented in this section, which represents the proof of the

concept.
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3 Tactile stimulation of individuals in

an ant colony

The work reported in this chapter will be submitted as:
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3.1 Introduction

Ants are one of the most successful taxa on the planet, surviving in almost every ecosystem

on earth. This colonizing success is partly due to their behavioral variation and flexibility

which can be found at different organizational levels, namely between individuals, castes and

colonies (Jandt et al., 2014; Oster and Wilson, 1978). behavioral variation between castes is also

referred to as division of labour, where different groups of individuals perform different tasks

in the colony based on their age, genotype and morphology. Overall division of labour has

been shown to improve group productivity as it allows individuals to specialize in a given task
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and reduce task-changing costs (Beshers and Fewell, 2001). In a colony, different castes are in

charge of tasks such as reproduction, nursing the brood and queen, foraging, cleaning and

defending the nest (Mersch et al., 2013; Richardson et al., 2022). Caste identity has been linked

to specific behavioral phenotypes and intracolonial variance in aggression, broodcare and

exploration (behaviors typically associated with caste identity) has been positively correlated

with per worker productivity (Modlmeier and Foitzik, 2011; Modlmeier et al., 2012). For

instance, Myrmica ruginodis foragers are bolder, more aggressive and more active than nurses

caring for the queen and brood (Chapman et al., 2011). Similarly, slender ant (Leptothorax

acervorum) workers that engage in less broodcare early in life are more aggressive when tested

in individual behavioral assays with a dead non-nestmate (Kühbandner et al., 2014). Highly

exploratory workers of this species were also found to be more aggressive than less exploratory

individuals.

Guarding the nest entrances as a defensive strategy is commonly practiced by multiple ant

species such as leaf-cutting ants (Atta laevigata, (Whitehouse and Jaffe, 1996)), slender ants

(Leptothorax acervorum) and red wood ants (Formica fusta). Guarding individuals have been

shown to display higher levels of aggression towards intra-nest parasitic myrmecophiles

compared to foragers (Parmentier et al., 2015). In addition to ants performing specific tasks,

some studies have reported a certain group of ants (in some cases up to 50% of the colony)

that do not seem to contribute to colony labour (Charbonneau et al., 2015) named ‘lazy ants’.

Removal experiments revealed that lazy ants take over foraging and broodcaring tasks when

specialised, active individuals die or are removed from the colony. They seem to act as a reserve

to maintain the active workforce (Charbonneau et al., 2017). Furthermore, comparisons

between wild and laboratory colonies of the ant Temnothorax regulatus have shown that lazy

ants are not an artifact of laboratory conditions and that lazy ants, foragers and nurses occur

in similar proportions across experimental settings (Charbonneau et al., 2015).

In addition to the division of labour between castes, there is also behavioral variation among

members of a given caste. This intra-caste variation can be caused, for example, by individual

ants’ experiences and social context. Aggression towards intruders is also regulated by the
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social context. In the Argentine ant Linepithema humile, workers display higher levels of

aggression towards non-nestmates when tested in a group compared to when tested alone.

Furthermore, the presence of brood reduced aggression during dyadic encounters with non-

nest-mates as the workers often engaged in broodcare and broodcarrying (Buczkowski and

Silverman, 2005). To the best of our knowledge, no study to date has investigated how the

immediate social context of interactions inside the nest influences individual behavioral

responses.

In this study, we jointly investigated how individual task allocation, stimuli characteristics

and social context (measured as intra-nest density) relate to individual behavioral responses

and shape intracolony behavioral variation of the slender ant L. acervorum. L. acervorum is a

monomorphic, facultatively polygynous ant with colonies ranging from 50 to a few hundred

workers. In this species, both the reproductive queen and the workers lay eggs (Bourke, 1991).

To maximize stimuli homogeneity and control the context of the ant-stimuli interactions, we

used a teleoperated dummy actuated by the Antbot system introduced in Chapter 2. This

methodology allowed us to evaluate the behavioral responses of individual ants towards a

novel stimulus within their colony of origin and in a nest setting, recreating the ant’s natural

social environment. Furthermore, we could select the location of the interaction between the

ant and the dummy, allowing us to evaluate how intra-nest density influences ants’ behavioral

responses.
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3.2 Methods

3.2.1 Robotic manipulation system

The robotic setup consists of a magnetically guided, exchangeable dummy and an external ma-

nipulator to navigate the dummy among the ants and generate a precise mechanical stimulus

(simulated antennation, Figure 3.1, top right). The dummy was fabricated according to Section

2.3 and Appendix A.2.2. Each dummy was only used with one colony. The manipulator system

is to guide the dummy is described Section 2.3. Here we used the system in teleoperation via

the keyboardAntbot program with visual feedback from a live video stream and a real-time

density map (Section 2.5, Figure 2.8). The details of the system are explained in Chapter 2.

3.2.2 Experimental set-up

Three Leptothorax acervorum colonies consisting of a queen and approximately 100 workers

were collected on August 13, 2020 in Anzeindaz, Switzerland. The colonies were housed in

Teflon™covered plastic boxes that allowed the dummy to slide in the nest during the experi-

ments. The walls of the boxes were covered with Fluon™, an extremely smooth substance

that prevent ants from climbing out of the boxes. The boxes were equipped with a water tube

and a 75×52×2 mm nest made of cardboard and covered with an infrared-pass filter glass

opaque for visible light. The ants were fed once a week with diluted sugar water, Drosophila

flies and honey jelly. At the time of the experiments the colonies had been in the laboratory for

approximately six months. Ten days before the experimental manipulation, the workers were

tagged using unique ARTags markers of 0.7 mm (Figure 3.1 top right, (Mersch et al., 2013)) and

moved to a clean nest. The tagging was done using an immobilization technique that does

not require the use of any form of anesthetic or cooling (Appendix A.2.1). The tags were glued

using fast-drying glue (Pattex ultra™). Before the start of the experimental manipulations,

the dummy was also tagged. To track the ants, we used the Formicidae Tracking System

(FORT)1, an automated marker-based tracking system that records individual ant trajectories

1https://github.com/formicidae-tracker/
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over extended periods of time and produces a live video stream and real-time data to operate

the robot. A daily climate cycle of 12 hours daylight with gradual dawn during 30 minutes and

a temperature of 17°C at 70% humidity was maintained throughout the experiment.

3.2.3 Experimental design

For each colony, the experiment was divided into a seven-day acclimation phase, followed by

a six-day experimental phase. The experimental phase consisted of two four-hour sessions

per day on six consecutive days. Every session consisted of four one-hour periods, including

two hours when targeted interactions were conducted (moving periods) and two hours when

no targeted interactions were conducted and the dummy remained immobile (static periods,

Table 3.1). We randomly selected half of the sessions to start with a moving period and the

other half to start with a static period. A targeted interaction took place when the dummy

entered in physical contact with the targeted ant. Each interaction consisted of a simulated

antennation event where the dummy was directed towards an ant and performed a sinusoidal

wiggling signal at 1 Hz for 15 seconds. Interactions were conducted every 5 minutes. In

some cases (N = 51) interaction events had to be discarded due to technical problems. These

instances involved the loss of the magnetic capture of the dummy, debris jammed under the

magnet that prevented its movement or forceful crashes with ants after the dummy was stuck

or the operator failed.

To avoid overly targeting easier-to-reach ants in less crowded zones of the nest, mobile periods

when the dummy was teleoperated took place in predefined zones with varying ant densities.

To define real-time density zones in the nest, the trajectory of every ant was retrieved in

real-time from the FORT tracking system and plotted in an equidistant density contour plot

overlaid on the live feed. This plot contained three delimited zones calculated using a Gaussian

kernel density estimation that served as visual feedback for the experimenter to direct the

dummy towards an ant in the desired density zone (Figure 3.1, top left). The density of the

zone were the interactions of a given period took place (i.e., low, middle or high) was defined

randomly a priori so that each zone was targeted in four sessions during the experiment (see
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acclimatized dummy fresh d. fresh d. fresh d.

Table 3.1: Experimental plan. Each day included two sessions where dummy interactions were
carried out in either high, middle or low density areas with four periods each during which the
dummy was moving (m) or static (s). Each period was one hour long.

Table 3.1). To investigate whether the dummy could potentially acquire a chemical profile

while inside the nest that influenced the ants’ behavior, the first six experimental sessions

were performed with an acclimatized dummy placed inside the nest seven days before the

start of the first session whereas the remaining six sessions were each conducted with a freshly

fabricated dummy. To avoid disturbing the colony, each dummy was first introduced into the

nest through a secondary nest opening that remained closed otherwise rather than via the

main nest entrance.

3.2.4 Data collection and coding

Interactions between ants and the dummy were detected with the FORT-myrmidon post-

processing library.2 Two ellipses were defined for each individual, one comprising the head

and antenna region and the other comprising the body. Interactions were detected when the

head ellipse of a given individual collided with the head or body ellipses of another individual

or the dummy. The dummy was defined by a single ellipse.

Fifty interactions between ants and the dummy during immobile periods were randomly

selected to evaluate differences in response towards moving and immobile dummies. In

2https://github.com/formicidae-tracker/myrmidon

56

https://github.com/formicidae-tracker/myrmidon


3.2 Methods

a preliminary inspection of the video recordings from the periods where the dummy was

teleoperated (moving periods), five distinctive behavioral responses towards the dummy were

identified (Table 3.2). The recording of each interaction event between the dummy and the

targeted ant during moving periods was cut to a one-minute video sequence, showing the

interaction at second ten. Any video metadata that would allow identifying the time or colony,

was masked. These video sequences where then shuffled and blind-coded by a person who

did not take part in the data collection (AMR). In addition to the behavioral response towards

the dummy, for each interaction during moving periods we recorded the density of ants in

the zone where the interaction took place, the task that the focal ant was performing right

before the interaction, the ant ID, the colony ID and whether the dummy was acclimatized or

freshly-made.

In addition to interaction- and dummy-specific factors (e.g. zone density and whether the

dummy was acclimatized or not), we also recorded some individual-level characteristics that

are generally associated with division of labor in social insects. Specifically, we coded how

much brood care, foraging and guarding each individual ant performed during the six days

of the experiment. Individual brood care frequency was calculated by analyzing five-minute

videos every four hours during the acclimation phase and determining which ants were doing

brood care during the five-minute videos. The brood care frequency of each ant was then

calculated as the sum of the number of five-minute videos in which the ant had been observed

doing brood care. The foraging frequency of each ant was calculated as the number of times an

individual left the nest, since all food sources were located outside of the nest (Charbonneau

et al., 2015). Guarding time was calculated as the total amount of time an individual was

observed within five body lengths (measured as the colony average) to the nest entrance,

immobile (i.e. moving less than 5% of the body length per second) and oriented within ±45o

of the nest entrance (see also (Richardson et al., 2022)).
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3.2.5 Statistical analyses

We conducted the statistical analyses in R (version 3.6.3; R Core Team, 2020) and RStudio

(version 1.2.5031; RStudio Team, 2020). We used Generalized Linear Mixed-Effects model

(GLMMs) to evaluate the effects of different predictors on three main response variables:

• Model 1: the probability of ants to explore (antennate) the dummy

• Model 3: the probability of ants to respond to the dummy after a targeted interaction

• Models 2 and 4: the probability of ants to respond alarmed towards the dummy after a

targeted interaction

We defined alarmed responses as any response that included biting, excited bouts or both

(see Table 3.2 for definitions). Climbing on top of the dummy was not classified as part of the

alarmed response because it was not obviously related with behaviors associated with anxiety

or agitation.

In Model 1 we evaluated whether ants were more likely to explore a moving dummy compared

to a static dummy. In Model 2 we evaluated whether ants were more likely to respond alarmed

to a moving compared to a static dummy. Models 1 and 2 were GLMMs with binomial error

structures. The response variables were whether the ants explored the dummy after an interac-

tion (yes/no, Model 1) and whether they responded alarmed to the dummy after an interaction

(yes/no, Model 2). As predictor, we considered the state of the dummy (moving/static). We

used a subset of the data to fit Models 1 and 2 that only comprised ‘active’ ants (Nant s = 178),

as these were the only ants that interacted with the non-moving dummy (targeted interactions

with the moving dummy involved both active and non-active ants). Active ants were classified

as those engaging in antennation, walking or brood care at the time of the interaction with the

dummy. For all subsequent statistical analyses we only considered the targeted interactions

performed with the moving dummy (Ni nter acti ons = 651) as these where conducted under the

control of the experimenter and were balanced across experimental conditions and colonies.
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In Model 3, we investigated how the probability of ants to respond towards the dummy (binary

variable) was influenced by:

1) ant density in the zone where the interaction took place (factor with three levels: high,

medium or low)

2) task performed right before the interaction

3) dummy acclimatization (factor with two levels: acclimatized or freshly-made)

4) brood care frequency

5) foraging frequency

6) guarding time

The task variable was a factor with five levels reflecting the behavior that the targeted ant was

doing right before the dummy interacted with it. These behaviors included brood care, being

frozen (immobile with no antenna movement), being idle (immobile with antenna movement),

antennating with another ant or the dummy and walking. Given that 56% of individuals were

targeted while doing multiple tasks, the random slope of task within individual could have been

included as a random effect in the model. However, the inclusion of this random slope caused

convergence and estimation problems as the slopes of some factor levels within individual ID

where unidentifiable. Consequently, we opted to not include this random slope in the model.

This model had a binomial error distribution and a logic function. Model 4 had the same fixed

and random effect structure as Model 3 but this time we evaluated the predictors’ influence on

the probability of the ants to respond alarmed to the dummy. Confidence intervals of model

estimates were calculated via parametric bootstrapping, where new instances of the response

were generated based on model results and the model refitted to these new instances allowing

us to derive estimate distributions.

Before fitting Models 3 and 4 described above, we z-transformed covariates (brood care fre-

quency, foraging frequency and guarding time) to have a mean of zero and standard deviation
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of one to facilitate the interpretation of the coefficient estimates (Schielzeth, 2010). Models 1

to 4 included the random intercept of individual ID as well as colony ID as control predictor.

All models were checked for col-linearity and overall stability without finding any issues. We

drew inference by comparing the full models containing all fixed and random predictors

with a reduced null model lacking the predictors of interest but containing all other model

elements (Forstmeier and Schielzeth, 2011) using a likelihood ratio test (‘Chisq’ in R function

ANOVA). This approach of initially testing the significance of all test predictors prevents what

is known as ‘cryptic multiple testing’ and maintains type 1 error rates at the nominal level

of 0.05 (Forstmeier and Schielzeth, 2011). P-values for fixed effects were obtained using the

R function drop1. Pairwise comparisons were conducted using the function emmeans from

the package with the same name. All models were fitted with the function glmer from the

package lme4. Post-hoc McNemar tests were used to evaluate alternative explanations for the

results obtained from Models 3 and 4 using the function mcNemar from the package epibasix.
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3.3 Results

In total, we coded 801 interactions between the dummy and the individual ants (Figure 3.1).

Of these, 702 were interactions where the dummy was mobile (i.e., teleoperated to interact

with an ant). We excluded all interactions where there was a technical problem (N = 51, see

Methods), leaving a total of 752 interactions with 208 different ants. Most ants (77%) were

targeted only once during the experiments. We observed five different types of responses of

the ants towards the dummy: indifference, antennation, excited bouts, climbing on top, and

biting (see Table 3.2). The frequencies of each response as well as the observed combinations

of responses are shown in Figure 3.1.

Ants were significantly more likely to respond alarmed towards the dummy when it was moving

than when it was kept stationary (Model 1: χ2 = 60.31, df = 1, p < 0.001, estimate ±SD =
9.33±1.73). However, ants were less likely to explore the dummy when it was moving than

when it was stationary (Model 2: χ2 = 35.01, df = 1, p < 0.001, estimate ±SD =−2.72±0.63).

3.3.1 Factors influencing the probability of responding to the dummy

We evaluated how the probability of ants responding to the moving dummy was influenced by

the density of workers in the zone of contact, acclimatization of the dummy (i.e. whether or not

it had been in the colony during the six days prior to the experiment), the task performed just

before the interaction, brood care frequency, foraging frequency and time spent guarding. The

comparison of the full and null models revealed that the predictors were significant as a whole

(χ2 = 68.73, df = 10, p < 0.001, Figure 3.2). Regarding individual fixed effects, we found that

the density of ants in the zone where the interaction took place had a significant effect on the

probability that ants responded to the dummy (Likelihood ratio test = 40.75, df = 2, p < 0.001).

Similarly, the task that the ants were performing just before interacting with the dummy

significantly influenced the probability of response (Likelihood ratio test = 27.32, df = 4,

p < 0.001). Ants’ probability of response was not significantly affected by the acclimatization of

the dummy (Likelihood ratio test = 2.04, df = 1, p = 0.15), the individual brood care frequency
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Indifferent: The ant is touched by the wiggling dummy but shows
no response (i.e., the head does not orient towards the dummy
and occasionally the ant just walks/runs away without turning
towards the dummy).

Exploratory: The ant touches the dummy with the antennae.

Excited bouts: After antenating the dummy the ant quickly moves
away from it and proceeds to interact in quick succession with
ants nearby or to check on eggs. Occasionally the ant will return
to interact again with the dummy.

Climbing on top: The ant climbs on top of the dummy placing
head and thorax on top of it.

Biting: Ant bites the dummy’s mock antennae.

Table 3.2: Ethogram describing the different behavioral responses of the ants towards the
dummy.
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Figure 3.1: Top left panel illustrates the three density zones and their limits inside of the
nest. Warmer colors represent high density zones and colder colors represent lower densities.
Each number in blue represents an ant and the green symbol marks the position of the
dummy. The double arrow marks the nest entrance. The top right picture illustrates a tagged
ant antennating with the tagged dummy. The bottom graph depicts the frequencies of the
different behavioral responses observed (left) and the different behavioral combinations
observed (top).
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(Likelihood ratio test = 0.085, p = 0.77), the individual foraging frequency (Likelihood ratio

test = 0.057, p = 0.81) or the guarding time (Likelihood ratio test = 1.46, p = 0.23).

Ants were less likely to respond if the interaction took place in a high-density zone than

a middle- or low-density zone (high-low: odds ratio = 0.19, p < 0.001; high-middle: odds

odds ratio = 0.23, p < 0.001; middle-low: odds ratio = 0.82, p = 0.83). To exclude the possibility

that the observed differences in the response could stem from intrinsic differences in response

thresholds between ants located in the different density zones, we compared the the responses

of ants that are stimulated at least once in both the high- and middle-density zones or in the

high- and low-density zones (Nant s = 53). The probability of responding to the dummy for a

given ant was significantly lower when ants were in the high-density zone than in the middle-

or low-density zones (Table 3.3). The same results were obtained when only a single value per

ant and density zone was considered (Table 3.3).

Density zone Sample per ant/task Nant s McNemar-χ2 Odds ratio 95%CI p

High-Mid all observations 53 37.31 7.37 3.89, 28.16 <0.001
High-Low all observations 53 41.34 5.43 3.24, 12.31 <0.001

High-Mid one observation 53 21.02 7.0 3.17, 98.89 <0.001
High-Low one observation 53 17.35 5.0 2.43, 22.78 <0.001

Table 3.3: Pairwise comparisons of the probability to respond towards the dummy of ants
tested in two density zones.

The observed differences in probability of response towards the dummy could be due to the

intrinsic differences in response thresholds among the ants performing different tasks. To test

this hypothesis, we reevaluated the pairwise differences between tasks, considering only those

individuals that had been tested when performing both tasks. Three of the four previously

significant pairwise comparisons were found to be significant both when all observations

per ant and task were used, and when only one observation per ant and task was considered

(Table 3.4). There was no significant difference between ants performing antennation and

brood care when only considering those individuals that were tested when performing both

tasks (N = 6).

To evaluate whether being in physical contact with the brood influenced the probability to
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behaviors Sample per ant/task Nant s McNemar-χ2 Odds ratio 95%CI p

Antennation-
Brood care

all observations 13 2.11 × × 0.146

Frozen-Brood all observations 37 7.87 2.29 1.31, 4.74 0.005
Idle-Brood all observations 12 9.09 × × 0.003
Idle-Frozen all observations 46 98.43 36.33 15.35, -132.92 <0.001

Antennation-
Brood care

one observation 13 4.08 × × 0.043

Frozen-Brood one observation 37 6.91 2.7 1.34, 7.80 0.009
Idle-Brood one observation 12 4.17 × × 0.04
Idle-Frozen one observation 46 23.36 11 4.33, -48.98 <0.001

Table 3.4: Pairwise comparisons of the probability to respond towards the dummy of ants
tested when doing multiple tasks. (×): In those tests the odds ratio could not be calculated
due to the number of discordant pairs being smaller than 30, the results should be taken with
caution.

respond to the dummy, we compared the probability of response of ants that had been tested

both when they were in physical contact with brood and when they were not (N = 55). Ants

in the presence of brood were less likely to respond to the dummy (McNemar χ2 = 72.75,

p < 0.001, odds ratio = 6.15, 95%CI[3.99,11.57]) and this difference remained significant when

only one response per ant in each condition (presence or absence of brood) was considered

(McNemar χ2 = 19.59, p < 0.001, odds ratio = 3.92, 95%CI[2.18,9.85]).
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Figure 3.2: The first row of plots illustrates the probabilities of ants to respond to the dummy
in the different density zones (A), to a fresh and an acclimatized dummy (B) and while doing
different tasks (C). Horizontal blue lines represent fitted values calculated by the model and
vertical lines represent 95% confidence intervals calculated via bootstrapping. Stars (*, **
or ***) denote significant differences between groups and a p-value lower than 0.05, 0.1 and
0.001, respectively. The second row of plots illustrates the probability of ants to respond to the
dummy as a function of foraging frequency (D), brood care frequency (E) and guarding time
(F) z-transformed. Each dot corresponds to an individual ant and the dots’ colors represent
colony identity. The dashed line is the fitted model and the grey zone the 95% confidence
intervals of the model calculated via bootstrapping.
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3.3.2 Factors that influence the probability of alarm behavior

Next, we tested whether the probability of responding alarmed towards the moving dummy

was influenced by the density of workers, acclimatization of the dummy, task performed just

before the interaction, brood care frequency, foraging frequency and guarding time. The

comparison of the full and null models revealed that the predictors were significant as a

whole (χ2 = 51.24, df = 10, p < 0.001, Figure 3.3). Regarding the individual fixed effects, we

found that the ant density in the zone where the interaction took place had a significant

effect on the probability that ants responded alarmed towards the dummy (Likelihood ratio

test = 34.59, df = 2, p < 0.001). The probability of ants to respond alarmed towards the

dummy was not significantly affected by the task the ants were performing at the time of

the interaction (Likelihood ratio test = 5.56, df = 4, p = 0.23) nor by the acclimatization of

the dummy (Likelihood ratio test = 3.47, df = 1, p = 0.06). Instead, the probability of ants to

respond alarmed towards the dummy was positively influenced both by the individual brood

care (Likelihood ratio test = 3.9, df = 1, p = 0.047) and foraging frequencies (Likelihood ratio

test = 5.31, df = 1, p = 0.02). Guarding time did not significantly affect ants’ probability to

respond alarmed (Likelihood ratio test = 2.53, df = 1, p = 0.11).

Ants were significantly more likely to be alarmed when the interaction took place in a middle-

(odds ratio = 0.19, p < 0.001) or low-density zone (odds ratio = 0.17, p < 0.001) than in a

high-density zone. There were no differences between middle and low-density zones (odds

ratio = 0.91, p = 0.93). As for Model 3, we conducted pairwise tests to exclude the possibility

that these differences in alarm may stem from intrinsic differences in response thresholds

between ants located in the different parts of the nest. To this end, we conducted follow up

tests only considering ants that had been tested both in a high- and middle-density zone

or in a high- and a low-density zone. Pairwise tests confirmed the previous results when all

observations per ant and zones were considered as well as when a single observation per ant

and zone was considered (Table 3.5).
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Density zone Sample per ant/task Nant s McNemar-χ2 Odds ratio 95%CI p

High-Mid all observations 53 51.25 0.09 0.01, 0.17 <0.001
High-Low all observations 53 54.79 0.12 0.04, 0.22 <0.001

High-Mid one observation 53 30.62 0.05 -0.29, 0.15 <0.001
High-Low one observation 53 19.12 0.17 0.03, 0.36 <0.001

Table 3.5: Pairwise comparisons of the probability to respond alarmed of ants tested in two
density zones.
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Figure 3.3: The first row of plots illustrates the probabilities of ants to respond alarmed towards
the dummy in the different density zones (A), to a fresh and an acclimatized dummy (B) and
when doing different tasks (C). Horizontal blue lines represent fitted values calculated by the
model and vertical lines represent 95% confidence intervals calculated via bootstrapping.
Stars (***) denote significant differences between groups and a p-value lower than 0.001. The
second row of plots illustrates the probability of ants to respond alarmed towards the dummy
as a function of foraging frequency (D), brood care frequency (E) and guarding time (F) z-
transformed. Each dot corresponds to an individual ant and the dots’ colors represent colony
identity. The dashed line is the fitted model and the grey zone the 95% confidence intervals of
the model calculated via bootstrapping.
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3.3.3 Habituation hypothesis

The observed differences between density zones in the probability of responding to the dummy

and the probability of responding alarmed could stem from a habituation process, whereby

ants in higher density zones are exposed to more interactions and thus become less responsive

(including less alarmed) towards stimuli. To test this hypothesis, we evaluated the effect

that the number of previous interactions had on the probabilities of responding and being

alarmed. We fit a series of binomial models including as fixed effect predictors the number

of interactions that each ant experienced in three different time windows (one, two and five

minutes before the interaction). We controlled for colony identity and included the random

intercept of individual identity. The number of interactions that an ant had during the minute

before had a negative effect on the probability of responding to the dummy (estimate =−0.45,

χ2 = 16.85, df = 1, p < 0.001). This effect was still significant when the time window considered

was expanded to two minutes (estimate =−0.45, χ2 = 14.67, df = 1, p < 0.001) and five minutes

before the ant-dummy interaction (estimate =−0.067, χ2 = 7.96, df = 1, p = 0.004), although

to a lesser extent. The number of interactions that an ant had during the minute before an

interaction also had a negative effect on the probability of responding alarmed towards the

dummy (estimate =−0.32, χ2 = 7.94, df = 1, p = 0.005). However, this effect was not significant

when the time window considered was extended to two minutes (estimate =−0.19, χ2 = 2.92,

df = 1, p = 0.09) and five minutes (estimate =−0.17, χ2 = 2.33, df = 1, p = 0.13).

To rule out the possibility that these differences may stem from intrinsic behavioral differences

associated with the overall level of activity of different ants, we investigated whether for a given

ant, the probabilities of response and alarm were influenced by the ant’s activity level. We

classified interactions as having taken place in a high- or low-activity window if the number of

interactions of the ant was higher or lower (respectively) compared to its average activity level

measured during the 12 hours preceding the interactions and the 12 hours after the interaction.

These analyses showed that ants were less likely to respond to the dummy when the interaction

took place during a high-activity than low-activity window, regardless of window length (Table

3.6). The ants’ probability of responding alarmed towards the dummy was also lower when
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Window [min] Dependent variable McNemar-χ2 Odds ratio 95%CI p

1 Prob. response 93.94 5.69 [3.94, 9.34] <0.001
2 Prob. response 92.92 4.67 [3.49, 7.47] <0.001
5 Prob. response 117.04 6.71 [4.66, 11.12] <0.001

1 Prob. alarm 84.85 0.24 [0.16, 0.33] <0.001
2 Prob. alarm 83.43 0.26 [0.18, 0.36] <0.001
5 Prob. alarm 64.57 0.28 [0.19, 0.39] <0.001

Table 3.6: Comparisons of ants’ probabilities of responding to the dummy (Prob. response)
and of responding alarmed towards the dummy (Prob. alarm) during high and low activity
time windows before interaction.

interactions took place in low-activity, regardless of the window length considered (Table 3.6).

3.4 Discussion

Using the Antbot system, we investigated how task performance, social environment and

stimuli characteristics influence behavioral responses in the ant L. acervorum. Ants were more

likely to interact, but less likely to explore, moving than static dummies. This finding is likely

to reflect a larger variation in the behavioral responses of ants when the dummy was moving

compared to when it was stationary. In other words, even though the ants responded less to

the non-mobile dummy compared to the moving dummy, when they did respond to it, they

mostly explored it via antennation whereas they responded in a variety of ways to the moving

dummy. Similar patterns have been found when comparing the mean tail beat frequency (a

measure of responsiveness) of Atlantic salmon (Salmon salar) to a moving and a passively

floating robot (Kruusmaa et al., 2020). Salmon were more responsive (i.e. had a higher tail beat

frequency) towards a moving robot compared to a floating robot. Different responses towards

moving and non-moving robotic dummies were also found in electric fish (Mormyrus rume)

which were more likely to swim towards moving than static dummies (Worm et al., 2017).

When considering only targeted interactions between moving dummies and ants, we found

that ants’ probability to respond to the dummy varied depending on the task they were per-

forming, with ants doing brood care being the least likely to respond. In comparison, ants
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that were inactive (idle or frozen, (Charbonneau et al., 2017)) at the time of interaction had

a higher probability of responding to the dummy. These results could be explained by the

existence of different response thresholds in different specialized groups of ants (inactive vs

broodcaring ants, (Charbonneau et al., 2017)). However, individual-level analysis of ants tested

when performing different pairs of tasks revealed that the different response probabilities ob-

served were not an individual trait but rather plastically modified depending on the task being

performed. Similarly, previous studies have shown that in the context of dyadic behavioral

essays with individuals from different colonies, the probability of aggression of Argentine ants

(Linepithema humile) significantly decreased if brood was present (Buczkowski and Silverman,

2005). The authors report that when brood was present, workers often prioritized carrying

brood and tending to the brood over attacking each other. Therefore, ants in our experiments

might have prioritized continue tending to the brood or moving the brood away from the

dummy over responding to it which would lead to lower response probabilities compared to

ants that were mostly inactive at the time of testing.

Ants’ probability of response was also influenced by the social environment, namely the

density of ants in the zone where the interaction took place. When ants were targeted in

high density zones, they were less likely to respond than when they were targeted in middle-

or low-density zones. The same was true when the probability of ants to respond alarmed

towards the dummy was investigated: ants were less likely to respond alarmed when tested in

high- compared to middle- or low-density zones. Moreover, there was a negative relationship

between the number of interactions an ant had been involved in before being targeted by

the dummy and the probability of response and alarm. This relation could be due to two

mechanisms. First, more active ants that engaged in a higher number of interactions may

have higher response and alarm thresholds compared to less active ants that engaged in a

lower number of interactions. Alternatively, there may be a habituation process at play where

ants’ response probabilities are negatively affected by the previous number of interactions.

To disentangle between these two explanations, we compared individual responses during

above-average and below-average periods of activity and found that response and alarm
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probabilities were in fact lower during above-average periods of activity. Taken together these

results suggest that desensitization or habituation, a simple form of associative learning that

involves a reduction in responsiveness to a repeatedly perceived stimulus (Grangier et al.,

2007), influences workers responses to tactile stimuli.

Habituation processes to odorant stimuli have been previously described in ants. In Pheidole

desert ants the mean level of aggression between ants of different colonies was significantly

lower if the ants had interacted before (Langen et al., 2000). Similarly, in the Argentine ant

repeated exposure to their alarm pheromone reduced alarmed responses until after four or five

exposures, there was no behavioral response at all (Maccaro et al., 2020). Tactile habituation

to non-harmful stimuli has been reported in plants (Mimosa pudica, (Serpell and Chaves-

Campos, 2022)) humans (Kisilevsky and Muir, 1984) and animals (Carew et al., 1972). Although

tactile habituation has rarely been investigated in insects, (Hölldobler et al., 1990) proposed

that the variation in antennal postures exhibited by ants during trophallaxis could be explain

by a necessity to avoid habituation to the tactile stimuli. Our results contrast with previous

studies on ant aggression showing that experimentally increased worker density in the ant

Crematogaster mimosae led to higher levels of aggression towards heterospecifics (C. nigricepts,

(Ruiz-Guajardo et al., 2017)). However, these differences could be due to methodological

differences such as the use of a dummy as a stimulus as well the location of the interactions

(i.e., inside vs outside the nest).

The probability of alarm, but not the probability of response, was found to be positively

related to task specialization: ants that engaged in more brood care and, to a lesser degree,

more foraging were more likely to respond alarmed to the dummy. These results contrast

with our findings regarding task effects in the sense that while we found that the probability

to respond to the dummy was context-specific, the probability of alarm seems to vary at

the individual level. L. acervorum has been recently described as having a proportion of

specialized individuals of around 15% based on their spatial use patterns (Richardson et al.,

2022), indicating that most individuals are facultative, non-specialized workers. Our results

suggest that task specialization is related with higher probabilities of alarm in this species.
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(Richardson et al., 2022) described the nest entrance as being a key location for L. acervorum in

the sense that together with the brood pile, this area is visited regularly by the same individuals.

The role of immobile individuals at the nest entrance is unclear: these individuals could be

foragers waiting to be recruited, individuals tasked with nest defense or intermediates in the

distribution of food and information towards nest-workers. Using the dummy as tactile stimuli,

we did not find that ants that spent more time guarding were more likely to respond alarmed,

a relationship that we did find to be significant when we considered foraging frequency. If

guarding and foraging were performed by the same individuals we would have expected these

two variables to be equally related to the probability of alarm. Therefore, our results do not

support the hypothesis that ants at the nest entrance are foragers. Similarly, we do not find

support for the hypothesis that individuals at the nest entrance engage in nest defense, as

guarding time does not significantly predict probability of alarm. Instead, these individuals

could be acting as intermediates between foragers and intra-nest workers although this

hypothesis remains untested.

Ants rely on cuticular chemical profiles to discriminate between nestmates and outsiders.

Recognition of outsiders is often followed by alarmed and aggressive responses (Lenoir et al.,

2001; Sturgis and Gordon, 2012). Thus, it was surprising that the acclimatization of the dummy

did not affect the probability of response nor alarm in our experiments and that ants were

equally likely to respond to a freshly made dummy than to a dummy that had spent a week

inside of the colony. It is possible that L. acervorum ants did not perceive a difference between

the chemical profiles of fresh and acclimatized dummies. In the ant Camponotus herculeanus,

it has been shown that the addition, but not the subtraction, of cuticular carbohydrates elicits

aggressive responses. This indicates that at least in this species, ants do not specifically react to

nestmates’ profiles but instead recognize and reject individuals carrying profiles with elements

that do not belong to their colony’s profile (Guerrieri et al., 2009). If this was also the case

in L. acervorum, ants would not have recognized the fresh dummy as foreign because it did

not carry novel hydrocarbons but instead had no hydrocarbon profile. Another possible

explanation is that the dummies that spent a week inside of the nest prior to the experiments
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did not acquire the colony’s chemical profile, and thus were indistinguishable from the freshly

made dummies.

3.4.1 Conclusion

The Antbot platform allows to apply controlled tactile stimulus to targeted ants in order to si-

multaneously investigate multiple drivers of individual behavioral variation in an ecologically-

relevant context. Using this platform, we found that, while L. acervorum’s responsiveness is

mediated by context-specific factors such as the task being performed when a stimulus is

applied, ants probability of alarm is influenced by individual task specialization. Furthermore,

we found evidence that ants might be subjected to a process of tactile habituation where

the more interactions an ant has experienced in the minutes preceding the presentation of

a stimuli, the lower is the probability that the ant will respond to the stimulus. This result

highlights the importance of considering the social environment of individual ants when

evaluating response and alarm thresholds.

This study showcases the advantages of presenting tactile stimuli to ants via a magnetically-

actuated dummy over using other types of agents such as live or dead conspecifics. The use

of a teleoperated dummy allows researchers to target specific individuals in specific areas

of the nest instead of performing behavioral essays in separate arenas outside of the ants’

social and spatial context. The dummy also allows to provide standardized stimuli to all

targeted individuals, an aspect that is hard to replicate when using live or dead agents as

these might change over time across trials in terms of, for instance, behavior or odour. The

fact that we were able to capture individual behavioral variation and establish causal links

between behavior and social- and context-specific factors validates the usefulness of this

system to investigate ant behavior in the laboratory. Furthermore, the experiments presented

here open new research avenues to investigate the effects of more complex stimulus, such as

the combination of tactile and chemical signals, on ant behavior.
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4 Socially aware robot navigation

The work described in this chapter represents a standalone project on the abstract problem of

robot navigation and will be submitted as:

Temporally persistent motion planning in dense dynamic
environments for socially aware navigation

Matthias Rüegg1, Ömür Arslan2, Mahmut Selman Sakar1

1 Institute of Mechanical Engineering, École polytechnique fédérale de Lausanne, Lausanne,
1015, Switzerland.
2 Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 530,
5600 MB, Eindhoven, The Netherlands.

Abstract

Temporally consistent motion planning is crucial for navigating robots in dynamic social

environments without disturbing the surrounding living or robotic agents. In this chapter,

we propose a new approach for achieving temporal persistence in navigation by enforcing

structural persistence in high-level motion planning based on simplicial discrete abstractions.

We introduce a novel notion of simplicial sphere world complexes for modelling dynamic

environments consisting of convex polygonal static obstacles and spherical moving obstacles.

Simplicial abstractions can be built with the desired global properties. Here, we use a regular
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triangulation that takes the vertex weight into account to establish a minimal clearance for the

transition of adjacent cells. Accordingly, we describe algorithms for constructing high-level

navigation paths and corridors over a simplicial sphere world complex, and show how to

realize such high-level plans using low-level feedback control policies for fully-actuated and

unicycle robot models. We demonstrate the effectiveness of the algorithms with numerical

simulations.

4.1 Introduction

Navigation of mobile robots in crowded public spaces has gained attention due to the in-

creased demand to integrate robots into the social life. In addition to safety, energy con-

servation and efficiency, a fourth consideration for navigating such environments is social

awareness, which ensures that the robot is navigated in a socially compliant manner (Kruse

et al., 2013). There is no consensus on the precise definitions of the factors that are necessary

for socially aware navigation (Rios-Martinez et al., 2015). Yet, a working definition of the

problem together with the fundamental metrics to evaluate the performance of a social robot

navigation system are formulated (Mavrogiannis et al., 2021). These metrics include path

efficiency (i.e., the ratio of the costs of sub-optimal and optimal paths), collision rate, speed

efficiency (i.e., the ratio of nominal and actual speeds) and path irregularity (i.e, the amount

of deviation from a straight path). Based on these metrics, the primary objective of socially

aware navigation is to reduce unnecessary interactions between the robot and the surround-

ing agents while providing consistent motion to avoid erratic and oscillatory motion due to

uncoordinated mutual avoidance (Feurtey, 2000) or freezing due to excessive conservatism

caused by uncertainty in prediction (Trautman et al., 2015). Predictable motion is expected to

increase the probability of acceptance of the robot into the crowd (Lichtenthäler et al., 2012).

Navigation has been studied as a hierarchical planning problem that consists of global path

planning and local motion planning. Given a route found by a global path planner, a local

motion planner aims to safely navigate to a next waypoint while avoiding mobile agents
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and satisfying various dynamic constraints. Socially aware navigation algorithms can be

grouped according to the degree of coupling between prediction and planning (Kruse et al.,

2013; Mavrogiannis et al., 2021). Recent research has shown that coupling robot action with

predictions on the movement of the agents can avoid erratic motion and the freezing problem

(Kruse et al., 2013; Cai et al., 2020; Mavrogiannis et al., 2021). A representative example is

the combined prediction-actuation approach used with velocity obstacles (Fiorini and Shiller,

1998; Van den Berg et al., 2008; Wilkie et al., 2009; Gonon et al., 2021). These reactive navigation

strategies are commonly tested in relatively simple environments that include small number

of agents or with robots moving in well-structured environments such as along a corridor

(Huber et al., 2022; Feder and Slotine, 1997; Fiorini and Shiller, 1998; Phillips and Likhachev,

2011; Gonon et al., 2021).

Path planning for mobile robots in large dynamic environments is a challenging problem, as

the robots are required to efficiently reach their given goals while simultaneously avoiding

potential conflicts with other robots or dynamic objects. Traditional solutions usually treat

dynamic agents as static obstacles, and re-call a planning algorithm to search for an alternative

path whenever the robot encounters a conflict. However, such re-planning strategies often

cause unnecessary detours and sacrifice optimality (Phillips and Likhachev, 2011). To address

this problem, approximate path planning strategies based on reinforcement learning (Wang

et al., 2020), model predictive control (Mavrogiannis et al., 2022), probabilistic roadmaps

(Foka and Trahanias, 2010), rapidly exploring random trees (Fulgenzi et al., 2008) and neural

networks (Villacorta-Atienza and Makarov, 2013) have been proposed.

Combinatorial algorithms guarantee to rapidly find optimal solutions if they exist, and re-

port if they do not exist ((LaValle, 2006)). Discrete abstractions can transform continuous

motion planning into a computationally inexpensive problem without losing any essential

information. For a finite size agent, if the assumption that the workspace is fully permissible

is dropped, poor abstraction will lead to problems in path planning. The basic idea is that

a polygonal sphere world can be discretized using triangulation in a way that it encodes the

penetrability, and its dual graph can then be used for path planning. Meshes have been used
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to encode the distance to collision for navigation in dynamic environments with polygonal

obstacles (Van Toll et al., 2012). Discrete abstractions with temporal logic specifications have

been developed for motion planning in complex environments with sequential temporal task

specifications and collision avoidance (Burridge et al., 1999; Belta et al., 2005; Fainekos et al.,

2005a,b; Kress-Gazit et al., 2009; Conner et al., 2009).

In this chapter, we introduce a framework in which solutions of discrete algorithms dealing

with the complexity of the environment automatically ensure socially aware robot navigation.

We assume complete and instantaneous knowledge on the world, and focus on the synthesis

of a global path planner suited for a dense dynamic world. The main idea is to maximize path

efficiency through temporal persistence. We also introduce the clearance penalty concept,

which avoids freezing due to the temporary non-existence of a collision free path.

The abstraction of the polygonal sphere world is based on a meshing concept that implicitly

encodes the collision distance in order to estimate the navigation cost. The concept of the

generalized sphere world, a disk shaped workspace punctuated by spherical obstacles, was

originally introduced by (Rimon and Koditschek, 1992) together with potential functions for

exact navigation of a point robot. Here, we use a similar concept, but combine spherical

moving obstacles with static polygonal obstacles for a more holistic representation of the

workspace. The algorithm traces and re-evaluates previous path solutions efficiently on the

structural level of a simplicial abstraction, and uses a heuristic to improve path efficiency. The

path planning algorithm is compatible with any motion planner that is capable of pursuing

a local reference goal in a polygonal sphere world. In this work, we integrated a motion

controller that locally modifies the cell decomposition in order to establish a collision free

region, consequently providing a safe and provably exact control policy (Arslan and Koditschek,

2016).

The main contributions of the chapter are summarized below:

1. Modeling of navigation world with a simplicial discrete abstraction of the convex

workspace including spherical and convex polygonal obstacles and use its duality for
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path planing on the dual graph to find what we call navigation corridors.

2. Construction of a finite-size simplicial spherical world using regular triangulations (RT)

to model the connectivity and estimate the minimal clearance of simplicial corridors.

3. Achieving temporal persistence in motion planning via a cost heuristic on retained

previous (at timestep t −∆t ) and current optimal (at timestep t ) solutions.

4. Implementation of planning with the path following of a collision safety enforcing

motion controller for fully-actuated and unicycle robot dynamics.

5. Simulations to demonstrate the algorithm in multi-robot navigation and cluttered

dynamic worlds.

Polygonal sphere world
St : polygonal workspace

Wp and spherical obstacles s

Simplicial abstraction: trian-
gulation T , dual graph G(T )

Motion graph: FGm(T ) Connectiv-
ity and clearance of sphere world

Path re-identification:
updated cost C̄

Path persistence: heuristic
decision on planned path

Motion planner: safe nav-
igation in local free zone

agent sphere sa

global goal xg

triangulation

optimal path p∗, cost C∗

intermediate goal x∗

pt−1

Figure 4.1: A schematic overview of the temporally persistent motion planning algorithm.

The rest of the chapter is organized as follows. In Section 4.2, the simplicial sphere world is

introduced along with the basic definitions for the conforming constrained triangulation that

is used as an abstraction. A certificate for collision free corridor in sphere worlds is derived in
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Section 4.3 as a basis for the cost function used to find and re-identify navigation path on the

motion graph in Section 4.4. In Section 4.5, the capabilities of the algorithm are explored using

a multi-agent and a single agent scenario in a complex dynamic world. Section 4.6 concludes

the chapter.

4.2 Simplicial sphere world complexes

Figure 4.2 illustrates the inspiration from designing a navigation algorithm for an autonomous

agent in the ant nest for the abstract problem addressed in this Chapter. The goal for the

robotic dummy agent (black/green circle) is to contact a given target individual (red circle)

autonomously. Ants live densely packed inside a nest, together with a queen and brood and

move in way which is hard to predict or interpret. The forbidden areas, e.g. to protect brood

and queen, are represented with polygonal regions. The algorithm presented here assumes

convex polygons, which can however be used in a union to model non-convex shapes.

Figure 4.2: The challenge of finding a navigation path in the ant world, modeled with the
polygonal sphere world. Ant are represented with moving spheres, workspace and forbidden
areas, e.g. to protect the queen (gold colored individual) and the brood (grey points), are
represented with polygonal regions.
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4.2.1 Definitions and notation

Definition 1 (Sphere) A sphere centered at x with radius r ∈R≥0 is defined as:

s(x,r ) := {q ∈Rn | ∥q−x∥ = r } (4.1)

and represents the surface of the closed ball B(s) := {q ∈Rn | ∥q−x∥ ≤ r }.

Definition 2 (Orthogonal spheres) Two spheres si , s j are said to be (sub-) orthogonal, if

∥∥xi −xj
∥∥2(≥) = r 2

i + r 2
j (4.2)

Definition 3 (Power distance (Edelsbrunner and Shah, 1996)) The power distance of a point

p ∈Rn to the sphere s, centered at x ∈Rn , with radius r ≥ 0, is defined as:

π(s,p) = ∥∥x−p
∥∥2 − r 2 (4.3)

The power distance can be interpreted as the length of a segment from point p to a tangent

point on s. Definitions 2 and 3 imply that the centers of two orthogonal spheres si ,s j lie at

equal power distance from each other: π(si ,x j ) =π(s j ,xi ).
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Definition 4 (Triangulation) A triangulation1 T (x) = {t1, . . . , tk } of a finite set of m > 0 points

x = (x1, . . .xm) ∈ Rm×n in a n-dimensional Euclidean space is a collection of vertex indices

t1, . . . , tk ∈ Pn(m) := {t ⊆ {1, . . . ,m} | |t | = n +1} of n-simplices △t1 , . . . ,△tk such that

•
⋃k

i=1△ti (x) = conv(x1, . . . ,xm)

•
⋃k

i=1 ti = {1, . . . ,m}

• △̊ti (x)∩△̊t j (x) =∅, ∀i ̸= j ∈ {1, . . . ,k}

where the n-simplex △t(x) is defined as

△t(x) := conv({xi |i ∈ t}) (4.4)

and △̊ti (x) denotes the interior. For an edge the expression [x j ,xk ] := conv(
{
xi |i ∈

{
j ,k

}}
is

used.

Definition 5 (Constrained Triangulation) Given a set of constraints C ⊂∪n
i=0Pi (m)2, a con-

strained triangulation is a triangulation T (x) = {t1, . . . , tm}, such that for every c ∈ C there

exists a triangle t ∈T that satisfies c ⊆ t. T is said to respect C .

Definition 6 (Conforming Constrained Triangulation) Given a constrained triangulation T (x)

that respects a set of constraints C , a conforming constrained triangulation3 T ′(x∪x′) is a

refined version of the triangulation T with an set of m′ additional vertices4 x′ such that every

constraint is a union of edges in T ′. More precisely, for each ci ∈ C there exists a subset

E = {Pn−1(m +m′)} ⊂ {t} ⊂T ′, such that convE (x∪x′) = convci (x). T is said to conform to C .

Note that for an appropriate a priori choice of x′ and C ′(x∪x′) with ∪ci∈C ′convci (x∪x′) =
∪ci∈C convci (x), T ′ is simply a constrained triangulation of the point x∪ x′ respecting the

constraints C ′.
1A triangulation in a n-dimensional space defines a homogeneous simplicial n-complex.
2Formally, in the field of computational geometry, the complex C describes a piecewise linear complex (PLC): a

set of vertices, edges and polygons. The general definition of a PLC is given in Appendix A.3.2 for completeness.
3sometimes called Steiner triangulation or simply mesh (Cheng et al., 2013)
4sometimes called Steiner points (Cheng et al., 2013)
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Definition 7 (Regularity) Consider a triangulation Rn+2(s) of |s| = n + 2 spheres s = (x,r ),

which is composed of two simplices ta and tb with |t(a,b)| = n+1. Then each simplex possesses

exactly one vertex that is not part of the shared face fta tb = ta ∩ tb . For every sphere set s′ with

|s′| = n +1 there exists a unique sphere s⊥(s′), called orthosphere, that is orthogonal to all

spheres s ∈ s′. Rn+2 (or fta tb equivalently) is called regular if:

π(s⊥(sta ),xtb \ta ) ≥ r 2
tb \ta

and π(s⊥(stb ),xta \tb ) ≥ r 2
ta \tb

(4.5)

In other words, stb \ta is sub-orthogonal to s⊥(sta ) and vice-versa.

Definition 8 (Conforming constrained regular triangulation) Given a triangulation R(s) that

conforms to the constraints C , R is a conforming constrained regular triangulation if:

fti t j = ti ∩ t j is regular ∀ fti t j ∈R (4.6)

It can be shown that there exists a conforming constrained constrained regular triangulation

for any set sub-orthogonal spheres s and non-intersecting set of constraints C (Cheng et al.,

2013).

Definition 9 (Dual graph of a triangulation) The simplex adjacency of a triangulation T =
{t1, . . . , tk } is described by the dual graph GT = (V ,E), with nodes V = {t1, . . . , tk } and edges:

E = {{
ti , t j

} | i ̸= j ∈ {1, . . . ,k} and |ti ∩ t j | = n
}

(4.7)
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4.2.2 Polygonal sphere world

The polygonal workspace environment is defined as

Wp = convpb (x) \
{
convpi (x)

}
, (4.8)

where p(b,i ) ∈ Pn(m) := {t ⊆ {1, . . . ,m}} are ordered sets with the vertices of the convex workspace

boundary and a set of non-overlapping convex obstacles. For convenience, we define pw s =
pb ∪

{
pi

}
. The workspace Wp is punctuated by a set of spheres s = {s1, . . . , sm}, centered at x,

with radii r ≥ 0.

Definition 10 (Polygonal sphere world) The tuple S = (Wp ,s) is called polygonal sphere world.

Assumption 1 The sphere centers are contained inside the workspace Wp , i.e xi ∈Wp , ∀ xi ∈ x.

Assumption 2 The spheres in s are sub-orthogonal to each other:

∥∥xi −xj
∥∥2 ≥ r 2

i + r 2
j , i ̸= j ∈ {1, . . . ,m} (4.9)

This is motivated by the fact that if Assumption 2 holds, there exists a regular triangulation

of the sphere world, which is instrumental for the simplicial abstraction of the sphere world

introduced below in Section 4.2.3. Later, in Section 4.4 we assume that spheres are mobile and

their center coordinates are known at any time.

4.2.3 Simplicial sphere world

For navigation planning, the polygonal sphere world S is discretized with a triangulation.5

Definition 11 (Simplicial sphere world) Given a constrained triangulation T (x) respecting

the constraints pw s of S = (Wp ,s), the simplices in the inaccessible space are removed to form

the simplicial sphere world: Tsw = {
t ∈T | △t ∈Wp

}
.

5A simplex is the generalized notion of a triangle in an arbitrary dimension n. Certain results in this chapter are
not restricted to n = 2, however we use the term simplex interchangeably with triangle where appropriate.

84



4.2 Simplicial sphere world complexes

Figures 4.3, left and 4.8, left show examples of simplicial sphere world scenarios. In general the

triangulation T of pointset x, with or without constraints, is not unique. With the appropriate

choice of a condition on the simplices with respect to x, T can be uniquely specified (Cheng

et al., 2013). A Delaunay triangulation for example, is triangulation in which the circumcircles

of all triangles are free of other vertices. With the regularity condition (Definition 7), the

Delaunay case is generalized to weighted points or spheres.6 This way a notion of the size of

the spheres can be encoded in the triangulation, which will allow to establish a condition on the

clearance for navigation corridors in polygonal sphere worlds in Section 4.3. Note that in the

limit case ri → 0, orthogonality (Definition 2) together with the regularity condition (Definition

7) represent the free circumsphere criterion. Definition 8 is therefore a generalization of the

Delaunay triangulation for weighted points or spheres in particular.

As it is the case for the circumcenter, the orthocenter x⊥(sti ) it is not necessarily contained

inside the triangle and as a consequence, not all orthocenters x⊥ of the triangles in R are

necessarily contained in ∪t∈R△t, the underlying subspace of R (Figure 4.3, left). To establish

a clearance estimate for navigation in a simplicial sphere world (Section 4.3), the following

requirement is useful:

Assumption 3 Given a polygonal sphere world S = (
Wp ,s

)
, there exists a conforming regular

triangulation R, such that for all
{
t ∈R | △t ∈Wp

}
it holds that x⊥(st) ∈Wp .

This can be achieved in refining R by adding unweighted vertices on constraint segments

of the workspace boundary ∂Wp where appropriate, while maintaining the conditions of

constrained regularity of Definition 8. An algorithm to construct a conforming regular triangu-

lation such that Assumption 3 is met, is given in Appendix A.4. The resulting complex is shown

in Figure 4.3, right. To realize Assumption 3, it is necessary that Assumption 1 is tightened

such that obstacle spheres lie strictly inside Wp . This is motivated in Appendix A.4 as well.

6The weight as the interpretation of r 2.
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Figure 4.3: Constrained (left) and conforming (right) regular triangulation. Cyan: constraint
segments of Wp . Red: orthospheres. Vertex sphere radii are omitted.

4.3 Connectivity of regular simplicial sphere worlds

The sphere size encoded in the regular triangulation, in the form of the power distance

(Definition 3) and sub-orthogonality criterion (Definition 7), can be interpreted as clearance

between sphere in the Delaunay case (ri → 0), in terms of euclidean distance. For finite size

spheres, the distance to collision and the connectivity of the sphere world does not follow

directly. Here, we first establish a certificate for the connectivity of adjacent simplices, which

is sufficient to describe the transition between simplices for point agents, and then further

exploit the properties of the regular triangulation to find an estimate of the clearance for finite

size agents.

Definition 12 (Chordale (Edelsbrunner and Shah, 1996)) For two spheres si , s j , the set of loci

x with equal power distance:

Hi j :=
{

x ∈Rn | ∥xi −x∥2 − r 2
i = ∥x j −x∥2 − r 2

j

}
(4.10)

is called chordale and represents an n-dimensional hyperplane.
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4.3 Connectivity of regular simplicial sphere worlds

Instead of the power distance, it is in fact possible to define a spatial partitioning based on the

euclidean distance.7 However, the borders of a cell of this structure are hyperbolic segments

and not chordales, which is more complex to treat in order to establish collision free navigation.

From Definition 12 follows that the intersection points of colliding spheres lie on the chordale,

where the power distance is equally zero to both spheres. The chordales between a given

vertex and all other points of a set s represent the boundaries of the powercell, which is a

useful concept to construct a motion planner (Section 4.5.1).

Definition 13 (Powercell) The powercell of a sphere s in a set of spheres s ∉ s is defined as:

P (s) = {
q ∈Wp | π(s,q) ≤π(si ,q),si ∈ s \ s

}
(4.11)

The separating hyperplanes arising from the equalities in Equation (4.11) are the chordale of s

and the spheres in s. If the spheres of some set s are mutually sub-orthogonal, it can be shown

that the chordale of every pair of si , s j ∈ s separates the centers.8 It follows that no power cell

is empty, that is xi ∈ P (si ) ∀ si ∈ s (Aurenhammer, 1987).

The power cell therefore captures the collision of a generator sphere (Arslan and Koditschek,

2016). This is sufficient to certify navigation corridors as collision free for point agents. In the

following we develop a tight lower bound on the clearance for navigation across a sequence of

triangles, which can be used to certify collision free corridors for finite size agents.

First, note that if Assumption 2 (sub-orthogonal spheres) is valid, then the interior of a simplex

△t can geometrically only be intersected by spheres centered in the region x ∈∪i∈tconei ,t(x),

where:

conei ,t(x) = {
xi +θ1(x j −xi )+θ2(xk −xi ) | θi ∈R≥0

}
(4.12)

is the conic hull with apex at xi and boundaries through (xi ,x j ) and (xi ,xk ) respectively. Below

7This construct is called additively weighted Voronoi diagram or Apollonius diagram.
8This condition can in fact be relaxed to mutually excluded sphere centers.
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it will be shown that this region can be reduced to x ∈∪i∈t△̄i ,t(x), where:

△̄i ,t(x) = conei ,t(x) \△t(x) (4.13)

is called capped cone of simplex t and apex i ∈ t.

Proposition 1 (Clearance over cone, tight lower bound) Given a conforming regular triangula-

tion R and triangle t = {
i , j ,k

}
, t ∈R, the clearance between the apex sphere si and a sphere

se = (xe ,re ) with xe ∈ conei ,t(x), is lower bound by:

dc (t, i ) =



d(si , [x j ,xk ]), if
{

j ,k
} ∈ pw s

min


d(si , [x j ,x⊥]),

d(si , [xk ,x⊥])

, if x⊥ ∈ △̄i ,t

d(si , ŝ⊥(t, i )), otherwise

(4.14)

Where d(A,B) = infx∈A,y∈B ∥x − y∥ is the shortest distance between sets A and B, pw s are the

boundary faces of the polygonal workspace, x⊥ is the orthocenter of t, and ŝ⊥(t, i ) = s⊥(st\i , s⊥(st))

is the advanced orthosphere of t for apex i , i.e. the unique sphere that is orthogonal to the

vertices s j , sk and the orthosphere s⊥.

The first condition of Equation (4.14) represents the case where conei ,t(x) is bounded by

the workspace. For latter cases in Equation (4.14), the biggest set Γ⊂ conei ,t(x) is identified,

such that Γ∩Ω =∅ with Ω = ⋃
B(se ), the union of all potentially existing external spheres

se with xe ∈ conei ,t(x) that respect the regularity of t and sub-orthogonality to si ,∀i ∈ t. The

distinction of the second and third case (Figure 4.4) is motivated by an observation that follows

from Lemma 1 and 2, derived in the following together with other statements which are

instrumental for the proof of Proposition 1.

88



4.3 Connectivity of regular simplicial sphere worlds

Lemma 1 In an n-dimensional Euclidean space Rn , consider m ≤ n+1 sub-orthogonal spheres

s1, . . . , sm that are orthogonal to some other sphere s0, i.e.,

∥xi −x j∥2 ≥ r 2
i + r 2

j , ∀i ̸= j (4.15)

∥xi −x0∥2 = r 2
i + r 2

0 , ∀i = 1, . . . ,m (4.16)

if a sphere s is sub-orthogonal to s0, . . . , sm , i.e.

∥x−xi∥2 ≥ r 2 + r 2
i , ∀i = 0,1, . . . ,m (4.17)

then:

x ∉ conv(x0,x1, . . . ,xm) (4.18)

Proof. In Rn , there exist at most n +1 spheres which are orthogonal to a shared sphere, which

is their orthogonal center. Hence we require m ≤ n + 1. It is also useful to observe from

sub-orthogonality: ∥x−xi∥2 ≥ r 2 + r 2
i ≥ r 2

i , because r 2 ≥ 0. Accordingly, one can conclude that

that x has a nonzero distance to any convex combination of x0,x1, . . . ,xm :

∥x−∑m
i=0αi xi∥2 = ∥∑m

i=0αi (x−xi )∥2 = ∥α0(x−x0)+∑m
i=1αi (x−xi )∥2 (4.19)

=α2
0∥x−x0∥2 +∑m

i=1 2α0αi (x−x0)T (x−xi )+∥∑m
i=1αi (x−xi )∥2 (4.20)

=α2
0∥x−x0∥2 +∥∑m

i=1αi (x−xi )∥2 +∑m
i=1 2α0αi (∥x−x0∥2 +∥x−xi∥2 −∥xi −x0∥2) (4.21)

>α2
0r 2

0 ≥ 0 (4.22)

where αi are convex combination coefficients, i.e. αi ∈ [0,1] and
∑m

i=0αi = 1, and the strict
inequality follows from:

• ∥x−x0∥2 > r 2
0 , for a finite radius sphere r > 0

• ∥x−x0∥2 +∥x−xi∥2 −∥xi −x0∥2 > (r 2
0 + r 2

i − r 2
0 − r 2

i ) = 0

• ∥∑m
i=1αi (x−xi )∥2 ≥ 0
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In particular: For a simplex △ with n +1 vertex spheres s and orthosphere s⊥, any sphere se

that is sub-orthogonal to s⊥ and all s ∈ s, it is true that xe ∉△.

Lemma 2 Let sa and sb be two orthogonal spheres, i.e. ∥xa −xb∥2 = r 2
a + r 2

b . If some sphere s is

sub-orthogonal to both sa and sb , i.e. ∥x(a,b) −x∥2 ≥ r 2
(a,b) + r 2, then it satisfies:

∥αxa + (1−αxb)−x∥2 ≥ r 2 f or α ∈ [0,1] (4.23)

Proof. First expand the norm term as:

∥αxa + (1−αxb)−x∥2 = ∥α(xa −x)+ (1−α)(xb −x)∥2 (4.24)

=α2∥xa −x∥2 + (1−α)2∥xb −x∥2 +2α(1−α)(xa −x)T (xb −x) (4.25)

Now observe that:

2(xa −x)T (xb −x) = ∥xa −x∥2 +∥xb −x∥2 −∥xa −xb∥2 (4.26)

By combining these two equations with ∥xa −xb∥2 = r 2
a + r 2

b one can conclude that:

∥αxa + (1−αxb)−x∥2 = (4.27)

α(2−α)∥xa −x∥2 + (1−α)(1+α)∥xb −x∥2 −α(1−α)(r 2
a + r 2

b ) (4.28)

(1)≥α(2−α)(r 2
a +w)+ (1−α)(1+α)(r 2

b +w)−α(1−α)(r 2
a + r 2

b ) (4.29)

=αr 2
a + (1−α)r 2

b + (1+2α(1−α))r 2 ≥ r 2 (4.30)

where (1) follows from sub-orthogonality.

In other words: Lemma 2 states that the segment between the centers of two orthogonal

spheres sa , sb cannot be intersected by any other sphere, sub-orthogonal to sa , sb . This is true

in particular in the context of a regular simplex △, for segments between vertices and the the

orthocenter x⊥ of △ (Figure 4.4, blue segments).
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4.3 Connectivity of regular simplicial sphere worlds

The following statements, including Remark 1, Proposition 2 and Lemma 3, are reproduced

from (Cheng et al., 2013) and adapted to the notation of this chapter. The proofs are given in

(Cheng et al., 2013) and omitted here.

Remark 1 A property of power diagrams is that any cross-section of a power diagram is a

lower-dimensional power diagram of a modified set of spheres that lie in the cross-section. The

modified spheres are found by orthogonal projection of the spheres onto the cross-sectional

affine subspace and adjusting their radii as described in the following proposition.

Proposition 2 (modified spheres (Proposition 7.3 in (Cheng et al., 2013))) Let Π ⊂ Rn be an

affine subspace. Let sp ∈Rn be a sphere centered at xp with radius rp . Let x′p be the orthogonal

projection of xp onto Π, where the radius satisfies r ′2
p = r 2

p −∥xp −x′p∥2. Then for every point

x ∈Π it holds:

π(sp ,x) = ∥xp −x∥2 − r 2
p

(1)= ∥x′p −x∥2 +∥xp −x′p∥2 − r 2
p = ∥x′p −x∥2 − r ′2

p =π(s′p ,x) (4.31)

where (1) is explained by the orthogonal projection.

For spheres with real radii (i.e. r 2 ≥ 0), the projected sphere s′p can be interpreted as the

smallest n-ball that includes the cross-section B(sp )∩Π. The same principle applies not

only to weighted sites, but also to orthospheres. The following proposition shows that cross-

sections of an orthosphere of a simplex indicate the diametric orthospheres of its faces. This is

illustrated in Figure 4.5 by the dashed segment and circles.

Lemma 3 (Orthosphere Restriction (Lemma 7.4 in (Cheng et al., 2013))) Let t be a simplex with

weighted vertices in Rn . Let s⊥ be an orthosphere of t, and let f be a face of t. Let x′⊥ be the

orthogonal projection of x⊥ onto the affine hull of f. Then the orthocenter and orthoradius of f

are x′⊥ and r ′
⊥, respectively, where r ′2

⊥ = r 2
⊥−∥x⊥−x′⊥∥2, and x′⊥ is the diametric orthocenter of f.

On an edge between spheres sa , sb , the largest occupied segment [xa ,xb]∩B(s) by any sphere

s sub-orthogonal to both sa and sb , is [xa ,xb]∩B(s⊥), with s⊥ exactly orthogonal to sa and

sb . To see this, observe that for a point x′ ∈ [xa ,xb]∩B(s) to minimize either ∥x(a,b) − x′∥ ≥
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∥x(a,b) −x∥− r ≥ 0, the distance as well as the radius of s must be maximal. The lower bound

is thus realized by s⊥, called diametric orthosphere (Figure 4.5). Since by Lemma 3, the

diametric orthosphere is the projection of any higher dimensional orthosphere, violation of

the orthogonality on a face has the violation of regularity in any dimension as a consequence,

as stated in Remark 1. This completes the prerequisites to proof Proposition 1.

Proof. Proposition 1 The first case of Equation (4.14) is trivial and no formal proof is car-

ried out. For the latter cases, Lemma 1 restricts the area for locations of xe as xe ∈ R2 \

conv({xi ,x j ,xk ,x⊥}). As stated in Section 4.2.3, the orthocenter x⊥ is not necessarily contained

inside the simplex △, which motivates the distinction of the two cases. The strategy of the

proof is to identify for each case, the region Γwhich is guaranteed intersection free with any

potentially existing external sphere se .

case x⊥ ∈ △̄t ,i (Figure 4.4, right): First, note that by Assumption 3, if x⊥ ∉ △t, it still holds

that x⊥ ∈ Wp which is necessary for the correctness of the following statements. Lemma

2 states that a segment [x(i , j ,k),x⊥], between a vertex and the orthocenter, cannot be in-

tersected. Since [x( j ,k),x⊥] ∈ ∂conv({xi ,x j ,xk ,x⊥}), it follows for the unoccupied region Γ =
conv({xi ,x j ,xk ,x⊥}) ̸= conv({xi ,x j ,xk }) (Figure 4.4, right, blue patch). The regionΩ= △̄i ,t \Γ

can be occupied by infinite spheres (Figure 4.4, right, grey patch). The estimate for dc (t, i )

follows immediately.

case x⊥ ∉ △̄t ,i (Figures 4.4, left and 4.5):

Here [x( j ,k),x⊥] ∉ ∂conv({xi ,x j ,xk ,x⊥}) and the segment [x j ,xk ] ∈ ∂conv({xi ,x j ,xk ,x⊥}) can be

intersected by an external sphere se . From Remark 1 and Proposition 2 follows that the orthog-

onal projection of an external sphere se on the face fi k ∈ t, must respect sub-orthogonality

w.r.t. s(f j k ) as well. s⊥ is unique and with Lemma 3 it follows that the intersected segment

[p j ,pk ] = [x j ,xk ]∩B(s⊥) is uniquely defined as well. Therefore any sphere, and in particular

se , must respect B(se )∩ [x j ,xk ] ⊆ [p j ,pk ] (Figure 4.5). Now assume se is orthogonal to s j ,sk ,

therefore se ∩ [x j ,xk ] ≡ [p j ,pk ] and in addition it is also orthogonal to s⊥. Further assume

that there exists an external sphere s′e and a point p ∈ B(s′e ) with p ∈△t \ B(se ). A sphere s′e
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4.3 Connectivity of regular simplicial sphere worlds

Figure 4.4: Estimate of collision distance dc (t, i ) over conet ,i (x) (red). Blue patch: intersection
free region Γ=△t \∪xe∈conet ,i (x)B(se ). Dashed blue: Orthosphere s⊥ of △t and intersection free
segments. ŝ⊥: advanced orthosphere of conet ,i (x). Left: x⊥ ∉ △̄t ,i (x), right: x⊥ ∈ △̄t ,i (x)

Sj

�

Sk

Si

S�

pk

pj
p

xj

xk

Figure 4.5: Advanced orthosphere ŝ⊥. Dashed segment: orthogonal projection [p j ,pk ] of s⊥
onto face [x j ,xk ] and resulting diametric orthosphere (dashed green circle). Hypothetical
point p ∈ B(se ) of some external sphere se with p ∉ ŝ⊥.

which intersects s⊥ at either p j , pk or both, can intersect s⊥ at most orthogonal (Figure 4.5, red

tangent segment). It follows geometrically that such a sphere s′e and point p cannot exist and

Γ=△t \ B(se ). se is unique by construction and called advanced orthosphere denoted ŝ⊥(i , t).

It follows that minxe∈conei ,t(s),t∈R(d(si , se )) = d(si , ŝ⊥(i , t))
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Lj

Rj+1

(a)

(b)

(c)

Sc

Sia

xg

dt (j 1)

dtL-R,j

L,j

dtR-

Figure 4.6: Corridor connectivity (a) Corridor of simplicial sphere world. sia : agent sphere,
xg : agent goal. Red: clearance over cone estimates (b) Ordered sets of obstacles (white) and
representative estimatesΩ (grey circles) in left/right turns L j ,R j+1 and landmarks (red/blue
dots) (c) Face clearance consists of four cone collision estimates.

With Proposition 1, the minimal clearance for the crossing a simplex t via the faces
{
i , j

}
and

{i ,k} is lower bound as:

dt,i = min
{
d(si , s j ),dc (t, i ),d(si , sk )

}
(4.32)

which consists of the estimate dc (t, i ) and the clearance of the vertex spheres. The minimal

clearance of transition of a sequence of simplices along a corridor can be expressed in terms

of the combined collision distance dt,i of Proposition 1 for the transition across a face:

Definition 14 (Face clearance) For the shared face of two simplices ta = {
i , j ,k

}
, tb = {

j ,k, l
}
,

with ta , tb ∈R, the clearance is defined as:

c(i , j ) = min
{
dta ,i ,dtb ,i ,dta , j ,dtb , j

}
(4.33)

The face clearance is illustrated in Figure 4.6 (c).
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Lemma 4 (Collision free corridor) A planar navigation corridor, composed of an ordered list of

k adjacent simplices p = (ti )k ∈R with a start vertex ia ∈ t1, for which sia is collision free and a

goal point xg ∈△k , with xg ∈F , is collision free with respect to a minimal clearance cmi n ∈R≥0,

if the face clearance of all internal faces is bigger or equal to cmi n .

Where F is called free space and represents the accessible workspace of the polygonal sphere

world F =Wp \∪i B(si ).

Proof. A center line, starting at xia , crossing the corridor and ending at xg , partitions the

bounding vertices and cone distance estimates into a left and right hand set L and R of

obstacles ti ,l , ti ,r and collision estimatesΩ(ti ) (Figure 4.6 (a)). Clearly, the corridor is collision

free if d(R,L) ≥ cmi n . To relax this condition, observe that the corridor can be re-grouped

into sub-sequences . . . ,L j ,R j+1, . . . of adjacent cone transitions along the same landmark

apex with opposite obstacles sequences . . . ,L j ,R j+1, . . . (Figure 4.6 (b)). Given landmark s j and

opposite set L j , it is true that d(R ′ = s j ,L j ) = mint∈L j

{
dt, j

}≥ min
{
c( j ,k)

}
k∈Li

. To estimate the

minimal distance between opposite sets L j and R j+1, note that s j ∈ R j+1 and s j+1 ∈ L j and

therefore it is true that:

d(L j ,R j+1) ≥ min{d(s j+1,R j+1),d(s j ,L j ),d(s j+1,Ω(tL−R , j +1)),d(s j ,Ω(tR−L , j ))}

=min{d(s j+1,R j+1),d(s j ,L j ),dtL−R ,( j+1),dtR−L , j }

≥min{d(s j+1,R j+1 \ {s j ,Ω(tL−R )}),dtL−R , j ,d(s j ,L j \ {s j+1,Ω(tL−R )}),dtR−L ,( j+1),dtL−R ,( j+1),dtR−L , j }

=min{d(s j+1,R j+1 \ {s j ,Ω(tL−R )}),d(s j ,L j \ {s j+1,Ω(tL−R )}),c(i , ( j +1))}

where tL−R ∈ L is the simplex that is adjacent to tR−L ∈ R and Ω(tL−R , j +1)) is the largest

possible set Ω = ⋃
xe∈conetL−R , j+1(x) se . Note that d(s j ,L j \ {s j+1,Ω(tL−R )}) ≥ d(s j ,L j ) and thus

it follows that the minimal face clearance: mini=1,...,k−1{c(i , i + 1)} is a lower bound of the

clearance of the corridor (ti )k ∈R.
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4.4 High-level planning in simplicial sphere world complexes

4.4.1 Motion graph

The dual graph G(R) of the regular triangulation (Definition 9) is called power diagram. Here,

G(R) is extended to serve as an abstraction of the sphere world for path planning.

Definition 15 (Face center) The center of the modified sphere x′c , i.e. the orthogonal projection

of the orthosphere onto a face (Proposition 2), is called face center x f (ti ∩ t j ) of the shared face

of simplices ti , t j .

The face center is also the intersection point of the chordale of two vertex spheres with the

edge.

Definition 16 (Face Center Graph) The line graph of G(R) is called face center graph FG =
(V f ,E f )9. The nodes V f are located at the face centers.

An edge e ∈ E f connects two face centers and can be interpreted as the travel path across a

simplex via the two faces.

Definition 17 (Motion Graph) Given an agent vertex ia ∈ s, and a navigation goal xg ∈F , the

motion graph

FGm = ({Va ,V f }, {Ea ,E f },W ) (4.34)

is a weighted version of the face center graph FG with additional nodes Va = {xia ,xg } and edges

Er = {(xia ,x f (tr ∩ t j ))}∪ {(xg ,x f (tg ∩ t j ))}, (4.35)

with ta = {t ∈R, ia ∈ t} and tg = t ∈R,xg ∈△ta and t j = {t ∈R, |t∩ ta,g | = n}. The weights W are

a function of the euclidean node distance Wi j = f (∥xVi −xV j ∥).

9A line graph L(G) = (Vl ,El ) is an extension of some graph G = (V ,E ), where a new node is introduced for every
edge in E and edges between nodes in Vl are introduced where two edges in E f are incident to the same vertex in
V .
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4.4 High-level planning in simplicial sphere world complexes

An example of a motion graph is illustrated in Figure 4.8, left. To allow continued planning

in an obstructed environment, edges with insufficient clearance are not removed from the

motion graph. Instead, the clearance penalty function fc (x) : R→ [0,∞) is used to scale the

euclidean edge weight in the case of insufficient clearance or even obstacle overlap. fc (x)

is a monotonically increasing function of the robust edge overlap x(e) = cmi n −w(e), with

cmi n ∈ R≥0, some required minimal clearance, typically the agent diameter with a safety

margin for object padding, if desired, and w(e) = d(B(se(0)),B(se(1))), the sphere width along

the edge e. Here, we use the clearance over the cone (Proposition 1) as an estimate for the

width and an exponential with growth rate rc ∈ (0,1] for fc :

fc (x) =


r−x

c −1, if x ≥ 0

0, otherwise

(4.36)

rc is called clearance penalty rate. For rc → 0, the penalty for insufficient clearance is big and

concerned edges are effectively ignored in the motion graph. For rc → 1, the penalty vanishes

and the volume of the obstacles is ignored. The concept is illustrated in Figure 4.7. The edge

weight is then defined as:

W (e) = (
1+ fc (cmi n −w(e))

) · ∥x f (e(0))−x f (e(1))∥ (4.37)

The clearance over the cone of Proposition 1 is a composite of observed clearances of the

simplex faces and estimates across the opposite face. The conservatism in using it as a measure

for the transition across a simplex can be relaxed, where needed, by further extending the

clearance over the cone estimate into the adjacent simplex of the opposite face.

We use Dijkstra’s algorithm to find a shortest path on the motion graph. The resulting path

p∗ = (ei ) ∈ FGm can be translated into the equivalent navigation corridor, the ordered list of

adjacent simplices t∗ = (ti )k ∈R.
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Figure 4.7: Penalty factor fc (x) for clearance x, high (solid) and low (dashed). Dashed circle:
projection of robust minimal clearance cmi n on a bottleneck of two obstacles.
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Figure 4.8: Left: polygonal sphere world (grey) and motion graph (dashed) at time step t0,
Black: Simplicial complex, Blue: agent sphere sia with navigation path, Green: goal xg . Right:
Motion graph at t1. White area: navigation corridor (∆i ), Cyan: identified path.
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4.4.2 Path re-identification

With the next timestep and the obstacle positions x(t+1), the simplicial sphere world R(S (t+
1)) is updated and a new optimal corridor t∗(t +1) is computed. The previous path p∗(t) is

retained and used to re-identify a sub-region R ⊂R(x(t +1)) as:

R = {t ∈R(x(t +1)) | ∃ e ∈ p∗(t ),△t ∩e ̸=∅} (4.38)

In other words, R are the simplices of R(S (t +1)) which are intersected by the previous path

p∗(t). The identified path p∗ is the optimal path on the sub-region t. Both paths, identified

and optimal, have a cost C , associated with the sphere world at time step t . The cost difference

can be interpreted as cost improvement if one path is chosen over the other. The relative cost

difference is defined as:

δC = C (p∗)−C (p∗)

C (p∗)
(4.39)

To prioritize differing path segments closer to the agent, the edge cost is recalculated with

progressively attenuated clearance penalty for distant segments:

C (p) =
k∑

i=1
(1−α)i · fc (ei )+d(ei ), α ∈ [0,1) (4.40)

Attenuation, as defined in Equation (4.40), is applied to path solutions a posteriori, only for

the purpose of comparing costs according to Equation (4.39) and not during the graph search.

This is to avoid extending paths excessively where the attenuation is strong. The associated

cost of changing the planned path is defined by the re-scaled cosine similarity (Sc ) between

directions from the agent coordinates to the first face centers of the two paths:

δθ = (
1+Sc

(
p∗[0]−xia ,p∗[0]−xia

))
/2 (4.41)

For exactly opposite pointing paths: δθ = 0, for aligned directions: δθ = 1.
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The path decision heuristic for temporally persistent planning is defined as a function of the

decision threshold δ ∈ [0,1):

pp =


p∗, if δC ·δθ > δ

p∗, otherwise

(4.42)

The heuristic relates the improvement in terms of relative path cost difference with the asso-

ciated change of direction between the identified and optimal path. For δ= 0, the optimal

path is selected consistently, while for δ→ 1, the identified path is chosen with increased

probability. Note that for the case where the first segments of both paths are identical, the

decision in Equation (4.42) still effectively has to be taken in order to persist on a path or not.

4.5 Simulations

To demonstrate the effect of temporally consistent navigation we simulate a navigation sce-

nario with multiple spherical unicycle agents sa = (x,r,θ) and one with a single agent to

navigate around spherical moving obstacles.

4.5.1 Local motion planner

We use a unicycle motion model and the move-to-projected-goal law of (Arslan and Koditschek,

2016) as a local motion planner to safely implement the path of the motion graph. The

kinematics describing the unicycle motion are given as:

ẋ = v [cos(θ),sin(θ)]T , v ∈ [−vmax , vmax ] (4.43)

θ̇ =ω, ω ∈ [−ωmax ,ωmax ] (4.44)

The forward-moving unicycle is defined as a special case of Equations (4.43)-(4.44) with v ≥ 0.

In addition, we consider a fully actuated agent:

ẋ = u(x), ∥u(x)∥ ≤ vmax (4.45)
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Figure 4.9: Local planner of (Arslan and Koditschek, 2016) for a unicycle model. Center:
oriented agent sphere sa = (x,r,θ), rectangle indicates heading θ. Dashed red: powercell
P (sa) = LW (s). Solid red: local free space L F (sa). Solid blue: planned path. Red dot:
intermediate goal x∗. Blue dot: x∗. Green dot: x∗v . Cyan dot: x∗ω. Grey: cells of regular
triangulation.

Since s ∈ s, i.e. the agent sphere is used as a vertex in the triangulation, here the power cell of

the agent represents the local work space LW (s) = P (s) introduced in (Arslan and Koditschek,

2016). LW (sa) is eroded by the agent radius r to form the local free space L F , a collision free

neighborhood of the agent:

L F (x) = {
q ∈LW (x) | B(q,r ) ⊆LW (x)

}
(4.46)

By the sub-orthogonality assumption, it is guaranteed that LW (s) ̸=∅. For the simulation

we further require that obstacles do not overlap, such that L F (s) ̸=∅. This is achieved if

all obstacles respect the motion law for collision free navigation described below. With the

following definitions the move-to-projected goal law is formulated to steer an agent to some

location x∗ ∈Wp :
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x∗ =


x∗, if x∗ ∈L F

ΠL F (x), otherwise

(4.47)

x∗v =


x∗, if x∗ ∈L F ∩HN

ΠL F∩HN (x), otherwise

(4.48)

x∗ω =


x∗, if x∗ ∈L F ∩HG

ΠL F∩HG (x), otherwise

(4.49)

whereΠC (q) denotes the metric projection of q onto a convex set C and:

HN (x,θ) := {q ∈Wp | [cos(θ),sin(θ)](q−x) = 0} (4.50)

is the straight line motion range, due to the nonholonomic constraint of the unicycle,

HG (x,x∗) := {ωx+ (1−ω)x∗ ∈Wp |ω ∈R} (4.51)

is the line segment of Wp containing x and x∗. These concepts are illustrated in Figure 4.9. The

move-to-projected goal law for a unicycle is given as:

v =−k

cosθ

sinθ


T

(x−x∗v ) (4.52)

ω= k atan



−sinθ

cosθ


T(

x− x∗ω+x∗

2

)
cosθ

sinθ


T(

x− x∗ω+x∗

2

)


(4.53)

and for a fully actuated agent as:

u(x) =−k(x−x∗) (4.54)
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The velocities u, v, w are clipped according to the actuation limits in Equations (4.43)-(4.45).

In the simulations performed here, we use a discrete-time version of these laws as described

in (Arslan and Koditschek, 2019) with a control gain k →∞, while retaining the velocity limits

mentioned above. In a static world it can be shown that with Equations (4.52)-(4.54), an agent

model described in Equations (4.43)-(4.44) asymptotically steers almost all configurations

towards any feasible goal x∗ (Arslan and Koditschek, 2016). We use this model for all agents

and moving obstacles to realize collision free movement in the simulation. In (Arslan and

Koditschek, 2016), x∗ is static, here agents pursue the first waypoint of the planned path

x∗(t) = pp [0], which is a function of the current sphere world S (t) that includes the agent

sphere as well.

Moving obstacles pursue intermediate goal x∗(t ) = xg (t ) describing a random walk. To avoid

clustering of the obstacles resulting in the solidification of the environment over time, each

obstacle performs a collision free random walk with a bias towards its home position xh :

xg (t ) = (1−β)X+βxh (4.55)

where X ∼U (±vmax ) ∈R2 is a uniform random variable and β ∈ [0,1] is the home position bias.

xh = x(t = 20) is established by starting with a regular grid of obstacles and letting them walk

randomly, i.e. with β= 0, for 20 time steps, after which the home position is locked.

With very persistent planning (δ→ 1) or low clearance penalty (rc → 1), the agent might tend

to pursue an obstructed path and simply wait until the obstacles give way. This happens

quickly, as the obstacles move to a random goal x∗(t +1) ∈ L F according to the move-to-

projected-goal law (Equation (4.54)) and therefore the probability is high that the obstacle

moves away from the collision boundary of L F . To penalize this trivial behavior, the obstacle

speed of a given obstacle sobs is reduced proportionally according to:

vmax,obs =


(vmax − vmi n) dmi n

rper i
+ vmi n , if dmi n < rper i

vmax , otherwise

(4.56)
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where dmi n = d(sa , sobs) is the distance to collision of the agent to a given obstacle sphere,

rper i is the obstacles safety perimeter, in this simulation defined as rper i = 1.2robs , and vmi n =
vmax /10 is the lower speed limit.

4.5.2 Evaluation metrics

The simulation output represents a piecewise linear trajectory of the agent xa = [x(t = 0), . . . ,x(tend )],

describing the motion of the agent until reaching its goal: x(tend ) = xg .

• The consistency of the agent movement is characterized with the orthogonal projection

of a trajectory segment∆x(t ) = x(t )−x(t−1) onto the unit vector, indicating the direction

of the previous segment e(t −1) =∆x(t −1)/∥∆x(t −1)∥:

∆x(t ) ·e(t −1) (4.57)

High consistency implies that the agent advanced well and in the same direction as

for the previous time step. The consistency is low if either the advancement is small or

orthogonal to the previous movement. For consistency, the average over an navigation

run is reported.

• The curvature of a coordinate triple of the trajectory is calculated as the inverse radius

of the circle through the coordinates:

min
{
∆φ/∥x(t )− c(t −1)∥,1

}
(4.58)

Where ∆φ is the absolute angle between consecutive trajectory segments. It is upper

bound by 1 to reject noise from trajectory segments with vanishing step size. For

curvature, the average over an navigation run is reported.

• Interactions are counted as the set size of sphere labels that form the first face center of

104



4.5 Simulations

the corridors t(t −1),t(t ) of two consecutive time steps:

|(t1(t −1)∩ t2(t −1))∩ (t1(t )∩ t2(t ))| (4.59)

• Collisions are defined in according to the slowing behavior of the obstacles described in

Equation (4.56). A collision is registered in a timestep if the agent is within the obstacle

perimeter.

• The total corridor area covered by all corridors t(t) during a navigation run from t = 0

until the goal is reached at tend is defined as the union of all simplices ever involved in

any corridor t(t ):

∪tend
t=0 {∪i∈t(t )△i (x)} (4.60)

• The persistence decision rate is recorded as the rate of instances when the heuristic of

Equation (4.42) is in favor of the identified path, when the first segment of the identified

path is different from the optimal.

• The total timesteps until the goal is reached.

• The cumulative heading difference

t∑
τ=0

|θ(τ)−θ(τ−1)| (4.61)

is reported for unicycle agents.

4.5.3 Multiple agents with conflicting paths

For a qualitative demonstration of the effects of temporal persistence δ and clearance penalty

rc in relation with the actuation type, a scenario with eight agents in a circular workspace is

used and repeated for fully actuated, and unicycle models. Initially, the agents are distributed

evenly along a circle with goal coordinates locate opposite (Figure 4.10 (a)). A small, uni-

formly distributed perturbation U (±∅ar ena/100) is applied to the coordinates to avoid perfect
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symmetry. vmax is set to ∅ar ena/20/∆t and ωmax is limited to π/8/∆t per time step.
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Figure 4.10: Simulation results: fully actuated agents. (a) The total time steps until the goal is
reached is improved with either a finite clearance penalty or persistent planning, but not if
combined. Consistency is higher and less fluctuation if persistence is applied. Star denotes
success in reaching goal. (b) Trajectories from start (circle) to goal, located opposite. With near
infinite clearance penalty, erratic movements occur before the danger of collision is acute.
Smoothness is improved in persistent planning. Combination leads more often to drastic
turnarounds.

The simulation results are shown in Figures 4.10-4.12. For all motion models, the persistent

planning allows to reduce the number time steps needed to reach the goal and the cumulative

heading difference. The movement characteristics are improved, which manifests in higher

and less fluctuating consistency. A finite clearance penalty allows to reduce erratic, oscillatory

movement, especially in situations when collisions are anticipated, but not yet imminent.

It can help to reduce the total time steps to reach the goal for fully actuated agents or the

energy invested in heading alignment for unicycle agents. The effect is lost for forward-moving

unicycle and leads to jamming if used in combination with persistence.

In conclusion, the non-holonomic constraint leads to a shift from erratic movements to

increased investment in heading alignment, both of which are improved using persistent

planning. The decline of performance when both strategies are employed arises when a plan,

leading to a collision, is pursued persistently. This indicates the existence of a quantitative

trade-off among the persistence parameter δ and the clearance penalty rate rc , which is

investigated in the scenario with a single agent in a cluttered dynamic environment.
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Figure 4.11: Simulation results: unicycle agents. Scenario according to Figure 4.10b. Star
denotes success in reaching goal. (a) Analogous to, but less pronounced compared to fully
actuated agent model scenario, the total timesteps until the goal is reached is improved with
either a finite clearance penalty or persistent planning, but not if combined. Consistency is
higher and less fluctuation if persistence is applied. (b) Cumulative heading difference is both
reduced when either persistent planning or a finite clearance penalty. The improvement of the
latter case is less apparent in terms of consistency, but more in terms of cumulative heading
difference.
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Figure 4.12: Simulation results: forward-moving unicycle agents. Scenario according to Figure
4.10b. Star denotes success in reaching goal. (a) Analogous to, but less pronounced compared
to unicycle agent model scenario. Consistency is lower as agents decrease speed for turn-first
movement in drastic directional change. (b) Cumulative heading difference generally higher
than in the unicycle scenario. Combined use of persistent planning and finite clearance
penalty leads to jamming.

4.5.4 Single-agent in a dynamic environment

To demonstrate the effect of persistent navigation of an agent in a complex dynamic world

with unknown obstacle movement, we consider a hexagonal arena, populated with 122 or 144

randomly moving obstacle spheres. The agent is set to navigate to a static goal xg across the

arena. We choose five different experimental scenarios:
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1. 122 obstacles, radius robs , area occupation: 79.4%

2. 144 obstacles, radius robs , area occupation: 82.4%

3. 122 obstacles, radius 1.2robs , area occupation: 72.4%

4. Analogous to 1), with randomized heuristic

and perform a sweep of the δ decision threshold parameter over the entire range [0,1) with

n = 10 simulation runs for each configuration. A run is aborted after exceeding 1000 timesteps

and reported regardless of the progress. Scenario 4) is used to evaluate the quality of the

decision heuristic (Equation (4.42)). In scenario 4 the heuristic h = δCδθ it is randomized as:

h = P (X > δ), with X ∼U (0,1), (4.62)

from a uniform distribution, i.e. the decision to persist with a plan is taken based on an

random chance, regardless of the optimal and identified path cost.
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Figure 4.13: Simulation results of four scenarios 1)-4) (row-wise) for navigation of single, fully
actuated agent in cluttered, dynamic environment. Arena is equivalent to geometry shown in
Figure 4.3, without polygonal obstacle. Box refers to first and third quartile, whiskers indicate
range, orange line shows median, n = 10. Custom axis scales emphasized in red.
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The results of scenarios 1)-4) correspond to the rows shown in Figure 4.13.

The baseline scenario 1 shows the the total timesteps until the goal is reached remain at a

similar level for all values of δ, indication no overall loss of performance if persistence in

increased. The consistency is optimal at ≈ 0.3 after which it declines and curvature increases.

This effect is stronger in scenario 2), with more obstacles, and scenario 3) with the same

amount but larger ones. This, and the more drastic decay of interactions in scenario 3),

indicates that persistent planning has a bigger impact in an environment with lower clearances

between obstacles than simply with a higher motion graph complexity.

The exponential decay of interactions comes at the price of moderate increase of collision sit-

uations for higher persistence. The total area covered decreases in a linear fashion, indicating

that the path chosen remains geometrically restricted. The sensitivity of the decision rate is

bigger at low values of δ and more so for complex environments.

Comparing scenario 1) to 4), shows that the positive effects of persistent planning in consis-

tency, curvature, interactions, collisions and corridor area is lost in the range of 0 < δ< 0.7

and therefore validates the design of the heuristic in Equation 4.42. For δ≥ 0.7, the drop in

interactions, total corridor area and increase in collisions in scenario 4) represents an unreac-

tive behavior, where the agent pursues a fixed path without regardless of the clearance. This

behavior is equally present in all other scenarios.

4.5.5 Software

To construct the conforming constrained regular triangulation (Definition 8) we have built the

python package ibrtpy10. A modified version of the incremental build algorithm introduced

in (Edelsbrunner and Shah, 1996) for unconstrained triangulation is used that allows to

conform to constraints. The algorithmic details are given in the Appendix A.4. To the best of

our knowledge, it is the only open source library for constrained regular triangulations.

10https://c4science.ch/source/ibrtpy/
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4.6 Discussion

This article presents a path planning algorithm for dense, dynamic and globally known envi-

ronments. Together with a local planner that implements non-holonomic motion constraints,

the algorithm generates temporally consistent and smooth paths and reduces collisions. The

mesh used for the abstraction can represent polygonal boundaries and obstacles, and implic-

itly contains a property that is used to certify collision free corridors. If the spheres used to

represent moving obstacles have equal radii, the triangulation mesh is equivalent to the a

conforming constrained Delaunay triangulation11. Delaunay triangulation can be built with

standard software, while the certificates developed here remain valid. The heuristic presented

allows to reassess previous path solutions, which can increase performance without making

use of predictive techniques, and implicitly achieve a socially compliant robot behavior.

We identify the extension of the algorithm presented here to n = 3 dimensional sphere worlds

as a promising solution for impersistent effects. Our results show that the algorithm displays

more impressive performance in worlds with higher complexity, specifically with increasing

number of dynamic obstacles as they result in a more complex triangulation. An additional

dimension increases the number of edges and vertices of the motion graph simply because of

the increased number of simplex neighbors. Proposition 1 is not directly extendable to higher

dimensions as Lemma 2 does not generalize to higher dimensional simplices. However, as

Proposition 2 holds in any dimension, we see the possibility of extending the concept of the

advanced orthosphere for a higher dimensional estimate of the collision over the cone. Mesh

generation is generally considered much harder in higher dimensions because certain simplex

properties, like maximized minimal angle, which are desirable for applications such as finite

element method simulations are more problematic to optimize. However, here we do not rely

on any other property than the global simplex regularity, and thus it is expected to relax the

difficulties of mesh generation in 3d.

11To see this, consider the Definition of separating hyperplanes (Equation 4.10) that form the power cells (or
Voronoi cells respectively). If ri = r j , ∀si ̸= s j ∈ s, then Hi j is in invariant with respect to the actual values of ri ,r j .
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Manipulative experiments are widely used in animal behavioral research to discover causal

links between stimuli and responses. Compared to stationary systems, mobile agents can

deliver stimuli directly to the selected individual for precise and minimally invasive manipula-

tion. This capability is of particular interest for experiments with eusocial insects, whose life is

governed by self-organization. In order to study natural social behavior the experiment must

be performed within their nest environment.

In this thesis, the Antbot is presented as an instrument for manipulative experiments with ants.

The hardware, consisting of nested manipulators that control a mobile dummy, is integrated

with a state of the art tracking system that provides precise locations and postures of ants in

real-time over weeks. We manufactured a robotic dummy with actuated synthetic antennae

for tactile stimulation. We designed nests in way that the dummy can be exchanged without

effort during or between experiments. A python software framework, FORTloop, is developed

to facilitate the design of tracking experiments that require real-time data visualization and

control of hardware. With FORTloop, complex concurrent programs can be implemented

to realize the next generation Antbot that navigates the mobile dummy autonomously for

automated manipulation.
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The Antbot design process loosely follows the methodology introduced in (Mondada et al.,

2013). In the first stage, tracking data of previous experiments were analyzed with respect to

the very diverse characteristics of different ant species. Specifications for integration with

the automated tracking system were considered. The goal is to achieve an acceptable level of

universality to common research questions in ant behavioral research. To this end, we focused

on the social factors that govern individual aggression, a fundamental behavior for colony

cohesion and therefore for eusocial life. In the next stage, this question was investigated with

the Antbot by running teleoperated manipulation experiments where ants were stimulated

with touch in different social contexts. The successful completion of this biological experiment

validates the basic framework.

In a fully crossed analysis, individuals need to be chosen according to a number of factors

based on their identity. To study, for example, the influence of the activities individuals are

occupied with prior to the stimulation as a factor on aggression, manipulations need to be

balanced on the level of the identity and the activity status. This could be implemented with

more sophisticated real-time data processing and visual aid to support the action planning of

the operator, and therefore increase the degree of experimental automation. At the same time,

autonomous navigation is a key component for which superhuman performance is expected.

To implement autonomous navigation, we formulated a problem based on robot navigation

in crowded dynamic environments with global knowledge on the world. A novel algorithm

for socially aware navigation was developed, tested in simulations, and implemented in the

Antbot framework. Finally, a demonstration was carried out to validate the algorithm for the

realistic scenario at hand, under real-time computation constraints and using the full extent

of the Antbot hardware.

The methodology introduced in (Mondada et al., 2013) follows a strict modeling approach,

where the robotic system is used to validate a quantitative model, often formulated in analytic

mathematical expressions. If this approach is successful, it represents the gold standard in

understanding a self-organized phenomenon. In behavioral research on eusocial organisms,

such models are difficult to obtain. This is even more true when the level of situatedness is high,
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i.e., the experimental design is parsimonious in controlling potential factors of importance.

Here a - nevertheless hypothesis-driven - exploratory approach was taken, using a conservative

experimental design with an exclusively tactile stimulus, that simplifies the interpretation

of the response. Furthermore, studies can be observational and do not necessarily need to

contain a mechanistic element.

5.1 Technical challenges

The autonomous operation of the Antbot presented in Chapter 2, Section 2.5 represents the

start of the next design phase. The biggest challenge therein will be to program the Antbot

to account for all possible situations that conflict with the experimental objective; e.g., ants

climbing on top of the dummy, unreachable targets, and unforeseen technical issues that can

occur over long term experiments. A frequently observed problem is the prevented retraction

of the mobile dummy after an interaction because the security layer of the Antbot detects

a collision with its interaction partner. In general, various situations may occur where the

assumptions made during the development of the navigation algorithm presented in Chapter

4 will be violated. It is therefore necessary to develop new behaviors capable of resolving

conflicts. Using the behavior tree introduced in Section 2.4.3, such solutions can be developed

and tested very quickly. The hardware-in-the loop (‘dryrun’) mode of FORTloop (Section 2.4.2)

provides an ideal test bench for the development the Antbot under realistic conditions.

The teleoperated experiment in Chapter 3 has shown that in order to enable fully crossed

experimental design (Montgomery, 2017) at the individual level, depending on the factors to

be considered, the manipulation can be extremely hard for the experimenter. For instance,

to investigate whether the activity and social maturity of an individual (derived from the

interaction network) can explain the probability for aggression, the same individual must be

stimulated repeatedly while she is active and idle. Furthermore, individuals with different

levels of the social maturity score must be selected and manipulated. Following such an

experimental plan is challenging, and some form of deliberative action planning can address
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this the challenge (Ghallab et al., 2016).

The concept of agents with learning capabilities in mixed societies has been outlined in

(Landgraf et al., 2021). In such experiments, the robot learns its behavioral policy, i.e. the

mapping of observations to robot actions on the fly according to some predefined scoring

function. The authors claim that such a learning scheme may improve the social acceptance

of the robot, and make the robot-animal interactions more realistic. While the benefit of such

an approach for experiments with eusocial insects remains to be identified, the technical

challenge is an interesting one.

5.2 Outlook

More complex research questions can be addressed with the existing teleoperated system.

Colonies of L. acervorum, the model species used in this thesis, show synchronized short-term

(15 min) activity cycles. Different theories have been proposed to explain the formation and

utility of these activity cycles (Cole, 1991; Richardson et al., 2017). The Antbot platform is

ideally suited to test these theories. As a second example, it has been found that the foraging

behavior of the ant Cataglyphis niger, which does not depend on pheromone trails, is mainly

governed by bumpy recruitment interactions where the speed of the counterpart influences

the individual activity which in turn decides if an ant will leave the nest for food (Razin et al.,

2013). This scenario seems realistic to be successfully investigated in a manipulative study with

the tactile antbot dummy. Likewise, the capability of luring or simply displacing ants could be

interesting with respect collective decision making for house hunting in Temnothorax ants,

where recruitment and quorum sensing at a potential new site is a central mechanism (Sasaki

et al., 2013). More general topics of interest include individual resting behavior (Helfrich-

Förster, 2018) or camouflaging strategies with chemical signature and mimicked morphology,

that are used for example by parasites (Akino, 2008; Fischer et al., 2020). The behavioral

experiment described in Chapter 3 can thereby function as a baseline for more advanced

experiments, targeting more complex perception, potentially on a higher level of mimicry, in
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terms of dynamics, body shape or chemical profile. The platform developed here provides the

required versatility for extension in terms of hardware and software.

As a final remark, the Antbot represents an advanced platform for robotics research. It has

been shown that ant species with very different movement characteristics are available for

tracking experiments. As robots continue to be integrated in society, socially aware robot

navigation has to be addressed swiftly. Experimental opportunities with human subjects

however are sparse and therefore testing is often limited to simulations. The ant system could

serve as a realistic test bench for low level testing of such algorithms in a complex, dynamic,

noisy environments.
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A.1 Antbot software architecture and implementation

A.1.1 Subprocess state machines

Figures A.1 and A.2
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Figure A.1: Antbot hardware controller state machine.
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Figure A.2: Antbot navigation process state machine.
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A.1.2 Performance conisderations

Three major bottlenecks in the pyantbot software currently exist, accounting for almost 98%

of the navigation process loop runtime:

1. Triangulation in ibrtpy.cibrt

2. Dual graph construction in tcnav.MotionGraph

3. Subregion identification in tcnav.MotionGraph

Bottleneck 1 is mostly caused by computationally expensive and ubiquitous set operations

in python. Two solutions exist. First, the library could be rewritten in the C-language with

moderate effort, allowing to benefit from better control over memory access. Second and

probably intellectually more appealing, instead of building the triangulation from scratch

in every iteration, it could be considered to update it only where necessary, i.e. where new

vertices are added, moved or removed. The theory for such operations can be found in the

literature (Cheng et al., 2013). Bottleneck 2 is caused by the fact that the dual graph and its

linegraph are constructed top down, i.e. the entire graph of the triangulation is constructed,

including all weights calculated based on the cone distance. This involves solving a 4×4 linear

system of equation for every edge weight, in order to calculate the advanced orthocenter

(Section A.4.4). While this is useful for plotting in debugging, it is absolutely unnecessary to

construct the entire graph, as with more complex triangulations, the graph search will not

propagate into a very large area. Some relaxation of this bottleneck is expected if the graph

is constructed on-the-fly in a custom implementation of Dijkstra’s algorithm. Bottleneck

3 is caused by a computationally intensive brute force implementation for identifying the

subregion of the dual graph intersection by the navigation path of the previous iteration.

Currently, the correct version of the code applies the Definition in Equation (4.38) for each

segment and every simplex and then stores the simplices with non-empty intersection in a set.

This causes the computational complexity to increase linearly with the number of simplices in

the triangulation. In case of intensive triangulation refinement, as Defined in Section A.4.2,
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this causes the runtime to increase drastically and in addition, the standard deviation among

iterations, as the number of simplices can vary drastically, depending on whether a sphere

is located close to a border or not. Nevertheless, for the simulations in Chapter 4, the strict

definition is applied. For the demonstration in Chapter 2, an alternative strategy is applied,

which results minor inaccuracies. Instead of intersection waypoint segments, the two points

of a segment are used to identify a triangle in which they are contained. Djikstra’s is the

used iteratively over all waypoint pairs to identify the shortest path on the dual graph. The

set of simplices in this compound path is then used as subregion. This way, the runtime of

the subprocess identification collapses to an average of < 1% of the brute force version and

similar for the jitter, which is essential for a smooth agent movement. Note that the brute force

method by no means the only strategy to identify the correct sub-region. A better way would

be to explore adjacent simplices only for intersection, requiring the handling of some special

cases, when waypoints are located exactly at the border or at vertices, for definite robustness.
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A.2 Experimentation protocols

A.2.1 Tagging (without anesthetization)

(a) Materials (b) Fixation film

(c) Step 1 (d) Step 2 (e) Step 3

(f) Step 4 (g) Step 5 (h) Step 6

Figure A.3: Tagging procedure. (a) From top left: tags, microscissors, insect pin and holder,
felxible tweezers to handle ants, rigid tweezers to hold tag, toothpick, PATEX ULTRA™super
glue, Fixation film from overhead projector (b). Tagging of L. acervorum ant: (c)-(e) Prepare
fork and insert ant head first until thorax in slit. (f) Insert fork in slit to hold legs down. (g)
Make sure thorax is well exposed in fork gap. (h) Apply glue and tag on thorax using toothpick.
Let dry for > 5 min, then remove fork first and let ant escape by opening slit as shown in (c).
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Figure A.4: Dummy fabrication. Left: Cutting the antenna with visual aid on petri dish (short
laser engraved bar = 1mm, red arrow = 3 mm). Right: Dummy in fabrication fixation (counter
magnet glued to underside of petri dish), with visual aid for angular antenna placement.

A.2.2 Robotic dummy fabrication

Figure A.4 illustrates the process.

• Materials: Small petri dish with engraved angle and distance ruler, un-covered magnet,
gold coated magnet (see Table 2.1), synthetic brush hairs, super glue (Patex Ultra Gel),
ceramic tweezers, plastic tweezers, binocular microscope, ethanol, incubator

• Protocol:

1. Wash magnet, petri and tweezers dish with ethanol and let dry

2. Cut hairs off brush (Lascaux LR 15060 - 6™) from the tip to account for different
thickness and length. Length: 3 mm, and place in petri dish.

3. Glue (Pattex ULTRA Gel™) hairs to robot according to "V" shape drawn on the
underside of the dish in an angle of 60°. Let cure for 15 min.

4. (If to be tracked) glue tag on robot on antenna side.

5. Cure magnet in incubator with water reservoir for humidity for 4h at 80°.

6. Wash ceramic tweezers with ethanol before manipulating robot.

A.2.3 Experiment preparation

Arena preparation

• Materials: un-fluoned box, nest spacer, clean IR pass glass, pate-a-fix, blue paper sheet,
scotch, Fluon™, self adhesive Teflon film, credit card, sharp knife

• Protocol:
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1. Take empty, un-fluoned box, make sure it has no scratches

2. Cover floor with Teflon film using credit card.

3. Cover bottom of box with blue paper.

4. Prepare large or small nest (2mm cardboard spacer with hidden door, no floor
cardboard, IR pass filter cover. Make sure cover is clear. Place it using pate-a-fix.

5. Apply Fluon™to box walls.

Robot calibration

• Remark: this step differs for teleoperated snd autonomous experiment.

• Materials: Calibration arena, robot dummy (A.2.2)

• Protocol:

1. Connect PC to robot hardware.

2. Place robot in calibration arena.

3. Launch keyboardantbot.

4. Make sure that test arena is as close as possible to magnetic adapter and that
adapter and arena are both at level (using the spirit. levels).

5. Launch tracking system in test mode.

6. Do test movements to establish θo f f set .

7. (If closed loop operation intended) run calibration program to establish stage-
camera coordinate transformation.

8. Remove test arena.

Manipulator setup

• Remark: The system can be used in two modes:

– Teleoperation: "open loop" guidance with the keyboard and visual feedback from
the camera.

– Antbot programs: "close loop", i.e. a target in pixel coordinates from the tacking
system is used to guide the dummy automatically.

• Remark for usage with Antbot programs: The referencing depends on the camera focus.
It is optimal to verify proper tag detection with a mock arena including tags and proper
robot movement including oscillations (i.e. optimal height) before proceeding with
this protocol. A referencing dummy with the appropriate height should be chosen to
make sure it is detected without drastic camera focus adjustment. Every change on the
camera focus afterwards will make the transformation slightly imprecise. The aperture
position on has no effect.

• Manipulator stage start-up
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– Prerequisites: Manipulator stage and controller set up, movement free to to full
extent of the workspace.

– Protocol:

1. Visually inspect manipulator, make sure it can move free in its entire range
(potentially remove acrylic ant arena holder).

2. Power tracking system, turn on PI controller

3. Open the PI TERMINAL program and connect to controller

4. Turn on servos: SVO 1 1 2 1 3 1
5. Turn referencing for rotational axis off: RON 3 0
6. Perform fast referencing of translation stages: FRF 1 2
7. Place a tagged reference dummy on the magnet. Launch tracking to get a

proper visual feedback from above. The reference dummy is a dummy with a
spacer to place the tag at the same focal distance as the dummy that will later
be placed on the ant arena.

8. Move to well visible position: MOV 1 50.0 2 50. (the range is [0,50] for
linear axes and infinite for the rotational one).

9. By adjusting the position of the white 3d printed adapter with the two Torx
screws, make sure that the dummy rotates around its center. As a hint: zoom
in on the tracking stream on the dummy. Then place one corner of some
window (e.g. PI Terminal) on the PC on a point on the dummy. Now rotate
360 degrees with MVR 3 360.0. Follow the trajectory of the "corner" of the
open window on the image, it will describe a circle. Now place the corner of
the window to the approximate center of the circle. Repeat the process until
the corner of the middle is exactly in the center of rotation. The center should
be coincident with the dummy center. If it is not the case, adjust the (white 3d
printed) adapter position and repeat the process above until it is centered.

10. Move the rotational axis to a horizontal position, pointing exactly to the right
side (i.e. the front of the dummy) using MVR 3 dR (dR: some small number of
degrees).

11. Set the current rotational position to zero POS 3 0.0 (only possible if rota-
tional stage was not referenced before), then check referenced state with FRF?.
This should return "1" for all stages. Now the rotational stage is aligned and
can perform relative and absolute moves.

12. Move to corners of desired maximal travel range (to avoid crashing into the
nest holder etc.) by vision and read out the coordinates with the MOV and POS?
commands.

– References:

1. PI Stage Controller manual: PIGCS_2_0_DLL_SM151E270.pdf

2. Tracking system: https://github.com/formicidae-tracker/documentation/wiki

– Stage-camera coordinates calibration

* Protocol:

1. Make sure the camera is focused and the stage is horizontal, as indicated
by the spirit levels.
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2. Run calibration script
python calibrate_stage.py hostname agent_tag
on the correct host with the correct tag label of the dummy and change the
maximal travel range in the beginning of the script (lolim, uplim, don’t
change the third number for the rotation range). The stage will perform
a random walk with 20 waypoints to estimate the camera pixel to stage
coordinates transformation.

3. The prediction error should be < 2mm for the stage (error sources: tag ec-
centricity, second order image distortion). The error for the angle should
be well below 1o , since in the calibration configuration no friction is
present. The prediction error for The output is a file named
t_tostage_yyyy-mm-dd hh:mm:ss.ssssss.npz
that can be loaded by an experimental script.

– Requirements:

1. PIPython must be installed in the current python environment:
python $HOME/../PIPython-1.3.5.37 setup.py

2. py-fort-hermes package must be installed:
pip install formicidae-tracker-hermes

• Teleoperation

– Protocol:

1. Open a terminal and start the keyboard antbot program:
./kAntbot hostname.config

2. Configuration file examples are located in kAntbot/configs. The following
two options must be specified: name=highgarden, log_dir=...
There are some more self-explanatory settings that change how the dummy
moves.

3. The program possesses some command line arguments that can be displayed
with ./kAntbot -h. When using:
./kAntbot hostname.config --robot\_frame
the keys (see below) are used to move the dummy along its body axis. If this
flag is not set, the keys are used to move the dummy along the stages axes.
Movement in the robot coordinate frame is the standard usage. The other can
be helpful for recovery.

4. A window with an ant inside should show up and the terminal should display
system ready... This windows must always be the active window - "the top
window" - in order for the keystrokes to be directed to the antbot program
(and not for example to the internet browser).

5. To shut down, close this window.

– Key mapping:

* W / S Move forward/backward

* A / D Move left/right

* ↑ / ↓ Turn clock-/counterclockwise

* ← /→ Quick 180° turn clock-/counterclockwise
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* 1 , 2 , 3 , 4 , 5 chose one of the frequency/amplitude presets (see config file)

* Enter start oscillation

* To be completed...

– Requirements:

1. Keyboard antbot installed, repository with instructions can be found at:
https://c4science.ch/diffusion/7833/

• Antobot programs

– Prerequisites: same as for teleoperation, pyantbot Conda environment loaded,
stage calibration done (see above), Intermediate processing done (see below)

– Protocol:

* Launch a pyantbot program (see example follow_interact.py)

* For further information, see examples and code comments in pyantbot code
base: https://c4science.ch/source/pyantbot/

– Terminate: press q + Enter in terminal (terminates like any other FORTloop
program)

Robot and ant colony installation

• Materials: Prepared arena including tagged colony (A.2.1), robot dummy (A.2.2

• Protocol:

1. Start keyboardantbot. Do stage referencing if necessary.

2. Place ant box.

3. Verify that arena is still at level with adapter (A.2.3).

4. Start tracking in test mode.

5. Adjust optics and verify sufficient tag detection quality.

6. Center ant box on camera.

7. Move magnetic manipulator to verify that entire nest can be reached.

8. Move magnetic manipulator approximately to hidden door.

9. Place robot dummy. Perform small movements to verify functionality.

10. Close box and start climate.

Intermediate processing

• Purpose: Generation of myrmidon metadata file to allow real time tag orientation and
downstream processing such as interaction detection (actually only collisions in the
current software state) in FORTloop (Figure 2.1).

• Prerequisites: System set up as described in (A.2.3) and running for a few hours to allow
aggregation of sufficient tracking data for tag alignment.

• Protocol: Normal post-processing of preliminary tracking data in fort-studio.
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Dummy insertion

• Materials: System set up as described in (A.2.3).

• Protocol:

1. Wait two days after completing step (A.2.3).

2. Check robot functionality with keyboardantbot.

3. Open hidden door.

4. Insert robot with keyboardantbot.

5. Close hidden door.

6. Wait 1h until starting experiments for colony to calm down in case of disturbance.

Experiment termination

1. Remove robot through hidden door and place in labeled petri dish

2. Stop experiment according to FORT standard.
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A.3 Definitions for mesh construction

In the following Subsections A.3.1, A.3.2, A.3.3, definitions of essential concepts from Cheng

et al. (2013) are reproduced and referenced. These definitions are essential for the modified

construction algorithm for conforming regular triangulation given in Appendix A.4.

A.3.1 Simplex, face and facet

Definition 18 (Definition 1.3, Cheng et al. (2013)) A k-simplex △ is the convex hull of a set x

of k +1 affinely independent points. In particular, a 0-simplex is a vertex, a 1-simplex is an

edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A k-simplex is said to have

dimension k. A face of σ is a simplex that is in the convex hull of a nonempty subset x. Faces of

σ come in all dimensions from zero (vertices of σ) to k; △ is a face of △. A proper face of △
is a simplex that is the convex hull of a proper subset x; i.e. any face except △. In particular,

the (k −1)-faces of △ are called facets of △; △ has k +1 facets. For instance, the facets of a

tetrahedron are its four triangular faces.

A.3.2 Piecewise linear complex

Definition 19 (Definition 2.8, Cheng et al. (2013)) In the plane, a piecewise linear complex

(PLC) P is a finite set of linear cells - vertices, edges, and polygons - that satisfies the following

properties:

• The vertices and edges in P form a simplicial complex. That is, P contains both vertices

of every edge in P , and the relative interior of an edge in P intersects no vertex in P

nor any other edge in P .

• For each polygon f in P , the boundary of f is a union of edges in P .

• If two polygons in P intersect, their intersection union of edges and vertices in P .

Note that in this paper we require that polygons f do not overlap. Edges in P are called
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segments, as opposed to an edge of a simplex which is called face or facet (see A.3.1). In the

text, we denote a polygon with P .

A.3.3 Quarantined complex

Definition 20 (Definition 7.6 Cheng et al. (2013)) Let P be a piece-wise linear complex in Rn ,

let S ⊂ |P | be a finite point set that includes the vertices of P , and letω be a weight assignment

such that a sub-complex Q of Del S[ω] is a Steiner triangulation1 of P . The dimension k of

both P and Q is the dimension of their highest-dimensional cell, which is not necessarily n. A

j -simplex in Q is called a boundary simplex of Q if j < k and it is included in a linear j -cell in

P . We call Q a quarantined complex if it satisfies the following conditions:

(i) The dimension of a f f |Q| is equal to the dimension of Q.

(ii) Every vertex in Q has nonnegative weight.

(iii) The power distance between every pair of vertices in Q is nonnegative.

(iv) For every boundary simplex σ of Q and every vertex v in Q, the power distance between

v[ωv ] and the diametric ball B(σ) of σ is nonnegative, i.e. π(v[ωv ],B(σ)) ≥ 0.

Remarks:

• v[ωv ] represents a weighted point, if interpreted as a sphere: centered at v with radius

p
ωv .

• |Q| is the underlying space of complex Q, i.e. the point-wise union of all cells in Q

(Definition 1.8 in Cheng et al. (2013)). a f f |Q| is the affine hull of |Q|, the set of all affine

combinations of points in |Q|.

• A Steiner triangulation of some piece-wise linear complex P (Definition 2.12 in Cheng

et al. (2013)) is also called conforming triangulation of P , a triangulation where the

1Accroding to Definition 6

129



Appendix A. Appendix

constraints of P are respected and is potentially augmented by additional vertices on

the constraints (called Steiner points).

• Note that for conditions (iii) and (iv), the power distance between two weighted spheres

needs to be defined slightly different than Definition 3, i.e: π(si , s j ) = ∥xi −x j∥2 − r 2
i − r 2

j .

In the context of Definition 2, for two sub-orthogonal spheres it follows: π(si , s j ) ≥ 0.

• Note that the conditions on the sphere world, as introduced in Section 4.2.3, inherently

satisfy conditions (i), (ii) and (iii) is the required sub-orthogonality, which results in no

redundant spheres. Condition (iv) is required for correctness of Proposition 1.

A.4 Mesh construction algorithm

A.4.1 Construction of constrained regular triangulations

In this paragraph the customization of an algorithm for building the constrained regular

triangulation of a polygonal sphere world is described. Essentilal Definitions are given in

Appendix A.3. As a convention, in this paragraph, in dimension Rn , n-simplices are denoted

by σ and n −1-simplices by f. The expression f ∈ σ means that f is a face of σ, if not stated

differently. For convenience, the expression f[i ] represents some unspecified n −2-simplex

in the (unordered) set of facets of f. A homogeneous simplicial n-complex T , also called

triangulation, is a set of simplices, in which every simplex face is also in T and every non-

empty intersection of two simplices is a face of both simplices. The word homogeneous

requires that every simplex in T , of dimension lower than n, is again a face of some n-simplex

in T . Intuitively, a triangulation divides the space into non-overlapping triangles and whereby

the union of the triangles cover the entire space.

In computational geometry, the regular triangulation is usually defined more general for a

point set {xi } with associated weights wi ∈R instead of spheres, without further specifications

on how the weights are obtained. With the conversion wi = r 2
i , weights or squared radii can be

used interchangeably and yield the geometric interpretation of orthogonality (Definition 2). In
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sphere worlds, we interpret the weights as squared sphere radii and, i.e. r ∈R≥0 ↔ w ∈R≥0. To

generalize the regular triangulation, it is useful to define the point lifting operation l i f t (x,r 2) :

Rn → Rn+1 that maps every weighted point (x,r 2),x ∈ Rn by adding a new coordinate2 to its

lifted representation x+ ∈Rn+1:

xn+1 =
n∑

i=1
x2

i − r 2
i ∈Rn (A.1)

x+ = [x; xn+1] ∈Rn+1 (A.2)

It can then be shown that the problem of constructing a regular triangulation is equivalent to

finding the underside of the lifted complex, the convex hull of the lifted point set x+ = {x+}i ,

and projecting it back onto the original space. This operation is illustrated in Figure A.5, right.

Any triangulation that can be constructed in this way is called a regular triangulation Cheng

et al. (2013). For vanishing radii the Delanuay case is obtained where all points x+ lie on the

surface of a paraboloid centered at the origin. By adding a positive radius or weight to a point,

it follows from Equation (A.1) that its lifted coordinate is lowered. Intuitively, increasing the

weight, increases region of influence of a point on the triangulation. This way, the regular

triangulation can encode short range vertex interactions. In Section 4.3 this property is used

to derive a clearance estimate for navigation.

If a point x+ is surrounded by points with sufficiently large weight, it can lie in the interior of

conv(x+). Such points are called redundant3 and do not appear in the simplicial complex4.

In the strict sense of Definition A.3.2, the resulting simplicial complex obtained by the lifting

and projection operation is not a triangulation of the input vertex set x if redunant points

exist. If all points have positive weight and are sub-orthogonal, it can be shown that no point

is redundant, which motivates the assumption on the sphere world in Section 4.2.3. For

unconstrained regular triangulation, the lifting analogy works without further restrictions and

the use of efficient convex hull algorithms is beneficial.

2Also called Lifted Companion Cheng et al. (2013) or Lifted Coordinate Edelsbrunner and Shah (1996)
3Also called submerged or hidden.
4In the Delaunay case, wi = 0, the lifted coordinates lie on a paraboloid and therefore no redundant points can

exist.
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An important observation following from the lifting analogy is the fact that there exist ex-

actly two well defined ways to triangulate any set of n +2 points, if the lifted complex has a

unique projection5: one is regular, i.e. the lower side of the lifted polytope, the other, which

corresponds to the upper side, is not Edelsbrunner and Shah (1996). The transformation

operation between the two is called a flip and is illustrated for n = 2 in Figure A.5, left. Two

simplices sharing a link facet collectively represent a simplicial complex T (x) of the point set

with |x| = n +2. T can be called locally regular if it is regular. It follows that a triangulation

is globally regular, if all complexes defined by the link facets are locally regular. Instead of

building the triangulation in a top down approach using a convex hull algorithm, the flipping-

or incremental build algorithm is a bottom-up approach in which points are sequentially

inserted in T (xi−1) while the regularity of T (xi−1∪(xi , wi )) is maintained recursively through

binary decisions on local regularity and flipping operations where appropriate Edelsbrunner

and Shah (1996).

Two types of flips exist: insertion-deletion flips or flips that change shared face among sim-

plices (Figure A.5, left). With the lifting analogy, establishing local regularity of a simplicial

complex, consisting of n +2 weighted points, amounts to check if a point (y,r 2
y ), that is not

part of the simplex σ({x, w}i ), is below the surface spanned by the lifted points x+i of σ. This

can be done with the following predicate Cheng et al. (2013):

d = det



1 xT
1 ∥x1∥2 −w1

...
...

1 xT
n+1 ∥xn+1∥2 −wn+1

1 yT
∥∥y

∥∥2 −wy


(A.3)

If d > 0, then σ is locally regular with respect to the weighted point (y, wy ). The strict equality

(d = 0) is avoided if the point coordinates are linear independent, which can be enforced in a

5This is the case if no more than n points have a lifted representations inRn+1 which lie on a vertical hyperplane.
To satisfy this condition, it is sufficient if these points have linear independent coordinates in Rn .
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consistent way through symbolic perturbations of the sphere coordinates Edelsbrunner and

Mücke (1990). The flip operation itself is described in Edelsbrunner and Shah (1996) and is

omitted here. Note that Equation (A.3) is sufficient to establish regularity and to this end, it is

not mandatory to explicitly compute orthospheres as introduced in Definition 7.

Constraints that do not inherently respect regularity, appear as non-convex regions in the

lifted complex. Therefore the convex hull algorithm cannot be used. With the flipping algo-

rithm, constraints already present in the triangulation can enforced by preventing flips that

cut through a constraint during point insertion Shewchuk (2003). Since the vertices that form

the constraints have zero weight, we first construct a constrained Delaunay Triangulation of

the polygonal workspace represented by the PLC P , ignoring all spheres. For this purpose, a

number of algorithms are available Cheng et al. (2013). Then the weighted points are intro-

duced sequentially with the flipping algorithm. The sphere insertion procedure is described

by Algorithm A.4.2).

Algorithm 1: InsertPoint algorithm of Edelsbrunner et al. Edelsbrunner and Shah
(1996), adapted to maintain initial the constraints from a PLC P . l.n.r.: locally non
regular

input :R,P , s
output :R

1 σ← n-simplex in R that contains s;
2 if s not redundant w.r.t. σ then
3 l i nksnew ← insertion(R, s);
4 while l i nksnew ̸= ; do
5 l i nk ← l i nksnew .pop;
6 if l i nk l.n.r. and flippable and ∉P then
7 l i nksnew .push(flip(R, l i nk));

As outlined above, the idea of Algorithm 1 is to use the lifting analogy on the smallest local

region, i.e. n+2 points and perform flips as illustrated in Figure A.5. First, the point s is inserted

into the current triangulation. At this point, s could be redundant, and its lifted version x+

above the surface spanned by the lifted vertices of σ. In practice, this cannot happen as it is

assumed that all spheres are sub-orthogonal. Therefore, in 2D, three new link facets will be

produced and pushed on the l i nksnew stack. This stack is then processed in lines (4-7). Every
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link facet involves two n-simplices σa ,σb . If σa ∪σb = conv(σa ∪σb), then the link facet is

flippable with flip of type 2 → 2. If this is not the case, the facet is flippable only the vertex

in the interior has degree 3, which makes it a 3 → 1 flip (see Figure A.5, center). In line 6 it is

checked whether flippable link facets are that are not constrained by the polygonal workspace

P are regular or not and flipped if necessary. Algorithm 2, lines 1-3 inserts spheres sequentially

into R, starting from a constrained regular triangulation in line 1. The remainder of Algorithm

2 is dedicated to the refinement necessary to turn the constrained regular triangulation into a

conforming constrained regular triangulation (Section A.4.2).

Algorithm 2: Incremental build algorithm for conforming regular triangulation of
a PLC P and set of spheres {si }. The effect of refinement (lines 4-9) is illustrated in
Figure 4.3.

input :P , {si }
output :R

1 R ←Constr ai nedDel aunay(P );
2 for s ∈ {si } do
3 R ← Inser tPoi nt (R,P , s)

4 seg ment s ← f ∈P ;
5 while seg ment s ̸= ; do
6 f ← seg ment s.pop;
7 for σ ∈R, f ∈σ do
8 so,f ← or thospher e(f);
9 sv ←σ\ f;

10 if sv not sub-orthogonal to so then
11 R ← Inser tPoi nt (R,P , (xo,f,0));
12 seg ment s.push([f[0],xo,f], [xo,f, f[1]]);

A.4.2 Triangulation refinement

After the first part of Algorithm 2, until line 3, skinny triangles can appear close to constraint

segments (Figure 4.3, left). It can be shown that for a quarantined complex, all orthocenters lie

within the underlying subspace of the triangulation (Orthocenter containment Lemma 7.7 in

Cheng et al. (2013)), which essentially prevents skinny triangles. To turn R into a quarantined

complex, the boundary segments need to be refined such that for every segment f and sphere

s, the diametric orthosphere s⊥(f) is sub-orthogonal to s, i.e. ∥x−x⊥(f)∥2 ≥ r 2 + r⊥(f)2 (Section
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3 to 1 (redundant point)

1 to 3 (insertion)

2 to 2

2 to 2 3 to 1

Figure A.5: Flips and lifting analogy. Left, top: flips in 2d. Figure adopted from Edelsbrunner
and Shah (1996). Left, bottom: Flipping history of an initially not flippable facet (dashed
segment), where σi ∪σ j ̸= conv(σi ∪σ j ), and a vertex with degree > 3. Right: lifted complex
of n +2 weighted points with projected lower and upper sides. Red circle and arrow illustrate
effect of larger weight on lifted coordinate.

9.3 in Cheng et al. (2013)).

The diametric orthosphere s⊥(f) of an edge is illustrated in Figure 4.5 by the dashed green circle

For a segment with zero weight vertices, this is simply the diametric sphere, centered in at

the midpoint. To enforce the orthosphere containment condition for quarantined complexes

(Figure 4.3, right), Algorithm 2 refines constraint segments f after the sphere insertion in lines

4-12. The refinement is defined for the general case of weighted vertices in REFINE-procedure

in Section 9.3 of Cheng et al. (2013). For a constraint segment f which is a facet the simplex

σ, an additional sphere with zero weight is inserted at the orthocenter x⊥(f) if the vertex of σ,

which is not part of f, is not sub-orthogonal to the orthosphere of s⊥(f). Each newly formed

sub-segment is then further refined if necessary. Note that in this way, Remark 1 (regularity in

crossections) is re-establish in case of violation thourgh constraints.

A.4.3 Implementation details

The triangle6 package is used to build a constrained Delaunay triangulation in Algorithm 2,

which is transformed to a history directed acyclic graph, the central structure of the incremental

build algorithm Edelsbrunner and Mücke (1990). It represents the hierarchical structure of

6https://rufat.be/triangle/
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past flipping operations and is used for efficient point localization and to maintain the simplex

adjacency. Algorithms 1 and 2 use a symbolic input perturbation strategy called simulation of

simplicity Edelsbrunner and Mücke (1990) to handle affinely not independent point sets. This

results in a reproducible output and ensures that the algorithm terminates even in the presence

of vertex configurations with ambiguous regularity7. Simulation of simplicity requires the use

of integer or fixed point arithmetic to ensure correctness. Here we use a fixed precision of four

decimals, which is seven orders of magnitude lower than arena size.

A.4.4 Computation of the orthosphere

The center x⊥ and radius r⊥ of the orthosphere s⊥(s) of a spheres set |s| = n +1 in general

configuration can be calculated efficiently using the orthogonality conditions:

∥x⊥−xi∥2 = 0, i = 1, . . . ,n +1 (A.4)

↔ 2xi
Tx⊥− (∥x⊥∥2 − r 2

⊥) = ∥xi∥2 − r 2
i (A.5)

which can be arrange in a linear system of equations:


2x1

T −1
...

...

2xn+1
T −1


 x⊥

∥x⊥∥2 − r 2
⊥

=


∥x1∥2 − r 2

1
...

∥xn+1∥2 − r 2
n+1

 (A.6)

This can be solved for x⊥,r⊥, e.g. using Cramer’s Rule. Note that for building refined regular

triangulations, the orthospheres do not need to be calculated explicitly, as the predicate of

Equation (A.3) is used to test regularity. However, the orthoshphere needs to be calculated to

establish the distance to collision in Proposition 1.

7Refering to a situation in which both configurations of a close-to-degenerate complex of n +2 vertices are
determined not regular, which leads to an infinite flipping loop.
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A.5 Incremental build regular triangulation python package

The code repository of incremental build regular triangulation python package ibrtpy which

was written for this thesis can be found at https://c4science.ch/source/ibrtpy/.

Since the problem of building (unconstrained) regular triangulations can be mapped to the

well explored problem of finding the convex hull of a set of lifted points (Section A.4), the

incremental build algorithm is less popular and only used in special cases. Constrained

conforming regular triangulations represent such a case and to the best of our knowledge,

no freely available software exists for this purpose. ibrtpy is again a special case, using a

constrained Delaunay (or unweighted) triangulation an input8 and inserting weighted points

sequentially. Finally, the triangulation is refined if needed, to obtain a conforming constrained

regular triangulation (Section 4.2). The package is a implementation for 2D of the incremental

build algorithm for regular triangulations described in (Edelsbrunner and Shah, 1996).

This package is intended for research and educational purpose without a rigorous emphasis

on computational efficiency. It uses the predicates described in (Edelsbrunner and Mücke,

1990). This allows to generate a deterministic output even in the case of an input which is not

in general configuration, i.e. with collinear points. However, correctness is conceptually only

guaranteed with a pure integer input. In this case the ‘large number’ strategy of (Edelsbrunner

and Shah, 1996) to represent infinite vertices, which is implemented here in the strict sense

through replacement of infinite symbolic elements in a matrix of dimension n by the absolute

value of the largest finite number of that matrix to the power of n +1, is exact. For floating

point inputs, this strategy can lead to numerical imprecision due to large number, whereas for

integers, very large numbers are handled by the integer ‘bignum’ arithmetic of python. It is

the user’s responsibility to ensures that the input is pure integer. In python, floats propagate.

Very repetitive python set operations are re-implemented for sets of size up to three to achieve

a considerable speedup.

8In the ibrtpy package, constrained Delaunay triangulations are computed using the Triangle package:
https://www.cs.cmu.edu/~quake/triangle.html
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