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Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative

imaging technique that allows for the measurement of brain metabolites that

has demonstrated utility in diagnosing and characterizing a broad range of

neurological diseases. Its impact, however, has been limited due to small

sample sizes and methodological variability in addition to intrinsic limitations

of themethod itself such as its sensitivity tomotion. The lack of standardization

from a data acquisition and data processing perspective makes it di�cult

to pool multiple studies and/or conduct multisite studies that are necessary

for supporting clinically relevant findings. Based on the experience of the

ENIGMA MRS work group and a review of the literature, this manuscript
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provides an overview of the current state of MRS data harmonization. Key

factors that need to be taken into consideration when conducting both

retrospective and prospective studies are described. These include (1) MRS

acquisition issues such as pulse sequence, RF and B0 calibrations, echo time,

and SNR; (2) data processing issues such as pre-processing steps, modeling,

and quantitation; and (3) biological factors such as voxel location, age, sex,

and pathology. Various approaches to MRS data harmonization are then

described including meta-analysis, mega-analysis, linear modeling, ComBat

and artificial intelligence approaches. The goal is to provide both novice and

experienced readers with the necessary knowledge for conducting MRS data

harmonization studies.

KEYWORDS

magnetic resonance spectroscopy, harmonization, multi-site, multi-vendor,

prospective, retrospective, brain

Introduction

Magnetic resonance spectroscopy (MRS) is a non-

invasive technique permitting detection and quantification of

metabolites in vivo. Despite its potential to provide unique

and useful diagnostic, prognostic, and biological information

on healthy brain function and neurological and psychiatric

disorders, MRS studies have generally been constrained by

small sample sizes and poor reproducibility, limiting their

interpretation and generalization. We suggest that this is one

reason that MRS has not had the large-scale uptake of other

MR research modalities such as functional magnetic resonance

imaging (fMRI) or diffusion imaging. As MR research enters

the information era, there is a growing need for big data

analytics, robust pooling and harmonization of data across

multiple sites. This paradigm shift motivated the establishment

of The Enhancing NeuroImaging Genetics through Meta-

Analysis (ENIGMA) consortium in 2009 with the initial goal

of identifying replicable associations between common genetic

variants and brain structure and function (1, 2). The successes

of this initiative are widespread with over 50 working groups,

including the MRS working group, with recent publications

pooling imaging data from over 2,000 scientists from 45

countries to achieve the largest neuroimaging sample sizes for

multiple disorders including schizophrenia [total N = 9,572;

4,474 cases; (3)], bipolar disorder [total N= 12,000; 3,500 cases;

(4)], major depressive disorder [total N = 10,105; 2,148 cases;

(5)], obsessive-compulsive disorder [total N = 3,665; 1,905

cases; (6)], and 22q11.2 deletion syndrome [22q11DS; total N

= 944; 474 cases; (7); also see Thompson et al. (2)]. However,

MRS research has not yet embraced data aggregation to this

level and thus has not achieved studies with sample sizes of

this magnitude. We believe this is largely due to difficulties in

technical standardization and harmonization.

Multi-site studies offer an efficient way to increase sample

size, which can be difficult at single sites due to a limited

population for recruitment. Alternatively, when a single site

has multiple scanners, it is possible that a single study will

acquire data across multiple scanners for logistical reasons.

Having multiple scanners at a single center also provides a

controlled approach to investigate scanner effects as data from

the same subjects, acquired by the same research team, can be

acquired on multiple scanners relatively easily. A significant

challenge with MRS is that even if there are two identical

scanners, running the same software, operated by the same

research team, there may be differences in their performance

and ultimately metabolite quantification. Thus, for clarity, in

this manuscript multi-scanner will indicate multiple individual

scanners, which may be run at the same center, operated by the

same team or at different locations. Multi-vendor will denote

different scanner vendors (e.g., Canon, General Electric, Philips,

and Siemens etc.) whether at the same location or multiple

locations. Multi-site will refer to scanners at different locations

that are operated by different teams and staff (so one institution

may have multiple sites).

In this review, two approaches of data aggregation and

multi-scanner studies will be considered: prospective and

retrospective. Prospective development of multi-site/multi-

vendor/multi-scanner MRS protocols should consider the

technical factors and processing pipelines that will impact

metabolite quantification. There are various approaches to this

challenge, and each may be appropriate in different scenarios

depending on the research question. One approach is to

use the same scanner vendor and model, with the same

software and the exact same parameters. However, this does

not guarantee homogeneity of results as scanner characteristics

such as eddy currents and frequency drift are dependent on

the individual scanner (8). Further, it is likely not feasible
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to include only sites with identical scanners, as software

upgrades are performed with inconsistent timelines. A lowest

common denominator approach, where all sites use the same

acquisition, catering to the least advanced scanner, regardless

of the manufacturer, will minimize sequence variability.

Even so, there are differences within the most conventional

sequences between vendors limiting data homogeneity (9).

This approach also results in underuse of some scanners’

capabilities. An alternative is to take advantage of the most

advanced capabilities on each scanner, acquiring data with the

highest possible quality on each scanner and then combine

results as effects rather than raw data. This approach carries

the risk of not achieving the desired advantage of pooling

multiple sites for increased power if the data quality is too

diverse across scanners. Ultimately, a goal of harmonization

is a balance between data consistency, data quality and

data quantity.

There is a wealth of MRS data, published and unpublished,

which may be aggregated using retrospective study designs to

deepen our understanding of the brain and disease processes

while leveraging the power of MRS data for future studies.

With retrospective aggregation of data, there is little control

over data acquisition parameters. While a scientist designing

a study with retrospective data aggregation may choose

inclusion and exclusion criteria in an effort to have highly

homogeneous data, highly restrictive criteria may be self-

defeating in that very few studies can be included in the

analysis. As such, there is a need to consider how both technical

and methodological differences will be handled. Furthermore,

aggregating retrospective data requires biological factors to be

considered as well.

The goal of this review is to present the current

state of MRS data harmonization including the unique

technical/methodological and population/biological challenges

associated with aggregating MRS data in both prospective

and retrospective study designs (Figure 1). Considering the

ENIGMA MRS working group’s goal of developing data

harmonization strategies, we will discuss several solutions

employed to reduce these effects. Finally, we will present some

interpretations and considerations related to these strategies

and their application to study design in both prospective and

retrospective multi-scanner, multi-site studies.

Technical factors

Unlike MR imaging where quantitative imaging is more

recent, MR spectroscopy studies have always been inherently

quantitative. Initially, and still practiced, metabolites were

quantified as a ratio to another metabolite (often creatine).

This was followed by water referencing, and more recently,

water referencing with appropriate corrections for water and

metabolite parameters (T1, T2, and proton density) yielding

absolute units based on the assumptions used (10, 11). One

challenge with MRS quantification is that measurement

variability depends on many factors, including hardware

(scanner manufacturer, field strength, transmitter/receiver

coils, passive shim elements impacting magnetic field

inhomogeneities, and frequency drifts, etc.), acquisition

parameters (localization method, echo time, repetition time,

and voxel size, etc.), data quality signal to noise ratio (SNR),

linewidth, and data analysis (pre-processing, fitting, and

quantification). The next sections will overview how some of

these factors impact harmonization of data between scanners,

vendors and sites. For more in-depth background on MRS as

a method, readers are directed to Oz et al. (12), Tomiyasu and

Harada (13), Lin et al. (14), and Cecil (15).

Hardware

Harmonization efforts may need to consider the available

field strength and hardware. Different MRI scanners (even

from the same vendor) have different RF coils used for

transmit and receive. This is further complicated by many

sites, particularly those at 7T, which use home-made RF coils.

Additionally, the RF coil may impose additional limitations,

such as maximum RF peak power. For prospective studies,

scan protocols might have to be adjusted during study

planning, so that they can be similarly executed on all types

of participating hardware; however, this is challenging when

aggregating data retrospectively.

Acquisition

Localization

One of the first decisions in performing an MRS study

is the localization approach. For single voxel spectroscopy

(SVS), traditionally the choice was between STimulated

Echo Acquisition Mode [STEAM, (16)] or Point RESolved

Spectroscopy [PRESS, (17)], and more recently spin echo

full intensity acquired localized [SPECIAL (18)], localization

by adiabatic selective refocusing [LASER (19)], and semi

adiabatic localization by adiabatic selective refocusing

[semiLASER/sLASER (20)]. The selection of localization

method has multiple consequences including possible

limitations on echo time, differences in chemical shift

displacement and SNR. SemiLASER is recommended in a recent

consensus and is available for General Electric, Siemens and

Philips scanners (21). Even so, it remains a research tool which

cannot always be implemented at clinical sites with clinical

systems due to limited experience with MRS or institutional

regulations preventing the installation of research-based (e.g.,

works in progress) acquisitions. In addition, the use of an

advanced sequence, such as semi-LASER, requires sites to
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FIGURE 1

Aggregating multi-site, multi-vendor, or multi-scanner MRS data is an e�cient way to increase sample sizes. Here we outline two approaches

for data aggregation: Prospective and retrospective. Each may be appropriate in di�erent scenarios depending on the research question and

resources. The challenge and goal of aggregating data is to achieve balance between data consistency, data quality and data quantity.

Prospective study designs should consider the technical factors and analysis pipelines that will impact metabolite quantification. Retrospective

study designs aggregate previously collected data and therefore have little control over data acquisition parameters, instead focusing on analysis

and harmonization strategies. The strategies applied in retrospective designs may also be applied to prospectively acquired data. Created with

BioRender.com.

obtain or generate basis sets for particular TE values, which

can be difficult for novices. In contrast, STEAM and PRESS

are available from all vendors as standard, product sequences.

STEAM enables shorter echo times but has half the signal

amplitude of PRESS (21). While PRESS and sLASER have

comparable SNR at 3T, PRESS has on the order of ∼12%/ppm

chemical shift displacement effects, compared to sLASER which

shows 2%/ppm (21, 22).

Magnetic resonance spectroscopic imaging (MRSI)

combines MRS with spatial encoding methods to map spectral

information over multiple voxels. The choice of acquisition

methods (TE, volume selection/excitation scheme, and phase

encoding scheme) will depend primarily on the study-specific

spatial and spectral information requirements, while taking into

account MRSI’s limitations (23). PRESS and sLASER sequences

are most widely implemented, with sLASER favored at higher

field strengths owing to large chemical shift displacement

errors with PRESS at ≥3T (20). The long acquisition times

associated with MRSI has limited its incorporation into

many clinical studies; however, there is a growing body of

work focused on accelerating scan times. More advanced

MRSI acquisition techniques using spatial-spectral encoding

techniques with echo-planar readouts [EPSI (24); PEPSI (25)]

or other non-Cartesian trajectories (26–28) are available. In

addition, accelerated MRSI techniques using shorter repetition

times or k-space under sampling [sensitivity encoding (SENSE),

generalized auto-calibrating partially parallel acquisition

(GRAPPA), multi-band/simultaneous multi-slice] have been

developed [see Vidya Shankar et al. (29) and Bogner et al. (30)

and references within]. These advancements remain largely in

the research setting with limited implementation on clinical

systems due to the need for specialized technical expertise

to obtain good quality data. However, a recent consensus

statement outlined vendor neutral recommendations for

the acquisition, processing, and analysis of MRSI (23). As

with SVS, even when the same parameters and acquisition

approaches are used, substantial between-scanner differences

can remain with MRSI data, this aggregating multi-site

MRSI data will still need to account for differences between

scanners (31).

Adjustments: RF calibration, shimming, water
suppression calibration

There are multiple adjustments performed prior to the MRS

acquisition that can have profound effects on data quality. These,

in turn, may impact data harmonization. While many research

centers use advanced methods to control these processes, many

cannot be directly controlled by the operator. Thus, unless

common vendors and systems are being used in a multi-

scanner/multi-site study, the potential effects of differences in

these adjustments may have to be accepted and their impact

on data quality at a minimum recognized but likely controlled

for in data analyses or aggregation steps. Each of these factors

and their effect on data quality for harmonization will be briefly

described here.
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Radio frequency (RF) calibration is performed at the

beginning of an exam and aims to optimize the RF power or RF

voltage to yield the desired flip angle, typically with the aim of

obtaining maximum signal (32). For SVS, this calibration is for

the center of the voxel while the calibration is at the center of the

volume of interest in MRSI. Performance of the RF calibration

will ultimately affect sequence performance and data quality,

particularly for PRESS localization. While most sites are not

able to manipulate its efficacy, recognizing the impact on data

quality may impact study design (i.e., choosing a single vendor)

or data aggregation.

Linewidth directly impacts resolving overlapping resonances

and complicated spectral patterns for reliable detection and

quantification of metabolites. Narrow lines are a direct

consequence of a homogeneous B0 field, and in MRS, the

required field homogeneity is generally higher than for most

MR imaging applications resulting in an increased importance

of shimming. Shimming generally refers to the process

of (locally) removing macroscopic main magnetic field B0

inhomogeneities by applying small additional magnetic fields

generated by shim coils. These are in addition to the passive

shim elements that are also in place to develop a homogeneous

main magnetic field and can impact field drift (described

below). Often second-order shims are available on clinical

systems, but this is not universal, with some systems having

only first-order shims. Some research systems, particularly

those at 7 T, have partial or full third-degree shims. While

recommendations for SVS and MRSI shim approaches exist

(33), customizing the shim methodology and hardware is

generally not possible, particularly on clinical systems. Suggested

criteria and corresponding linewidths have been defined for

“excellent”, “adequate” and “acceptable” categories for multiple

field strengths and various anatomical regions (33) which

can be used as a practical approach to define thresholds for

acceptable field homogeneity for data harmonization across

scanners and sites.

Finally, if water suppression (WS) is applied, both the

WS method and its calibration can impact data quality and

thus its harmonization. The goal of WS is to yield an

MR spectrum in which the water signal is smaller than, or

about the same in amplitude as the largest metabolite peak

[NAA in the healthy brain (34)]. Alternatives to WS have

been proposed [e.g., metabolite cycling, (35)], though they

are largely still in development. On clinical systems, water

suppression enhanced through T1 effects (WET) with three

or four CHemical Shift Selective (CHESS) WS pulses [WET,

(36)], is the most commonly available WS method. A more

elaborate method, VAriable Power and Optimized Relaxation

Delays [VAPOR, (37)], uses a sequence of inversion pulses

with varying inter-pulse delays and flip angles to minimize

the water signal, although this approach is more available on

research systems. Typically, the flip angle of a single WS pulse

is varied during calibration to minimize the residual water

signal amplitude. As with all pre-scan adjustments, differences

in WS methods should be recognized as a contributing

factor to vendor effects during harmonization, since systematic

differences in residual water amplitude can affect the spectral

modeling process.

Acquisition parameters

Accurate quantification of metabolite concentrations or

ratios ideally requires long repetition times (TR > 2,000ms

for B0 ≤ 3T) and short echo times (TE < 30ms) to minimize

signal loss due to T1 and T2 relaxation effects (38). Of

these, TE will have the largest impact on the number of

metabolites detected and spectral quality. Short-TE spectra have

higher SNR and facilitate the detection of metabolites that

have short T2 relaxation times and/or J-modulation due to J-

couplings [e.g., glutamate, glutamine, and myo-inositol (mI)].

However, shorter TE spectra are complicated by broad high

molecular weight macromolecules (MM) (39). Analysis methods

are available to separate metabolites from lipid/macromolecule

signals (see below), which can be employed in processing

pipelines when aggregating both prospective and retrospective

data sets, but the overlap between metabolites and MMs (as

well as between coupled metabolites) remains a substantial

source of measurement uncertainty. In contrast, longer TE

(135, 144, and 288ms) acquisitions can be used to reduce

macromolecule signals, due to their short T2 relaxation times.

Optimizing the TE can also be used to optimize detection of

a metabolite, for example, TE = 144ms is used to improve

the detection of lactate (40), which is inverted as a result of

phase modulation by J-coupling. An alternative example is

the recommendation of TE = 97ms for the specific detection

of 2-hydroxyglutarate using PRESS (41) or TE = 110ms

recommended for the detection of 2-hydroxyglutarate when

using sLASER (42). While the choice of TE is typically

determined by the study design (i.e., metabolite of interest)

or the advantage of one technique over another (i.e., flatter

baseline), the scanner gradient technology, and maximum

peak B1 will constrain the minimum TE achievable on

individual systems.

Two other important considerations are the voxel size and

the number of averages (or number of transients) as these

parameters both directly impact the SNR. When aggregating

data from two studies that acquired different numbers of

transients in the protocol, one approach may be to remove

transients to match data acquisition parameters across scanners.

However, deliberately reducing signal-to-noise and data quality

is unsatisfactory, particularly if it impacts the net result (i.e.,

affects whether group differences are detected or not). Given

the profound impact of voxel size on data quality, this is more

challenging to harmonize directly. Alternatively, SNR and/or

linewidth could be included as a covariate in analyses to mitigate

the effects of data quality between sites or, in fact, between data
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sets. An additional confound of having different voxel sizes is the

inclusion of different anatomy, which is discussed below. Other

acquisition parameter selections such as number of spectral

points and spectral bandwidth have less obvious effects on data

harmonization procedures.

Motion correction

Motion is an issue with all MRS studies; first it degrades

data quality by affecting frequency and phase. Motion also

will degrade the shim and water suppression which further

impacts data quality. Finally, motion will change the voxel

localization, which may not actually degrade spectral quality,

but data will be from a different location than expected

(mislocalization) which will impact the interpretation of results.

While it is not possible to determine whether differences

in data quality are a result of motion or other acquisition

factors, the impact of motion on data harmonization needs to

be considered. At a base level, differences in immobilization

techniques (via participant instructions or head restraints)

or periodic B0 field changes resulting from respiratory or

cardiac motion in individual participants across sites can

contribute to differences in the extent of motion artifact

between sites, an issue that may exist in both prospective

and retrospective data harmonization. To mitigate the effects

of motion, both retrospective and prospective correction

methods exist, and a recent consensus paper recommends

the use of an advanced motion correction that provides at

least 5% stability or better (43). For prospectively designed

studies, novel prospective motion correction approaches using

internal navigation methods may be used. These approaches

use additional pulse sequence elements to discern the position

and shim parameters. Alternatively, external tracking systems

that employ external cameras to continuously track motion

combined with real-time B0 shim correction can minimize

the impact of motion. We direct readers to Andronesi et

al. (43) and references within for a review of the most

advanced and effective motion correction methods. However,

challenges with implementing such methods and ensuring

comparable methods exist at all sites may prevail and, in

those instances, guidelines for acceptable data quality should

be based on the question to be addressed. A number of

recent consensus papers outline key quality metrics [SNR,

metabolite and unsuppressed water resonance linewidth,

residual water signal, line shape, Cramér-Rao lower bounds

(CRLB) of the line fit of the metabolites of interest, fit

quality (residuals of the fit) and the presence of artifacts]

to be evaluated when determining spectral quality (21, 38).

There has also been work on automated 1H MRS quality

control pipelines or combined approaches including both

automated steps and visual spectra inspection as well as

approaches with automated artifact pattern recognition for

quality assessment (44–48).

Analysis

Regardless of the acquisition parameters, common analyses

are desired for harmonization. Even this can be challenging

as there are multiple vendor-proprietary MRS data formats

that export data in varying levels of “rawness”, e.g., all

transients across all coils, coil combined, or in some cases, all

transients are averaged prior to data export. The level of data

rawness will impact both the degree of processing that can

be applied as well as how common the analysis pipeline can

be (for example, frequency-and-phase correction requires all

transients), particularly in multi-vendor studies.

(Pre)Processing, modeling, and quantification

Modern MRS data analysis typically includes three key

phases (11):

1) Data (pre-)processing, a series of operations preparing

raw data into final spectra that are passed on to a

modeling algorithm.

2) Modeling/fitting, the process of approximating/representing

the measured signal.

3) Quantification, the process of converting model parameters

into quantitative metabolite level estimates.

To accomplish these steps, a wide variety of data analysis

software are available. While many widely used software

packages such as LCModel (49) and jMRUI (50) have been

distributed as compiled, closed-source binaries, there has been

a notable shift toward modular open-source solutions (38, 51–

53). LCModel, which has dominatedMRS analysis, has also been

made open access, but is not actively developed anymore. Many

of these software packages have been compiled at https://www.

mrshub.org.

Preprocessing

Recent MRS expert consensus has made several

recommendations for preprocessing operations to maximize

data quality, including receiver coil combination, alignment

and removal of corrupted transients, eddy-current correction,

etc., offering a template for harmonizing analysis workflows

(11). However, there is no single comprehensive MRS data

preprocessing pipeline that is universally agreed upon. As

a result, MRS analysis workflows differ between research

groups, and are frequently informed by personal preference and

organic development over time, leading to incongruent results

(54). While the effects of preprocessing pipeline diversity on

metabolite estimates remain to be systematically investigated,

it is difficult to imagine that this does not impact results

and in turn affect the aggregation data across vendors at a

minimum.Moreover, given the multitude of vendor-proprietary

MRS file formats of varying levels of “rawness” developing a
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comprehensive MRS data preprocessing pipeline across vendors

has so far proved elusive. Most recently, a standardized MRS-

specific data storage format (“NIfTI-MRS”) and data/metadata

accumulation logic (“BIDS-MRS”) have been proposed, which

should mitigate pipeline heterogeneity, aid in large-scale data

aggregation, and improve integration with other neuroimaging

modalities (55, 56).

Modeling

The diversity of spectral modeling methods is another

substantial source of discrepancy and variability in MRS. Recent

expert consensus recommends linear-combination modeling

(LCM) formost scenarios, i.e., approximating themeasured data

as the weighted sum of (measured or simulated) basis functions

for metabolite and macromolecular signals, which is reflected by

the majority of fitting algorithms available and used. Most LCM

algorithms (11, 44, 49, 51–53, 57–61) include parameters for

signal amplitudes, zero- and first-order phase adjustments and

small frequency shifts. They differ considerably, however, in the

way they estimate smooth baseline fluctuations and line shape

parameters and employ different strategies to solve the (typically

ill-posed) optimization problem, e.g., different ways to search

for optimal starting values. The (perhaps unsurprising) resulting

sensitivity of metabolite level estimates to small differences in

the modeling process has long been informally considered an

“open secret” in theMRS community, but is increasingly studied

(62–64). These types of discrepancies can impact retrospective

analyses, particularly when performing meta-analyses as data is

not analyzed using a common process.

In some cases, harmonization of the modeling process

across-site and within-site is possible assuming transparent

reporting of as many details as possible (65). For example,

to account for small differences between MRS sequence

implementations in multi-site, multi-vendor studies, basis sets

should be simulated as accurately as possible for each scanner,

specifically incorporating the actual RF pulse waveforms,

gradient schemes, sequence timing, etc. (9, 53, 62, 66–

69). However, even with common acquisition parameters (as

common as possible) and using vendor-specific basis sets,

it should be understood that substantial variability remains

between vendors and scanners (9).

An additional challenge in modeling is handling the baseline

and macromolecules (MM). Expert recommendation is to

include an experimentally measured macromolecular spectrum

in the basis set, as mathematical approximation (by splines or

polynomials, as implemented in most fitting software packages)

“does not completely reproduce the in-vivo spectral pattern”

(39) particularly at higher field strength (70, 71). However,

measuring the macromolecules in vivo is technically challenging

and time consuming thus often not feasible. Alternatively,

MM can be (and often are) simulated based on the available

parameters including frequency in ppm (usually to 0.9 ppm),

linewidth, relative amplitude, number of components per

resonance, etc. (39); however, this approach likely does not

completely reproduce the in vivo spectral pattern. While this

approach should also be useful for harmonization of multi-

site studies (either prospective or retrospective), MM variance

between scanners/vendors/sites is not well understood and still

requires investigation.

Quantification

The final analysis step is the conversion of modeling

parameters reflecting metabolite signal amplitudes into units

representing concentrations. The most common approach is

the use of an internal reference standard, i.e., a signal that is

affected by the same proportionality factors including RF coil

loading. For proton (1H) brain MRS, this standard is typically

the internal water signal or the total creatine signal (creatine +

phosphocreatine), though other references such as total NAA

(NAA+NAAG) have been used. Using the tissue water signal as

the reference requires an additional short measurement without

water suppression. While many simply report this water-

referenced quantification [reported as institutional units (i.u.)]

it does not represent actual tissue concentration (i.e., true molar

or molal units). Recommended procedures are provided in a

recent expert consensus paper (11) to correct for relaxation and

proton density in different tissues to approximate true, absolute

concentrations. This consensus paper also underlines that long

TR and short TE reduce the importance of relaxation correction,

while acknowledging that their choice is often determined by

the study goals. Measurement of individual relaxation times

and tissue water content is prohibitively long in most clinical

and research scenarios, and literature values are therefore

most commonly used (72–76). The use of literature values

complicates matters, as relaxation times and water content are

field-dependent, and may vary in healthy and pathologic tissues

(77–81). Quantification methods using external signals also exist

but are beyond the scope of this text.

Biological factors

Biological factors are crucial to consider in retrospective

studies. In prospective study designs, effects of biology are

generally considered a priori within the study designs, so are

less of an issue for harmonization. For example, as metabolites

and possibly macromolecules change with age, it is not possible

to blindly combine data from different age ranges – this is

also the case for many other imaging modalities. An additional

challenge with MRS is that metabolite levels are linked to the

tissue fraction in the voxel. Age-related atrophy therefore can

impactmetabolite levels and present asmetabolite concentration

decreases while in fact reflecting a decrease in tissue volume

(82). Further, when considering the voxel and its anatomical
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location, metabolite levels vary throughout the brain with

metabolite differences seen between white and gray matter and

different lobes (83). This is further complicated by differences in

water signal and signal relaxation (both metabolites and water)

between these regions. While these factors can be prospectively

accounted for, the ability to correct them retrospectively is

limited to what level of raw data is aggregated. As with the

above-mentioned technical factors, many of these factors are

not independent and may further interact or be addressed

methodologically in data aggregation and will be outlined below.

Voxel placement and anatomy

The selection of anatomical targets (the voxel location) for

a multisite study demands considerations beyond those of a

single-scanner study. These considerations are compounded

when using multiple platforms and vendors. While the scientific

question at hand is paramount in selecting locations (i.e.,

prospective studies), voxel placement by those collecting data

needs to be reliable and consistent. Typically, to ensure that data

collection is consistent across sites, anatomical landmarks for

voxel placement are recommended that are easy to identify on

structural scans and require minimal anatomical sophistication

among study staff. Common landmarks include midline, skull,

genu of the corpus callosum and ventricles. As a guiding

heuristic, manualized instructions that are pragmatic, with

visual examples of each step involved in placement, should be

provided to minimize judgments. Voxel rotations may present

additional challenges, particularly across vendors that may differ

in voxel manipulation flexibility, implementation and display

of the voxel during placement and additional features such as

the direction of the chemical shift displacement of the water

signal (10, 38). This can result in the same procedure for

voxel placement producing data collected in slightly different

locations. While solutions to aid in reproducible placement

of voxels across participants and sites such as SmartExam,

AutoAlign (AA) scout, and AutoVOI (84) are available, they

are not universally available and differ between vendors.

Additionally, these tools need to be on all scanners to be

useful for prospectively designed studies. Quantifying accuracy

or voxel overlap between subjects can be difficult, as a voxel is

generally of fixed volume, but intracranial volume (ICV) varies,

so normalized voxels (e.g., using SPM, FSL, etc.) will produce

voxels of varying sizes. This means that tools commonly used

to quantify voxel overlap, e.g., the Sørensen-Dice Coefficient

(85) or intensity images are limited in how high a value can

be achieved, as they are evaluating overlap of areas that may

no longer be the same size and are subject to the anatomical

registration procedures used (i.e., selection of registration

template and registration options such as linear, non-linear etc.).

This does not mean that these tools should not be used, but

rather to highlight their impact on interpretation.

Age

The development of the brain lasts from birth until

adulthood and brain metabolite concentrations are affected by

normal development and aging. MRS studies have demonstrated

developmental, age-dependent regional changes in NAA,

creatine (Cr), choline (Cho), mI, glutamate/glutamine (Glx),

and GABA (86–91) with the most significant changes seen in

the first year of life (92–97). In neonates and infants, early

rapid increases in NAA and Cr correspond to structural and

functional development resulting from synaptic formation and

increases in energy demand. An increase in glutamate, Glx, and

GABA neurotransmitters’ concentrations are observed early in

development that reflect increase in neuronal activity and the

demands of the glutamate-glutamine-GABA neurotransmitter

cycles. In contrast, mI decreases rapidly within the first 3 months

(94, 96) while Cho decreases gradually over time becoming

stable within childhood (96, 98), corresponding to the ongoing

myelination and white matter development (99). By adolescence

and adulthood, most metabolites reach stable concentrations

for a period before decreasing slowly with advancing age. In

aging, reductions in neuronal density and activity, reduced

mitochondrial activity, and decreased membrane synthesis,

are reflected by lower regional levels of NAA, ATP, and

phosphomonoester, respectively (100). Aging is also associated

with lower glutamate concentrations (101). However, it is

challenging to separate voxel composition effects from changes

in metabolite tissue-concentration. For example, decreases in

GABA levels with age are a result of atrophy/tissue loss and

it is likely that the concentration of GABA in the remaining

tissue is not actually decreased (82). Age-dependent changes

in the T2 relaxation times - for example, those seen for NAA

and Cr from adolescence with advancing age - will also impact

metabolite level estimates (77, 80, 81). Small sample populations,

the use of limited and/or partially overlapping age ranges,

and the non-linear trajectories of metabolite changes over a

lifespan (90, 96, 102) will prove challenging for harmonization.

It will be essential that harmonization strategies evaluate the

extent to which the treatment of age - either as a covariate

or as a main variable of interest - is amenable to general

linear models, or whether more sophisticated approaches

are necessary.

Sex

There is substantial evidence of sex differences in brain

structure and function in adults, which may be present

throughout the entire lifespan or emerge during development

(103–107). In contrast, sex differences in metabolite levels are

not clearly understood. Within the current literature, sex effects

are divergent and conflicting, due in part to small sample sizes,
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differences in anatomical region and acquisition strategy, as well

as the absence of absolute metabolite quantification.

In the adult population, both SVS and MRSI studies

have reported sex differences in regional cortical gray matter

and/or white matter for both NAA and myo-inositol (93, 108–

113). However, other work shows no differences in metabolite

levels between sexes in the healthy adult population (114–

118). Similarly, sex differences in regional neurotransmitter

concentrations have also been reported, with inconsistent

findings (119, 120).

In the pediatric population, one study of children aged 6–

15 years, reported no difference in metabolite levels (NAA, Cr,

Cho, mI, lipid, and lactate) between males and females across

multiple averaged regions including the frontal white matter,

bilateral basal ganglia, bilateral hippocampi, and cerebellum

(121). Similar results were also reported in a prior short-TE

single-voxel PRESS study in children with cerebral palsy and

normal development (122).

A number of studies also reported a significant interaction

between age and sex, with differences in NAA/Cho during

typical development and aging, with age-dependent alterations

occurring earlier in males (123). Similarly, differences in NAA,

Cr, and Cho levels (males < female) have been reported in the

cingulate gyrus and supraventricular white matter in subjects

aged 60–90 years using intermediate echo time (TE = 135ms)

MRSI (124–126). In addition, regional and sex variations in

neurotransmitters appear to be affected by age, with faster rates

of regional GABA decline in females (127) and faster rates of

regional glutamate decline in males (128).

Given the considerable heterogeneity of metabolite

concentration across all regions of the brain, which depend

on tissue type (gray vs. white matter), subject age, and sex,

it is imperative that comparisons between subjects or groups

have comparative information for the same region, age, and

sex, or at least covary for age and sex in the statistical analysis.

Recent studies in neuropsychiatric disorders and diseases

like Alzheimer’s disease show substantial sex differences in

prevalence and there are increasing reports of metabolic sex

differences in these disorders that might also show in MRS

studies (109, 129, 130).

Pathologic condition

A major goal of harmonization efforts will be toward

establishing whether a pathologic condition is associated with

different metabolism compared to the non-affected (healthy)

brain. Therefore, factors related to both the pathology-affected

and control cohort must be considered. Given the inability to

cover all neurological conditions, we can use traumatic brain

injury (TBI) as an example where multiple injury severities

and mechanisms of injury fall within the TBI spectrum.

Perhaps unsurprisingly, metabolite differences are seen across

the TBI spectrum and even within single categories. Moreover,

these differences depend on other TBI-specific factors such as

time-since-injury. Importantly, the definition of the control

group may have substantial effects. For example, in mild

TBI or concussion studies, non-head-injured controls are

often described but this does not always exclude previous

head-injury (either explicitly stated or not). Alternatively, to

more specifically characterize the brain effects of concussion,

orthopedic injury controls are increasingly being used as the

control group. A recent study suggests that structural changes

seen were not unique to concussion but common across

concussion and orthopedic injury when comparing both to

non-injured controls (131). Alternatively, local compared to

whole brain differences are not always clear. Finally, in some

conditions such as multiple sclerosis, or cancer, it is common

to make measurements in the abnormal tissue and compare to

a contralateral control region; however, the contralateral tissue

may not be “normal” compared to a typical population either

by the disease process or from treatment (i.e., chemotherapy,

radiation therapy). Therefore, while this information is specific

and relevant to individual studies, it will have an impact on

appropriate use of data aggregation.

Approaches for harmonization

The factors relevant for the harmonization of MRS data

have been presented above. In some cases, these factors can

be considered and accounted for, particularly in prospective

designs. However, the fact remains that for MRS, differences

between scanners exist and some level of harmonization is

required when aggregating multisite data within the framework

of prospective or retrospective multi-scanner study designs.

Meta-analysis

Meta-analysis, which synthesizes summary statistics from

previously published single site studies, has been used to

aggregate and generalize MRS findings in an attempt to

improve accuracy in drawing conclusions about a particular

population. For example, while not comprehensive, meta-

analyses of MRS data have been used to identify patterns of

metabolite alterations in patients with multiple sclerosis (132),

mild cognitive impairment, and Alzheimer’s Disease (133), to

understand variable results in traumatic brain injury (134) and

evaluate the diagnostic potential of MRS in CNS tumors (135–

137), characterize regional glutamate-glutamine and/or GABA

in major depressive disorders (138, 139), schizophrenia (140),

substance abuse (141), pain (142), and HIV (143, 144).

On the most basic level, in a meta-analysis effect sizes are

aggregated and weighted by the sample size to provide an overall

result across all studies included. Although meta-analyses are
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typically conducted in adherence with the Preferred Reporting

Items for Systematic Reviews and Meta-analysis statement

(PRISMA) (145), MRS data are affected by methodological

heterogeneity (both technical and biological), variations in data

quality, and the statistical approach reported in the original

papers. Recently, Peek et al. (142) developed a quality assessment

tool, MRS-Q, to assess the quality of MRS data included in

meta-analyses but data was not excluded for studies not meeting

all criteria, as is common with quality assessments within a

meta-analysis. While data quality may impact results, excluding

studies that meet a priori defined inclusion criteria will also

create bias.

In addition to aggregating primary effects, analyses such as

meta-regressions and moderator analyses can provide insight

as to the relevance of additional factors of interest within

each effect. For MRS, these additional approaches provide an

opportunity to assess whether technical or biological factors

influence the results. For example, in the recent meta-analysis by

Joyce et al. (134)metabolite differences with TBI were affected by

year of publication, age and voxel location (anatomy) indicating

multiple technical and biological factors impact MRS results in

TBI. Thus, MRS findings from a meta-analysis can do more

than provide aggregated evidence of metabolite effects, they can

provide new insight to factors that should be considered and

controlled for in future multisite studies whether prospective

or retrospective.

Mega-analysis

The methodological diversity seen in meta-analysis can

be minimized through the analysis of de-identified individual

participant data (IPD) using an agreed-upon processing strategy.

The use of IPD either as summary statistics or the raw data

itself provides unique opportunities for data harmonization,

defining processing pipelines and implementing a common

analytical strategy. When raw IPD is accessible, single stage

statistical mega-analyses can be performed by the coordinating

facility. This is the design used in most ENIGMA studies

with two key differences compared to traditional meta-analysis;

(1) use of standardized analysis for all data which includes

standardized quality control for data, and (2) use of random-

effects models rather than fixed-effects to allow for variance

across cohort, depending on the biology and demographics of

the cohorts. This frameworkmeans that the effects across studies

are considered to be from a distribution rather than simply

weighting by sample size and the heterogeneity of effects can

also be measured and reported. Statistical analyses using IPD

offer several other advantages including improved consistency

in inclusion criteria across sites, improved statistical power, and

reduced biases (146). A number of comparison studies suggest

more acceptable false positive rates and higher statistical power

in mega-analysis with IPD when compared to meta-analyses

(146, 147). While mega-analyses are an attractive alternative

to meta-analyses to harmonize analysis methodology, specific

challenges to MRS remain. As above, significant differences in

data can exist based on differences in acquisitions. Furthermore,

depending on the data exported by different sites, some

components of the analysis pipeline may not be feasible, for

example retrospective frequency-and-phase correction assumes

availability of individual transients whereas some data formats

only include an average spectrum. A related issue is fitting and

metabolite quantification can be impacted by data quality, in

particular metabolites with low concentrations may have biased

results. To address this issue, one approach is to include SNR

and/or linewidth as covariates in the analysis.

Linear modeling

One of the most common approaches for raw data

harmonization is to include the factors that need to be

harmonized in the statistical model, for example controlling for

site, vendor, age as covariates in an analysis of covariance model.

The goal is to control for the variance introduced by each of

these factors similarly as if they were effects of interest. The

advantage of this harmonization approach is that it does not

require additional tools and, in some cases, can be performed

on summary data (i.e., individual metabolite levels) rather than

requiring the raw data for reprocessing or IPD. While it also

allows for the inclusion of multiple factors to harmonize such as

site, vendor, field strength, age, sex etc. depending on the sample

size, power limitation will exist and there must be sufficient

sample sizes from each group (factor to harmonize across) as

well as across all aggregated data. The disadvantage is a risk of

collinearities, particularly in retrospective data aggregation (e.g.,

if different sites collected data in different voxel locations) and

the risk of variance being partitioned in an unexpected manner

resulting in incomplete or inefficient data harmonization.

A specific application of harmonization that uses linear

regression is to harmonize white matter and gray matter

across the whole brain data for MRSI data. An advantage

of MRSI is the multi-voxel data can be leveraged to yield

partial volume-corrected mean gray matter and white matter

concentrations (148). Thus, it is reasonable to strive to integrate

this considerable strength in efforts to harmonize MRSI data.

Using various approaches based on linear regression or least-

squares optimization, average gray matter and white matter

concentrations per metabolite can be obtained (148) and these

global gray matter or white matter metabolite concentrations

may assist to harmonize data rather than these different tissues

influencing results. The main caveat of the approach is that it

assumes relative homogeneity of metabolite levels in the gray

matter and white matter within the MRSI volume and, by

extension, only changes that occur diffusely in either (or both)

tissue types will be detected.
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ComBat

More recently, alternate harmonization procedures have

been proposed in imaging and one that is gaining popularity

is ComBat. ComBat is an empirical Bayesian method in which

(a) factors to harmonize (e.g., sites) and (b) variance to

preserve (e.g., biological group differences) are defined (149–

151). Briefly, terms to preserve and to harmonize are defined

in a multivariate linear mixed-effects regression. This linear

model then estimates the mean and the variance for these

terms. Using Bayesian methods, factors of interest along with

model parameters are then estimated with the removal of effects

from factors to harmonize. Removal of unwanted variance,

such as that from site effects, is thought to improve power to

detect differences of interest, for example biological differences

between groups. ComBat was originally developed to harmonize

gene expression data (149) but has shown efficacy in removing

unwanted variance in MR data, specifically structural analyses

of both diffusion tensor data (150), cortical thickness (151–

153), and functional data (154). ComBat has recently shown

promise for MRS data harmonization and it offers the advantage

of maintaining meaningful quantification of metabolite levels

(155). While ComBat is an increasingly common approach to

harmonize MRI data, and is therefore expected to gain use

in MRS, it is largely limited to the assumption that linear or

quadratic models are sufficient to explain data variance, though

extensions for higher order distributions are being developed.

Artificial intelligence

Deep Learning (DL) has been used for brain MRI

analysis to minimize the influence of the varying acquisition

scanner/parameters, etc., known as data/domain shift or batch

effects (156) and therefore AI holds unexplored potential for

MRS data harmonization. DL models learn the relevant features

to solve a problem from the raw data (i.e., MR images). Still,

its black-box nature means it can easily pick up on nuances

of the data that are not present across data points in multi-

scanner, multi-vendor studies. In DL, Domain Adaptation (DA)

strategies have been proposed for data harmonization, allowing

the generalization of DL models across different datasets by

avoiding domain specific decision making (157). DL models

with consistent results across different imaging types, different

groups of subjects (varying age ranges, sex, and pathology),

and acquisition parameters are more reliable, allowing broader

usage and facilitating the translation to clinical practice. DA

strategies can unlearn not just batch effects but also other

potential confounders in the data, such as sex and age (158),

leading to domain-invariant features and consequent data

harmonization (159).

Another common DA strategy is to use adversarial models

(160) that can learn to transform samples into a harmonized

reference space (161). While most current DL work on data

harmonization in the medical imaging literature focuses on MR

imaging, these DA strategies can be translated to MRS. The

most significant challenges of deploying DA strategies in MRS

are the necessity of having sufficient data, which often needs to

be labeled to train these models, and hyper-parameter tuning

of such models, which can be challenging and time-consuming

(162). For retrospective studies, the data availability constraint

is less critical, but for prospective studies, it is crucial. One

potential solution to harmonize data prospectively is to leverage

legacy data from past studies to initialize the corresponding DL

models and use zero-shot learning DA techniques (163).

Discussion/interpretations

Aggregating imaging data has provided great insight along

with new directions of research. Given these successes, and

the abundance of spectroscopy data available, aggregation of

MRS data is a relatively unexplored area with great potential

as there is every reason to expect similar advances can be

achieved by aggregating spectroscopy data as seen with other

neuroimaging modalities. However, there is a lack of established

approaches for effective harmonization beyond the traditional

meta-analysis approach used in systematic reviews. While

valuable, meta-analysis approaches come with many limitations.

For example, the impact of non-biological sources of variance

(e.g., scanner, site, vendor, etc.) are generally not investigated,

though recent work shows technical or non-biological factors

effects can be identified (134) suggestingmore sophisticated data

harmonization is required to most accurately aggregate data for

informative analyses.

One prospective approach is to minimize differences in

acquisition between sites, which was successfully demonstrated

by Deelchand et al. (164). However, there is broad acceptance

in the field that technical differences exist between scanners

in detail even when using nominally comparable acquisition

approaches. This has been confirmed in recent multi-site/multi-

scanner studies (9, 165) that aimed to mitigate site effects

by using common acquisition parameters (to the extent

possible) but still show substantial site effects. Given the

significant site-effects reported in these studies, it remains

unclear for prospective study designs whether the most suitable

approach is to harmonize all acquisition parameters, selecting a

lowest common denominator approach in terms of acquisition

technologies, or whether each site should use their “best”

methodologies available to have the most precise measures

while accepting different sites will have different data quality

and measurement precision. The solution to this challenge

will be study-dependent and will also depend on factors

such as the study objectives and cohorts being studied, the

diversity of scanners and hardware, study duration and timeline

including the potential for what upgrades are likely to occur
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during the study. We expect in most cases, investigators

will opt for a hybrid approach (harmonize some hardware

such as field strength and head coil but optimize acquisition

parameters) aiming for a balance between maximum data

quality while minimizing the risk of not being able to effectively

combine data.

Beyond prospective harmonization, retrospective

harmonization remains an area with little exploration for

MRS. To our knowledge, the only work in this area compared

ComBat and residualization to harmonize MRS data collected

in controls across multiple sites and showed these methods

are effective in removing non-biological sources of variance

and may reveal biological factors with the augmented power

achieved with large sample sizes that have been harmonized

(155). The development and validation of effective retrospective

harmonization procedures has multiple applications; first to

augment the success of data aggregation from prospective study

designs and to facilitate the aggregation of data collected through

independent studies. There has been an increase in prospective

multisite studies that include MRS (9, 166–173) which will

likely benefit from additional data harmonization. Of great

potential are the analyses and applications of aggregated data

from previous studies, including mega-analyses of data from

clinical groups, aggregation of normative data to best control

for multi-scanner effects and aggregating data for artificial

intelligence approaches. Included in this data aggregation

is the possibility of developing fully automated, open access

analysis pipelines that are cloud-based, or containerized, to

facilitate consistent analyses across multiple users, scanners

and sites.

In conclusion, MRS research, and by extension the clinical

conditions being studied, has the potential to greatly benefit

from data aggregation and harmonization. As outlined here, we

define data harmonization to occur either prospectively

at the time of study design or retrospectively, though

retrospective approaches can be applied to prospectively

acquired multi-scanner studies. For effective MRS data

harmonization, we have defined two broad categories that

impact data harmonization:

(1) Technical/methodological factors that consider the scanner,

its hardware and software as well as acquisition and

data processing.

(2) Biological factors that depend on the participants, such as

their age, sex and anatomy being studied.

Overall, harmonization of MRS data facilitates the

development of large sample sizes possibly yielding normative

metabolite levels for different brain regions and various diseases

that enables investigation of multiple interacting factors and

the detection of subtle effects. This unlocked potential will

further assist the transition of MRS from a predominantly

research-based tool to clinical routine.
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