
TYPE Original Research

PUBLISHED 10 January 2023

DOI 10.3389/fpsyt.2022.1075564

OPEN ACCESS

EDITED BY

Tianhong Zhang,

Shanghai Jiao Tong University, China

REVIEWED BY

Yingying Tang,

Shanghai Jiao Tong University, China

Wenjun Su,

New York University, United States

*CORRESPONDENCE

Lijing Xin

lijing.xin@epfl.ch

†These authors have contributed

equally to this work

SPECIALTY SECTION

This article was submitted to

Schizophrenia,

a section of the journal

Frontiers in Psychiatry

RECEIVED 20 October 2022

ACCEPTED 21 December 2022

PUBLISHED 10 January 2023

CITATION

Wen Y, Zhou C, Chen L, Deng Y,

Cleusix M, Jenni R, Conus P, Do KQ

and Xin L (2023) Bridging structural

MRI with cognitive function for

individual level classification of early

psychosis via deep learning.

Front. Psychiatry 13:1075564.

doi: 10.3389/fpsyt.2022.1075564

COPYRIGHT

© 2023 Wen, Zhou, Chen, Deng,

Cleusix, Jenni, Conus, Do and Xin. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Bridging structural MRI with
cognitive function for individual
level classification of early
psychosis via deep learning

Yang Wen1,2,3†, Chuan Zhou1,4†, Leiting Chen1,4, Yu Deng5,

Martine Cleusix6, Raoul Jenni6, Philippe Conus7, Kim Q. Do6

and Lijing Xin2*

1Key Laboratory of Digital Media Technology of Sichuan Province, School of Computer Science and

Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,
2Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique

Fédérale de Lausanne, Lausanne, Switzerland, 3Laboratory for Functional and Metabolic Imaging,

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 4Institute of Electronic and

Information Engineering of UESTC in Guangdong, Dongguan, Guangdong, China, 5Department of

Biomedical Engineering, King’s College London, London, United Kingdom, 6Department of

Psychiatry, Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and

University of Lausanne, Lausanne, Switzerland, 7Service of General Psychiatry, Department of

Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne,

Switzerland

Introduction: Recent e�orts have been made to apply machine learning and

deep learning approaches to the automated classification of schizophrenia

using structural magnetic resonance imaging (sMRI) at the individual level.

However, these approaches are less accurate on early psychosis (EP) since

there are mild structural brain changes at early stage. As cognitive impairments

is one main feature in psychosis, in this study we apply a multi-task deep

learning framework using sMRI with inclusion of cognitive assessment to

facilitate the classification of patients with EP from healthy individuals.

Method: Unlike previous studies, we used sMRI as the direct input to

perform EP classifications and cognitive estimations. The proposed deep

learning model does not require time-consuming volumetric or surface based

analysis and can provide additionally cognition predictions. Experiments were

conducted on an in-house data setwith 77 subjects and a public ABCDHCP-EP

data set with 164 subjects.

Results: We achieved 74.9 ± 4.3% five-fold cross-validated accuracy and an

area under the curve of 71.1 ± 4.1% on EP classification with the inclusion of

cognitive estimations.

Discussion: We reveal the feasibility of automated cognitive estimation using

sMRI by deep learning models, and also demonstrate the implicit adoption

of cognitive measures as additional information to facilitate EP classifications

from healthy controls.

KEYWORDS

early psychosis, cognition estimation, classification, deep learning, structural MRI

(sMRI), schizophrenia, cognition function
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1. Introduction

Artificial intelligence (AI) approaches, particularly machine

learning (ML) and deep learning (DL), have been extensively

studied to accelerate medical data analysis and assist clinical

interventions in many pathological contexts (1, 2). Many

applications have been conducted in psychiatric disorders

using neuroimaging measures [e.g., sMRI (3)] as input and

incorporated with AI models (e.g., supported vector machine

and artificial neural networks) to establish automated diagnostic

workflows at a single subject level (4, 5). Previous machine

learning works in schizophrenia have used handcrafted features

extracted from sMRI data to distinguish patients from healthy

individuals (6), but such feature extraction process usually

involves a long computational time. To reduce computational

cost, recent efforts have focused on using directly sMRI

images as input, and promising results have been achieved

with the help of the latest AI models (e.g., convolutional

neural networks, CNNs) (7, 8). However, these studies have

mainly focused on patients at chronic stage, the classification

of early psychosis (EP) patients from healthy controls (HCs),

is considered to be more challenging (9–12), because the

brain structural changes in patients with EP are mild and

not evident, making computer-aided classification methods less

robust and accurate.

Furthermore, progressive cognitive deficit is one major

feature of schizophrenia (13–15), inspiring the possibility of

using individual cognition levels, in addition to sMRI images,

to facilitate automated classification of patients with EP from

HCs. Several recent studies have used the DL framework to

incorporate cognitive estimation into the workflow to facilitate

the diagnosis of Alzheimer’s disease by explicitly including

cognitive measures as secondary inputs (16, 17). However,

this approach requires additional cognitive assessment that

is not part of routine neuropsychiatric clinical examinations.

Moreover, although several studies have been done using sMRI

images to identify individual cognitive impairments via DL (18,

19), to the best of our knowledge, no study has been done to

incorporate cognition estimation for classifying patients with EP

and controls.

Therefore, in this study, we aim to apply a multi-task DL

model by using sMRI as an input to classify patients with EP

from healthy controls and to simultaneously predict cognition

levels at the single subject level. We further investigated whether

the inclusion of cognitive levels estimation could facilitate the

classification for patients with EP and controls. Specifically, as

shown in Figure 1B, a three-dimensional convolutional neural

network (3D-CNN) is used to learn discriminative structural

features directly from sMRI arrays. Then, three multilayer

perceptron (MLP) subbranches are used to perform EP/HC

classifications and cognition estimations. We evaluate the

proposed model on an in-house data set, consisting of 77 sMRI

3D arrays (38 patients with EP, 39 HCs).

2. Materials and methods

2.1. Problem setup

As shown in Figure 1A, given the sMRI image, we seek to

estimate participant’s cognitive level and classify patients with

EP from healthy individuals in a fully automatedmanner. Unlike

previous studies (16, 20–22), we directly utilized sMRI images

as input without additional imaging analysis (e.g., voxel-based

morphometry), which allowed us to more natively understand

how brain structure itself contributes to the EP classification and

cognition estimation.

2.2. Materials and data set

2.2.1. Participants

sMRI data and corresponding neurocognitive scores were

obtained from Department of Psychiatry at the Lausanne

University Hospital (CHUV). The data set consists of 38 patients

with EP and 39 healthy controls (HC). Detailed demographic

information of all participants are shown in Table 1. Specifically,

the Positive and Negative Syndrome Scale (PANSS) was

provided as the sum of positive, negative and general PANSS

values. The patients with EP were recruited from the TIPP

Program (Treatment and Early Intervention in Psychosis

Program, University Hospital, Lausanne, Switzerland) (23). All

the participants provided informed written consent for this

study, and the procedure was approved by the local Ethics

Committee (Commission cantonale déthique de la recherché sur

lêtre humain - CER-VD), in accordance with the Declaration of

Helsinki. Detailed recruitment criteria for participants can be

found in Supplementary material A.

2.2.2. Structural MRI acquisition

Patients and controls underwent magnetic resonance

imaging at a 7 Tesla/68 cm MR scanner (Siemens Medical

Solutions, Erlangen, Germany). A 32-channel receive coil

(NOVA Medical Inc., MA) with a single channel volume

transmit coil was used. 3D T1-weighted MR images were

acquired using MP2RAGE (TE/TR = 1.87/5,500 ms, TI1/TI2 =

750/2,350 ms, α1/α2 = 4◦/5◦, slice thickness = 1 mm, FOV =

240× 256× 160 mm3, voxel size= 1 mm3 isotropic, bandwidth

= 240 Hz/Px) (24). The original dimension of acquired sMRI

data array is 240× 256× 160.

2.2.3. Preprocessing

To generate appropriate inputs, we performed preprocessing

of sMRI data using CAT12 toolkit for estimation of the

probability maps of white matter (WM) and gray matter (GM).

Skull striping and registration to standard space with MNI152
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FIGURE 1

Illustrations of (A) our workflow for classification of patients with EP from HCs and cognitive estimation on six dimensions, and (B) the deep

learning architecture with a 3D-CNN feature encoder and three independent MLP subbranches for di�erent subtasks of EP classification and

cognitive estimations.

template were performed. Then, probability maps of WM

and GM were generated after tissue segmentation and bias

correction. The resulting WM and GM probability maps were

down-sampled to 120× 120× 120 for computational efficiency.

2.2.4. Neurocognitive measures

The MATRICS Consensus Cognitive Battery (MCCB) (25,

26) was assessed for both EP and HC groups, excluding the

Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT),

which does not “translate” well into French as an index of social

cognition. The neurocognitive measures include six dimensions,

i.e., processing speed (PSp), vigilance (Vig), working memory

(WMe), verbal learning (VeL), visual learning (ViL) and

problem solving (PSo). There exists some missing entries in the

cognitive assessment data, so we replaced all missing data with

the average values to generate proper training data (17). The

quantity of missing entries is: PSp 5, Vig 3, WMe 4, VeL 1, ViL 1,

and PSo 1. There is at most one missing cognitive dimension per

subject. The distribution of scores for all cognitive dimensions

are shown in Table 1. Two-tailed student t-test was performed

between the two groups, and significant difference was found on

PSp, VeL and ViL with a p < 0.05.

As pointed out by previous studies (19, 27), the estimation of

cognitive level can be done by either classification or regression,

that classification task is to manually classify continuous scores

into different discrete categories and predict the probability of

which category each case should be in, whereas regression is a

direct prediction of scores. In this study, for the classification

task, we evenly divided the scores between the maximum and

minimum values into n equal parts, i.g., n categories. It is

worth noting that since the maximum and minimum values

are different for each cognitive assessment, the interval is also

different among the n categories. Normally, larger n represents

a more fine separation of cognitive levels and greater difficulty

in prediction.
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TABLE 1 Demographic information and neurocognition performance of 77 subjects.

Variable Total (n = 77) HC (n = 39) EP (n = 38) P-value

Age,mean (SD), y, t 24.42 (4.81) 24.54 (5.35) 24.29 (4.23) 0.884

Max 43.69 43.69 40.57 -

Min 16.22 16.22 18.30 -

Gender, χ2 0.817

Male 62 31 31 -

Female 15 8 7 -

Ethnicity, χ2 0.852

Caucasian 56 28 28 -

Other 21 11 10 -

Duration of psychosis, mean (SD), y - - 1.00 (0.73) -

Clinical Scores

Positive PANSS, mean (SD) - - 11.61 (3.45) -

Negative PANSS, mean (SD) - - 16.04 (5.66) -

Cognitive Scores

Processing speed (PSp)‡, mean(SD), t 46.72 (12.97) 55.00 (9.54) 38.23 (10.51) 1.75E-05

Vigilance (Vig), mean (SD), t 47.07 (10.46) 51.16 (5.50) 42.88 (12.70) 0.0651

Working memory (WMe), mean (SD), t 49.67 (8.29) 50.00 (6.79) 49.35 (9.77) 0.556

Verbal learning (VeL)‡, mean (SD), t 49.23 (8.43) 53.81 (6.91) 44.54 (7.37) 4.12E-04

Visual learning (ViL)‡, mean (SD), t 47.83 (9.05) 51.31 (7.54) 44.27 (9.30) 0.111

Problem solving (Pso), mean (SD), t 53.33 (8.12) 57.15 (4.57) 49.42 (9.22) 0.0801

‡with significant difference between groups (p < 0.05); SD, standard deviation; PANSS, Positive and Negative Syndrome Scale; χ2 , Chi-squared test; t, two-tailed student t-test; y, year.

2.2.5. External data set

Besides the in-house data set, we also performed experiment

on a second data set, which is from the project of HCP-Early

Psychosis (HCP-EP) Release 1.1 from Human Connectome

Projects1 and the Adolescent Brain Cognitive DevelopmentSM

(ABCD) Study, held in the NIMHData Archive (NDA). Detailed

recruiting criteria can be found in this website.2 Detailed

cognition measuring methods can be found in this website.3

Only sMRI data was used as input. For the estimation of

cognition, we chose six dimensions of cognitive measures that

were closest to our in-house dataset, which are the age adjusted

scores from NIH Toolbox Dimensional Change Card Sort Test,

NIH Toolbox Flanker Inhibitory Control and Attention Test,

NIH Toolbox List Sorting Working Memory Test, Pattern

Comparison Processing Speed Test, Seidman Auditory CPT test

1 https://www.humanconnectome.org/study/human-connectome-

project-for-early-psychosis

2 https://nda.nih.gov/ccf/

3 https://www.humanconnectome.org/storage/app/media/

documentation/HCP-EP1.1/HCP-EP_Release_1.1_Manual.pdf

andNIHToolbox Picture Vocabulary Test. After filtering, a total

of 164 subjects had both sMRI data and cognitive scores.

2.3. Proposed method

2.3.1. 3D-CNN multi-task learning framework

In this study, 3D sMRI arrays were directly used as input for

classifications, so we applied 3D-CNNmodels as a deep learning

architecture to encode visual features, similar in previous

studies (8, 28, 29). Instead of dividing the sMRI array into 2D

images and using 2D-CNN (18, 30) for feature encoding, 3D-

CNN can consider all inputs at once to better capture local

features in the 3D space and contribute to the final classification.

To predict both the cognitive level and the probability of

EP for each participant, we further introduced a multi-task

learning framework. Based on the same visual features extracted

by the 3D-CNN, three independent MLP networks were used

as individual subbranches for different tasks, including EP

classification, cognitive level classification (CLC) and cognitive

level regression (CLR). The complete architecture of our 3D-

CNN encoder and multi-task learning framework is depicted
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in Figure 1B and corresponding details are provided in Table

S7 in Supplementary material D. The sequential structure of

our 3D-CNN encoder was inspired by the previous study on

schizophrenia classification (8).

2.3.2. Multi-channel 3D array input

We consider the GM and WM probability maps as two

different feature channels and make channel concatenations to

generate a single 3D array as the input to our model. Unlike

previous study (8), where different segmentation components

were used as multiple inputs and fed into a model in parallel, our

multi-channel 3D array helps to reduce the training parameters

and retain all the information from GM and WM. In this case,

the dimension of input 3D array will be H ×W × D× 2, where

H, W, D denotes height, width, depth and 2 is the number of

channels. The full volume of size 120 × 120 × 120 × 2, rather

than smaller volume patches, was used for training and testing.

Furthermore, in experiments where only GM or WM is used

for training, a single probability map will be replicated once to

remain the dimensionality of the input 3D array.

2.3.3. End-to-end training

Our framework is an end-to-end deep learning system and

thus several loss functions were used to train the proposedmodel

for parameter updating. Specifically, for classification tasks (i.e.,

EP and cognitive level classification), the conventional cross

entropy (CE) loss is used, which is defined as

LCE = −

c∑

i=1

si log
(
ŝi
)
, (1)

where s is the true label, ŝ is the prediction, and c is the number

of class. For the task of cognition regression, the mean square

error (MSE) loss is used, which is defined as

LMSE = ||g − ĝ||22, (2)

where g and ĝ denote ground truth label and prediction,

respectively. The final loss function is defined as:

Lloss = LCE−SZ + LCE−C + LMSE + Lreg , (3)

where LCE−SZ denotes CE loss for EP classification, LCE−C

denotes CE loss for cognitive level classification, LMSE denotes

MSE loss for cognitive level regression, and Lreg represents

the regularization loss [or weight decay (31)] used to avoid

overfitting. As an end-to-end framework, training losses are

back-propagated from three multi-task subbranches to the 3D-

CNN, updating the parameters of the entire network with

an optimization algorithm [e.g., Adam (32)]. Finally, through

minimizing the Lloss, the network could learn a nonlinear

mapping from the input 3D sMRI array to EP and cognitive

state, enabling EP classification and cognitive estimation for

unseen individuals.

2.3.4. Gender influence

Since gender differences were found to be important in

WM and GM of psychosis (33–35), and due to the uneven

gender distribution of the in-house dataset, two experiments

were designed to assess how gender difference affects the

performance of the DL-basedmodel on cognitive estimation and

EP classification. First, gender information was encoded as an

orthogonal embedding and explicitly fed into the model along

with the sMRI scan. Second, subjects were divided into two

gender subgroups, and experiments were conducted separately

for each subgroup.

2.4. Competing methods

2.4.1. Deep learning-based model

Apart from 3D-CNN, we also used a 2D-CNN framework,

similar to the model of Jiang et al. (18) and Li et al. (5),

for comparison. The latest lightweight 2D convolutional

architectures, MNasNet (36), and a cumbersome model,

ResNet-18 (37), were used as the feature encoders since they

have been commonly used in previous studies (3, 5, 8, 38).

In a 2D-CNN framework, for each participant, image

features are extracted slice by slice and concatenated for

final classification, which introduces more computational

cost than the 3D-CNN model. Furthermore, since 3D-CNNs

do not have pre-trained weights like 2D-CNNs, all 3D-

CNNs models were trained from scratch. Nevertheless,

results are reported for 2D-CNNs with and without

pre-trained weights.4

2.4.2. Handcrafted feature-based machine
learning

To compare with the proposed DL workflow, we also

performed the classification tasks with several latest ML

methods. The GM and WM probability maps were flattened

into feature vectors and the principal component analysis

(PCA) was used for dimensionality reduction to produce proper

training inputs for ML models. Besides the WM and GM

maps, volumetric and surface analysis was also performed with

CAT12 toolkit to calculate region of interest (ROI) volumes

and cortical surface thickness as handcrafted features for

comparison. We adopted the analysis with default settings and

obtained 388 ROI volume features and 219 cortical thickness

features after filtering out the null values. The Cobra5 and

4 pre-trained weights provided by torchvision package (version 0.7.0).

5 http://cobralab.ca/atlases/
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neuromorphometircs6 were used as ROI atlas. Dimensionality

reduction was also performed on handcrafted features to make

them the same size as GM/WM-based features. We selected

several popular ML models for comparison, including random

forest (RF), supported vectormachine (SVM) and gradient boost

machine (GBM).

2.5. Implementation details

All models were implemented with the Python (version 3.7)

programming language and several free Python-based packages.

For ML models, the GBM was implemented with a popular

lightGBM7 framework and other models were implemented

using scikit-learn toolkit (39). The number of estimators in RF

model was set as 500 and radial basis function kernel was used

in SVMmodel.

We used PyTorch (version 1.6 stable) as the DL framework

to implement all DL-based models. The Adam (32) was used

as the optimizer with a starting learning rate of 1e-4, and the

learning rate was made to decay by 0.7 after every 60 epochs

to help reach optima. Data augmentation (random rotation and

flipping) and weight decay of the optimizer (at a rate of 0.02)

were used as data set expansion and regularization, respectively,

to help prevent overfitting. The batch size was set to 10, and

300 epochs were used. All experiments were conducted on an

Ubuntu 18.04 system with two NVIDIA GeForce RTX 2080 Ti

graphical processing unit (GPU) and 22 gigabytes memory. The

versions of Compute Unified Device Architecture (CUDA) and

the driver for the GPUwere 10.2 and 460.73.01, respectively. We

used a grid search strategy to determine the hyperparameters

with learning rates in the range of [1e-3, 1e-4, 1e-5], batch sizes

in the range of [4, 8, 10, 12], and weight decay in the range of

[0.0, 0.1, 0.2, 0.3, 0.4].

2.6. Evaluation metrics

We used accuracy, F1-score, specificity and area under curve

(AUC) of receiver operating characteristic (ROC) as the metrics

to evaluate the classification performance. Specifically, the

F1-score is the harmonic mean between recall (sensitivity) and

precision. The accuracy, F1-score and specificity are respectively

defined as Accuracy (acc) =
tp+tn

tp+fn+fp+tn
, F1-score (F1) =

2×tp
2×tp+fp+fn

and Specificity
(
spe

)
= tn

fp+tn
, where tp, fp, tn

and fn refer to true positive, false positive, true negative, and

false negative, respectively. While F1-score mainly focus on

evaluating prediction performance on positive targets (i.e., the

EP cases), the specificity focus on evaluating the negative ones

6 https://scalablebrainatlas.incf.org/human/NMM1103

7 https://github.com/microsoft/LightGBM

(i.e., the healthy cases). All these metrics range from 0 to 1,

with higher metrics indicating better predictive performance

achieved by the model. In addition, we adopted mean absolute

error (MAE) and coefficient of determination (R2) as metrics to

evaluate regression performance, which is defined as MAE =

1
m

∑m
i=1

∣∣yi − ŷi
∣∣ and R2 = 1 −

∑m−1
i=0 (yi−̂yi)

2

∑m−1
i=0 (yi−ȳi)

2 , where m

denotes number of samples, y and ŷ denote ground truth and

prediction, respectively.

2.7. Reduce evaluation bias via cross
validation

Since the size of the data set is relatively small for a

deep learning model, we applied a five-fold cross-validation

strategy in this study in order to thoroughly evaluate and avoid

overfitting. There were 77 3D sMRI arrays after pre-processing.

These samples were divided into five parts equally, and one

part of them was selected one by one as the test set and the

rest as the training set. Stratified sampling was used to ensure

that the gender ratio in the training/test groups was the same.

After that, all metrics are presented as the mean and standard

deviation of the five experiments. In this work, the multi-

task deep learning framework accomplished two tasks including

cognitive estimation and EP classification.

3. Results

3.1. Results for cognition estimation and
EP classification

3.1.1. Cognition estimation

We first evaluate the cognitive estimation performance

of the proposed method and competing methods in terms

of CLC task, of which results are shown in Table S1 in

Supplementary material B. Specifically, the 3D-CNN model

achieved F1-scores of 70.1 ± 3.5%, 51.9 ± 8.1%, 31.9 ± 7.5%,

16.2 ± 3.7% in the two-, three-, five-, and 10-categorized CLC

tasks, respectively. Furthermore, we present the classification

accuracy for each cognition estimation dimension while n = 2

in Figure 2 and the regression results for cognitive estimation

(i.e., CLR) in Table S1 in Supplementary material B. The 3D-

CNN model achieved a R2 of –0.878 ± 0.121 and a MAE

of 8.567 ± 1.950, while the Volume + SVM combination

achieved the best CLR results with a R2 of -0.086 ± 0.139

and a MAE of 7.299 ± 1.735. We also presented results on

an external data set (Table S4 in Supplementary material B),

discussed the effects of using Huber loss on the CLR in Tables

S2, S5 in Supplementary material B, and discussed the effects

of gender differences on the cognition estimation (Table S8 in

Supplementary material D).
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FIGURE 2

Accuracy of our model in two-categorized CLC task compared with di�erent ML and DL counterparts in six cognitive estimation dimensions. All

the DL models shown were trained from scratch.

3.1.2. EP classification

For the second task of EP classification, our model was

compared with several latest counterparts (5, 40–43), of which

models were re-implemented based on the settings of the

original publications.The results of EP classification are shown

in Figure 3 and Table 2. Specifically, the Thickness features +

SVM combination achieved the best results in ML methods

with an accuracy of 58.4 ± 9.0%, a F1-score of 60.8 ± 10.6%,

and a specificity of 60.4 ± 10.1%, while the proposed method

achieved an accuracy of 74.9 ± 4.3%, a F1-score of 74.5 ±

4.2%, and a specificity of 82.3 ± 6.3% with the inclusion of

cognitive estimation. We also presented results on an external

data set (Table S4 in Supplementary material B), discussed the

computational costs of models in Table S6 in Supplementary

material C, and discussed the effects of gender differences on the

EP classification (Table S9 in Supplementary material D).

As we hypothesized that the introduction of a cognitive

classification task could bring features about individual brain

structure to the DL model, it remains unclear whether more

classification categories could lead to more discriminative

features for EP classification. Therefore, we divided cognitive

scores into different number of categories in the CLC

subtask and assessed how this would affect classification

performance for EP, the results are shown in Figure S1 in

Supplementary material B.

3.1.3. Validation on ABCD HCP-EP data set

The experiments of cognition estimation and EP

classification were also performed on the external ABCD

HCP-EP data set. For cognition estimations (Table S3 in

Supplementary material B), the proposed method obtained

F1-scores of 81.6 ± 1.8%, 61.4 ± 5.9%, 40.3 ± 6.8% on the

two-, three-, and five-categorized CLC tasks, respectively.

A R2 of 0.074 ± 0.499% was achieved by the proposed

method on the CLR task. For EP classification (Table S4 in

Supplementary material B), the proposed method achieved an

accuracy of 75.9 ± 5.3% and an F1-score of 84.1 ± 5.2% when

using WM and GM as inputs, and achieved an accuracy of

75.8 ± 6.1% and an F1-score of 84.3 ± 5.1% when using only

GM as input. After the inclusion of cognition estimation, the

accuracy was improved by 2.2% and the F1-score was improved

by 3.1% when using WM and GM as inputs, and the accuracy

was improved by 2.9% and the F1-score was improved by 2.8%

when using only GM as input.

3.1.4. Gender influence study

Then, the influence of gender difference was elaborated

via two experiments. For the first experiment where gender

information was fed into the model along with sMRI scan (Table

S8 in Supplementary material D), the 3D-CNN model achieved

a R2 of –0.885± 0.126 and a F1-score of 70.0± 3.5 on cognition

estimation task after adding the gender embeddings. The metric

difference is 0.007 (R2) and 0.1 (F1-score) compared to the 3D-

CNN model without the gender information. For other DL-

based methods, the performance differences are: for Image +

MNasNet, 0.002 (R2) and 0.1 (F1-score); for Image + ResNet-

18, 0.004 (R2) and 0.1 (F1-score). Besides, the proposed method

with cognition estimation and gender information achieved an

accuracy of 74.8 ± 4.3 and a F1-score of 74.5 ± 4.3 on EP

classification task. The metric difference is 0.1 (acc) and 0.0 (F1-

score) compared to the one without the gender information.

For the second experiment, subjects were divided into two

subgroups based on gender and results of EP classification

task were presented (Table S9 in Supplementary material D).

In the male subgroup, the proposed method using GM input

achieved an accuracy of 74.6 ± 6.7 and a F1-score of 74.1 ±

6.0 with the inclusion of cognition estimation subtask, whereas

accuracy decreased to 70.8 ± 6.4 and F1-score decreased to

70.0 ± 5.6 without the inclusion. In the female subgroup, the

proposed method using GM input achieved an accuracy of

68.7 ± 10.2 and a F1-score of 69.0 ± 8.9 with the inclusion

of cognition estimation subtask, whereas accuracy decreased

to 66.4 ± 9.9 and F1-score decreased to 66.1 ± 10.4 without

the inclusion.

3.1.5. Ablation study

Furthermore, ablation studies on WM/GM inputs and

CLC/CLR subtasks were conducted. First, we evaluated the effect

of using different sMRI images (i.e., WM or GM images) as
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FIGURE 3

Performance of ROC curves for EP/HC classification with

five-fold cross-validation. The proposed model used GM map as

input.

input on the EP classification to evaluate how they contribute

to the classification in the context of DL, the results are

shown in Table 3. With both WM and GM as inputs, the

proposed method achieved F1-scores of 70.5 ± 4.1%, 72.5 ±

4.0%, 73.5 ± 4.0%, and 74.2 ± 3.0% for EP classification,

EP classification with CLC subtask, EP classification with CLR

subtask, and EP classification with CLC and CLR subtasks,

respectively. The best F1-score result of 74.5 ± 4.2% was

obtained when using GM as input with the CLR as the subtask.

We then evaluated how different ways of introducing the

cognitive assessment subtask (i.e., CLC or CLR) contributed

to the classification of EP, the results are shown in Table 4.

Specifically, our model with the CLR subtask achieved the

best EP classification results with an accuracy of 74.9 ±

4.3%, F1-scores of 74.5 ± 4.2%, specificity of 82.3 ± 6.3%,

and AUC of 71.1 ± 4.1%. With only the CLC subtask, the

results decreased with an accuracy of 71.4 ± 3.7%, F1-scores

of 70.2 ± 5.4%, specificity of 74.4 ± 5.4%, and AUC of

67.4± 4.5%.

3.1.6. Qualitative illustration

Last but not least, our proposed framework could potentially

identify brain regions that may be associated with psychosis,

thus we present the attention maps using GradCam++ (44)

and GradCam algorithms (45, 46) in Figure 4 to illustrate brain

structures of importance. Besides structural biomarkers for

psychosis, we also demonstrate the attention maps for CLC in

Figures 4B–G, I–N.

4. Discussion

Despite the recognized brain structural alterations (47–

49) and cognitive deficits (13–15) in schizophrenia, no

TABLE 2 Comparison on sMRI-based studies for EP classification.

Method acc F1 spe

Volume features + SVM (40) 50.8± 5.6 54.1± 8.8 53.4± 7.3

Volume features + DNN (41) 65.7± 13.4 69.0± 11.8 69.5± 13.3

Thickness features +

SVM (42)

58.4± 9.0 60.8± 10.6 60.4± 10.1

Thickness features + RF (43) 50.7± 13.5 55.5± 11.7 54.6± 10.7

sMRI images + 2D-CNN (5) 68.9± 5.6 69.4± 5.1 71.0± 5.7

Proposed w/o cognitive

estimation†
70.6± 4.1 70.5± 4.1 75.3± 5.8

Proposed w/ cognitive

estimation†
73.5± 3.3 74.2± 3.0 80.1± 5.1

Proposed w/o cognitive

estimation‡
71.0± 4.3 70.1± 4.4 73.8± 5.9

Proposed w/ cognitive

estimation‡
74.9 ± 4.3 74.5 ± 4.2 82.3 ± 6.3

All results are shown in percentage and the best results are highlighted in bold. †WM and

GM inputs; ‡GM input.

TABLE 3 Results of F1-score (%) for EP classification.

Input
Task

EP EP +
CLC

EP +
CLR

EP + CLC
+ CLR

WM 63.2± 4.1 64.6± 4.3 64.2± 4.4 63.5± 4.6

GM 70.1± 4.4 70.2± 5.4 74.5 ± 4.2 71.2± 3.8

WM + GM 70.5 ± 4.1 72.5 ± 4.0 73.5± 4.0 74.2 ± 3.0

Here EP denote early psychosis classification. The n was set to five for CLC. The best

results are in bold.

studies have performed sMRI-based cognitive estimation

in EP, nor have cognitive measures been incorporated into

EP classification. In the present work, a multi-task deep

learning framework using sMRI was used to bridge sMRI

and cognitive estimation for improving the classification

performance of EP, which can automatically capture structural

features from 3D sMRI scans for EP classification and provide

cognition as supporting evidence at individual level within

a unified framework. While most of ML-based classifiers

relied on features of time-consuming volumetric or surface

based analysis, the proposed method performs EP/HC

classifications and cognition estimation using only sMRI as

input. By comparison with the latest models and ablation

studies, we revealed the feasibility of automatic cognitive

estimation at the individual level and demonstrated the implicit

adoption of cognitive measures as additional information

could facilitate EP classification from healthy controls.

Furthermore, the main structural contributors involved in

the process of EP classification and cognitive estimation

are identified.
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TABLE 4 EP classification performance of our model when introducing di�erent cognitive estimation subtasks, using GM images as input.

Model with Task
acc F1 spe AUC

EP CLC CLR

X 71.0± 4.3 70.1± 4.4 73.8± 5.9 66.3± 3.9

X X 71.4± 3.7 70.2± 5.4 74.4± 5.4 67.4± 4.5

X X 74.9 ± 4.3 74.5 ± 4.2 82.3 ± 6.3 71.1 ± 4.1

X X X 71.1± 3.9 71.2± 3.8 77.0± 5.9 68.0± 4.9

Here EP denotes early psychosis classification. The n was set to five for CLC. The bold values indicate the best results of each metric under different task settings.

4.1. Cognitive estimation performance

For CLC task, our model achieves better CLC performance

in most cases. For example, our model obtains the best F1-score

of 70.1% on the two-categorized (i.e., n = 2) CLC task. Same

results can be observed on the three- and ten-categorized (n

= 3 and n = 10) CLC that our method outperforms all other

counterparts with significant margins. Although in the only case

(n = 5) our method did not get the first place, we still got the

second best performance. Based on these results, it can be seen

that the proposed DL model was able to classify individuals’

cognitive states into groups using sMRI and achieved promising

performance on two-categorized CLC task with higher accuracy

than chance.

Specifically for the two-categorized CLC task, all DL-based

models achieved better performance than ML-based models

in all cognitive dimensions. Although the DL-based models

using sMRI images as input performed similarly across the four

cognitive dimensions (PSp, Vig, ViL, and PSo), it is noteworthy

that our method achieved significant improvements in the

WMe and VeL dimensions. Thus, our method performs most

convincingly for CLC task in all six dimensions and even

achieves an accuracy of more than 80% in some dimensions

(PSp, ViL, and PSo). Since our method uses sMRI images

directly as input without further volumetric and cortical surface

based analysis, it achieves both the overall best classification

performance and efficiency, both of which are crucial for

clinical translations.

However, the CLR performance of all models was worse

than expected, even worse than random guesses (R2 ≤ 0.0). A

possible reason for the poor regression performance may be due

to the limited sample size of the data set (50). By comparing

the performance of DL and ML models, it can be seen that

DL models generally performed worse than ML models. This

suggests that DL models may be more sensitive to the lack of

samples (19), and that DL models may be more suitable for

classification rather than regression in a sample-limited context.

Furthermore, a considerable performance improvement is

observed by comparing the results of the in-house dataset

with the external ABCD HCP-EP dataset (Table S3 in

Supplementary material B). First, for the two-categorized CLC

task, our method achieved an F1-score of 81.6 ± 1.8 on the

external dataset, which is an 11.5% improvement compared to

the F1-score on the in-house dataset (70.1 ± 3.5). Second, for

the CLR task, most DL-based methods achieved better than

random guesses (R2 > 0.0) results and our method achieved the

best one (0.074 ± 0.499), which improved by 0.952 compared

to the R2 on in-house dataset (–0.878 ± 0.121). The improved

performance is most likely due to the fact that the external

dataset (n = 164) has more than twice the amount of data as

the in-house dataset (n = 77), and more data allows the model

to better grasp structural information from the input and learn

correlations between sMRI scans and cognitive levels. Given that

the data from the external dataset were obtained in a different

imaging pipeline and were composed of subjects from cohorts

with different age and gender distributions, the results again

demonstrate the validity of individual-level cognitive estimation

usingDL-basedmodels, especially whenmore data are available.

4.2. Early psychosis classification
performance

For EP classification, our proposed model generally

outperforms the other five competing methods in all metrics.

For instance, our model using solely sMRI images (with GM

as input) achieved the best F1-score (74.5%) compared to ML-

basedmodels using volumetric features [54.1% (40)] and cortical

thickness features [55.5% (42) and 60.8% (43)]. In addition, our

3D-CNN model also achieves better performance in all metrics

compared to 2D-CNN (5), indicating that features are extracted

directly from 3D sMRI arrays more efficiently than from 2D

slices. Finally, we compared the performance of our model

with and without cognitive estimation as a subtask. By adding

cognitive estimation, the accuracy, F1-score and specificity were

improved by 3.9, 4.4, and 8.5%, respectively, when GMwas used

as input. And similar improvements are seen when WM and

GM were used as inputs, by 2.9, 3.7, and 4.8% on the accuracy,

F1-score and specificity, respectively.

In terms of AUC, the cognitive estimation subtask brought

a 4.8% improvement and also achieved the best classification

performance (71.1%) of all models, further demonstrating

its validity. This is consistent with the idea in previous

studies that the association between brain abnormalities and
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cognitive symptoms may exist at a deep and abstract level

and thus can be effectively captured by DL methods, leading

to enhanced performance in EP classification (51, 52). These

results demonstrate the effectiveness of using 3D-CNN and

involving a cognitive estimation subtask for promising EP

classification performance.

In addition, EP classification experiments were conducted

on the external ABCD HCP-EP dataset to assess the robustness

of the proposed method, and the results are presented in Table

S4 in Supplementary material B. In general, the EP classification

results of the proposed method on the external dataset are better

than that on the in-house dataset, with an improvement of

>4.6% on accuracy and>13% on F1-score when usingWM and

GM as inputs, and >3.8% on accuracy and >12.6% on F1-score

when using only GM as input. Since the external dataset has

more subjects than the in-house dataset, such an improvement

suggests that even higher performance can be expected when

more data is available. And more importantly, the proposed

method also achieved higher EP classification accuracy and

F1-score with the inclusion of the cognition estimation on

the external dataset. Similar performance improvements from

the inclusion of cognitive estimation were observed in both

the in-house and external datasets, which again validates the

effectiveness of the cognitive estimation subtask for facilitating

EP classification.

4.3. Impact of cognition classification
category quantity

The EP classification performance is largely unaffected in

terms of F1 score and accuracy, while the specificity could be

improved when n is set to ten. Therefore, in general, introducing

a more challenging context in CLC subtask does not bring more

discriminative information to the classification of EP. This may

be due to the sample limitation in our study, when n is set

to a large number, some categories may not have a sample

at all. However, the improvement in specificity when n = 10

suggests that a larger number of categories may lead to better

EP classification performance in the presence of abundant data.

4.4. Influence of WM/GM inputs

The model with GM as input outperformed the model

with WM as input, with an improved F1 score of ≥5.6. This

is consistent with previous results that EP causes significant

changes in GM (48), while our results further indicate

that changes in GM are sufficiently pronounced in EP and

can significantly affect the performance of the automated

classification tools. Even so, the simultaneous use of WM and

GM achieves the best performance in most tasks, confirming the

presence of both WM and GM alterations in patients with EP.

Therefore, despite the best result was obtain when using only

GM as input (i.e., 74.5% for EP + CLR), the inclusion of both

GM and WM maps generally resulted in better classification

performance for EP.

4.5. Influence of gender di�erence

Regarding the first experiment on gender difference that

using gender information as input, the explicit inclusion has

little effect on both cognitive estimation and EP classification

tasks. For the second experiment that divided subjects into

two subgroups, the overall performance decreased and the

standard deviation increases sharply due to the small number

of samples available for training the model in each subgroup.

The model performance in the male subgroup are generally

better than that in the female subgroup, as female subgroup

has much fewer samples. Notably, in both subgroups, the EP

classification performance still improved after the inclusion

of cognitive estimation, suggesting that the effectiveness of

including cognition estimation on facilitating EP classification

was consistent, independent of gender differences.

4.6. Influence of CLC and CLR subtasks

Both CLC and CLR brought improvement on EP

classification, while CLR seems to be more effective than

CLC. The model incorporating the CLR subtask achieved

the best performance on all metrics, with a significant gap

compared to the other models. However, performance degrades

when CLC is involved in addition to CLR, suggesting that the

two subtasks may be incompatible. One possible reason for

this is that some discriminative brain regions of the cognitive

estimation dimensions may differ from the EP, thus introducing

noisy features in the training. In contrast, the regression task

did not bring discriminative information, so the features of CLR

were more compatible than those of CLC in EP classification.

In short, at least for EP classifications, the regression subtask is

more informative than classification, but for other diseases the

subtask needs to be selected on the merits (53, 54).

4.7. Interpretable sMRI biomarkers and
clinical potentials

The entire GM structure contributes mostly to the EP

classification, suggesting that more discriminative features are

found in GM than in WM, which is in line with the results of

better classification performance of the model using GM shown

in the ablation study. Furthermore, for regions highlighted by

GradCam of EP, saliency appears in the frontal and temporal

lobe regions, as well as putamen, head of caudate nucleus, and
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FIGURE 4

Visualization of the discriminative positions identified by the proposed model on (A, H) EP classification and (B–G, I–N) CLC tasks with

attentional weights. The results were shown as the mean of all cases in the data set. We used both WM and GM images as input and n was set to

two for CLC.

thalamus. These regions contributed the most to our model in

classifying a subject as an patient with EP or a healthy subject,

suggesting that structural features in these regions are most

likely to be discriminative for psychosis. Indeed, all of these

regions recognized by our model are highly consistent with

those reported in previous volumetric and functional studies.

Alterations in gray matter, the frontal lobe, putamen, head of

caudate nucleus, and thalamus were observed in patients with

schizophrenia (55–58) and cognition deficits (59) in group-level

volumetric analysis, as well as fMRI studies (60–62).

Interestingly, these regions are also consistent with

those implicated in parvalbumin-expressing interneuron

dysfunction (63–69), which is one core of schizophrenia

pathophysiology, affecting neuronal synchronization and

thalamocortical networks, and leading to cognitive deficits

as well as hyperdopaminergia related to positive symptoms

[reviewed herein (70)]. Taken together, our interpretable results

indicate the potential of identifying biomarkers from sMRI by

DL methods.

Moreover, some specific regions are also recognized

as discriminative for the estimation of cognition level in

the CLC subtask. Taking working memory as an example,

the thalamus and cerebellum were highlighted by the

DL model with the highest significance using GradCam,

and these regions have also been proved to be associated

with working memory function in the previous fMRI

studies (71, 72). Similarly, in the result of ViL using

GradCam, the highlighted regions of occipital lobe, thalamus,

and cerebellum for visual learning were also considered

associated to visual functions in fMRI studies (73–75).

Furthermore, it is worth noting that the highlighted regions

are not only different among the six different cognitive
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estimation dimensions, but differ significantly from those

for EP classification. This could explain why CLC brings

less improvement in EP classification than CLR, since the

discriminative regions are different, the model may not

be able to coordinate these features to accomplish both

tasks simultaneously.

4.8. Limitation and future work

Although our proposed method achieves improved

performance in EP classification and provides biomarkers with

a high degree of interpretability, there are still some limitations

that may affect the generalizability of our approach. First, the

study was conducted at a single site and did not take into

account the different ethnic composition and sMRI scanning

settings, so multi-site studies are needed for further validation.

Second, the EP subjects in our study received medication,

which may also leads to structural alterations in the brain, thus

requiring the use of a non-medicated sample in our future

studies to rule out medication interference. Third, the study

on the impact of gender differences may require a larger female

group to further validate the proposed method.

Despite these limitations, our results also lead to many

interesting directions for future research. For example, since

only EP is studied in this work, whether the cognitive estimation

subtask helpful for improving classification performance for

other psychiatric disorders could be explored. And, as we

demonstrated that implicitly introducing cognitive features in

the DL model helps EP classification, the question is raised

whether it is better to incorporate such additional features

explicitly (i.e., as input) or implicitly (e.g., as output) into the

workflow. Also, since deep learning and implicit information

introduction can enhance classification, with only sMRI as a

single input, more other relevant features can be introduced into

the model in the same way with the aim of further improving

classification performance and providing interpretable evidence

to aid clinical translation.Moreover, if validated in larger cohorts

of patients at the early phase of psychosis, this approach could

open the way to prediction of cognitive deficit in prospective

longitudinal study with patients in their prodromal phase.

5. Conclusion

In this study, we propose a multitask DL framework

for EP classification based on sMRI images. By introducing

cognitive estimation as a subtask, the proposed method is able

to estimate the cognitive state of an individual and improve

the classification performance of EP by an appreciable margin.

Experimental results show that our method can not only achieve

classification accuracy that exceeds that of the latest similar

methods, but also identify discriminative regions in sMRI

images as interpretable evidence.
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